Teichmüller theory, collapse of flat manifolds and applications to the Yamabe problem

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

July 25, 2017

Paolo Piccione Collapse of flat manifolds and the Yamabe problem

The Yamabe problem

- Compact manifolds. Aubin inequality.
- ♦ Noncompact manifolds. Example: $S^n \setminus S^k$.
- Two arguments for the existence of multiple solutions.

Compact flat manifolds

- Bieberbach theorems.
- Teichmüller space of flat metrics.
- Algebraic description.
- Existence of flat deformations.

Boundary of the flat Teichmüller space

- Collapse of flat manifolds;
- Flat orbifolds.
- Examples of 3-D collapse.

My co-authors

Renato Bettiol (UPenn) Andrzej Derdzinski (OSU) Bianca Santoro (CCNY)

My sponsors

Paolo Piccione Collapse of flat manifolds and the Yamabe problem

Finding the *best* metric on a manifold

- M a compact manifold;
- a metric q on M is a smooth choice of measuring length and angles of tangent vectors to M: $g_p: T_p M \times T_p M \to \mathbb{R}$;
- metrics give a way of computing length of curves and distances:
- metrics determine curvature in M. Best metrics are those that have the simplest curvature formulas. **Constant.**
- When $n = \dim(M) > 2$, there are several notions of curvature:

sectional
curvature
constant: only if

 $M = \mathbb{R}^n, \mathbb{S}^n, \mathbb{H}^n$

Ricci

curvature

constant: Einstein field equations in vacuum

scalar

curvature

constant: Yamabe problem

The Yamabe problem

Two metrics g_1 and g_2 are conformal if they give the same *angles* between vectors.

• Conformal class of g: $[g] := \{ metrics conformal to g \}$

Yamabe problem

Given a compact manifold M^n ($n \ge 3$) and a metric g on M, does there exist $h \in [g]$ with scal_h constant?

Solutions *h* to the Yamabe problem are critical points of the Hilbert–Einstein functional $\mathcal{A}: [g] \to \mathbb{R}$:

$$\mathcal{A}(h) = \operatorname{vol}(h)^{\frac{2-n}{n}} \int_M \operatorname{scal}_h \mathrm{d}M_h$$

Solution (Yamabe, Trudinger, Aubin, Schoen)

A always attains its *minimum* in [g]: Y(M, g) (Yamabe constant)

Yamabe problem on round spheres

Consider the round sphere $(\mathbb{S}^n, g_{round})$

Two special properties

- [g_{round}] contains infinitely many constant scalar curvature metrics (infact, a noncompact set!)
- (Aubin inequality) for any compact manifold Mⁿ and any metric g on M:

 $Y(M,g) \leq Y(\mathbb{S}^n,g_{\mathsf{round}})$

The Yamabe problem on noncompact manifolds

Asymptotic condition: completeness.

Yamabe problem on noncompact manifolds

Given a noncompact (M^n, g) , $n \ge 3$, does there exist a *complete* metric $h \in [g]$ with scal_h constant?

Counterexample (Jin Zhiren, 1980)

 \widetilde{M} compact, $M = \widetilde{M} \setminus \{p_1, \dots, p_k\}$. Choose g on \widetilde{M} with $\operatorname{scal}_g < 0$ (Aubin). Then:

• there is no $h \in [g]$ with $\operatorname{scal}_h \ge 0$;

If *h* ∈ [*g*] and scal_{*h*} < 0, then *h* is noncomplete (a priori estimates on an elliptic PDE).

