Orthogonal geodesic chords on Riemannian manifolds with concave boundary and applications

Fabio Giannoni, Paolo Piccione

Università di Camerino (Italy), Universidade de São Paulo (Brazil)
Our goal: Prove the existence of multiple orthogonal geodesic chords in a class of compact Riemannian manifolds with boundary
On the course

Our goal: Prove the existence of multiple orthogonal geodesic chords in a class of compact Riemannian manifolds with boundary

Method: develop a non smooth Ljusternik–Schnirelmann theory
On the course

Our goal: Prove the existence of multiple orthogonal geodesic chords in a class of compact Riemannian manifolds with boundary

Method: develop a *non smooth* Ljusternik–Schnirelmann theory

Applications: Prove the existence of:
On the course

Our goal: Prove the existence of multiple orthogonal geodesic chords in a class of compact Riemannian manifolds with boundary

Method: develop a non smooth Ljusternik–Schnirelmann theory

Applications: Prove the existence of:

- multiple brake orbits for a class of Hamiltonian problems
Our goal: Prove the existence of multiple orthogonal geodesic chords in a class of compact Riemannian manifolds with boundary

Method: develop a non smooth Ljusternik–Schnirelmann theory

Applications: Prove the existence of:

- multiple brake orbits for a class of Hamiltonian problems
- multiple homoclinic orbits for a class of Lagrangian systems
Riemannian geometry

M smooth manifold
M smooth manifold

g symmetric, positive definite $(2,0)$-tensor on M
M smooth manifold

g symmetric, positive definite $(2,0)$-tensor on M

∇ Levi–Civita connection of g
M smooth manifold

g symmetric, positive definite $(2,0)$-tensor on M

∇ Levi–Civita connection of g

$\Sigma \subset M$ hypersurface

$S_n : T_x \Sigma \times T_x \Sigma \to \mathbb{R}$ second fundamental form of Σ
Riemannian geometry

- M smooth manifold
- g symmetric, positive definite $(2, 0)$-tensor on M
- ∇ Levi–Civita connection of g

$\Sigma \subset M$ hypersurface
$S_n : T_x \Sigma \times T_x \Sigma \to \mathbb{R}$ second fundamental form of Σ

$$S_n(v, w) = g(\nabla_v W, n_x)$$ symmetric bilinear form

W extension of w, n_x normal vector to Σ at x.

School in Nonlinear Analysis and Calculus of Variations – p. 3/6
\(M \) smooth manifold

\(g \) symmetric, positive definite \((2, 0)\)-tensor on \(M \)

\(\nabla \) Levi–Civita connection of \(g \)

\(\Sigma \subset M \) hypersurface

\(S_n : T_x \Sigma \times T_x \Sigma \rightarrow \mathbb{R} \) second fundamental form of \(\Sigma \)

\[
S_n(v, w) = g(\nabla_v W, n_x)
\]

\(W \) extension of \(w \), \(n_x \) normal vector to \(\Sigma \) at \(x \).

Obs.: \(S_n \) is the **Hessian** of the map \(p \mapsto \text{dist}^*(p, \Sigma) \).
\[\Sigma \subset M \text{ hypersurface} \]
\[S_n : T_x \Sigma \times T_x \Sigma \to \mathbb{R} \text{ second fundamental form of } \Sigma \]
\[S_n(v, w) = g(\nabla_v W, n_x) \]

\(W \) extension of \(w \), \(n_x \) normal vector to \(\Sigma \) at \(x \).

Obs.: \(S_n \) is the **Hessian** of the map \(p \mapsto \text{dist}^*(p, \Sigma) \).
Convex and Concave domains

\((M, g)\) Riemannian manifold
\(\Omega \subset M\) open subset, \(\Omega = \Omega \cup \partial \Omega\)
Convex and Concave domains

\((M, g)\) Riemannian manifold
\(\Omega \subset M\) open subset, \(\overline{\Omega} = \Omega \cup \partial \Omega\)

Definition. \(\overline{\Omega}\) is said to be **convex** if for all geodesic \(\gamma : [a, b] \to \overline{\Omega}\) with \(\gamma(a), \gamma(b) \in \Omega\), then \(\gamma([a, b]) \subset \Omega\).

\(\overline{\Omega}\) is **concave** if \(M \setminus \Omega\) is convex.
Convex and Concave domains

(M, g) Riemannian manifold

$\Omega \subset M$ open subset, $\overline{\Omega} = \Omega \cup \partial \Omega$

Definition. $\overline{\Omega}$ is said to be **convex** if for all geodesic $\gamma : [a, b] \to \overline{\Omega}$ with $\gamma(a), \gamma(b) \in \Omega$, then $\gamma([a, b]) \subset \Omega$.

$\overline{\Omega}$ is **concave** if $M \setminus \Omega$ is convex.

$\overline{\Omega}$ is **strongly concave** if S_n is positive definite, where n is inward pointing.
Convex and Concave domains

\((M, g)\) Riemannian manifold
\(\Omega \subset M\) open subset, \(\overline{\Omega} = \Omega \cup \partial \Omega\)

Definition. \(\overline{\Omega}\) is said to be *convex* if for all geodesic \(\gamma: [a, b] \to \overline{\Omega}\) with \(\gamma(a), \gamma(b) \in \Omega\), then \(\gamma([a, b]) \subset \Omega\).

\(\overline{\Omega}\) is *concave* if \(M \setminus \Omega\) is convex.

\(\overline{\Omega}\) is *strongly concave* if \(S_n\) is positive definite, where \(n\) is inward pointing.

\(C^2\)-open condition
Convex and Concave domains

(M, g) Riemannian manifold
$\Omega \subset M$ open subset, $\overline{\Omega} = \Omega \cup \partial \Omega$

Definition. $\overline{\Omega}$ is said to be *convex* if for all geodesic
$\gamma : [a, b] \to \overline{\Omega}$ with $\gamma(a), \gamma(b) \in \Omega$, then $\gamma([a, b]) \subset \Omega$.

$\overline{\Omega}$ is *concave* if $M \setminus \Omega$ is convex.

$\overline{\Omega}$ is *strongly concave* if S_n is positive definite, where n is inward pointing.

Lemma. $\overline{\Omega}$ strongly concave $\implies \overline{\Omega}$ concave.
Convex and Concave domains

\((M, g)\) Riemannian manifold
\(\Omega \subset M\) open subset, \(\overline{\Omega} = \Omega \cup \partial \Omega\)

Definition. \(\overline{\Omega}\) is said to be *convex* if for all geodesic \(\gamma : [a, b] \to \overline{\Omega}\) with \(\gamma(a), \gamma(b) \in \Omega\), then \(\gamma([a, b]) \subset \Omega\).

\(\overline{\Omega}\) is *concave* if \(M \setminus \Omega\) is convex.

\(\overline{\Omega}\) is *strongly concave* if \(S_n\) is positive definite, where \(n\) is inward pointing.

diagram showing geodesics starting tangentially to \(\partial \Omega\) move inside \(\Omega\)
The boundary of Ω

Assume $\partial \Omega$ is smooth
The boundary of Ω

Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \rightarrow \mathbb{R}$ with:
Assume $\partial \Omega$ is smooth
\exists a smooth map $\phi : M \to \mathbb{R}$ with:
\[\Omega = \phi^{-1} \left(\mathbb{R} \cup \{ -\infty \} \right) \]
The boundary of Ω

Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \rightarrow \mathbb{R}$ with:

$\Omega = \phi^{-1}((-\infty, 0])$

$\partial \Omega = \phi^{-1}(0)$
The boundary of Ω

Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \to \mathbb{R}$ with:

1. $\Omega = \phi^{-1}(-\infty, 0]$
2. $\partial \Omega = \phi^{-1}(0)$
3. $d\phi \neq 0$ on $\partial \Omega$
Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \to \mathbb{R}$ with:

- $\Omega = \phi^{-1}(-\infty, 0]$
- $\partial \Omega = \phi^{-1}(0)$
- $d\phi \neq 0$ on $\partial \Omega$
- $|\phi(q)| = \text{dist}(q, \partial \Omega)$ for q near $\partial \Omega$.
Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \to \mathbb{R}$ with:

1. $\Omega = \phi^{-1}(-\infty, 0]$
2. $\partial \Omega = \phi^{-1}(0)$
3. $d\phi \neq 0$ on $\partial \Omega$
4. $|\phi(q)| = \text{dist}(q, \partial \Omega)$ for q near $\partial \Omega$.

Observe: \[\text{Hess}(\phi) = -S_{\nabla \phi} \quad \text{on} \quad T(\partial \Omega).\]
The boundary of Ω

Assume $\partial \Omega$ is smooth

\exists a smooth map $\phi : M \rightarrow \mathbb{R}$ with:

- $\Omega = \phi^{-1}(-\infty, 0]$
- $\partial \Omega = \phi^{-1}(0)$
- $d\phi \neq 0$ on $\partial \Omega$
- $|\phi(q)| = \text{dist}(q, \partial \Omega)$ for q near $\partial \Omega$.

Observe: $\text{Hess}(\phi) = -S_{\nabla \phi}$ on $T(\partial \Omega)$.

Back to proof
Def.: An orthogonal geodesic chord (OGC) in $\overline{\Omega}$ is a non constant geodesic $\gamma : [a, b] \rightarrow \overline{\Omega}$ with $\gamma(a), \gamma(b) \in \partial \Omega$ and $\dot{\gamma}(a), \dot{\gamma}(b) \in T(\partial \Omega) \perp$.

Ω

γ
Def.: An orthogonal geodesic chord (OGC) in Ω is a non-constant geodesic $\gamma : [a, b] \to \overline{\Omega}$ with $\gamma(a), \gamma(b) \in \partial \Omega$ and $\dot{\gamma}(a), \dot{\gamma}(b) \in T(\partial \Omega)^\perp$.

A weak orthogonal geodesic chord (WOCG). WOGC's do not exist in the convex case.
Some examples – 1

$\Omega \cong$ annulus: $S^{m-1} \times [0, 1]$

An OGC is *crossing* if its endpoints are in distinct connected components of $\partial \Omega$. It is easy to prove the existence of *one* crossing OGC whose length equals the distance between the two connected components of $\partial \Omega$.
Some examples – 1

Ω ≅ annulus: $S^{m-1} \times [0, 1]$

An OGC is crossing if its endpoints are in distinct connected components of $\partial \Omega$. It is easy to prove the existence of one crossing OGC whose length equals the distance between the two connected components of $\partial \Omega$.

There may be only one OGC:
If $\overline{\Omega}$ is **convex**, then it is proven the existence of at least **two** crossing OGC’s (Giannoni-Majer, DGA 1997).
If $\overline{\Omega}$ is convex, then it is proven the existence of at least two crossing OGC’s (Giannoni-Majer, DGA 1997).

This is an optimal result (in all dimensions):

$$g(x) = \psi(|x|) \cdot g_0(x), \quad \psi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$$

convexity of the annulus

$$\frac{1}{2} \psi'(1) + \psi(1) \geq 0, \quad \psi'(2) + \psi(2) \leq 0.$$

$$\Omega_\varepsilon = \{ x \in \mathbb{R}^m : 1 < |x|, \ |x - \varepsilon| < 2 \}.$$

(Back to the central result)
Getting rid of WOGC’s

Proposition: Assume:

1. \(\partial \Omega \) compact and \(\overline{\Omega} \) strongly concave.
Proposition: Assume:

1. $\partial \Omega$ compact and Ω strongly concave.
2. \exists only a finite number of (crossing) OGC’s in Ω.
Proposition: Assume:

1. $\partial \Omega$ compact and $\overline{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\overline{\Omega}$.

Then $\exists \Omega' \subset \Omega$ open with:
Proposition: Assume:

1. $\partial \Omega$ compact and $\overline{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\overline{\Omega}$.

Then $\exists \Omega' \subset \Omega$ open with:

$\overline{\Omega'}$ diffeomorphic to $\overline{\Omega}$, $\partial \Omega'$ smooth;
Getting rid of WOGC’s

Proposition: Assume:

1. $\partial \Omega$ compact and $\bar{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\bar{\Omega}$.

Then $\exists \Omega' \subset \Omega$ open with:

- $\bar{\Omega'}$ diffeomorphic to $\bar{\Omega}$, $\partial \Omega'$ smooth;
- $\bar{\Omega'}$ strongly concave;
Proposition: Assume:

1. $\partial \Omega$ compact and $\overline{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\overline{\Omega}$.

Then $\exists \Omega' \subset \Omega$ open with:

6. $\overline{\Omega'}$ diffeomorphic to $\overline{\Omega}$, $\partial \Omega'$ smooth;
6. $\overline{\Omega'}$ strongly concave;
6. the number of (crossing) OGC’s in $\overline{\Omega'}$ is \leq number of (crossing) OGC’s in $\overline{\Omega}$;
Proposition: Assume:

1. $\partial \Omega$ compact and $\overline{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\overline{\Omega}$.

Then $\exists \Omega' \subset \Omega$ open with:

- $\overline{\Omega'}$ diffeomorphic to $\overline{\Omega}$, $\partial \Omega'$ smooth;
- $\overline{\Omega'}$ strongly concave;
- the number of (crossing) OGC’s in $\overline{\Omega'}$ is \leq number of (crossing) OGC’s in $\overline{\Omega}$;
- there is no WOGC in $\overline{\Omega}$.
Proposition: Assume:

1. $\partial \Omega$ compact and $\overline{\Omega}$ strongly concave.
2. \exists only a finite number of (crossing) OGC’s in $\overline{\Omega}$.

Then $\exists \: \Omega' \subset \Omega$ open with:

- $\overline{\Omega'}$ diffeomorphic to $\overline{\Omega}$, $\partial \Omega'$ smooth;
- $\overline{\Omega'}$ strongly concave;
- the number of (crossing) OGC’s in $\overline{\Omega'}$ is \(\leq\) number of (crossing) OGC’s in $\overline{\Omega}$;
- there is no WOGC in $\overline{\Omega'}$.

It suffices to consider the case that there is no WOGC!
Proof

\[\Omega' = \phi^{-1}(]-\infty, -\delta[), \text{ with } \delta > 0 \text{ small.} \]

Observe:
Proof:

\[\Omega' = \phi^{-1}(]-\infty, -\delta[), \text{ with } \delta > 0 \text{ small.} \]

Observe:

- by continuity, \(d\phi \neq 0 \) in \(\phi^{-1}([\delta, 0]) \), so \(\partial\Omega' \) is smooth;
\[\Omega' = \phi^{-1}(-\infty, -\delta], \text{ with } \delta > 0 \text{ small.} \]

Observe:

1. by continuity, \(d\phi \neq 0 \) in \(\phi^{-1}([-\delta, 0]) \), so \(\partial\Omega' \) is smooth;

2. \(\Omega' \) is strongly concave, by continuity of \(\text{Hess}(\phi) \) and compactness of \(\partial\Omega \);
\[\Omega' = \phi^{-1}(\mathbb{R} \cup (-\infty, -\delta]), \text{ with } \delta > 0 \text{ small}. \]

Observe:

- by continuity, \(d\phi \neq 0 \) in \(\phi^{-1}(\mathbb{R} \cup (-\delta, 0]) \), so \(\partial\Omega' \) is smooth;
- \(\Omega' \) is strongly concave, by continuity of \(\text{Hess}(\phi) \) and compactness of \(\partial\Omega \);
- if \(\delta < \text{foc}(\partial\Omega) \), every OGC in \(\Omega' \) can be extended to an OGC in \(\Omega \).
\[\Omega' = \phi^{-1}([-\infty, -\delta[), \text{ with } \delta > 0 \text{ small.} \]

Observe:

- by continuity, \(d\phi \neq 0 \) in \(\phi^{-1}([-\delta, 0]) \), so \(\partial\Omega' \) is smooth;
- \(\Omega' \) is strongly concave, by continuity of \(\text{Hess}(\phi) \) and compactness of \(\partial\Omega \);
- if \(\delta < \text{foc}(\partial\Omega) \), every OGC in \(\Omega' \) can be extended to an OGC in \(\Omega \).
Proof

\[\Omega' = \phi^{-1}(\mathbb{R} - \delta, -\delta], \] with \(\delta > 0\) small. (recall \(\phi\))

Observe:

\(\Omega'\) is strongly concave, by continuity of \(\text{Hess}(\phi)\) and compactness of \(\partial \Omega\);

if \(\delta < \text{foc}(\partial \Omega)\), every OGC in \(\Omega'\) can be extended to an OGC in \(\Omega\);

if by absurd \(\exists \delta_n \to 0\) and a sequence \(\gamma_n\) of WOGC’s in \(\phi^{-1}(\mathbb{R} - \delta, -\delta_n]\), then one would get infinitely many OGC’s in \(\Omega\). QED
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let \((M, g)\) be a Riemannian manifold. Assume:
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let (M, g) be a Riemannian manifold. Assume:

1. $\Omega \subset M$ open;
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let \((M, g)\) be a Riemannian manifold. Assume:

1. \(\Omega \subset M\) open;
2. \(\overline{\Omega}\) homeomorphic to \(S^{m-1} \times [0, 1]\);
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let \((M, g)\) be a Riemannian manifold. Assume:

1. \(\Omega \subset M\) open;
2. \(\overline{\Omega}\) homeomorphic to \(S^{m-1} \times [0, 1]\);
3. \(\overline{\Omega}\) strongly concave.
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let \((M, g)\) be a Riemannian manifold. Assume:

1. \(\Omega \subset M\) open;
2. \(\overline{\Omega}\) homeomorphic to \(S^{m-1} \times [0, 1]\);
3. \(\overline{\Omega}\) strongly concave.

Then, there are at least two (geometrically distinct) crossing OCG’s in \(\overline{\Omega}\).
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)

Let (M, g) be a Riemannian manifold. Assume:

- $\Omega \subset M$ open;
- $\bar{\Omega}$ homeomorphic to $S^{m-1} \times [0, 1]$;
- $\bar{\Omega}$ strongly concave.

Then, there are at least two (geometrically distinct) crossing OCG’s in $\bar{\Omega}$.

Obs.: Recall that it suffices to consider the case that there are no WOGC’s.
The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let \((M, g)\) be a Riemannian manifold. Assume:

- \(\Omega \subset M\) open;
- \(\overline{\Omega}\) homeomorphic to \(S^{m-1} \times [0, 1]\);
- \(\overline{\Omega}\) strongly concave.

Then, there are at least two (geometrically distinct) crossing OCG’s in \(\overline{\Omega}\).

Obs.: Recall that it suffices to consider the case that there are no WOGC’s.

Obs.: Again, the result is optimal. Recall example above (with opposite strict inequalities!).

back to central symmetry
Central symmetry

Def.: (M, g) Riemannian man., $A \subset M$ is *centrally symmetric around* $x_0 \in M$ if exists an isometry $I : M \to M$, with $I^2 = I$, whose unique fixed pt is x_0, and such that $I(A) = A$.

A function $f : M \to \mathbb{R}$ is centrally symmetric if $f \circ I = f$.
Central symmetry

Def.: \((M, g)\) Riemannian man., \(A \subset M\) is centrally symmetric around \(x_0 \in M\) if exists an isometry \(I : M \to M\), with \(I^2 = I\), whose unique fixed pt is \(x_0\), and such that \(I(A) = A\).

A function \(f : M \to \mathbb{R}\) is centrally symmetric if \(f \circ I = f\).

If \(\gamma\) is a geodesic (orthogonal to \(\Sigma\)), then \(I \circ \gamma\) is a geodesic (orthogonal to \(I(\Sigma)\))
Def.: \((M, g)\) Riemannian man., \(A \subset M\) is centrally symmetric around \(x_0 \in M\) if exists an isometry \(I : M \to M\), with \(I^2 = I\), whose unique fixed pt is \(x_0\), and such that \(I(A) = A\).

A function \(f : M \to \mathbb{R}\) is centrally symmetric if \(f \circ I = f\).

If \(\gamma\) is a geodesic (orthogonal to \(\Sigma\)), then \(I \circ \gamma\) is a geodesic (orthogonal to \(I(\Sigma)\)).

Theorem. Under the assumptions of the above theorem, if \(\Omega\) is centrally symmetric around some \(x_0\), then there are at least \(m = \dim(M)\) geometrically distinct OGC’s \(\gamma_1, \ldots, \gamma_m\) in \(\Omega\).
A short history of the problem

Two classical results:

- Ljusternik and Schnirelmann, 1932:
 there are at least n principal chords in a compact convex subset of the n-dimensional Euclidean space having C^2 boundary
A short history of the problem

Two classical results:

- **Ljusternik and Schnirelmann**, 1932: there are at least n principal chords in a compact convex subset of the n-dimensional Euclidean space having C^2 boundary.

A short history of the problem

Two classical results:

1. Ljusternik and Schnirelmann, 1932: there are at least \(n \) principal chords in a compact convex subset of the \(n \)-dimensional Euclidean space having \(C^2 \) boundary.

 at least \(n \) OGC’s in convex Riemannian manifolds homeomorphic to an \(n \)-disk.

The topology of the manifold

G & M’s result:

- if the manifold is homeomorphic to an annulus and it is convex, then there are at least two OGC’s;
- if the manifold has compact and convex boundary, and if the LS-category of the space of paths with endpoints on the boundary is infinite, then there are infinitely many OGC’s.
G & M’s result:

1. If the manifold is homeomorphic to an *annulus* and it is convex, then there are at least two OGC’s;

2. If the manifold has compact and convex boundary, and if the *LS-category* of the space of paths with endpoints on the boundary is infinite, then there are infinitely many OGC’s.
Geodesics chords, homoclinics and brake orbits: a short bibliography

Geodesics chords, homoclinics and brake orbits: a short bibliography

Geodesics chords, homoclinics and brake orbits: a short bibliography

Geodesics chords, homoclinics and brake orbits: a short bibliography

These results will be reviewed later.
More bibliography

More bibliography

More bibliography

More bibliography

... lots more...
R. Giambò, F. Giannoni, P. Piccione,

Ljusternik–Schnirelman category

Def.: \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is *contractible in* \mathcal{X} if $i : \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_\mathcal{X}(\mathcal{Y}) = \min \{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible,} \quad \mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \in \{0, 1, \ldots, +\infty\} \}. $$
Ljusternik–Schnirelman category

Def.: \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is *contractible in* \mathcal{X} if $i : \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_{\mathcal{X}}(\mathcal{Y}) = \min \left\{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible,} \right.$$ $$\mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \right\} \in \{0, 1, \ldots, +\infty\}.$$

cat is *homotopy invariant* and *monotonic increasing* by inclusion.
Ljusternik–Schnirelman category

Def. \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is *contractible in* \mathcal{X} if $i : \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_{\mathcal{X}}(\mathcal{Y}) = \min \{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible, } \mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \} \in \{ 0, 1, \ldots, +\infty \}. $$

cat is *homotopy invariant* and *monotonic increasing* by inclusion.

Classical result. If \mathcal{X} is a complete Banach manifold and $f : \mathcal{X} \to \mathbb{R}$ is C^1, bounded from below, and satisfies (PS), then f has at least $\text{cat}(\mathcal{X})$ critical points.
Ljusternik–Schnirelman category

Def.: \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is *contractible in* \mathcal{X} if $i : \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_{\mathcal{X}}(\mathcal{Y}) = \min \left\{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible}, \right.$$
 $$\left. \mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \right\} \in \{0, 1, \ldots, +\infty\}. $$

cat is *homotopy invariant* and *monotonic increasing* by inclusion.

Classical result. If \mathcal{X} is a complete Banach manifold and $f : \mathcal{X} \to \mathbb{R}$ is C^1, bounded from below, and satisfies (PS), then f has at least $\text{cat}(\mathcal{X})$ critical points.

More generally, cat gives a lower estimate on the number of *fixed points* of flows. (fixed pts of the gradient flow of f=critical pts. of f)
Ljusternik–Schnirelman category

Def.: \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is *contractible in* \mathcal{X} if $i : \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_{\mathcal{X}}(\mathcal{Y}) = \min \left\{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible,} \right. \\
\left. \mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \right\} \in \{0, 1, \ldots, +\infty\}.$$

cat is *homotopy invariant* and *monotonic increasing* by inclusion.

Classical result. If \mathcal{X} is a complete Banach manifold and $f : \mathcal{X} \to \mathbb{R}$ is C^1, bounded from below, and satisfies (PS), then f has at least $\text{cat}(\mathcal{X})$ critical points.

More generally, cat gives a lower estimate on the number of *fixed points* of flows.

