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Abstract—This paper introduces a novel chroma-based har-
monic feature called Chroma Interval Content (CIC), which
extends Directional Interval Content (DIC) vectors to audio
data. This feature represents key-independent harmonic pro-
gressions, but unlike the Dynamic Chroma feature vector it
represents pitch-class energy motions based on a symbolic voice-
leading approach, and can be computed more efficiently (in
time O(N log N) as opposed to O(N?)). We present theoretical
properties of Chroma Interval Content vectors and explore the
expressive power of CIC both in representing isolated chord
progressions, establishing links to its symbolic counterpart DIC,
as well as in specific harmony-related MIR tasks, such as key-
independent search for chord progressions and classification of
music datasets according to harmonic diversity.

Index Terms—chroma features, chord progressions, key-
independent representations, directional interval content

I. INTRODUCTION

Models for representation of harmonic progressions (e.g.
chord transitions) are useful for a number of MIR tasks,
such as indexing and retrieval of items from music collec-
tions [6] and similarity-based classification and identification
(e.g. genre classification [1] and version/cover song identifica-
tion [18]), but also for systematic musicological studies related
to harmonic idioms [2], [3] and automatic harmonization [9].

The literature offers some alternatives for representing
chord progressions, both in the symbolic and the audio do-
mains. Symbolic chord sequences may be represented using
Lehrdahl’s Tonal Pitch Space hierarchical model based on
the circle-of-fifths and de Haas et al. TPS Distance [6], a
function which expresses the changes of chordal distance to
the tonic over time for any two given chord sequences through
a single integer value. Paiement et al. [14] describe a symbolic
feature built from a theoretical model of harmonic energy
distribution, and propose to measure chord changes in terms of
Euclidean distances between such features. Cambouropoulos
et al. Directional Interval Content vectors [2], [3] aim at
creating a more detailed map of the harmonic flow between
voices in a chord progression, by counting intervals between
every possible pair of pitch classes from the antecedent and
consequent chords.

Harmonic content in audio data is frequently expressed in
terms of chroma vectors (also referred to as pitch class pro-
files), which may be understood as energy histograms per pitch
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class, computed for short audio segments. There are several
ways of defining and computing chroma features, both in the
symbolic and audio domains (e.g. pitch histograms, CENS,
HPCP, see [13], [20]). While chroma vectors describe static
harmonic contents, chord progressions are characterized by the
changes from one chord to the next; more specifically, chord
progressions may be expressed by variational chroma features,
such as Delta Chroma and Dynamic Chroma vectors [10].
Delta Chroma is defined simply as the difference between
chroma vectors representing consecutive chords, and measures
ebbs and tides of pitch class energies as harmony moves
from one chord to the next. Dynamic Chroma, on the other
hand, considers all possible rotations' of the consequent chord,
producing a vector of likelihoods that the chord progression
would correspond to a certain chord rotation.

The goal of this paper is to introduce Chroma Inter-
val Content (CIC), a novel audio feature based on chroma
and DIC for representing chord progressions which is key-
independent (or transpositionally-invariant), i.e. one which
represents changes in harmonic content in a relative way very
much like traditional or functional harmony express all chords
as relative to a certain tonal center, and which at the same
time is not dependent on the idea of tonality or on specific
harmonic idioms. The only other audio feature with similar
properties is Dynamic Chroma, which is key-independent, but
its idiom-independence remains untested: being motivated by
considering differences between chromas of rotated chords,
this feature reflects a musical model based on harmonic func-
tions which are obtained by rotation (e.g. as G-major is a +7-
semitone rotation of C-major). By contrast, CIC achieves both
its key-independence and idiom-independence by extending
DIC from the symbolic domain to the chroma domain, through
viewing chord progressions as multi-layered displacements
of chroma energy in many simultaneous directions, similarly
to the harmonic flows in voice-leading. By avoiding explicit
rotations and exploring mathematical structure, the new fea-
ture also reduces the theoretical complexity from O(N?) to
O(N log N) for a chord progression between N-dimensional
chroma vectors.

This paper is structured as follows. Section II formally intro-
duces CIC, comparing it to Dynamic Chroma and discussing

'The term rotation of a chord refers to pitch class transposition (i.e.
circularly shifting all pitch classes by a fixed number of semitones) and is
formally defined in Section II.



some of its mathematical and musical properties. Section III
provides experimental evidence of CIC’s usefulness for index-
ing and retrieval of harmonic progressions and for harmony-
based classification tasks. Finally, concluding remarks and
ideas for future work are presented in Section IV.

