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Outiline of this talk

Q-curvature and the Paneitz operator
� Intro: best constant in Sobolev embeddings
� Conformal invariance
� Paneitz operator and Q-curvature in Riemannian manifolds

Multiplicity results
� Yamabe type invariants
� Aubin inequality
� A topological argument
� Bifurcation

Examples (explicit computations)
� homogeneous fibrations
� Hopf bundles, Berger spheres
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Intro: Sobolev embeddings (M. Gursky)

Sobolev embedding: H2(Rn) ↪→ L
2n

n−4 (Rn) (n ≥ 5)
� ‖∆u‖2L2(Rn)

≥ λn · ‖u‖2
L

2n
n−4

Best λn known (Lions, Edmunds, Fortunato, Jannelli)
it is attained at some radial function u satisfying:

∆2u = u
n+4
n−4

minimizers are positive
equation is conformally invariant: solutions u invariant by:

translations u(x) 7→ u(x + v)

dilations u(x) 7→ t
n−4

2 u(t · x)

inversions u(x) 7→ |x |4−n · u
(

x
|x|2

)
Question

Does there exist an analogous operator in Riemannian
manifolds? (conformally invariant, positive minimizers, ...)
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The Paneitz operator

Theorem (Paneitz 1983)

Given (Mn,g), n ≥ 5, there exists a differential operator Pg
such that:

Pg = ∆2
g + lower order terms of order ≤ 2

if ĝ = u
4

n−4 · g, then Pĝ(φ) = u
n+4
n−4 Pg(u · φ).

Examples.
PRn = ∆2

PSn = ∆Sn (∆Sn − c).
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Definition of Q-curvature and Paneitz operator

(Mn,g), n ≥ 5
Q-curvature:

Qg = cn ·∆g(scalg) + dn · ‖Ricg‖2 + en · scal2g

� cn = 1
2(n−1) dn = − 2

(n−2)2 en = n3−4n2+16n−16
8(n−1)2(n−2)2

Paneitz operator:

Pgψ = ∆2
gψ + αn · divg

(
Ricg(∇ψ,ei)ei

)
− βn · divg(scalg · ∇ψ) + γn ·Qgψ

� αn = 4
n−2 βn = n2−4n+8

2(n−1)(n−2) γn = n−4
2
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Constant Q-curvature
Constant Q-curvature metric: g = u

4
n−4 · g0

Pg0u = λ · u
n+4
n−4 , λ =

n − 4
2

Qg.

Variational formulation. Solutions are critical points of
associated quadratic functional:

Eg0(u) =
1
2

∫
M

u · Pg0u dM

in the space: {
u ∈ H2(M) : ‖u‖

L
2n

n−4
= const.

}
Problems:

non-compact embedding =⇒ minimizing sequences may
converge weakly to 0;
minimizers may not be positive.
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Yamabe vs. Paneitz

Yamabe problem
(constant scal curvature)

Non-compact embedding:
H1 ↪→ L

2n
n−2

Conf. invariant operator:
conformal Laplacian
Lg = ∆g + n−2

4(n−1) scalg

scalar curvature scalg:
g = u

4
n−2 g0

scalg = 4(n−1)
n−2 u−

n+2
n−2 · Lg0 (u)

minimizers exist and have
constant scalg.

Constant Q-curvature

Non-compact embedding:
H2 ↪→ L

2n
n−4

Conf. inv. operator: Pg

Q-curvature Qg:
g = u

4
n−4 g0

Qg = 2
n−4 u−

n+4
n−4 · Pg0 (u)

Positivity of minimizers?
When so, they give
constant Q-curvature.

Very little known on the
existence of positive
minimizers: scalg0 > 0 and
Qg0 almost positive.
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Yamabe-type invariants

Lg0(u) =

∫
M

u · Lg0u dM Eg0(u) =

∫
M

u · Pg0u dM

Yamabe invariant: Y (M,g0) = inf
u 6=0

L(u)

‖u‖2
L

2n
n−2

Y4(M,g0) = inf
u 6=0

E(u)

‖u‖2
L

2n
n−4

Y +
4 (M,g0) = inf

u>0

E(u)

‖u‖2
L

2n
n−4

Theorem (Gursky–Han–Lin, 2016)

If ∃g ∈ [g0] with scalg > 0 and Qg > 0, then:

Y4(M,g0) = Y+
4 (M,g0)(≥ 0),

with infimum attained by some positive function.

Not known if Y4 > 0 when Y > 0 and Q almost positive.
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A new invariant and Aubin inequality

Aubin inequality: Y (Mn,g0) ≤ Y (Sn,ground)

Theorem (Gursky–Han–Lin 2016)

Assume Y (M,g0) > 0 and Qg0 almost positive. Then:
Ker(Pg0) = {0} and Pg0 > 0;
Green function GPg0

positive on M ×M.

Inverse of Pg0 : Gg0 f (p) =
∫

M GPg0
(p,q)f (q) dq

Quadratic functional: Gg0(f ) =
∫

M f ·Gg0 f dM

New invariant: Θ4(M,g0) = sup
f∈L

2n
n+4

G(f ) = sup
f∈L

2n
n+4

Gg0(f )

‖f‖
L

2n
n+4

Supremum always attained at some smooth positive f ,
f

4
n−4 · g0 has constant Q-curvature.