(fixed pts of the gradient flow of f=critical pts. of f)

In the case of Riemannian manifolds with *convex boundary*, one can use the *shortening flow* on the space of curves lying *inside* the manifold, and whose endpoints are on the boundary.
Ljusternik–Schnirelman category

Def. \mathcal{X} top. space, $\mathcal{Y} \subset \mathcal{X}$ is **contractible in** \mathcal{X} if $i: \mathcal{Y} \to \mathcal{X}$ is homotopic to a constant.

LS-category

$$\text{cat}_{\mathcal{X}}(\mathcal{Y}) = \min \left\{ n : \exists C_1, \ldots, C_n \subset \mathcal{X} \text{ open and contractible}, \right.$$ \[\mathcal{Y} \subset \bigcup_{k=1}^{n} C_k \left\} \in \{0, 1, \ldots, +\infty\}. \]

cat is **homotopy invariant** and **monotonic increasing** by inclusion.

Classical result. If \mathcal{X} is a complete Banach manifold and $f: \mathcal{X} \to \mathbb{R}$ is C^1, bounded from below, and satisfies (PS), then f has at least $\text{cat}(\mathcal{X})$ critical points.

More generally, cat gives a lower estimate on the number of **fixed points** of flows. (fixed pts of the gradient flow of f=critical pts. of f)

In the case of Riemannian manifolds with convex boundary, one can use the **shortening flow** on the space of curves lying inside the manifold, and whose endpoints are on the boundary.

In the concave case, the shortening flow is not well defined on such space.
We will reproduce the “ingredients” of the classical LS theory in a *nonsmooth* context:
Abstract LS theory

We will reproduce the “ingredients” of the classical LS theory in a non-smooth context:

- a metric space \mathcal{M}. consists of curves having image in an open neighborhood of $\overline{\Omega} \cong S^{m-1} \times [0, 1]$, whose endpoints remain near $\partial \Omega$.
Abstract LS theory

We will reproduce the “ingredients” of the classical LS theory in a *nonsmooth* context:

- a **metric space** \mathcal{M} consists of curves having image in an open neighborhood of $\overline{\Omega} \cong S^{m-1} \times [0, 1]$, whose endpoints remain near $\partial\Omega$.

- a **compact subset** $\mathcal{C} \subset \mathcal{M}$, homeomorphic to the sphere S^{m-1}.

Abstract LS theory

We will reproduce the “ingredients” of the classical LS theory in a non-smooth context:

- a metric space \mathcal{M} consists of curves having image in an open neighborhood of $\overline{\Omega} \cong S^{m-1} \times [0,1]$, whose endpoints remain near $\partial \Omega$.

- a compact subset $\mathcal{C} \subset \mathcal{M}$, homeomorphic to the sphere S^{m-1}.

- a family $\tilde{\mathcal{H}}$ consisting of pairs (\mathcal{D}, h), where $\mathcal{D} \subset \mathcal{C}$ is compact and $h : [0,1] \times \mathcal{D} \to \mathcal{M}$ is a continuous map with $h(0,x) = x$ for all x, and satisfying other properties that will be discussed ahead.
Abstract LS theory

We will reproduce the “ingredients” of the classical LS theory in a nonsmooth context:

- **a metric space** \(\mathcal{M} \). consists of curves having image in an open neighborhood of \(\overline{\Omega} \cong S^{m-1} \times [0, 1] \), whose endpoints remain near \(\partial \Omega \).

- **a compact subset** \(\mathcal{C} \subset \mathcal{M} \), homeomorphic to the sphere \(S^{m-1} \).

- **a family** \(\tilde{\mathcal{H}} \) consisting of pairs \((\mathcal{D}, h) \), where \(\mathcal{D} \subset \mathcal{C} \) is compact and \(h : [0, 1] \times \mathcal{D} \to \mathcal{M} \) is a continuous map with \(h(0, x) = x \) for all \(x \), and satisfying other properties that will be discussed ahead.

- **a functional** \(\mathcal{F} \), that associates to each pair \((\mathcal{D}, h) \in \tilde{\mathcal{H}} \) a real number \(\mathcal{F}(\mathcal{D}, h) \).
We will reproduce the “ingredients” of the classical LS theory in a *nonsmooth* context:

- a **metric space** M consists of curves having image in an open neighborhood of $\Omega \cong S^{m-1} \times [0, 1]$, whose endpoints remain near $\partial \Omega$.

- a **compact subset** $\mathcal{C} \subset M$, homeomorphic to the sphere S^{m-1}.

- a **family** \tilde{H} consisting of pairs (D, h), where $D \subset \mathcal{C}$ is compact and $h : [0, 1] \times D \to M$ is a continuous map with $h(0, x) = x$ for all x, and satisfying other properties that will be discussed ahead.

- a **functional** F, that associates to each pair $(D, h) \in \tilde{H}$ a real number $F(D, h)$.

We define a suitable notion of **critical pt** for F, in such a way that distinct critical values of F correspond to *geometrically distinct* OGC’s in Ω.
We will reproduce the “ingredients” of the classical LS theory in a *nonsmooth* context:

- A **metric space** \mathcal{M} consists of curves having image in an open neighborhood of $\overline{\Omega} \cong S^{m-1} \times [0,1]$, whose endpoints remain near $\partial \Omega$.

- A **compact subset** $\mathcal{C} \subset \mathcal{M}$, homeomorphic to the sphere S^{m-1}.

- A **family** $\tilde{\mathcal{H}}$ consisting of pairs (\mathcal{D}, h), where $\mathcal{D} \subset \mathcal{C}$ is compact and $h : [0, 1] \times \mathcal{D} \to \mathcal{M}$ is a continuous map with $h(0, x) = x$ for all x, and satisfying other properties that will be discussed ahead.

- A **functional** \mathcal{F}, that associates to each pair $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ a real number $\mathcal{F}(\mathcal{D}, h)$.

We define a suitable notion of **critical pt** for \mathcal{F}, in such a way that distinct critical values of \mathcal{F} correspond to **geometrically distinct** OGC’s in $\overline{\Omega}$.

We prove two **deformation lemmas** for the sublevels of \mathcal{F}, and we prove a (PS) condition for \mathcal{F}, obtaining the existence of $\text{cat}(\mathcal{C}) = \text{cat}(S^{m-1}) = 2$ distinct critical values of \mathcal{F}.

For the **symmetric case**, a lower estimate is given by $\text{cat}(\mathbb{R}P^{m-1}) = m$.

School in Nonlinear Analysis and Calculus of Variations – p. 19/68
Deformation Lemmas and critical pts

1DL: noncritical levels of \mathcal{F} can be deformed by homotopies in $\tilde{\mathcal{H}}$ into lower levels;
Deformation Lemmas and critical pts

1DL: noncritical levels of \mathcal{F} can be *deformed* by homotopies in $\tilde{\mathcal{H}}$ into lower levels;

2DL: a similar deformation exists also for critical levels of \mathcal{F}, provided that suitable neighborhoods of the critical pts are removed.
Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by homotopies in \widetilde{H} into lower levels;

2DL: a similar deformation exists also for critical levels of F, provided that suitable neighborhoods of the critical pts are removed.

$i = 1, 2$: $\Gamma_i = \{D \in \mathcal{C} : \text{cat}(D) \geq i\}$, $c_i = \inf_{D \in \Gamma_i} \frac{F(D, h)}{(D, h) \in \widetilde{H}}$

One then proves:
Deformation Lemmas and critical pts

1DL: noncritical levels of \(\mathcal{F} \) can be deformed by homotopies in \(\tilde{\mathcal{H}} \) into lower levels;

2DL: a similar deformation exists also for critical levels of \(\mathcal{F} \), provided that suitable neighborhoods of the critical pts are removed.

\[i = 1, 2: \quad \Gamma_i = \{ \mathcal{D} \in \mathcal{C} : \text{cat}(\mathcal{D}) \geq i \} , \quad c_i = \inf_{\mathcal{D} \in \Gamma_i, (\mathcal{D}, h) \in \tilde{\mathcal{H}}} \mathcal{F}(\mathcal{D}, h) \]

One then proves:

\[c_i > 0 \text{ and } c_i < +\infty; \]
Deformation Lemmas and critical pts

1DL: noncritical levels of \mathcal{F} can be deformed by homotopies in $\tilde{\mathcal{H}}$ into lower levels;

2DL: a similar deformation exists also for critical levels of \mathcal{F}, provided that suitable neighborhoods of the critical pts are removed.

$i = 1, 2$: $\Gamma_i = \{ \mathcal{D} \in \mathcal{C}: \text{cat}(\mathcal{D}) \geq i \}$, $c_i = \inf_{\mathcal{D} \in \Gamma_i} \mathcal{F}(\mathcal{D}, h)_{(\mathcal{D}, h) \in \tilde{\mathcal{H}}}$

One then proves:

- $c_i > 0$ and $c_i < +\infty$;
- $c_1 \leq c_2$;
Deformation Lemmas and critical pts

1DL: noncritical levels of \mathcal{F} can be deformed by homotopies in $\tilde{\mathcal{H}}$ into lower levels;

2DL: a similar deformation exists also for critical levels of \mathcal{F}, provided that suitable neighborhoods of the critical pts are removed.

$i = 1, 2$: $\Gamma_i = \{ \mathcal{D} \in \mathcal{C} : \text{cat}(\mathcal{D}) \geq i \}$, $c_i = \inf_{\mathcal{D} \in \Gamma_i} \mathcal{F}(\mathcal{D}, h)$

One then proves:

1. $c_i > 0$ and $c_i < +\infty$;
2. $c_1 \leq c_2$;
3. each c_i is a critical value, by 1DL;
Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by homotopies in $\tilde{\mathcal{H}}$ into lower levels;

2DL: a similar deformation exists also for critical levels of F, provided that suitable neighborhoods of the critical pts are removed.

$i = 1, 2$: $\Gamma_i = \{D \in \mathcal{C} : \text{cat}(D) \geq i\}, \quad c_i = \inf_{D \in \Gamma_i, (D, h) \in \tilde{\mathcal{H}}} F(D, h)$

One then proves:

$\bullet \quad c_i > 0$ and $c_i < +\infty$;

$\bullet \quad c_1 \leq c_2$;

$\bullet \quad$ each c_i is a critical value, by 1DL; $c_1 < c_2$ by 2DL.
Basic notations

\[\overline{\Omega} \cong S^{m-1} \times [0, 1] \text{ strongly concave}, \overline{\Omega} \subset \mathbb{R}^m, D_1, D_2 \cong S^{m-1} \text{ conn. comp. of } \partial \Omega. \]
$\overline{\Omega} \cong S^{m-1} \times [0, 1]$ strongly concave, $\overline{\Omega} \subset \mathbb{R}^m$, $D_1, D_2 \cong S^{m-1}$ conn. comp. of $\partial \Omega$.

$x \in H^1([a, b], \mathbb{R}^m), \|x\|_{a,b} = \left(\frac{1}{2} \left(\|x(a)\| + \int_a^b \|\dot{x}(s)\|^2 \, ds\right)\right)^{\frac{1}{2}}, \|x\|_{L^\infty} \leq \|x\|_{a,b}$.
$\overline{\Omega} \cong S^{m-1} \times [0, 1]$ strongly concave, $\overline{\Omega} \subset \mathbb{R}^m$, $D_1, D_2 \cong S^{m-1}$ conn. comp. of $\partial \Omega$.

$x \in H^1([a, b], \mathbb{R}^m), \|x\|_{a,b} = \left(\frac{1}{2} (\|x(a)\| + \int_a^b \|\dot{x}(s)\| d s)\right)^{1/2}, \|x\|_{L\infty} \leq \|x\|_{a,b}$.

$\phi : \mathbb{R}^m \to \mathbb{R}, \Omega = \phi^{-1}(-\infty, 0[, \partial \Omega = \phi^{-1}(0), \ d\phi \neq 0 \ on \ \partial \Omega \ and \ \text{Hess}(\phi)[v,v] < 0 \ for \ v \in T(\partial \Omega) \ \{0\}$.
Basic notations

\[\overline{\Omega} \cong S^{m-1} \times [0, 1] \text{ strongly concave}, \overline{\Omega} \subset \mathbb{R}^m, D_1, D_2 \cong S^{m-1} \text{ conn. comp. of } \partial \Omega. \]

\[x \in H^1([a, b], \mathbb{R}^m), \|x\|_{a, b} = \left(\frac{1}{2} \left(\|x(a)\| + \int_a^b \|\dot{x}(s)\|^2 \, ds \right) \right)^{\frac{1}{2}}, \|x\|_{L^\infty} \leq \|x\|_{a, b}. \]

\[\phi : \mathbb{R}^m \to \mathbb{R}, \Omega = \phi^{-1}([-\infty, 0[), \partial \Omega = \phi^{-1}(0), d\phi \neq 0 \text{ on } \partial \Omega \text{ and } \text{Hess}(\phi)[v, v] < 0 \text{ for } v \in T(\partial \Omega) \setminus \{0\}. \]

\[\exists \delta_0 > 0 \text{ such that } \text{Hess}(\phi)_x[v, v] < 0 \text{ for all } x \in \phi^{-1}([-\delta_0, \delta_0]) \text{ and all } v \neq 0 \text{ with } d\phi_x[v] = 0. \]
$\Omega \cong S^{m-1} \times [0, 1]$ strongly concave, $\Omega \subset \mathbb{R}^m$, $D_1, D_2 \cong S^{m-1}$ conn. comp. of $\partial \Omega$.

$x \in H^1([a, b], \mathbb{R}^m)$, $\|x\|_{\alpha, \beta} = \left(\frac{1}{2} \left(\|x(a)\| + \int_a^b \|\dot{x}(s)\|^2 \, ds \right) \right)^{\frac{1}{2}}$, $\|x\|_{L^\infty} \leq \|x\|_{\alpha, \beta}$.

$\phi : \mathbb{R}^m \rightarrow \mathbb{R}$, $\Omega = \phi^{-1}([-\infty, 0])$, $\partial \Omega = \phi^{-1}(0)$, $d\phi \neq 0$ on $\partial \Omega$ and $\text{Hess}(\phi)[v, v] < 0$ for $v \in T(\partial \Omega) \setminus \{0\}$.

$\exists \delta_0 > 0$ such that $\text{Hess}(\phi)_x[v, v] < 0$ for all $x \in \phi^{-1}([-\delta_0, \delta_0])$ and all $v \neq 0$ with $d\phi_x[v] = 0$.

$\rho_0 = \min_{x \in D_1, y \in D_2} \text{dist}(x, y)$, $K_0 = \max_{\phi^{-1}([-\infty, \delta_0])} \|\nabla \phi\| < +\infty$.

School in Nonlinear Analysis and Calculus of Variations – p. 21/68
Basic notations

\(\overline{\Omega} \cong S^{m-1} \times [0, 1] \) strongly concave, \(\overline{\Omega} \subset \mathbb{R}^m \), \(D_1, D_2 \cong S^{m-1} \) conn. comp. of \(\partial \Omega \).

\(x \in H^1([a, b], \mathbb{R}^m) \), \(\|x\|_{a, b} = \left(\frac{1}{2} (\|x(a)\| + \int_a^b \|\dot{x}(s)\|^2 \, ds) \right)^{\frac{1}{2}} \), \(\|x\|_{L^\infty} \leq \|x\|_{a, b} \).

\(\phi : \mathbb{R}^m \to \mathbb{R}, \Omega = \phi^{-1}(]-\infty, 0[), \partial \Omega = \phi^{-1}(0), d\phi \neq 0 \) on \(\partial \Omega \) and \(\text{Hess}(\phi)[v, v] < 0 \) for \(v \in T(\partial \Omega) \setminus \{0\} \).

\(\exists \delta_0 > 0 \) such that \(\text{Hess}(\phi)_x[v, v] < 0 \) for all \(x \in \phi^{-1}(]-\delta_0, \delta_0[) \) and all \(v \neq 0 \) with \(d\phi_x[v] = 0 \).

\(\rho_0 = \min_{x \in D_1, y \in D_2} \text{dist}(x, y), \quad K_0 = \max_{\phi^{-1}(]-\infty, \delta_0[)} \|\nabla \phi\| < +\infty \).

\textbf{Prop.:} If \(\gamma : [a, b] \to \overline{\Omega} \) is a geo with \(\gamma(a), \gamma(b) \in \partial \Omega \), then \(\exists \tilde{s} \in]a, b[\) with \(\phi(\gamma(\tilde{s})) < -\delta_0 \).
The path spaces

Define $C_i = \text{connected components of } \phi^{-1}([0, \delta_0]) \text{ containing } D_i, \ i = 1, 2.$

$$\mathcal{M} = \left\{ x \in H^1([0, 1], \mathbb{R}^m) : \phi(x(s)) < \delta_0, \ x(0) \in C_1, \ x(1) \in C_2 \right\}$$
Define C_i = connected components of $\phi^{-1}([0, \delta_0])$ containing D_i, $i = 1, 2$.

$\mathcal{M} = \{ x \in H^1(0,1, \mathbb{R}^m) : \phi(x(s)) < \delta_0, x(0) \in C_1, x(1) \in C_2 \}$
Define $C_i = \text{connected components of } \phi^{-1}([0, \delta_0]) \text{ containing } D_i, i = 1, 2.$

$$\mathcal{M} = \left\{ x \in H^1([0,1], \mathbb{R}^m) : \phi(x(s)) < \delta_0, \ x(0) \in C_1, \ x(1) \in C_2 \right\}$$

$$\mathcal{C} \cong \left\{ \text{orthogonal segments from } D_1 \text{ to } D_2 \right\}$$

$$M_0 = \sup_{x \in \mathcal{C}} \int_0^1 g(\dot{x}, \ddot{x}) \, ds.$$
Define $C_i =$ connected components of $\phi^{-1}([0, \delta_0])$ containing $D_i, i = 1, 2$.

$\mathcal{M} = \left\{ x \in H^1([0, 1], \mathbb{R}^m) : \phi(x(s)) < \delta_0, x(0) \in C_1, x(1) \in C_2 \right\}$

$\mathcal{C} \cong \left\{ \text{orthogonal segments from } D_1 \text{ to } D_2 \right\}$

$x \in \mathcal{M}, \mathcal{J}^0_x = \left\{ [a, b] \subset [0, 1] : x([a, b]) \subset \overline{\Omega}, x(a) \in D_1, x(b) \in D_2 \right\}$

$\mathcal{J}_x = \left\{ [a, b] \in \mathcal{J}^0_x : [a, b] \text{ maximal} \right\}$

$M_0 = \sup_{x \in \mathcal{C}} \int_0^1 g(\dot{x}, \ddot{x}) \, ds$.
Define $C_i = \text{connected components of } \phi^{-1}([0, \delta_0]) \text{ containing } D_i, i = 1, 2.$

$$M = \left\{ x \in H^1([0, 1], \mathbb{R}^m) : \phi(x(s)) < \delta_0, \ x(0) \in C_1, \ x(1) \in C_2 \right\}$$

$$\mathcal{C} \cong \left\{ \text{orthogonal segments from } D_1 \text{ to } D_2 \right\}$$

$$M_0 = \sup_{x \in \mathcal{C}} \int_0^1 g(\dot{x}, \dot{x}) \, ds.$$
Define $C_i = \text{connected components of } \phi^{-1}([0, \delta_0]) \text{ containing } D_i, i = 1, 2$.

$$\mathcal{M} = \left\{ x \in H^1([0, 1], \mathbb{R}^m) : \phi(x(s)) < \delta_0, \ x(0) \in C_1, \ x(1) \in C_2 \right\}$$

$\mathcal{C} \cong \left\{ \text{orthogonal segments from } D_1 \text{ to } D_2 \right\}$

$$x \in \mathcal{M}, \ \mathcal{J}_x^0 = \left\{ [a, b] \subset [0, 1] : x([a, b]) \subset \overline{\Omega}, \ x(a) \in D_1, \ x(b) \in D_2 \right\} \text{ crossing intervals}$$

$$\mathcal{J}_x = \left\{ [a, b] \in \mathcal{J}_x^0 : [a, b] \text{ maximal} \right\}$$

Def.: $[a, b] \in \mathcal{J}_x^0$ is an M_0-interval if \(\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, ds < M_0 \).

Obs.: $x \in \mathcal{M} \implies \left| \mathcal{J}_x \right| < +\infty$: $[a, b] \in \mathcal{J}_x^0, \ b - a \geq \rho_0^2 \left(\int_a^b g(\dot{x}, \dot{x}) \, ds \right)^{-1}$.

School in Nonlinear Analysis and Calculus of Variations – p. 22/68
Def.: $c \in]0, M_0[\, N \, is \ a \ geometrically \ critical \ value \ if \ \exists \ a \ crossing \ OGC \ \gamma : [0, 1] \to \Omega \ with \ \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c$. A \ geometrically \ regular \ value \ is \ a \ number \ c \ which \ is \ not \ geometrically \ critical.
Def.: $c \in \]0, M_0[\text{ is a geometrically critical value if } \exists \text{ a crossing OGC } \gamma : [0, 1] \to \overline{\Omega} \text{ with }$

$$
\frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c.
$$

A geometrically regular value is a number c which is not geometrically critical.

Prop.: If $c_1 \neq c_2$ are GCV’s, then they correspond to geometrically distinct OGC’s.
Geometrically and variationally critical points

Def.: $c \in]0, M_0[\text{ is a } \text{geometrically critical value} \text{ if } \exists \text{ a crossing OGC } \gamma : [0, 1] \to \Omega \text{ with }$

\[\frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c. \]

A *geometrically regular value* is a number c which is not geometrically critical.

Prop.: If $c_1 \neq c_2$ are GCV’s, then they correspond to geometrically distinct OGC’s.

\[\mathcal{V}^+(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \geq 0 \text{ when } x(s) \in \phi^{-1}([0, \delta_0/2]) \right\} \]
Def.: \(c \in]0, M_0[\) is a **geometrically critical value** if \(\exists \) a crossing OGC \(\gamma : [0, 1] \to \overline{\Omega} \) with \(\frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c \). A **geometrically regular value** is a number \(c \) which is not geometrically critical.

Prop.: If \(c_1 \neq c_2 \) are GCV’s, then they correspond to geometrically distinct OGC’s.

\[
\mathcal{V}^+(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \geq 0 \text{ when } x(s) \in \phi^{-1}(0) \right\}
\]

\[
\mathcal{V}^-(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \leq 0 \text{ when } x(s) \in \phi^{-1}(0) \right\}
\]
Def.: $c \in]0, M_0[\] is a **geometrically critical value** if \exists a crossing **OGC** $\gamma : [0, 1] \rightarrow \Omega$ with $\frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c$. A **geometrically regular value** is a number c which is not geometrically critical.

Prop.: If $c_1 \neq c_2$ are **GCV's**, then they correspond to geometrically distinct **OGC**'s.

\[
\mathcal{V}^+(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \geq 0 \text{ when } x(s) \in \phi^{-1}([0, \frac{\delta_0}{2}]) \right\}
\]

\[
\mathcal{V}^-(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \leq 0 \text{ when } x(s) \in \phi^{-1}(0) \right\}
\]

Def.: $x \in \mathcal{M}$, $[a, b] \subset [0, 1]$; then $x|_{[a, b]}$ is a **variationally critical portion** of x if $x|_{[a, b]}$ is not constant and if $\int_a^b g(\dot{x}, \frac{D}{dt}V) \, dt \geq 0$ for all $V \in \mathcal{V}^+(x)$.
Geometrically and variationally critical points

Def. \(c \in]0, M_0[\) is a geometrically critical value if \(\exists \) a crossing OGC \(\gamma : [0, 1] \rightarrow \overline{\Omega} \) with \(\frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \, dt = c \). A geometrically regular value is a number \(c \) which is not geometrically critical.

Prop. If \(c_1 \neq c_2 \) are GCV’s, then they correspond to geometrically distinct OGC’s.

\[
\mathcal{V}^+(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \geq 0 \text{ when } x(s) \in \phi^{-1}(0) \right\}
\]

\[
\mathcal{V}^-(x) = \left\{ V \text{ vector field along } x : g(V(s), \nabla \phi(x(s))) \leq 0 \text{ when } x(s) \in \phi^{-1}(0) \right\}
\]

Def. \(x \in \mathcal{M}, [a, b] \subset [0, 1] \); then \(x|_{[a, b]} \) is a variationally critical portion of \(x \) if \(x|_{[a, b]} \) is not constant and if \(\int_a^b g(\dot{x}, \frac{D}{dt} V) \, dt \geq 0 \) for all \(V \in \mathcal{V}^+(x) \).

Variationally critical portions of \(x \) are curves whose geodesic energy is not decreased by “infinitesimal variations” with curves stretching outwards from \(\overline{\Omega} \).

first variation of the geodesic action functional
Lem.: \(x \in \mathcal{M}, \, [\alpha, \beta] \subset 0, 1 \) and \(t \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \, \phi(x(t)) \leq -\delta_0 \).

Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0^2} \left(\int_{\alpha}^{\beta} g(\dot{x}, \ddot{x}) \, dt \right)^{-1} \).
Classification of variationally critical portions

Lem.: \(x \in \mathcal{M}, [\alpha, \beta] \subset 0, 1 \) and \(\bar{t} \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \phi(x(\bar{t})) \leq -\delta_0 \).
Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0} \left(\int_{\alpha}^{\beta} g(\dot{x}, \ddot{x}) \, dt \right)^{-1} \).

Prop.: \(x \in \mathcal{M}, x|_{[a,b]} \) var. critical portion of \(x \) with \(x(a), x(b) \in \partial \Omega, x([a,b]) \subset \overline{\Omega} \). Then:
Classification of variationally critical portions

Lem.: \(x \in \mathcal{M}, [\alpha, \beta] \subset 0, 1 \) and \(\bar{t} \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \phi(x(\bar{t})) \leq -\delta_0 \).

Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0^2} \left(\int_{\alpha}^{\beta} g(\dot{x}, \dot{x}) \, dt \right)^{-1} \).

Prop.: \(x \in \mathcal{M}, x|_{[a,b]} \) var. critical portion of \(x \) with \(x(a), x(b) \in \partial \Omega, x([a, b]) \subset \overline{\Omega} \). Then:

\(x^{-1}(\partial \Omega) \) consists of a finite number of closed intervals and isolated pts;
Classification of variationally critical portions

Lem.: \(x \in \mathcal{M}, [\alpha, \beta] \subset 0, 1 \) and \(\bar{t} \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \phi(x(\bar{t})) \leq -\delta_0 \). Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0^2} \left(\int_{\alpha}^{\beta} g(\dot{x}, \ddot{x}) \, dt \right)^{-1} \).

Prop.: \(x \in \mathcal{M}, x|_{[a,b]} \) var. critical portion of \(x \) with \(x(a), x(b) \in \partial \Omega, x([a, b]) \subset \overline{\Omega} \). Then:

- \(x^{-1}(\partial \Omega) \) consists of a finite number of closed intervals and isolated pts;
- \(x \) is constant on each connected component of \(x^{-1}(\partial \Omega) \);
Lem.: $x \in \mathcal{M}$, $[\alpha, \beta] \subset [0, 1]$ and $\bar{t} \in]\alpha, \beta[$ such that $x(\alpha), x(\beta) \in \partial \Omega$, $\phi(x(\bar{t})) \leq -\delta_0$. Then $\beta - \alpha \geq \frac{\delta_0^2}{K_0} \left(\int_{\alpha}^{\beta} g(\dot{x}, \dot{x}) \, dt \right)^{-1}$.

Prop.: $x \in \mathcal{M}$, $x|_{[a, b]}$ var. critical portion of x with $x(a), x(b) \in \partial \Omega$, $x([a, b]) \subset \overline{\Omega}$. Then:

- $x^{-1}(\partial \Omega)$ consists of a finite number of closed intervals and isolated pts;
- x is constant on each connected component of $x^{-1}(\partial \Omega)$;
- $x|_{[a, b]}$ is piecewise C^2; the discontinuities of \dot{x} may occur on $\partial \Omega$;
Classification of variationally critical portions

Lem.: \(x \in \mathcal{M}, [\alpha, \beta] \subset 0, 1 \) and \(\bar{t} \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \phi(x(\bar{t})) \leq -\delta_0. \)
Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0} \left(\int_{\alpha}^{\beta} g(\dot{x}, \dot{x}) \, dt \right)^{-1}. \)

Prop.: \(x \in \mathcal{M}, \ x|_{[a,b]} \) var. critical portion of \(x \) with \(x(a), x(b) \in \partial \Omega, x([a, b]) \subset \overline{\Omega}. \) Then:

1. \(x^{-1}(\partial \Omega) \) consists of a finite number of closed intervals and isolated pts;
2. \(x \) is constant on each connected component of \(x^{-1}(\partial \Omega); \)
3. \(x|_{[a,b]} \) is piecewise \(C^2; \) the discontinuities of \(\dot{x} \) may occur on \(\partial \Omega; \)
4. each \(C^2 \) portion of \(x \) is a geodesic in \(\overline{\Omega}; \)
Lem.: $x \in \mathcal{M}$, $[\alpha, \beta] \subset 0, 1$ and $\bar{t} \in]\alpha, \beta[$ such that $x(\alpha), x(\beta) \in \partial \Omega$, $\phi(x(\bar{t})) \leq -\delta_0$. Then $\beta - \alpha \geq \frac{\delta_0^2}{K_0^2} \left(\int_{\alpha}^{\beta} g(\dot{x}, \dot{x}) \, dt \right)^{-1}$.

Prop.: $x \in \mathcal{M}$, $x \mid_{[a,b]}$ var. critical portion of x with $x(a), x(b) \in \partial \Omega$, $x([a,b]) \subset \overline{\Omega}$. Then:

1. $x^{-1}(\partial \Omega)$ consists of a finite number of closed intervals and isolated pts;
2. x is constant on each connected component of $x^{-1}(\partial \Omega)$;
3. $x \mid_{[a,b]}$ is piecewise C^2; the discontinuities of \dot{x} may occur on $\partial \Omega$;
4. each C^2 portion of x is a geodesic in $\overline{\Omega}$;
5. $\min \left\{ \phi(x(s)) : s \in [a,b] \right\} < -\delta_0$.

School in Nonlinear Analysis and Calculus of Variations – p. 24/68
Lem. \(x \in \mathcal{M}, [\alpha, \beta] \subset (0, 1] \) and \(\bar{t} \in]\alpha, \beta[\) such that \(x(\alpha), x(\beta) \in \partial \Omega, \phi(x(\bar{t})) \leq -\delta_0 \). Then \(\beta - \alpha \geq \frac{\delta_0^2}{K_0^2} \left(\int_\alpha^\beta g(\dot{x}, \dot{x}) \, dt \right)^{-1} \).

Prop. \(x \in \mathcal{M}, x|_{[a,b]} \) var. critical portion of \(x \) with \(x(a), x(b) \in \partial \Omega, x([a,b]) \subset \overline{\Omega} \). Then:

1. \(x^{-1}(\partial \Omega) \) consists of a finite number of closed intervals and isolated pts;
2. \(x \) is constant on each connected component of \(x^{-1}(\partial \Omega) \);
3. \(x|_{[a,b]} \) is piecewise \(C^2 \); the discontinuities of \(\dot{x} \) may occur on \(\partial \Omega_{[a]} \);
4. each \(C^2 \) portion of \(x \) is a geodesic in \(\overline{\Omega} \);
5. \(\min \{ \phi(x(s)) : s \in [a,b] \} < -\delta_0 \).
Def.: A VCP of $x \in \mathcal{M}$ is *regular* if it is C^1, *irregular* otherwise.
Def.: A VCP of $x \in \mathcal{M}$ is regular if it is C^1, irregular otherwise.

Prop.: $x \in \mathcal{M}$, $[a, b] \in J_x^0$ such that $x|_{[a, b]}$ is an irregular VCP.
Regular and irregular variationally critical portions

Def.: A VCP of \(x \in \mathcal{M} \) is *regular* if it is \(C^1 \), *irregular* otherwise.

Prop.: \(x \in \mathcal{M}, [a, b] \in \mathcal{J} \) such that \(x|_{[a,b]} \) is an irregular VCP. Then, \(\exists [\alpha, \beta] \subset [a, b] \) s.t. \(x|_{[\alpha,a]} \) and \(x|_{[b,\beta]} \) are constant in \(\partial \Omega \), \(\dot{x}(\alpha^+), \dot{x}(\beta^-) \in T(\partial \Omega)^\perp \), and one of the two occurs:
Def.: A VCP of $x \in \mathcal{M}$ is *regular* if it is C^1, *irregular* otherwise.

Prop.: $x \in \mathcal{M}$, $[a, b] \in \mathcal{J}_x^0$ such that $x|_{[a,b]}$ is an irregular VCP. Then, $\exists [\alpha, \beta] \subset [a, b]$ s.t. $x|_{[\alpha,a]}$ and $x|_{[b,\beta]}$ are constant in $\partial \Omega$, $\dot{x}(\alpha^+), \dot{x}(\beta^-) \in T(\partial \Omega)^\perp$, and one of the two occurs:

- \exists a finite number of intervals $[t_1, t_2] \subset [\alpha, \beta]$ s.t. $x([t_1, t_2]) \subset \partial \Omega$ that are maximal w.r. to this property; moreover, $x|_{[t_1,t_2]}$ is constant, and $\dot{x}(t^-_1) \neq \dot{x}(t^+_2)$.

School in Nonlinear Analysis and Calculus of Variations – p. 25/68
Regular and irregular variationally critical portions

Def.: A VCP of \(x \in \mathcal{M} \) is *regular* if it is \(C^1 \), *irregular* otherwise.

Prop.: \(x \in \mathcal{M}, [a, b] \in \mathcal{J}^0_x \) such that \(x|_{[a,b]} \) is an irregular VCP. Then, \(\exists [\alpha, \beta] \subset [a, b] \) s.t. \(x|_{[\alpha,a]} \) and \(x|_{[b,\beta]} \) are constant in \(\partial \Omega \), \(\dot{x}(\alpha^+), \dot{x}(\beta^-) \in T(\partial \Omega)^\perp \), and one of the two occurs:

1. \(\exists \) a finite number of intervals \([t_1, t_2] \subset [\alpha, \beta] \) s.t. \(x([t_1, t_2]) \subset \partial \Omega \) that are maximal w.r. to this property; moreover, \(x|_{[t_1,t_2]} \) is constant, and \(\dot{x}(t^-_1) \neq \dot{x}(t^+_2) \).

2. \(x|_{[\alpha,\beta]} \) is a crossing OGC in \(\Omega \).

second type
first type
Def.: A VCP of \(x \in \mathbb{M} \) is *regular* if it is \(C^1 \), *irregular* otherwise.

Prop.: \(x \in \mathbb{M} \), \([a, b] \in J^0_x\) such that \(x|_{[a, b]} \) is an irregular VCP. Then, \(\exists [\alpha, \beta] \subset [a, b] \) s.t. \(x|_{[\alpha, a]} \) and \(x|_{[b, \beta]} \) are constant in \(\partial \Omega \), \(\dot{x}(\alpha^+), \dot{x}(\beta^-) \in T(\partial \Omega)^\perp \), and one of the two occurs:

1. \(\exists \) a finite number of intervals \([t_1, t_2] \subset [\alpha, \beta] \) s.t. \(x([t_1, t_2]) \subset \partial \Omega \) that are maximal w.r. to this property; moreover, \(x|_{[t_1, t_2]} \) is constant, and \(\dot{x}(t_1^-) \neq \dot{x}(t_2^+) \).
2. \(x|_{[\alpha, \beta]} \) is a crossing OGC in \(\bar{\Omega} \). **second type**

Note: if \(x|_{[a, b]} \) is a regular VCP, with \([a, b] \in J^0_x\), then \(x|_{[a, b]} \) is a crossing OGC.
Regular and irregular variationally critical portions

Def.: A VCP of \(x \in \mathcal{M} \) is *regular* if it is \(C^1 \), *irregular* otherwise.

Prop.: \(x \in \mathcal{M}, [a, b] \in \mathcal{J}_x^0 \) such that \(x|_{[a,b]} \) is an irregular VCP. Then, \(\exists [\alpha, \beta] \subset [a, b] \) s.t. \(x|_{[\alpha,a]} \) and \(x|_{[b,\beta]} \) are constant in \(\partial \Omega \), \(\dot{x}(\alpha^+), \dot{x}(\beta^-) \in T(\partial \Omega)^\perp \), and one of the two occurs:

1. \(\exists \) a finite number of intervals \([t_1, t_2] \subset [\alpha, \beta]\) s.t. \(x([t_1, t_2]) \subset \partial \Omega \) that are maximal w.r. to this property; moreover, \(x|_{[t_1, t_2]} \) is constant, and \(\dot{x}(t^-_1) \neq \dot{x}(t^+_{2}) \).

2. \(x|_{[\alpha,\beta]} \) is a crossing OGC in \(\overline{\Omega} \).

Note: if \(x|_{[a,b]} \) is a regular VCP, with \([a, b] \in \mathcal{J}_x^0\), then \(x|_{[a,b]} \) is a crossing OGC.

\([t_1, t_2]\) cusp interval of the irregular variationally critical portion of \(x \)

School in Nonlinear Analysis and Calculus of Variations – p. 25/68
Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded.*
More on irregular VCP’s

Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded.*

$[t_1, t_2]$ cusp interval of $x|_{[a,b]}$, $\Theta_x(t_1, t_2) =$ angle between $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$.

Obs.: the tangential components along $\partial \Omega$ of $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$ are equal, hence, if $\Theta_x(t_1, t_2) > 0$, x is not tangent to $\partial \Omega$ at t_1.

School in Nonlinear Analysis and Calculus of Variations – p. 26/68
More on irregular VCP's

Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded.*

$[t_1, t_2]$ cusp interval of $x|_{[a,b]}$, $\Theta_x(t_1, t_2) =$ angle between $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$.

Obs.: the tangential components along $\partial \Omega$ of $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$ are equal, hence, if $\Theta_x(t_1, t_2) > 0$, x is not tangent to $\partial \Omega$ at t_1.

Prop.: If $(x_n) \subset \mathcal{M}$, $[a_n, b_n] \in \mathcal{J}_{x_n}^0$ are M_0-intervals s.t. $x_n|_{[a_n, b_n]}$ is a VCP of x_n, then (up to subsequences) $a_n \to a$, $b_n \to b$, $x_n|_{[a_n, b_n]} \to x|_{[a, b]}$, where $x|_{[a, b]}$ is a VCP of x.

School in Nonlinear Analysis and Calculus of Variations – p. 26/68
More on irregular VCP’s

Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded*.

$[t_1, t_2]$ cusp interval of $x|_{[a,b]}$, $\Theta_x(t_1, t_2) = \text{angle between } \dot{x}(t_1^-) \text{ and } \dot{x}(t_2^+)$.

Obs.: the tangential components along $\partial \Omega$ of $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$ are equal, hence, if $\Theta_x(t_1, t_2) > 0$, x is not tangent to $\partial \Omega$ at t_1.

Prop.: If $(x_n) \subset \mathcal{M}, [a_n, b_n] \in \mathcal{J}_{x_n}^0$ are M_0-intervals s.t. $x_n|_{[a_n, b_n]}$ is a VCP of x_n, then (up to subsequences) $a_n \to a, b_n \to b, \quad x_n|_{[a_n, b_n]} \to x|_{[a, b]},$ where $x|_{[a, b]}$ is a VCP of x.

Cor.: $\exists d_0 > 0$ such that $\max \Theta_x(t_1, t_2) \geq d_0$, the max being taken over all $x \in \mathcal{M}$, all M_0-intervals $[a, b] \in \mathcal{J}_{x}^0$ s.t. $x|_{[a, b]}$ is an irregular VCP of x, and all $[t_1, t_2] \subset [a, b]$ cusp interval.
More on irregular VCP’s

Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded.*

$[t_1, t_2]$ cusp interval of $x|_{[a,b]}$, $\Theta_x(t_1, t_2) =$ angle between $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$.

Obs.: the tangential components along $\partial \Omega$ of $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$ are equal, hence, if $\Theta_x(t_1, t_2) > 0$, x is not tangent to $\partial \Omega$ at t_1.

Prop.: If $(x_n) \subset \mathcal{M}$, $[a_n, b_n] \in \mathcal{J}_x^0$ are M_0-intervals s.t. $x_n|_{[a_n,b_n]}$ is a VCP of x_n, then (up to subsequences) $a_n \to a$, $b_n \to b$, $x_n|_{[a_n,b_n]} \to x|_{[a,b]}$, where $x|_{[a,b]}$ is a VCP of x.

Cor.: $\exists d_0 > 0$ such that $\max \Theta_x(t_1, t_2) \geq d_0$, the max being taken over all $x \in \mathcal{M}$, all M_0-intervals $[a, b] \in \mathcal{J}_x^0$ s.t. $x|_{[a,b]}$ is an irregular VCP of x, and all $[t_1, t_2] \subset [a, b]$ cusp interval.

Proof. Uses in a crucial way the fact that there is no WOGC.
More on irregular VCP's

Obs.: strong concavity \implies number of cusp intervals on an M_0-int. is *unif. bounded*.

$[t_1, t_2]$ cusp interval of $x|_{[a,b]}$, $\Theta_x(t_1, t_2) =$ angle between $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$.

Obs.: the tangential components along $\partial \Omega$ of $\dot{x}(t_1^-)$ and $\dot{x}(t_2^+)$ are equal, hence, if $\Theta_x(t_1, t_2) > 0$, x is not tangent to $\partial \Omega$ at t_1.

Prop.: If $(x_n) \subset \mathcal{M}$, $[a_n, b_n] \in \mathcal{J}^0_x$ are M_0-intervals s.t. $x_n|_{[a_n, b_n]}$ is a VCP of x_n, then (up to subsequences) $a_n \to a$, $b_n \to b$, $x_n|_{[a_n, b_n]} \to x|_{[a, b]}$, where $x|_{[a, b]}$ is a VCP of x.

Cor.: $\exists d_0 > 0$ such that $\max \Theta_x(t_1, t_2) \geq d_0$, the max being taken over all $x \in \mathcal{M}$, all M_0-intervals $[a, b] \in \mathcal{J}^0_x$ s.t. $x|_{[a, b]}$ is an irregular VCP of x, and all $[t_1, t_2] \subset [a, b]$ cusp interval.

Proof. Uses in a crucial way the fact that there is no WOGC.

The corollary tells us, in particular, that the (VCP)'s of first and of second type are *far from each other*.

School in Nonlinear Analysis and Calculus of Variations – p. 26/68
The classical Palais–Smale condition

Let X be a smooth Banach manifold, and let $f : X \rightarrow \mathbb{R}$ be a C^1-map.

f satisfies the (classical) Palais–Smale condition if every sequence $(x_n) \subset X$ such that:

1. $f(x_n)$ is bounded;
2. $df(x_n) \rightarrow 0$ as $n \rightarrow \infty$,

admits a converging subsequence in X.
The Palais–Smale condition

For \([a, b] \subset [0, 1]\), consider the set \(Z_{a,b}\) of curves in \(\mathcal{M}\) s.t. \(x|_{[a,b]}\) is a VCP, not necessarily contained in \(\overline{\Omega}\):

\[
Z_{a,b} = \left\{ y : [a, b] \rightarrow \phi^{-1}(-\infty, \delta_0[) : \int_a^b g(y, \frac{D}{dt} V) \, dt \geq 0 \ \forall V \in \mathcal{V}^+(y) \right\}
\]
The Palais–Smale condition

For \([a, b] \subset [0, 1]\), consider the set \(\mathcal{Z}_{a,b}\) of curves in \(\mathcal{M}\) s.t. \(x|_{[a,b]}\) is a VCP, not necessarily contained in \(\overline{\Omega}\):

\[
\mathcal{Z}_{a,b} = \left\{ y : [a, b] \to \phi^{-1}(]-\infty, \delta_0[) : \int_a^b g(y, \frac{D_t V}{A_1} V) \, dt \geq 0 \; \forall V \in V^+(y) \right\}
\]

The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all \(r > 0\), \(\exists \theta(r), \mu(r) > 0\) with the following properties: for all \(x \in \mathcal{M}\) and all \([a, b] \in \mathcal{J}_x^0\) s.t.

(a) \(\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \leq M_0\),

(b) \(\|x|_{[a,b]} - y\|_{a,b} \geq r\) for all \(y \in \mathcal{Z}_{a,b}\),

there exists a vector field \(V_x : [a, b] \to \mathbb{R}^m\) such that:
The Palais–Smale condition

For \([a, b] \subset [0, 1]\), consider the set \(Z_{a,b}\) of curves in \(\mathcal{M}\) s.t. \(x|_{[a,b]}\) is a VCP, not necessarily contained in \(\overline{\Omega}\):

\[
Z_{a,b} = \left\{ y : [a, b] \to \phi^{-1}(]-\infty, \delta_0[) : \int_a^b g(y, \frac{d}{dt} V) \, dt \geq 0 \forall V \in V^+(y) \right\}
\]

The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all \(r > 0\), \(\exists \theta(r), \mu(r) > 0\) with the following properties: for all \(x \in \mathcal{M}\) and all \([a, b] \in J_x^0\) s.t.

(a) \(\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \leq M_0\),

(b) \(\|x|_{[a,b]} - y\|_{a,b} \geq r\) for all \(y \in Z_{a,b}\),

there exists a vector field \(V_x : [a, b] \to \mathbb{R}^m\) such that:

\[
g(\nabla \phi(x(s)), V_x(s)) \geq \theta(r)\|V_x\|_{a,b} \text{ for all } s \in [a, b] \text{ with } \phi(x(s)) = 0;
\]
The Palais–Smale condition

For \([a, b] \subset [0, 1]\), consider the set \(Z_{a,b}\) of curves in \(M\) s.t. \(x|_{[a,b]}\) is a VCP, not necessarily contained in \(\overline{\Omega}\):

\[
Z_{a,b} = \left\{ y : [a, b] \rightarrow \phi^{-1}([-\infty, \delta_0]) : \int_a^b g(\dot{y}, \frac{D}{dt}V) \, dt \geq 0 \, \forall V \in V^+(y) \right\}
\]

The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all \(r > 0\), \(\exists \theta(r), \mu(r) > 0\) with the following properties: for all \(x \in M\) and all \([a, b] \in J_x^0\) s.t.