II. CHROMA INTERVAL CONTENT

Review of DIC: Directional Interval Content (DIC) vectors
have been introduced in [2], [3] as an idiom-independent
symbolic harmonic feature for characterizing harmonic pro-
gressions represented by pitch-class sets, which is inspired by
Lewin’s interval function [11]. Pc sets are meant to abstract
from and simplify general chord representations in terms of
pitches, inversions, instruments or voices, by using octave
equivalence and keeping the bare minimum that allows us to
distinguish chord types, i.e. the set of pitch-classes (integers
from 0 to NV — 1, where N = 12 for the chromatic scale) that
belong to a given chord.

For each potential voice-leading motion between pc sets
A,B C {0,1,...,N — 1}, the DIC harmonic feature counts
the corresponding displacement (in pc steps modulo N, or
semitones for N = 12) and thus form an /N-dimensional
vector DIC with DIC[n] representing how many potential
voice-leading motions of n steps exist in the chord progression
A — B. For example, between a C-major chord {0, 4, 7} and
a G-major chord {2,7,11} (see Figure 1) we find possible
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Fig. 1. Potential voice-leading motions between C-major and G-major.

voice motions between 0 — 2, 0 — 7, 0 — 11, 4 — 2,
4 — 7,4 — 11,7 — 2,7 — 7,7 — 11, and so
for this example DIC = (1,0,1,1,1,0,0,3,0,0,1,1). We
write “’potential voice-leading motions” to emphasize that no
voices are actually known from pc sets, but actual instrumenta-
tions/orchestrations of a given chord progression might include
any of those potential voice-leading motions (we are ignoring
idiom-dependent stylistic conventions that might forbid some
of these motions).

Specifically, starting off from a vector DIC4,,5 = 0, each
possible pair (a,b) € A x B entails a unit increment in the
counter DIC 4., g[b — a]. This algorithmic definition (as it is
expressed in [2], [3]) can be formalized in many ways, e.g.

DIC4r, p(n] = Z Z On,(b—a) %N ey
a€AbeB
1 ifi=j,

by using Kronecker’s delta 9; ; = { 0 otherwise

N-—1
DIC4p[n] = > InIE  on (2)
m=0

1 ifieX,
0 otherwise.

It can be seen that both definitions are equivalent’ and
transp0siti0nally-invariant3, and, while the first form seems
to reflect more directly the algorithmic definition, it is the
second one that lends itself to a generalized and more efficient
extension from DIC’s symbolic domain to the audio domain
of chroma vectors, which instead of indicating which pitch
classes belong or not to a certain chord, represent how strongly
each pitch class is represented in a corresponding audio signal.

by using indicator functions I;X = {

Formal definition of CIC: given two chroma vectors X,Y €
Rf representing subsequent chords in an audio signal, we

define
N-1

CICX»—)Y[”} = Z XmY*(m-‘rn)%Na 3)

m=0
which can be recognized as the cross-correlation between X
and Y, or the circular convolution between X and Y, the
pitch-class inversion® of Y, with all indexes also inverted, i.e.,

%
CICyy = X + Y.

This immediately suggests a fast convolutional computation of
CIC as

CICx, .,y = F (]—'(X)]—' (‘7)) )

where F denotes the DFT operator. Equation 4 can be com-
puted in time O(N log N) by using an FFT implementation
of the DFT, as opposed to O(N?) for N applications of
Equation 3. It is evident that this theoretical advantage only
translates into significant computational savings for higher-
dimensional chroma vectors (e.g. quarter-tone, cent scale, etc).
Although higher-dimensional chroma representations are not
popularly used for the analysis of traditional music based on
the 12-semitone scale, their interest is evidenced in ethnomu-
sicological studies [8], [17], in the study of tonal stability in
western baroque and classical music [7] and also in general
MIR tasks [16].

Comparison to Dynamic Chroma: It is useful to compare
the above definition with the Dynamic Chroma feature vector
as defined in [10]:

DCxoy[n]=Z - |Y™ - X||, n=0,1,...,N =1, (5)

where Yk(") = Yp—nywny and Z = max, {||Y™ — X||}.
According to its authors, their intention is to represent a
likelihood that Y would be a circularly-rotated version of X,
for each possible rotation Y™, n = 0,1,...,N — 1. This
is especially appealing if indeed X and Y share the same
chord structure (e.g. if both are major chords), because in
this case one of the differences ||Y (™) — X|| might be very
close to zero and the corresponding Dynamic Chroma (DC)

zlf,‘llgn+n)%N =1 <= a=mE€AANb=(m+n)%N € B —
(b — CL)%N =n <— 6ﬂ,7(b_a)%N =1.

