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Abstract 

 
The identification of epistasis or interactions among genes plays an important step for understanding the 

genetic regulatory network of complex diseases. When there are more than one genetic locus influencing the 
phenotype, interaction effects among loci are probably involved. Nevertheless, despite of the advances in 

genetic mapping studies the analytical detection of epistasis is still considered a challenge. In this work, we 
apply the genetic algorithm (GA) jointly with different criteria for model selection to search for molecular 

markers associated with multiple QTL´s (Quantitative Trait Loci) and their interaction effects GA represents 
a more efficient alternative for searching high dimensional spaces and it is less affected to the general 

problem of identification of epistatic genes. We use simulation studies to compare the performance of GA 

with the classic search procedures, exhaustive and conditional, under different configurations. Finally, we 

analyze data from a F2 rats design under the three proposed search procedures, and we are able to identify 

two QTL´s with epistatic effect on systolic blood pressure, located in chromosomes 5 and 9 of the rat 

genome using GA search. 
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1 - Introduction 
 

Epistasis is a phenomenon theoretically known and very important in genetic studies, which describes how 

interaction among genes can affect phenotypes. However, empirically it is difficult to investigate this 

phenomenon, possibly due the limitations on the methodological tools that have been used. Many studies 

have focused on the epistasis detection problem in complex diseases, such as hypertension, asthma, diabetes 

and multiple sclerosis (Cordell, 2002; Carlborg and Haley, 2004; Moore and Williams, 2005; Gao et al., 

2010), but the analytical identification of epistatic genes continues to be a challenge. 

 
 The term epistasis was first used by Batenson (1909) to describe a biological phenomenon in which the 

expression of a gene depends on the presence of one or more genes. Later, Fisher (1918) proposed a 

statistical interpretation through the linear regression framework allowing to model epistasis as an 

interaction effect among predictor variables.  In this paper predictor variables will be represented by 

molecular markers that will take three possible values 0, 1 and 2 corresponding to their aa, Aa and AA 

genotypes, respectively.   One of the goals of the genetic analysis is to identify quantitative trait locus (QTL) 

that is a genetic locus associated to a quantitative trait.  Inbred populations, such as F2 design, are one of the 

most used for QTL analysis due to the direct calculation of the genetic values of a series of observed or 

putative loci (Haley and Knott, 1992). 

 

Genetic mapping consists of experimental and statistical procedures for detection, localization and effect 

estimation of genes associated with etiology and regulation of diseases. By considering design of 

experiments involving controlled crossing of animals or plants, different formulations of regression models 

can be used to identify  QTL’s, including their major effects and possible interaction effects (epistasis). The 
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challenge in these studies lies on the comparison of models or likelihood functions that, in general, show 

only a small variation around an optimum point and involve a high dimensional search space.  

 

For epistatic QTL identification the exhaustive and conditional search are the mostly common used methods 

(Carlborg et al. 2000; Sen and Churchill, 2001; Goldberg, 1996; Holland, 1998). Considering a set of finite 

points, the exhaustive procedure assess all possible solutions to the combinatory problem, but for high 

dimensional maps the computational costs, in both time and memory, are severe. The conditional search 

method is much faster, but it has limited power for interaction effect detection, since it takes no account of 

all possible locus combinations and the selection of a locus depends on the previous selections (Churchill, 

2001; Jannink and Jansen, 2001; Kao and Zeng, 2002).   

 

Furthermore, for epistatic mapping problem the use of Genetic Algorithm (GA) was first proposed by 

Carlborg et al. (2000) and Nakamichi et al. (2001), who showed the efficiency and applicability of GA when 

searching dense markers maps and using residual sum of squares as objective-function. Genetic algorithm 

(GA) is a general and flexible method for searching optimum solutions in complex spaces (Tsutsui and 

Gosh, 1986; Carlborg et al., 2000). For mapping of epistasis, GA represents an analytically useful tool that 

can increase the computational efficiency for searching bigger genomes and compact maps of molecular 

markers. Further, GA can be adaptable to the apparently non-linear optimization problem involved on 

epistasis detection.  