• Consider $M = \mathbb{S}^n \setminus \mathbb{S}^k$ $(0 \ge k < n)$

metric: g_{round}

 $\mathbb{S}^{n} \setminus \mathbb{S}^{k} \cong \mathbb{R}^{n} \setminus \mathbb{R}^{k} \text{ (stereographic projection)}$ $g_{\text{round}} \cong g_{\text{flat}}$ $\mathbb{R}^{n} \setminus \mathbb{R}^{k} = \left(\mathbb{R}^{n-k} \setminus \{0\}\right) \times \mathbb{R}^{k}$ $g_{\text{flat}} = r^{2}d\theta^{2} + dr^{2} + dy^{2}$ $\cong d\theta^{2} + \frac{1}{r^{2}}(dr^{2} + dy^{2})$

 $= \mathbb{S}^{n-k-1} \times \mathbb{H}^{k+1} \iff \text{complete and}$ constant scalar curvature

Theorem

When 2k < n-2, there are infinitely many solutions of the Yamabe problem in $\mathbb{S}^n \setminus \mathbb{S}^k$.

Proof.

Two different arguments:

(A) Topology (covering spaces)

(B) Bifurcation theory (when k = 0, 1).

This theorem produces *periodic solutions*, i.e., coming from compact quotients.

The topological argument

 II 𝔄^{k+1} has compact quotients that give an infinite tower of finite-sheeted Riemannian coverings:

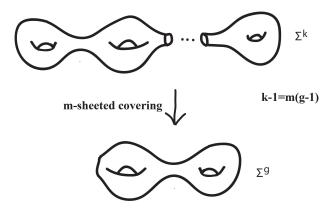
$$(\mathbb{H}^{k+1}, g_{\mathsf{hyp}}) o \ldots o (\Sigma_2, g_2) o (\Sigma_1, g_1) o (\Sigma_0, g_0)$$

2 Multiply by (S^{n-k-1}, g_{round}) , product metrics:

$$\ldots
ightarrow (S^{n-k-1} imes \Sigma_1, g_{\mathsf{round}} \oplus g_1)
ightarrow (S^{n-k-1} imes \Sigma_0, g_{\mathsf{round}} \oplus g_0)$$

- 3 pull-back Yamabe metric in [g_{round} ⊕ g₀]: Hilbert–Einstein energy *A* diverges! (uses assumption 2k < n - 2)</p>
- 4 By Aubin inequality, minimum of A must be attained at some other metric in the conformal class of the product.
- 5 Iterate.

Coverings of hyperbolic surfaces



Profinite completion and residually finite groups

Infinite tower of finite-sheeted coverings:

$$\ldots \rightarrow M_k \rightarrow M_{k-1} \rightarrow \ldots \rightarrow M_1 \rightarrow M_0$$

iff $G = \pi_1(M_0)$ has infinite profinite completion \widehat{G} . **Def.** $\widehat{G} = \lim_{\leftarrow} G/\Gamma$, $\Gamma \trianglelefteq G$, $[G:\Gamma] < +\infty$. Canonical homomorphism $\iota: G \to \widehat{G}$

$$\operatorname{Ker}(i) = \bigcap_{\substack{\Gamma \trianglelefteq G \\ [G:\Gamma] < +\infty}} \Gamma$$

Def. G is residually finite if: $\bigcap_{\substack{\Gamma \trianglelefteq G \\ [G:\Gamma] < +\infty}} \Gamma = \{1\}$

- Choose a compact quotient of H²: a compact surface Σ^g of genus g ≥ 2.
- 2 Σ^g has many nonisometric hyperbolic metrics. Deformations: Teichmüller space *T*(Σ^g) ≅ ℝ^{6g-6}.
- 3 For h ∈ T(Σ⁹), g_{round} ⊕ h is a solution of the Yamabe problem in Sⁿ⁻² × Σ⁹
- 4 Each of these solutions has a Morse index, computed in terms of the spectrum of Δ_h.
- 5 Jump of Morse index when Δ_h has many *small* eigenvalues \implies bifurcation must occur along paths in $\mathcal{T}(\Sigma^{g})$.

Simply-connected space (X, g) such that:

- (a) scal_g constant;
- (b) (X, g) admits an infinite tower of finite sheeted compact Riemannian coverings X/Γ (Γ has infinite profinite completion)
- (c) A rich space of metrics in X/Γ (Teichmüller space) that are locally isometric to g, with small Laplacian eigenvalues.