3C = D with C = (A+ n)%N and D =
DICc,,p = DICA, 5.

42:Y(_,L)%N,forn:O,...,N—l.

(B + n)%N implies



component would be maximum. DC is easily seen to be key-
independent (since || Y — X|| = ||y (m+m) — X )| for all
m) and computable in O(N?) time.

Mathematical and musical properties of CIC: Unlike the
DC feature vector, DIC’s original formulation (Equation 1) is
not oriented towards finding possible matches between rotated
chroma vectors of similarly-structured chords. CIC’s extension
to chroma vectors through generalization of Equation 2 is not
motivated by measuring componentwise differences between
subsequent chroma vectors, but by aggregating information
that would represent chroma energy redistribution, i.e. how
energy from each pitch class in the preceding chroma vec-
tor is redistributed to other pitch classes in the subsequent
chroma vector, similarly to how DIC operates on potential
voice-leading motions between chords of arbitrary harmonic
structures. One way of verifying the plausibility of this inter-
pretation is to consider a simple scenario in which both chroma
vectors are binary, i.e. X,Y € {0,1}". In this very simple
case, X and Y can be interpreted as indicator vectors for pc
sets A = {n|X,, = 1} and B = {n]Y;, = 1}, and Equations 2
and 3 are actually the same, i.e.

CICx,.y =DICap

(since X = I4 and Y = IP). In this sense, since any chord
progression between pc sets A — B can be equivalently
represented by a chord progression between corresponding
indicator vectors X — Y, it is seen that the proposed CIC
feature is actually an extension of the symbolic DIC vectors
to general (i.e. non-binary) chroma vectors.

CIC inherits all mathematical properties of convolutions
of non-negative vectors, such as commutativity, linearity in
both arguments, invariance under identical circular rotations
of both arguments, and monotonicity in both arguments.
Many musically-relevant properties of CIC, such as key-
independence, amplitude dependence and harmonic mono-
tonicity, are also immediately inherited from DIC or trans-
latable from equivalent mathematical properties.

Specifically, identical circular rotations of X (™) and Y ("),
an operation musically equivalent to key transposition by
+n semitones within a tonal idiom, translates simply into a
reordering of the terms in Equation 3, and so

CICX(W,)Hy(n) =CICx. sy,

which explains that CIC, like DC, is a key-independent har-
monic progression feature, but unlike DC this property is not
dependent on an explicit enumeration of all rotations of Y (as
per Equation 4). A similar property corresponds to the effect
of transposing only one of the chords: in this case, illustrated
in Figure 2 through the progressions C-major—G-major and
C-major—D-major, the resulting CIC is rotated by the same
amount, i.e.

CICy,,ym = CICY. .,

as can be seen by a simple change of variables in Equation 3.
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Fig. 2. Effect on CIC of rotation of second chord: all voice-leading motions
are warped by the same amount.

Both DC and CIC are affected by differences in amplitude
levels between chroma vectors X and Y, which may be cir-
cumvented by working with [,.-normalized chroma vectors®.
By rewriting Equation 3 as

N—1
—~~ Xm Yv(m,+n)%N
CIC =
Xyl mzzouxnoo W

it is seen that CIC is an amplitude-independent feature which
also extends DIC (since in the case of non-zero binary vectors
[ X|lo = |Y]|oo = 1 implies CICx,,y = CICx.,y). As an
audio feature measuring relative levels of displacement of
energy among pitch classes, another interesting normalization

18
CICXHY — min(CICX,_)y>

maX(CICX,_)y) — Inin(CICX,_)y) ’

ﬁX»—)Y =

which maps all CIC values to the interval [0, 1]. This type of
normalization proved to be useful in applying CIC to MIR
tasks and was used in Section III.

Commutativity of convolution corresponds to two musically
meaningful properties of CIC, namely

CICx .y = EICYHX

and
CICX._)Y = CIC?’_}y .

Musically, if X, Y are binary chroma vectors the first property
states that the reversed chord progression Y +— X has
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Fig. 3. Effect on CIC of chord reversal: all voice-leading motions are inverted.

the same potential voice-leading motions as X +— Y, but
each individual voice-leading motion is inverted, as in the
example of Figure 3. The second property states that the
chord progression from the pitch-class inversion® of chord
B = {n|Y,, = 1} back to the pitch-class inversion of chord

Swhere each component of a vector X is divided by || X||co = max{X,}.
This is the most commonly used normalization for chroma vectors.

