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HISTORICAL RAMBLINGS IN ALGEBRAIC GEOMETRY
AND RELATED ALGEBRA

SHREERAM S. ABHYANKAR

1. Various perspectives. Algebraic geometry has been approached from various perspectives:

algebraic geometry

Function Theory Topology Algebra Atrithmetic

The relevant algebra can be divided into 3 categories:

/‘akrbra\
high-schoolalgebra college algebra university algebra

We associate different catchwords with these divisions:
function theory: function, integral;
geometry: curve, surface, variety;
high-school algebra: polynomial, power series;
college algebra: ring, field, ideal;
university algebra: functor.

We give a chronological tabulation of some of the distinguished proponents of the various
divisions, together with one approximate date of work for each proponent; (for most of them, a
publication — somewhat randomly chosen — is listed in the References; a large source list can be
compiled by looking up the references in the References):

function theory: Euler (1748), Abel (1826), Jacobi (1832), RIEMANN (1857), Picard (1897), Poincaré" (1910),
Lefschetz (1921), Zariski (1929), Hodge (1941), Kodaira (1954), Hirzebruch (1956), Griffiths (1972).

geometry: Cremona (1850), M. NOETHER (1870), Bertini (1882), C. Segre (1894), Castelnuovo (1894), Enriques
(1894), Zariski (1934).

high-school algebra: Bhaskara (1114), Cardano (1530), Ferrari (1540), NEwToN (1680), Tschirnhausen (1683),
Euler (1748), Sylvester (1840), Cayley (1870), Kronecker (1882), Mertens (1886), Konig (1903), Perron
(1905), Hurwitz (1913), Macaulay (1916), Zariski (1941), Hironaka (1964).

college algebra: DEDEKIND (1882), E. NOETHER (1925), Krull (1930), Zariski (1941), Chevalley (1943), Cohen
(1946), Nagata (1960).

university algebra: Serre (1955), Cartan (1956), Eilenberg (1956), GROTHENDIECK (1960), Mumford (1965).

2. Fundamental thesis of this paper (obviously a partisan claim). The method of high-school
algebra is powerful, beautiful, and accessible. So let us not be overwhelmed by the groups-rings-fields
or the functorial arrows of the other two algebras and thereby lose sight of the power of the explicit
algorithmic processes given to us by Newton, Tschirnhausen, Kronecker, and Sylvester.

Later on in the paper I shall relate four personal experiences to substantiate the above thesis.

Expanded version of an invited lecture at the November 30, 1974 Indianapolis meeting of the Indiana Section

of the Mathematical Association of America. Extracts were also presented at the Workshop on the Evolution of
Modern Mathematics held by the American Academy of Arts and Sciences at Boston on August 8-9, 1974.
Excerpts of this paper appeared in the Proceedings of the Workshop in “Historia Mathematica,” vol. 2, 1975, No. 4.

This work was supported by the National Science Foundation under Grant Number MPS-75-09090 at Purdue
University.
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CuartER I. FuncTioN THEORY

3. Integral. After the invention of differential calculus by Newton and Leibnitz, at the end of the
seventeenth century, attention was turned to the reverse process: integration. Rational functions of
one variable (rational function = polynomial divided by polynomial) and then trigonometric func-
tions were integrated. Then it was found that integrals of the form

j[v(x)+ w(x)V(x - a)(x — b)(x — c)] dx,

where v(x) and w(x) are rational functions and a, b, ¢ are distinct constants, could not be integrated
in terms of “known” functions. These integrals are called elliptic integrals since they first occurred in
trying to find the arc length of an ellipse. Euler and others studied elliptic integrals. Then Abel
initiated the study of general algebraic integrals of the form

[ yya,
where r(x,y) is a rational function and where y is the n-valued function of x defined by
fXY)=uX)Y" +u,(X)Y" '+ - +u(X)=0

with polynomials u;(X) where uo(X) # 0; it is assumed that f is irreducible, i.e., it cannot be factored
into two polynomials. In honor of Abel, these integrals became known as abelian integrals.

The differential (= integrand = integral — integral sign) r(x, y) dx is said to be of first kind if it has
no pole. The integral [ r(x, y) dx is said to be of first kind if the corresponding differential is so. It was
shown that, for a fixed f, there are at most a finite number of linearly independent differentials of first
kind; this number is called the genus of f and is denoted by g:

(g0 g = number of linearly independent differentials of first kind.
It was also shown that (without restricting to first kind)
(g2) 2g —2 = number of zeros of a differential — number of its poles.

That the right hand side depends only on f, and not on the particular differential, follows from the
corresponding property which was proved about rational functions s(x, y):

0] number of zeros of a function = number of its poles.

Perhaps it may be preferable to regard (g,) as the definition of the genus and (g,) as a theorem. In
fact, by and by, we shall write down several genus formulas and, depending on the mood, any one of
them can be taken as the definition. At any rate, these formulas do provide a helpful thread running
through various aspects of one-dimensional algebraic geometry.

Abel (1826, [1]) proved a far-reaching general theorem about sums of integrals of first kind. A little
later, Jacobi (1832, [39]) inverted these integrals and thereby constructed periodic functions of g
complex variables with 2g periods.

4. Riemann. The above matter needed clarification. Thus, already for elliptic integrals we have to
know which of the two square-roots to start with; in the general case we have to know which “branch”
of y to take. A picturesque clarification was provided by Riemann by constructing a surface S, called
the Riemann surface of f, on which y “becomes” single-valued. The functions r(x, y) and s(x, y) and
the differentials r(x, y) dx, together with the locations and orders of their zeros and poles, are now to
be viewed as happenings on S, and so also the abelian integrals [ r(x, y) dx are to be integrated along
paths on S.

Using his surface, Riemann (1857, [59]) showed that

(25) number of linearly independent rational functions s(x, y)
g with prescribed d poles =d +1-g + i,
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where i is a nonnegative integer which is zero if d > 2g — 2, and later Roch (1865, [60]) showed that

*) {i = number of linearly independent differentials of first kind
having zeros at the prescribed poles.

Again, (gs) may be regarded as giving a definition of the genus. In any case, the Riemann-Roch
theorem [(gs)+ (*)] shows that the resulting definition is equivalent to (g;) as well as to (g2).

Now any (closed) surface S* is topologically equivalent to (i.e., by stretching and shrinking but
without tearing, can be converted into) a sphere with a certain number of handles; say the number of
handles is g*. (See Fig. 1.)

FiG. 1

Euler’s theorem, which is one of the oldest theorems of topology, gives the following method of
computing g*: On S* draw any polyhedron A* (all whose faces are curvilinear triangles); let A§, AT,
and A% be the number of vertices, edges, and faces of A*; then

A5 -AT+AF=2-2g*

FiG. 2

For verification for a tetrahedron see Fig. 2.
Using formula (g) and Euler’s theorem, Riemann showed that for the Riemann surface S:

(84) g = number of handles.

As a reference to the material described in these two sections, we may cite the excellent book of
Stahl (1896, [68]).

Let us close our discussion with a philosophical remark:

Jacobi’s approach seems to have been algorithmic: write down numerous explicit formulas! As a
dividend he could deduce things such as: every integer is a sum of four squares and in exactly so many
ways. Jacobi’s approach received a big push in the hands of the arithmetician Kronecker.

On the other hand, Riemann’s approach appears to have been existential: know that the formulas
exist! Many of his existence arguments were based on “‘Dirichlet’s principle,” the genesis of which can
be expressed by saying something like this: the real and imaginary parts of an analytic function of a



412 S. S. ABHYANKAR [June-July

complex variable satisfy the same sort of partial differential equation as a gravitational potential or an
electric potential (or a fluid flow or heat conduction...); so the existence of analytic functions or
differentials with prescribed boundary behaviour or assigned singularities can be adduced from
physical considerations. To carry the analogy further (or backwards), one could say that the
mathematical formula “number of zeros of a function = number of its poles” corresponds to the
physical fact that there is no gravitational pull inside a hollow shell, or that there is no electric intensity
inside a hollow charged conductor. Riemann’s approach was furthered by Hilbert (1904, [34]) who put
the Dirichlet principle on firmer grounds.

5. Higher dimensions. A survey of the corresponding development in the hands of Picard, ...,
Hirzebruch, can be found in the second edition of Zariski’s book (1971, [80]). By extending and
employing some of these developments, Clemens and Griffiths (1972, [22]) have proved the
nonrationality of nonsingular hypersurfaces of degree 3 in 4-space, which was a problem of long
standing.

CHAPTER II: GEOMETRY

6. Spatial intuition. In the geometric viewpoint one studies the polynomial equation f(X, Y)=0
by visualizing the (algebraic) plane curve consisting of all points (a, b) in the (X, Y)-plane satisfying
f(a, b) =0. To take care of “‘points at infinity”’ one introduces homogeneous coordinates and then the
old point (a, b) is represented by all triples (ka, kb, k) with k# 0, and the plane curve is given by
F(X,Y,Z)=0 where F is the homogeneous polynomial (i.e., a polynomial all of whose terms have
the same degree) obtained by “homogenizing” f; for example, homogenizing Y- X we get
Y?Z - X* and then dehomogenizing Y>Z — X° (i.e., putting Z = 1) we get back Y?— X>. The degree
of f (or of F) is called the degree of the plane curve.

More generally, the totality of common solutions of a finite number of polynomial equations in r
variables is visualized as a geometric configuration or “‘an (algebraic) variety” in r-dimensional space;
again, to take care of ‘‘points at infinity”’ one may use homogeneous equations in r + 1 variables. A
curve is a variety of “dimension” 1, a surface is a variety of ‘“dimension” 2, ...

7. Max Noether. Noether deduced many properties of algebraic curves (including the geometric
version of the Riemann-Roch theorem) as consequences of a theorem which acquired the designations
“Noether’s AF + B® Theorem” or “Noether’s Fundamental Theorem.” This is indeed one of the
most proved theorems; already in Berzolari’s 1906 encyclopedia article [13] one can find references to
proofs by a dozen different authors; Noether’s original proof appeared in (1870, [54]) and (1873, [55]).

Genesis. In elementary analytic geometry one may be given the following exercise: Let F =0 and
® = 0 be two circles. Let it be required to find a third circle H = 0 which passes through the points of
intersection of F and ®, and which does something else. The pedantic way would be to first actually
find the points of intersection — by solving the simultaneous equations F =0 and ® =0 — and then
proceed to construct H. The clever way, given in good books of analytic geometry (e.g., Salmon
(1852), [62]), would be thus. For any (constants) A and B, the conic

AF+B®=0

clearly passes through all the points of intersection of F and ®. So it is reasonable to surmise that
conversely any conic passing through the points of intersection of F and ® can be so expressed.

Generalizing the above idea, let F =0 and ® = 0 be plane curves of any degree. Then again, for
any (homogeneous polynomials) A and B, the curve
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AF+B®=0
clearly passes through all the points of intersection of F and ®.

Noether’ s Fundamental Theorem says that the converse is true. That is, if H = 0 is any plane curve
such that “‘H passes through all the points of intersections of F and ®” then

H = AF+ B® for suitable A and B.

Of course, if, say, some point P is a double point of both F and ®, then P must be a double (or
higher) point of every plane curve of the form AF+ B®=0.

In other words, Noether’s theorem must be qualified by giving a “good’” meaning to the phrase “H
passes through ....”” What meaning to give? Answer: That which will make Noether’s theorem true.

Indeed the peculiar characteristic wisdom of geometric algebraic geometry is the

8. Dictum. Study of simple cases gives rise to a nice succinct statement. Take it as an axiom that
the statement is true most generally. Make it true by the provision that we learn to “count
properly” the intervening quantities. Or better still, have faith that god (or, if you prefer, nature) has a
good meaning in mind, and march on!

9. Severi. After Max Noether, geometric algebraic geometry went to live in Italy which produced
the great geometers: Bertini, C. Segre, Castelnuovo, Enriques, Severi. To quote from Zariski’s
address (1950, [79]): “The Italian geometers have erected...a stupendous edifice: the theory of
algebraic surfaces.” This edifice was surveyed by Zariski (1934, [80]).

It is perhaps appropriate to elucidate the Dictum by quoting Severi: “Every good theorem must
have a good counterexample.” PARAPHRASE: don’t be deterred if your formula is presently invalid in
some cases; it only means that you have not yet completely deciphered god’s mind.