Theorem (Borel)

Symmetric spaces of noncompact type X admit irreducible compact quotients X/Γ .

 X/Γ loc. symmetric \implies constant scalar curvature

Selberg-Malcev lemma

Finitely generated linear groups are residually finite.

Corollary. $\Gamma = \pi_1(X/\Gamma)$ has infinite profinite completion.

Simplest example: $(X, g) = (\mathbb{R}^n, g_{\text{flat}})$

- $\Gamma \subset \operatorname{Iso}(\mathbb{R}^n) \cong \mathbb{R}^n \ltimes \operatorname{O}(n)$ is a Bieberbach group.
- **\blacksquare** \mathbb{R}^n/Γ is a compact flat manifold/orbifold.

Compact flat manifolds and orbifolds

- $\Gamma \subset \operatorname{Iso}(\mathbb{R}^n)$ is a *Bieberbach* group:
 - (a) discrete;
 - (b) co-compact;
 - (c) torsion-free.

Theorem

(M,g) compact flat manifold $\iff M = \mathbb{R}^n/\Gamma$ Γ Bieberbach.

Algebraic structure:

$$0 \longrightarrow L \longrightarrow \Gamma \longrightarrow H \longrightarrow 1$$

- $L \subset \mathbb{R}^n$ is a co-compact lattice
- $H \subset O(n)$ is a finite group (holonomy)

Orbifolds: compact flat orbifolds have a similar structure: $\Gamma \subset \text{Iso}(\mathbb{R}^n)$ is a *crystallographic*, possibly with torsion.

Theorem (Cheng)

 (F^d, g_F) closed manifold with nonnegative Ricci curvature and *unit volume*. Then:

$$\lambda_j(F,g_F) \leq 2j^2 rac{d(d+4)}{\operatorname{diam}(F,g_F)^2}.$$

For bifurcation purposes, need flat metrics with volume 1 and arbitrarily large diameter. Equivalently, fixed diameter and arbitrarily small volume. **Collapse flat metrics!**

Gromov–Hausdorff convergence and collapse

Hausdorff distance: $X, Y \subset Z$:

$$d^{Z}_{\mathsf{H}}(X,Y) = \inf \left\{ \varepsilon : X \subset B(Y,\varepsilon) \text{ and } Y \subset B(X,\varepsilon)
ight\}$$

Gromov–Hausdorff distance: $d_{GH}(X, Y) = \inf_{X, Y \hookrightarrow Z} d_H^Z(X, Y)$

Gromov

 $M = \{\text{compact metric spaces}\}/\text{isometries}.$

 (M, d_{GH}) is a complete metric space.

- GH-limits can change topology, dimension...
- Diameter is a continuous function in (M, d_{GH}) .

Collapse of compact Riemannian manifolds: GH - $\lim(M_i, g_i) = (X, d)$, with $\lim \operatorname{vol}(M_i, g_i) = 0$.

Bieberbach's theorems (geometric version)

Theorem

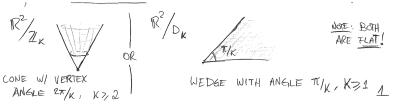
- (I) A compact flat n-orbifold (\mathcal{O} , g) is isometrically covered by a flat n-torus.
- (II) Compact flat orbifolds of the same dimension and with isomorphic fundamental groups are affinely diffeomorphic.
- (III) For all n, there is only a finite number of affine equivalence classe of compact flat n-orbifolds.
 - *n* = 2:
 - $\diamond~$ manifolds: torus \mathbb{T}^2 and Klein bottle \mathbb{K}^2
 - orbifolds: 17 affine classes (wallpaper groups).
 - n = 3: #mnfld = 10, #orbfld = 219
 - n = 4: #mnfld = 74, #orbfld = 4783

Flat 2-orbifolds

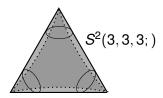
Underlying top. space: D^2 , \mathbb{S}^2 , $\mathbb{R}P^2$, \mathbb{M}^2 , \mathbb{K}^2 , $\mathbb{S}^1 \times [0, 1]$

Cyclic or dihedral local groups (Leonardo da Vinci)

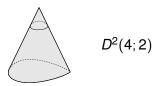
Cone points and corner reflections.



