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1. INTRODUCTION

Let us consider the so-called one-dimensional p-Laplacian operator
(,p(u$))$, where p>1 and ,p : R � R is given by ,p(s)=|s| p&2 s for s{0
and ,p(0)=0. Various separated two-point boundary value problems con-
taining this operator have received a lot of attention with respect to exist-
ence and multiplicity of solutions. See, for example, [3, 9, 11, 13, 21, 22,
28, 31, 33], and the references therein. Periodic boundary conditions have
been considered in [12, 14]. The case of separated two-point boundary
conditions when ,p is replaced by a one-dimensional possibly not
homogeneous operator ,, has been dealt with in a series of papers, cf.
[2, 8, 15, 16, 17, 18, 19].

Our aim in this paper is to study existence of periodic solutions to some
system cases involving the fairly general vector-valued operator ,. Thus we
will consider the boundary value problem

(,(u$))$= f (t, u, u$), u(0)=u(T ), u$(0)=u$(T ), (1.1)

where the function ,: RN � RN satisfies some monotonicity conditions
which ensure that , is an homeomorphism onto RN. As a consequence our
results will apply to a large class of nonlinear operators (,(u$))$, which, for
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example, contain some vector versions of p-Laplacian operators like the
case when, for x=(x1 , ..., xN) # RN, ,(x)=�p(x)# |x| p&2 x, for x{0,
�p(0)=0, ( p>1), and the case when ,(x)=(,p1

(x1), ..., ,pN
(xN)), with, for

each i=1, ..., N, pi>1, and ,pi
: R � R is a one-dimensional pi-Laplacian.

If I=[0, T], the function f : I_RN_RN � RN is assumed to be
Carathe� odory, by this we mean:

v for almost every t # I the function f (t, } , } ) is continuous;

v for each (x, y) # RN_RN the function f ( } , x, y) is measurable on I;

v for each \>0 there is :\ # L1(I, R) such that, for almost every t # I
and every (x, y) # RN_RN with |x|�\, |x|�\, one has

| f (t, x, y)|�:\(t).

By a solution of (1.1) we mean a function u: I � RN of class C1 with ,(u$)
absolutely continuous, which satisfies (1.1) a.e. on I.

Throughout the paper | } | will denote absolute value and the Euclidean
norm on RN, while the inner product in RN will be denoted by ( } , } ).
Also, for N�1 we will set C=C(I, RN), C1=C1(I, RN), CT=[u # C |
u(0)=u(T )], C 1

T=[u # C 1 | u(0)=u(T ), u$(0)=u$(T )], L p=L p(I, RN),
and W1, p=W1, p(I, RN), p�1. The norm in C and CT will be denoted by
& }&0 , the norm in C1 and C 1

T by & }&1 , and the norm in L p by & }&L p .
This paper is organized as follows. In Section 2 we begin by establishing

the monotone-type conditions on the function ,, and we will consider and
show some important examples of functions , which verify those condi-
tions. We then develop the machinery which will allow reducing (1.1) to a
fixed point problem in C 1

T . The corresponding results are of independent
interest, and allow us in particular to generalize to the p-Laplacian frame
the classical concept of mean value of a periodic function.

In Section 3, combining the Leray�Schauder degree theory with the
results of Section 2, we state and prove a first general existence theorem for
problem (1.1). This result generalizes to our situation some well-known
continuation theorem [23, 24, 25, 29], obtained in the framework of coin-
cidence degree for nonlinear perturbations of linear differential operators
with periodic boundary conditions. Indeed, our approach can be viewed as
an extension of coincidence degree to some quasi-linear problems. This
existence theorem also generalizes a result proved in [20] for nonlinear
perturbations of the one-dimensional p-Laplacian and p�2, to a much
wider class, which includes arbitrary homeomorphisms in the scalar case
and the operator (�p(u$))$, for any p>1, in the vector case. Moreover, our
generalization is obtained by using classical Leray�Schauder degree theory,
instead of the more sophisticated degree theory for mappings of type (S)+

used in [20]. As a consequence of this first continuation theorem, we
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obtain various existence theorems for quasi-linear systems with a non-
linearity f satisfying some one-sided growth conditions introduced, for
semilinear problems, by Ward [32] in the scalar case, and by Can~ ada�
Martinez-Amores [4, 5] and Can~ ada�Ortega [6] (see also [25], p. 67) in
the vector case.

In Section 4, using degree theory for compact vector fields which are
invariant under the action of S 1, as developed in [1], we extend to our
quasi-linear situation the continuation theorem of [7] and [1], in which
a homotopy is made to an arbitrary autonomous system. An application is
given to a perturbation of (�p(u$))$ by an asymptotically autonomous and
( p&1)-positive homogeneous system. In all cases, we give explicit examples
showing that the assumptions are realistic.

Needless to say, many more applications of those continuation theorems
can be done, and some of them will be given in subsequent papers.
Furthermore, many of the obtained results have direct generalizations to
the study of the T-periodic solutions of systems of functional-differential
equations of the form

(,(u$))$= f (t, ut , (u$)t),

when, for v # CT , vt denotes, as usual, the function defined on [&r, 0] by
vt(%)=v(t+%).

2. SOME MONOTONE MAPPINGS AND
A FIXED POINT OPERATOR

Let ,: RN � RN be a continuous function which satisfies the following
two conditions:

(H1) For any x1 , x2 # RN, x1{x2 ,

(,(x1)&,(x2), x1&x2)>0.

(H2) There exists a function :: [0, +�[ � [0, +�[, :(s) � +� as
s � +�, such that

(,(x), x) �:( |x| ) |x|, for all x # RN.