 

For quantitative responses the regression models have been applied for epistasis mapping through 

interaction effects of predictor variables. The same approaches have been used in the context of logistic 

regression models for binary responses associated to diseases. Recently, Satagopan and Elston (2013) 

proposed a test statistic for detecting the presence of removable interaction in order to fit parsimonious 

additive models for searching epistasis. Despite of all efforts, epistasis still remains an opened research field 

and our limitation for identification of epistatic loci has been one factor responsible for the failure of many 

genetic studies, including hypertension genetic mapping using experimental designs as F2 inbred (Garret 

and Rapp, 2002; Levy et al., 2009; Newton-Cheh et al., 2009; Krieger, 2010; Gopalakrishnan et al., 2010).  

 
In this article, we formalize the GA in the context of genetic mapping and applied it to identify epistatic 

QTLs using simulation data and   F2 controlled crosses.   In section 2, we describe the classic methods and 

our proposed GA.  In section 3 we describe our simulation and real data. In Section 4  we show the results of 

our GA algorithm using simulated data under different scenarios, and analyzing F2 rat data (Schork et al., 

1995).  In section 5, we presented our final remarks. 

 

 

2 – Method 

 

2.1 – Epistatic Regression Model 

 

The multiple interval mapping model (MIM) proposed by Kao et al. (1999) is based on a regression model 

with the predictor variable defined as genetic values associated with the effects of multiple QTLs and their 

interactions.  Using this model to detect epistasis may increase the precision and power for identification of 

QTLs and their interaction effects.  We assume that the QTLs are either observed or imputed molecular 

markers. 

 



In this article, MIM is applied by considering two QTLs randomly sampled from the genome and analyzed 

as predictor variables and using three different search procedures (exhaustive, conditional and GA).  We 

assume that all F2 rats have phenotype and genotype data available for analysis. By genotype data it means 

any molecular marker platform as microsatellite or SNPs (Single Nucleotide Polymorphisms).   By setting 

two QTLs, Q1 and Q2, located on positions pos1 and pos2 in two different intervals, I1 and I2, respectively, 

the following regression model is used for epistasis detection between such QTLs,  
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where yi is a phenotype of interest (quantitative response) observed on the i-th individual; m is the general 

mean; a1, a2 and i12 represent additive and interaction effects for Q1 and Q2, respectively; X1i and X2i  are 

predictor variables that can be defined in terms of both observed or putative genotype values for loci in the 

I1 and I2 intervals, respectively. The error components, εi, are assumed uncorrelated, homoscedastic and 

following a Normal distribution (Haley and Knott, 1992) or, as proposed by Zeng (1994), be a Normal 

Mixture distribution. 

 

Churchill (2001) considered regression models similar to equation (1) and proposed a  test for interaction 

effect with one, two or three degrees of freedom (df), i.e., the  interaction test can be assessed in the 

presence of both additive effects (H0: i12=0 ∧ a1≠0 ∧ a2 ≠0; using one df), or in the presence of only one 

additive effect (H0: i12=0 ∧ a1=0 ∧ a2 ≠0; using two df) or without additive effects (H0: i12=0 ∧ a1=0 ∧ a2 =0; 

using three df).  In our article, we use the one df interaction test.   

 

For search genetic maps using exhaustive method the interaction effect test is conducted for all possible 

pairs of positions extracted from the genomic map, for instance, using slices of 1cM (centiMorgan molecular 

unit) to cover the map. Under GA, an interaction test is accomplished only for pairs of positions randomly 

selected by the algorithm path. For the conditional search, first we test for one major additive effect (H0: 

a1=0) to identify a QTL with the greatest effect, say Q1;  second we include Q1 in the model, and interaction 

tests are conducted to find the next QTL, Q2, considering all remaining loci (H0: i12=0 ∧ a1≠0 ∧ a2 ≠0). 