OIf C'is a pc set, then C' = (—C)%N = {(—c)%N | Vc € C}. This is
equivalent to reflecting each pitch class using 0 as a mirror: B becomes Db,
E becomes Ab, etc.



A = {n|X,, = 1} possesses the exact same set of potential
voice-leading motions found in chord progression A — B.
Figure 4 shows an example for the progression C-major—G-

o) .

Fig. 4. Effect on CIC of chord inversion and reversal: all voice-leading
motions are precisely the same, even though they appear to be mirrored.
For instance, all blue arrows entering note B in the first chord progression,
corresponding to displacements of -1, -5 and -8 semitones, also appear leaving
Db in the second chord progression; this corresponds to Db being the inversion
of B(Db =1= —11%12 = B). The same can be verified for blue arrows
entering D and red arrows leaving Bb (D = Bb), and also for blue arrows
entering G and red arrows leaving F (G = F).

major and its pitch-class inversions Bb-minor—F-minor. The
same interpretation is extended through CIC to progressions
between arbitrary chroma vectors by considering voice-leading
motions as chroma energy redistributions.

Harmonic monotonicity is another musically meaningful
property of CIC also satisfied by DIC: if one or both chords
in a chord progression are enlarged, i.e. A C A and B - B,
then

DICA.g <DIC,, , 5,

(meaning component-wise <) since all potential voice-leading
motions of A — B exist in A — B. This translates immedi-
ately into harmonic monotonicity for CIC if applied to chord
progressions between binary chroma vectors X, Y,X ,Y €
{0,1}V:ie. X < XandY <Y implies

CICx.sy < CICx ¢

This property extends beyond binary vectors to arbitrary
non-negative vectors X,Y,X,Y € RY, a fact that can be
immediately derived from Equation 3.

III. EXPERIMENTS AND DISCUSSION

In this section we present preliminary experiments which
aim to identify potential application cases for the proposed
feature. We start with an experiment involving symbolic
representations of isolated harmonic progressions within an
index/search context, and then address a genre classification
experiment on a music dataset. In the following experiments,
the [0,1]-normalized form CIC is used throughout due to its
better empirical performance.

A. Indexing Harmonic Progressions

The first experiment uses a fairly simplified scenario in
order to explore the theoretical proximity between the sym-
bolic DIC and the chroma-based CIC features, using ad-hoc
queries for retrieving chord progressions from synthesized
examples representing a large palette of timbres. The question
that motivates this experiment is the following: is CIC a
representation feature for chord progressions that allows us

to search for specific configurations within an audio file,
while being confident that similar chord progressions would be
retrieved? In other words, will variations in timbre, which are
known to affect chroma, be tolerated by a search mechanism
based on symbolic representations of chord progressions, e.g.
CIC vectors built from binary chroma templates as search keys,
as is done for instance in chord recognition?
We adopted the following method for this experiment:

o adataset S of all three-note chords that may be obtained
from a given diatonic scale {0,2,4,5,7,9,11}; due to
the key-independence and single-rotation properties of
CIC we restricted S to chords containing pitch-class 0,
since any other chord could be circularly shifted towards
0 without affecting the sequence of DIC values (only its
particular rotation). There are 15 such chords, including
major, minor, diminished and augmented triads, but also
clusters and suspended chords such as {0, 2,4}, {0,5,7},
as well as other chord types.

« for every chord A in S a set of pseudo-chroma vectors
C(A) was built based on geometric progressions of am-
plitudes of, k =0,1,..., K — 1 with several amplitude
decaying factors o € {0.2,0.4,0.6,0.8,1.0} and number
of harmonics K € {1,2,5,10, 15,20}, totaling 30 differ-
ent pseudo-chroma realizations for each chord.

o for every chord progression A — B € S x § a binary
archetype Z = CIC;,i5(= DIC4.,p) is used as a
search item within the set

T ={CIC,, s, | Vca € C(A),cp € C(B)}

of CIC vectors obtained from all pseudo-chroma re-
alizations of the chord progression A +— B, using
the sets C(A) and C(B) defined above. The search
retrieves the closest vector CIC., .., to Z according
to the cosine distance, and is considered successful if
the chord progression a — b € S x § is equivalent
to the original progression A +— B in the sense that
CIC;, 1, =CICr, 1.

