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Smooth distributions and integral submanifolds

E differentiable manifold
D ⊂ TE a smooth distribution (constant rank)
v ∈ D: v is horizontal

Integral submanifold of D: immersed submanifold Σ ⊂ E with

TeΣ = De, ∀e ∈ Σ

D is integrable if ∃ an integral submanifold through every e ∈ E .
D is involutive if X ,Y ∈ D =⇒ [X ,Y ] ∈ D

Theorem (Frobenius)
D is integrable ⇐⇒ D is involutive.

Involutivity is a very strong condition.
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Total differential equations

In local coordinates: U ⊂ Rk ×Rn−k , F : U → Lin(Rk ,Rn−k )
π : U → Rk first projection

D = Gr(F ) is a π-horizontal distribution on U.

A horizontal section s : V ⊂ Rk → Rn is a map of the form
s(x) =

(
x , f (x)

)
, where f : V → Rn−k is a solution of the total PDE:

df (x) = F
(
x , f (x)

)
.

f (x0) = y0, given a curve u : [0,1] → V with u(0) = x0 and u(1) = x1,
then g = f ◦ u : [0,1] → Rn−k is a solution of the IVP:

g′(t) = F
(
u(t),g(t)

)
u′(t), u(0) = f (y0).

Involutivity of D is the integrability condition for such PDE.
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Horizontal liftings (some terminology)

π : E → M submersion. D ⊂ TE is π-horizontal if TeE = Ker
(
πe

)
⊕De

for all e ∈ E .

γ̃ : I → E is horizontal if γ̃′(t) ∈ D for all t . Given γ : I → M then a
horizontal lifting of γ is a horizontal curve γ̃ : I → E such that π ◦ γ̃ = γ.
By standard theory of ODE’s, given t0 ∈ I and x0 ∈ π−1(γ(t0)) then ∃!
maximal horizontal lifting γ̃ of γ with γ̃(t0) = x0 defined in a subinterval
of I around t0.

A local section of a smooth submersion π : E → M is a locally defined
smooth map s : U ⊂ M → E such that π ◦ s = IdU . A local section s is
called horizontal if the range of ds(m) is Ds(m), for all m ∈ U.
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Λ-parametric family of curves
Λ-parametric family of curves ψ on M: ψ : Z ⊂ R× Λ → M,
Z open, such that: Iλ =

{
t ∈ R : (t , λ) ∈ Z

}
⊂ R is an interval

containing the origin, for all λ ∈ Λ.

A local right inverse of ψ: a locally defined smooth map
α : V ⊂ M → Z such that ψ

(
α(m)

)
= m, for all m ∈ V .

Example

M manifold, ∇ connection on M. Given x0 ∈ M, set Λ = Tx0M.
Λ-parametric family of curves ψ on M: ψ(t , λ) = expx0

(tλ);

Z =
{

(t , λ) : tλ ∈ Dom
(

expx0

)}
.

A local right inverse of ψ: V0 open neighborhood of 0 ∈ Tx0M mapped
diffeomorphically by expx0

onto an open neighborhood V of x0 ∈ M.
Set:

α(m) =
(
1, (expx0

|V0)
−1(m)

)
, m ∈ V .

(same construction holds if one replaces the geodesic spray of a
connection with an arbitrary spray).
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The Levi form

If V ,W are (local) horizontal fields, [V ,W ]p +Dp ∈ TpM/Dp only
depends on Vp,Wp.

Definition
LDp : Dp ×Dp → TpM/Dp Levi form of D at p:
LDp (v ,w) = [V ,W ]p +Dp, where v ,w ∈ Dp and V ,W are local
extensions of v and w to horizontal fields.

p ∈ M is an involutive point for D if LDp = 0.
Obs.: If Σ is an integral submanifold, then every point of Σ is involutive.
Conversely, if:

Σ is ruled by curves tangent to D
every point of Σ is involutive

then Σ is an integral submanifold of D.
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The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of one integral
submanifold of D ⊂ TE through some given e ∈ E .