  

For each pair of loci, Q1 and Q2, the model in equation (1) is fitted and statistics SSE (residual sum of 

squares), AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are calculated and 

used as criteria for model selection (Paulino et al., 2003). In our implementation, SSE was calculated by the 

classical quadratic form given by 
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where Y is the response variable vector; X is the predictor variables matrix, with the columns defined by the 

values corresponding the general mean effect, Q1 and Q2 additive effects and its interaction. AIC statistics 

was calculated by the following expression, 

 

                                     ( ) pLRAIC 2ln2 +−=  ,                                                               (3) 

 

where LR is the likelihood ratio, ln is the natural logarithm  and p is the difference between the number of 

the parameters of the two models under comparison (under H0 and H1). BIC statistics was calculated by 

(Raftery, 1995) 
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where LR and p are defined as in the expression (3) and n is the number of the rats. Equivalences among 

these criteria can be assessed (for instance, Sakamoto et al., 1986): 
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where SSR is the regression sum of square. The main difference between AIC and BIC is the penalization 

factor. BIC assumes that the “true” model is among the set of candidate models, while AIC searches for the 

best model among the available models. For model comparison with different number of parameters, the 

SSE criterion is easy to implement, ensures a good performance of the model selection procedure and can 

well discriminate the quality of adjusts between two or more competitive models (Carlborg et al., 2000; 

Wang, 2000). 

 

2.2 – Genetic Algorithm (GA) 

 

The major reason to use GA for epistasis search is its potential for optimization of high dimensional spaces. 

To search the genome for detection of epistatic QTLs, each pair of positions (pos1, pos2) extracted from the 

possible positions population defines a solution to be assessed and updated. GA reaches the pair of positions 

that represents the best solution taking into account the optimization of an objective-function. In our 

situation, the three model selection statistics, SSE, AIC, and BIC, are used as objective-functions for our 

proposed GA. 

 

In this article, for the GA implementation we used a real codification where real values were assigned either 

for pairs of candidate positions and their correspondent objective-function. To cover the genome, we assume 

that the positions are fixed 1cM apart along the genome, and they can be observed or imputed positions. For 

implementation of the GA the following steps were considered, (see, Figure 1): 

 

Step 1 – Evaluation: Assignment of a worse pair of positions (pos1, pos2) that reaches a high value for the 

objective-function assuming that the pair will be replaced during the process. 

 

Step 2 – Initialization: Random selection, without replacement, of four different pairs of positions. Such 

pairs are sampled from the population of possible positions defined by the combination

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K , where K is the 

number of positions fixed into the genomic map and k is the number of positions selected at a time (we use k 

= 2 loci). Objective-functions are calculated for the four pairs and one is selected using two tournaments 

procedure, which has the advantage to provide diversity (Thierens and Goldberg, 1994; Blickle and Thiele, 

1995; Carlborg et al., 2000; Nakamichi et al., 2001).  

 

Step 3 – New Set of Positions: Generation of new positions through the following steps: 

 



Step 3.1 – Selection: In this stage, one pair of positions is selected from the group of four candidates for 

further recombination via a BLX-h or a mutation method. For decision between recombination (BLX-h) or 

mutation, a random variable is generated under uniform distribution, U[0,1]; if the result is lower than a 

fixed mutation probability (pm parameter, set to 0.1 or 0.4) the program will execute a mutation procedure; 

otherwise, it will execute recombination procedure. 

 
Step 3.2 – Recombination: Conduction of the BLX-h routine (Eshelman et al., 1997). This operator sustains 

the intuitive idea that information must be exchanged among different candidate solutions. The probabilities 

of recombination are set to 0.9 or 0.6 (corresponding to pm equal to 0.1 or 0.4, respectively). 

 

Step 3.3 – Mutation: A random operator is used that attribute equal probability for occurrence of a stronger 

mutation (limit mutation) or a lighter mutation (uniform mutation). 

 

Step 4 – Updating: In the initialization matrix including the four candidate pairs, the pair of positions with 

the worse adjustment (using SSE, BIC or AIC criteria) is excluded in favor of the new pair of positions 

obtained from recombination or mutation steps. This pair is included in the updating if its adjustment is 

“better” than the one previously inserted. 