Notation: $S(n_1, ..., n_k; m_1, ..., m_{\ell})$

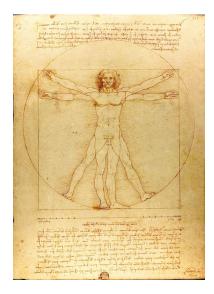


 $D^{2}(; 4, 4, 4, 4)$



Paolo Piccione Collapse of flat manifolds and the Yamabe problem

Symmetries of the Vitruvian Man



Wallpaper group symmetries

Alhambra, Granada Spain

Copacabana Rio de Janeiro Brazil

Teichmüller space of flat metrics

- M compact manifold (orbifold) admitting a flat metric;
- **Flat**(M) the set of all flat metrics on M;
- $\mathfrak{M}_{\text{flat}} = \text{Flat}(M)/\text{Diff}(M)$ moduli space of flat metrics on M;
- T_{flat}(M) = Flat(M)/Diff₀(M) space of *deformations* of flat metrics (Teichmüller space).

Theorem

- $\mathcal{T}_{flat}(M)$ is a real-analytic manifold (homogeneous space) diffeomorphic to some \mathbb{R}^d .
- 𝔐_{flat}(*M*) = 𝒯_{flat}(*M*)/MCG(*M*), where the mapping class group MCG(*M*) is countable and discrete.

Algebraic description

• $H \subset O(n)$ holonomy representation

$$\blacksquare \mathbb{R}^n = \bigoplus_{i=1}^{\iota} W_i, \text{ where } W_i \text{ isotypical component}$$

- W_i direct sum of m_i copies of an irreducible
- $\mathbb{K}_i = \mathbb{R}, \mathbb{C}, \mathbb{H}$ type of W_i

Theorem

$$\mathcal{T}_{flat}(M) = \prod_{i=1}^{\ell} \frac{\operatorname{GL}(m_i,\mathbb{K}_i)}{\operatorname{O}(m_i,\mathbb{K}_i)}$$

$$\frac{\mathrm{GL}(m_i,\mathbb{K}_i)}{\mathrm{O}(m_i,\mathbb{K}_i)} \cong \mathbb{R}^{d_i}, \qquad d_i = \begin{cases} \frac{1}{2}m_i(m_i+1), & \text{if } \mathbb{K}_i = \mathbb{R}, \\ m_i^2, & \text{if } \mathbb{K}_i = \mathbb{C}, \\ m_i(2m_i-1), & \text{if } \mathbb{K}_i = \mathbb{H}. \end{cases}$$

The above builds on previous work by Wolf, Thurston, Baues...

Existence of nontrivial flat deformations

Theorem (Hiss-Szczepański)

Holonomy repn of a compact flat manifold is never irreducible.

Corollary

Compact flat manifolds admit nonhomothetic flat deformations.

Proof. dim $(\mathcal{T}_{flat}(M)) \ge 2$.

Obs. Flat orbifolds can be *rigid*!! (\iff irreducible holonomy)

Theorem

• (M_0, g_0) closed Riemannian manifold with $\operatorname{scal}_{g_0} > 0$

• $\Gamma \subset \operatorname{Iso}(\mathbb{R}^d)$ Bieberbach, $d \geq 2$.

Then there exist infinitely many branches of Γ -periodic solutions to the Yamabe problem on $(M_0 \times \mathbb{R}^d, g_0 \oplus g_{\text{flat}})$.

