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Outiline of this talk

The Yamabe problem
� Compact manifolds. Aubin inequality.
� Noncompact manifolds. Example: Sn \ Sk .
� Two arguments for the existence of multiple solutions.

Compact flat manifolds
� Bieberbach theorems.
� Teichmüller space of flat metrics.
� Algebraic description.
� Existence of flat deformations.

Boundary of the flat Teichmüller space
� Collapse of flat manifolds;
� Flat orbifolds.
� Examples of 3-D collapse.
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Finding the best metric on a manifold

M a compact manifold;
a metric g on M is a smooth choice of measuring length
and angles of tangent vectors to M: gp : TpM × TpM → R;
metrics give a way of computing length of curves and
distances;
metrics determine curvature in M. Best metrics are those
that have the simplest curvature formulas. Constant.
When n = dim(M) > 2, there are several notions of
curvature:

sectional
curvature

constant: only if
M = Rn,Sn,Hn

Ricci
curvature

constant: Einstein
field equations in
vacuum

scalar
curvature

constant:
Yamabe problem
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The Yamabe problem

Two metrics g1 and g2 are conformal if they give the same
angles between vectors.
Conformal class of g: [g] :=

{
metrics conformal to g

}
Yamabe problem

Given a compact manifold Mn (n ≥ 3) and a metric g on M,
does there exist h ∈ [g] with scalh constant?

Solutions h to the Yamabe problem are critical points of the
Hilbert–Einstein functional A : [g]→ R:

A(h) = vol(h)
2−n

n

∫
M

scalh dMh

Solution (Yamabe, Trudinger, Aubin, Schoen)

A always attains its minimum in [g]: Y (M,g) (Yamabe constant)
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Yamabe problem on round spheres

Consider the round sphere (Sn,ground)

Two special properties

[ground] contains infinitely many constant scalar curvature
metrics (infact, a noncompact set!)

(Aubin inequality) for any compact manifold Mn and any
metric g on M:

Y (M,g) ≤ Y (Sn,ground)
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The Yamabe problem on noncompact manifolds

Asymptotic condition: completeness.

Yamabe problem on noncompact manifolds

Given a noncompact (Mn,g), n ≥ 3, does there exist a
complete metric h ∈ [g] with scalh constant?

Counterexample (Jin Zhiren, 1980)

M̃ compact, M = M̃ \ {p1, . . . ,pk}.
Choose g on M̃ with scalg < 0 (Aubin). Then:

there is no h ∈ [g] with scalh ≥ 0;

If h ∈ [g] and scalh < 0, then h is noncomplete (a priori
estimates on an elliptic PDE).
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A nice example: Sn \ Sk

Consider M = Sn \ Sk (0 ≥ k < n)
metric: ground

Sn \ Sk ∼= Rn \Rk (stereographic projection)
ground

∼= gflat

Rn \Rk =
(
Rn−k \ {0}

)
×Rk

gflat = r2dθ2 + dr2 + dy2

∼= dθ2 +
1
r2

(
dr2 + dy2)

= Sn−k−1 × Hk+1 ⇐= complete and
constant scalar
curvature
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Infinitely many solutions!

Theorem

When 2k < n − 2, there are infinitely many solutions of the
Yamabe problem in Sn \ Sk .

Proof.

Two different arguments:
(A) Topology (covering spaces)

(B) Bifurcation theory (when k = 0,1).

This theorem produces periodic solutions, i.e., coming from
compact quotients.
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The topological argument

1 Hk+1 has compact quotients that give an infinite tower of
finite-sheeted Riemannian coverings:

(Hk+1,ghyp)→ . . .→ (Σ2,g2)→ (Σ1,g1)→ (Σ0,g0)

2 Multiply by (Sn−k−1,ground), product metrics:

. . .→ (Sn−k−1×Σ1,ground⊕g1)→ (Sn−k−1×Σ0,ground⊕g0)

3 pull-back Yamabe metric in [ground ⊕ g0]: Hilbert–Einstein
energy A diverges! (uses assumption 2k < n − 2)

4 By Aubin inequality, minimum of A must be attained at
some other metric in the conformal class of the product.

5 Iterate.
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Coverings of hyperbolic surfaces
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Profinite completion and residually finite groups

Infinite tower of finite-sheeted coverings:

. . .→ Mk → Mk−1 → . . .→ M1 → M0

iff G = π1(M0) has infinite profinite completion Ĝ.

Def. Ĝ = lim
←

G/Γ, Γ E G,
[
G : Γ

]
< +∞.

Canonical homomorphism ι : G→ Ĝ

Ker(i) =
⋂

ΓEG
[G:Γ]<+∞

Γ

Def. G is residually finite if:
⋂

ΓEG
[G:Γ]<+∞

Γ = {1}
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The bifurcation argument (k = 1)

1 Choose a compact quotient of H2: a compact surface Σg

of genus g ≥ 2.