At any rate, Severi’s Vorlesungen (1921, [66]) is certainly one of the most readable books on
algebraic geometry. Let me here venture to say that

10. Semple and Roth (1949, [64]) is perhaps the only book on algebraic geometry written after,
say, 1940 which covers a lot of territory and is at the same time ‘“‘readable’ like an entertaining novel.
However, it may not be the best introduction to the subject for the present-day student trained in
contemporary rigor. May I, as a plea, suggest that someone please write a reasonably exhaustive book
on algebraic geometry which is rigorous as well as “‘readable’’!

11. Bryn Mawr. Before proceeding to give two more examples of the Dictum, let us note that a
frequently cited proof of Noether’s theorem was given by Charlotte Angas Scott of Bryn Mawr (1899,
[63]). It is worth giving a long quote from her paper: “This (Noether’s) theorem, discovered in the
course of, and developed for the sake of, purely algebraic researches, is not however tabooed to the
geometer ... ; but it does not appear that any simple proof depending on geometrical conceptions has
yet been given. Cayley (1887, [18]) regarded the theorem as intuitive for simple intersections.
Zeuthen’s proof (1888, [81]) depends on an elaborate determination of the number of conditions
imposed by the intersections of two curves, when these are simple, the case of multiple intersections
being then deduced by the somewhat dangerous process of proceeding to the limit.”

12. Another example of the Dictum. Two lines meet in a point. A line and a conic meet in two
points. Two conics meet in four points. So we are led to the very first theorem of algebraic geometry.

Bezout's THEOREM. Any two algebraic plane curves of degree N and M, devoid of common
components, meet in exactly MN points (counted properly!).
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This was first asserted by Maclaurin (1720, [45]). It was discussed by Euler (1748, [26]) and Cramer
(1750, [24]), and then more completely by Bezout (1770, [14]).

Algebraic Proof. See §21.

Geometric Proof. The curves can be degenerated into N lines and M lines. These clearly meet in
MN points. Hence so do the original curves.

At any rate, we are led to the geometric characterization of the degree N of a plane curve C:
f(X, Y) =0 as the number of intersection of C with a line (either count properly or maximize over all
lines). Furthermore: a point P of C is said to be a d-fold point (or a d-ple point, or a point of
multiplicity d) if most lines through P meet C at P in d coincidental points, or alternatively, if they
meet C, outside P, in N — d points; the finite number of lines through P which meet C at P in more
than d coincidental points are called the tangents to C at P; P is called a singular point (or a
singularity) of C if d > 1; P is called a simple point of C if d = 1. C is said to be nonsingular if it has
no singularities. Algebraically, the multiplicity d of a point P = (a, b) of C at finite distance can be
characterized as the smallest degree of a term occurring in the expansion of f around P; in other
words

f(X+a,Y+b)=0(X Y)+ Zd XY
i+j>
where {i(X,Y) is a nonzero homogeneous polynomial of degree d; moreover, the d factors
wX + Y of {4(X,Y) give the tangents wi(X—a)+wn(Y—b)=0 to C at P, which are not
necessarily all distinct. So in particular: P is a singularity of C iff fy(a, b) =0 = fx(a, b), where fy and
fx are the Y-derivative and X-derivative of f; moreover, if P is a simple point of C then: fy(a,b) =0
iff the tangent to C at P is X —a =0.

A similar situation prevails in higher dimensions.

The problem of resolution of singularities asks whether a given variety can be desingularized, i.e.,
can be transformed by an almost one-to-one (algebraic) transformation into a nonsingular variety.

For a plane curve f(X, Y) =0, the Riemann surface of f is nothing but the desingularization of f.
Geometrically (or algebraically) the same thing was achieved by Noether by means of “quadratic
transformations.” For example, the curve Y?— X* = 0 has a double point at the origin; the quadratic
transformation (or substitution)

X=X"and Y=X'Y'
yields
0 — YZ_x:s: X!2Y/2_X!3___ XlZ(Y/Z_Xl)

and cancelling out the extraneous factor X we get the nonsingular curve Y”?—-X'=0. To
desingularize the general plane curve f =0 one has to make a finite succession of such transforma-
tions. Moreover, Noether also gave an “analysis” of the singularities of f =0 in terms of these
resolution steps. A brief exposition of related matter can be found in my Bloomington lecture [7].

13. Genus formula. As a final example of the Dictum, study of simple cases which we shall
describe later, led the geometers from Maclaurin to Noether towards the following formula for the
genus g of an irreducible plane curve C: f(X, Y)=0 of degree N:

g = (1/2) (N — 1) (N — 2) — number of double points counted properly
ie.,
(8s) g={12)(N-1)(N-2)-Z5(P),

where the sum is over all the singular points P of C and where 8(P) is a certain positive integer which
says that “P accounts for §(P) ordinary double points.”
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Cuapter III: HiGH-ScHOOL ALGEBRA

14. Brahmins. It might be said that (high-school) algebra started with the Brahmins (my
ancestors) of India: Aryabhatta (476), Brahmagupta (598), Bhaskara (1114); quadratic equations were
solved by completing the square; also rules were given for solving certain types of so-called
diophantine equations. Bhaskaracharya (acharya = professor) was the director of an observatory at
Ujjain; his treatise on astronomy (Siddhantashiromani) contains chapters on geometry (Lilavati —
named after his daughter) and algebra (Beejaganit).

(See Historical Notes in Chrystal [21] and Krull [44].)

Now it is true that the history of mathematics should primarily consist of an account of the
achievements of great men; but it may be of some interest to also see their impact on an average
student like me. With this in mind I may be allowed some

15. Personal reminiscences. It is my fond memory that my father initiated me to mathematics —
and at the same time to Sanskrit poetry — by teaching me portions of Bhaskara’s treatise. After
several years, during my last year in high-school, at my father’s suggestion I studied Hobson’s
Trigonometry (1891, {37]), Hardy’s Pure Mathematics (1908, [31]), and Chrystal’s Algebra (1886, [21]).
By the end of first-year college I had also studied Knopp’s Infinite Series (1928, [40]), Burnside-
Panton’s Theory of Equations (1904, [16]), and Bdcher’s Higher Algebra (1907, [15]). These books
have served me well; they are all (except, perhaps, Hardy’s) predominantly high-school-algebraic and
algorithmic. After them my ways were set; after them I could not, (and didn’t need to?), acquire much
new technique. The goodly dose of analysis obtained during my last three years of college was all but
forgotten.

As a graduate student at Harvard, I suppose I did acquire some mathematical sophistication. As a
result, I always think high-school algebra but write college algebra. At any rate, Zariski’s algebraic
geometry gave ample scope to my early algorithmic training. However, what initially attracted me to
Zariski was Math 103, Projective Geometry: von Staudt’s algebra of throws and the resulting identity
of geometry with algebra was indeed very exciting.

To continue with our story of high-school algebra:

16. Arabia and Italy. Then travelling through Arabia, algebra reached Europe around 1500.
During 1500-1600, the Italians — Tartaglia, Cardano, Ferrari, et al — solved cubic and quartic
equations.

Fermat’s and Descartes’ (1637) introduction of coordinates gave a big impetus to algebra.

(See Historical Notes in Chrystal [21] and Krull [44].)

Then there appeared the majestic genius of Newton (1680, [53]):

17. Newton. Truly the father of us all. Newton discovered the Binomial Theorem

1+ X)" =Z n(n—1)(1n.;.2§:::5n—i+1)xi

first for positive integral n and then soon after for any fractional n. For fractional exponent this can be
regarded as solving, for Y, the equation

1 Y™ - u(X)=0,

where u(X) is a power series (and where n is the denominator of the n of the Binomial Theorem).
What is a power series? Take the definition of a polynomial

at a: X +a X+ +a.X"
and from it delete the last term. This gives

ata X +a X+
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as the definition of a power series; likewise for several variables. So a power series is simpler than a
polynomial. Like polynomials, power series can be added, subtracted, and multiplied.
Especially in case of one variable, we may even permit a finite number of negative exponents

UX)=a-mX "+ X"+ Fagt i X+ @ X

and call it a meromorphic series. Unlike a polynomial, a power series or a meromorphic series need
not have a highest degree term; but it does have a lowest degree term; the degree of the lowest degree
term in u(X) is called the X-order of u(X) and is denoted by ordxu(X).

When we allow meromorphic series we can divide. Namely if u(X) # 0 and q = ordxu(X), then

u(X)= a, X1 - v(X)] with v(0)=0;
hence, because of the geometric series

1-X)"=1+X+X*+ -
we have

u(X)'=a;' X 1+ o(X)+v(XP+ -]

It is presumed that the “coefficients” a; (or, in case of several variables, a;....) can be added,
subtracted, multiplied, and divided. Thus they may be rational numbers, or real numbers, or complex
numbers, or “integers modulo a prime number p,” etc. In the case of rational numbers, or real
numbers, or complex numbers, we are in zero (or infinite) characteristic, i.e., 1 +1+ -+ + 1 is never
zero. In the case of “integers modulo a prime number p”’ we are in the nonzero characteristic p, i.e.,

1+1+ ---+1 equals 0;
——
p times
in this case the Binomial Theorem takes the amusing form: (1 + X)? = 1+ X?. Frequently, as in the
case of complex numbers, every polynomial equation in one variable has a root; we shall usually (as in
the theorem below) suppose this to be so.
Having solved the simpler equation (1), Newton proceeded to solve the most general equation of
that type; to wit:
Newton’s Theorem (on Puiseux expansion). Every polynomial

fXY)=Y"+u,(X)Y" '+ -+ + u(X)

with meromorphic series u;(X), where n! is not divisible by the characteristic, can be
completely factored if we allow series with fractional exponents. More precisely, we have

f, =TT (7 - 3(1)

with meromorphic series y;(T); the yi(T) are power series if all the u;(X) are. Moreover, if f is
irreducible (when fractional exponents are not allowed), then n! may be replaced by n, i.e., assuming
that n is not divisible by the characteristic, we have

fa =11 (Y= y@)

where y(T) is a meromorphic series and w is a primitive nth root of 1.

Not only did Newton prove the existence of the y, but he actually gave an algorithm for explicitly
finding them by successive polynomial approximations. This algorithm is known as Newton’s polygon
(or, according to older literature, parallelogram). [The spirit of this algorithm is similar to Newton’s
iterative procedure of approximation of real roots of polynomials with constant (real) coefficients.]

To quote from the Historical Note on page 396 of Part II of Chrystal [21]: ... (Newton’s) method
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was well understood by Newton’s followers, Stirling and Taylor; but seems to have been lost sight
of ... after their time.”

Newton’s theorem was revived by Puiseux [58] in 1850. So it acquired the name “Puiseux
expansion” which is a misnomer. What’s more is that Puiseux’s proof, being based upon Cauchy’s
integral theorems, applies only to convergent power series with complex coefficients. On the other
hand, Newton’s proof, being algorithmic, applies equally well to power series, whether they converge
or not. Moreover, and that is the main point, Newton’s algorithmic proof leads to numerous other
existence theorems while Puiseux’s existential proof does not do so.

Generally speaking, from Newton to Cauchy (1830), mathematicians used power series without
regard to convergence. They were criticised for this and the matter was rectified by the analysts
Cauchy and Abel who developed a rigorous theory of convergence. After another hundred years or so
we were taught, say by Hensel [32], Krull [43] and Chevalley [20], that it really didn’t matter, i.e., we
may disregard convergence after all! So the algebraist was freed from the shackles of analysis, or
rather (as in Vedanta philosophy) he was told that he always was free but had only forgotten it
temporarily.

18. Tschirnhausen(1683, [70]). This contemporary of Newton tried to solve fifth degree equations.
In that he failed. But his success was greater than his failure. He developed many transformations of
equations.

If you pick up almost any book on algebra, written before (but none after) 1931, you will find
numerous pages devoted to Tschirnhausen transformations. To cite some more meritorious books on
algebra, in addition to those already cited in §15, we have: Weber (1894, [72]), Konig (1903, [41]),
Macaulay (1916, [46]), and Perron (1927, [57]).

Then in 1931 came van der Waerden [71] drawing the line of demarcation between high-school
algebra and college algebra; still, being on the boundary, van der Waerden does include some
elimination theory.

As a simple sample of Tschirnhausen’s transformations we have the trick of killing the coefficient
of Y"'in

GY)=Y"+bY" '+ - +b,
by the substitution

z=y+h
n

thereby.getting G(Y)=Z" + ¢;Z"*+ - - + c,, because by the Binomial Theorem we have
(Y+X)"=Y"+nXY" '+ ---.

For n = 2 this is simply the ancient method of solving a quadratic equation by completing the square.