Lemma
E manifold, D ⊂ TE distribution,
R2 ⊃ U 3 (t , s) 7−→ H(t , s) ∈ E smooth map.
I ⊂ R interval, s0 ∈ R with I × {s0} ⊂ U. If:

∂H
∂t (t , s) ∈ D for all (t , s) ∈ U;
LDH(t ,s0)

= 0 for all t ∈ I;
∂H
∂s (t0, s0) ∈ D for some t0 ∈ I

then ∂H
∂s (t , s0) ∈ D for all t ∈ I.
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The single leaf Frobenius theorem 2

Theorem (local single leaf Frobenius)

π : E → M submersion, D ⊂ TE horizontal distribution
ψ : Z ⊂ R× Λ → M be a Λ-parametric family of curves with a local
right inverse α : V ⊂ M → Z.
Let ψ̃ : Z → E be a Λ-parametric family of curves on E such that
t 7→ ψ̃(t , λ) is a horizontal lifting of t 7→ ψ(t , λ), for all λ ∈ Λ.

Assume
that:
(a) the Levi form of D vanishes on the range of ψ̃;
(b) ∂λψ̃(0, λ) : TλΛ → Tψ̃(0,λ)E takes values in D for all λ ∈ Λ.

Then s = ψ̃ ◦ α : V → E is a local horizontal section of π.

Obs.: If λ 7→ ψ̃(0, λ) is constant, then (b) is satisfied.
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The higher order Frobenius theorem

D ⊂ TE smooth distribution
Γ(TE) Lie algebra of vector fields on E
Γ(D) = Γ0(D) space of horizontal vector fields

Define recursively Γr+1(D) ⊂ Γ(TE) as the space spanned by Γr (D)
and Lie brackets of the form [X ,Y ], with X ∈ Γr (D) and Y ∈ Γ(D).
Γ∞ =

⋃∞
r=0 Γr (D): Lie subalgebra of TE spanned by Γ(D).

Theorem
If E is real analytic manifold and D is a real analytic distribution, then
given e0 ∈ E, there exists an integral submanifold of D through e0 iff
X (e0) ∈ De0 for all X ∈ Γ∞(D).
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Outline
1 The single-leaf Frobenius theorem

Distributions and integral submanifolds
Horizontal distributions and horizontal liftings
The Levi form
The higher order Frobenius theorem

2 The global single leaf Frobenius Theorem
Sprays on manifolds
The global result

3 Levi–Civita connections
Levi form of the horizontal distribution of a connection
Connections arising from metric tensors
Left invariant connections in Lie groups
Constant connections in Rn

4 Existence of affine maps
Affine manifolds and affine maps
The Cartan–Ambrose–Hicks Theorem
Higher order Cartan–Ambrose–Hicks theorem

5 Affine immersions in homogeneous spaces
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Sprays on manifolds

M manifold, π : TM → M tangent bundle, dπ : T (TM) → TM,
π̄ : T (TM) → TM
For a ∈ R, ma : TM → TM multiplication by a.

Definition
A spray on M is a vector field S : TM → T (TM) such that:

dπ ◦ S = π̄ ◦ S
a dma ◦ S = S ◦ma for all a ∈ R.

Integral curves λ : I → TM of S are of the form λ = γ′, γ = π ◦ λ.
Given λ = γ′ integral curve, also t 7→ a · γ′(at) is an integral curve of S.
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Example (Geodesic spray)
∇ connection on M, S(v) is the unique horizontal vector in Tv (TM)
with dπv

(
S(v)

)
. Integral curves of S are γ′, with γ geodesic.

Example (one parameter subgroup spray)
G Lie group, g = Lie(G). TG ∼= G × g, hence:

T (TG) ∼= T (G × g) ∼= (TG)× (Tg) ∼= (G × g)× (g× g)

S(g,X ) = (g,X ,X ,0), g ∈ G, X ∈ X is a spray whose solutions are
(translations of) one-parameter subgroups of G.

Local theory of solutions of sprays totally analogous to geodesics.
There exist normal neighborhoods of every point.
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Theorem (Global single-leaf Frobenius theorem)
E ,M manifolds, π : E → M submersion, D ⊂ TE horizontal
distribution, S spray on M. Fix x0 ∈ M and e0 ∈ π−1(x0) ∈ E.

Assume:
every piecewise solution γ : [a,b] → M of S with γ(a) = x0 admits
a horizontal lifting γ̃ : [a,b] → E with γ̃(a) = e0;
if γ̃ : [a,b] → E is as above, then LD

eγ(b) = 0;

M is (connected and) simply connected.
Then, there exists a unique global horizontal section s of E with
s(x0) = e0.
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Global higher order Frobenius theorem

Theorem
E, M real analytic manifolds, π : E → M real analytic submersion,
D ⊂ TE real analytic horizontal distribution.