For the sake of comparison, the exact same method was
applied to DC to check for its adequateness in retrieving chord
progressions, represented as binary archetypes DCyr,. .1,
from the set of DC vectors obtained from pseudo-chroma
realizations of all chord progressions

T ={DCk¢,vs¢, | Vca € C(A),c, € C(B)}.

Interestingly enough, both methods did retrieve 100% of
correct results for a large number of progressions in § x S:
60.4% of all such progressions got a perfect score for CIC,
and 67.6% for DC, meaning that recovery from the binary
archetypes CIC;,,.r, and DCy,.,;, was successful for all
pseudo-chroma realizations of A — B for these progression
types. Taking all searches combined the overall scores were
96.9% for CIC and 97.3% for DC.

Among progression types that didn’t achieve a perfect score,
some were slightly favored by CIC and some by DC, which
almost always produced similar scores, retrieving the correct



chord progressions in between 70% and 96.7% of all pseudo-
chroma realizations (each feature within 6.7% of the other’s
score, or equivalently 1 or 2 misclassified pseudo-chroma
realizations for each such chord progression). These cases
covered 98.7% of all 225 chord progressions in S x S.

The remaining 3 cases (1.3% of 225) were chord pro-
gressions {0,2,4} — {0,2,4}, {0,2,11} — {0,7,9} and
{0,7,9} — {0,2,11}, for which DIC obtained 80% of
successful searches against respectively 100%, 93.3% and
93.3% for DC.

Based on these results it may be safely assumed that both
DIC and DC are good representations for chord progressions,
in the sense that their binary archetypes DIC;,.,;, and
DCj,. 1, built out of binary chroma versions of a chord
progression A +— B are good representatives to be used in
searching mechanisms, being able to identify accurately over
95% of possible pseudo-chroma realizations of A — B in the
experimental setting described.

B. Genre Classification

In this second experiment, we addressed the following ques-
tion: how well do CIC vectors capture certain harmonic styles,
in the sense of allowing the comparison of different music
pieces in terms of diversity of chord progressions? To try to
answer this question, a harmony-based genre classification task
was set up where both CIC and DC features were employed. It
should be mentioned that genre-classification is a difficult task,
for which harmony alone is certainly not sufficient to allow
precise discrimination, due not only to genre’s dependency
on all music aspects such as timbre, rhythm and even lyrics,
but also due to the very disagreement of genre attribution
between listeners [15]. Nevertheless, the goal here is simply
to have a preliminary comparison between two alternative
representations for chord progressions within the context of
a popular MIR task.

Both CIC and DC are calculated from chroma vectors
representing subsequent chords, and so one requirement of the
audio dataset was to provide a reliable segmentation of frames
corresponding to the same chord, preferably with chord anno-
tations that would allow double-checking of computed CIC
and DC features. One dataset that fulfilled this requirement
is described in detail by Clercq and Temperley [5], and is
based on a selection made by Rolling Stone magazine entitled
“500 Greatest Songs of All Time” of popular pieces from the
1950’s through the 1990’s. The harmonic transcriptions were
manually done by both researchers for 200 of these songs, and
are available online’.

Genre-related information is not available in the original
dataset, but can be obtained from Dave Tompkins’ Music
Database [19]. This repository classifies the same 500 songs
into 16 genres, along with a TBD label for unclassified songs.
Considering only songs for which harmonic annotations were
available and classes with at least 10 songs, we arrived at a
reduced dataset comprising 128 songs, distributed among three
genres according to Table 1.

"http://rockcorpus.midside.com/; Accessed December 09th, 2018.

Genre | # of items
Rock 85
Slow 33
Dance 10

TABLE I
GENRES AND CORRESPONDING NUMBER OF SONGS IN THE REDUCED
DATASET.

For each song in the reduced dataset, average chroma
features were obtained for each segment corresponding to a
single chord: individual chromas with N = 12 were computed
using Librosa [12] over 2048-sample windows. For each pair
of average chroma vectors corresponding to adjacent single-
chord segments, CIC and DC features were obtained. Each
song is thus represented through a CIC-gram or DC-gram of
size 12 x M, where M +1 is the length of the annotated chord
sequence for that song (i.e. there are M chord transitions).