It is well-known that under these two conditions , is an homeo-
morphism from RN onto RN, satisfies (H1), and that |,&1( y)| � +� as
| y| � +� (see [10, Ch. 3]).

Let us first give some examples of simple operators , for which condi-
tions (H1) and (H2) are satisfied.
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Example 2.1. Let , be an homeomorphism from R onto R. Then , is
either increasing or decreasing. Clearly in the first case , satisfies (H1) and
(H2) while in the second case &, does.

Example 2.2. For p>1, let �p : RN � RN be given by

�p(x)=|x| p&2 x for x{0, �p(0)=0.

Then �p is an homeomorphism from RN onto RN with inverse �p*(x)=
|x| p*&2 x, where p*= p�( p&1). Let now x, y # RN, from the inequality

(�p(x)&�p( y), x& y) �(|x| p&1&| y| p&1)( |x|&| y| )�0,

it follows immediately that

(�p(x)&�p( y), x& y) =0 implies x= y,

and thus (H1) holds. Also, from

(�p(x), x) =|x| p=|x| p&1 |x|,

(H2) follows.

Example 2.3. More generally, we can consider any ,: RN � RN which
is a potential, i.e., ,={8, 8: RN � R of class C1 and strictly convex such
that , satisfies (H2). An interesting example of this class is given by

8(x)=e |x|2&|x| 2&1.

Clearly, 8: RN � R is of class C1 and strictly convex, and

({8(x), x)=2(e |x|2&1) |x| 2,

and thus (H2) is satisfied.

Example 2.4. Further examples can be obtained from the following
proposition.

Proposition 2.1. For i=1, ..., k let Ni # N and �i : RNi � RNi be a func-
tion which satisfies the following conditions.

(i) (�i (z)&�i (w), z& y) i�0, (with ( } , } )i denoting the inner
product in RNi ) for any z, y # RNi , with equality holding true if and only if
z= y;
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(ii) there exists a function :i : [0, +�) � [0, +�), :i (s) � +� as
s � +�, such that

(�i (z), z) i�:i ( |z| ) |z|, for all z # RNi .

Then the function

9 : `
k

i=1

RNi � `
k

i=1

RNi , x=(x1, ..., xk) [ 9(x)=(�1(x1), ..., �k(xk)),

satisfies conditions (H1) and (H2) with N=�k
i=1 Ni .

Proof. Let x=(x1, x2, ..., xk), y=( y1, y2, ..., yk) be in RN=>k
i=1 RNi.

Then

(9(x)&9( y), x& y) = :
k

i=1

(�i (xi)&�i ( yi), xi& yi) i ,

and, if x{ y, then xi{ yi for at least one i # [1, ..., k]. This implies

(9(x)&9( y), x& y)�(�i (xi)&�i ( yi)) i>0,

and hence (H1) (with 9 in the place of ,) is satisfied.
Next we will show that

(9(x), x)
|x|

� � as |x| � �. (2.1)

We argue by contradiction and thus we assume that there exist a positive
constant C and a sequence [xn] in RN such that |xn | � �, and
((�(xn), xn) )�( |xn | )�C, for all n # N. Then for xn=(x1

n , ..., xk
n), we have

:i ( |xi
n | ) vi

n�
(�i (xi

n), xi
n)) i

|xn |
�C, (2.2)

where vi
n=(|xi

n | )�( |xn | ), for all i=1, ..., k, and all n # N. Clearly
�k

i=1 vi
n=1, for each n # N. Since the sequences [vi

n]n , i=1, ..., k, are
bounded we can assume, passing to subsequences, that vi

n � vi�0,
i=1, ..., k.

Now suppose all the vis are not zero, then, from (2.2),

lim sup
n � �

:i ( |xi
n | )�

C
vi ,
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and the growth conditions on the functions :i imply that the sequences
[ |xi

n |]n , i=1, ..., k, are bounded. Since this contradicts |xn | � �, we have
that in this case (2.1) holds. Next assume that some of the the vis are zero.
Without loss of generality (modulo a permutation of indices) we can sup-
pose that vi=0, for i=1, ..., j, and vi>0, for i= j+1, ..., k. Let =>0 be
such that =<(1� j), then there is a n0 such that for all n>n0 ,

:
j

i=1

|xi
n | 2< j= |xn | 2,

and thus

|xn | 2�
1

1& j=
:
k

i= j+1

|xi
n | 2.

Hence there must be i0 # [ j+1, ..., k] such that |xi0
n | � � as n � �. This

in turn implies that :i0
( |xi0

n | ) � � as n � �, and since vi0
n � vi0>0 as

n � �, from (2.2), with i=i0 , we again obtain a contradiction. Thus (2.1)
holds, and it is standard to construct from (2.1) a function : so that (H2)
(with 9 in the place of ,) is verified. K

Let us now consider the simple periodic boundary value problem

(,(u$))$=h(t), u(0)=u(T ), u$(0)=u$(T ), (2.3)

where h # L1 is such that �T
0 h(s) ds=0, and let u be a solution to (2.3). By

integrating from 0 to t # I, we find that

,(u$(t))=a+H(h)(t), (2.4)

where

H(h)(t)=|
t

0
h(s) ds,

and a # RN is a constant. The boundary conditions imply that

1
T |

T

0
,&1(a+H(h)(t)) dt=0.

For fixed l # C, let us define

Gl (a)=
1
T |

T

0
,&1(a+l(t)) dt. (2.5)
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We have

Proposition 2.2. If , satisfies conditions (H1) and (H2), then the func-
tion Gl has the following properties:

(i) For any fixed l # C, the equation

Gl (a)=0, (2.6)

has a unique solution a~ (l ).