Assume:
M is connected and simply connected;
if γ : I → M is real analytic, t0 ∈ I, e0 ∈ π−1(γ(t0)), then there
exists a horizontal lifting γ̃ : I → E with γ̃(t0) = e0.

Then, every local horizontal section of π defined on a nonempty
connected open subset of M extends to a global horizontal section of
π.
In particular, if D satisfies the assumptions of the Higher Order
Frobenius theorem at some point e0 ∈ E, then π admits a global
horizontal section.
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Levi form of the horizontal distribution of a connection
π : E → M vector bundle, Em = π−1(m) fiber,
∇ connection on E .
Rm : TmM × TmM × Em → Em curvature of ∇:

R(X ,Y )ξ = ∇X∇Y ξ −∇Y∇X ξ −∇[X ,Y ]ξ

D ⊂ TE horizontal distribution of ∇: given γ : I → M, a horizontal lifting
γ̃ : I → E is a ∇-parallel section of E along γ.

For ξ ∈ Em, TξE/Dξ ∼= Tξ(Em) = Ker(dπξ).
Tξ(Em) ∼= Em

dπξ : Dξ
∼=−→ TmM.

LDξ : TmM × TmM −→ Em

Lemma
LDξ (v ,w) = −Rm(v ,w)ξ, m ∈ M, ξ ∈ Em.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 18 / 48



Levi form of the horizontal distribution of a connection
π : E → M vector bundle, Em = π−1(m) fiber,
∇ connection on E .
Rm : TmM × TmM × Em → Em curvature of ∇:

R(X ,Y )ξ = ∇X∇Y ξ −∇Y∇X ξ −∇[X ,Y ]ξ

D ⊂ TE horizontal distribution of ∇: given γ : I → M, a horizontal lifting
γ̃ : I → E is a ∇-parallel section of E along γ.

For ξ ∈ Em, TξE/Dξ ∼= Tξ(Em) = Ker(dπξ).
Tξ(Em) ∼= Em

dπξ : Dξ
∼=−→ TmM.

LDξ : TmM × TmM −→ Em

Lemma
LDξ (v ,w) = −Rm(v ,w)ξ, m ∈ M, ξ ∈ Em.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 18 / 48



Levi form of the horizontal distribution of a connection
π : E → M vector bundle, Em = π−1(m) fiber,
∇ connection on E .
Rm : TmM × TmM × Em → Em curvature of ∇:

R(X ,Y )ξ = ∇X∇Y ξ −∇Y∇X ξ −∇[X ,Y ]ξ

D ⊂ TE horizontal distribution of ∇: given γ : I → M, a horizontal lifting
γ̃ : I → E is a ∇-parallel section of E along γ.

For ξ ∈ Em, TξE/Dξ ∼= Tξ(Em) = Ker(dπξ).
Tξ(Em) ∼= Em

dπξ : Dξ
∼=−→ TmM.

LDξ : TmM × TmM −→ Em

Lemma
LDξ (v ,w) = −Rm(v ,w)ξ, m ∈ M, ξ ∈ Em.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 18 / 48



Levi form of the horizontal distribution of a connection
π : E → M vector bundle, Em = π−1(m) fiber,
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Corollary
π : E → M vector bundle, ∇ connection on E.
ψ : Z ⊂ R× Λ a Λ parametric family of curves in M
α : V ⊂ M → Z local right inverse of ψ
ψ̃ : Z → E a section of E along ψ.

If:
t 7→ ψ̃(t , λ) is parallel for all λ ∈ Λ;
λ 7→ ψ̃(0, λ) is parallel;
Rψ(t ,λ)(v ,w)ψ̃(t , λ) = 0 for all v ,w ∈ Tψ(t ,λ)M and all (t , λ) ∈ Z

then ψ̃ ◦ α is a (local) parallel section of E.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 19 / 48



Corollary
π : E → M vector bundle, ∇ connection on E.
ψ : Z ⊂ R× Λ a Λ parametric family of curves in M
α : V ⊂ M → Z local right inverse of ψ
ψ̃ : Z → E a section of E along ψ. If:

t 7→ ψ̃(t , λ) is parallel for all λ ∈ Λ;
λ 7→ ψ̃(0, λ) is parallel;
Rψ(t ,λ)(v ,w)ψ̃(t , λ) = 0 for all v ,w ∈ Tψ(t ,λ)M and all (t , λ) ∈ Z

then ψ̃ ◦ α is a (local) parallel section of E.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 19 / 48



Corollary
π : E → M vector bundle with connection ∇.
S spray on M, x0 ∈ M, e0 ∈ π−1(x0).