2 Σg has many nonisometric hyperbolic metrics.
Deformations: Teichmüller space T (Σg) ∼= R6g−6.

3 For h ∈ T (Σg), ground ⊕ h is a solution of the Yamabe
problem in Sn−2 × Σg

4 Each of these solutions has a Morse index, computed in
terms of the spectrum of ∆h.

5 Jump of Morse index when ∆h has many small eigenvalues
=⇒ bifurcation must occur along paths in T (Σg).
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Natural candidates to replace Hk+1

Simply-connected space (X ,g) such that:
(a) scalg constant;

(b) (X ,g) admits an infinite tower of finite sheeted compact
Riemannian coverings X/Γ (Γ has infinite profinite
completion)

(c) A rich space of metrics in X/Γ (Teichmüller space) that are
locally isometric to g, with small Laplacian eigenvalues.
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Symmetric spaces

Theorem (Borel)

Symmetric spaces of noncompact type X admit irreducible
compact quotients X/Γ.

X/Γ loc. symmetric =⇒ constant scalar curvature

Selberg–Malcev lemma

Finitely generated linear groups are residually finite.

Corollary. Γ = π1(X/Γ) has infinite profinite completion.

Simplest example: (X ,g) = (Rn,gflat)

Γ ⊂ Iso(Rn) ∼= Rn n O(n) is a Bieberbach group.
Rn/Γ is a compact flat manifold/orbifold.
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Compact flat manifolds and orbifolds

Γ ⊂ Iso(Rn) is a Bieberbach group:
(a) discrete;
(b) co-compact;
(c) torsion-free.

Theorem

(M,g) compact flat manifold⇐⇒ M = Rn/Γ Γ Bieberbach.

Algebraic structure:

0 −→ L −→ Γ −→ H −→ 1

L ⊂ Rn is a co-compact lattice
H ⊂ O(n) is a finite group (holonomy)

Orbifolds: compact flat orbifolds have a similar structure:
Γ ⊂ Iso(Rn) is a crystallographic, possibly with torsion.
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Small eigenvalues

Theorem (Cheng)

(F d ,gF ) closed manifold with nonnegative Ricci curvature and
unit volume. Then:

λj(F ,gF ) ≤ 2 j2
d(d + 4)

diam(F ,gF )2 .

For bifurcation purposes, need flat metrics with volume 1 and
arbitrarily large diameter. Equivalently, fixed diameter and
arbitrarily small volume. Collapse flat metrics!
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Gromov–Hausdorff convergence and collapse

Hausdorff distance: X ,Y ⊂ Z :

dZ
H (X ,Y ) = inf

{
ε : X ⊂ B(Y , ε) and Y ⊂ B(X , ε)

}
Gromov–Hausdorff distance: dGH(X ,Y ) = inf

X ,Y ↪→Z
dZ

H (X ,Y )

Gromov

M =
{

compact metric spaces
}/

isometries.

(M,dGH) is a complete metric space.

GH-limits can change topology, dimension...
Diameter is a continuous function in (M,dGH).
Collapse of compact Riemannian manifolds:
GH− lim(Mi ,gi) = (X ,d), with lim vol(Mi ,gi) = 0.
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Bieberbach’s theorems (geometric version)

Theorem

(I) A compact flat n-orbifold (O,g) is isometrically covered by
a flat n-torus.

(II) Compact flat orbifolds of the same dimension and with
isomorphic fundamental groups are affinely diffeomorphic.

(III) For all n, there is only a finite number of affine equivalence
classe of compact flat n-orbifolds.

n = 2:
� manifolds: torus T2 and Klein bottle K2

� orbifolds: 17 affine classes (wallpaper groups).

n = 3: #mnfld = 10, #orbfld = 219
n = 4: #mnfld = 74, #orbfld = 4783
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Flat 2-orbifolds

Underlying top. space: D2,S2,RP2,M2,K2,S1 × [0,1]

Cyclic or dihedral local groups
(Leonardo da Vinci)

Cone points and corner reflections.

Notation: S(n1, . . . ,nk ; m1, . . . ,m`)
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A few pictures

S2(3,3,3; ) D2(; 4,4,4,4)

D2(4; 2)
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Symmetries of the Vitruvian Man
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Wallpaper group symmetries

Alhambra, Granada
Spain

Copacabana
Rio de Janeiro

Brazil
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Teichmüller space of flat metrics

M compact manifold (orbifold) admitting a flat metric;

Flat(M) the set of all flat metrics on M;

Mflat = Flat(M)/Diff(M) moduli space of flat metrics on M;

Tflat(M) = Flat(M)/Diff0(M) space of deformations of flat
metrics (Teichmüller space).