(ii) The function a~ : C � RN, defined in (i), is continuous and sends
bounded sets into bounded sets.

Proof. (i) By (H1), it is immediate that

(Gl (a1)&Gl (a2), a1&a2)>0, for a1{a2 ,

and hence if (2.6) has a solution then it is unique. To prove its existence
we will show that (Gl (a), a)>0 for |a| sufficiently large. Indeed we have

(Gl (a), a) =
1
T |

T

0
(,&1(a+l(t)), a) dt

=
1
T |

T

0
(,&1(a+l(t)), a+l(t)) dt

&
1
T |

T

0
(,&1(a+l(t)), l(t)) dt,

and thus

(Gl (a), a) �
1
T |

T

0
(,&1(a+l(t)), a+l(t)) dt

&
&l&0

T |
T

0
|,&1(a+l(t))| dt. (2.7)

Now from (H2), for any y # RN, we have that

(,&1( y), y) �:( |,&1( y)| ) |,&1( y)|. (2.8)

Thus from (2.7) and (2.8),

(Gl (a), a)�
1
T |

T

0
(:( |,&1(a+l(t))| )&&l&0) |,&1(a+l(t))| dt. (2.9)
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Since |a| � � implies that |,&1(a+l(t))| � �, uniformly for t # I, we find
from (2.9) that there exists an r>0 such that

(Gl (a), a)>0 for all a # RN with |a|=r.

It follows by an elementary topological degree argument that the equation
Gl (a)=0 has a solution for each l # C, which by our previous argument is
unique. In this way we define a function a~ : C � RN which satisfies

|
T

0
,&1(a~ (l )+l(t)) dt=0, for any l # C. (2.10)

To prove (ii) let 4 be a bounded subset of C and let l # 4. Then, from
(2.10)

|
T

0
(,&1(a~ (l )+l(t)), a~ (l )) dt=0,

and hence

|
T

0
(,&1(a~ (l )+l(t)), a~ (l )+l(t)) dt=|

T

0
(,&1(a~ (l )+l(t)), l(t)) dt. (2.11)

Assume next that [a~ (l ), l # 4] is not bounded. Then for an arbitrary A>0
there is l # 4 with &l&0 sufficiently large so that

A�:( |,&1(a~ (l )+l(t))| ),

uniformly in t # I. Hence by using (2.8) and (2.11), we find that

A |
T

0
|,&1(a~ (l )+l(t))| dt�|

T

0
:( |,&1(a~ (l )+l(t))| ) |,&1(a~ (l )+l(t))| dt

�&l&0 |
T

0
|,&1(a~ (l )+l(t))| dt.

Thus A�&l&0 , which is a contradiction. Therefore a~ sends bounded sets in
C into bounded sets in RN.

Finally to show the continuity of a~ , let [ln] be a convergent sequence
in C, say ln � l, as n � �. Since [a(ln)] is a bounded sequence, any sub-
sequence of it contains a convergent subsequence denoted by [a(lnj

)]. Let
a(lnj

) � â, as j � �. By letting j � � in

|
T

0
,&1(a~ (lnj

)+lnj
(t)) dt=0,
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we find that

|
T

0
,&1(â+l(t)) dt=0,

and hence a~ (l )=â, which shows the continuity of a~ . K

Let now a: L1 � RN be defined by

a(h)=a~ (H(h)). (2.12)

Then it is clear that a is a continuous function which sends bounded sets
of L1 into bounded sets of RN, and hence it is a completely continuous
mapping.

We continue now with our argument previous to Proposition 2.2. By
solving for u$ in (2.4) and integrating we find

u(t)=u(0)+H[,&1[a(h)+H(h)]](t). (2.13)

Here ,&1 is understood as the the operator ,&1: C � C defined by
,&1(v)(t)=,&1(v(t)). It is clear that ,&1 is continuous and sends bounded
sets into bounded sets.

Let us define

P: C 1
T � C 1

T , u [ u(0), Q: L1 � L1, h [
1
T |

T

0
h(s) ds.

Then it is clear that if u # C 1
T solves (2.3), then u satisfies the abstract equation

u=Pu+Qh+K(h), (2.14)

where the (in general nonlinear) operator K: L1 � C 1
T is given by

K(h)(t)=H[,&1[a((I&Q) h)+H((I&Q) h)]](t), for all t # I. (2.15)

Conversely, since, by definition of the mapping a,

H[,&1[a((I&Q) h)+H((I&Q) h)]](T )=0,

it is a simple matter to see that if u satisfies (2.14) then u is a solution
to (2.3).

Note that since a(0)=a~ (0), we have, by (2.15) and (2.10), that

K(0)=0.

Lemma 2.1. The operator K is continuous and sends equi-integrable sets
in L1 into relatively compact sets in C 1

T .
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Proof. The continuity of K in C follows immediately by observing that
this operator is a composition of continuous operators. Also, we have that

K(h)$ (t)=,&1[a((I&Q) h)+H((I&Q) h)](t),

which is also a composition of continuous operators and hence continuous.
Let now E be an equi-integrable set in L1. Then if h # E, there is ' # L1

such that

|h(t)|�'(t) a.e. in I.

We want to show that K(E)/C 1
T is a compact set. For this it suffices to

prove that if [vn] is a subsequence in K(E), then it contains a convergent
subsequence in C 1

T . Let [hn] be a sequence in L1 such that vn=K(hn). For
t, t$ # I, we have that

|H(I&Q)(hn)(t)&H(I&Q)(hn)(t$)|� } |
t

t$
h(s) ds }+|Q(h)| |t&t$|

� } |
t

t$
'(s) ds }+|t&t$| |

T

0
'(s) ds.