Assume:
if γ : [a,b] → M is a piecewise solution of S with γ(a) = x0, and
γ̃ : [a,b] → E is a section of E along γ with γ̃(a) = e0, then
Rγ(b)(v ,w)γ̃(b) = 0 for all v ,w ∈ Tγ(b)M;
M is (connected and) simply connected.

Then there exists a unique global parallel section s of E with
s(x0) = e0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 20 / 48



Corollary
π : E → M vector bundle with connection ∇.
S spray on M, x0 ∈ M, e0 ∈ π−1(x0). Assume:

if γ : [a,b] → M is a piecewise solution of S with γ(a) = x0, and
γ̃ : [a,b] → E is a section of E along γ with γ̃(a) = e0, then
Rγ(b)(v ,w)γ̃(b) = 0 for all v ,w ∈ Tγ(b)M;
M is (connected and) simply connected.

Then there exists a unique global parallel section s of E with
s(x0) = e0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 20 / 48



Corollary
π : E → M vector bundle with connection ∇.
S spray on M, x0 ∈ M, e0 ∈ π−1(x0). Assume:

if γ : [a,b] → M is a piecewise solution of S with γ(a) = x0, and
γ̃ : [a,b] → E is a section of E along γ with γ̃(a) = e0, then
Rγ(b)(v ,w)γ̃(b) = 0 for all v ,w ∈ Tγ(b)M;
M is (connected and) simply connected.

Then there exists a unique global parallel section s of E with
s(x0) = e0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 20 / 48



Lemma
π : E → M real analytic vector bundle with real analytic connection ∇.

If M is simply connected, then any local parallel section s of E, defined
on a non empty connected open subset U ⊂ M, extends to a (unique)
global parallel section.

Corollary
π : E → M real analytic vector bundle with real analytic connection ∇.
Given x ∈ M and e ∈ π−1(x), assume ∇kR(v1, . . . , vk+2)e = 0 for all
v1, . . . , vk+2 ∈ TxM and all k ≥ 0.
Then there exists a local parallel section s of E, defined around x, with
s(x) = e. If M is simply connected, then there exists a global parallel
section s of E with s(x) = e.
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Levi–Civita connections
π : E → M vector bundle with connection ∇.
∇ induces connections on all vector bundle obtained by functorial
constructions on E .

Example
E∗ ⊗ E∗ vector bundle over M with fiber at m the space of all bilinear
forms on Em. ∇ induces a connection ∇bil on E∗ ⊗ E∗:(

∇bil
X g

)
(ξ, η) = X

(
g(ξ, η)

)
− g

(
∇X ξ, η

)
− g

(
ξ,∇Xη

)
The curvature tensor Rbil of ∇bil is:(

Rbil(X ,Y )g
)
(ξ, η) = −g

(
R(X ,Y )ξ, η

)
− g

(
ξ,R(X ,Y )η

)
Definition
∇ symmetric connection on TM, g semi-Riemannian metric tensor on
M. ∇ is the Levi–Civita connection of g if ∇bilg = 0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 22 / 48



Levi–Civita connections
π : E → M vector bundle with connection ∇.
∇ induces connections on all vector bundle obtained by functorial
constructions on E .

Example
E∗ ⊗ E∗ vector bundle over M with fiber at m the space of all bilinear
forms on Em. ∇ induces a connection ∇bil on E∗ ⊗ E∗:(

∇bil
X g

)
(ξ, η) = X

(
g(ξ, η)

)
− g

(
∇X ξ, η

)
− g

(
ξ,∇Xη

)
The curvature tensor Rbil of ∇bil is:(

Rbil(X ,Y )g
)
(ξ, η) = −g

(
R(X ,Y )ξ, η

)
− g

(
ξ,R(X ,Y )η

)

Definition
∇ symmetric connection on TM, g semi-Riemannian metric tensor on
M. ∇ is the Levi–Civita connection of g if ∇bilg = 0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 22 / 48



Levi–Civita connections
π : E → M vector bundle with connection ∇.
∇ induces connections on all vector bundle obtained by functorial
constructions on E .

