Multiple solutions for a higher order variational problem in conformal geometry

Paolo Piccione

Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo
August 17th, 2017

- Q-curvature and the Paneitz operator
\diamond Intro: best constant in Sobolev embeddings
\diamond Conformal invariance
\diamond Paneitz operator and Q-curvature in Riemannian manifolds
■ Multiplicity results
\diamond Yamabe type invariants
\diamond Aubin inequality
\diamond A topological argument
\diamond Bifurcation
■ Examples (explicit computations)
\diamond homogeneous fibrations
\diamond Hopf bundles, Berger spheres

Acknowledgements

■ My co-authors

Renato Bettiol (UPenn)

Yannick Sire (Johns Hopkins)

■ My sponsors
M-FAPESP

Intro: Sobolev embeddings (M. Gursky)

- Sobolev embedding: $H^{2}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{\frac{2 n}{n-4}}\left(\mathbb{R}^{n}\right) \quad(n \geq 5)$
$\diamond\|\Delta u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \geq \lambda_{n} \cdot\|u\|_{L^{n-4}}^{2}$
■ Best λ_{n} known (Lions, Edmunds, Fortunato, Jannelli)
■ it is attained at some radial function u satisfying:

$$
\Delta^{2} u=u^{\frac{n+4}{n-4}}
$$

- minimizers are positive
- equation is conformally invariant: solutions u invariant by:
- translations $u(x) \mapsto u(x+v)$
- dilations $u(x) \mapsto t^{\frac{n-4}{2}} u(t \cdot x)$
- inversions $u(x) \mapsto|x|^{4-n} \cdot u\left(\frac{x}{|x|^{2}}\right)$

Question

Does there exist an analogous operator in Riemannian manifolds? (conformally invariant, positive minimizers, ...)

Theorem (Paneitz 1983)

Given (M^{n}, \mathbf{g}), $n \geq 5$, there exists a differential operator P_{g} such that:

- $P_{\mathbf{g}}=\Delta_{\mathbf{g}}^{2}+$ lower order terms of order ≤ 2
- if $\widehat{\mathbf{g}}=u^{\frac{4}{n-4}} \cdot \mathbf{g}$, then $P_{\widehat{\mathbf{g}}}(\phi)=u^{\frac{n+4}{n-4}} P_{\mathbf{g}}(u \cdot \phi)$.

Examples.

- $P_{\mathbb{R}^{n}}=\Delta^{2}$

■ $P_{\mathbb{S}^{n}}=\Delta_{\mathbb{S}^{n}}\left(\Delta_{\mathbb{S}^{n}}-c\right)$.
$\left(M^{n}, \mathbf{g}\right), n \geq 5$

- Q-curvature:

$$
\begin{array}{r}
Q_{\mathbf{g}}=c_{n} \cdot \Delta_{\mathbf{g}}\left(\text { scal }_{\mathbf{g}}\right)+d_{n} \cdot\left\|\mathrm{Ric}_{\mathbf{g}}\right\|^{2}+e_{n} \cdot \mathrm{scal}_{\mathbf{g}}^{2} \\
\diamond \\
c_{n}=\frac{1}{2(n-1)} \quad d_{n}=-\frac{2}{(n-2)^{2}} \quad e_{n}=\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}}
\end{array}
$$

■ Paneitz operator:

$$
\begin{gathered}
P_{\mathbf{g}} \psi=\Delta_{\mathbf{g}}^{2} \psi+\alpha_{n} \cdot \operatorname{div}_{\mathbf{g}}\left(\operatorname{Ric}_{\mathbf{g}}\left(\nabla \psi, e_{i}\right) e_{i}\right) \\
\quad-\beta_{n} \cdot \operatorname{div}_{\mathbf{g}}\left(\operatorname{scal}_{\mathbf{g}} \cdot \nabla \psi\right)+\gamma_{n} \cdot Q_{\mathbf{g}} \psi \\
\diamond \alpha_{n}=\frac{4}{n-2} \quad \beta_{n}=\frac{n^{2}-4 n+8}{2(n-1)(n-2)} \quad \gamma_{n}=\frac{n-4}{2}
\end{gathered}
$$