Hence the sequence [H(I&Q)(hn)] is uniformly bounded and equicontinu-
ous. By the Ascoli�Arzela theorem there is a subsequence of [H(I&Q)(hn)],
which we rename the same, which is convergent in C. Then, passing to a
subsequence if necessary, we obtain that the sequence [a((I&Q)(hn))+
H(I&Q)(hn)] is convergent in C. Using that ,&1: C � C is continuous it
follows from

(K(hn))$ (t)=,&1[a((I&Q)(hn))+H(I&Q)(hn)]

that the sequence [(K(hn))$] is convergent in C and hence so does the
sequence [(K(hn))]. K

Another consequence of Proposition 2.2 is of independent interest.

Proposition 2.3. For each u # C, there exists a unique up # RN such that
the function up

t:=u&up satisfies the relation

|
T

0
�p(up

t(t)) dt=0.

Furthermore, the mapping u [ up is continuous and takes bounded sets of C
into bounded sets of RN.
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Proof. The result consists in finding some up # RN such that

|
T

0
�p(u(t)&up ) dt=0.

It is a consequence of Proposition 2.2 with ,(v)=|v| p*&2 v, p*= p�( p&1),
l=u, a=&up . K

Remark 2.1. For p=2, up reduces to the usual mean value u� =Qu=
(1�T ) �T

0 u(t) dt of u. Therefore, we can refer to up as the p-mean value
of u.

The following properties of the p-mean value of a scalar function u extend
the standard ones for p=2.

Proposition 2.4. If u # C(I, R), there exists tp # I such that

up =u(tp ). (2.16)

Proof. As up =u(t)&up
t(t) and

|
T

0
�p(up

t(t)) dt=0,

there exists tp such that

�p(up
t(tp ))=0,

i.e., up
t(tp )=0, so that

up =u(tp ). K

Proposition 2.5. If u # W1, p(I, R), then one has the inequality

&up
t&L��T 1�p*&u$&Lp , (2.17)

where p* is conjugate to p.

Proof. If t� is given by Proposition 2.4, we have, for all t # I, using
Ho� lder's inequality

|u~ (t)|=|u(t)&u(t� )|= } |
t

t�
u$(s) ds }�T 1�p*&u$&Lp . K
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Let us consider finally the abstract functional differential periodic
problem

(,(u$))$=N(u, *), u(0)=u(T ), u$(0)=u$(T ), (2.18)

where * # [0, 1], and N : C 1
T_[0, 1] � L1 is continuous, and send bounded

sets into equi-integrable sets. Thus, defining G: C 1
T_[0, 1] � C 1

T by

G(u, *) :=Pu+QN(u, *)+(K b N )(u, *), (2.19)

we obtain that G is a completely continuous operator. Furthermore,
problem (2.18) is equivalent to the problem

u=G(u, *). (2.20)

In particular, if g: I_RN_RN_[0, 1] is Carathe� odory and if we denote by
Ng : C 1

T_[0, 1] � L1 the Nemistki operator associated to g defined by

Ng(u, *)(t)= g(t, u(t), u$(t), *), a.e. on I,

it is known that Ng is continuous and sends bounded sets into equi-
integrable sets.

We will apply Leray�Schauder's degree to (2.20) by choosing N in such
a way that the Leray�Schauder degree of I&G( } , 0) with respect to a
suitable open bounded set of C 1

T exists and is easy to compute. Such situa-
tions will be considered in the following sections.

3. HOMOTOPY TO THE AVERAGED NONLINEARITY

We will suppose in this section that ,: RN � RN is continuous and
satisfies the conditions (H1)�(H2) of Section 2. Our first aim in this section
is to extend a continuation theorem proved in [23] for semilinear equa-
tions (see also [24, 26, 27]) to the quasilinear problem (1.1), which we
repeat here for convenience of the reader,

(,(u$))$= f (t, u, u$), u(0)=u(T ), u$(0)=u$(T ), (3.1)

where f : I_RN_RN � RN is Carathe� odory.

Theorem 3.1. Assume that 0 is an open bounded set in C 1
T such that the

following conditions hold.
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(1) For each * # ]0, 1[ the problem

(,(u$))$=*f (t, u, u$), u(0)=u(T ), u$(0)=u$(T ), (3.2)

has no solution on �0.

(2) The equation

F(a) :=
1
T |

T

0
f (t, a, 0)=0, (3.3)

has no solution on �0 & RN.

(3) The Brouwer degree

dB[F, 0 & RN, 0]{0. (3.4)

Then problem (3.1) has a solution in 0� .

Proof. Let us embed problem (3.1) into the one parameter family of
problems

(,(u$))$=*Nf (u)+(1&*) QNf (u), u(0)=u(T ), u$(0)=u$(T ), (3.5)

where Nf : C 1
T � RN is the Nemytski operator associated to f. Explicitly,

(,(u$))$=*f (t, u, u$)+(1&*) _ 1
T |

T

0
f (s, u(s), u$(s)) ds& ,

u(0)=u(T ), u$(0)=u$(T ).

For * # ]0, 1], observe that, in both cases, u is a solution to problem (3.2)
or u is a solution to problem (3.5). we have necessarily

1
T |

T

0
f (s, u(s), u$(s)) ds=0.

It follows that, for * # ]0, 1], problems (3.2) and (3.5) have the same solu-
tions. Furthermore it is easy to see that f Carathe� odory implies that
N : C 1

T_[0, 1] � L1 defined by

N(u, *)=*Nf (u)+(1&*) QNf (u)

is continuous and takes bounded sets into equi-integrable sets. Also
problem (3.5) can be written in the equivalent form

u=Gf (u, *) (3.6)
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with

Gf (u, *)=Pu+QNf (u)+(K b [*Nf +(1&*) QNf ])(u)

=Pu+QNf (u)+(K b [*(I&Q) Nf ])(u).