Example
E∗ ⊗ E∗ vector bundle over M with fiber at m the space of all bilinear
forms on Em. ∇ induces a connection ∇bil on E∗ ⊗ E∗:(

∇bil
X g

)
(ξ, η) = X

(
g(ξ, η)

)
− g

(
∇X ξ, η

)
− g

(
ξ,∇Xη

)
The curvature tensor Rbil of ∇bil is:(

Rbil(X ,Y )g
)
(ξ, η) = −g

(
R(X ,Y )ξ, η

)
− g

(
ξ,R(X ,Y )η

)
Definition
∇ symmetric connection on TM, g semi-Riemannian metric tensor on
M. ∇ is the Levi–Civita connection of g if ∇bilg = 0.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 22 / 48



Characterization of Levi–Civita connections

Problem: given a symmetric ∇, when does there exist g
semi-Riemannian metric with ∇bilg = 0?

Equivalently, does there exist a ∇bil-parallel section g of T ∗M ⊗ T ∗M
(symmetric and nondegenerate)?

Idea: Given m0 ∈ M and a nondegenerate symmetric bilinear form g0,
one can spread g0 by parallel transport along the curves of a
Λ-parametric family, or along solutions of a spray.

Frobenius theorem gives us that the metric g obtained in this way is a
solution of the problem if and only if Rbil(·, ·)g = 0. Recalling the form
of Rbil, this is equivalent to the g-antisymmetry of R. More precisely:
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Theorem
M manifold, ∇ symmetric connection on TM, m0 ∈ M,
g0 : Tm0M × Tm0M → R, S spray on M.

Assume:
given a piecewise solution γ : [a,b] → M of S with γ(a) = m0,
P−1
γ Rγ(b)Pγ : Tm0M → Tm0M is g0-antisymmetric;

M is (connected and) simply connected.
Then, g0 extends to a semi-Riemannian metric on M whose
Levi–Civita connection is ∇.
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Theorem
If M is a simply connected real analytic manifold with real analytic
symmetric connection ∇. If g is a semi–Riemannian metric defined on
a non empty open connected subset of M whose Levi–Civita
connection is ∇, then g extends to a globally defined semi-Riemannian
metric tensor on M whose Levi–Civita connection is ∇.
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Theorem
M real analytic, ∇ real analytic symmetric connection on TM. Given
x0 ∈ M and a nondegenerate symmetric bilinear form g0 on Tx0M if:

(∇kR)(v1, . . . , vk+2) : Tx0M −→ Tx0M

is g0-antisymmetric for all v1, . . . , vk+2 ∈ Tx0M and all k ≥ 0, then g0
extends to a locally defined semi-Riemannian metric tensor g whose
Levi–Civita connection is ∇.

If M is simply connected, then g0 extends to a globally defined
semi-Riemannian metric g with Levi–Civita connection ∇.
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G Lie group, ∇ left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)

∇ determined by a linear map Γ : g× g → g:

Γ(X ,Y ) = ∇X Y , X ,Y left invariant vector fields

Identify Γ with the map g 3 X 7→ Γ(X , ·) ∈ Lin(g).
Torsion of ∇: T (X ,Y ) = Γ(X ,Y )− Γ(Y ,X )− [X ,Y ]

(∇ symmetric iff Γ : g → Lin(g) is a Lie algebra homomorphism)
Curvature of ∇: R(X ,Y ) =

[
Γ(X ), Γ(Y )

]
− Γ

(
[X ,Y ]

)
Parallel transport of Y along t 7→ exp(tX ): t 7→ e−tΓ(X)Y

Theorem
∇ symmetric left-invariant connection on G, h : g× g → R

nondegenerate symmetric bilinear form.
Then, h extends to a local semi-Riemannian metric on G whose
Levi–Civita connection is ∇ iff:

eΓ(Z )
(
[Γ(X),Γ(Y )]−Γ([X ,Y ])

)
e−Γ(Z )

∈ so(h), ∀X ,Y ,Z ∈ g.
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Lemma
The condition in the above theorem is equivalent to:

adn
Γ(Z )

(
[Γ(X ), Γ(Y )]− Γ([X ,Y ])

)
∈ so(h), ∀X ,Y ,Z ∈ g.

Since Lie groups are real analytic, and so are left-invariant
connections:

Corollary
If G is simply connected, then in the above theorem one has the
existence of a globally defined extension of h to a semi-Riemannian
metric tensor on G whose Levi–Civita connection is ∇.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 28 / 48



Lemma
The condition in the above theorem is equivalent to:

adn
Γ(Z )

(
[Γ(X ), Γ(Y )]− Γ([X ,Y ])

)
∈ so(h), ∀X ,Y ,Z ∈ g.