Of course we can divide by n only if n is not divisible by the characteristic.

This killing of b, is indeed the basic fact underlying Zariski’s [76], [77], [78] and Hironaka’s [35]
proofs of resolution of singularities of algebraic varieties of zero characteristic. For an analysis of this
matter see my Moscow lecture [6], where I went on to say that “instead of killing b,, Zariski used
differentiation arguments; but then after all, the Binomial Theorem and differentiation are in essence
one and the same thing.”

In turn, the nonavailability of the above Tschirnhausen transformation is what makes the
resolution problem quite different in nonzero characteristic. To put it differently, we have to grasp the
divisibility properties of the binomial coefficients, and in other ways, to understand the Binomial
Theorem better! In the Moscow lecture 1 also pointed out that as far as the resolution problem in
nonzero characteristic is concerned, much critical information is lost by replacing a power series by the
totality of all its multiples, i.e., by the “principal ideal generated by it”! This is an instance of the
superiority of high-school algebra over college algebra and geometry, and so this brings us to:
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19. Personal experience 1. In my Harvard dissertation (1956, [2]) I proved resolution of
singularities of algebraic surfaces in nonzero characteristic. There I used a mixture of high-school and
college algebra. After ten years, I understood the Binomial Theorem a little better and thereby
learned how to replace some of the college algebra by high-school algebra; that enabled me to prove
resolution for arithmetical surfaces (1965, [4]). Then replacing some more college algebra by
high-school algebra enabled me to prove resolution for three-dimensional algebraic varieties in
nonzero characteristic (1966, [5]). But still some college algebra has remained.

I am convinced that if one can decipher the mysteries of the Binomial Theorem and learn how to
replace the remaining college algebra by high-school algebra, then one should be able to do the
general resolution problem. Indeed, I could almost see a ray of light at the end of the tunnel. But this
process of unlearning college algebra left me a bit exhausted; so I quit!

20. Euler (1748, [26]). Euler dealt with a mixture of algebra and analysis; the two fields started
separating when Cauchy (1830) began to be concerned with questions of convergence. As an amusing
evidence of Euler’s algebraic technique let me quote his “proof” that

> 1
n=0 (2" + 1)2

_
3
Namely, if py, p,- - - are the roots of ao+ aix + azx*+ -+ + anx™ =0, then

1_-a
si-za

Ao

Now
2

X x
cos\/;c—1—§+§z+---

and the roots of cos Vx=0 are

2 2
Q"——Jffll with n=0,1,2,- -

and hence
1 7
2 @n+17 8

21. Elimination theory. This encompasses the explicit algorithmic procedures of solving several
simultaneous polynomial equations in several variables. Here some of the prominent names are:
Sylvester (1840, [69]), Kronecker (1882, [42]), Mertens (1886, [47]), Konig (1903, [41]), Hurwitz (1913,
[38]), and Macaulay (1916, [46]). It is a vast theory. There used to be a belief, substantially justified,
that elimination theory is capable of handling most problems of algebraic geometry in a rigorous and
constructive: manner. This is of course not surprising; after all, what is algebraic geometry but another
name for systems of polynomial equations!

What is surprising is that under Bourbaki’s influence it somehow became fashionable to bring
elimination theory into disrepute. To quote from page 31 of Weil (1946, [74]): “The device that
follows, which, it may be hoped, finally eliminates from algebraic geometry the last traces of
elimination theory, is borrowed from C. Chevalley’s Princeton lectures.”

It seems to me, what Bourbaki achieved thereby was trading in constructive proofs for merely
existence proofs.

I shall now describe only the first rudiment of elimination theory; namely the resultant of two
polynomials in one variable T.
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To solve two simultaneous equations
(1) E=a T +a,T" '+ -+ +a, =0,
)] n=bT"+b,T" '+ - +b, =0,

or rather to find a condition for them to have a common solution, we eliminate T between them. To
wit, say n = m; multiply (1) by bo and (2) by a,T"™™ and then subtract; this cuts down m + n; now
iterate; ultimately we get an expression dependent only on the a’s and b’s. Different (but substantially
equivalent) ways of systematizing this procedure were given by Euler (1748, [26]), Bezout (1770, [14]),
and Sylvester (1840, [69]); it seems (see Berzolari [13]) that a procedure was already known to
Newton. Following Sylvester we define the T-resultant of £ and 7, denoted by Resr (£, ), to be the
m+n by m +n determinant

ao al ...... a"
Qo @y " a,
Qo @y a,
by by:---- b,.
bo by b,
bo by-ce- - b..

with zeros in ali blank spaces. We have the

RESULTANT THEOREM. Resr (& 1) =0 iff either ao=0= b, or ¢ and m have a common solution.
Now let
Cnv: F(X,Y,Z)=0 and Dy: (XY, Z)=0

be plane curves of degree N and M without common components, i.e., F and ® are homogeneous
polynomials of degree N and M respectively, and F and ® do not have a common factor. Let

E(X,Z)=Resy(F, ).

By the determinantal expression we see that E(X, Z) is a homogeneous polynomial of degree MN. By
the above theorem we also see that the “roots” of E(X, Z) are the homogeneous (X, Z)-coordinates
of the points of intersection of Cy and Dy, This indicates that Cy and Dy meet in MN points; the
indication is turned into

Bezours THEOREM. 2 i(C, D; P) = MN, where the sum is over all common points P of C and D
and where the positive integer i(C, D; P) is the intersection multiplicity of C and D at P, and it is also
defined in terms of a resultant thus: Given P, we may choose our coordinates so that at P we have
Z=1and X=0=Y. By the Preparation Theorem of Weierstrass (1860, [73]) (who, although
sometimes called the prince of analysis, was indeed a most distinguished high-school algebraist) we
can write

F(X, Y,1)=f(X, Y)f*(X,Y) and (X, Y,1)= ¢'(X, Y)o*(X, Y),

where f'(X, Y) and ¢'(X, Y) are polynomials in Y with coefficients power series in X such that
£'(0,0)#0 # ¢'(0,0), and where
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are power series with

fFXY)=Y +uo(X)Y 7'+ - +0.(X) }where v:(X) and w;(X)
v:(0) = 0= w;(0).

X Y)=Y +wi(X)Y '+ -+ w(X)
Now Resy(f*, ¢*) is a power series in X and we define
i(C,D; P)= X-order of Resy(f*, ¢*).

One can see that then

i(C, D; P)=number of power series in X and Y which
are linearly independent over power series in
F(X,Y,1) and ®(X, Y,1).

22. Personal experience 2. How many equations are needed for defining a curve C in affine
3-space? The history of this question goes back to Kronecker and is described in my Montreal lectures
(1970, [9]); a brief exposition of related matter can also be found in my very elementary Poona lectures
(1969, [8]). In the Montreal lectures I tried to revive elimination theory for studying this question.
Among other things, for any nonsingular C I explicitly constructed three equations. Using these three
explicit equations, Murthy and Towber (1974, [49]) have just now proved that (1) if C is rational or
elliptic then two equations suffice, and that (2) every projective module over the polynomial ring in
three variables is free (Serre’s conjecture).* The funny thing is that Murthy (1972, [48]) had also
independently proved the existence of three equations, but because he was using university-algebra
(the functor Ext and such) his proof was only existential, and that was. not enough for proving either
1) or (2).

So high-school algebra has come to the rescue of university algebra!

23. Discriminant. The two roots of the quadratic equation T+ bT+c =0 coincide iff its
discriminant b*>—4c¢ =0.
With this experience in mind, consider the plane curve

C:f(X V)= u(X)Y" + us(X)Y" '+ -+ + u,(X) =0,

where the u;(X) are polynomials with us(X)#0. Let x and y be such that x is a variable and
f(x,y)=0. Let it be required to locate those values a of x for which at least one of the corresponding
values b of y has multiplicity > 1, i.e., b is a multiple root of f(a, Y) = 0. To this end, we eliminate Y
between f(X, Y) and its Y-derivative f; (X, Y), thereby obtaining a polynomial in X which, following
Sylvester, we call the Y-discriminant of f and denote it by Discy(f); i.e.,

Discy(f) = Y-discriminant of f = Resy(f, fv).

Now the roots of Discy(f) are precisely those finite values of x for which there are less than n finite
values of y, either because one of the finite values of y has multiplicity > 1, or because one of the
values of y has gone to infinity. All this follows from the Resultant Theorem and the following very
simple but

FUNDAMENTAL PRINCIPLE. The number of roots (or irreducible factors) of a polynomial {(T) in one
variable, counted with their multiplicities (resp. degrees and multiplicities ), equals the degree of { (T).

SUPPLEMENT. Moreover, if £ is a root (or irreducible facter) of {(T) with multiplicity e then ¢ is a root
(resp. irreducible factor) of the T-derivative of {(T) with multiplicity = e — 1, where equality holds iff e
is not divisible by the characteristic.

* This conjecture was proved for any number of variables by D. Quillen of MIT in February of 1976. (Editor)
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Indeed, much algebraic geometry ultimately gets reduced to the Fundamental Principle, plain or
supplemented. It is certainly the algebraical key to the various “counting properly.”

Now a comment on “finite values.” For a finite value of x, some value of y goes to infinity iff that
value of x is a root of us(X). So “no value of y goes to infinity whenever x is finite” iff uo(X)is a
constant. Geometrically speaking, the roots of us(X) give the X-coordinates of the asymptotes to C
parallel to the Y-axis. For Example, see Fig. 3.

Hyperbola: XY —1=0.
u(X)=0 for X=0.

Fic. 3

24. Personal experience 3. In a recent paper (1973, [10]), Moh and I have made an analysis of: (1)
Newton-Puiseux expansion, (2) Tschirnhausen transformations (3) resultants and discriminants, and
(4) expansion of a polynomial in terms of another polynomial (analogous to decimal expansion). All
these four items can be found in Chrystal [21] and Burnside-Panton [16], but not in any post-1931
algebra text. As an immediate corollary of this analysis we have proved [11] the following
Epimorphism Theorem which can be stated in three versions thus:

HigH-ScHooL ALGEBRA VERSION. Let u(T) and v(T) be two polynomials in one variable T such that
T can be expressed as a polynomial in u(T) and v(T). Let degree of u(T)= n > n' = degree of v(T),
and assume that either n or n' is not divisible by the characteristic. Then n' divides n.

COLLEGE ALGEBRA VERSION. Any two epimorphisms (whose degrees are nondivisible by the charac-
teristic) of the polynomial ring in two variables onto the polynomial ring in one variable differ from each
other by an automorphism of the polynomial ring in two variables. This continues to hold if the
polynomial rings are replaced by the free associative (noncommutative) algebras.

GEOMETRIC VERSION. Any two embeddings of the affine line into the affine plane differ from each
other by a biregular map of the affine plane, (in zero characteristic).

Most of modern — post 1800 — mathematics seemed powerless to prove this kind of thing. But the
17th century stuff of Newton and Tschirnhausen enabled us to prove certain existence theorems, for
instance the existence of the said automorphisms or of the said biregular map. Perhaps the matter is
put in a better perspective by saying that what we obtain is a theorem about existence (or better,
construction) of curves with prescribed singularities; to further illucidate this point consider:

JunG-EvyaTHAR-NAGATA PENCIL THEOREM (see Nagata [52]). Let C be a nonsingular rational affine
plane curve of degree n having only one point P at infinity, and suppose that C is analytically irreducible
at P. Let m be the multiplicity of C at P. Let Py, P,, - - -, Px be the points of C infinitely near P, and let m
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be the multiplicity of C at P.. Assume that there exists another nonsingular rational plane curve D
(D # C) of degree n such that: P is the only point of D at infinity, D is analytically irreducible at P, D has
multiplicity m at P, and D has multiplicity m; at P; for all i. Then n — m divides n.

In effect what we do is to show that, in case of zero characteristic, D automatically exists.

25. Hamburger. Hamburger (1871, [30]) and Noether (1890, [56]) gave an alternative expansion
procedure for studying singularities of algebraic curves. In a forthcoming paper I shall present a
comparative analysis of the Newton-Puiseux expansion and the Hamburger-Noether expansion.
Roughly speaking, the HN expansion is cruder than the NP expansion, and so it works in any
characteristic. For instance, upon replacing NP expansion by HN expansion in the last portion of our
proof of the Epimorphism Theorem one gets a transparent proof of the above pencil theorem in
nonzero characteristic (when the existence of D has to be assumed). But for more delicate questions,
such as the automatic existence of D in zero characteristic, one has to use NP expansion.