Theorem

Tflat(M) is a real-analytic manifold (homogeneous space)
diffeomorphic to some Rd .

Mflat(M) = Tflat(M)/MCG(M), where the mapping class
group MCG(M) is countable and discrete.
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Algebraic description

H ⊂ O(n) holonomy representation

Rn =
⊕̀
i=1

Wi , where Wi isotypical component

Wi direct sum of mi copies of an irreducible

Ki = R,C,H type of Wi

Theorem

Tflat(M) =
∏̀
i=1

GL(mi ,Ki )
O(mi ,Ki )

GL(mi ,Ki)

O(mi ,Ki)
∼= Rdi , di =


1
2mi(mi + 1), if Ki = R,

m2
i , if Ki = C,

mi(2mi − 1), if Ki = H.

The above builds on previous work by Wolf, Thurston, Baues...
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Existence of nontrivial flat deformations

Theorem (Hiss–Szczepański)

Holonomy repn of a compact flat manifold is never irreducible.

Corollary

Compact flat manifolds admit nonhomothetic flat deformations.

Proof. dim
(
Tflat(M)

)
≥ 2.

Obs. Flat orbifolds can be rigid !! (⇐⇒ irreducible holonomy)

Theorem

(M0,g0) closed Riemannian manifold with scalg0 > 0
Γ ⊂ Iso(Rd ) Bieberbach, d ≥ 2.

Then there exist infinitely many branches of Γ-periodic solutions
to the Yamabe problem on

(
M0 ×Rd ,g0 ⊕ gflat

)
.
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Examples of Teichmüller space

n-torus
Tflat(T n) ∼= GL(n)/O(n) ∼= R

1
2 n(n+1)

MCG(T n) = GL(n,Z).

Kummer surface
O = T 4/Z2 (antipodal map on each coordinate).
16 conical singularities
Holonomy rep: 4 copies of nontrivial Z2-rep

Tflat(O) ∼= GL(4,R)/O(4) ∼= R10

Klein bottle, Möbius band, cylinder

H = Z2 (reflection). Tflat(O) ∼= R2

Joyce orbifolds
6-dim flat orbifolds (desingularized to Calabi–Yau mnflds)

O1 = T 6/Z4, holonomy generated by diag(−1, i, i) of C3 ∼= R6.
Tflat(O1) ∼= GL(2,R)/O(2)× GL(2,C)/U(2) ∼= R7

O2 = T 6/Z2 ⊕ Z2. Holonomy generated by diag(1,−1,−1) and diag(−1, 1,−1) of C3 ∼= R6

Tflat(O2) ∼= GL(2,R)/O(2)× GL(2,R)/O(2)× GL(2,R)/O(2) ∼= R9.
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Boundary of the flat Teichmüller space – 1

Theorem

The Gromov–Hausdorff limit of a sequence (Mn,gi) of compact
flat manifolds is a compact flat orbifold.

Proof.

Result true for flat tori (Mahler’s compactness thm)
can assume all holonomy groups equal: Hi = H
(M,gi) is the quotient of a flat torus (Tn, g̃i) by an isometric
free action of H.
By Fukaya–Yamaguchi:
lim(M,gi) = lim(Tn/H,gi) = lim(Tn,gi)/H.
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Boundary of the Teichmüller space – 2
Flat orbifolds admit flat desingularization
(through higher dimensional manifolds):

Theorem

Every compact flat orbifold is the limit of a sequence of
compact flat manifolds.

Proof.

On = Rn/Γ, Γ ⊂ Iso(Rn) crystallographic

H ⊂ O(n) holonomy, O = Tn/H (possibly nonfree action).

Auslander–Kuranishi: ∃ Bieberbach N-group Γ′ with Hol(Γ′) = H.
Compact N-manifold M0 = RN/Γ′ = TN/H (free action).

Diagonal action of H on Tn ×TN : this is free!
Set M = (Tn ×TN)/H, compact flat manifold.

O is obtained by collapsing the factor TN in M.
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Boundary in the 3-D case

Theorem

The G-H limit of a sequence of compact flat 3 manifold belongs
to one of these classes:

point
closed interval, circle
2-torus, Klein bottle, Möbius band, cylinder
flat disk with two singularities: D2(4; 2), D2(3; 3) or
D2(2,2; )

flat sphere with singularities: S2(3,3,3; ) or S2(2,2,2,2; )
(pillowcase)
projective plane with 2 singularities RP2(2,2; ).
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A few more pictures

Collapse of flat 3-manifolds Need higher dimensional
collapse
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Thanks for your
attention!!

See you at ICM2018!
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