Since Lie groups are real analytic, and so are left-invariant
connections:

Corollary
If G is simply connected, then in the above theorem one has the
existence of a globally defined extension of h to a semi-Riemannian
metric tensor on G whose Levi–Civita connection is ∇.

Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 28 / 48



Constant connections in Rn

In the special case G = Rn, a constant connection ∇ has curvature:
R(v ,w) =

[
Γ(v), Γ(w)

]
∈ Lin(Rn), where ∇X Y = dY (X ) + Γ(X ,Y ).

Theorem
Let Γ : Rn ×Rn → Rn a symmetric bilinear map, and let A be the
image of the map Rn 3 v 7→ Γ(v) ∈ Lin(Rn).
A nondegenerate symmetric bilinear form g0 on Rn extends to a
semi-Riemannian metric on Rn whose Levi–Civita connection ∇ above
iff:

(adX )k [Y ,Z ] ∈ so(g0), ∀X ,Y ,Z ∈ A, ∀ k ≥ 0.

Corollary
Denote by g ⊂ Lin(Rn) the Lie algebra generated by A, and set
g′ = [g, g]. The conclusion of the Theorem above holds if g′ ⊂ so(g0).
If n = 2, the condition g′ ⊂ so(g0) is also necessary.
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The case n = 2

Lemma
Let A : R2 → R2 be a nonzero linear map. There exists a
nondegenerate symmetric bilinear form g0 on R2 with A ∈ so(g0) if and
only if tr A = 0 and det A 6= 0; moreover, g0 is positive definite (resp.,
has index 1) if and only if det A > 0 (resp., det A < 0).

Corollary
In the case n = 2, the conclusion of the Theorem above holds if and
only if either g′ = 0 or if g′ has dimension 1 and it is spanned by an
invertible 2× 2 matrix.
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An explicit analysis of 2-dimensional and 3-dimensional Lie algebras g

with 1-dimensional commutator subalgebra g′ leads to the following:

Corollary

Let Γ : R2 ×R2 → R2 be a symmetric bilinear map and let A ⊂ Lin(R2)
be the range of the linear map v 7→ Γ(v , ·). Then the conclusion of the
Theorem above holds if and only if [X ,Y ] = 0, for all X ,Y ∈ A. In this
case, a semi-Riemannian metric g on R2 with the required property
can be chosen with an arbitrary value g0 at the origin.
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Affine manifolds

Let M,N be manifolds endowed with connections ∇M and ∇N .
T N , T M , RM , RN the torsion and the curvature tensors of ∇M and ∇M .

A smooth map f : M → N is affine if: dfx
(
∇M

v X
)

= ∇N
v
(
df ◦ X

)
.

Equivalently, f is affine if for every parallel vector field V along a curve
γ, df ◦ V is parallel along f ◦ γ.

Example
If M ⊂ N, then the inclusion i : M → N is affine iff:

M is totally geodesic in N;
∇M is the restriction of ∇N .
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM,TN) over M × N, with fiber
E(m,n) = Lin(TmM,TnN).

E = π∗1(TM∗)⊗ π∗2(TN) where
π1 : M × N → M and π2 : M × N → N are the projections. By

functoriality, ∇M and ∇N induce a connection ∇ on E :(
∇(v ,w)σ

)
(X ) = ∇N

(v ,w)

(
σ(X )

)
− σ

(
∇M

v X
)

, X vector field on M,

v ∈ TM, w ∈ TN, σ : M × N → E section.
(σ(X ) is seen as a section of the pull back bundle π∗2(TN) over M ×N)

Given a smooth function f : M → N, the differential is a section of E
along the map M 3 x 7→

(
x , f (x)

)
∈ M ×N, so that it makes sense ∇df .

Lemma
A smooth map f : M → N is affine iff the differential df is ∇-parallel.
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Affine maps as horizontal sections
Consider the submersion π : E → M given by the composition of the
projection E 7→ M × N and π1 : M × N → M.

Given σ ∈ Lin(TxM,TyN), the tangent space TσE is the direct sum of:
TxM ⊕ TyN (the horizontal space of ∇)
Lin(TxM,TyN) (the vertical space, tangent to the fiber).

Define a distribution D ⊂ TE :

Dσ = Graph(σ)⊕ {0} ⊂
(
TxM ⊕ TyN

)
⊕ Lin(TxM,TyN).