(a) \(\frac{1}{2} \int_a^b g(\dot{x}, \ddot{x}) \, dt \leq M_0\),

(b) \(\|x|_{[a,b]} - y\|_{a,b} \geq r\) for all \(y \in Z_{a,b}\),

there exists a vector field \(V_x : [a, b] \rightarrow \mathbb{R}^m\) such that:

1. \(g(\nabla \phi(x(s)), V_x(s)) \geq \theta(r) \|V_x\|_{a,b}\) for all \(s \in [a, b]\) with \(\phi(x(s)) = 0\);

2. \(\int_a^b g(\dot{x}, \frac{D}{dt}V_x) \, dt \leq -\mu(r) \|V_x\|_{a,b}\).
By the compactness of $\phi^{-1}([-\infty, \delta_0])$, $\exists \ell_0, L_0 > 0$ s.t., denoting by $\| \cdot \|_E$ the Euclidean norm and by $\| \cdot \|$ the g-norm,

$$\ell_0 \| v \|_E^2 \leq \| v \|^2 \leq L_0 \| v \|_E^2, \quad \forall x \in \phi^{-1}([-\infty, \delta_0]), \forall v \in \mathbb{R}^m.$$
By the compactness of \(\phi^{-1}([-\infty, \delta_0]) \), \(\exists \ell_0, L_0 > 0 \) s.t., denoting by \(\| \cdot \|_E \) the Euclidean norm and by \(\| \cdot \| \) the \(g \)-norm,

\[
\ell_0 \| v \|_E^2 \leq \| v \| \leq L_0 \| v \|_E^2, \quad \forall x \in \phi^{-1}([-\infty, \delta_0]), \forall v \in \mathbb{R}^m.
\]

Moreover, \(\exists G_0, L_1 = L_1(M_0) > 0 \) s.t.

\[
|g_x(v_1, v) - g_z(v_2, v)| \leq G_0 \left(\| v_1 - v_2 \|_E \| v \|_E + \| x - z \|_E \| v_1 \|_E \| v \|_E \right),
\]

for all \(x, z \in \phi^{-1}([-\infty, \delta_0]) \) and for any \(v_1, v_2, v \in \mathbb{R}^m \), and

\[
\left(\int_a^b \| \frac{D}{ds} V \|_E^2 \, ds \right)^{1/2} \leq L_1 \| V \|_{a,b}
\]

for all \(x \in \mathcal{M} \) s.t. \(\frac{1}{2} \int_a^b g(\dot{x}, \ddot{x}) \, ds \leq M_0 \), for all \(V \in H^1([a, b], \mathbb{R}^N) \) along \(x \), and for any \([a, b] \subset [0, 1] \).
For $a, b \in [0, 1]$, denote by $I_{a,b}$ the interval $[a, b]$ if $b \geq a$ and the interval $[b, a]$ if $b < a$; set:

$$D(x, \alpha, \beta, a, b) = \frac{1}{2} \int_{I_{a,\alpha} \cup I_{b,\beta}} g(\dot{x}, \dot{x}) \, dt.$$
For $a, b \in [0, 1]$, denote by $I_{a,b}$ the interval $[a, b]$ if $b \geq a$ and the interval $[b, a]$ if $b < a$; set:

$$D(x, \alpha, \beta, a, b) = \frac{1}{2} \int_{I_{a,\alpha} \cup I_{b,\beta}} g(\dot{x}, \dot{x}) \, dt.$$

Lem.: Fix $K > 0$. For any $x, z \in \mathcal{M}$, $[a, b] \subset [0, 1]$, $[a_z, b_z] \subset [0, 1]$, and $V \in H^1([0, 1], \mathbb{R}^N)$, then if $\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \leq M_0$ and $D(x, a_z, b_z, a, b) \leq K$, it is

$$\left| \int_a^b g_x(\dot{x}, \frac{D}{dt} V) \, dt - \int_{a_z}^{b_z} g_z(\dot{z}, \frac{D}{dt} V) \, dt \right| \leq \sqrt{2} \left(\sqrt{L_0 K} + G_0 \|x - z\|_{a_z, b_z} \left(1 + \sqrt{\frac{M_0 + K}{\ell_0}} \right) \right) L_1 \|V\|_{0,1},$$
For $a, b \in [0, 1]$, denote by $I_{a,b}$ the interval $[a, b]$ if $b \geq a$ and the interval $[b, a]$ if $b < a$; set:

$$D(x, \alpha, \beta, a, b) = \frac{1}{2} \int_{I_{a,\alpha} \cup I_{b,\beta}} g(\dot{x}, \dot{x}) \, dt.$$

Lem.: Fix $K > 0$. For any $x, z \in \mathcal{M}$, $[a, b] \subset [0, 1]$, $[a_z, b_z] \subset [0, 1]$, and $V \in H^1([0, 1], \mathbb{R}^N)$, then if $\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \leq M_0$ and $D(x, a_z, b_z, a, b) \leq K$, it is

$$\left| \int_a^b g_x(\dot{x}, \frac{D}{dt} V) \, dt - \int_{a_z}^{b_z} g_z(\dot{z}, \frac{D}{dt} V) \, dt \right| \leq$$

$$\sqrt{2} \left(\sqrt{L_0 K + G_0} \|x - z\|_{a_z, b_z} \left(1 + \sqrt{\frac{M_0 + K}{\ell_0}} \right) \right) L_1 \|V\|_{0,1},$$

Define:

$$E(r) = \frac{\mu(r)^2}{32L_1^2 L_0}. $$
Prop.: For $r > 0$, let $\theta(r), \mu(r) > 0$ be as in PS. For all $x \in \mathcal{M}$ and for all $[a, b] \in \mathcal{J}_x$ for which (a) and (b) of PS hold, let V_x be the vector field in PS. Extend V_x to $[0, 1]$ making it constant outside $[a, b]$.
Construction of local vector fields

Prop.: For \(r > 0 \), let \(\theta(r), \mu(r) > 0 \) be as in PS. For all \(x \in \mathcal{M} \) and for all \([a, b] \in \mathcal{J}_x^0\) for which (a) and (b) of PS hold, let \(V_x \) be the vector field in PS. Extend \(V_x \) to \([0, 1]\) making it constant outside \([a, b]\). Then, \(\exists [\alpha_x, \beta_x] \supset [a, b] \) and \(\rho(x) > 0 \) such that:
Construction of local vector fields

Prop.: For $r > 0$, let $\theta(r), \mu(r) > 0$ be as in PS. For all $x \in \mathcal{M}$ and for all $[a, b] \in \mathcal{J}_x^0$ for which (a) and (b) of PS hold, let V_x be the vector field in PS. Extend V_x to $[0, 1]$ making it constant outside $[a, b]$.

Then, $\exists [\alpha_x, \beta_x] \supset [a, b]$ and $\rho(x) > 0$ such that:

$\alpha_x < a$ if $a > 0$ and $\beta_x > b$ if $b < 1$, $\frac{1}{2} \int_{\alpha_x}^{\beta_x} g(\dot{x}, \ddot{x}) \, dt \leq M_0 + 1$;
Construction of local vector fields

Prop.: For \(r > 0 \), let \(\theta(r), \mu(r) > 0 \) be as in PS. For all \(x \in \mathcal{M} \) and for all \([a, b] \in \mathcal{J}_x^0 \) for which (a) and (b) of PS hold, let \(V_x \) be the vector field in PS. Extend \(V_x \) to \([0, 1]\) making it constant outside \([a, b]\).

Then, \(\exists [\alpha_x, \beta_x] \supset [a, b] \) and \(\rho(x) > 0 \) such that:

1. \(\alpha_x < a \) if \(a > 0 \) and \(\beta_x > b \) if \(b < 1 \), \(\frac{1}{2} \int_{\alpha_x}^{\beta_x} g(\dot{x}, \ddot{x}) \, dt \leq M_0 + 1; \)

2. \(\sup_{s \in [\alpha_x, \beta_x]} \phi(x(s)) \leq \frac{1}{4} \delta_0; \)
Construction of local vector fields

Prop.: For \(r > 0 \), let \(\theta(r), \mu(r) > 0 \) be as in PS. For all \(x \in \mathcal{M} \) and for all \([a, b] \in J_x^0\) for which (a) and (b) of PS hold, let \(V_x \) be the vector field in PS.

Extend \(V_x \) to \([0, 1]\) making it constant outside \([a, b]\).

Then, \(\exists [\alpha_x, \beta_x] \supset [a, b] \) and \(\rho(x) > 0 \) such that:

1. \(\alpha_x < a \) if \(a > 0 \) and \(\beta_x > b \) if \(b < 1 \), \(\frac{1}{2} \int_{\alpha_x}^{\beta_x} g(\dot{x}, \dot{x}) \, dt \leq M_0 + 1; \)
2. \(\sup_{s \in [\alpha_x, \beta_x]} \phi(x(s)) \leq \frac{1}{4} \delta_0; \)
3. \(z \in \mathcal{M} \) and \(\|x - z\|_{L^\infty} < \rho(x) \) imply the following:
 (i) \(g(\nabla \phi(z(s)), V_x(s)) \geq \frac{1}{2} \theta(r) \|V_x\|_{\alpha_x, \beta_x} \) for all \(s \in [\alpha_x, \beta_x] \) with \(\|V_x\|_{\alpha_x, \beta_x} \);
 (ii) \(\sup_{s \in [\alpha_x, \beta_x]} \phi(z(s)) \leq \frac{1}{2} \delta_0; \)
Construction of local vector fields

Prop.: For $r > 0$, let $\theta(r), \mu(r) > 0$ be as in PS. For all $x \in \mathcal{M}$ and for all $[a, b] \in J^0_x$ for which (a) and (b) of PS hold, let V_x be the vector field in PS. Extend V_x to $[0, 1]$ making it constant outside $[a, b]$. Then, $\exists [\alpha_x, \beta_x] \supset [a, b]$ and $\rho(x) > 0$ such that:

1. $\alpha_x < a$ if $a > 0$ and $\beta_x > b$ if $b < 1$, $\frac{1}{2} \int_{\alpha_x}^{\beta_x} g(\dot{x}, \dot{x}) \, dt \leq M_0 + 1$;
2. $\sup_{s \in [\alpha_x, \beta_x]} \phi(x(s)) \leq \frac{1}{4} \delta_0$;
3. $z \in \mathcal{M}$ and $\|x - z\|_{L^\infty} < \rho(x)$ imply the following:
 (i) $g(\nabla \phi(z(s)), V_x(s)) \geq \frac{1}{2} \theta(r) \|V_x\|_{\alpha_x, \beta_x}$ for all $s \in [\alpha_x, \beta_x]$ with $0 \leq \phi(z(s)) \leq \frac{1}{2} \delta_0$;
 (ii) $\sup_{s \in [\alpha_x, \beta_x]} \phi(z(s)) \leq \frac{1}{2} \delta_0$;
4. for all $z \in \mathcal{M}$, for all $[a_z, b_z] \in J_z$ with $[a_z, b_z] \subset [\alpha_x, \beta_x]$, with $\|x - z\|_{a_z, b_z} < \rho(x)$ and with $D(x, a_z, b_z, a, b) < E(r)$, then:
 $$\int_{a_z}^{b_z} g(\dot{z}, \frac{d}{dt} V_x) \, dt \leq -\frac{1}{2} \mu(r) \|V_x\|_{\alpha_x, \beta_x}.$$
Interpretation of the constant $E(r)$

By the definition of $D(x, a_z, b_z, a, b)$, the number $E(r)$ gives a bound on the admissible difference between the energy of $x|_{[a,b]}$ and $x|_{[a_z,b_z]}$, to obtain a rate of decrease $\mu(r)/2$ for the quantity $\frac{1}{2} \int_{a_z}^{b_z} g(\dot{z}, \ddot{z}) \, ds$, when $\|x - z\|_{a_z,b_z} < \rho(x)$.
"Genuine" crossing intervals

Def.: $\mathcal{D} \subset \mathcal{C}$, $h : [0, 1] \times \mathcal{D} \xrightarrow{C^0} \mathcal{M}$, $\gamma \in \mathcal{D}$, $\tau \in [0, 1]$. An interval $[a_\tau, b_\tau] \in \mathcal{J}_{h(\tau, \gamma)}$ is h-genuine if for all $\tau' \in [0, \tau]$ there exists $[a_{\tau'}, b_{\tau'}] \in \mathcal{J}_{h(\tau', \gamma)}$ such that $[a_\tau, b_\tau] \subset [a_{\tau'}, b_{\tau'}]$.

For $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ and $z \in h(1, \mathcal{D})$, set:

$$\mathcal{J}_z^h = \{ [a, b] \in \mathcal{J}_z : [a, b] \text{ is } h\text{-genuine} \}$$
Def.: \(\mathcal{D} \subset \mathcal{C} \), \(h : [0, 1] \times \mathcal{D} \xrightarrow{C^0} \mathcal{M} \), \(\gamma \in \mathcal{D} \), \(\tau \in [0, 1] \). An interval \([a_\tau, b_\tau] \in J_{h(\tau, \gamma)}\) is \(h \)-genuine if for all \(\tau' \in [0, \tau] \) there exists \([a_{\tau'}, b_{\tau'}] \in J_{h(\tau', \gamma)}\) such that \([a_\tau, b_\tau] \subset [a_{\tau'}, b_{\tau'}] \).

For \((\mathcal{D}, h) \in \tilde{\mathcal{H}}\) and \(z \in h(1, \mathcal{D}) \), set:

\[
J^h_z = \{ [a, b] \in J_z : [a, b] \text{ is } h \text{-genuine} \}
\]

\[
\widehat{J}^h_z(\mathcal{D}) = \left\{ [a, b] \subset [0, 1] : \forall s \in [a, b] \exists [\alpha, \beta] \subset [a, b] \text{ such that } s \in [\alpha, \beta] \text{ and there exists } z_n \subset h(1, \mathcal{D}) \text{ and } [\alpha_n, \beta_n] \in J^h_{z_n} \text{ such that } \right\}
\]

\[z_n |_{[\alpha_n, \beta_n]} \rightarrow z |_{[\alpha, \beta]}, \text{ and } [a, b] \text{ is maximal w.r. to such property} \}
Def.: \(D \subset \mathcal{C}, \ h : [0, 1] \times D \stackrel{C^0}{\rightarrow} \mathcal{M}, \ \gamma \in D, \ \tau \in [0, 1]. \) An interval \([a_\tau, b_\tau] \in J_{h(\tau, \gamma)}\) is \(h \)-genuine if for all \(\tau' \in [0, \tau] \) there exists \([a_{\tau'}, b_{\tau'}] \in J_{h(\tau', \gamma)}\) such that \([a_\tau, b_\tau] \subset [a_{\tau'}, b_{\tau'}]\).

For \((D, h) \in \tilde{\mathcal{H}}\) and \(z \in h(1, D)\), set:

\[
J^h_z = \{ [a, b] \in J_z : [a, b] \text{ is } h \text{-genuine} \}
\]

\[
\hat{J}^h_z(D) = \{ [a, b] \subset [0, 1] : \forall s \in [a, b] \exists [\alpha, \beta] \subset [a, b] \text{ such that } s \in [\alpha, \beta] \\
\text{and there exists } (z_n) \subset h(1, D) \text{ and } [\alpha_n, \beta_n] \in J^h_{z_n} \text{ such that } \\
z_n|_{[\alpha_n, \beta_n]} \to z|_{[\alpha, \beta]}, \text{ and } [a, b] \text{ is maximal w.r. to such property} \}
\]

Obs.: \(\hat{J}^h_z(D) \) is always non empty. If \(z \in h(1, D) \) and \([a, b] \in J^h_z\), then \([a, b] \in \hat{J}^h_z(D)\).
Admissible homotopies

Def.: A set of *admissible homotopies* \mathcal{H} of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps $h : [0, 1] \times \mathcal{D} \to \mathcal{M}$, with \mathcal{D} closed subset of \mathcal{C}, such that:
Def. A set of *admissible homotopies* \(\mathcal{H} \) of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps \(h : [0, 1] \times \mathcal{D} \rightarrow \mathcal{M} \), with \(\mathcal{D} \) closed subset of \(\mathcal{C} \), such that:

1. \(h(0, \cdot) \) is the inclusion of \(\mathcal{D} \) into \(\mathcal{M} \);
Def.: A set of *admissible homotopies* \mathcal{H} of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps $h : [0, 1] \times \mathcal{D} \to \mathcal{M}$, with \mathcal{D} closed subset of \mathcal{C}, such that:

1. $h(0, \cdot)$ is the inclusion of \mathcal{D} into \mathcal{M};

2. if $h(\tau_0, \gamma)(s) \notin \overline{\Omega}$, then $h(\tau, \gamma)(s) \notin \overline{\Omega}$ for all $\tau \geq \tau_0$;
Def.: A set of *admissible homotopies* \mathcal{H} of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps $h : [0, 1] \times \mathcal{D} \to \mathcal{M}$, with \mathcal{D} closed subset of \mathfrak{C}, such that:

1. $h(0, \cdot)$ is the inclusion of \mathcal{D} into \mathcal{M};
2. if $h(\tau_0, \gamma)(s) \notin \overline{\Omega}$, then $h(\tau, \gamma)(s) \notin \overline{\Omega}$ for all $\tau \geq \tau_0$;
3. for all $x \in h(1, \mathcal{D})$, every $[a, b] \in \overline{\mathcal{J}}_z^h(\mathcal{D})$ is an M_0-interval, i.e., $\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt < M_0$.
Admissible homotopies

Def.: A set of *admissible homotopies* \mathcal{H} of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps $h : [0, 1] \times D \to \mathcal{M}$, with D closed subset of \mathcal{C}, such that:

1. $h(0, \cdot)$ is the inclusion of D into \mathcal{M};
2. if $h(\tau_0, \gamma)(s) \not\in \Omega$, then $h(\tau, \gamma)(s) \not\in \Omega$ for all $\tau \geq \tau_0$;
3. for all $x \in h(1, D)$, every $[a, b] \in \mathcal{J}^h_a(D)$ is an M_0-interval, i.e.,
 \[\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt < M_0. \]

$$\mathcal{H} = \left\{ (D, h) : D \text{ is a closed subset of } \mathcal{C}, \text{ and } h : [0, 1] \times D \to \mathcal{M} \right\}$$

is a continuous homotopy satisfying (1), (2), (3) above.
Admissible homotopies

Def.: A set of *admissible homotopies* \mathcal{H} of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps $h : [0, 1] \times \mathcal{D} \to \mathcal{M}$, with \mathcal{D} closed subset of \mathcal{C}, such that:

1. $h(0, \cdot)$ is the inclusion of \mathcal{D} into \mathcal{M};
2. if $h(\tau_0, \gamma)(s) \notin \overline{\Omega}$, then $h(\tau, \gamma)(s) \notin \overline{\Omega}$ for all $\tau \geq \tau_0$;
3. for all $x \in h(1, \mathcal{D})$, every $[a, b] \in \tilde{\mathcal{J}}_{\mathcal{D}}(\mathcal{D})$ is an M_0-interval, i.e., $\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt < M_0$.

$$\mathcal{H} = \left\{ (\mathcal{D}, h) : \mathcal{D} \text{ is a closed subset of } \mathcal{C}, \text{ and } h : [0, 1] \times \mathcal{D} \to \mathcal{M} \text{ is a continuous homotopy satisfying (1), (2), (3) above.} \right\}$$

Obs. 1: Defining the *constant homotopy*: $h_0(\tau, x) \equiv x$ for all $x \in \mathcal{C}$, \mathcal{H} contains (\mathcal{C}, h_0).
Admissible homotopies

Def.: A set of *admissible homotopies* \(\mathcal{H} \) of our variational problem (that will be used in a crucial preparatory deformation result) consists of all continuous maps \(h : [0, 1] \times D \to M \), with \(D \) closed subset of \(\mathcal{C} \), such that:

1. \(h(0, \cdot) \) is the inclusion of \(D \) into \(M \);
2. if \(h(\tau_0, \gamma)(s) \not\in \overline{\Omega} \), then \(h(\tau, \gamma)(s) \not\in \overline{\Omega} \) for all \(\tau \geq \tau_0 \);
3. for all \(x \in h(1, D) \), every \([a, b] \in \mathcal{J}_z^h(D) \) is an \(M_0 \)-interval, i.e.,
\[
\frac{1}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt < M_0.
\]

\[\mathcal{H} = \left\{ (D, h) : D \text{ is a closed subset of } \mathcal{C}, \text{ and } h : [0, 1] \times D \to M \right\} \]

is a continuous homotopy satisfying (1), (2), (3) above.

Obs. 1: Defining the *constant homotopy*: \(h_0(\tau, x) \equiv x \) for all \(x \in \mathcal{C} \), \(\mathcal{H} \) contains \((\mathcal{C}, h_0)\).

Obs. 2: There exists \(N > 0 \) (independent of \(x, D \) and \(h \)) such that \(|\mathcal{J}_z^h(D)| \leq N \).
Concatenation of homotopies

\[F_1, F_2 \subset \mathcal{M} \] closed sets

\[h_i : [0, 1] \times F_i \xrightarrow{C^0} \mathcal{M}, \ i = 1, 2 \]

If \(h_1(1, F_1) \subset F_2 \), then one defines the concatenation:

\[h_1 \star h_2 : [0, 1] \times F_1 \longrightarrow \mathcal{M} \]

\[
h_1 \star h_2(t, x) = \begin{cases}
 h_1(2t, x), & \text{if } t \in [0, \frac{1}{2}]; \\
 h_2(2t - 1, h_1(1, x)), & \text{if } t \in \left] \frac{1}{2}, 1 \right].
\end{cases}
\]
Consider the following functional $F : \mathcal{H} \to \mathbb{R}^+$:

$$F(\mathcal{D}, h) = \sup \left\{ \frac{b-a}{2} \int_a^b g(\dot{x}, \ddot{x}) \, dt : x \in h(1, \mathcal{D}), \ [a, b] \in \mathcal{J}_x^h(\mathcal{D}) \right\}$$
The functional F

Consider the following functional $F : \mathcal{H} \to \mathbb{R}^+$:

$$F(D, h) = \sup \left\{ \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt : x \in h(1, D), \ [a, b] \in \mathcal{J}_x^h(D) \right\}$$

Obs. 1: $\frac{b-a}{2} \int_a^b g(\dot{y}, \dot{y}) \, dt = \frac{1}{2} \int_0^1 g(y_{a,b}, \dot{y}_{a,b}) \, ds$, where $y_{a,b}$ is the affine reparameterization of $y|_{[a,b]}$ on the interval $[0, 1]$.
Consider the following functional $F : \mathcal{H} \to \mathbb{R}^+$:

$$F(D, h) = \sup \left\{ \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt : x \in h(1, D), \ [a, b] \in \tilde{\mathcal{J}}_x^h(D) \right\}$$

Obs. 1: $\frac{b-a}{2} \int_a^b g(\dot{y}, \dot{y}) \, dt = \frac{1}{2} \int_0^1 g(y_{a,b}, y_{a,b}) \, ds$, where $y_{a,b}$ is the affine reparameterization of $y|_{[a,b]}$ on the interval $[0, 1]$.

Obs. 2: for all $(D, h) \in \mathcal{H}$, $\frac{1}{2} \rho_0^2 \leq F(D, h) \leq \frac{1}{2} M_0$.
An “outward pushing” deformation

Lemma

\[Z_{a,b}^1 = \{ y \in H^1([a,b], \phi^{-1}([-\infty, \delta_0[)) : y|_{[a,b]} \text{ is an OGC,} \]

or \[y|_{[a,b]} \text{ is an irregular variational portion of first type} \] \}
Prop.: Let \(r > 0 \) and \(0 < c_1 < c < c_2 \) be fixed. Then there exists \(\varepsilon_0 = \varepsilon_0(r, c) > 0 \) such that, for all \((D, h) \in \mathcal{H}\) satisfying:
Prop.: Let $r > 0$ and $0 < c_1 < c < c_2$ be fixed. Then there exists $\varepsilon_0 = \varepsilon_0(r, c) > 0$ such that, for all $(D, h) \in \mathcal{H}$ satisfying:

\[F(D, h) \leq c_2; \]
An “outward pushing” deformation

Lemma

Prop.: Let \(r > 0 \) and \(0 < c_1 < c < c_2 \) be fixed. Then there exists \(\varepsilon_0 = \varepsilon_0(r, c) > 0 \) such that, for all \((D, h) \in \mathcal{H}\) satisfying:

1. \(\mathcal{F}(D, h) \leq c_2 \);
2. \(\inf \{ \| x_{[a,b]} - y \|_{a,b} \} \geq r \), \(x = h(1, \gamma), \gamma \in D, \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \in [c_1, c_2] \), \([a, b] \in \mathcal{J}^h_x(D), y \in Z^1_{a,b} \).
An “outward pushing” deformation

Lemma

Prop.: Let $r > 0$ and $0 < c_1 < c < c_2$ be fixed. Then there exists $\varepsilon_0 = \varepsilon_0(r, c) > 0$ such that, for all $(D, h) \in \mathcal{H}$ satisfying:

1. $\mathcal{F}(D, h) \leq c_2$;
2. $\inf \left\{ \| x_{[a,b]} - y \|_{a,b} \right\} \geq r$,

then there exists a continuous map $H_{\varepsilon} : [0, 1] \times h(1, D) \rightarrow \mathcal{M}$ with the following properties:
Prop.: Let $r > 0$ and $0 < c_1 < c < c_2$ be fixed. Then there exists $\epsilon_0 = \epsilon_0(r, c) > 0$ such that, for all $(\mathcal{D}, h) \in \mathcal{H}$ satisfying:

1. $\mathcal{F}(\mathcal{D}, h) \leq c_2$;
2. $\inf \left\{ \| x|_{[a,b]} - y \|_{a,b} \right\} \geq r, \quad x = h(1, \gamma), \gamma \in \mathcal{D}, \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \in [c_1, c_2], [a,b] \in \widehat{\mathcal{J}}_x^h(\mathcal{D}), y \in \mathcal{Z}^1_{a,b}$

and for all $\epsilon \in]0, \epsilon_0[$ there exists a continuous map $H_\epsilon : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M}$ with the following properties:

1. $(\mathcal{D}, H_\epsilon \star h) \in \mathcal{H}$;
Prop.: Let $r > 0$ and $0 < c_1 < c < c_2$ be fixed. Then there exists $\varepsilon_0 = \varepsilon_0(r, c) > 0$ such that, for all $(D, h) \in \mathcal{H}$ satisfying:

1. $\mathcal{F}(D, h) \leq c_2$;
2. $\inf \left\{ \|x|_{[a, b]} - y\|_{a, b} \right\} \geq r,$

and for all $\varepsilon \in]0, \varepsilon_0[$ there exists a continuous map $H_\varepsilon : [0, 1] \times h(1, D) \to \mathcal{M}$ with the following properties:

1. $(D, H_\varepsilon \star h) \in \mathcal{H};$
2. if $c \leq \mathcal{F}(D, h) \leq c_2$ then $\mathcal{F}(D, H_\varepsilon \star h) \leq \mathcal{F}(D, h) - \varepsilon;$
Prop.: Let $r > 0$ and $0 < c_1 < c < c_2$ be fixed. Then there exists $\varepsilon_0 = \varepsilon_0(r, c) > 0$ such that, for all $(D, h) \in \mathcal{H}$ satisfying:

1. $\mathcal{F}(D, h) \leq c_2$;
2. $\inf \left\{ \|x|_{[a,b]} - y\|_{a,b} \right\} \geq r, \quad x = h(1, \gamma), \gamma \in D, \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \in [c_1, c_2], \quad [a, b] \in \tilde{J}_x^h(D), \ y \in Z^1_{a,b}$

and for all $\varepsilon \in]0, \varepsilon_0[$ there exists a continuous map $H_\varepsilon : [0, 1] \times h(1, D) \to \mathcal{M}$ with the following properties:

1. $(D, H_\varepsilon \ast h) \in \mathcal{H}$;
2. if $c \leq \mathcal{F}(D, h) \leq c_2$ then $\mathcal{F}(D, H_\varepsilon \ast h) \leq \mathcal{F}(D, h) - \varepsilon$;
3. there exists $T_\varepsilon > 0$, with $T_\varepsilon \to 0$ as $\varepsilon \to 0$, such that for all $z \in h(1, D)$, $\|H_\varepsilon(\tau, z) - z\|_{a,b} \leq \tau T_\varepsilon$ for all $\tau \in [0, 1]$, for all $[a, b] \in \tilde{J}_z^h(D)$.
An “outward pushing” deformation

Lemma

Prop.: Let \(r > 0 \) and \(0 < c_1 < c < c_2 \) be fixed. Then there exists \(\varepsilon_0 = \varepsilon_0(r, c) > 0 \) such that, for all \((D, h) \in \mathcal{H}\) satisfying:

1. \(F(D, h) \leq c_2 \);
2. \(\inf \{ \|x|_{[a,b]} - y\|_{a,b} \} \geq r, \quad x = h(1, \gamma), \gamma \in D, \frac{b-a}{2} \int_a^b g(\dot{x}, \dot{x}) \, dt \in [c_1, c_2] \),

and for all \(\varepsilon \in [0, \varepsilon_0[\) there exists a continuous map \(H_{\varepsilon} : [0, 1] \times h(1, D) \to \mathcal{M} \) with the following properties:

1. \((D, H_{\varepsilon} \star h) \in \mathcal{H}\);
2. if \(c \leq F(D, h) \leq c_2 \) then \(F(D, H_{\varepsilon} \star h) \leq F(D, h) - \varepsilon \);
3. there exists \(T_{\varepsilon} > 0 \), with \(T_{\varepsilon} \to 0 \) as \(\varepsilon \to 0 \), such that for all \(z \in h(1, D) \),

\[
\|H_{\varepsilon}(\tau, z) - z\|_{a,b} \leq \tau T_{\varepsilon} \quad \text{for all } \tau \in [0, 1], \text{ for all } [a, b] \in \mathcal{J}^h_x(D).
\]

Interpretation: far from crossing OGC’s and irregular VCP, the functional \(F \) decreases along homotopies of \(\mathcal{H} \).
On the proof of the outward pushing deformation Lemma

in a small neighborhood of portions of curves that are far from VCP, one uses integral curves of vector fields in V^+, discussed above;
On the proof of the outward pushing deformation Lemma

- in a small neighborhood of portions of curves that are far from VCP, one uses integral curves of vector fields in \mathcal{V}^+, discussed above;
- in a small neighborhood of irregular VCP’s of second type, one uses suitable reparameterization flows;
On the proof of the outward pushing deformation Lemma

- in a small neighborhood of portions of curves that are far from VCP, one uses integral curves of vector fields in \mathcal{V}^+, discussed above;

- in a small neighborhood of irregular VCP’s of second type, one uses suitable reparameterization flows;

- one uses the methods of Degiovanni–Marzocchi (AMPA 1994) to build a global flow using local flows.
Flows far from VCP of first type

In order to obtain existence and multiplicity results for crossing OGC’s in the strictly concave case, we must construct nonincreasing flows that *fasten* from the irregular VCP of first type.
In order to obtain existence and multiplicity results for crossing OGC’s in the strictly concave case, we must construct nonincreasing flows that *fasten* from the irregular VCP of first type.