Constant Q-curvature

Constant Q-curvature metric: $\mathbf{g}=u^{\frac{4}{n-4}} \cdot \mathbf{g}_{0}$

$$
P_{\mathbf{g}_{0}} u=\lambda \cdot u^{\frac{n+4}{n-4}}, \quad \lambda=\frac{n-4}{2} Q_{\mathbf{g}}
$$

Variational formulation. Solutions are critical points of associated quadratic functional:

$$
E_{\mathbf{g}_{0}}(u)=\frac{1}{2} \int_{M} u \cdot P_{\mathbf{g}_{0}} u \mathrm{~d} M
$$

in the space:

$$
\left\{u \in H^{2}(M):\|u\|_{L^{\frac{2 n}{n-4}}}=\text { const. }\right\}
$$

Problems:

■ non-compact embedding \Longrightarrow minimizing sequences may converge weakly to 0;
■ minimizers may not be positive.

Yamabe problem

(constant scal curvature)
■ Non-compact embedding:

$$
H^{1} \hookrightarrow L^{\frac{2 n}{n-2}}
$$

■ Conf. invariant operator: conformal Laplacian
$L_{g}=\Delta_{\mathbf{g}}+\frac{n-2}{4(n-1)}$ scal $_{\mathbf{g}}$

- scalar curvature scalg:

$$
\mathbf{g}=u^{\frac{4}{n-2}} \mathbf{g}_{0}
$$

$$
\mathrm{scal}_{\mathbf{g}}=\frac{4(n-1)}{n-2} u^{-\frac{n+2}{n-2}} \cdot L_{\mathbf{g}_{0}}(u)
$$

■ minimizers exist and have constant scalg.

Constant Q-curvature

■ Non-compact embedding: $H^{2} \hookrightarrow L^{\frac{2 n}{n-4}}$

- Conf. inv. operator: P_{g}
- Q-curvature Q_{g} :
$\mathbf{g}=u^{\frac{4}{n-4}} \mathbf{g}_{0}$
$Q_{\mathrm{g}}=\frac{2}{n-4} u^{-\frac{n+4}{n-4}} \cdot P_{\mathbf{g}_{0}}(u)$
■ Positivity of minimizers? When so, they give constant Q-curvature.
- Very little known on the existence of positive minimizers: scal $\mathbf{g}_{0}>0$ and $Q_{\mathrm{g}_{0}}$ almost positive.

Yamabe-type invariants

$\mathcal{L}_{\mathbf{g}_{0}}(u)=\int_{M} u \cdot L_{\mathbf{g}_{0}} u \mathrm{~d} M \quad \mathcal{E}_{\mathbf{g}_{0}}(u)=\int_{M} u \cdot P_{\mathbf{g}_{0}} u \mathrm{~d} M$
Yamabe invariant: $Y\left(M, \mathbf{g}_{0}\right)=\inf _{u \neq 0} \frac{\mathcal{L}(u)}{\|u\|_{L^{\frac{2 n}{n-2}}}^{2}}$

$$
Y_{4}\left(M, \mathbf{g}_{0}\right)=\inf _{u \neq 0} \frac{\mathcal{E}(u)}{\|u\|_{L^{2 n}}^{2}}
$$

$$
Y_{4}^{+}\left(M, \mathbf{g}_{0}\right)=\inf _{u>0} \frac{\mathcal{E}(u)}{\|u\|_{L \frac{2 n}{2}}^{2}}
$$

Theorem (Gursky-Han-Lin, 2016)
If $\exists \mathbf{g} \in\left[\mathbf{g}_{0}\right]$ with scal $_{\mathbf{g}}>0$ and $\mathrm{Q}_{\mathbf{g}}>0$, then:

$$
Y_{4}\left(M, \mathbf{g}_{0}\right)=\mathbf{Y}_{4}^{+}\left(M, \mathbf{g}_{0}\right)(\geq 0),
$$

with infimum attained by some positive function.
Not known if $Y_{4}>0$ when $Y>0$ and Q almost positive.