Lemma

Let s : U ⊂ M → E be a smooth local section, s(x) =
(
f (x), σ(x)

)
,

where f : U → N and σ(x) ∈ Lin(TxM,Tf (x)N).
Then, s is D-horizontal iff:

σ(x) = df (x) for all x and f is affine.
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The Levi form of D = Graph(σ)⊕ {0}
Lemma
The curvature tensor RE of the connection ∇ of E is given by:

RE
(x ,y)

(
(v1,w1), (v2,w2)

)
σ = RN

y (w1,w2) ◦ σ − σ ◦ RM
x (v1, v2),

for all (x , y) ∈ M × N, v1, v2 ∈ TxM, w1,w2 ∈ TyN, σ ∈ Lin(TxM,TyN).

Lemma
Given x ∈ M, y ∈ N, σ ∈ Lin(TxM,TyN), the Levi form of D at the point
σ ∈ E is given by:

LDσ (v1, v2) =
(
σ
(
T M(v1, v2)

)
− T N(

σ(v1), σ(v2)
)
,

σ ◦ RM
x (v1, v2)− RN

y
(
σ(v1), σ(v2)

)
◦ σ

)
,

for all v1, v2 ∈ TxM.
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x (v1, v2)− RN

y
(
σ(v1), σ(v2)

)
◦ σ

)
,

for all v1, v2 ∈ TxM.
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Induced maps between affine manifolds
Given x0 ∈ M, y0 ∈ N and σ0 ∈ Lin(Tx0M,Ty0N) and a geodesic
γ : [a,b] → M with γ(a) = x0, one gets a geodesic µ : [a,b] → N with
µ(a) = y0 and µ′(a) = σ0

(
γ′(a)

)
.

Also, obtain a linear map σ : Tγ(b)M → Tµ(b)N: σ = Pγ ◦ σ0 ◦ P−1
µ

where Pγ and Pµ are the parallel transport.

Iterating, given a piecewise geodesic γ : [a,b] → M starting at x0, one
gets a piecewise geodesic µ : [a,b] → N starting at y0, and a linear
map σ : Tγ(b)M → Tµ(b)N.

We say that µ and σ are induced by γ and σ0.

Observation: If f : M → N is an affine map with f (x0) = y0,
γ : [a,b] → M is a (piecewise) geodesic with γ(a) = x0, then
f
(
γ(b)

)
= µ(b) and df

(
γ(b)

)
= σ, where µ and σ are the “objects”

induced by df (x0) and γ.
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A generalized Cartan–Ambrose–Hicks theorem
Problem: Given (M,∇M) and (N,∇N), x0 ∈ M, y0 ∈ N,
σ0 ∈ Lin(Tx0M,Ty0N), want to find a (local) affine map f : M → N with
f (x0) = y0 and df (x0) = σ0.

Candidate: construct f using geodesics induced by σ0:
f
(
γ(b)

)
= µ(b). By the single leaf Frobenius theorem, this works iff the

Levi form of D vanishes along the section
(
x , f (x)

)
.

Theorem

U ⊂ Tx0M open and star-shaped at the origin, expx0
: U

∼=→ V ⊂ N.
assume σ(U) ⊂ Dom(expy0

). For x ∈ V, let γx : [0,1] → M be the
unique geodesic such that γ′x(0) ∈ U and γx(1) = x; let µx : [0,1] → N
and σx : TxM → Tµx (1)N be the “objects” induced by γx and σ0. If
∀ x ∈ V, σx relates T M with T N and RM with RN , i.e.:
σx

(
T M(·, ·)

)
= T N(

σx(·), σx(·)
)
, σx

(
RM(·, ·)·

)
= RN(

σx(·), σx(·)
)
σx(·).

Then map f : V → N defined by f (x) = µx(1) is affine and df (x) = σx
for all x ∈ V; in particular, f (x0) = y0 and df (x0) = σ0.
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The global result

Theorem (Cartan–Ambrose–Hicks)

Assume that ∇N is geodesically complete and that M is connected and
simply-connected. Let x0 ∈ M, y0 ∈ N be given and let
σ0 : Tx0M → Ty0N be a linear map. For each piecewise geodesic
γ : [a,b] → M with γ(a) = x0 denote by µγ : [a,b] → N and by
σγ : Tγ(b)M → Tµγ(b)N respectively the piecewise geodesic and the
linear map induced by the piecewise geodesic γ and by σ0.