We assume that for *=1, (3.6) does not have a solution on �0 since
otherwise we are done with the proof. Now by hypothesis (1) it follows
that (3.6) has no solutions for (u, *) # �0_]0, 1]. For *=0, (3.5) is equiv-
alent to the problem

(,(u$))$=
1
T |

T

0
f (s, u(s), u$(s)) ds, u(0)=u(T ), u$(0)=u$(T ), (3.7)

and thus if u is a solution to this problem, we must have

|
T

0
f (s, u(s), u$(s)) ds=0. (3.8)

Hence

u$(t)=,&1(c),

where c # RN is a constant. Integrating this last equation on I we obtain
that ,&1(c)=0, and thus u(t)=d, a constant. Thus, by (3.8)

|
T

0
f (s, d, 0) ds=0,

which, together with hypothesis 2, implies that u=d � �0. Thus we have
proved that (3.6) has no solution (u, *) # �0_[0, 1]. Then we have that
for each * # [0, 1], the Leray�Schauder degree dLS[I&Gf ( } , *), 0, 0] is
well-defined and, by the properties of that degree, that

dLS[I&Gf ( } , 1), 0, 0]=dLS[I&Gf ( } , 0), 0, 0]. (3.9)

Now it is clear that problem

u=Gf (u, 1) (3.10)

is equivalent to problem (3.1), and (3.9) tells us that problem (3.10) will
have a solution if we can show that dLS[I&Gf ( } , 0), 0, 0]{0. This we do
next.

We have that

Gf (u, 0)=Pu+QNf (u)+K(0)=Pu+QNf (u).

380 MANA� SEVICH AND MAWHIN



File: DISTL2 342515 . By:CV . Date:24:04:98 . Time:13:07 LOP8M. V8.B. Page 01:01
Codes: 2273 Signs: 1233 . Length: 45 pic 0 pts, 190 mm

Thus we obtain

u&Gf (u, 0)=u&Pu&
1
T |

T

0
f (s, u(s), u$(s)) ds.

Hence by the properties of the Leray�Schauder degree we have that

dLS[I&Gf ( } , 0), 0, 0]=(&1)N dB[F, 0 & RN, 0],

where the function F is defined in (3.3) and dB denotes the Brouwer degree.
Since by hypothesis (3) this last degree is different from zero, the theorem
is proved. K

Our next theorem is a consequence of Theorem 3.1. We need first the
following definition.

Let f =( f1 , ..., fN ): I_RN_RN � RN be a Carathe� odory function. We
will say that f satisfies a generalized Villari condition if there is an \0>0
such that for all u # C 1

T , u=(u1 , ..., uN), with mint # I |uj (t)|>\0 , for some
j # [1, ..., N ] it holds that

|
T

0
fi (t, u(t), u$(t)) dt{0, (3.11)

for some i # [1, ..., N ].

Remark 3.1. A condition of this type was introduced for the scalar case
by Villari in [30].

Let b(R) denotes the open ball in RN with center zero and radius R. The
following theorem extends a result of Can~ ada and Ortega [6] to our class
of quasi-linear equations

Theorem 3.2. Assume that the following conditions hold.

(1) There exist n # C1(RN, RN) and h # L1(I, R+) such that

(,( y), n$(x) y) �0, (3.12)

and

| f (t, x, y)|�( f (t, x, y), n(x)) +h(t), (3.13)

for all x, y # RN, and a.e. t # I.

(2) f satisfies a generalized Villari condition.
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(3) There is R0>0, such that all the possible solutions to the equation

F(a) :=
1
T |

T

0
f (t, a, 0)=0, (3.14)

belong to b(R0).

(4) The Brouwer degree

dB[F, b(R0), 0]{0. (3.15)

Then problem (3.1) has at least one solution.

Proof. Let (u, *), u # C 1
T , * # ]0, 1[, be a solution to (3.2), then

necessarily, using (3.12), we have

0�&|
T

0
(,$(u$(t)), n$(u(t)) u$(t)) dt=|

T

0
( (,$(u$(t)))$, n(u(t))) dt

=* |
T

0
( f (t, u(t), u$(t)), n$(ut))) dt. (3.16)

For simplicity of the exposition let us set ,(u$(t))=b� (t)+b� , with
�T

0 b� (t) dt=0, and b� =(1�T ) �T
0 ,(u$(t)) dt. Then from (3.16) and (3.13), we

get

&b� $&L1�|
T

0
| f (t, u(t), u$(t))| dt

�|
T

0
( f (t, u(t), u$(t)), n(u)) dt+&h&L1�&h&L1 , (3.17)

which yields

&b� &0�NT &h&L1 .

We next find an a priori bound for b� . We have that

u$(t)=,&1(b� (t)+b� ). (3.18)

Hence, by integrating on I and using the boundary conditions, we obtain

|
T

0
,&1(b� (t)+b� ) dt=0. (3.19)

By Proposition 2.2 it follows that b� =a~ (b� ), where the function a~ is defined
in that proposition. Recalling that a~ sends bounded sets into bounded sets,

382 MANA� SEVICH AND MAWHIN



File: DISTL2 342517 . By:CV . Date:24:04:98 . Time:13:07 LOP8M. V8.B. Page 01:01
Codes: 2683 Signs: 1614 . Length: 45 pic 0 pts, 190 mm

we have that there is a positive constant C1 such that |b� |�C1 . Hence, from
(3.18) and the fact that ,&1 seen as an operator from C into C sends
bounded sets into bounded sets, we obtain a positive constant C2 such that

&u$&0�C2 , (3.20)

which in turn implies that

} |
t

0
u$(s) ds }�|

T

0
|u$(s)| ds�C2T. (3.21)

Next, the solution u satisfies

0=
1
T |

T

0
f (t, u(t), u$(t)) dt=

1
T |

T

0
f \t, u(0)+|

t

0
u$(s) ds, u$(t)+ dt. (3.22)

By the generalized Villari condition we find that for each j # [1, ..., N ] there
exists a tj # I such that |uj (tj)|�\0 . Since

uj (t)=uj (tj)+|
t

tj

u$j (s) ds,

we get, by (3.20),

|uj (t)|�|uj (tj)|+C2T�\0+C2T.