26. Personal experience 4. I have found certain generalizations of Newton’s polygon most helpful
in obtaining partial results concerning the following problem which is still unproved even for two
variables!

High-School Implicit Function Theorem. Let Y, Y,,---, Y, be polynomials in X;, X5,---, X,
(with coefficients in a field of zero characteristics) such that

0Y, i=1’...’n _
det(ax,.) o 1e.. n =@ monzero constant.

Show that then X, X5, -+, X, are polynomials in Y;, Y5, -, Y.

27. Hironaka. Newton’s polygon has been generalized by Hironaka (1968, [36]) to “Newton’s
polyhedron” which is quite useful in understanding singularities of higher dimensional algebraic
varieties.

CHAPTER IV: COLLEGE ALGEBRA

28. Dictionary. Telegraphically speaking:

college algebra high-school algebra or other suggestive idea

set collection of objects called its elements

group set in which we can add and subtract

ring also multiply

domain also cancel nonzero common factors from an equation

field also divide

algebraically

closed field also solve every one-variable polynomial equation

quotient field from integers to rationals

R-module group whose elements can be multiplied by elements
of the ring R and still land in the group

ideals in R R-module contained in R

ideal length number of linearly independent elements

homomorphism substitute

epimorphism substitute to get everything

automorphsim change of variables.

29. Conductor. Pythagoras (540 B.C.) realized that \/2 was not a rational number. Gauss (1795)
generalized this by showing that if a rational number satisfies an equation of the form

T"+a,T" '+ +a,=0

with integers a;, then it must be an integer (see exercise 3 on page 7 of Hardy’s Pure Mathematics
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[31]). This gives rise to the following concepts: An element ¢ is said to be integral over (or integrally
dependent on) a domain R if ¢ satisfies an equation of the above form with a; in R. For any domain L
containing R, by the integral closure of R in L we mean the totality of all elements of L which are
integral over R; the said integral closure is seen to be a domain, i.e., sums and products of integrally
dependent elements are themselves integrally dependent. By the normalization of R we mean the
integral closure R* of R in its quotient field. R is said to be normal if R* = R; (Gauss’ theorem says
that the ring of ordinary integers is normal). An element r of R conducts R * into R means rr*isin R
for every r*in R*,i.e., R serves as a common denominator for elements of R *; the conductor of R, to
be denoted by Cond(R) is the set of all such r. Alternatively, Cond(R) is the largest ideal in R which
remains an ideal in R*. Clearly: R is normal iff Cond(R) = R, iff Cond(R) = R*. So, as two ways of
estimating how far R is from being normal, we introduce the R-length of (the factor module)
R/Cond(R) and the R-length of (the factor module) R*/Cond(R); these lengths are nonnegative
integers (or ®) and the vanishing of either of them is a necessary and sufficient condition for R to be
normal; the definition of these lengths is thus:

R-length of R/Cond(R)=the largest length p of sequences of
' R-modules Cond(R)=I,CL,C---CI,=R

and

R-length of R*/Cond(R) = the largest length g of sequences of
R-modules Cond(R)=L, CLLC--- CI,=R*

where I,_; CI; means I, is contained in but differs from I,

In addition to the above number-theoretic motivation for the concept of integral dependence, in
§23 we have already hinted at the following function-theoretic and geometric motivation. Namely,
consider an irreducible plane curve

C: f(X, Y) = u(X)Y" + un(X)Y" "+ -+ + un(X) =0,

where the u; (X) are polynomials with us(X) # 0. Let x and y be elements such that x is a variable and
f(x,y) =0. Then y is integral over x, i.e., over the ring of polynomials in x, iff uo(X) is a constant. So,
function-theoretically: y is integral over x iff “no value of y goes to infinity whenever x is finite.”
Geometrically: y is integral over x iff C has no asymptotes parallel to the Y-axis.

30. Dedekind. Co-inventor (with Kronecker) of ideal theory, Dedekind (1882, [25]) unified
algebraic number theory and algebraic curve theory. To give a small sample of his work: Let
C: f(X, Y)=0 be an irreducible plane curve and let x and y be such that x is a variable and
f(x,y)=0. For a point P of C let R(P) denote the local ring of P on C; in other words, R(P) is the
set of all rational functions on C (i.e., rational functions r(x, y)) which do not have a pole at P. [If
P =(a, b) is at finite distance, i.e., if a and b are both finite, then, more explicitly, R (P) is the set of
those rational functions which can be expressed in the form v(x,y)/w(x,y) where v(X,Y) and
w(X, Y) are polynomials with w(a, b) #0.] Let R*(P) denote the normalization of R(P). First we
take note of

DepexiND's LittLE THEOREM: P is a simple point of C iff R(P) is normal.

So now, as two ways of measuring how singular C is at P, in the sense of college algebra, we define
§) 8(P)caig = R(P)-length of R(P)/cond(R(P))
and
™) 8*(P)caig = R(P)-length of R*(P)/cond(R(P)).
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Then, when P is a singular point of C, with §(P) as in §13, we can state
DEDEKIND'S CONDUCTOR THEOREM. &*(P)caig = 28(P).

In other words, upon letting N and g be the degree and genus of C, formula (gs) of §13 acquires
the more precise version

(86) g=12)(N=1)(N=2)= (1/2)Z 5*(P)eass
where the sum is over all points P of C.

31. Macaulay. The pregnant work (1916, [46]) of this grand master of high-school algebra has
inspired much research in ideal theory. For instance, with notation as in §30, Macaulay’s profound
analysis of Noether’s Fundamental Theorem led another dozen authors, from Grébner (1934, [27]) to
Bass (1963, [12]), to give various proofs of

Noether’s Fnd Th in new guise: 8*(P)cag = 26 (P)caig
which now converts (ge) into
(g7) g=(12)(N-1)(N-2)—Z 8(P)cag

Seeing how this makes two dozen proofs of Noether’s Fundamental Theorem, I also got inspired to
make the 25th variation which I outlined at the 1973 Calcutta Conference of the Indian Math. Soc. and
which will appear in its Proceedings.

32. Krull. College algebraist par excellence. Each of Krull’s papers, though ring-theoretic in
nature, does valuable service to algebraic geometry. For example, he gave us (1938, [43]) local rings
and their completions; briefly, this formalizes the process by which we “‘expand a given polynomial as
a power series around given values of the variables.”

33. Cohen and Chevalley. Cohen (1946, [23]) and Chevalley (1943, [19]) furthered the theory of
local rings. In a profoundly beautiful paper (1945, [20]) Chevalley, taking the last formula of §21 as his
starting point, developed an intersection theory for algebraic and algebroid varieties.

34. Zariski. Revolutionized algebraic geometry by harnessing algebta to its service. Since normal
varieties have no singularities of codimension 1, it might be thought that Zariski (1939, [75])
introduced the normalization process to help out with resolution. The amusing thing is that while
normalization has turned out to be quite useful in many aspects of algebraic geometry, for resolution
perhaps it was actually a hindrance.

35. Nagata. (1962, [51]). A fitting successor to Krull.

CHAPTER V: UNIVERSITY ALGEBRA

36. Abstraction. The polynomials of high-school algebra are collected into a ring of college
algebra. The rings of college algebra are collected into a category of university algebra, and then the
categories are collected into a category of categories, and then..., and then...

37. Proportion and naturality. Our forefathers developed numerous techniques. Shall we pick up
just a few of them, such as Hilbert’s syzygy, blow them up out of all proportion, and forget all the
remaining ones? When shall we attack those problems which are not amenable to the picked
techniques?

What happened to Hilbert’s man in the street? Is a theorem natural if it’s statement requires over
five hundred pages? Is a theorem natural if its statement is not readily comprehensible to Kummer?
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38. Line of demarcation. That was the book of Cartan-Eilenberg (1956, [17]). Then came
Grothendieck’s Elements (1960 ..., [28]). Then Mumford’s Invariant Theorem (1965, [50]). Then....

CHAPTERVI: MORE GEOMETRY

39. Infinitely near singularities. Noether’s analysis of singularities of plane curves in terms of
quadratic transformations, i.e., substitutions of the form

1) X=X"and Y=X"Y'

alluded to in §13, goes something like this:

The reverse substitution is X' = X and Y’ = Y/X and hence, as X and Y both approach zero, Y’
takes all possible values. In other words, (1) explodes the point P: X = Y = 0 into the (projective) line
E: X'=0; moreover, the points of E corresponds to the tangent directions at P. We visualize this by
thinking of points of E as the points in the first neighbourhood of P. In turn, any point Q of E can be
exploded into a line E(Q); we think of the points on the lines E(Q), as Q varies on E, as the points in
the second neighbourhood of P. And so on. Ultimately, we visualize the points in the successive
neighbourhoods of P as the points infinitely near P. By analogy with optics, we may think of P as the
source of a wave with wavefront E, every point Q of E as the source of a secondary wavefront E(Q),
and so on, thus getting a Huygens diagram: (see Fig. 4).

FiG. 4

Given a d-fold point P of a plane curve C we choose our coordinates to bring P to the origin and
then apply (1). If now C: f(X,Y)=0, then the substitution (1) transforms C into the curve
C" f'(X', Y')=0 given by

X, X'Y)=X"“f(X,Y).
C' will meet E in the points P’,- - -, P™ which correspond to the tangents to C at P. If P’ is a d;-fold
point of C', then we shall have d; + - - - + dn. =d. We say that P',---, P™ are the points of C in the
first neighbourhood of P, and the multiplicity of C at P; is di. Now iterate this procedure. The points of
C infinitely near P can be diagrammed by the tree of C at P: (see Fig. 5).

At every fork-point we hang as many fruits as the multiplicity of C at that point which will then be
= the number of prongs at that point. It follows that every fork-point higher than a certain level will
be unforked. So, although all the shoots of the tree will reach the sky, the number of shoots will
eventually stabilize, i.e., the tree is truly infinite vertically but finite horizontally; the stabilized
number of shoots may be called the geometric number of branches of C at P:

*) B(P)geom = stabilized number of shoots.

The desingularization theorem says that at every fork-point higher than a certain level, there hangs
exactly one fruit; in other words, C has only a finite number of singularities infinitely near P.
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pu second neighbourhood

P™ first neighbourhood

FiG. 5

Following the geometric literature, and only in this Chapter, to distinguish points in the usual sense
from infinitely near points we may call the former “distinct” (another suggestive term would be
“physically present’). Thus, since C has only finitely many distinct singularities, it follows that in toto
C has only a finite number of singular points, distinct as well as infinitely near.

40. Adjoint. In most geometric writings on algebraic geometry the use of “adjoints” is pervasive.
Here are a few random hints on this concept which might be helpful to a prospective reader of the
geometric writings. Firstly, an adjoint to a plane curve C is a plane curve C* which passes through all
the singularities of C; secondly, we want this “counting properly.” More precisely, if (Q; );=1.2.. are all
the singularities of C, distinct as well as infinitely near, then C* is adjoint to C means

(multiplicity of C* at Q;)= (multiplicity of C at Q;)—1 for all j.

Alternatively, if the above condition is satisfied at a distinct singularity P of C and at every singularity
Q of C infinitely near P, then we say that C* is adjoint to C at P; and now C* is adjoint to C means
C* is adjoint to C at every distinct singularity of C.

This brings us to

Aphorism 1. Adjoint is to geometry as derivative is to high-school algebra.

Commentary. By the Supplement of the Fundamental Principle, derivative drops the multiplicity
of a root (at most) by one.

More commentary. But this refers to a one-variable polynomial, whereas C is given by a
two-variable polynomial: f(X, Y)=0. So which derivative to take? Answer: The derivative in a
varying direction. But that is too hard. So we choose say fy. But now we get something extraneous
because we are disregarding the additional condition fx =0 for singularities. So:

Aphorism 2. Adjoint is to geometry as derivative minus “‘something” is to college algebra.

41. Bezout and Noether. In terms of infinitely near points, Bezout’s Theorem and Noether’s
Fundamental Theorem can be refined thus: Let Cy: F =0 and Dys: @ = 0 be plane curves of degree N
and M without common components. Let (Q;);-1.... be all the common points, distinct as well as
infinitely near, of C and D. Let s; and r; be the multiplicities of C and D at Q. Then:

Bezout’s Theorem Refined. Z;rs; = MN. Or, alternatively,
2i(C D; P)geom = MN,

where the sum is over all distinct common points P of C and D, and where the geometric intersection
multiplicity of C and D at P is defined by the equation

* i(C,D; P)yeom =2 1;5;
where =° is the sum over those j for which either Q; = P or Q; is infinitely near P.