This can be done thanks to the following crucial regularity result, due to Marino and Scolozzi (Boll. UMI 1982):
Flows far from VCP of first type

In order to obtain existence and multiplicity results for crossing OGC’s in the strictly concave case, we must construct nonincreasing flows that fasten from the irregular VCP of first type.

This can be done thanks to the following crucial regularity result, due to Marino and Scolozzi (Boll. UMI 1982):

THM. Let $y \in H^1([a, b], \Omega)$ be such that

$$\int_a^b g(\dot{y}, \frac{D}{dt} V) \, dt \geq 0, \quad \forall V \in \mathcal{V}^-(y) \text{ with } V(a) = V(b) = 0.$$

Then $y \in H^{2, \infty}([a, b], \Omega)$, and in particular y is of class C^1.
Irregular VCP’s of first type are not C^1, thus if a portion of curve is close to one of them it is far to VCP w.r. to \mathcal{V}^-.
Irregular VCP’s of first type are not C^1, thus if a portion of curve is *close* to one of them it is *far* to VCP w.r. to \mathcal{V}^\rightarrow.

$\tilde{\mathcal{H}}$ consists of pairs (\mathcal{D}, h), where $\mathcal{D} \subset \mathcal{C}$ is closed, and $h : \mathcal{D} \times [0, 1] \to \mathcal{C}$ is such that portions of curves near *cusps* of amplitude $\Theta \geq d_0$ are deformed into curves that remains *inside* Ω.
Irregular VCP’s of first type are not C^1, thus if a portion of curve is close to one of them it is far to VCP w.r. to \mathcal{V}^-.

$\tilde{\mathcal{H}}$ consists of pairs (\mathcal{D}, h), where $\mathcal{D} \subset \mathcal{C}$ is closed, and $h : \mathcal{D} \times [0, 1] \rightarrow \mathcal{C}$ is such that portions of curves near cusps of amplitude $\Theta \geq d_0$ are deformed into curves that remains inside Ω.

Such homotopies h are constructed using vector fields in \mathcal{V}^-: they deform into curves far from irregular VCP’s of first type, and the functional is not increasing by concatenation.
Moving away from irregular VCP’s of first type.

Prop. There exist \bar{T} and $\bar{r} > 0$ with the following property:
Moving away from irregular VCP’s of first type.

Prop.: There exist \bar{T} and $\bar{r} > 0$ with the following property: for all $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ there exists a continuous homotopy $H_0 : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M}$ such that:
Moving away from irregular VCP’s of first type.

Prop.: There exist \bar{T} and $\bar{r} > 0$ with the following property: for all $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ there exists a continuous homotopy $H_0 : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M}$ such that:

1. $(\mathcal{D}, H_0 \star h) \in \tilde{\mathcal{H}}$;
Moving away from irregular VCP’s of first type.

Prop. There exist \bar{T} and $\bar{r} > 0$ with the following property: for all $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ there exists a continuous homotopy $H_0 : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M}$ such that:

1. $(\mathcal{D}, H_0 \ast h) \in \tilde{\mathcal{H}}$;

2. $\mathcal{F}(\mathcal{D}, H_0 \ast h) \leq \mathcal{F}(\mathcal{D}, h)$;
Moving away from irregular VCP’s of first type.

Prop.: There exist \bar{T} and $\bar{r} > 0$ with the following property: for all $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ there exists a continuous homotopy $H_0 : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M}$ such that:

1. $(\mathcal{D}, H_0 \star h) \in \tilde{\mathcal{H}}$;

2. $\mathcal{F}(\mathcal{D}, H_0 \star h) \leq \mathcal{F}(\mathcal{D}, h)$;

3. $\|H_0(\tau, x) - x\|_{0,1} \leq \tau \bar{T}$, for all $x \in h(1, \mathcal{D})$;
Prop.: There exist \bar{T} and $\bar{r} > 0$ with the following property: for all $(D, h) \in \tilde{H}$ there exists a continuous homotopy $H_0 : [0, 1] \times h(1, D) \to M$ such that:

1. $(D, H_0 \ast h) \in \tilde{H}$;

2. $\mathcal{F}(D, H_0 \ast h) \leq \mathcal{F}(D, h)$;

3. $\|H_0(\tau, x) - x\|_{0,1} \leq \tau \bar{T}$, for all $x \in h(1, D)$;

4. for every $x \in h(1, D)$, and for every $[a, b] \in \hat{\mathcal{J}}_x^h$, it is $\|H_0(1, x)\|_{[a,b]} - y\|_{[a,b]} \geq \bar{r}$ for any $y \in M$ such that $y\|_{[a,b]}$ is an irregular VCP of first type.
Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let \(c \) be geometrically regular value. There exists \(\varepsilon = \varepsilon(c) > 0 \) such that, for all \((D, h) \in \tilde{H} \) with \(\mathcal{F}(D, h) \leq c + \varepsilon \), there exists a continuous map \(\eta : [0, 1] \times h(1, D) \to \mathcal{M} \) such that \((D, \eta \star h) \in \tilde{H} \) and \(\mathcal{F}(D, \eta \star h) \leq c - \varepsilon \).
1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let \(c \) be geometrically regular value. There exists \(\varepsilon = \varepsilon(c) > 0 \) such that, for all \((\mathcal{D}, h) \in \tilde{\mathcal{H}} \) with \(\mathcal{F}(\mathcal{D}, h) \leq c + \varepsilon \), there exists a continuous map \(\eta : [0, 1] \times h(1, \mathcal{D}) \to M \) such that \((\mathcal{D}, \eta \star h) \in \tilde{\mathcal{H}} \) and \(\mathcal{F}(\mathcal{D}, \eta \star h) \leq c - \varepsilon \).

\[
\Gamma_i = \left\{ \mathcal{D} \subset \mathcal{C} \text{ closed} : \text{cat}_\mathcal{C}(\mathcal{D}) \geq i \right\} \neq \emptyset \quad i = 1, 2
\]
Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let c be geometrically regular value. There exists $\varepsilon = \varepsilon(c) > 0$ such that, for all $(D, h) \in \tilde{H}$ with $\mathcal{F}(D, h) \leq c + \varepsilon$, there exists a continuous map $\eta : [0, 1] \times h(1, D) \to \mathcal{M}$ such that $(D, \eta \ast h) \in \tilde{H}$ and $\mathcal{F}(D, \eta \ast h) \leq c - \varepsilon$.

$\Gamma_i = \left\{ D \subset \mathcal{C} \text{ closed} : \text{cat}_\mathcal{C}(D) \geq i \right\} \neq \emptyset \quad i = 1, 2$

$$c_i = \inf_{D \in \Gamma_i, (D, h) \in \tilde{H}} \mathcal{F}(D, h)$$
1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let \(c \) be geometrically regular value. There exists \(\varepsilon = \varepsilon(c) > 0 \) such that, for all \((D, h) \in \tilde{\mathcal{H}}\) with \(\mathcal{F}(D, h) \leq c + \varepsilon \), there exists a continuous map \(\eta : [0, 1] \times h(1, D) \rightarrow \mathcal{M} \) such that \((D, \eta \ast h) \in \tilde{\mathcal{H}}\) and \(\mathcal{F}(D, \eta \ast h) \leq c - \varepsilon \).

\[
\Gamma_i = \left\{ D \subset \mathcal{C} \text{ closed} : \operatorname{cat}_{\mathcal{C}}(D) \geq i \right\} \neq \emptyset \quad i = 1, 2
\]

\[
c_i = \inf_{\substack{D \in \Gamma_i \\ (D,h)\in\tilde{\mathcal{H}}}} \mathcal{F}(D,h)
\]

Corollary: Each \(c_i \) is a geometrically critical value.
Let $r_\star > 0$ be fixed and $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$; consider the set:

$$
\mathcal{W} = \mathcal{W}(\mathcal{D}, h, r_\star) = \left\{ x \in \mathcal{M} : \exists [a, b] \in \mathcal{J}_x^h(\mathcal{D}) \text{ and a crossing OGC } \gamma : [a, b] \to \Omega \right\}
$$

s.t. $\max_{s \in [a, b]} \text{dist}(x(s), \gamma([a, b])) \leq r_\star$
Let \(r_* > 0 \) be fixed and \((\mathcal{D}, h) \in \mathcal{H} \); consider the set:

\[
\mathcal{W} = \mathcal{W}(\mathcal{D}, h, r_*) = \left\{ x \in \mathcal{M} : \exists [a, b] \in \mathcal{J}_x^h(\mathcal{D}) \text{ and a crossing OGC } \gamma : [a, b] \to \overline{\Omega} \text{ s.t. } \max_{s \in [a,b]} \text{dist}(x(s), \gamma([a, b])) \leq r_* \right\}
\]

\(\mathcal{W} \) is closed in \(\mathcal{M} \).
Preparation for the 2nd Def. Lemma

Let \(r_* > 0 \) be fixed and \((D, h) \in \tilde{\mathcal{H}}\); consider the set:

\[
\mathcal{W} = \mathcal{W}(D, h, r_*) = \left\{ x \in \mathcal{M} : \exists [a, b] \in \mathcal{F}^h_x(D) \text{ and a crossing OGC } \gamma : [a, b] \to \overline{\Omega} \right. \\
\left. \quad \quad \quad \quad \text{s.t. } \max_{s \in [a, b]} \text{dist}(x(s), \gamma([a, b])) \leq r_* \right\}
\]

\(\mathcal{W} \) is closed in \(\mathcal{M} \). Assume that the number of crossing OGC’s is finite; then \(r_* > 0 \) can be chosen small so that the following hold:
Let \(r_* > 0 \) be fixed and \((D, h) \in \tilde{\mathcal{H}}\); consider the set:

\[
\mathcal{W} = \mathcal{W}(D, h, r_*) = \left\{ x \in \mathcal{M} : \exists [a, b] \in \tilde{\mathcal{F}}^h_x(D) \text{ and a crossing OGC } \gamma : [a, b] \to \overline{\Omega} \text{ s.t. } \max_{s \in [a, b]} \text{dist}(x(s), \gamma([a, b])) \leq r_* \right\}
\]

\(\mathcal{W} \) is closed in \(\mathcal{M} \). Assume that the number of crossing OGC’s is finite; then \(r_* > 0 \) can be chosen small so that the following hold:

1. for all \(x \in \mathcal{W} \), for all \([a, b] \in \mathcal{J}^0_x\) there exists at most one OGC \(\gamma \) satisfying
Let $r_* > 0$ be fixed and $(D, h) \in \mathcal{H}$; consider the set:

$$\mathcal{W} = \mathcal{W}(D, h, r_*) = \left\{ x \in \mathcal{M} : \exists [a, b] \in \mathcal{J}_x^h(D) \text{ and a crossing OGC } \gamma : [a, b] \to \overline{\Omega} \right\}$$

$$\text{s.t. } \max_{s \in [a, b]} \text{dist}(x(s), \gamma([a, b])) \leq r_*$$

\mathcal{W} is closed in \mathcal{M}. Assume that the number of crossing OGC’s is finite; then $r_* > 0$ can be chosen small so that the following hold:

1. for all $x \in \mathcal{W}$, for all $[a, b] \in \mathcal{J}_x^0$ there exists at most one OGC γ satisfying

2. the set $\left\{ A \in D_1 : \|A - \gamma(0)\| < 2r_* \text{ for some OGC } \gamma \text{ from } D_1 \text{ to } D_2 \right\}$ is contractible in D_1.

(back to 2DL)
The 2nd Deformation Lemma

Prop. 1: Let \(c \) be a geometrically critical value. Then, there exists \(\varepsilon_* = \varepsilon_* (c) > 0 \) such that, for all \((\mathcal{D}, h) \in \tilde{\mathcal{H}} \) with \(\mathcal{F}(\mathcal{D}, h) \leq c + \varepsilon_* \), there exists a continuous map \(\eta : [0, 1] \times h(1, \mathcal{D}) \to \mathcal{M} \) such that \((\mathcal{D}, \eta \ast h) \in \tilde{\mathcal{H}} \) and

\[
\mathcal{F}(\mathcal{D} \setminus h(1, \cdot)^{-1}(\mathcal{W}), \eta \ast h) \leq c - \varepsilon_*.
\]
The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists $\varepsilon_* = \varepsilon_*(c) > 0$ such that, for all $(\mathcal{D}, h) \in \tilde{\mathcal{H}}$ with $\mathcal{F}(\mathcal{D}, h) \leq c + \varepsilon_*$, there exists a continuous map $\eta : [0, 1] \times h(1, \mathcal{D}) \rightarrow \mathcal{M}$ such that $(\mathcal{D}, \eta \ast h) \in \tilde{\mathcal{H}}$ and

$$\mathcal{F}(\mathcal{D} \setminus h(1, \cdot)^{-1}(\mathcal{W}), \eta \ast h) \leq c - \varepsilon_*.$$

Using the transversality of the OGC’s, and the fact that $\overline{\Omega}$ can be retracted onto one of the connected components of its boundary, one proves the following:
The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists $\varepsilon_* = \varepsilon_*(c) > 0$ such that, for all $(D, h) \in \mathcal{H}$ with $F(D, h) \leq c + \varepsilon_*$, there exists a continuous map $\eta : [0, 1] \times h(1, D) \rightarrow \mathcal{M}$ such that $(D, \eta \star h) \in \mathcal{H}$ and

$$F(D \setminus h(1, \cdot)^{-1}(\mathcal{W}), \eta \star h) \leq c - \varepsilon_*.$$

Using the transversality of the OGC's, and the fact that $\overline{\Omega}$ can be retracted onto one of the connected components of its boundary, one proves the following:

Prop. 2: Assume that there are only a finite number of crossing OGC's from D_1 to D_2, and assume that $r_* > 0$ is so small so that properties (1) and (2) in the page above are satisfied. Then, for all $(D, h) \in \mathcal{H}$ there exists an open set \mathcal{A} of \mathcal{C}, with $h(1, \cdot)^{-1}(\mathcal{W}) \subset \mathcal{A}$, that is contractible in D_1.

School in Nonlinear Analysis and Calculus of Variations – p. 44/68
Prop. 1: Let c be a geometrically critical value. Then, there exists $\varepsilon^* = \varepsilon^*(c) > 0$ such that, for all $(D, h) \in \tilde{\mathcal{H}}$ with $\mathcal{F}(D, h) \leq c + \varepsilon^*$, there exists a continuous map

$$
\eta : [0, 1] \times h(1, D) \to \mathcal{M}
$$

such that $(D, \eta \star h) \in \tilde{\mathcal{H}}$ and

$$
\mathcal{F}(D \setminus h(1, \cdot)^{-1}(\mathcal{W}), \eta \star h) \leq c - \varepsilon^*.
$$

Using the transversality of the OGC’s, and the fact that $\tilde{\Omega}$ can be retracted onto one of the connected components of its boundary, one proves the following:

Prop. 2: Assume that there are only a finite number of crossing OGC’s from D_1 to D_2, and assume that $r^* > 0$ is so small so that properties (1) and (2) in the page above are satisfied. Then, for all $(D, h) \in \tilde{\mathcal{H}}$ there exists an open set \mathcal{A} of \mathcal{C}, with $h(1, \cdot)^{-1}(\mathcal{W}) \subset \mathcal{A}$, that is contractible in D_1.

Corollary: Assume that there is only a finite number of crossing OGC’s from D_1 to D_2. Then $c_1 < c_2$.

School in Nonlinear Analysis and Calculus of Variations – p. 44/68
Some old and new results

We will now review some old and new results on periodic solutions of conservative dynamical systems.
Euler, Maupertuis, Jacobi, XVIII century:
consider the \textbf{conservative system}:

\[
\frac{D}{dt} \dot{x} = \nabla V(x)
\]
Euler, Maupertuis, Jacobi, XVIII century:
consider the conservative system:
\[\frac{D}{dt} \dot{x} = \nabla V(x) \]

If \(x \) is a solution, then \(E = \frac{1}{2} g(\dot{x}, \dot{x}) + V(x) \) is constant: energy of the solution
Principle of least action

Euler, Maupertuis, Jacobi, XVIII century:
consider the conservative system:

\[
\frac{D}{dt} \dot{x} = \nabla V(x)
\]

If \(x \) is a solution, then \(E = \frac{1}{2} g(\dot{x}, \dot{x}) + V(x) \) is constant: energy of the solution Fix \(E \) and set: \(\Omega_E = \{ q \in M : V(q) < E \} \), and \(g_E = [E - V(q)] g \).

Variational principle: Orbits of the conservative system having energy \(E \) are \(g_E \)-geodesics in \(\Omega_E \) (up to reparameterization).
Principle of least action

Euler, Maupertuis, Jacobi, XVIII century:
consider the conservative system:

\[
\frac{D}{dt} \dot{x} = \nabla V(x)
\]

If \(x \) is a solution, then \(E = \frac{1}{2} g(\dot{x}, \dot{x}) + V(x) \) is constant: **energy of the solution**
Fix \(E \) and set: \(\Omega_E = \{ q \in M : V(q) < E \} \), and \(g_E = [E - V(q)] g \).

Variational principle: Orbits of the conservative system having energy \(E \) are \(g_E \)-geodesics in \(\Omega_E \) (up to reparameterization).

Obs.: \(g_E \) degenerate on \(\partial \Omega_E = V^{-1}(E) \).
Principle of least action

Euler, Maupertuis, Jacobi, XVIII century:
consider the **conservative system**:

\[
\frac{D}{dt} \dot{x} = \nabla V(x)
\]

If \(x\) is a solution, then \(E = \frac{1}{2} g(\dot{x}, \dot{x}) + V(x)\) is constant: **energy of the solution** Fix \(E\)
and set: \(\Omega_E = \{q \in M : V(q) < E\}\), and \(g_E = [E - V(q)] g\).

Variational principle: Orbits of the conservative system having energy \(E\) are \(g_E\)-geodesics in \(\Omega_E\) (up to reparameterization).

Obs.: \(g_E\) degenerate on \(\partial \Omega_E = V^{-1}(E)\).

Periodic solutions \(\iff\) \[
\begin{cases}
\text{closed geodesics in } (\Omega_E, g_E), \text{ or } \\
\text{orthogonal geodesic chords in } \overline{\Omega_E}.
\end{cases}
\]
Principle of least action

Euler, Maupertuis, Jacobi, XVIII century:
consider the conservative system:

\[\frac{D}{Dt} \dot{x} = \nabla V(x) \]

If \(x \) is a solution, then \(E = \frac{1}{2} g(\dot{x}, \dot{x}) + V(x) \) is constant: **energy of the solution**

Fix \(E \) and set: \(\Omega_E = \{ q \in M : V(q) < E \} \), and \(g_E = [E - V(q)] g \).

Variational principle: Orbits of the conservative system having energy \(E \) are \(g_E \)-geodesics in \(\Omega_E \) (up to reparameterization).

Obs.: \(g_E \) degenerate on \(\partial \Omega_E = V^{-1}(E) \).

Periodic solutions \(\iff \) { closed geodesics in \((\Omega_E, g_E) \), or

orthogonal geodesic chords in \(\overline{\Omega_E} \).

The existence of closed geodesics is clear on an **intuitive ground:** rest position of an elastic string whose initial position is a non null-homotopic closed curve.
Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:
Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

\[c \text{ closed curve} \quad \mapsto \quad D(c) = \text{inscribed geodesic polygon}; \]
Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c)=$ inscribed geodesic polygon;
- $D(c)$ depends *continuously* on c.
Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c) =$ inscribed geodesic polygon;
- $D(c)$ depends continuously on c.
- c is homotopic to $D(c)$, and $c = D(c)$ if and only if c is a closed geodesic.
Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c) = \text{inscribed geodesic polygon};$
- $D(c)$ depends \textit{continuously} on $c.$
- c is homotopic to $D(c),$ and $c = D(c)$ if and only if c is a closed geodesic.

If $c = c_0$ is a non null-homotopic curve, then the iterates $c_{n+1} = D(c_n)$ must have a subsequence converging to $c_\infty.$ By continuity:

$D(c_\infty) = D(\lim c_n) = \lim D(c_n) = \lim c_{n+1} = c_\infty,$ hence c_∞ is a closed geodesic.
Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

1. A closed curve $c \mapsto D(c)$ is an inscribed geodesic polygon;
2. $D(c)$ depends continuously on c.
3. c is homotopic to $D(c)$, and $c = D(c)$ if and only if c is a closed geodesic.

If $c = c_0$ is a non null-homotopic curve, then the iterates $c_{n+1} = D(c_n)$ must have a subsequence converging to c_∞. By continuity:

$$D(c_\infty) = D(\lim c_n) = \lim D(c_n) = \lim c_{n+1} = c_\infty,$$

hence c_∞ is a closed geodesic.

Minimax method: existence of a closed geodesic on a sphere (with arbitrary metric)

Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c) = \text{inscribed geodesic polygon}$;
- $D(c)$ depends *continuously* on c.
- c is homotopic to $D(c)$, and $c = D(c)$ if and only if c is a closed geodesic.