 

Step 5 – Stopping rule: The algorithm is run for a fixed number of generations (ng) and the best solution is 

obtained. Then, the algorithm is run for a number of solutions (ns) and global best solution is finally 

obtained by comparing all ns solutions. 

 

Step 6 – Loop: If the stopping rule, ns, for one solution is not attained, the algorithm returns to step 2 for 

the next GA generation, until a given number of generations is completed, and a solution is achieved. 

 

 
 

Figure 1: Genetic Algorithm for epistasis search. 

 

 

3 – Data Description 

 

3.1 – Simulation study  



 

We consider eight different scenarios for data simulation based on the following parameters: dimension of 

the markers map (MAP), sample size (n), mutation probability (pm), number of solutions (ns) and number of 

generations (ng). The first parameter, MAP, refers to the number of chromosomes, number of observed 

markers per chromosome and the distance between markers for a map. The parameter n is the number of F2 

rats and corresponds to the number of phenotype data simulated. The last three parameters are related to the 

GA application.  Table 1 shows the parameter values used for simulation and data analysis.  

 

For the simulation of the markers map we consider two scenarios:  first, smaller genome window (Data 1 to 

Data 6) with 2 chromosomes including 4 markers per chromosome equally 4cM spaced, totalizing 24cM for 

search; second,   larger windows (Data 7 and Data 8) with 10 chromosomes, 4 markers per chromosome 

equally spaced by 4cM and by 8cM, totalizing 120cM and 720cM, respectively. Positions were imputed for 

covering the map in each 1cM. For each observed marker position, genotype data was generated, but for 

putative positions genotype data was calculated from the observed genotype of adjacent markers, as 

proposed by Haley and Knott (1992). 

 

Data sets 1, 2 and 3 were generated using n=50 observations and MAP defined by 24cM totalizing 276 

possible pair of positions to search for epistasis. Data from 4 to 6 used n=200 observations and the same 

MAP. Data 7 was generated using n=200 and a MAP defined by 120cM totalizing 7,140 possible pair of 

positions to search for epistasis. Finally Data 8, also with n=200 observations, but a MAP with 720cM, 

totalizing 259,560 possible pair of positions to search for epistasis.  

 
For the genotype and phenotype data simulation we used WinQTLCart (Wang et al., 2007) for a F2 

population. We assume markers in linkage equilibrium. We generate the phenotype from a Normal 

distribution with mean and variance equal to 130 and 2, respectively. In each simulation scenario, two QTLs 

with epistatic effect were generated in fixed positions from the map (QTL1 and QTL2, indicated in Table 1). 

We use R package (R Development Core team, 2008) to implement our method.  

 

 

3.2 – Rats F2 

 

We analyze data from Schork et al. (1995) involving 221 rats from a F2 design obtained from a crossing 

between a male Spontaneous Hypertensive Rat strain (SHR) with a female normotensive Brown-Norway rat 

(BN). Many cardiovascular variables were evaluated in each animal, such as systolic and diastolic blood 

pressure, measured before and after a salt diet exposition. Genotype data were also obtained for each animal 

considering a map with 182 molecular markers (microsatellite platform) distributed along the 21 rat 

chromosomes.  

 

Schork et al. (1995) analyzed these data and identified 5 QTL’s with additive effects associated with systolic 

blood pressure after salt loading (denoted by SBPS). They did not identify any locus with epistatic effect 

using conditional research.  Thus, our goal is to use the same data and our proposed method to see if our GA 

method will be able to identify an epistatic effect.  

 

 

4 – Results and Discussion 

 

Considering simulated data (Data 1 to Data 8) and real data (Data 9 and 10), we apply exhaustive, 

conditional and GA methodology to search the genomic map looking for epistatic QTLs. In each case, the 



objective-functions, SSE, AIC and BIC, were used for model selection. For Data 1 to Data 8, Table 2 shows 

the results obtained when GA is applied. In this table is indicated the objective function (fc); the global 

optimum value (vog), which is the fc value obtained by the exhaustive search; the percentage of convergence 

toward the global optimum fc value (pcvog), corresponding to the number of solutions in ns equal to vog; the 

minimum and maximum fc values (liminf and limsup, respectively) considering all (ng x ns) pair of positions 

searched; and the pair of the best global positions (pos1 and pos2), in centimorgan, for epistatic QTLs. 