NoETHER'S FUNDAMENTAL THEOREM REFINED. A plane curve H =0 can be expressed in the form
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H = AF + B®, with plane curves A =0 and B =0 having multiplicities at least r; —1 and 5; — 1 at Q;
for all j, if and only if H has multiplicity at least r; +s; — 1 at Q; for all j.

Warning. This does not make B adjoint to F. We can only say something like “B is adjoint to F
on @, i.e., as far as common points of F with ® are concerned.” Similarly for A and ®.

42. Genus formula refined. Let us now describe the study of special cases which we spoke of in §13
and which led the geometers to the formula

(85) g={12)(N-1)(N-2)-25(P)

for the genus g of an irreducible plane curve Cy: f(X, Y) =0 of degree N, where the sum is over all
distinct singularities P of C and where &(P) is a certain positive integer which says that P accounts
for 8(P) ordinary double points.”

Q

P 0/2 0

FiGc. 6

(1) (N =2). The circle C;: X*+ Y?=1 has the usual parametrization: X =cos 6 and Y =sin 6.
The familiar substitution tan 8/2 = ¢ converts it into the rational parametrization: X = (1 - ¢?)/(1 + ¢*)
and Y =2t/(1+ t?). See Fig. 6. Geometrically speaking, fix a point P on the circle, say P = (- 1,0).
Let L. be the line through P of variable slope ¢ Then

(1= 2
Q‘ B <1+12’ l+t2>
is the other point of intersection of L, with the circle.
This explains why (rational functions of) the trigonometric functions can be integrated.

Q

Fic. 7 Fic. 8

(2) (N =3). Fix a point P on C;. If P is a double point of Cs, then L, meets C; in exactly one
more point Q,: (see Fig. 7), and hence the coordinates of Q, are rational functions of ¢ If P was a
simple point of C; then L, would meet C; in two more points: (see Fig. 8), and this “indicates” why
elliptic integrals cannot be integrated. If C; has two double points P; and P, then the line P, P, would
meet C; in at'least 2+2 >3 points contradicting Bezout.

(3) (N =4). Suppose C, has three double points P,, P, Ps. Fix a simple point P, of C,. Now a
sonic through P, P,, Ps, P, meets C, in exactly one more point because 2-4—(2+2+2+1)=1.
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Since 5 points determine a conic, we get a one-to-one correspondence between conics through Py, P,,
P,, P, and points of C.; this gives a rational parametrization of C.. If C, had another double point Ps
then the conic through Py, - - -, Ps would meet C, in at least 2+2 + 2+ 1+2 >2 - 4 points contradicting
Bezout.

(4) In this manner, by passing curves of degree N — 2 through the double (and some simple) points
of Cy, we see that

number of double points of Cy = (1/2) (N — 1) (N - 2),

and that if equality holds then Cy is rational, i.e., Cy has a rational parametrization, i.e., the points of
Cw can be put in an almost one-to-one (algebraic) correspondence with the points of a line.

(5) (N>1). If Cy has a d-fold point P and an e-fold point Q, then the line PQ meets Cy in at
least d + e points and hence d + ¢ = N by Bezout. It follows that the multiplicity of any point of Cy is
=N-1, and if Cyv does have an (N — 1)-fold point then it has no other singularity.

(6) In view of (4) and (5) we surmise that an (N —1)-fold point should be counted as
(1/2) (N —1)(N —2) double points. From this, and taking infinitely near points into account, we
surmise that: If P = P, is a distinct singular point of Cy, if (P;);-2s,.. are all the singularities of Cy
infinitely near P, and if d; is the multiplicity of Cy at P, for j =1,2,---, then upon defining

*) 8(P)geom = (1/2) 2 dj(d; — 1)
we have
8(P) = 8(P)geom
(7) In view of (4) and (6) it appears (in effect, by considering adjoints to C of degree N —2) that
summing over all the distinct singularities P of Cy we have
2 8(P)geom = (1/2)(N-1)(N - 2)

with equality if and only if Cy is rational; i.e., in words: Cy has at most (1/2) (N — 1) (N —2) double
points counted properly, and the maximum is reached iff Cy is rational.

(8) Now the genus g of f is also a nonnegative integer whose vanishing is an iff condition for the
Riemann surface of f to be without handles, So, in view of (7), we surmise that:

() g8 =(12)(N = 1)(N =2) = Z 8(P)geom,

where the sum is over all the distinct singularities P of C. Or, equivalently, if (Q;);-12.... are the
singular points of Cy, distinct as well as infinitely near, and if 5; is the multiplicity of Cy at Qj, then

() g={12)(N-1)(N-2)-(1/2) Z 5;(8 = 1).

CHAPTER VII: MoRrRe HIGH-SCHOOL ALGEBRA

43, Discriminant locus. Let
C:f(X,Y)=u(X)Y" + u(X)Y" '+ -+ + u,(X)=0

be a plane curve where the u;(X) are polynomials with uo(X)# 0. Let x and y be such that x is a
variable and f(x,y)=0.

By the discriminant locus (for the projection of C on the X-axis by lines parallel to the Y-axis) we
mean the totality of the roots of Discy(f), each of which we call a discriminant point.

First let us remark that the equation f(X, Y)=0 is said to be ‘“‘separable” if Discy(f) is not
identically zero, i.e., if there are only a finite number of discriminant points; we shall usually suppose
this to be the case; at any rate, by the Supplemented Fundamental Principle and the Resultant
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Theorem one can see that this is automatically so when f(X, Y) is free from multiple factors and the
characteristic is zero.

Next let us recall that the discriminant points turn out to be precisely those (finite) values of x for
which there are less than n finite values of y, either because one of the finite values of y has
multiplicity > 1, or because one of the values of y has gone to infinity; the latter happens exactly when
the given value of x is a root of uo(X); in a sense, the roots of uy(X) may be regarded as accidental
discriminant points.

Disregarding the roots of us(X) and restricting to finite values of x and y, what causes the
discriminant locus?

Aphorism 3. Discriminant locus equals branch locus plus projection of the singular locus.

Aphorism 4. Derivative locus equals “Different locus” plus singular locus.

Note. Count everything properly. Then these Aphorisms provide a guideline for estimating
singularities.

Commentary. On the one hand, a point P = (g, b) is a singularity of C iff f(a, b) = fv(a, b)=
fx(a, b) = 0; on the other hand, since Discy (f) = Resy (f, fv), by the Resultant Theorem we see that a
value a of x is a discriminant point iff for some b we have f(a, b) = fv(a, b) = 0. So in particular, the
projection of the singular locus is always part of the discriminant locus. Now when P = (g, b) is a
simple point of C then, fv(a, b) = 0 iff the tangent to C at P is parallel to the Y-axis; a typical case of
this is the parabola (Y — b)’*— (X — a) = 0; generalizing this we call P a Different point if

fX+a,Y+b)=fo(X, Y)(X Y),
where fo(X, Y) is a polynomial in Y with coefficients power series in X, and where
fl(X, Y) = Ye(1)+ U]l(X) Ye(l)_l + tee + 012(1)(X)

is an irreducible polynomial in Y with e(1) > 1 and with power series v,;(X) such that v,;(0) = 0 for all
j; such an irreducible factor f;, with e(1)= 1, is called a branch of C centered at P. A value a of x is
called a branch point if it is the projection of a Different point.

Clearly f(a,b)=fv(a,b)=0 for every Different point P = (a, b). Therefore (1) for a point
P =(a,b) we have that: f(a, b)=fyv(a,b)=0 iff P is either a Different point or a singular point.
Hence, by the Resultant Theorem, (2) for a value a of x we have that: a is a discriminant point iff it is

Y
A

FiG. 9
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either a branch point or a point in the projection of the singular locus. By the Fundamental Principle

one can also see that: the number of branches of C lying above any given value a of x is always = n;

this number is < n iff a is a branch point; (recall that we are disregarding the roots of ue(X)).
ExawmrLE: Consider a point P, = (a;, bi). See Fig. 9.

(P1) Simple point with vertical tangent.

fX+a, Y+b)=X+ D AuX'Y.
i+j>1
P, is a simple point and a Different point. Number of branches centered at P, is 1; a; is a branch point
but need not be in the projection of the singular locus. Near P;, C could look like the origin of the
parabola Y?— X = 0; (the two roots y = + x' have the same value at x = 0 but they are not power
series in x; “in the complex case, analytic continuation around x =0 permutes them’).

(P,) Cusp.
f(X+a, Y+b)=f (X, Y)(Y*— X?) with f'(0,0) #0.

P, is a singular point and a Different point. Number of branches centered at P, is 1; a is a branch
point and is in the projection of the singular locus. Near P,, C looks like the origin of Y?— X*=0;
(the two roots y = = x* have the same value at x = 0 but they are not power series in x; “in the
complex case, analytic continuation around x = 0 permutes them”).

(Ps) Node without vertical tangent.

fX+as, Y+b)= Y- X2+ > A, XYY
i+j>2
P, is a singular point but not a Different point. Number of branches centered at P; is 2; a; need not be
a branch point but is in the projection of the singular locus. Near P;, C looks like the origin of
Y?— X?(1+ X) = 0; (the two roots y = + x(1+ x)"* have the same value at x = 0 and they are power
series in x (characteristic # 2); “in the complex case, analytic continuation around x =0 does not
permute them”).

(Ps) Node with a vertical tangent.

f(X+as, Y+b)=XY+ D AayX'Yl,

i+j>2

P, is a singular point and Different point; (composite of type (P.) and (Ps)). Number of branches
centered at P, is 2; a, is a branch point and is in the projection of the singular locus. Near P,, C could
look like the origin of Y>+ X>+ XY =0.

(Ps) Simple point with horizontal tangent.

fX+as, Y+bs)=Y+ > Az X'Y'

i+j>1

Ps is a simple point but not a Different point; as need not be a discriminant point.

Notke. Let us stress that the singular locus is always where it is, but the ‘“Different locus” (i.e., the
totality of Different points) and the “derivative locus f = fy = 0" vary according to the direction of
projection.

For instance, if in the above example we project on the Y-axis by lines parallel to the X-axis then:
P, P;, P, are still singularities; again P,, P, are Different points while P; is not; P; is no longer a
Different point; Ps is a new Different point;...
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44. Characteristic pairs. To continue with the Newton-Puiseux expansion, suppose that we are in
characteristic zero, and consider

@) A Y)= Y+ 0 (X)7 o 4 0(X),

where the v;(X) are power series with v;(0)=0 for all i.
Then, assuming f* to be irreducible, by Newton’s Theorem

® frs ) =T Y-y DL,

where p is a primitive eth root of 1 and
) y(T)=3 uT*

is a power series. Following Smith (1873, [67]) and Halphen (1884, [29]) we shall now pick out a finite
number of significant exponents from the above expansion which give rise to a finite number of pairs
of integers called the characteristic pairs of f*. In terms of the characteristic pairs one can write down
explicit formulas for the order of a resultant (and hence for intersection multiplicity) and for the order
of a discriminant (and hence for the “measure of a singularity”). The exponents are picked thus:
m, = ordy(T) = smallest k such that v # 0.
m, = smallest k such that » # 0 and GCD(e, mi, m;) < GCD(e, m;).

my, = smallest k such that » #0 and 1=GCD(e, my," -+, my) < GCD(e, my, -+, my_1).
Here GCD stands for the greatest common divisor. We also put:

q=m and di=e

q>= mz;—my dz = GCD(e, ml)

q. =m—mi di = GCD(e9 m19 "ty mi-—l)
Gn = My — Mp—1 dh = GCD(e, My, m;._l)

dh+1 = GCD(e, My, m;.)= 1.

The pairs of integers (g, d;)i-1,...» are called the characteristic pairs of f*.