Examples of Teichmüller space

n-torus

 $\mathcal{T}_{\text{flat}}(T^n) \cong \operatorname{GL}(n) / \operatorname{O}(n) \cong \mathbb{R}^{\frac{1}{2}n(n+1)}$

 $MCG(T^n) = GL(n, \mathbb{Z}).$

Kummer surface

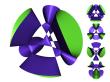
 $\mathcal{O} = T^4 / \mathbb{Z}_2$ (antipodal map on each coordinate). 16 conical singularities Holonomy rep: 4 copies of nontrivial \mathbb{Z}_2 -rep

 $\mathcal{T}_{flat}(\mathcal{O})\cong \mathrm{GL}(4,\mathbb{R})/\mathrm{O}(4)\cong\mathbb{R}^{10}$

(\ominus)

Klein bottle, Möbius band, cylinder

$$H = \mathbb{Z}_2$$
 (reflection). $\mathcal{T}_{flat}(\mathcal{O}) \cong \mathbb{R}^2$



Joyce orbifolds

6-dim flat orbifolds (desingularized to Calabi-Yau mnflds)

- $\mathcal{O}_1 = T^6/\mathbb{Z}_4$, holonomy generated by diag(-1, i, i) of $\mathbb{C}^3 \cong \mathbb{R}^6$. $\mathcal{T}_{flat}(\mathcal{O}_1) \cong GL(2, \mathbb{R})/O(2) \times GL(2, \mathbb{C})/U(2) \cong \mathbb{R}^7$

Theorem

The Gromov–Hausdorff limit of a sequence (M^n, g_i) of compact flat manifolds is a compact flat orbifold.

Proof.

- Result true for flat tori (Mahler's compactness thm)
- can assume all holonomy groups equal: $H_i = H$
- (*M*, *g_i*) is the quotient of a flat torus (Tⁿ, *g̃_i*) by an isometric free action of *H*.

By Fukaya–Yamaguchi: $\lim(M, g_i) = \lim(\mathbb{T}^n/H, g_i) = \lim(\mathbb{T}^n, g_i)/H.$

Boundary of the Teichmüller space – 2

Flat orbifolds admit flat desingularization (through higher dimensional manifolds):

Theorem

Every compact flat orbifold is the limit of a sequence of compact flat manifolds.

Proof.

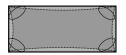
- $\mathcal{O}^n = \mathbb{R}^n / \Gamma$, $\Gamma \subset \operatorname{Iso}(\mathbb{R}^n)$ crystallographic
- $H \subset O(n)$ holonomy, $\mathcal{O} = \mathbb{T}^n/H$ (possibly nonfree action).
- Auslander–Kuranishi: \exists Bieberbach *N*-group Γ' with Hol(Γ') = *H*. Compact *N*-manifold $M_0 = \mathbb{R}^N / \Gamma' = \mathbb{T}^N / H$ (free action).
- Diagonal action of *H* on Tⁿ × T^N: this is free! Set *M* = (Tⁿ × T^N)/*H*, compact flat manifold.
- \mathcal{O} is obtained by *collapsing* the factor \mathbb{T}^N in M.

Theorem

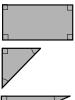
The G-H limit of a sequence of compact flat 3 manifold belongs to one of these classes:

- point
- closed interval, circle
- 2-torus, Klein bottle, Möbius band, cylinder
- flat disk with two singularities: D²(4; 2), D²(3; 3) or D²(2, 2;)
- flat sphere with singularities: S²(3,3,3;) or S²(2,2,2,2;) (pillowcase)
- projective plane with 2 singularities $\mathbb{R}P^2(2,2;)$.

Collapse of flat 3-manifolds



Need higher dimensional collapse



Paolo Piccione Collapse of flat manifolds and the Yamabe problem

Thanks for your attention!! Page Picciae

See you at ICM2018!

Paolo Piccione Collapse of flat manifolds and the Yamabe problem