Thus there is a constant C3 such that &u&0�C3 . It follows that we can find
R>0 such that if (u, *) is a solution to (P*) then &u&1�R. We define next
the set 0/C 1

T that appears in Theorem 3.1 as 0=B(R), where B(R) is the
open ball in C 1

T center 0 and radius R. Thus condition (1) of Theorem 3.1
is satisfied with 0=B(R), and since the rest of the conditions of
Theorem 3.1 are also satisfied, the proof is complete. K

Remark 3.2. In the case where ,(x)=�p(x), ( p>1), condition (3.12)
reduces to the assumption that n$(x) # L(RN, RN) is positive semidefinite
for each x # RN.

Remark 3.3. Condition (3.12) is trivially satisfied for a constant mapping
n, in which case one recovers assumptions introduced in [32] for N=1 and
in [4, 5] for N>1. In particular, let f (t, x, y)=( f1(t, x, y), ..., fN(t, x, y)).
Following [4, 5], we have that if there is a vector n=(n1 , ..., nN), with
ni�0, for all i=1, ..., N, and hi # L1(I, R+) such that

| fi (t, x, y)|�ni fi (t, x, y)+hi (t), for each i=1, ..., N, (3.23)

then condition (3.13) is satisfied.
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Corollary 3.1. Suppose that the following conditions are satisfied.

(1) There is a mapping n # C1(RN, RN) such that conditions (3.12) and
(3.13) hold.

(2) There exists a function h� # L1(I, R+) and a continuous function
': [0, +�) � [0, +�), such that

'(s) � +� as s � +�,

and

'( |x| )&h� (t)�| f (t, x, y)|, (3.24)

for almost all t # I, and all x, y # RN.

(3) Condition (3.15) holds.

Then problem (3.1) has at least one solution.

Proof. Let (u, *), * # ]0, 1[ be a solution to (3.2). As in the proof of
Theorem 3.2, it follows from conditions (3.12) and (3.13), that there is a
positive constant C2 such that &u$&0�C2 . We claim that conditions (3.13)
and (3.24) imply that there is a constant C3 such that &u&0�C3 . Indeed,
from (3.17), we have that

|
T

0
| f (t, u(t), u$(t))| dt�&h&L1 .

Then by (3.24)

|
T

0
'( |u(t)| ) dt�&h&L1+&h� &L1 . (3.25)

Since (3.20) holds by the reasoning of the previous theorem and '(s) � �
as s � �, from (3.25) we find the required bound for &u&0 .

Now let a # RN be such that �T
0 f (t, a, 0) dt=0. Then (3.24) implies that

'( |a| )�C2 , and hence |a|�C3 , for some positive constants C2 and C3 .
Thus there is R0>0 such that all solutions to (3.3) belongs to b(R0). The
rest of the proof follows from the last theorem. K

As a simple example for Corollary 3.1, we consider the system of two
equations

( |x$| p&2x$1)$+x2(1+x2
2)+sin x1=e1(t),

( |x$| p&2x$2)$&x1(1+x2
1)+cos x2=e2(t), (3.26)

x1(0)=x1(T ), x$1(0)=x$1(T ), x2(0)=x2(T ), x$2(0)=x$2(T ),
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where e=(e1 , e2) # L1(I, R2). Letting

f (t, x)=(&x2(1+x2
2)&sin x1+e1(t), x1(1+x2

1)&cos x2+e2(t)),

n(x)=(&2x2 , 2x1),

'( |x| )=|x|,

we have, for a.e. t # I and all x # R2,

&|e(t)|&1+'( |x| )�| f (t, x)|

�[x2
1(1+x2

1)2+x2
2(1+x2

2)2]1�2+|e(t)|+1

�|x| 3+|e(t)|+1,

whenever |x1|�1 and |x2|�1, and hence, for some h1 # L1(I, R+), we have

&|e(t)|&1+'( |x| )�| f (t, x)|�|x| 3+h1(t), (3.27)

for a.e. t # I and all x # R2. On the other hand,

( f (t, x), n(x))�|x| 4&2 |x|[ |e(t)|+1], (3.28)

for a.e. t # I and all x # R2. Consequently, (3.27) and (3.28) imply that, for
a.e. t # I and all x # R2 we have

| f (t, x)|�( f (t, x), n(x))+h(t),

if we choose for h the positive part of the L1-function defined for a.e. t # I
by

max
x # R+

[&x4+x3+2[|e(t)|+1] x+h1(t)].

Now,

F(a1 , a2)=(&a2(1+a2
2)&sin a1+e1 , a1(1+a2

1) cos a2+e2 ),

where

ej =
1
T |

T

0
ej (t) dt, ( j=1, 2).

By an easy homotopy and the product formula for degree, we have, for all
sufficiently large R>0,

dB[F, b(R), 0]=1,

and the problem (3.26) has at least one solution.
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We now apply Theorem 3.2 to the problem

(,(u$))$= g(u)&e(t), u(0)=u(T ), u$(0)=u$(T ), (3.29)

where g: RN � RN is continuous and e # L1, and extends in several ways a
result of [6]. We write again

e� =
1
T |

T

0
e(t) dt.