If $c = c_0$ is a non null-homotopic curve, then the iterates $c_{n+1} = D(c_n)$ must have a subsequence converging to c_∞. By continuity:

$$D(c_\infty) = D(\lim c_n) = \lim D(c_n) = \lim c_{n+1} = c_\infty,$$

hence c_∞ is a closed geodesic.

Minimax method: existence of a closed geodesic on a sphere (with arbitrary metric)

- apply the shortening method to a family of closed curves that cover simply a sphere;
Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c) =$ inscribed geodesic polygon;
- $D(c)$ depends \textit{continuously} on c.
- c is homotopic to $D(c)$, and $c = D(c)$ if and only if c is a closed geodesic.

If $c = c_0$ is a non null-homotopic curve, then the iterates $c_{n+1} = D(c_n)$ must have a subsequence converging to c_∞. By continuity:

$$D(c_\infty) = D(\lim c_n) = \lim D(c_n) = \lim c_{n+1} = c_\infty,$$

hence c_∞ is a closed geodesic.

\textbf{Minimax method}: existence of a \textit{closed geodesic on a sphere} (with arbitrary metric)

- apply the shortening method to a family of closed curves that cover simply a sphere;
- consider the \textbf{longest} curve of the family after each shortening process;
Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian manifold:

- c closed curve $\mapsto D(c) =$ inscribed geodesic polygon;
- $D(c)$ depends *continuously* on c.
- c is homotopic to $D(c)$, and $c = D(c)$ if and only if c is a closed geodesic.

If $c = c_0$ is a non null-homotopic curve, then the iterates $c_{n+1} = D(c_n)$ must have a subsequence converging to $c_∞$. By continuity:

$D(c_∞) = D(\lim c_n) = \lim D(c_n) = \lim c_{n+1} = c_∞$, hence $c_∞$ is a closed geodesic.

Minimax method: existence of a *closed geodesic on a sphere* (with arbitrary metric)

- apply the shortening method to a family of closed curves that cover simply a sphere;
- consider the **longest** curve of the family after each shortening process;
- a subsequence to this must converge to a closed geodesic, which is *not trivial*, because the sphere is not contractible.
Fet, Ljusternik (1957): observe that the minimax method can be used to prove the existence of a closed geodesic on any closed (i.e., compact with no boundary) manifold M.
Fet, Ljusternik (1957): observe that the minimax method can be used to prove the existence of a closed geodesic on any closed (i.e., compact with no boundary) manifold M.

Let $k > 0$ be the first integer such that $\pi_k(M) \neq 0$ (this exists by Hurewicz’s theorem, $k \leq \dim(M)$;)

\textbf{Topological methods}
Fet, Ljusternik (1957): observe that the minimax method can be used to prove the existence of a closed geodesic on any closed (i.e., compact with no boundary) manifold M.

1. Let $k > 0$ be the first integer such that $\pi_k(M) \neq 0$ (this exists by Hurewicz’s theorem, $k \leq \dim(M)$);

2. take an essential map $f : S^k \to M$ and transfer to M a family of closed curve covering S^k.

Fet, Ljusternik (1957): observe that the minimax method can be used to prove the existence of a closed geodesic on any closed (i.e., compact with no boundary) manifold M.

1. Let $k > 0$ be the first integer such that $\pi_k(M) \neq 0$ (this exists by Hurewicz’s theorem, $k \leq \dim(M)$;)
2. take an essential map $f : S^k \rightarrow M$ and transfer to M a family of closed curve covering S^k;
3. apply the curve shortening method to this family, and obtain a closed geodesic in M which is not trivial, due to the assumption that f represents a non zero element in $\pi_k(M)$.
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \to \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i, j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \to \mathbb{R}, \ g^{ij} \text{ positive definite.} \]
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \rightarrow \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \rightarrow \mathbb{R}, \ g^{ij} \text{ positive definite.} \]

Hamilton equations:
\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \]
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \to \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \to \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations:

\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, \ V < E \text{ in } D, \ V = E \text{ on } \partial D, \text{ and } \text{d}V \neq 0 \text{ in } \partial D. \]
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \to \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \to \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations:
\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = - \frac{\partial H}{\partial q_i} \]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, V < E \) in \(D \), \(V = E \) on \(\partial D \), and \(dV \neq 0 \) in \(\partial D \).

THM: (Seifert 1948) If \(\overline{D} = D \cup \partial D \) is homeomorphic to the \(n \)-dimensional disk, then there exists a solution \(t \mapsto (q(t), p(t)) \) of the Hamilton equations with \(H(q(t), p(t)) = E \) and a number \(T > 0 \) such that:
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \rightarrow \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \rightarrow \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations:

\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, V < E \) in \(D \), \(V = E \) on \(\partial D \), and \(dV \neq 0 \) in \(\partial D \).

THM: (Seifert 1948) If \(\overline{D} = D \cup \partial D \) is homeomorphic to the \(n \)-dimensional disk, then there exists a solution \(t \mapsto (q(t), p(t)) \) of the Hamilton equations with \(H(q(t), p(t)) = E \) and a number \(T > 0 \) such that:

- for \(t \in]0, T[\), \(q(t) \in D \);
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \to \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \to \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations: \[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, \ V < E \) in \(D \), \(V = E \) on \(\partial D \), and \(dV \neq 0 \) in \(\partial D \).

THM: (Seifert 1948) If \(\overline{D} = D \cup \partial D \) is homeomorphic to the \(n \)-dimensional disk, then there exists a solution \(t \mapsto (q(t), p(t)) \) of the Hamilton equations with \(H(q(t), p(t)) = E \) and a number \(T > 0 \) such that:

- for \(t \in]0, T[\), \(q(t) \in D \);
- \(q(0) = q(T) \in \partial D \).
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \to \mathbb{R}, \quad H(q, p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \to \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations:

\[
\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}
\]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, V < E \) in \(D \), \(V = E \) on \(\partial D \), and \(dV \neq 0 \) in \(\partial D \).

THM: (Seifert 1948) If \(\overline{D} = D \cup \partial D \) is homeomorphic to the \(n \)-dimensional disk, then there exists a solution \(t \mapsto (q(t), p(t)) \) of the Hamilton equations with \(H(q(t), p(t)) = E \) and a number \(T > 0 \) such that:

- for \(t \in]0, T[\), \(q(t) \in D \);
- \(q(0) = q(T) \in \partial D \).

Obs.: By the conservation of energy, \(p(0) = p(T) = 0 \). Since \(H \) is even in \(p \), the solution can be continued to a \(2T \)-periodic solution according to the formulas: \(q(-t) = q(t) \), \(q(T + t) = q(T - t) \), \(p(-t) = -p(t) \), \(p(T - t) = -P(T - t) \) brake orbit.

Its image in the configuration space oscillates back and forth along a curve in \(D \) with endpoints in \(\partial D \).
Classical Hamiltonian Systems

\[H : \mathbb{R}^{2n} \rightarrow \mathbb{R}, \quad H(q,p) = \frac{1}{2} \sum_{i,j=1}^{n} g^{ij} p_i p_j + V(q), \quad V : \mathbb{R}^n \rightarrow \mathbb{R}, \quad g^{ij} \text{ positive definite.} \]

Hamilton equations:

\[
\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}
\]

A potential well is an open subset \(D \subset \mathbb{R}^n \) with smooth boundary \(\partial D \) such that for some \(E \in \mathbb{R}, V < E \) in \(D \), \(V = E \) on \(\partial D \), and \(dV \neq 0 \) in \(\partial D \).

THM: (Seifert 1948) If \(\overline{D} = D \cup \partial D \) is homeomorphic to the \(n \)-dimensional disk, then there exists a solution \(t \mapsto (q(t), p(t)) \) of the Hamilton equations with \(H(q(t), p(t)) = E \) and a number \(T > 0 \) such that:

1. for \(t \in]0, T[, q(t) \in D; \)
2. \(q(0) = q(T) \in \partial D. \)

Proof: apply the shortening method to a family of diameters of \(D \). The main difficulty here is the fact that \(g_E \) vanishes on \(\partial D \), and a limit procedure is employed to control the behaviour of geodesics near \(\partial D \).
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.

Obs.: For all q_0, $p \mapsto H(q_0, p)$ takes its minimum at $p = 0$. Setting $V(q) = H(q, 0)$, one has $K(q, p) = H(q, p) - V(q) \geq 0$. One can consider also in this case potential wells.
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.

Obs.: For all q_0, $p \mapsto H(q_0, p)$ takes its minimum at $p = 0$. Setting $V(q) = H(q, 0)$, one has $K(q, p) = H(q, p) - V(q) \geq 0$. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.

Obs. For all q_0, $p \mapsto H(q_0, p)$ takes its minimum at $p = 0$. Setting $V(q) = H(q, 0)$, one has $K(q, p) = H(q, p) - V(q) \geq 0$. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein’s result has the following beautiful consequence:

THM 2: For any Hamiltonian H, if $\Sigma = H^{-1}(E)$ is a compact, convex regular energy surface of H, then there exists a periodic solution of the Hamilton equations in Σ.
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.

Obs.: For all q_0, $p \mapsto H(q_0, p)$ takes its minimum at $p = 0$. Setting $V(q) = H(q, 0)$, one has $K(q, p) = H(q, p) - V(q) \geq 0$. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein’s result has the following beautiful consequence:

THM 2: For any Hamiltonian H, if $\Sigma = H^{-1}(E)$ is a compact, convex regular energy surface of H, then there exists a periodic solution of the Hamilton equations in Σ.

Case $n = 2$: the result follows from another famous result by Seifert:

THM 3: Every vector field on S^3 which has no singularities and which is nowhere orthogonal to the fibers of the Hopf fibration has a periodic orbit.
Hamiltonians of classical type

H is of classical type if for each q_0, the map $p \mapsto H(q_0, p)$ is even and convex.

Obs.: For all q_0, $p \mapsto H(q_0, p)$ takes its minimum at $p = 0$. Setting $V(q) = H(q, 0)$, one has $K(q, p) = H(q, p) - V(q) \geq 0$. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert's result holds for Hamiltonians of classical type: there exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein's result has the following beautiful consequence:

THM 2: For any Hamiltonian H, if $\Sigma = H^{-1}(E)$ is a compact, convex regular energy surface of H, then there exists a periodic solution of the Hamilton equations in Σ.

Case $n = 2$: the result follows from another famous result by Seifert:

THM 3: Every vector field on S^3 which has no singularities and which is nowhere orthogonal to the fibers of the Hopf fibration has a periodic orbit.

\[P : \Sigma \xrightarrow{\cong} S^3 \text{ radial projection (picture)}, \]

\[\vec{H} = \sum \left(\frac{\partial H}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial}{\partial p_i} \right), \]

\[dP(\vec{H}) \] is nowhere orthogonal to the Hopf vector field $\sum \left(p_i \frac{\partial}{\partial q_i} - q_i \frac{\partial}{\partial p_i} \right)$
Theorem 1 \implies Theorem 2

First prove that the solutions of the Hamilton equations *only depend on Σ* (not on H):
Theorem 1 \Rightarrow Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.
Theorem 1 \Rightarrow Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \rightarrow \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.
First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \to \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.

“Doubling trick”: periodic solutions (x, y) of $\dot{q}_i = \frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$ with period $2T$ correspond to pairs (α, β) and (ξ, η) of solutions resp. of:

\[
\begin{align*}
\dot{q}_i &= \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= -\frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\] and

\[
\begin{align*}
\dot{q}_i &= -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= \frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\]
Theorem 1 \implies \text{Theorem 2}

First prove that the solutions of the Hamilton equations \textit{only depend on} \(\Sigma\) (not on \(H\)):

\textbf{Lem 1:} If \(\Sigma\) is a regular level surface of the Hamiltonians \(H\) and \(H'\), then the solutions of the Hamilton equations of \(H\) and \(H'\) on \(\Sigma\) only differ by a reparameterization.

\textbf{Lem 2:} If \(\Sigma \subset \mathbb{R}^m\) is a compact and convex hypersurface of class \(C^r\), there exists a \(C^r\) convex function \(H : \mathbb{R}^m \to \mathbb{R}\) such that \(\Sigma = H^{-1}(1)\).

\textit{“Doubling trick”:} periodic solutions \((x, y)\) of \(\dot{q}_i = \frac{\partial H}{\partial p_i}, \dot{p}_i = -\frac{\partial H}{\partial q_i}\) with period \(2T\) correspond to pairs \((\alpha, \beta)\) and \((\xi, \eta)\) of solutions resp. of:

\[
\begin{align*}
\dot{q}_i &= \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= -\frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\quad \text{and} \quad
\begin{align*}
\dot{q}_i &= -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= \frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\]

\(x_i(t/2) = \alpha_i(t), x_i(-t/2) = \xi(t), y_i(t/2) = \beta_i(t), y_i(-t/2) = \eta_i(t)\).
First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \to \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.

“Doubling trick”: periodic solutions (x, y) of $\dot{q}_i = \frac{\partial H}{\partial p_i}, \dot{p}_i = -\frac{\partial H}{\partial q_i}$ with period $2T$ correspond to pairs (α, β) and (ξ, η) of solutions resp. of:

$$
\begin{align*}
\begin{cases}
\dot{q}_i = \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i = -\frac{1}{2} \frac{\partial H}{\partial q_i}
\end{cases}
\text{ and }
\begin{cases}
\dot{q}_i = -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i = \frac{1}{2} \frac{\partial H}{\partial q_i}
\end{cases}
\end{align*}
$$

$$
\Omega_{ij} = \begin{cases}
1 & \text{if } j = i + n; \\
-1 & \text{if } i = j + n; \\
0 & \text{otherwise}
\end{cases}
$$

$$
x_i(t/2) = \alpha_i(t), \ x_i(-t/2) = \xi(t), \ y_i(t/2) = \beta_i(t), \ y_i(-t/2) = \eta_i(t).$$

$$
Q_i = \frac{1}{2}(\alpha_i + \xi_i), \ Q_{i+n} = \frac{1}{2}(\beta_i + \eta_i), \ P_i = \sum_j \left[\Omega_{ij}(\alpha_i - x_i) + \Omega_{j+n}(\beta_i - \eta_i) \right],
$$
Theorem 1 \implies Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \to \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.

"Doubling trick": periodic solutions (x, y) of $\dot{q}_i = \frac{\partial H}{\partial p_i}, \dot{p}_i = -\frac{\partial H}{\partial q_i}$ with period $2T$ correspond to pairs (α, β) and (ξ, η) of solutions resp. of:

\[
\begin{align*}
\dot{q}_i &= \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= -\frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\]

and

\[
\begin{align*}
\dot{q}_i &= -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= \frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}
\]

$x_i(t/2) = \alpha_i(t), x_i(-t/2) = \xi(t), y_i(t/2) = \beta_i(t), y_i(-t/2) = \eta_i(t)$.

\[
Q_i = \frac{1}{2}(\alpha_i + \xi_i), Q_{i+n} = \frac{1}{2}(\beta_i + \eta_i), P_i = \sum_j \left[\Omega_{ij} (\alpha_i - x_i) + \Omega_{j+n} (\beta_i - \eta_i) \right],
\]

(Q, P) satisfy the Hamilton equations of $G(Q, P) = \frac{1}{2} [H(Q - \frac{1}{2} \Omega P) + H(Q + \frac{1}{2} P)]$.
First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \rightarrow \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.

"Doubling trick": periodic solutions (x, y) of $\dot{q}_i = \frac{\partial H}{\partial p_i}, \dot{p}_i = -\frac{\partial H}{\partial q_i}$ with period $2T$ correspond to pairs (α, β) and (ξ, η) of solutions resp. of:

\[
\begin{align*}
\dot{q}_i &= \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= -\frac{1}{2} \frac{\partial H}{\partial q_i},
\end{align*}
\]

and

\[
\begin{align*}
\dot{q}_i &= -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= \frac{1}{2} \frac{\partial H}{\partial q_i},
\end{align*}
\]

\[
x_i(t/2) = \alpha_i(t), \quad x_i(-t/2) = \xi(t), \quad y_i(t/2) = \beta_i(t), \quad y_i(-t/2) = \eta_i(t).
\]

$Q_i = \frac{1}{2}(\alpha_i + \xi_i), \quad Q_{i+n} = \frac{1}{2}(\beta_i + \eta_i), \quad P_i = \sum_j \left[\Omega_{ij}(\alpha_i - x_i) + \Omega_{j+n}(\beta_i - \eta_i) \right],$

(Q, P) satisfy the Hamilton equations of $G(Q, P) = \frac{1}{2} [H(Q - \frac{1}{2} \Omega P) + H(Q + \frac{1}{2} P)]$

(Q, P) brake orbit for G iff (q, p) is a periodic solution of H.

School in Nonlinear Analysis and Calculus of Variations – p. 51/68
First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H', then the solutions of the Hamilton equations of H and H' on Σ only differ by a reparameterization.

Lem 2: If $\Sigma \subset \mathbb{R}^m$ is a compact and convex hypersurface of class C^r, there exists a C^r convex function $H : \mathbb{R}^m \to \mathbb{R}$ such that $\Sigma = H^{-1}(1)$.

"Doubling trick": periodic solutions (x, y) of $\dot{q}_i = \frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$ with period $2T$ correspond to pairs (α, β) and (ξ, η) of solutions resp. of:

$$\begin{align*}
\dot{q}_i &= \frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= -\frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}$$

and

$$\begin{align*}
\dot{q}_i &= -\frac{1}{2} \frac{\partial H}{\partial p_i}, \\
\dot{p}_i &= \frac{1}{2} \frac{\partial H}{\partial q_i}
\end{align*}$$

$x_i(t/2) = \alpha_i(t)$, $x_i(-t/2) = \xi(t)$, $y_i(t/2) = \beta_i(t)$, $y_i(-t/2) = \eta_i(t)$.

$Q_i = \frac{1}{2}(\alpha_i + \xi_i)$, $Q_{i+n} = \frac{1}{2}(\beta_i + \eta_i)$, $P_i = \sum_j \left[\Omega_{ij}(\alpha_i - x_i) + \Omega_{j+n}(\beta_i - \eta_i) \right]$, (Q, P) satisfy the Hamilton equations of $G(Q, P) = \frac{1}{2} [H(Q - \frac{1}{2} \Omega P) + H(Q + \frac{1}{2} P)]$

(Q, P) brake orbit for G iff (q, p) is a periodic solution of H.

Proof of THM 1: curve shortening method in Finsler geometry.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments of Seifert and Weinstein.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that $\overline{\Omega_E}$ is non empty and compact, then there exists a periodic solution with energy E. If $\partial \Omega_E \neq$, then there is a brake orbit.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz's theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that $\overline{\Omega_E}$ is non empty and compact, then there exists a periodic solution with energy E. If $\partial \Omega_E \neq \emptyset$, then there is a brake orbit.

THM 2: If $H : T^*M \to \mathbb{R}$ is a Hamiltonian of classical type, and if E is a regular value of H such that H^{-1} is non empty and compact, then there is a periodic solution of the Hamiltonian equation having energy E.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz's theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that Ω_E is non empty and compact, then there exists a periodic solution with energy E. If $\partial\Omega_E \neq \emptyset$, then there is a brake orbit.

THM 2: If $H : T^* M \to \mathbb{R}$ is a Hamiltonian of classical type, and if E is a regular value of H such that H^{-1} is non empty and compact, then there is a periodic solution of the Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that $\overline{\Omega_E}$ is non empty and compact, then there exists a periodic solution with energy E. If $\partial\Omega_E \neq \emptyset$, then there is a brake orbit.

THM 2: If $H : T^* M \to \mathbb{R}$ is a Hamiltonian of classical type, and if E is a regular value of H such that H^{-1} is non empty and compact, then there is a periodic solution of the Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex boundary: enlarge M to a larger manifold \tilde{M} constructed by adding a convex collar.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that Ω_E is non empty and compact, then there exists a periodic solution with energy E. If $\partial \Omega_E \neq$, then there is a brake orbit.

THM 2: If $H : T^* M \to \mathbb{R}$ is a Hamiltonian of classical type, and if E is a regular value of H such that H^{-1} is non empty and compact, then there is a periodic solution of the Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex boundary: enlarge M to a larger manifold \tilde{M} constructed by adding a convex collar. Then, take limit as the size of the collar goes to 0.
The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that Ω_E is non empty and compact, then there exists a periodic solution with energy E. If $\partial\Omega_E \neq$, then there is a brake orbit.

THM 2: If $H : T^* M \to \mathbb{R}$ is a Hamiltonian of classical type, and if E is a regular value of H such that H^{-1} is non empty and compact, then there is a periodic solution of the Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex boundary: enlarge M to a larger manifold \widetilde{M} constructed by adding a convex collar. Then, take limit as the size of the collar goes to 0.

They also obtain a multiplicity result in the case that the E-sublevel of the potential is homeomorphic to a disk, under a certain nonresonance assumption: the maximum diameter of the disk should have g_E-length smaller than twice the length of the shortest g_E-geodesic chord.
Natural Hamiltonian: \(H \in C^2(\mathbb R^{2m}, \mathbb R),\):

\[
H(p, q) = \frac{1}{2} \sum_{i,j=1}^{m} a^{ij}(q) p_i p_j + V(q)
\]

\(V \in C^2(\mathbb R^m, \mathbb R), \)

\(A(q) = (a^{ij}(q)) \) positive definite quadratic form on \(\mathbb R^m \):

\[
\sum_{i,j=1}^{m} a^{ij}(q) p_i p_j \geq \nu(q) |q|^2, \quad \nu : \mathbb R^m \to \mathbb R^+ \text{ continuous.}
\]
Natural Hamiltonian: \(H \in C^2(\mathbb{R}^{2m}, \mathbb{R}),:\)

\[
H(p, q) = \frac{1}{2} \sum_{i,j=1}^{m} a^{ij}(q) p_i p_j + V(q)
\]

\(V \in C^2(\mathbb{R}^m, \mathbb{R}), \)

\(A(q) = (a^{ij}(q)) \) positive definite quadratic form on \(\mathbb{R}^m: \)

\[
\sum_{i,j=1}^{m} a^{ij}(q) p_i p_j \geq \nu(q) |q|^2, \quad \nu: \mathbb{R}^m \rightarrow \mathbb{R}^+ \text{ continuous.}
\]

The corresponding Hamiltonian system (HS) is:

\[
\begin{align*}
\dot{p} &= -\frac{\partial H}{\partial q} \\
\dot{q} &= \frac{\partial H}{\partial p},
\end{align*}
\]
The Hamiltonian problem

Natural Hamiltonian: \(H \in C^2(\mathbb{R}^{2m}, \mathbb{R}) \),

\[
H(p, q) = \frac{1}{2} \sum_{i,j=1}^{m} a^{ij}(q) p_i p_j + V(q)
\]

\(V \in C^2(\mathbb{R}^m, \mathbb{R}) \),

\(A(q) = (a^{ij}(q)) \) **positive definite** quadratic form on \(\mathbb{R}^m \):

\[
\sum_{i,j=1}^{m} a^{ij}(q) p_i p_j \geq \nu(q)|q|^2, \quad \nu : \mathbb{R}^m \to \mathbb{R}^+ \text{ continuous}.
\]

The corresponding Hamiltonian system (HS) is:

\[
\begin{align*}
\dot{p} &= -\frac{\partial H}{\partial q}, \\
\dot{q} &= \frac{\partial H}{\partial p},
\end{align*}
\]
Properties of the solutions of (HS)

Assume \((p, q) : \mathbb{R} \rightarrow \mathbb{R}^{2m}\) is a solution of (HS) of class \(C^1\).
Properties of the solutions of (HS)

Assume \((p, q) : \mathbb{R} \rightarrow \mathbb{R}^{2m}\) is a solution of (HS) of class \(C^1\).

1. \(H(p(t), q(t))\) is constant; the value of such constant is the energy of the solution.
Properties of the solutions of \((HS)\)

Assume \((p, q) : \mathbb{R} \to \mathbb{R}^{2m}\) is a solution of \((HS)\) of class \(C^1\).

\(H(p(t), q(t))\) is constant; the value of such constant is the energy of the solution.

Define linear maps \(L(q) : \mathbb{R}^m \to \mathbb{R}^m\) whose matrix repr. in the canonical basis is \((a_{ij}) = (a^{ij})^{-1}\).
Properties of the solutions of (HS)

Assume $(p, q) : \mathbb{R} \to \mathbb{R}^{2m}$ is a solution of (HS) of class C^1.

- $H(p(t), q(t))$ is constant; the value of such constant is the energy of the solution.

Define linear maps $\mathcal{L}(q) : \mathbb{R}^m \to \mathbb{R}^m$ whose matrix repr. in the canonical basis is $(a_{ij}) = (a^{ij})^{-1}$.