Θ4(Mn,g0) ≥ Θ4(Sn,ground)
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Multiple constant Q-curvature metrics on spheres

Theorem

For n ≥ 5 and 0 ≤ k < n−4
2 , there are infinitely many pairwise

nonhomothetic complete metrics with constant Q-curvature on
Sn \ Sk that are conformal to the round metric.

Proof.

Sn \ Sk conf. equivalent to Sn−k−1 ×Hk+1

scal = (n − 2k − 2)(n − 1) Q = 1
8n(n − 2k)(n − 2k − 4)

are positive when k < n−4
2 ;

topological argument + Aubin inequality.
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The topological argument

1 Hk+1 has compact quotients that give an infinite tower of
finite-sheeted Riemannian coverings:

(Hk+1,ghyp)→ . . .→ (Σ2,g2)→ (Σ1,g1)→ (Σ0,g0)

2 Multiply by (Sn−k−1,ground), product metrics:

. . .→ (Sn−k−1×Σ1,ground⊕g1)→ (Sn−k−1×Σ0,ground⊕g0)

3 pull-back Θ4-metric in
[
ground ⊕ g0

]
: energy G goes to 0!

(uses scal > 0 and Q > 0)

4 By Aubin inequality, maximum of G must be attained at
some other metric in the conformal class of the product.

5 Iterate.
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Coverings of hyperbolic surfaces
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Profinite completion and residually finite groups

Infinite tower of finite-sheeted coverings:

. . .→ Mk → Mk−1 → . . .→ M1 → M0

iff G = π1(M0) has infinite profinite completion Ĝ.

Def. Ĝ = lim
←

G/Γ, Γ E G,
[
G : Γ

]
< +∞.

Canonical homomorphism ι : G→ Ĝ

Ker(i) =
⋂

ΓEG
[G:Γ]<+∞

Γ

Def. G is residually finite if:
⋂

ΓEG
[G:Γ]<+∞

Γ = {1}
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Symmetric spaces

Theorem (Borel)

Symmetric spaces of noncompact type X admit irreducible
compact quotients X/Γ.

X/Γ loc. symmetric =⇒ constant scalar and Q-curvature

Selberg–Malcev lemma

Finitely generated linear groups are residually finite.

Corollary. Γ = π1(X/Γ) has infinite profinite completion.

Theorem

(M,g) closed, (X ,h) as above
scal and Q-curvature of g⊕ h positive.

Then, there are infinitely many complete constant Q-curvature
metrics in [g⊕ h].
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Bifurcation theory for the Q-curvature problem

Need a (compact) manifold M with a family (gt )t∈[a,b] of
constant Q-curvature metrics with computable Morse index.

Ansatz: Riemannian submersions πt : (M,gt )→ (B,gB) with:
scalgt and Qgt constant;
minimal fibers;
horizontally Einstein: Ricgt = κt · gt on the horizontal
distribution.

Typical example: Homogeneous fibration.
H ⊂ K ⊂ G compact Lie groups
K/H → G/H → G/K with bi-invariant metric g1 on G
gt obtained by rescaling metric of fibers.
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A bifurcation criterion

Theorem

Mn closed manifold with n ≥ 5
πt : (M,gt )→ (B,gB), t ∈ [t∗ − ε, t∗ + ε],
a 1-parameter family of horizontally Einstein (κt )
Riemannian submersions with minimal fibers
scalgt and Qgt constant for all t

αt =
(n2−4n+8)scalgt−8κt (n−1)

4(n−1)(n−2) , βt = −2 Qgt .

If for some λ ∈ spec(∆gB ):
1
2λ

2 + αt∗ λ+ βt∗ = 0
α′t∗ λ+ β′t∗ 6= 0,

then t∗ is a bifurcation instant for (gt )t . If λ 6= scalgt∗
n−1 , then

bifurcation metrics do not have constant scalar curvature.
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Berger spheres S2n+1

Hopf bundle S1 → S2n+1 → CPn

Berger metric gt = t gV + gH ( g1 unit round metric)
homogeneous fibration corresponding to
U(n) ⊂ U(n)U(1) ⊂ U(n + 1)

horizontal space H ∼= Cn irreducible U(n)-representation,
vertical space V ∼= R does not contain copies of this
irreducible

Upshot

For n ≥ 6, ∃ sequence tk → +∞ bifurcation instants for
(S2n+1,gt ).

If 6 ≤ n ≤ 9, then infinitely many of these bifurcating branches
issue from metrics on S2n+1 that have scal < 0 and Q < 0.
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The Berger spheres S4n+3

Hopf bundle S3 → S4n+3 → HPn

Berger metric gt = t gV + gH ( g1 unit round metric)
homogeneous fibration corresponding to
Sp(n) ⊂ Sp(n)Sp(1) ⊂ Sps(n + 1)

horizontal space H ∼= Hn irreducible Sp(n)-representation,
vertical space V ∼= R3 does not contain copies of this
irreducible

Upshot

For n ≥ 2, ∃ sequences tk → +∞ and t ′k → 0 of bifurcation
instants for (S2n+3,gt ).

Infinitely many of these bifurcating branches issue from metrics
on S2n+3 that have scal < 0 and Q < 0.

Similar results for Hopf bundle CP2n+1 → HPn.
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Thanks for your
attention!!

See you at ICM2018!
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