 

Table 1.  Characterization of simulated and real data.  

 

Data 

MAP 

 Chr  Mark/Chr  Dist 

Total 

(cM) n 

QTL1 

(cM) 

QTL2 

(cM) pm ns ng 

1    2           4          4 24 50 5 26 0.1 100 100 

2    2           4          4 24 50 5 26 0.4 100 100 

3    2           4          4 24 50 5 26 0.4 100 1000 

4    2           4          4 24 200 1 13 0.4 100 1000 

5    2           4          4 24 200 5 22 0.4 100 1000 

6    2           4          4 24 200 5 26 0.4 100 1000 

7  10           4          4 120 200 104 113 0.4 100 1000 

8  10         10          8  720 200 9 633 0.4 100 1000 

9  21         8.7*    26.7* 6,436 221   0.4 100 100 

10  21         8.7*    26.7* 6,436 221   0.4 100 1000 

                         *: mean values for real data.  

 

 

Table 2. GA results obtained for simulated data analysis. 

 

Data fc vog pcvog liminf limsup pos1 pos2 

1 SSE 47.89 14 47.89 67.74 5 26 

1 AIC 0.04 4 0.04 8.56 5 26 

1 BIC -23.61 4 -23.61 -14.56 5 26 

2 SSE 47.89 20 47.89 62.88 5 26 

2 AIC 0.04 6 0.04 7.40 5 26 

2 BIC -23.61 5 -23.61 -15.43 5 26 

3 SSE 47.89 36 47.89 60.85 5 26 

3 AIC 0.04 18 0.04 7.04 5 26 

3 BIC -23.61 17 -23.61 -16.71 5 26 

4 SSE 197.66 2 197.66 218.70 1 13 

4 AIC -31.65 4 -31.65 1.22 1 13 

4 BIC -2.46 1 -2.46 -18.94 1 13 

5 SSE 57.50 28 57.50 67.39 5 22 

5 AIC 0.72 18 0.72 7.43 5 22 

5 BIC -22.92 17 -22.92 -16.71 5 22 

6 SSE 64.39 32 64.39 73.85 5 26 

6 AIC -0.38 21 -0.38 15.97 5 26 

6 BIC -24.03 22 -24.03 -17.02 5 26 

7 SSE 185.84 1 185.84 358.12 104 113 

7 AIC -3.15 1 -3.15 13.55 104 113 

7 BIC -32.52 1 -32.52 -14.4 104 113 

8 SSE 192.05 1 192.05 311.06 9 633 

8 AIC -7.94 0 0.49 15.97 1 601 

8 BIC -32.13 0 -31.48 -13.2 1 641 



 

 

When the mutation probability (pm) changes from 0.1 to 0.4 (Data sets 1 and 2) and the number of 

generations (ng) changes from 100 to 1000 (Data 2 and Data 3), we observe a reduction in the value of the 

difference between liminf and limsup values obtained by GA, and an increase in pcvog.  

 

Table 3 shows the optimum value of the objective-functions for GA, exhaustive and conditional searches 

using Data sets 1 to 8.  The results indicate that the best global solution was found for the same pair of 

positions using exhaustive search and GA, for the three objective-functions (SSE, AIC and BIC). The 

conditional search did not attain such optimum solutions 

 

When we increase the number of rats from 50 to 200 (Table 2, Data sets 3, 4, 5 and 6), we observe  an 

increase in SSE values, a reduction in AIC and BIC values, and a strong reduction in the time that took GA 

search to attain the global optimum point (pcvog). These results are expected since AIC and BIC incorporate 

a penalty as a result of the sample size and SSE does not it. 