- $p = \mathcal{L}(q)q$

p is determined by q
Properties of the solutions of (HS)

Assume \((p, q) : \mathbb{R} \rightarrow \mathbb{R}^{2m}\) is a solution of (HS) of class \(C^1\).

- \(H(p(t), q(t))\) is constant; the value of such constant is the energy of the solution.

Define linear maps \(\mathcal{L}(q) : \mathbb{R}^m \rightarrow \mathbb{R}^m\) whose matrix repr. in the canonical basis is \((a_{ij}) = (a^{ij})^{-1}\).

- \(p = \mathcal{L}(q)q\)

- \(q\) is of class \(C^2\).

\(p\) is determined by \(q\)
Def.: A brake orbit is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \xrightarrow{C^2} (p(t), q(t)) \in \mathbb{R}^{2m}, \quad \text{with } p(0) = p(T) = 0. \]
Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \xrightarrow{C^2} (p(t), q(t)) \in \mathbb{R}^{2m}, \text{ with } p(0) = p(T) = 0. \]

Properties:
Def.: A *brake orbit* is a non constant periodic sol. of \((HS)\)

\[
\mathbb{R} \ni t \mapsto (p(t), q(t)) \in \mathbb{R}^{2m}, \quad \text{with } p(0) = p(T) = 0.
\]

Properties:

1. \(H\) is even in \(p\), hence
Def.: A *brake orbit* is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \mapsto (p(t), q(t)) \in \mathbb{R}^{2m}, \quad \text{with } p(0) = p(T) = 0. \]

Properties:

6. \(H \) is even in \(p \), hence \((p, q)\) is \(2T\)-periodic,
Def.: A *brake orbit* is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \overset{C^2}{\mapsto} (p(t), q(t)) \in \mathbb{R}^{2m}, \quad \text{with } p(0) = p(T) = 0. \]

Properties:

1. \(H \) is even in \(p \), hence \((p, q) \) is \(2T \)-periodic,
 \[p(T + t) = -p(T - t), \quad \text{and} \]

\[(p(T), q(T)) \in \mathbb{R}^{2m}, \]
Def.: A brake orbit is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \mapsto (p(t), q(t)) \in \mathbb{R}^{2m}, \quad \text{with } p(0) = p(T) = 0. \]

Properties:

1. \(H \) is even in \(p \), hence \((p, q)\) is \(2T\)-periodic,
 \[p(T + t) = -p(T - t), \quad \text{and} \]
 \[q(T + t) = q(T - t) \quad \text{for all } t \in [0, T]; \]
Def.: A *brake orbit* is a non constant periodic sol. of (HS)

\[\mathbb{R} \ni t \mapsto (p(t), q(t)) \in \mathbb{R}^{2m}, \text{ with } p(0) = p(T) = 0. \]

Properties:

1. \(H \) is even in \(p \), hence \((p, q)\) is \(2T\)-periodic,

 \[p(T + t) = -p(T - t), \text{ and} \]

 \[q(T + t) = q(T - t) \text{ for all } t \in [0, T]; \]

2. if \(E \) is the energy of \((p, q)\), then

 \[V(q(0)) = V(q(T)) = E. \]
Choose $E > \inf V$ regular value of V; set:

$$\Omega_E = V^{-1}(\left]-\infty, E\right[) = \{ x \in \mathbb{R}^m : V(x) < E \}$$ open
Choose $E > \inf V$ regular value of V; set:

$$
\Omega_E = V^{-1}(-\infty, E] = \{ x \in \mathbb{R}^m : V(x) < E \} \text{ open}
$$

$\partial \Omega_E = \phi^{-1}(0)$ is a smooth oriented hypersurface
Choose $E > \inf V$ regular value of V; set:

$$\Omega_E = V^{-1}(\mathbb{R} - \infty, E) = \{ x \in \mathbb{R}^m : V(x) < E \}$$ open

$\partial \Omega_E = \phi^{-1}(0)$ is a smooth oriented hypersurface

Jacobi metric in Ω_E:

$$g_E(x) = (E - V(x)) \cdot \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \, dx^i \, dx^j, \quad (a_{ij}) = (a^{ij})^{-1}. $$
Choose $E > \inf V$ regular value of V; set:

$$\Omega_E = V^{-1}(\mathbb{R}^m : V(x) < E)$$

open

$\partial \Omega_E = \phi^{-1}(0)$ is a smooth oriented hypersurface

Jacobi metric in Ω_E:

$$g_E(x) = (E - V(x)) \cdot \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \, dx^i \, dx^j,$$

$(a_{ij}) = (a^{ij})^{-1}.$

g_E degenerates on $\partial \Omega_E$;
Choose $E > \inf V$ regular value of V; set:

$$\Omega_E = V^{-1}(-\infty, E] = \{ x \in \mathbb{R}^m : V(x) < E \}$$ open

$\partial \Omega_E = \phi^{-1}(0)$ is a smooth oriented hypersurface

Jacobi metric in Ω_E:

$$g_E(x) = (E - V(x)) \cdot \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \, dx^i \, dx^j, \quad (a_{ij}) = (a^{ij})^{-1}.$$

g_E **degenerates** on $\partial \Omega_E$;

if (p, q) is a brake orbit of energy E:

$q(t) \in \overline{\Omega}_E$ for all t, $q(0), q(T) \in \partial \Omega_E$.

School in Nonlinear Analysis and Calculus of Variations – p. 56/68
Maupertuis integral $f_{a,b} : H^1(\Omega_E, \mathbb{R}) \to \mathbb{R}$:

$$f_{a,b}(x) = \frac{1}{2} \int_a^b (E - V(x)) g(\dot{x}, \ddot{x}) \, dt.$$.
Maupertuis–Jacobi principle

Maupertuis integral \(f_{a,b} : H^1(\Omega_E, \mathbb{R}) \to \mathbb{R} : \)

\[
f_{a,b}(x) = \frac{1}{2} \int_{a}^{b} (E - V(x)) g(\dot{x}, \ddot{x}) \, dt.
\]

Euler–Lagrange equations:

\[
(E - V(x)) \frac{d}{dt} \dot{x} - g(\nabla V, \dot{x}) \dot{x} + \frac{1}{2} g(\dot{x}, \ddot{x}) \nabla V = 0.
\]
Maupertuis–Jacobi principle

Maupertuis integral $f_{a,b} : H^1(\Omega_E, \mathbb{R}) \to \mathbb{R}$:

$$f_{a,b}(x) = \frac{1}{2} \int_a^b (E - V(x)) \ g(\dot{x}, \dot{x}) \ dt.$$

Euler–Lagrange equations:

$$(E - V(x)) \frac{d}{dt} \dot{x} - g(\nabla V, \dot{x}) \dot{x} + \frac{1}{2} g(\dot{x}, \dot{x}) \nabla V = 0.$$

Maupertuis–Jacobi principle:
Maupertuis–Jacobi principle

Maupertuis integral \(f_{a,b} : H^1(\Omega_E, \mathbb{R}) \to \mathbb{R} \):

\[
f_{a,b}(x) = \frac{1}{2} \int_{a}^{b} (E - V(x)) g(\dot{x}, \ddot{x}) \, dt.
\]

Euler–Lagrange equations:

\[
(E - V(x)) \frac{D}{dt} \dot{x} - g(\nabla V, \dot{x}) \dot{x} + \frac{1}{2} g(\dot{x}, \ddot{x}) \nabla V = 0.
\]

Maupertuis–Jacobi principle:

\[
\text{critical points of } f_{a,b} \iff \text{solutions of (HS)}
\]
Maupertuis–Jacobi principle

Maupertuis integral $f_{a,b} : H^1(\Omega_E, \mathbb{R}) \to \mathbb{R}$:

$$f_{a,b}(x) = \frac{1}{2} \int_a^b (E - V(x)) g(\dot{x}, \ddot{x}) \, dt.$$

Euler–Lagrange equations:

$$(E - V(x)) \frac{D}{dt} \dot{x} - g(\nabla V, \dot{x}) \ddot{x} + \frac{1}{2} g(\dot{x}, \ddot{x}) \nabla V = 0.$$

Maupertuis–Jacobi principle:

Critical points of $f_{a,b} \iff$ solutions of (HS)

We want to extend the MJ-principle to brake orbits.
Maupertuis–Jacobi principle for brake orbits

Thm.: E regular value of V, $x :]a, b[\rightarrow \Omega_E$ s.t.: $C^0 \cap H^1_{loc}$

\[
\int_a^b \left[(E - V)g(\dot{x}, \frac{D}{dt} W) - \frac{1}{2} g(\dot{x}, \dot{x}) g(\nabla V, W) \right] dt = 0, \quad \forall W \in C^\infty_0,
\]
Maupertuis–Jacobi principle for brake orbits

Thm.: E regular value of V, $x :]a, b[\rightarrow \Omega_E$ s.t.:

$$
\int_a^b \left[(E - V)g(\dot{x}, \frac{D}{dt}W) - \frac{1}{2} g(\dot{x}, \dot{x}) g(\nabla V, W) \right] dt = 0, \ \forall W \in C_0^\infty,
$$

and $V(x(a)), V(x(b)) = E$. Then $\exists c_x, T \in \mathbb{R}^+$ and a diffeo $\sigma : [0, T] \rightarrow [a, b]$ with:
Maupertuis–Jacobi principle for brake orbits

Thm.: \(E \) regular value of \(V, x :]a, b[\to \Omega_E \) s.t.:

\[
\int_{a}^{b} \left[(E - V) g(\dot{x}, \frac{D}{dt} W) - \frac{1}{2} g(\dot{x}, \dot{x}) g(\nabla V, W) \right] dt = 0, \quad \forall W \in C^0_0, \]

and \(V(x(a)), V(x(b)) = E \). Then \(\exists c_x, T \in \mathbb{R}^+ \) and a diffeo \(\sigma : [0, T] \to [a, b] \) with:

6. \(x(a) \neq x(b) \) and \((E - V(x)) g(\dot{x}, \dot{x}) \equiv c_x \);
Thm.: E regular value of V, $x : [a, b] \rightarrow \Omega_E$ s.t.:

$$\int_a^b \left[(E - V)g(\dot{x}, \frac{D}{dt} W) - \frac{1}{2} g(\dot{x}, \dot{x})g(\nabla V, W) \right] dt = 0, \quad \forall W \in C_0^0 \cap H^1_{\text{loc}},$$

and $V(x(a)), V(x(b)) = E$. Then $\exists c_x, T \in \mathbb{R}^+$ and a diffeo $\sigma : [0, T] \rightarrow [a, b]$ with:

1. $x(a) \neq x(b)$ and $(E - V(x))g(\dot{x}, \dot{x}) \equiv c_x;$
2. $(p, q) : [0, T] \rightarrow \mathbb{R}^m$ solution of (HS), $q = x \circ \sigma$, $p = \mathcal{L}(q) \dot{q};$
Maupertuis–Jacobi principle for brake orbits

Thm.: E regular value of V, $x :]a, b[\to \Omega_E$ s.t.:

\[
\int_a^b \left[(E - V)g(\dot{x}, \frac{D}{dt}W) - \frac{1}{2}g(\dot{x}, \dot{x})g(\nabla V, W) \right] dt = 0, \ \forall W \in C_0^\infty, \quad C^0 \cap H_{\text{loc}}^1
\]

and $V(x(a)), V(x(b)) = E$. Then $\exists c_x, T \in \mathbb{R}^+$ and a diffeo $\sigma : [0, T] \to [a, b]$ with:

- $x(a) \neq x(b)$ and $(E - V(x))g(\dot{x}, \dot{x}) \equiv c_x$;

- $(p, q) : [0, T] \to \mathbb{R}^m$ solution of (HS), $q = x \circ \sigma$, $p = L(q)\dot{q}$;

- (p, q) can be extended to a $2T$-periodic brake orbit of energy E.

School in Nonlinear Analysis and Calculus of Variations – p. 58/68
The Lagrangian problem

Let \((M, g)\) be a Riemannian manifold \(V : M \rightarrow \mathbb{R}\) a \(C^2\)-map (potential).
Let \((M, g)\) be a Riemannian manifold \(V : M \rightarrow \mathbb{R}\) a \(C^2\)-map (potential).

The **Lagrangian problem** \((LP)\) is the 2nd order equation:

\[
\frac{D}{dt} \dot{q} + \nabla V(q) = 0 \quad q : \mathbb{R} \rightarrow M.
\]
The Lagrangian problem

Let \((M, g)\) be a Riemannian manifold
\(V : M \to \mathbb{R}\) a \(C^2\)-map (potential).

The Lagrangian problem (LP) is the 2nd order equation:

\[
\frac{D}{dt} \dot{q} + \nabla V(q) = 0 \quad q : \mathbb{R} \to M.
\]

\(q\) solution of (LP), \(E = \frac{1}{2} g(\dot{q}, \dot{q}) + V(q)\) constant (energy).
The Lagrangian problem

Let \((M, g)\) be a Riemannian manifold \(V : M \to \mathbb{R}\) a \(C^2\)-map (potential).

The Lagrangian problem \((LP)\) is the 2nd order equation:

\[
\frac{D}{dt} \dot{q} + \nabla V(q) = 0 \quad q : \mathbb{R} \to M.
\]

\(q\) solution of \((LP)\), \(E = \frac{1}{2} g(\dot{q}, \dot{q}) + V(q)\) constant (energy).

\((HS) \iff (LP)\) (Legendre transform)
The Lagrangian problem

Let \((M, g)\) be a Riemannian manifold
\(V : M \to \mathbb{R}\) a \(C^2\)-map (potential).

The Lagrangian problem \((LP)\) is the 2nd order equation:
\[
\frac{\mathrm{D}}{\mathrm{d}t} \dot{q} + \nabla V (q) = 0 \quad q : \mathbb{R} \to M.
\]

\(q\) solution of \((LP)\), \(E = \frac{1}{2} g(\dot{q}, \dot{q}) + V (q)\) constant (energy).

\((HS) \iff (LP)\) (Legendre transform)

if \(M = \mathbb{R}^m\) and \(g = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \, \mathrm{d}x^i \, \mathrm{d}x^j\), then:

\(q\) solution of \((LP)\) \(\iff (L(q), q)\) solution of \((HS)\).
The Lagrangian problem

Let \((M, g)\) be a Riemannian manifold
\(V : M \to \mathbb{R}\) a \(C^2\)-map (potential).

The Lagrangian problem \((LP)\) is the 2nd order equation:

\[
\frac{D}{dt} \dot{q} + \nabla V(q) = 0 \quad q : \mathbb{R} \to M.
\]

\(q\) solution of \((LP)\), \(E = \frac{1}{2} g(\dot{q}, \dot{q}) + V(q)\) constant (energy).

\(\text{(HS)} \iff \text{(LP)}\) (Legendre transform)

if \(M = \mathbb{R}^m\) and \(g = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \, dx^i \, dx^j\), then:

\(q\) solution of \((LP)\) \(\iff\) \((\mathcal{L}(q), q)\) solution of \((HS)\).

same energy
Consider the Lagrangian problem. Let x_0 be a **critical point** of V: $\nabla V(x_0) = 0$.

Homoclinic horbits
Consider the Lagrangian problem. Let x_0 be a critical point of V: $\nabla V(x_0) = 0$.

A solution $q \in C^2(\mathbb{R}, M)$ of (LP) is a homoclinic orbit issuing from x_0 if:
Consider the Lagrangian problem. Let \(x_0 \) be a critical point of \(V: \nabla V(x_0) = 0 \).

A solution \(q \in C^2(\mathbb{R}, M) \) of (LP) is a homoclinic orbit issuing from \(x_0 \) if:

\[
\lim_{t \to -\infty} q(t) = \lim_{t \to +\infty} q(t) = x_0
\]
Consider the Lagrangian problem. Let x_0 be a critical point of V: $\nabla V(x_0) = 0$. A solution $q \in C^2(\mathbb{R}, M)$ of (LP) is a homoclinic orbit issuing from x_0 if:

$$\lim_{t \to -\infty} q(t) = \lim_{t \to +\infty} q(t) = x_0$$

$$\lim_{t \to -\infty} \dot{q}(t) = \lim_{t \to +\infty} \dot{q}(t) = 0.$$
Consider the Lagrangian problem. Let x_0 be a critical point of V: $\nabla V(x_0) = 0$.

A solution $q \in C^2(\mathbb{R}, M)$ of (LP) is a homoclinic orbit issuing from x_0 if:

1. $\lim_{t \to -\infty} q(t) = \lim_{t \to +\infty} q(t) = x_0$

2. $\lim_{t \to -\infty} \dot{q}(t) = \lim_{t \to +\infty} \dot{q}(t) = 0$.

Observe: $V(x_0) = \lim_{t \to \infty} \left[\frac{1}{2} g(\dot{q}, \dot{q}) + V(q) \right] = E$; moreover, x_0 must be a critical point of V.
Consider the Lagrangian problem.
Let \(x_0 \) be a critical point of \(V: \nabla V(x_0) = 0 \).

A solution \(q \in C^2(\mathbb{R}, M) \) of (LP) is a homoclinic orbit issuing from \(x_0 \) if:

1. \(\lim_{t \rightarrow -\infty} q(t) = \lim_{t \rightarrow +\infty} q(t) = x_0 \)
2. \(\lim_{t \rightarrow -\infty} \dot{q}(t) = \lim_{t \rightarrow +\infty} \dot{q}(t) = 0 \).

\textbf{Observe:} \(V(x_0) = \lim_{t \rightarrow \infty} \left[\frac{1}{2} g(\dot{q}, \dot{q}) + V(q) \right] = E \); moreover, \(x_0 \) must be a critical point of \(V \).

We need a Maupertuis–Jacobi principle for homoclinics.
M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, $V \in C^2(M, \mathbb{R})$, $x_0 \in M$ a nondegenerate max of V, $E = V(x_0)$.
M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, $V \in C^2(M, \mathbb{R})$, $x_0 \in M$ a nondegenerate max of V, $E = V(x_0)$.

If $x \in C^0([a, b], \Omega_E) \cap H^1_{\text{loc}}([a, b], \Omega_E)$ is s.t.:
M–J principle for homoclinics

Thm.: \((M, g)\) Riemannian manifold, \(V \in C^2(M, \mathbb{R})\), \(x_0 \in M\) a nondegenerate max of \(V\), \(E = V(x_0)\).

If \(x \in C^0([a, b], \overline{\Omega_E}) \cap H^1_{loc}([a, b], \overline{\Omega_E})\) is s.t.:

- \(V(x(t)) < E\) for \(s \in [a, b[, \ x(b) = x_0\)
M–J principle for homoclinics

Thm.: \((M, g)\) Riemannian manifold, \(V \in C^2(M, \mathbb{R})\), \(x_0 \in M\) a *nondegenerate* max of \(V\), \(E = V(x_0)\).

If
\[x \in C^0([a, b], \Omega_E) \cap H^1_{\text{loc}}([a, b], \Omega_E) \]
is s.t.:

1. \(V(x(t)) < E\) for \(s \in [a, b[, x(b) = x_0\)

2. \(\int_a^b (E-V)g(\dot{x}, \frac{D}{dt}W) - \frac{1}{2}g(\dot{x}, \dot{x})g(\nabla V, W)dt = 0\), \(\forall W \in C^\infty_0\),
M–J principle for homoclinics

Thm.: \((M, g)\) Riemannian manifold, \(V \in C^2(M, \mathbb{R})\), \(x_0 \in M\) a nondegenerate max of \(V\), \(E = V(x_0)\).

If \(x \in C^0(\left[a, b\right], \overline{\Omega_E}) \cap H^1_{\text{loc}}(\left[a, b\right], \overline{\Omega_E})\) is s.t.:

1. \(V(x(t)) < E\) for \(s \in [a, b[, \ x(b) = x_0\)

2. \(\int_a^b (E - V) g(\dot{x}, \frac{D}{dt} W) - \frac{1}{2} g(\dot{x}, \dot{x}) g(\nabla V, W) dt = 0, \ \forall W \in C^\infty_0,\)

then \(\exists\) a diffeo \(\sigma : [0, +\infty[\rightarrow [a, b[,\ \text{s.t. } q = x \circ \sigma\) is a solution of \((LP)\) with:

3. \(q(0) = x(a)\)
4. \(\lim_{t \to +\infty} q(t) = x_0, \ \lim_{t \to +\infty} \dot{q}(t) = 0.\)
Jacobi distance from $\partial \Omega_E$

If E reg. value of V, $\overline{\Omega_E}$ compact, set $d_E : \Omega \to [0, +\infty[$:

$$d_E(Q) = \inf \left\{ \int_0^1 (E - V)g(\dot{x}, \ddot{x}) \frac{1}{2} \, dt : x \in H^1([0, 1], \overline{\Omega_E}), \ x(0) = Q, \ x(1) \in \partial \Omega \right\}.$$
Jacobi distance from $\partial \Omega_E$

If E reg. value of V, Ω_E compact, set $d_E : \Omega \to [0, +\infty[$:

$$d_E(Q) = \inf \left\{ \int_0^1 (E - V)g(\dot{x}, \dot{x}) \frac{1}{2} dt : x \in H^1([0, 1], \Omega_E), x(0) = Q, x(1) \in \partial \Omega \right\}.$$

Lem 1: $d_E(Q)$ attained on some $\gamma_Q \in H^1([0, 1], \Omega_E) \cap C^2([0, 1]).$ Such curve satisfies

$$\int_0^1 (E - V)g(\dot{\gamma}_Q, \frac{D}{dt} W) - \frac{1}{2} g(\dot{\gamma}_Q, \dot{\gamma}_Q)g(\nabla V, W) dt = 0, \forall W \in C_0^\infty.$$
Jacobi distance from $\partial \Omega_E$

If E reg. value of V, Ω_E compact, set $d_E : \Omega \to [0, +\infty[$:

$$d_E(Q) = \inf \{ \int_0^1 (E - V)g(\dot{x}, \dot{x}) \frac{1}{2} \, dt : x \in H^1([0, 1], \Omega_E), x(0) = Q, \, x(1) \in \partial \Omega \}.$$

Lem 1: $d_E(Q)$ attained on some $\gamma_Q \in H^1([0, 1], \Omega_E) \cap C^2([0, 1])$. Such curve satisfies

$$\int_0^1 (E - V)g(\dot{\gamma}_Q, \frac{D}{Dt} W) - \frac{1}{2} g(\dot{\gamma}_Q, \dot{\gamma}_Q) g(\nabla V, W) \, dt = 0, \quad \forall W \in C_0^\infty.$$

Lem 2: The map $d_E : \Omega_E \to [0, +\infty[$ is continuous, and it admits a continuous extension to Ω_E by setting $d_E = 0$ on $\partial \Omega_E$.

School in Nonlinear Analysis and Calculus of Variations – p. 62/68
Jacobi distance from $\partial \Omega_E$

If E reg. value of V, $\overline{\Omega_E}$ compact, set $d_E: \Omega \to [0, +\infty[$:

$$d_E(Q) = \inf \{ \int_0^1 (E - V) g(\dot{x}, \dot{x}) \frac{1}{2} \, dt : x \in H^1([0, 1], \overline{\Omega_E}, x(0) = Q, x(1) \in \partial \Omega \}.$$

Lem 1: $d_E(Q)$ attained on some $\gamma_Q \in H^1([0, 1], \overline{\Omega_E}) \cap C^2([0, 1])$. Such curve satisfies

$$\int_0^1 (E - V) g(\dot{\gamma}_Q, \frac{D}{dt} W) - \frac{1}{2} g(\dot{\gamma}_Q, \dot{\gamma}_Q) g(\nabla V, W) \, dt = 0, \forall W \in C_0^\infty.$$

Lem 2: The map $d_E: \Omega_E \to [0, +\infty[$ is continuous, and it admits a continuous extension to $\overline{\Omega_E}$ by setting $d_E = 0$ on $\partial \Omega_E$.

Lem 3: For Q sufficiently near $\partial \Omega_E$, the minimizer γ_Q is unique.
Jacobi distance from $\partial \Omega_E$

If E reg. value of V, $\overline{\Omega_E}$ compact, set $d_E : \Omega \to [0, +\infty[$:

$$d_E(Q) = \inf \{ \int_0^1 (E - V)g(\dot{x}, \dot{x})^{\frac{1}{2}} \, dt : x \in H^1([0, 1], \overline{\Omega_E}, x(0) = Q, x(1) \in \partial \Omega \}.$$

Lem 1: $d_E(Q)$ **attained** on some $\gamma_Q \in H^1([0, 1], \overline{\Omega_E}) \cap C^2([0, 1])$. Such curve satisfies

$$\int_0^1 (E - V)g(\dot{\gamma}_Q, \frac{D}{dt}W) - \frac{1}{2} g(\dot{\gamma}_Q, \dot{\gamma}_Q)g(\nabla V, W) \, dt = 0, \forall W \in C_0^\infty.$$

Lem 2: The map $d_E : \Omega_E \to [0, +\infty[$ is continuous, and it admits a continuous extension to $\overline{\Omega_E}$ by setting $d_E = 0$ on $\partial \Omega_E$.