Corollary 3.2. Assume that the following conditions hold.

(1) There is a mapping n # C1(RN, RN) and h # L1(I, R+) such that
(3.12) holds and

| g(x)&e(t))|�(g(x)&e(t), n(x))+h(t), (3.30)

for all x # RN, and a.e. t # I.

(2) g is one-to-one and g(RN) is convex.

(3) For each y # g(RN) there exists r>0 such that for each x # C 1
T

with mint # I |xj (t)|�r for some j # [1, ..., N ], one has

1
T |

T

0
g(x(t)) dt{ y.

Then problem (3.29) has a solution if and only if

e� # g(RN).

Proof. If (3.29) has a solution u, then

e� =
1
T |

T

0
g(u(t)) dt # co(g(u(I ))=co(g(u(I))/co(g(RN))= g(RN),

where co denotes the convex hull.
Conversely, to apply Theorem 3.2, it remains to show that, for e� # g(RN),

all the possible solutions of the equation in RN,

F(a) :=g(a)&e� =0,

belong to b(R) for sufficiently large R and that dB[F, b(R), 0]{0. The first
part follows from Villari's condition 3 with y=e� , and the second one from
the fact that g is one-to-one and e� # g(RN). K
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For example, taking n(u)=(&1, 1), it is easy to see that Corollary 3.2
implies that the problem

\(|u$| p&2u$1)$=&exp u2&e1(t), \( |u$| p&2 u$2)$=exp u1&e2(t),

u1(0)=u1(T ), u2(0)=u2(T ), u$1(0)=u$1(T ), u$2(0)=u$2(T ),

has a solution if and only if e1 <0 and e2 >0.
Better results can of course be obtained for (3.29) in the scalar case

N=1 with , an arbitrary homeomorphism from R onto R.

Corollary 3.3. Let the continuous function g: R � R satisfy the follow-
ing conditions.

(1) There exists h # L1(I, R+) such that

| g(u)|�g(u)+h(t)

for a.e. t # I and all u # R.

(2) There exist A<B and r>0 such that either

g(u)�A for u�&r and g(u)�B for u�r

or

g(u)�A for u�r and g(u)�B for u�&r.

Then (3.29) has as least one solution for each e # L1 such that

e� # ]A, B[.

Proof. It suffices to apply Theorem 3.2 with n(u)=1. Villari's and
degree's conditions follow easily from the assumptions. K

For example, the problem

\((exp |u$|&1) sgn u$)$+exp u=e(t), u(0)=u(T ), u$(0)=u$(T ),

has at least one solution if (and only if ) e� >0.

4. HOMOTOPY TO AN AUTONOMOUS SYSTEM

Let us consider now the problem

(,(u$))$= g(t, u, u$, *), u(0)=u(T ), u$(0)=u$(T ), (4.1)
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where * # [0, 1], and g: I_RN_RN_[0, 1] � RN is Carathe� odory. The
following result extends to our quasi-linear situation a continuation
theorem first proved in [7] for periodic solutions of semilinear systems. We
follow here the simpler approach of [1] and [26]. In this continuation
theorem, the homotopy is made to an autonomous system and one takes
advantage of the S1-invariance of the corresponding periodic problem to
compute the associated Leray�Schauder degree.

Theorem 4.1. Assume that

g(t, u, v, 0)= g0(u, v) (4.2)

is independent of t, and that 0 is an open bounded set in C 1
T such that the

following conditions hold.

(1) For each * # [0, 1[ the problem (4.1) has no solution on �0.

(2) The Brouwer degree

dB[ g0( } , 0), 0 & RN, 0]{0. (4.3)

Then problem (4.1) with *=1 has at least one solution in 0� .

Proof. Problem (4.1) can be written in the equivalent form (2.20), i.e.,

u=Gg(u, *), (4.4)

where,

Gg(u, *)=Pu+QNg(u, *)+(K b Ng)(u, *),

and Ng : C 1
T_[0, 1] � L1 is the Nemytski operator associated to g. We

assume that for *=1, (4.4) does not have a solution on �0 since otherwise
we are done with the proof. Now by hypothesis (1) it follows that (4.4) has
no solutions for (u, *) # �0_[0, 1]. Then we have that for each * # [0, 1],
the Leray�Schauder degree dLS[I&Gg( } , *), 0, 0] is well-defined and by
the properties of that degree that

dLS[I&Gg( } , 1), 0, 0]=dLS[I&Gg( } , 0), 0, 0]. (4.5)

Now it is clear that problem

u=Gg(u, 1) (4.6)
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is equivalent to problem (4.1) with *=1, and (4.5) tells us that this
problem will have a solution if we can show that dLS[I&Gg( } , 0), 0, 0]{0.
This we do next. We have that

Gg(u, 0)=Pu+QNg(u, 0)=(K b Ng)(u, 0),

where

Ng(u, 0)(t)= g(t, u(t), u$(t), 0)= g0(u(t), u$(t)).

Hence, because g0 is independent of t, Gg( } , 0) is invariant under the action
of the group S 1 acting on C 1

T through the linear isometry T{u=u( } +{).
We can then use Theorem 2 of [1] to compute dLS[I&Gg( } , 0), 0, 0]
when 0 is invariant under the action of S1. If 0 is not invariant we
replace it by 0� =[u # 0 : dist(u, 0 & Fix Gg( } , 0))<=] with 0<=<dist(0 &
Fix Gg( } , 0), �0). Here Fix Gg( } , 0) denotes the set of fixed points of Gg( } , 0).
0� is invariant since S1 is path-connected, hence �0 & Fix Gg( } , 0)=<
implies that 0 & Fix Gg( } , 0) is invariant. We also have used here that S1

acts through isometries. Since Fix Gg( } , 0) & 0/0� /0, the excision
property of the Leray�Schauder degree yields

dLS[I&Gg( } , 0), 0, 0]=dLS[I&Gg( } , 0), 0� , 0].