Aubin inequality:
 ``` Y(M

\mp@subsup{M}{}{n},\mp@subsup{\mathbf{g}}{0}{})\leqY(\mp@subsup{\mathbb{S}}{}{n},\mp@subsup{\mathbf{g}}{\mathrm{ round}}{}```}

\section*{Theorem (Gursky-Han-Lin 2016)}

Assume \(Y\left(M, \mathbf{g}_{0}\right)>0\) and \(Q_{\mathbf{g}_{0}}\) almost positive. Then:
- \(\operatorname{Ker}\left(P_{\mathbf{g}_{0}}\right)=\{0\}\) and \(P_{\mathbf{g}_{0}}>0\);
- Green function \(G_{P_{9_{0}}}\) positive on \(M \times M\).

Inverse of \(P_{\mathbf{g}_{0}}: G_{\mathbf{g}_{0}} f(p)=\int_{M} G_{P_{g_{0}}}(p, q) f(q) \mathrm{d} q\)
Quadratic functional: \(\mathcal{G}_{\mathbf{g}_{0}}(f)=\int_{M} f \cdot \mathcal{G}_{\mathbf{g}_{0}} f \mathrm{~d} M\)
New invariant: \(\Theta_{4}\left(M, \mathbf{g}_{0}\right)=\sup _{t \in L^{\frac{2 n}{n+4}}} \overline{\mathcal{G}}(f)=\sup _{f \in L^{\frac{2 n}{n+4}}} \frac{\mathcal{G}_{\mathbf{g}_{0}}(f)}{\|f\|_{L^{\frac{2 n}{n+4}}}}\)
- Supremum always attained at some smooth positive \(f\), \(f^{\frac{4}{n-4}} \cdot g_{0}\) has constant \(Q\)-curvature.
- \(\Theta_{4}\left(M^{n}, \mathbf{g}_{0}\right) \geq \Theta_{4}\left(\mathbb{S}^{n}, \mathbf{g}_{\text {round }}\right)\)

\section*{Multiple constant Q-curvature metrics on spheres}

\section*{Theorem}

For \(n \geq 5\) and \(0 \leq k<\frac{n-4}{2}\), there are infinitely many pairwise nonhomothetic complete metrics with constant \(Q\)-curvature on \(\mathbb{S}^{n} \backslash \mathbb{S}^{k}\) that are conformal to the round metric.

\section*{Proof.}

■ \(\mathbb{S}^{n} \backslash \mathbb{S}^{k}\) conf. equivalent to \(\mathbb{S}^{n-k-1} \times \mathbb{H}^{k+1}\)
- scal \(=(n-2 k-2)(n-1)\)
are positive when \(k<\frac{n-4}{2}\);

■ topological argument + Aubin inequality.
\(1 \mathrm{H}^{k+1}\) has compact quotients that give an infinite tower of finite-sheeted Riemannian coverings:
\[
\left(\mathbb{H}^{k+1}, g_{\text {hyp }}\right) \rightarrow \ldots \rightarrow\left(\Sigma_{2}, g_{2}\right) \rightarrow\left(\Sigma_{1}, g_{1}\right) \rightarrow\left(\Sigma_{0}, g_{0}\right)
\]

2 Multiply by (\(S^{n-k-1}, g_{\text {round }}\)), product metrics:
\(\ldots \rightarrow\left(S^{n-k-1} \times \Sigma_{1}, g_{\text {round }} \oplus g_{1}\right) \rightarrow\left(S^{n-k-1} \times \Sigma_{0}, g_{\text {round }} \oplus g_{0}\right)\)

3 pull-back \(\Theta_{4}\)-metric in [\(g_{\text {round }} \oplus g_{0}\)]: energy \(\overline{\mathcal{G}}\) goes to 0 ! (uses scal \(>0\) and \(Q>0\))

4 By Aubin inequality, maximum of \(\overline{\mathcal{G}}\) must be attained at some other metric in the conformal class of the product.