In order to produce a comparable representation among
all songs, independently of M, a bag-of-words approach has
been used. This representation is based on a clusterization
of all possible CIC (or DC) vectors into K clusters with
centroids c1,...,cx, and then each song is represented by a
normalized histogram with counters associated to the number
of its features closest to the k-th centroid. Clusterization has
been carried out using Kmeans, where K has been chosen to
optimize the average silhouette coefficient

1 b(i) —a(d)
; L max{a(i),b(i)}’

where L = total of CIC vectors, 7 is a CIC vector in cluster I,
a(i) = max{d(i,j) | j € I} and b(¢) = min{d(i,j) | j & I}.
For K between 2 and 50 the optimal silhouette coefficient was
obtained for K = 4 for CIC and K = 5 for DC. After the
clusterization step each song is then associated to its /K -order
histogram, which is used in the classification task.

XGBoost [4] has been used for classifying songs according
to the designated genres, due to its performance and ease
of use; we used Scikit-learn’s XGBoost implementation with
parameters y=0, learning_rate=0.2 and max_depth=15.

For this multi-class classification task a series of binary one-
versus-all classifiers are employed, and performance measure-
ments may be combined in several ways:

macro-average is an average over all binary classification
tasks with equal weights, which is not suited for unbal-
anced scenarios where classes have very different sizes;

weighted-average considers the size of each class as the
weight applied to the corresponding performance mea-
surement;

micro-average instead of combining isolated performance
measurements, all individual labeling results (TP, FP,
TN and FN)8 are combined, and an overall performance
measurement is derived from these values.

8These are standard metrics for binary classification: TP (True Positives),
FP (False Positives), TN (True Negatives), and FN (False Negatives).



Average | CIC performance | DC performance

Macro 0.30 (£ 0.10) 0.24 (£ 0.04)

Weighted 0.54 (£ 0.10) 0.47 (£ 0.09)

Micro 0.59 (& 0.09) 0.52 (+ 0.12)
TABLE II

F-MEASURES (p¢ £ ) FOR TERNARY CLASSIFICATION OF MUSIC GENRES
ROCK/SLOW/DANCE IN THE REDUCED DATASET, BASED ON CIC AND DC
FEATURES.

Metric | CIC performance | DC performance
F-measure 0.74 (£ 0.02) 0.72(% 0.07)
Precision 0.68 (£ 0.06) 0.70 (£ 0.16)

Recall 0.81 (£ 0.05) 0.75 (£ 0.09)

TABLE III

F-SCORE, PRECISION AND RECALL FOR BINARY CLASSIFICATION
BETWEEN ROCK AND SLOW MUSIC GENRES, BASED ON CIC AND DC
FEATURES.

Table II summarizes the results of a multi-class classifica-
tion task with the classes Rock/Slow/Dance in the reduced
dataset; macro/weighted/micro averages for F-measure are
presented, using a 5-fold cross-validation.

Macro averages are expectedly worse due to differences
in class sizes. Micro and Weighted averages are marginally
better for CIC compared to DC. Table III presents F-measures,
precision and recall for a binary classification with the 2 largest
classes, Rock and Slow. It is apparent that CIC obtains not
only slightly better values of F-measure and Recall, but also
smaller variations over the folds.

The results above are modest but may be considered as
preliminary evidence that the newly proposed feature CIC
is worth pursuing further investigation and employment in
other harmony-related MIR tasks, especially those dealing
with harmonic progressions, harmonic idioms or harmonic
diversity.

IV. CONCLUSION

In this paper we introduced a novel harmonic feature
Chroma Interval Content CIC which extends Directional In-
terval Content (DIC) vectors to chroma features, allowing
the representation of chord progressions from audio-extracted
data. CIC’s motivation comes from a voice-leading perspective
applied to chord progressions, generalizing this interpretation
to chroma energy displacements. CIC has many interesting
computational, mathematical and musical properties, and is
potentially applicable to a wide-ranging series of harmony-
related MIR tasks.

Being equivalent to a cross-correlation between subsequent
chroma vectors, CIC is closely related to Dynamic Chroma
vectors, a feature obtained by measuring differences between
rotated chords in a chord progression. We have discussed some
of their relationships on a theoretical level, and compared both
features in similar experimental tasks involving chord progres-
sion identification and genre classification. Results have shown
that both features provide similarly adequate representations
for chord progressions, and CIC may have a slight advantage
over DC in a harmony-based genre-classification task.

Future work include a more thorough evaluation of CIC in
other harmony-related MIR tasks, such as cover-song iden-
tification [10], [18], and also exploration of its application
to modeling of harmonic idioms and synthesis of chord
progressions within an automatic harmonization context [9].
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