Now the fixed point set (C 1
T )S 1

=[u # C 1
T : u( } +{)=u( } ) for all { # I ] is

the set of constant u in C 1
T and, for such a constant c, Pc=c,

QNg(c, 0)= g0(c, 0), and

(K b Ng)(c, 0)(t)=H[,&1[a~ (0)]](t)=t,&1[a~ (0)].

But, by definition of a~ , we have

0=G0(a~ (0))=
1
T |

T

0
,&1[a~ (0)] dt=,&1[a~ (0)],

so that (K b Ng)(c, 0)=0. Thus

c&Gg(c, 0)=&g0(c, 0).

Consequently, as the Leray�Schauder degree in finite dimensional spaces
reduces to the Brouwer degree, we get, using Theorem 2 of [1] and excision,

dLS[I&Gg( } , 0), 0� , 0]=dLS[(I&Gg( } , 0))| (C 1
T )S 1 , 0� & (C 1

T )S 1
, 0]

=dB[&g0( } , 0)|RN , 0� & RN, 0]

=(&1)N dB[ g0( } , 0)| RN , 0� & RN, 0]

=(&1)N dB[ g0 | RN , 0 & RN, 0]
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as 0� & RN contains all constant T-periodic solutions of (4.8) with *=0
contained in 0, i.e., all zeros of g0( } , 0)|RN . By assumption (2), this last
degree is different from zero, and the proof is complete. K

As an application of Theorem 4.1, let us consider the problem

(�p(u$))$=h(u, u$)+e(t, u, u$), u(0)=u(T ), u$(0)=u$(T ), (4.7)

where h: RN_RN � RN is continuous and e: I_RN_RN � RN is Cara-
the� odory. The following result extends Corollary 9 of [7] to the p-Laplacian
case.

Theorem 4.2. Assume that the following conditions hold.

(1) h(ku, kv)=k p&1h(u, v) for all k>0 and all (u, v) # RN_RN.

(2) lim|u|+|v| � � (e(t, u, v))�( |u|+|v| ) p&1)=0, uniformly a.e. in t # I.

(3) The problem

(�p( y$))$=h( y, y$), y(0)= y(T ), y$(0), y$(T ),

has only the trivial solution y=0.

(4) dB[h( } , 0), b(R0), 0]{0 for some R0>0.

Then problem (4.7) has at least one solution.

Proof. We apply Theorem 4.1 to the homotopy

(�p(u$))$=h(u, u$)+*e(t, u, u$),
(4.8)

u(0)=u(T ), u$(0)=u$(T ), * # [0, 1],

and show that there exists some R>0 such that, for each * # [0, 1] and
each possible solution u of (4.8), one has &y&1<R, with &y&1=&y&0=
&y$&0 . The result will then follow from Theorem 4.1 by taking 0=B(R). If
it is not the case, one can find a sequence [*n] in [0, 1] and a sequence
[un] of solutions of (4.8) with *=*n such that &un&1 � � when n � �. If
we set

yn=
un

&un &1

, n=1, 2, ...,

it follows from assumption (1) that

(�p( y$n))$= h( yn , y$n)+*n
e(t, &un&1 yn , &un&1 y$n)

&un& p&1
1

,
(4.9)

yn(0)= yn(T ), y$n(0)= y$n(T ), n=1, 2, ... .
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As &yn&1=1 for all n, we can assume, going if necessary to a subsequence,
that yn � y uniformly in I, for some y # CT . Letting zn=�p( y$n), it is clear
that [zn] is bounded in CT and it follows from Eq. (4.9) and from assump-
tion (2) that [z$n] is bounded in CT as well. Thus, up to a further sub-
sequence, we can assume that [zn] converges uniformly on I to some
z # CT . Notice, then, that [ y$n] converges uniformly on I to �p*(z), and
that

&y&0+&�p*(z)&0=1, (4.10)

where p* is conjugate to p. Now, problem (4.9) is equivalent to

y$n=�p*(zn),

z$n=h( yn , �p*(zn))+*n
e(t, &un&1 yn , &un&1 �p*(zn))

&un& p&1
1

, (4.11)

yn(0)= yn(T ), zn(0)=zn(T ), n=1, 2, ... .

Using the above convergence results and an integrated form of (4.11), it is
easy to see that ( y, z) will be a solution of the problem

y$=�p*(z), z$=h( y, �p*(z))

y(0)= y(T ), z(0)=z(T ),

and hence y will be a solution of the problem

(�p( y$))$=h( y, y$), y(0)= y(T ), y$(0)= y$(T ).

But then using assumption (3), it follows that y=0, and hence �p*(z)=0,
a contradiction to (4.10). K

As a special case of Theorem 4.2, we get of course the following classical
result. Recall that + # R is an eigenvalue of the p-Laplacian �p with T-peri-
odic boundary conditions if the problem

(�p(u$))$++�p(u)=0, u(0)=u(T ), u$(0)=u$(T ),

has a nontrivial solution.

Corollary 4.1. If + is not an eigenvalue of the p-Laplacian �p with
T-periodic boundary conditions, then, for each e # L1, the problem

(�p(u$))$++�p(u)=e(t), u(0)=u(T ), u$(0)=u$(T ),

has at least one solution.
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