5 Iterate.

\section*{Coverings of hyperbolic surfaces}

Infinite tower of finite-sheeted coverings:
\[
\ldots \rightarrow M_{k} \rightarrow M_{k-1} \rightarrow \ldots \rightarrow M_{1} \rightarrow M_{0}
\]
iff \(G=\pi_{1}\left(M_{0}\right)\) has infinite profinite completion \(\widehat{G}\).
Def. \(\widehat{G}=\lim _{\leftarrow} G / \Gamma, \quad \Gamma \unlhd G, \quad[G: \Gamma]<+\infty\).
Canonical homomorphism \(\iota: G \rightarrow \widehat{G}\)
\[
\operatorname{Ker}(i)=\bigcap_{\substack{\Gamma \unlhd G \\[G: \Gamma]<+\infty}} \Gamma
\]

Def. \(G\) is residually finite if:
\[
\bigcap_{\substack{\Gamma \unlhd G \\[G: \Gamma]<+\infty}} \Gamma=\{1\}
\]

\section*{Symmetric spaces}

\section*{Theorem (Borel)}

Symmetric spaces of noncompact type \(X\) admit irreducible compact quotients \(X / \Gamma\).
\(X / \Gamma\) loc. symmetric \(\Longrightarrow\) constant scalar and \(Q\)-curvature
Selberg-Malcev lemma
Finitely generated linear groups are residually finite.
Corollary. \(\Gamma=\pi_{1}(X / \Gamma)\) has infinite profinite completion.

\section*{Theorem}
- (\(M, \mathbf{g}\)) closed, \((X, \mathbf{h})\) as above
- scal and \(Q\)-curvature of \(\mathbf{g} \oplus \mathbf{h}\) positive.

Then, there are infinitely many complete constant \(Q\)-curvature metrics in \([\mathbf{g} \oplus \mathbf{h}]\).

Need a (compact) manifold \(M\) with a family \(\left(\mathbf{g}_{t}\right)_{t \in[a, b]}\) of constant \(Q\)-curvature metrics with computable Morse index.
Ansatz: Riemannian submersions \(\pi_{t}:\left(M, \mathbf{g}_{t}\right) \rightarrow\left(B, \mathbf{g}_{B}\right)\) with:
- scal \(\mathbf{g}_{t}\) and \(Q_{\mathrm{g}_{t}}\) constant;
- minimal fibers;
- horizontally Einstein: \(\operatorname{Ric}_{g_{t}}=\kappa_{t} \cdot \mathbf{g}_{t}\) on the horizontal distribution.

Typical example: Homogeneous fibration.
- \(H \subset K \subset G\) compact Lie groups

■ \(K / H \rightarrow G / H \rightarrow G / K\) with bi-invariant metric \(\mathbf{g}_{1}\) on \(G\)
- \(\mathbf{g}_{t}\) obtained by rescaling metric of fibers.

\section*{Theorem}
- \(M^{n}\) closed manifold with \(n \geq 5\)
- \(\pi_{t}:\left(M, \mathbf{g}_{t}\right) \rightarrow\left(B, \mathbf{g}_{B}\right), \quad t \in\left[t_{*}-\varepsilon, t_{*}+\varepsilon\right]\),
a 1-parameter family of horizontally Einstein (\(\kappa_{t}\))
Riemannian submersions with minimal fibers
- scal \(_{\mathbf{g}_{t}}\) and \(Q_{\mathbf{g}_{t}}\) constant for all \(t\)
\(\square \alpha_{t}=\frac{\left(n^{2}-4 n+8\right) \operatorname{scal}_{\mathbf{g}_{t}}-8 \kappa_{t}(n-1)}{4(n-1)(n-2)}, \beta_{t}=-2 Q_{\mathbf{g}_{t}}\).