As an illustration of the significance of the characteristic pairs let us write down a formula for the
order of a discriminant. So let Discy(f*) be the power series in X obtained by eliminating Y between
f*(X, Y) and its Y-derivative f$(X, Y), i.e.,

Discy(f*) = Y-discriminant of f* = Resy(f*, f¥).
Then upon defining

o) = (@ - Dd- 1D+ 3, 4(d-1)
one has the formula
4) [ordx Discy(f*)] — e + 1= ord+f{T*, y(T))— ordT%T%c =a(f*)
which one obtains by direct calculation; (d stands for derivative). [To obtain the second equation,

substitute (3) in (2) and use the product formula for derivative; to prove the first equation, use the
formula
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©) Resy ([T (v=3. [T(v-2)) =TT 0u- )

let us also record the following consequence of (5)

©) Discy(fifs-+ fs) = [ I Discy (£) [] Resy (£, £),
i i#j

where the f; are (monic) polynomials in Y]
As another illustration of the significance of the characteristic pairs we shall write a formula for the
intersection multiplicity, i.e., for the order of a resultant. So consider another polynomial

P*XY)=Y +wi(X)Y* '+ -+ w (X)),

where the wi(X) are power series with w;(0)=0 for all i.
Assuming ¢* to be irreducible, let

@) $*(TY) =1 [(Y - 2(o'T)]

i
be the factorization of ¢* where o is a primitive th root of 1, and
3) z2(T)=2 v T*

is a power series. Let (m}, g, d')i=1,...» be the numbers which correspond to (m;, q;, d; )i-1,... » When we
replace f* by ¢*. Let § measure how close a root of f* comes to being a root of ¢*, i.e., let

6 = max ordx[y(p'X"*)—z(¢'X"")]

1=j=se

and now let p = largest integer such that m,/d, = m//d} = 6. Then upon defining
a(f*,6")= (0-28) didy.i+ 3, qd
i=1
(and making a direct calculation using (2), (3), (5), (2'), (3')) one gets
™ ordx Resy (f*, %) = a(f*, ¢*).

Note that the above expression for a(f*, ¢*) is really symmetric because one can see that

(0—%11”)d{d,,+1= (0—'—;%) did;. and gdi=qid; for 1=si=p.

Now drop the assumption of f* being irreducible, and let
=TT 7)
be a factorization of f* into irreducible polynomials
(X Y)=Y®+ z o (X) Y7 with power series vi (X).

Let y,(X"*®)) be a root of f, i.e., let y,(T) be a power series with

f(T*®, yi(T)) =0.
Then upon defining

0 a(f*)=Z a(ﬁ)’f% a(f, ;)
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[by using (4), (5), (6), (7)] one can see that

®) { ford Diser (] =e + = i [Ordrf:(w, y(T)) = ordr%j;]

= a(f*),

where d stands for derivative.
Finally, also drop the assumption of ¢* being irreducible, and let

6*(X, Y)=Q (X, Y)

be a factorization of ¢ * into (monic) irreducible polynomials in Y with coefficients power series in X.
Then upon defining

a(f*’ ¢*) = .2, a ﬁ" ¢I)
[by (5) and (7)] one can see that

ordx Resy(f*, ¢*) = a(f*, ¢*).

Therefore, with notation as in the end of §21, upon defining the intersection multiplicity of the
plane curves C and D at the point P, in the sense of high-school algebra, by the formula

() i(C,D; Plag = a(f*, ¢*)
we get
) i(CD; Plag=i(C,D; P).

45, High-school genus formula. Let Cy: F(X, Y, Z) =0 be an irreducible plane curve of degree N.
Again assume that we are in characteristic zero. Given any point P of Cx we choose coordinates so
that P is given by X =Y =0 and Z = 1. By Weierstrass’ Preparation Theorem (or by Newton’s
Theorem) we can write

F(X, Y, 1)=f(X, Y)I*(X, Y)
where f'(X, Y) is a polynomial in Y with coefficients power series in X such that f'(0,0) # 0, and
where
X Y)=Y +u(X)Y '+ - +0.(X)

with positive integer e and power series v;(X) such that v;(0)=0 for all i. As a measure of how
singular C is at P in the sense of high-school algebra, (following the dictate of Aphorism 4 of §43 and
the above formula (8)), we define

*) 8*(P)nag = a(f*)

with a(f*) as in the above formula ('); (we note that then §*(P)nay is a nonnegative integer which is
zero iff P is in a simple point of C). By using the chain-rule for differentiation one shows that §*(P)hai
is independent of the coordinate system. Taking formula (g.) of §3 as the definition of the genus g of
G, in §47 we shall outline the proof of the following formula:

(810) g=Q1/2)(N-1)(N-2)~ (1/2)Z 6*(P)nai
where the sum is over all points P of C.

46. Branches. Let C: F(X,Y,Z)=0 be an irreducible plane curve of degree N; so F is an
irreducible homogeneous polynomial of degree N. Let f(X, Y)= F(X, Y, 1). In other words, “at finite
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distance” C is given by
fXY)=uX)Y"+u(X)Y" "+ -+ +u,(X)=0,

where the u,(X) are polynomials with us(X) # 0; note that n = N. Let x and y be such that x is a
variable and f(x,y)=0.

We shall now introduce the concept of branches of C centered at a point P of C; the totality of
these as P varies over C are called the branches of C.

Let P = (a, b) be a point of C at finite distance. By the Weierstrass Preparation Theorem we can

write
1) f(X+a, Y+b)=f(X Y)*(XY),

where f'(X, Y) is a polynomial in Y with coefficients power series in X such that f'(0,0)# 0, and
where

) XX, Y)= Y‘+vl(X)Y“1+ c 4 0(X)

with positive integer e and power series v;(X) such that v;(0)=0 for all i. Let
=111 )
be a factorization of f* into irreducible polynomials
fi(X,Y)=Y O+ ‘20‘,‘ (X)Y*™* with power series vy (X).

Now we can take power series x;(T) and y:(T) such that
ordrxi(T)=e(i), ordry:(T)>0, and fi(x(T),y:(T))=0.

(In case of characteristic zero we can do all this by Newton’s Theorem, and then we may choose x;(T)
to be T°.) We define B to be the number of branches of C centered at P in the sense of high-school
algebra:

(3% B(P)hatg = B.

With each of the “algebroid curves” f;(X, Y) = 0 we associate a ‘“branch” V; of C centered at P. For
every rational function r(x, y) we define the value r(V;) of r(x, y) at V,, the order V(r(x, y)) of r(x,y)
at V;, and the degree degp(r(x,y)) of the divisor of r(x,y) at P, thus:

Vi(r(x,y))=ordrr(a + x(T), b + y:(T))
dege (1Y) = 3, Vi(r(x,y)

coefficient of T° in r(a + x;(T), b + y:(T)) if Vi(r(x,y))=0

and

r(Vi)= {
© if Vi(r(x,y))<0.

For any differential r(x, y) dx we define its order V;(r(x,y)dx) at V; and the degree degp(r(x,y)dx)
of its divisor at P, thus:

Vi(r(x,y)dx)= ordr(r(a +x(T), b+ y.-(T))%P)

and

degp(r(x,y)dx)= Z Vi(r(x, y)dx).
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We observe that by using formula (5) of §44 it can be shown that if D: ¢(X, Y) = 01is any plane curve
without common components with C, then

“) i(G,D; P)=degr(6(x.y))-
As a measure of how singular C is at P, (following the dictate of Aphorism 4 of §43), we define
(5%) 8*(P) = degr(fr(x, y)) — degr(dx).

(One can see that §*(P) is a nonnegative integer which is zero iff P is a simple point of C.) In view of
formula (8) of §44 it can be shown that

6) 8*(P)haig= 8*(P) in case of characteristic zero.

It can be seen that the various concepts introduced above are independent of the particular
parametrization (x;(T), y:(T)).

When P is a point of C at infinity, one introduces all the above concepts in a similar fashion after
making a suitable change of coordinates. At any rate, let us note that if P = (q, b) is any point of C at
finite distance then the branches of C centered at P are exactly those branches V of C for which
x(V)=a and y(V) = b; moreover, for any branch V of C we have: x(V) # = # y(V) if the center of
V is a point of C at finite distance.

For any (nonzero) rational function s(x, y) we define the degree of its divisor by the equation

deg(s(x, y))= = V(s(x, y)) with sum over all branches V of C
and we note that formula (1) of §3 is to be interpreted as the formula
™ deg(s(x,y))=0

a proof of which can be based on the above formula (4) and Bezout’s Theorem as stated in §21.
For any (nonzero) differential r(x, y)dx we define the degree of its divisor by the equation

deg(r(x,y)dx) =2 V(r(x, y)dx) with sum over all branches V of C
and note that the formula (g2) of §3 for the genus g of C is to be interpreted as saying
(82)* 2g —2=deg(r(x, y) dx).

Let us regard the above equation as the definition of g.
For any branch V of C, the branching degree or the differential exponent e(V) of V over x is
defined by

Vix-x(V)) if x(V)#»
(8) e(V)=
V™) if x(V)=oo.
(In the above situation e(i) = e(V;).) By the Fundamental Principle it can be shown that

©) {x%;a e(V)=n for every value a of x, finite or infinite;

the sum being over all branches V of C for which x(V)=a.

As a measure of how different C is from the X-axis, at a branch V of C, we define the order of the
Different of C over x at V by the equation

V(dx) if x(V)#ew

(10) V(Difi(C x)) = {
V(dx™) if x(V)=o.



436 S. S. ABHYANKAR [June-July

Again with the same motivation, for any point P of C, we define the degree of the Different of C over x
at P by the equation

degp Diff(C, x) = 2 V(Diff(C, x)) with sum over all branches V of C centered at P,
and we note then in view of (5*) we have
(11%) 8*(P) = degp(fv(x, y))— dege Diff(C, x) if P is at finite distance.

Finally, to measure how different C is from the X-axis, globally, we define the degree of the
Different of C over x by the equation

12) deg Diff(C, x) = £ V(Diff(C, x)) with sum over all branches V of C.
Because of the equation dx™' = — x~2dx by definitions (8), (10) and (12) we see that

deg Diff(C, x) = deg(dx)+2 D>, e(V)
x(V)=ow

and hence by (g%) ahd (9) we get

(gu) 2-2g =2n —deg Diff(C, x).

In view of definitions (8) and (10), for any branch V of C we have

(13)  V(Dift(C, x))= e(V) -1 with equality iff e(V) is not divisible by the characteristic,

and hence by (g.,) we get

(80) { 2-2g=2n-2[e(V)—1] in case of characteristic zero,
12

with sum over all branches V of C.

Formulas (g:) and (g2) are variously ascribed to Riemann, Zeuthen, or Hurwitz.

A value a of x, finite or infinite, is called a branch point (for C over x, or for the projection of C on
the X-axis by lines parallel to the Y-axis) if e(V)> 1 for some branch V of C with x(V)= a. Upon
letting

(14) 1 (a) = number of branches V of C with x(V)=a
by (9) we have

(15) w@=n- 3 [e(V)-1]
and hence
(16) a is a branch point iff u(a)<n.

To elaborate (9) in greater detail: Given any finite value a of x, let by, - - -, b, be the finite roots of
f(a, Y)=0 and let p; be the multiplicity of the root b;. Also let p, be the largest integers such that
u;(a)=0 whenever 0 =i < p,, and let b, = . Then

potpit - tp,=n

and

e(V)=p for0=sj=q.
x(V)=a,y(V)=b,

In still greater detail, for j=1,---,¢, let
fX+a,Y+b)=f(X Y)fi(X, Y) with f(X, Y)= Y9+
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be as in (1) and (2) above. Then ¢; = p; for 1=j=q and

fxX+a V)= 11X Y -b),
where
"X Y)=ug(X+a)Yro+ ---

factors into the branches V of C for which x(V)=a and y(V)=o.
Recalling that the roots of Discy(f) constitute the discriminant locus, we conclude that the said
locus consists of those finite values a of x for which, in the above notation, g < n.

47. Another genus formula. Again let Cy: F(X, Y, Z) =0 be an irreducible plane curve of degree
N. We can choose coordinates so that the point (0,1,0) is not on C, i.e., upon letting f(X, Y)=
F(X, Y,1) we may suppose
C: (X, Y)= YN+ 0,(X)YV '+ -+ +0n(X) =0.
Let x and y be such that x is a variable and f(x, y) = 0. By definition (5*) of §46 we have
@) > [Vlfr(xy)- Vidn)] = X 8*(P),
x(V)#oo P#w

where the right hand side indicates sum over all points P of C at finite distance. Now (x ', yx ") serve
as coordinates for the points of C at infinity, and the relation between them is {(x ", yx ') = 0 where

@ (X Y)=X"f(X7!, YXT).

By definition (5*) of §46 we also get

®) O VG )= Va) = 3 8P,

where the right hand side indicates sum over all points P of C at infinity. Now
@ dx™'= —x7%dx

and by (2) we also have

©) (7 yx ) =2 e (x, y).