 

For Data set 7 (Table 2), we observe that the simulated epistatic positions 104cM (chromosome 8) and 

113cM (chromosome 9) were identified for three objective functions using exhaustive and GA searches. 

When using the conditional search this solution was attained for SSE and BIC methods, whereas a different 

epistatic pair on positions, 100cM (chromosome 8) and 113cM (chromosome 9), was identified using the 

AIC method.   

 

By increasing the window size from 24cM to 120cM (Table 2, Data sets 6 and 7), we observe a decrease in 

tied solutions, i.e., solutions with equal objective-function values. Moreover, we also observed a reduction in 

the number of times that GA attains the global optimum point (pcvog). It occurred in a single solution 

among the hundreds researched (by assessing 1,000 generations in each solution). Empirically, it indicates 

that the greater the genome greater is the requirement to increase the number of generations (ng) to have a 

higher probability to attain the global optimum solution. Furthermore, when we increase the genome size 

from 120 to 720 (Table 2, Data sets 7 and 8) the computational time to run the exhaustive search increases 

significantly (Data 7, around 24 hours, and Data 8, around 13 days, using a 2 Gb RAM memory and a 3.4 

Ghz clock computer) and GA failed to attain the global optimum point, suggesting that 1,000 generations 

per/solution might be insufficient due the great increase in the search space dimension, from 7,260 to 

259,560 points (epistatic positions). 

 

Table 3. Results of GA, exhaustive and conditional searches for the global optimum solution. 
 

 GA EXHAUSTIVE SEARCH CONDITIONAL SEARCH 

DATA SSE AIC BIC SSE AIC BIC SSE AIC BIC 

1 47.89 0.04 -23.61 47.89 0.04 -23.01 47.89 0,19 -23.45 

2 47.89 0.04 -23.61 47.89 0.04 -23.01 47.89 0,19 -23.45 

3 47.89 0.04 -23.61 47.89 0.04 -23.01 47.89 0,19 -23.45 

4 197.66 -2.46 -31.65 197.66 -2.46 -31.65 248.56 9.30 -19.89 

5 57.50 0.72 -22.92 57.50 0.72 -22.92 57.50 0.72 -22.92 

6 64.39 -0.38 -24.03 64.39 -0.38 -24.03 57.50 0.72 -22.92 

7 185.84 -3.15 -32.52 185.84 -3.15 -32.52 334.01 -3.15 -32.52 

8 192.05 0.49 -31.48 192.05 0.49 -31.48 305,94 10.93 -31.92 

9 385.59 2.44 -2.31      404.46 4.53 -2.87 

10 170.83 -4.74 -34.33       404.46 4.53 -2.87 



Figure 2 shows the dispersion of the SSE, AIC and BIC values using GA for one solution with 10,000 

generations. The horizontal axis represents the number of generations (index) and the vertical axis represents 

the values of the objective-functions. These values tend to decrease as the generations increase until they 

attain the global optimum solution. The lower value corresponds to the best pair of positions that detects the 

epistatic loci. 

 
Considering the analysis of F2 rats data (Data sets 9 and 10), Table 3 depicts the optimum value of the 

objective-functions (SSE, AIC and BIC) obtained via GA and conditional searches. For both procedures, the 

optimum pair of positions (in cM) is located in putative positions on the map. AG found more optimal 

results when compared to conditional procedure. We found the following markers, R1335 and R5175, 

located on chromosomes 5 and 9, respectively, using the optimum pair of position identified by GA 

(considering 100 solutions with 1,000 generations/solution). Figure 3 shows the interaction effect of these 

markers for the systolic blood pressure mean values after salt diet. We assumed that alleles B and S are 

segregating from normotensive (BN) and spontaneously hypertensive (SHR) parents for genotypes BB, BS 

and SS in F2 animals. The graph depicted in Figure 3 strongly suggests the presence of an epistatic effect 

since the three mean lines are not parallel.           
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Figure 2. Dispersion of SSE, AIC and BIC values using GA (Data 8). 
 

 

 
 

Figure 3. Systolic blood pressure means for markers R1135 and R5175. 