If for some \(\lambda \in \operatorname{spec}\left(\Delta_{\mathbf{g}_{B}}\right)\) :
\(\square \frac{1}{2} \lambda^{2}+\alpha_{t_{*}} \lambda+\beta_{t_{*}}=0\)
- \(\alpha_{t_{*}}^{\prime} \lambda+\beta_{t_{*}}^{\prime} \neq 0\),
then \(t_{*}\) is a bifurcation instant for \(\left(\mathbf{g}_{t}\right)_{t}\). If \(\lambda \neq \frac{\text { scal }_{\mathbf{g}_{t_{*}}}}{n-1}\), then bifurcation metrics do not have constant scalar curvature.

■ Hopf bundle \(\mathbb{S}^{1} \rightarrow \mathbb{S}^{2 n+1} \rightarrow \mathbb{C} P^{n}\)
\(■\) Berger metric \(\mathbf{g}_{t}=t \mathbf{g}_{\mathcal{V}}+\mathbf{g}_{\mathcal{H}} \quad\) (\(\mathbf{g}_{1}\) unit round metric)
\(■\) homogeneous fibration corresponding to \(\mathrm{U}(n) \subset \mathrm{U}(n) \mathrm{U}(1) \subset \mathrm{U}(n+1)\)
■ horizontal space \(\mathcal{H} \cong \mathbb{C}^{n}\) irreducible \(\mathrm{U}(n)\)-representation,
■ vertical space \(\mathcal{V} \cong \mathbb{R}\) does not contain copies of this irreducible

\section*{Upshot}

For \(n \geq 6, \exists\) sequence \(t_{k} \rightarrow+\infty\) bifurcation instants for \(\left(\mathbb{S}^{2 n+1}, \mathbf{g}_{t}\right)\).
If \(6 \leq n \leq 9\), then infinitely many of these bifurcating branches issue from metrics on \(\mathbb{S}^{2 n+1}\) that have scal \(<0\) and \(Q<0\).

\section*{The Berger spheres \(\mathbb{S}^{4 n+3}\)}

■ Hopf bundle \(\mathbb{S}^{3} \rightarrow \mathbb{S}^{4 n+3} \rightarrow \mathbb{H} P^{n}\)
\(■\) Berger metric \(\mathbf{g}_{t}=t \mathbf{g}_{\mathcal{V}}+\mathbf{g}_{\mathcal{H}} \quad\left(\mathbf{g}_{1}\right.\) unit round metric)
■ homogeneous fibration corresponding to \(\operatorname{Sp}(n) \subset \operatorname{Sp}(n) \operatorname{Sp}(1) \subset \operatorname{Sps}(n+1)\)
■ horizontal space \(\mathcal{H} \cong \mathbb{H}^{n}\) irreducible \(\operatorname{Sp}(n)\)-representation,
\(■\) vertical space \(\mathcal{V} \cong \mathbb{R}^{3}\) does not contain copies of this irreducible

\section*{Upshot}

For \(n \geq 2, \exists\) sequences \(t_{k} \rightarrow+\infty\) and \(t_{k}^{\prime} \rightarrow 0\) of bifurcation instants for \(\left(\mathbb{S}^{2 n+3}, \mathbf{g}_{t}\right)\).

Infinitely many of these bifurcating branches issue from metrics on \(\mathbb{S}^{2 n+3}\) that have scal \(<0\) and \(Q<0\).

Similar results for Hopf bundle \(\mathbb{C} P^{2 n+1} \rightarrow \mathbb{H} P^{n}\).

\section*{Thanks for your attention!!}

ICM 2018
RIO DE JANEIRO
INTERNATIONAL CONGRESS OF MATHEMATICIANS

See you at ICM2018!```