Substituting (4) and (5) in (3), and then adding (1) and (3) we get

© deg(fy(x,y))~deg(dx)+(N=3) > V(x™)=3 8*(P),

where the last sum is over all points P of C. Now
deg(fv(x,y))=0 by (7) of §46

> V(x)=N by (8)and (9) of §46,

*Dew

and hence by (6) we get

@) deg(dx)= N(N-3)—-Z6*(P).

By the definition (g.)* of §46, the genus g of C is given by
deg(dx)=2g -2

and hence by (7) we have
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(81) g =(1/2)(N-1)(N-2)-(1/2) S 6*(P),

where the sum is over all points P of C. In view of formula (6) of §46, this also yields formula (g,o) of
§44.

CuAPTER VIII: MoRE COLLEGE ALGEBRA

48. Lagrange Interpolation. From high-school algebra we have the following interpolation
formula due to Lagrange (1760). Let

f()=T1(Y-y) with y,,---,y. alldistinct.
i=1

Then for any polynomial n(Y) of degree <n we have

n 3 Y
=S W)
1= 2 Fm (Y-
because both sides are polynomials of degree < n and their values coincide for each of the n values

Yi,°* 5 ¥a Of Y.

49. Different and Conductor. Let C: f(X, Y)=0 be an irreducible plane curve. Let x and y be
elements such that x is a variable and f(x, y) = 0. Recall that for any point P of C, by R(P) we denote
the local ring of P on C and by R*(P) we denote the normalization of R(P). So far we have
introduced various integers 8*(P), 8 *(P)ca, - - - to measure how much C is singular at P; now we
proceed to compare them. To begin with:

Aphorism 5. Derivative equals Different times conductor.

Precise Meaning. In view of the characterization of §*(P) given in formula (11*) of §46 and the
definition of §*(P).a given in formula (*) of §30,-we interpret this Aphorism to mean that at every
point P of C we have

3*(P) = 8*(P)eu.

CoMMENTARY. Since both sides measure how much C is singular at P, one may guess them to be
equal. Dedekind showed this to be the case. Namely, by Lagrange Interpolation and with the
intervention of the concept of “‘complementary module” invented by him, Dedekind proved that for P
at finite distance one has

degr(fv(x, y)) = dege Diff(C, x) + R(P)-length of R*(P)/Cond(R(P)).

Aphorism 6. Adjoint is to geometry as conductor is to college algebra.

Precise Meaning. Let £(X, Y) be any polynomial and let P be any point of C at finite distance.
Then the plang curve ¢(X, Y)=0 is adjoint to C at P iff £(x,y) belongs to Cond(R(P)).

CommenTaRry. This definitive form of Aphorism 2 of §40 is indicated by Aphorism 5. For another
suggestive reasoning, let us consider, at a point P of C at finite distance, “Noether’s Fnd Th Refined”
(§41) and the “Warning” following it. We regard F(X, Y, Z) as obtained by homogenizing f(X, Y).
The Refined Theorem roughly says that, when H satisfies certain conditions at P, we can write

*) H(x,y,1)=B(x,y,1)®(x, y,1) in R(P),

where B will then satisfy certain other conditions at P which, geometrically speaking, (and by taking
the “warning” not too seriously) say that B is adjoint to F at P; and conversely. Symbolically:
conditions on B = conditions on H/® = conditions on H — conditions on ®. At any rate, we want to
show that H/® is in R(P); since R*(P) is a “nicer” ring, a standard algebraic procedure of doing this
would be to first show that H/® is in R *(P) and then to hope that it is actually in Cond(R(P)) and
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hence in R(P); in other words, solve (*) first in R*(P) and then let the conductor bring it down to
R(P); now the conditions put on H seem to guarantee that H/® is in R *(P) and so we could carry out
this procedure if we knew that: geometrically “H/®(= B) is adjoint to F at P” corresponds
algebraically to “H/® is in Cond(R(P)).” In any case, this reasoning at least indicates that Aphorism
6 and Noether’s Fnd Th Refined are closely related, which bring us to:

More CoMMENTARY. By induction on the number of quadratic transformations needed to resolve
the singularity of C at a given point P, and by analyzing the effect of a single quadratic transformation,
in one breath one can prove (for instance see my Calcutta lecture cited in §31) the following four
things:

(1) Aphorism 6.

(2) Noether’s Fnd Th Refined (§41).

(3) Noether’s Fnd Th in new guise (831): 26(P)cag = 8 *(P)calg.
(4) With 8(P)seom as defined in (*) of §42: 26(P)geom = 6*(P)eats-

ConcrusioN. Thus at every point P of C we have the equation of concordance
8*(Phatg = 8*(P) = 8*(P)ears = 28(P)eatg = 26(P)geom

where §*(P)naz Was defined in formula (*) of §45, and the first equality was noted in formula (6) of
§46. Now let N be the degree of C. By regarding

(82)* 2g —2=deg(r(x, y) dx)

as defining the genus g of C, in §46 we deduced certain formulas (g;;) and (g:2) for g and then in §47
we deduced the formula

(813) g={1R2)(N-1)(N-2)-(1/2)26*(P)

where the sum is over all points P of C. Now the above equation of concordance converts (g3) into
the formulas

(810) g=(12)(N-1)(N=2)=(1/2)2 g*(P)nas
() g=12)(N-1)(N=2)=(1/2)Z 6*(P)eus
(87) 8 =(1/2)(N=1)(N=2)= 2 8(P)eusg

() 8 =(12)(N=1)(N=2)=Z 8(P)geom

asserted in §45, §30, §31, §42, respectively; these four formulas may also be regarded as refinements of
the heuristic formula (gs) of §13. Finally, formula (gs) of §42 was only an obvious variation of (gs).
Observe that we have dealt with the equality 8 *(P)nag = 6*(P) and hence formula (g;0) only in zero
characteristic; however, let it be remarked that, upon replacing Newton-Puiseux expansion by
Hamburger-Noether expansion, the characteristic pairs can be suitably reinterpreted so that the
equality 8*(P)nag = 6*(P) and formula (g;0) hold also in nonzero characteristic.

This completes an outline of the proof of most of the genus formulas. Needless to say that there are
numerous other arrangements of proof, which is hardly surprising: Indeed, ours is an old and
venerable subject which has been worked over by many masterminds!

50. Valuations. Let again C: f(X, Y)=0 be an irreducible plane curve, and let x and y be
elements such that x is a variable and f(x, y) = 0. By K we denote the “coefficient field”’ and we note
that we are assuming K to be algebraically closed. We put

K(x)=field of rational functions r(x)
and
K(C)= K(x,y) = function field of C, i.e., the field of all rational functions r(x,y).



440 S. S. ABHYANKAR [June-July

For any branch V of C, the “mapping” which associates V/(r) to every element r in K(C) is a
valuation of K(C), i.e.: as r ranges over K(C), V(r) ranges over all integers together with o,
V(r)=o iff r=0; and for all r and s in K(C) we have V(rs)= V(r)+ V(s) and V(r+s)=
min(V(r), V(s)).

It can be shown that in this manner we get all the valuations of K(C). In other words, there is a
one-to-one correspondence between all branches of C and all the valuations of K(C). We shall
continue to denote a branch of C and the corresponding valuation of K(C) by the same letter.

For any point P of C we define the number of branches of C centered at P, in the sense of college
algebra, by the equation

B (P)cag = number of valuations V of K(C) such that V(r)=0 for all r in R(P);

one can show that these valuations precisely correspond to the branches of C centered at P, and hence
B(P)haig = B(P)caig Where the former was defined in formula (3*) of §46; it can also be shown that

R*(P) = the set of all s in K(C) for which V(s)=0
for every valuation V of K(C) such that
V(r)z 0 for all r in R(P).

By induction on the number of quadratic transformations needed to resolve the singularity P one can
also see that B(P)cae = B(P)geom Where the latter was defined in formula (*) of §39. Thus we have the
following equation of concordance:

B(P)hals = B(P)carg = ﬁ(P)geom'

If D: ¢(X, Y)=0is any other plane curve then for any point P of C at finite distance we define
the intersection multiplicity of C and D at P, in the sense of college algebra, by the equation

i(C,D; P)eatg = 2 (V(¢(x, y))) with sum over all valuations V of K(C)
such that V(r)=0 for all r in R(P);

with suitable modification we define this also when P is a point of C at infinity. In view of formula (4)
of §46 and what we have said above, it follows that i(C, D; P) = i(C, D; P).as. Again, by induction on
the number of quadratic transformations needed to resolve the singularity P, one can also show that
i(C,D; P)eatg = i(C, D; P)geom Where the latter is as defined in formula (*) of §41. Thus we have the
following equation of concordance :

i(C,D; Puag = i(C,D; P)=i(C,D; P)easg = i(C,D; P)geom

where the first equality holds in characteristic zero and was noted in formula (9) of §44.

Let J be a field and let L be a “finite algebraic field extension of J,” i.e.: L is a field; L contains J;
and there is a positive integer n such that if z,-- -, z,. are any elements of L which are linearly
independent over J, then necessarily m =< n. For a valuation of W of L, by the ramification index of W
over J is meant the smallest positive integer e such that W(r) = e for some r € J. For a valuation U of
J by an extension of U to L is meant a valuation W of L such that: W(r)= 0 for all r in J for which
U(r)=0. A valuation U of J is said to be ramified in L if the ramification index, over J, of some
extension of U to L is >1.

It can easily be seen that the valuations of K(x) are in one-to-one correspondence with the values
of x, finite (i.e., in K) or infinite. Namely, the valuation U of K(x) and the value a of x correspond if:
U(x—a)=1lincase a# »,and U(x™") = 1if a = o; it is clear that a is a branch point iff U is ramified
in K(C). Also it is clear that for a valuation V of K(C), the ramification index of V over K(x) equals
what, in §46, we called the branching degree of the corresponding branch of C.
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51. Galois. The quadratic equation
T?’+bT+c=0

can be solved:

-b+xVbi-4c

t= 2

Similarly, equations of degree 3 and 4 were solved by radicals; i.e., by extractions of square roots, cube
roots, etc.; (in this section we are supposing characteristic to be zero). Then attention was turned to
the question whether general equations of degree 5 can be solved by radicals. Abel and Galois (1830)
independently proved this to be impossible. Galois’ proof went something like this: the general
equation of degree 5 cannot be solved by radicals because the “galois group” of the “splitting field”” of
the said equation is “‘unsolvable.” We shall now briefly explain the concepts of “galois group” and
“splitting field” which were invented by Galois.

Let J be a field. By a galois extension of J is meant a finite algebraic field extension L of J such
that: whenever a one-variable irreducible polynomial with coefficients in J has one root in L, then all
its roots are in L. For a galois extension L of J, by the galois group of L over J is meant the group of
all automorphism = of L such that 7(z)= z for every z in J; Galois showed that this group is finite
and its order (i.e., the numbers of elements in it) equals the (largest) number of elements in L which
are linearly independent over J. Finally, for a one-variable polynomial f with coefficients in J, by the
splitting field of f over J is meant the smallest field L containing J such that all the roots of f arein L;
it is easily seen that L is then a galois extension of J.

Let J be a field, let L be a galois extension of J, and let W be a valuation of L. Following Hilbert
(1897, [33]), we define the inertia group of W over J to be the subgroup of the galois group of L over J
consisting of all those automorphisms 7 such that: for every z in L with W(z)=0, we have
W(z - r(z))>0. It turns out that the order of the inertia group equals the ramification index of W
over J. It can also be shown that the inertia group is cyclic (i.e., is “generated” by a single element) if
in addition to assuming J to be of characteristic zero we also assume W(m)= 0 for every positive
integer m in J. In a sense, this theorem can be viewed as half of a college algebra proof of Newton’s
Theorem on Puiseux expansion.

CuAPTER IX: MORE FuncTioN THEORY

52. Riemann surface. Let now the coefficient field K be the field of complex numbers, and
consider the n-valued function y of x defined by

fXY)=ud(X)Y™ + uy(X)Y" '+ -+ + u, (X) =0,

where the u;(X) are polynomials with uo(X)# 0, and f is irreducible. Also consider the plane curve
C: f(X,Y)=0. As said in §4, to clarify the meaning of abelian integrals, Riemann introduced a
surface S, called the Riemann surface of f, on which y “becomes” single valued.

The field K(C) = K(x, y) now becomes the field of all (single-valued meromorphic) functions on S.
Moreover, for each point V of S, there is a function ¢ on S, near V, such that ¢ has a simple zero at V;
i.e., near V, S looks like a disc around the origin in the complex ¢-plane.