Lem 3: For Q sufficiently near $\partial \Omega_E$, the minimizer γ_Q is **unique**.

Lem 4: Set $\psi = \frac{1}{2} d_E^2 : \Omega_E \to \mathbb{R}^+; $ for y near $\partial \Omega_E$:

$$\text{Hess}(\psi)_y[v, v] > 0, \quad \text{for } v \neq 0 \text{ with } d\psi_y[v] = 0.$$
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{x \in \Omega_E : d_E(x) > \delta_*\}$ the following hold:
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \}$ the following hold:

- $\partial \Omega_*$ of class C^2,
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \}$ the following hold:

- $\partial \Omega_*$ of class C^2, $\overline{\Omega_*}$ diffeomorphic to $\overline{\Omega_E}$;
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{x \in \Omega_E : d_E(x) > \delta_*\}$ the following hold:

1. $\partial \Omega_*$ of class C^2, Ω_* diffeomorphic to $\overline{\Omega}_E$;
2. $\overline{\Omega}_*$ is *strongly concave* w.r. to g_E;
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \}$ the following hold:

1. $\partial \Omega_*$ of class C^2, $\overline{\Omega_*}$ diffeomorphic to $\overline{\Omega}_E$;
2. $\overline{\Omega_*}$ is *strongly concave* w.r. to g_E;
3. If $x : [0, 1] \rightarrow \overline{\Omega_*}$ is a g_E-OGC, then $\exists [\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \rightarrow \overline{\Omega}$ of x such that:
OGC’s and the Maupertuis Integral

THM: E reg. value of V, Ω_E compact. Then, exists $\delta_0 > 0$ s.t., setting $\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \}$ the following hold:

- $\partial \Omega_*$ of class C^2, $\overline{\Omega_*}$ diffeomorphic to $\overline{\Omega_E}$;
- $\overline{\Omega_*}$ is *strongly concave* w.r. to g_E;
- if $x : [0, 1] \rightarrow \overline{\Omega_*}$ is a g_E-OGC, then $\exists [\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \rightarrow \overline{\Omega}$ of x such that:
 \[
 \frac{1}{2} \int_0^1 (E - V) g(\dot{x}', \frac{d}{dt} W) - \frac{1}{2} g(\dot{x}', \dot{x}') g(\nabla V, W) \, dt = 0, \forall W \in C_0^\infty;
 \]
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_* > 0$ s.t., setting $\Omega_* = \{x \in \Omega_E : d_E(x) > \delta_*\}$ the following hold:

1. $\partial \Omega_*$ of class C^2, $\overline{\Omega_*}$ diffeomorphic to $\overline{\Omega_E}$;
2. $\overline{\Omega_*}$ is **strongly concave** w.r. to g_E;
3. if $x : [0, 1] \rightarrow \overline{\Omega_*}$ is a g_E-OGC, then $\exists [\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \rightarrow \overline{\Omega}$ of x such that:

 \[\frac{1}{0} \int (E - V) g(\hat{x}', \frac{d}{dt} W) - \frac{1}{2} g(\hat{x}', \hat{x}') g(\nabla V, W) \, dt = 0, \forall W \in C^\infty_0; \]

 \[\hat{x}(s) \in d_{E}^{-1}(\cdot - \delta_*, 0[\cdot] \text{ for } s \in]\alpha, 0[\cup]1, \beta[; \]
OGC’s and the Maupertuis Integral

THM: \(E \) reg. value of \(V \), \(\Omega_E \) compact. Then, exists \(\delta_* > 0 \) s.t., setting \(\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \} \) the following hold:

- \(\partial \Omega_* \) of class \(C^2 \), \(\Omega_* \) diffeomorphic to \(\Omega_E \);
- \(\Omega_* \) is *strongly concave* w.r. to \(g_E \);
- if \(x : [0, 1] \to \Omega_* \) is a \(g_E \)-OGC, then \(\exists [\alpha, \beta] \supset [0, 1] \) and a unique extension \(\hat{x} : [\alpha, \beta] \to \Omega \) of \(x \) such that:
 - \(\int_0^1 (E - V)g(\hat{x}', \frac{d}{dt}W) - \frac{1}{2}g(\hat{x}', \hat{x}')g(\nabla V, W)\, dt = 0, \forall W \in C_0^\infty \);
 - \(\hat{x}(s) \in d_{E}^{-1}(]-\delta_*, 0[) \) for \(s \in]\alpha, 0[\cup]1, \beta[\);
 - \(V(\hat{x}(\alpha)) = V(\hat{x}(\beta)) = 0. \)
THM: E reg. value of V, Ω_E compact. Then, exists $\delta_*>0$ s.t., setting $\Omega_* = \{ x \in \Omega_E : d_E(x) > \delta_* \}$ the following hold:

- $\partial \Omega_*$ of class C^2, $\overline{\Omega_*}$ diffeomorphic to $\overline{\Omega}_E$;
- $\overline{\Omega_*}$ is *strongly concave* w.r. to g_E;
- if $x : [0, 1] \to \overline{\Omega_*}$ is a g_E-OGC, then $\exists [\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \to \overline{\Omega}$ of x such that:
 - $\frac{1}{0} \int (E - V)g(\hat{x}', \frac{d}{dt}W) - \frac{1}{2}g(\hat{x}', \hat{x}')g(\nabla V, W) dt = 0, \forall W \in C_0^\infty$;
 - $\hat{x}(s) \in d_{E}^{-1}(\cdot] - \delta_*, 0[)$ for $s \in]\alpha, 0[\cup]1, \beta[$;
 - $V(\hat{x}(\alpha)) = V(\hat{x}(\beta)) = 0$.
- if $\overline{\Omega}$ is *centrally symmetric*, also $\overline{\Omega_*}$ is cent. symmetric.
x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}(]-\infty, E])$ compact.
x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}([-\infty, E])$ compact. Choose $\delta > 0$ small so that $\Omega_\delta = V^{-1}(E - \delta, +\infty]$ has two connected components.
Jacobi distance from a nondegenerate max

x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}([-\infty, E])$ compact.

Choose $\delta > 0$ small so that $\Omega_\delta = V^{-1}(E - \delta, +\infty]$ has two connected components.

$$\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V)g(\dot{x}, \dot{x})\,dt \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{\text{loc}}([0, 1], \overline{\Omega_\delta}), x(0) = Q, x(1) = x_0 \right\}$$
Jacobi distance from a nondegenerate max

x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}([-\infty, E])$ compact.

Choose $\delta > 0$ small so that $\Omega_\delta = V^{-1}([E-\delta, +\infty[)$ has two connected components.

$$\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V) g(\dot{x}, \dot{x}) \, dt \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{loc}([0, 1], \Omega_\delta), x(0) = Q, x(1) = x_0 \right\}$$

Lem 1: $\lambda_E(Q)$ is attained on some $\gamma_Q, g_E(\dot{\gamma}_Q, \dot{\gamma}_Q)$ constant, $\gamma_Q([0, 1[) \subset \overline{\Omega_Q \setminus \{x_0\}}$.
Jacobi distance from a nondegenerate max

\(x_0 \) nondegenerate max of \(V \), \(V(x_0) = E \), \(E \) reg. value of \(V \), \(V^{-1}([-\infty, E]) \) compact. Choose \(\delta > 0 \) small so that \(\Omega_\delta = V^{-1}(E - \delta, +\infty] \) has two connected components.

\[
\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V)g(\dot{x}, \dot{x}) \, dt \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{\text{loc}}([0, 1], \overline{\Omega_\delta}), x(0) = Q, x(1) = x_0 \right\}
\]

Lem 1: \(\lambda_E(Q) \) is attained on some \(\gamma_Q, g_E(\dot{\gamma}, \dot{\gamma}) \) constant, \(\gamma_Q([0, 1]) \subset \overline{\Omega_Q} \setminus \{x_0\} \).

\[
\lim_{Q \to x_0} \lambda_E(Q) = 0, \quad \lim_{Q \to x_0} \left[\sup_{s \in [0, 1]} \text{dist}(\gamma_Q(s), x_0) \right] = 0;
\]
Jacobi distance from a nondegenerate max

x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}([-\infty, E])$ compact.

Choose $\delta > 0$ small so that $\Omega_{\delta} = V^{-1}(]E - \delta, +\infty[)$ has two connected components.

$$\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V)g(\dot{x}, \dot{x})dt \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{loc}([0, 1], \overline{\Omega_{\delta}}), x(0) = Q, x(1) = x_0 \right\}$$

Lem 1: $\lambda_E(Q)$ is attained on some γ_Q, $g_E(\dot{\gamma_Q}, \dot{\gamma_Q})$ constant, $\gamma_Q([0, 1]) \subset \overline{\Omega_Q} \setminus \{x_0\}$.

$$\lim_{Q \to x_0} \lambda_E(Q) = 0, \lim_{Q \to x_0} \left[\sup_{s \in [0,1]} \text{dist} (\gamma_Q(s), x_0) \right] = 0;$$

For Q near x_0, $\gamma_Q([0, 1]) \subset \Omega_{\delta}$, γ_Q is of class C^2 and it satisfies:

$$\int_0^1 (E - V)g(\dot{\gamma_Q}, \frac{D}{dt}W) - \frac{1}{2} g(\dot{\gamma_Q}, \dot{\gamma_Q})g(\nabla V, W)dt = 0, \forall W \in C_0^\infty$$
nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}(]-\infty, E])$ compact. Choose $\delta > 0$ small so that $\Omega_\delta = V^{-1}(]E - \delta, +\infty[)$ has two connected components.

\[\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V)g(\dot{x}, \dot{x})d\tau \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{\text{loc}}([0, 1], \overline{\Omega_\delta}), x(0) = Q, x(1) = x_0 \right\} \]

Lem 1: $\lambda_E(Q)$ is attained on some γ_Q, $g_E(\dot{\gamma}_Q, \dot{\gamma}_Q)$ constant, $\gamma_Q([0, 1]) \subset \overline{\Omega_Q} \setminus \{x_0\}$.

\[\lim_{Q \to x_0} \lambda_E(Q) = 0, \lim_{Q \to x_0} \sup_{s \in [0, 1]} \text{dist}(\gamma_Q(s), x_0) = 0; \]

For Q near x_0, $\gamma_Q([0, 1]) \subset \Omega_\delta$, γ_Q is of class C^2 and it satisfies:

\[\int_0^1 (E - V)g(\dot{\gamma}_Q, \frac{D}{dt}W) - \frac{1}{2}g(\dot{\gamma}_Q, \dot{\gamma}_Q)g(\nabla V, W)d\tau = 0, \forall W \in C^\infty_0 \]

Lem 2: $\lambda_E : \Omega_E \to [0, +\infty[$ is continuous.
Jacobi distance from a nondegenerate max

x_0 nondegenerate max of V, $V(x_0) = E$, E reg. value of V, $V^{-1}(]-\infty, E])$ compact.

Choose $\delta > 0$ small so that $\Omega_\delta = V^{-1}(]E - \delta, +\infty[)$ has two connected components.

$$\lambda_E(Q) = \inf \left\{ \left[\int_0^1 (E - V) g(\dot{x}, \dot{x}) \, dt \right]^{\frac{1}{2}} : x \in C^0 \cap H^1_{\text{loc}}([0, 1], \overline{\Omega_\delta}), x(0) = Q, x(1) = x_0 \right\}$$

Lem 1: $\lambda_E(Q)$ is attained on some γ_Q, $g_E(\dot{\gamma}_Q, \dot{\gamma}_Q)$ constant, $\gamma_Q([0, 1[\subset \overline{\Omega_Q} \setminus \{x_0\}$.

$$\lim_{Q \to x_0} \lambda_E(Q) = 0, \quad \lim_{Q \to x_0} \left[\sup_{s \in [0, 1]} \text{dist}(\gamma_Q(s), x_0) \right] = 0;$$

For Q near x_0, $\gamma_Q([0, 1[\subset \Omega_\delta$, γ_Q is of class C^2 and it satisfies:

$$\int_0^1 (E - V) g(\dot{\gamma}_Q, \frac{D}{dt} W) - \frac{1}{2} g(\dot{\gamma}_Q, \dot{\gamma}_Q) g(\nabla V, W) \, dt = 0, \quad \forall W \in C^\infty_0$$

Lem 2: $\lambda_E : \Omega_E \to [0, +\infty[\text{ is continuous}.$

Lem 3: $\exists \hat{\rho} > 0$ s.t., setting $\psi(y) = \frac{1}{2} \lambda_Q(y)^2$, for $\text{dist}(y, x_0) \leq \hat{\rho}$:

$$\text{Hess}(\psi)_y[v, v] > 0, \quad \text{for } v \neq 0 \text{ with } d\psi_y[v] = 0.$$
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}(-\infty, E] \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}([-\infty, E[) \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.

\[\exists \delta_* > 0 \text{ s.t., setting: } \Omega_* = \{ x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_* \} \]

denoting by D_0 the connected component of $\partial \Omega_*$ near x_0, by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$, the following hold:
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}(-\infty, E[\{x_0\}]$ homeomorphic to an open ball in \mathbb{R}^m.

$\exists \delta_* > 0$ s.t.

setting: $\Omega_* = \{ x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_* \}$

denoting by D_0 the connected component of $\partial \Omega_*$ near x_0,

by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$,

the following hold:

\exists \quad $\partial \Omega_*$ is of class C^2, $\overline{\Omega}_*$ is homeomorphic to an annulus;
M–J principle for homoclinics

THM: \(x_0 \) nondegenerate max of \(V \), \(V(x_0) = E \), \(E \) regular value of \(V \), \(V^{-1}(\mathbb{R}^{-\infty}) \bigcup \{x_0\} \) homeomorphic to an open ball in \(\mathbb{R}^m \).

\(\exists \delta_* > 0 \) s.t., setting: \(\Omega_* = \{ x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_* \} \)

denoting by \(D_0 \) the connected component of \(\partial \Omega_* \) near \(x_0 \),

by \(D_1 \) the connected component of \(\partial \Omega_* \) near \(V^{-1}(E) \setminus \{0\} \),

the following hold:

1. \(\partial \Omega_* \) is of class \(C^2 \), \(\overline{\Omega_*} \) is homeomorphic to an annulus;
2. \(\overline{\Omega_*} \) is \(g_E \)-strongly concave;
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}(]-\infty, E[) \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.

$\exists \delta_* > 0$ s.t., setting: $\Omega_* = \{x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_*\}$

denoting by D_0 the connected component of $\partial \Omega_*$ near x_0,

by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$,

the following hold:

1. $\partial \Omega_*$ is of class C^2, $\overline{\Omega_*}$ is homeomorphic to an annulus;
2. $\overline{\Omega_*}$ is g_E-strongly concave;
3. if $x : [0, 1] \rightarrow \overline{\Omega_*}$ is an OGC with $x(0) \in D_0$, $x(1) \in D_1$, then there exists $\alpha, \beta \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \rightarrow \overline{\Omega_E}$, $x \in C^0 \cap H^1_{\text{loc}}$, satisfying:
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}(-\infty, E[\cdot] \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.

$\exists \delta_* > 0$ s.t., setting: $\Omega_* = \{x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_*\}$
denoting by D_0 the connected component of $\partial \Omega_*$ near x_0, by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$, the following hold:

1. $\partial \Omega_*$ is of class C^2, $\overline{\Omega}_*$ is homeomorphic to an annulus;
2. $\overline{\Omega}_*$ is g_E-strongly concave;
3. if $x : [0, 1] \to \overline{\Omega}_*$ is an OGC with $x(0) \in D_0$, $x(1) \in D_1$, then there exists $]\alpha, \beta] \supset [0, 1]$ and a unique extension $\tilde{x} : [\alpha, \beta] \to \overline{\Omega}_E$, $x \in C^0 \cap H^1_{\text{loc}}$, satisfying:
 - \tilde{x} is a g_E-geodesic;
THM: \(x_0\) nondegenerate max of \(V\), \(V(x_0) = E\), \(E\) regular value of \(V\), \(V^{-1}(-\infty, E[\cup\{x_0\})\) homeomorphic to an open ball in \(\mathbb{R}^m\).

\(\exists \delta_* > 0\) s.t., setting: \(\Omega_* = \{x \in \mathbb{R}^m : \text{dist}_E (x, V^{-1}(E)) > \delta_*\}\)

denoting by \(D_0\) the connected component of \(\partial \Omega_*\) near \(x_0\),
by \(D_1\) the connected component of \(\partial \Omega_*\) near \(V^{-1}(E) \setminus \{0\}\),
the following hold:

1. \(\partial \Omega_*\) is of class \(C^2\), \(\overline{\Omega_*}\) is homeomorphic to an annulus;
2. \(\overline{\Omega_*}\) is \(g_E\)-strongly concave;
3. if \(x : [0, 1] \rightarrow \overline{\Omega_*}\) is an OGC with \(x(0) \in D_0\), \(x(1) \in D_1\), then there exists \([\alpha, \beta] \supset [0, 1]\) and a unique extension \(\hat{x} : [\alpha, \beta] \rightarrow \overline{\Omega_E}, x \in C^0 \cap H^1_{\text{loc}}\), satisfying:
 - \(\hat{x}\) is a \(g_E\)-geodesic;
 - \(\text{dist}(\hat{x}(s), V^{-1}(E)) \in]-\delta_*, 0[\) for \(s \in]\alpha, 0[\cup 1, \beta[\).
M–J principle for homoclinics

THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V, $V^{-1}(-\infty, E[) \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.

$\exists \delta_* > 0$ s.t., setting: $\Omega_* = \{x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_* \}$

denoting by D_0 the connected component of $\partial \Omega_*$ near x_0,

by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$,

the following hold:

1. $\partial \Omega_*$ is of class C^2, $\overline{\Omega}_*$ is homeomorphic to an annulus;
2. $\overline{\Omega}_*$ is g_E-strongly concave;
3. if $x : [0, 1] \to \overline{\Omega}_*$ is an OGC with $x(0) \in D_0$, $x(1) \in D_1$, then there exists $]\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \to \overline{\Omega}_E$, $x \in C^0 \cap H^1_{\text{loc}}$, satisfying:
 - \hat{x} is a g_E-geodesic;
 - $\text{dist}(\hat{x}(s), V^{-1}(E)) \in]-\delta_*, 0[\text{ for } s \in]\alpha, 0[\cup]1, \beta[;$
 - $\hat{x}(\alpha) = x_0$, $\hat{x}(\beta) \in V^{-1}(E) \setminus \{x_0\};$
THM: x_0 nondegenerate max of V, $V(x_0) = E$, E regular value of V,
$V^{-1}(]-\infty, E[) \cup \{x_0\}$ homeomorphic to an open ball in \mathbb{R}^m.

$\exists \delta_* > 0$ s.t., setting:

$$\Omega_* = \{x \in \mathbb{R}^m : \text{dist}_E(x, V^{-1}(E)) > \delta_*\}$$

denoting by D_0 the connected component of $\partial \Omega_*$ near x_0,
by D_1 the connected component of $\partial \Omega_*$ near $V^{-1}(E) \setminus \{0\}$,

the following hold:

1. $\partial \Omega_*$ is of class C^2, $\overline{\Omega}_*$ is homeomorphic to an annulus;
2. $\overline{\Omega}_*$ is g_E-strongly concave;
3. if $x : [0, 1] \to \overline{\Omega}_*$ is an OGC with $x(0) \in D_0$, $x(1) \in D_1$, then there exists
 $][\alpha, \beta] \supset [0, 1]$ and a unique extension $\hat{x} : [\alpha, \beta] \to \overline{\Omega}_E$, $x \in C^0 \cap H^1_{\text{loc}}$, satisfying:
 - \hat{x} is a g_E-geodesic;
 - $\text{dist}(\hat{x}(s), V^{-1}(E)) \in]-\delta_*, 0[\text{ for } s \in]\alpha, 0[\cup]1, \beta[;$
 - $\hat{x}(\alpha) = x_0$, $\hat{x}(\beta) \in V^{-1}(E) \setminus \{x_0\}$;
4. if $V^{-1}(]-\infty, E[) \cup \{x_0\}$ and V are centrally symmetric around x_0, then so is $\overline{\Omega}_*$.
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a natural Hamiltonian.
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a natural Hamiltonian. Let E be a regular value of the potential V.
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a *natural Hamiltonian*. Let E be a *regular value* of the potential V, and assume

$$\Omega_E = V^{-1}([-\infty, E[)$$

is homeomorphic to an m-dimensional annulus.
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a natural Hamiltonian. Let E be a regular value of the potential V, and assume

$$\Omega_E = V^{-1}(-\infty, E]$$

is homeomorphic to an m-dimensional annulus. Then, the Hamiltonian system (HS) has at least two geometrically distinct brake orbits of energy E, whose endpoints are in different connected components of $V^{-1}(E)$.
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a natural Hamiltonian. Let E be a regular value of the potential V, and assume

$$
\Omega_E = V^{-1}(-\infty, E]$$

is homeomorphic to an m-dimensional annulus. Then, the Hamiltonian system (HS) has at least two geometrically distinct brake orbits of energy E, whose endpoints are in different connected components of $V^{-1}(E)$.

Theorem 2: Under the assumptions of THM 1, if the functions a_{ij} and V are centrally symmetric w. resp. to some $y_0 \not\in V^{-1}(-\infty, E]$,
Theorem 1: Let $H \in C^2(\mathbb{R}^{2m}, \mathbb{R})$ be a *natural Hamiltonian*. Let E be a *regular value* of the potential V, and assume

$$
\Omega_E = V^{-1}(-\infty, E[)
$$

is homeomorphic to an m-dimensional annulus. Then, the Hamiltonian system (HS) has at least *two geometrically distinct brake orbits* of energy E, whose endpoints are in different connected components of $V^{-1}(E)$.

Theorem 2: Under the assumptions of THM 1, if the functions a_{ij} and V are *centrally symmetric* w. resp. to some $y_0 \not\in V^{-1}(-\infty, E]$), then there are at least m geometrically distinct brake orbits for (HS) with energy E.
Theorem 3: (M, g) Riemannian manifold, $V : M \xrightarrow{C^2} \mathbb{R}, x_0 \in M$ a nondegenerate maximum of V. Assume:
Theorem 3: \((M, g)\) Riemannian manifold, \(V : M \xrightarrow{C^2} \mathbb{R}\), \(x_0 \in M\) a nondegenerate maximum of \(V\). Assume:

1. \(V^{-1}(-\infty, E]\cup\{x_0\}\) is homeomorphic to an open ball of \(\mathbb{R}^m\);
Theorem 3: \((M, g)\) Riemannian manifold, \(V : M \overset{C^2}{\to} \mathbb{R}\), \(x_0 \in M\) a nondegenerate maximum of \(V\). Assume:

- \(V^{-1}(-\infty, E[\cdot]) \cup \{x_0\}\) is homeomorphic to an open ball of \(\mathbb{R}^m\);
- \(dV(x) \neq 0\) for all \(x \in V^{-1}(E) \setminus \{x_0\}\).
Theorem 3: \((M, g)\) Riemannian manifold, \(V : M \xrightarrow{C^2} \mathbb{R}\), \(x_0 \in M\) a nondegenerate maximum of \(V\). Assume:

- \(V^{-1}(-\infty, E[_]) \cup \{x_0\}\) is homeomorphic to an open ball of \(\mathbb{R}^m\);
- \(dV(x) \neq 0\) for all \(x \in V^{-1}(E) \setminus \{x_0\}\).

Then, there are at least two geometrically distinct homoclinic orbits for the Lagrangian problem (LP) emanating from \(x_0\).
Theorem 3: (M, g) Riemannian manifold, $V : M \overset{C^2}{\to} \mathbb{R}$, $x_0 \in M$ a nondegenerate maximum of V. Assume:

1. $V^{-1}(-\infty, E[\cdot]) \cup \{x_0\}$ is homeomorphic to an open ball of \mathbb{R}^m;
2. $dV(x) \neq 0$ for all $x \in V^{-1}(E) \setminus \{x_0\}$.

Then, there are at least two geometrically distinct homoclinic orbits for the Lagrangian problem (LP) emanating from x_0.

Theorem 4: Under the assumptions of THM 3, if (M, g) and V are centrally symmetric around x_0, then there are at least m geometrically distinct homoclinics of (LP) emanating from x_0.
Gluing a convex collar to a manifold with boundary