 

Figure 4 shows contour graphs for SSE, AIC and BIC values, obtained from the regression model in 

equation (1),  considering all possible pairs of positions located precisely on 182 observed markers on the F2 

rats map (a total of 16,471 possibilities). Lower values attained to SSE (SSE lower than 200), AIC (AIC 

lower than -1) and BIC (BIC lower than -10) are represented in dark blue, which correspond to the best pairs 

of positions for epistatic markers, whereas higher values of these objective-functions (SSE higher than 

1,000, AIC between 0 and 2, and BIC between (-10,-2]) are represented in light blue and green. The 

optimum pair of positions found via GA is indicated in the graphs as a red asterisk. 

 

 
 

Figure 4. Contour graphs for SSE, AIC and BIC values considering all pair of positions of the observed 

markers in the F2 rat map. 
 

Figure 4 showed only results from observed marker data, without assessing imputed positions along the map 

(putative markers). Since the inclusion of imputed positions in the analysis might improve precision and 

power for the identification of epistatic loci, we have also evaluated our method using imputed positions.  

The, optimum pair of positions identified using GA is indicated in the graphs as a red asterisk (chromosomes 

5 and 9, the solution by GA, Data set 10). When we combine the observed and putative positions, the 

optimum SSE, AIC, and BIC values using GA was 170.83, -4.74, and -34.33, respectively (Table 3, Data set 

10).   It is worth noting that regions in the contour graph include points that do not correspond to the best 

solutions, indicating that the optimization process used to identify pairs of epistatic loci is non-linear and the 

optimum solution found depends on the gradient used to refine the search space. 

 

4 – Conclusions  

 

In this paper, we applied the genetic algorithm to find epistatic loci in molecular markers maps considering 

data from F2 inbred designs. For epistatic QTL search exhaustive and conditional methods were also used, 

but they had their own limitations. In our application we consider GA with three different objective-

functions, SSE, AIC and BIC. Our results using simulated data showed that the conditional search method 

may lose power by disregarding pairs of positions, including optimum pairs of positions found using GA. 

Furthermore, GA not only showed  to be as powerful as the exhaustive method for epistasis detection, since 

both methods found the same solutions when analyzing moderate size data set (10 Chr, 4 M\Chr and 

Genome 120 cM), but also GA is feasible to analyze dense maps while the other two methods cannot. 

The GA search had a fast convergence process toward a global optimum point (with a more significant 

epistatic effect) regardless of the mutation probability values, the number of generations, and the number of 

solutions by generations. We also observed that for established given computing time it was more efficient 

to increase the number of generations than to increase the number of solutions. Our simulation results 

showed that for GA to converge it was important to keep a moderate number of solutions (around 100). 



By applying GA to analyze F2 rat data a pair of QTLs, located in chromosome 5 and 9, was identified with 

epistatic effect in the regulation of the blood pressure. These loci were identified considering imputed 

positions on the marker map with 1cM apart and using GA with mutation probability equal 0.4 

(recombination probability equal 0.6), 1,000 generations and 100 solutions/generation. Nevertheless, the 

chromosomal region that contains such optimum solution was not identified when exhaustive search was 

applied considering only positions of observed markers on the map. This indicates that the optimum solution 

depends on the gradient adopted to search the marker map, and the GA is flexible enough to move towards 

this solution.  

Our map with 182 markers available was refined in distances from 1 to 1 cM, but by exploring the flexibility 

of GA to work on high dimensional search spaces additional epistasis studies can be conducted by using 

more severe genotype imputation or adopting more dense maps. In this context, surveys of the genetic 

variation based on SNP (Single Nucleotide Polymorphism) platforms can be used for mapping in rat strains 

(STAR Consortium, 2008).  Thus, based on our QTLs currently identified, such chromosome regions can be 

refined by covering them with SNP data and finding significant QTNs (Quantitative Trait Nucleotides) 

associated to blood pressure.  

An R source code considering the GA implementation is available on the webpage 

www.ime.usp.br/~poliveir and also it can be obtained from the authors upon request.  
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