It turns out that the points of S are in a natural one-to-one correspondence with the branches of
C; so we shall identify them.

Let S, be the complex x-sphere, i.c., the complex x-plane together with «. Let us say that the
point V of S lies above the point x(V) of So. Then for any point a of So, upon letting

(*) m(a)=the number of points V of S which lie above a (i.e., for which x(V)=a),
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by (15) and (16) of §46 we have
) p@y=n- 3 le(V)-1l=n

and:
a is a branch point iff u(a)<n.

Now if a # « is a branch point then it is a discriminant point (but not conversely!); therefore, in all
there are only a finite number of branch points. Finally, for any point V of S we have that: if
x(V)= a# » then (x — a)"*" is a uniformizing parameter at V; and if x(V) = then x /" is a
uniformizing parameter at V. We summarize all this by saying that S is an n- sheeted branched covering
of So.

The original construction of S went something like this: On S, draw an open connected polygon
B, with the discriminant points, together with «, as vertices. (See Fig. 10.)

Fig. 10 FiG. 11

Slit S, along B, to obtain So; we suppose that S; is connected (i.e., does not fall into pieces) and
simply connected (i.e., any closed path on S, can be shrunk to a point). Now as x varies in Sg, the n
values of y can be sorted out into n analytic functions yi(x),-:-,y.(x); [by the “monodromy
theorem” which says that one gets the same analytic continuation along two paths which can be
“deformed” into each other]. Take n copies Si,- -+, S, of Sgand “put” y;(x) on S'. Now S is formed
by suitably gluing together Si,- - -, S, along the edges of B, - -, B, to reflect “the manner in which
yi(x), -+, ya(x) permute as we cross B,.”

Moreover: Given any point a of S,, as we make analytic continuations along a small circle around
a, (see Fig. 11), the functions yi(x), - - -, y.(x) will undergo a permutation. We write this permutation
as a product of disjoint cycles. [For example

(123456) - (1) e35)

the permutation group being “noncommutative” we write it “multiplicatively” instead of “‘addi-
tively.”] It turns out that the number of these cycles is wu(a) and there is a natural one-to-one
correspondence between them and the points Vi,---, V.. of S lying above a, so that for
i=1,---,u(a) we have

e(V;) = the length of the corresponding cycle (or, the
number of sheets of § which come together at V}).
[In the above example: u(a)=3, e(Vy)=1, e(V2)=3, e(V3)=2.]

53. Monodromy group. On S, mark a finite number of points ai, -, a. so as to include all the
branch points. Also fix a point a different from the a. As we make analytic continuations along
various closed paths beginning and ending at a, but without hitting any of the points a;, we get various
permutations of (yi(x), - - -, y.(x)); the totality of these permutations form a group which is called the
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monodromy group of f. The monodromy group is a certain subgroup of the group of all permutations
on n symbols; we note that the latter is of order n!. The assumption of f being irreducible is reflected
in the monodromy group being transitive; i.e., given any j with 1=j=n, some member of the
monodromy group will carry y,(x) to y;(x).

To obtain generators for the monodromy group, we draw a suitable system of loops Ay, -+ -, A,
beginning and ending at a, so that A; makes a small circle around a:. (See Fig. 12.)

A

«

FiG. 12

Let 7 be the permutation undergone by (y:(x), - - -, y.(x)) as we make analytic continuation along
A;. By the monodromy theorem it follows that: (1) 7,--- 7. =1 (the identity permutation) and
T1i,***, Tm generate the monodromy group.

One of Riemann’s existence theorems says that conversely: (2) if any permutations 7, -+, 7, on n
symbols are given such that 7,--- 7, =1 and the group generated by 7, - -, 7. is transitive, then
there exists f, having no branch points outside the a;, so that, for i = 1,- - -, m, the roots of f permute
according to 7 when analytically continued along A..

It can be shown that the monodromy group is, in a natural manner, isomorphic to the galois group,
over K(x), of the splitting field of f(x, Y) over K(x). This in conjunction with (1) and (2) yields the
following

Theorem about galois theory of algebraic curves. Let Uy, - - -, U,, be any valuations of K(x). Then:

(1*) Let L be any galois extension of K(x) such that no valuation of K(x), different from the U, is
ramified in L. Then for i =1, - -, m, we can pick an extension W; of U; to L and also pick a generator
7 of the splitting group of W; over K(x) such that 7, --- 7, =1 and 7, -+, 7. generate the galois
group of L over K(x). Whence, in particular, the galois group of L over K(x) is generated by m — 1
generators.

(2*) In this manner, by varying L, we can realize every finite group on m — 1 generators as the
galois group of a galois extension of K (x) in which no valuation other than Uy, - - -, U,, is ramified.

Now the statement of the above theorem is purely algebraic. However, the only available proof is
the above sketched function-theoretic and topological argument of Riemann. To obtain a purely
algebraic treatment of this theorem, is certainly one of the fundamental problems of algebraic
geometry. (For some related matter see [3], and Chapter VIII of the second edition of [80] including
the Appendices.)

In a sense, the following may be regarded as a number-theoretic analogue:

Problem about galois theory of algebraic numbers. Can any finite group be realized as the galois
group of some galois extension of the field of rational numbers?

In a brilliant paper (1954, [61]), Safarevi¢ has answered this affirmatively for any solvable group.
The general case still awaits solution.

While on the subject of analogy, on a simpler level, let us note that the topological
simply-connectedness of the sphere and the plane have, respectively, the following algebraic
consequences:
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(3) K(x) has no unramified extension, [i.€., in every finite algebraic extension of K(x), other than
K(x), at least one valuation of K(x) must be ramified].
(4) In every finite algebraic extension of K(x), other than K(x), at least two valuations of K(x)

must be ramified.

For this simpler situation a purely algebraic proof does already exist. Namely (4), and hence (3),
immediately follow from formulas (g:,) and (13) of §46 by noting that the genus is always nonnegative.
In fact the same formulas show that (3) remains valid also in nonzero characteristic.

This time the number-theoretic analogue is the following beautiful

THEOREM OF KRONECKER. The field of rational numbers has no unramified extension.

54. Sphere with handles. In §4 we said that S is topologically equivalent to a sphere with a certain
number of handles. There we also said that, using formula (g,) and Euler’s Theorem, Riemann
showed that for S:

(g4) g = number of handles.
Now in §46, from formula (g,) we have deduced formula
(g12) 2—-2g =2n-ZX[e(V)—1] with sum over all points V of S.

So our explanation of Riemann’s deduction will be completed by deducing (g.) from (g;.) and Euler’s
Theorem. To do this, draw a sufficiently fine polyhedron A on S, which includes all the branch points
amongst its vertices; let Ao, A;, and A, be the number of vertices, edges, and faces of A. Let A* be the
polyhedron on S obtained by “lifting” A; let Aj, A1, and A3 be the number of vertices, edges, and
faces of A*. Let g* be the number of handles of S. In view of (*) and (**) of §52 we see that

A% = nAo—Z[e(V)— 1] with sum over all points V of S
and clearly A} = nA, and A% = nA,. By Euler’s Theorem we have
A3 —AT+A3=2-2g* and Ap— A +A,=2.
Combining the above three displayed lines we get
2-2g*=2n-2[e(V)-1]
and hence by (g:2) we get g* =g which proves (g.).

55. Abel and Jacobi. Let ', --,T';, be closed paths on S where I'; and T',.; are a latitude and a
longitude of the ith handle. (See Fig. 13.)

FiG. 13
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Now any closed path I on § can be “deformed into m,I'y,+ - -+ + m, >, with integers m;” and
then for any integral of first kind we have

fr r(x,y)dx=> m; ] r(x,y)dx;

i

thus, for points Q and V of S, the value of the integral

Lv r(x,y)dx

is only determined up to a linear combination, with integer coefficients, of the 2g numbers

J' r(x,y)dx,- - ,f r(x,y)dx.
ry T2g

To state the theorems of Abel and Jacobi, mentioned in §3, let
Qi=rn(x,y)dx, -, Qg =r,(x,y)dx

be linearly independent differentials of first kind, where the r,(x, y) are rational functions, and let
y,,~=f QO fori=1,---,2gandj=1,---,g
T
Also fix any points Q;, Q,,--- on .

ABeL's THEOREM. Let Vi, -+, V,, Vi, -+, V| be any pointson S. Then Vy,- -+, Vyand Vi, -+, V}
are the zeros and poles of some rational function s(x,y) iff for j=1,---, g we have
v/

d Vi d
Z 0= Z Q; modulo ((v4)),
k=1 JQx k=1 JQx

i.e., iff, upon taking any paths A and A joining Q. to Vi and Vi, forj=1,---, g we have

d d
> f Q= f CQ+ D myy with integers n.
k=1 JAx k=1 JA{ ki

JacoBrs INVERsION THEOREM. Given any general g-tuple (2., - - -, z,) of complex numbers, there is a
unique g-tuple of points (Vy,---, V) of S such that forj=1,---, g we have

Vi

Q, = z; modulo ((yy)).

k=1 JQ
The resulting 2g functions
x(Vl(;b ) Zs))’ Y(Vl(zl’ ) Zs))’ ) x(Vs(zl; ) Zx))’ y(Ve(zy, -,y Zs))
of the g variables z,,- -, z, are (single-valued meromorphic) periodic function with the 2g periods
('Yil,"','Yig), i= 1"“,2g'

These multiply periodic functions are called abelian functions. They can be viewed as functions on
the g-dimensional (complex dimension g = real dimension 2g) multi-torus obtained from the space of
g complex variables by “dividing” it by the 2g periods. The said multi-torus is called the jacobian
variety of f (or, of C; or, of K(x,y)):

(g10) g =dimension of the jacobian variety.

In Abel’s theorems, when we spoke of Vi,---, V, and V1, --, V| being the zeroes and poles of
s(x, y), what we precisely meant was that: given any point V of S, upon letting p to be the number of
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times V occurs amongst Vi, -, V, and upon letting p’ to be the number of times V occurs amongst
Vi,+++, Viwe have V(s(x,y))=p-p'.

In analogy with number theory, the purport of the theorems of Abel and Jacobi is sometimes
expressed by saying that the jacobian variety is the ““divisor class group” of f. Roughly speaking: the
various tuples of points (Vy,--+, Vy; Vi, .-+, Vi) of S constitute the “group of divisors of degree
zero”’; the subgroup of ““principal divisors” or ““divisors linearly equivalent to zero” consists of those
tuples for which Vi,---,V, and Vi,---, V; are the zeroes and poles of some rational function
s(x, y); finally, the divisor class group is the factor group of the group of divisors of degree zero
modulo the subgroup of principal divisors.

To describe the analogous situation in number theory, let E be the integral closure of the ring of
ordinary integers in a finite algebraic field extension M of the field of rational numbers. E is called the
ring of (algebraic) integers in M. It was found that E need not be a UFD (= unique factorization
domain), i.e., in E one may not have the unique factorization property of ordinary integers. To
estimate how far the said property fails in E, one can consider the totality of all (nonzero) fractional
E-ideals, i.e., finitely generated E-modules contained in M. The fractional E-ideals form a group
under multiplication; the principal fractional E-ideals (i.e., those which consist of all the multiples of a
single element) form a subgroup; the factor group of the former modulo. the latter is called the divisor
class group of M, and the order of the divisor class group is called the class number of M. Clearly the
class number is 1 iff E is a UFD. The divisor class group of M is evidently the number-theoretic
analogue of the jacobian variety of K(x, y). Moreover, in a sense, the number-theoretic analogue of
the finite dimensionality of the jacobian variety is the

THEOREM OF DEDEKIND AND KRONECKER which says that the class number is always finite.

Let us conclude this Chapter with the observation that the Riemann surface (sphere with g
handles) and the jacobian variety (g-dimensional multi-torus) are two distinct generalizations of the
surface of a torus (= doughnut or bicycle-tube).

CHAPTER X: MORE UNIVERSITY ALGEBRA

56. Serre. To again recall the theorem of Euler (and Riemann):
2
genus of a curve in the complex case = >, (—1)'A%,
i=0

where A§, A1, and A3 are the number of vertices, edges and faces of a polyhedron drawn on the
Riemann surface of the curve. Serre (1966, [65]) has made the following far-reaching generalization of
this:

arithmetic genus of a variety of any dimension and in any characteristic = 2(— 1)'h’,

where each of the individual A’ (unlike Euler’s A¥) has an invariant meaning, namely, it is the
number of linearly independent elements in the “ith cohomology group of the variety.”
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