Assume
that for every piecewise geodesic γ the linear map σγ relates T M with
T N and RM with RN . Then there exists a smooth affine map f : M → N
such that for every piecewise geodesic γ : [a,b] → M we have
f ◦ γ = µγ and f

(
γ(b)

)
= σγ ; in particular, f (x0) = y0 and f(x0) = σ0.

Remark. In the statement of the Cartan–Ambrose–Hicks Theorem, if
one assumes in addition that σ0 is an isomorphism, and that ∇M is
geodesically complete then it follows that the affine map f : M → N is a
covering map.
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Totally geodesic immersions

Corollary

Let (M,gM), (N,gN) be Riemannian manifolds with (N,gN) complete
and M connected and simply-connected. Let x0 ∈ M, y0 ∈ N be given
and let σ0 : Tx0M → Ty0N be a linear isometry onto a subspace of
Ty0N. For each piecewise geodesic γ : [a,b] → M with γ(a) = x0
denote by µγ : [a,b] → N and by σγ : Tγ(b)M → Tµγ(b)N respectively
the piecewise geodesic and the linear map induced by the piecewise
geodesic γ and by σ0. Assume that for every piecewise geodesic γ the
linear map σγ relates RM with RN . Then there exists a totally geodesic
isometric immersion f : M → N with f (x0) = y0 and f(x0) = σ0.
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Higher order Cartan–Ambrose–Hicks theorem

Given a tensor field τ on a manifold endowed with a connection ∇, we
denote by ∇(r)τ its r -th covariant derivative, for r ≥ 1; we set
∇(0)τ = τ .

Theorem
Let M, N be real-analytic manifolds endowed with real-analytic
connections ∇M and ∇N . x0 ∈ M, y0 ∈ N, σ0 ∈ Lin(Tx0M,Ty0N).
If for all r ≥ 0 the linear map σ0 relates ∇(r)T M

x0
with ∇(r)T N

y0
and

∇(r)RM
x0

with ∇(r)RN
y0

then there exists a real-analytic affine map
f : U → N defined on an open neighborhood U of x0 in M satisfying
f (x0) = y0 and df (x0) = σ0.
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Theorem
Let M, N be real-analytic manifolds endowed with real-analytic
connections ∇M and ∇N , respectively. Assume that ∇N is geodesically
complete and that M is (connected and) simply-connected. Then every
affine map f : U → N defined on a nonempty connected open subset
U of M extends to an affine map from M to N. In particular, if in
addition x0 ∈ M, y0 ∈ N, σ0 ∈ Lin(Tx0M,Ty0N) satisfy the hypotheses
of Theorem above, then there exists an affine map f : M → N with
f (x0) = y0 and df (x0) = σ0.
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Affine symmetries

Definition
An affine symmetry around a point x0 ∈ M is an affine map f : U → M
defined in an open neighborhood U of x0 with f (x0) = x0 and
df (x0) = −Id.

Applying the higher order Cartan–Ambrose–Hicks theorem to
σ0 = −Id : Tx0M → Tx0M we get the following curious result:

Corollary
Let M be a real-analytic manifold endowed with a real-analytic
connection ∇. Let x0 ∈ M be fixed. Then there exists an affine
symmetry around x0 if and only if:

∇(2r)Tx0 = 0, and ∇(2r+1)Rx0 = 0, for all r ≥ 0.

If M is simply-connected and complete, one has the existence of a
globally defined affine symmetry f : M → M around x0.
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Affine manifold with G-structure

M n-dimensional differentiable manifold, G ⊂ GL(Rn) Lie subgroup

Assume that M is endowed with a connection ∇ and a G-structure
P ⊂ Ref(TM).
For x ∈ M, let:

Gx be the Lie subgroup of GL(TxM) consisting of G-structure
preserving endomorphisms of TxM,
gx ⊂ gl(TxM) the Lie algebra of Gx

δx : TxM → gl(TxM)/gx the inner torsion of the G-structure P.
The triple (M,∇,P) will be called an affine manifold with G-structure.
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Infinitesimally homogenous affine manifolds
Given x , y ∈ M and a G-structure preserving morphism
σ : TxM → TyM then the Lie group isomorphism
Iσ : GL(TxM) → GL(TyM) defined by:

Iσ : GL(TxM) 3 T 7−→ σ ◦ T ◦ σ−1 ∈ GL(TyM)

carries Gx onto Gy .

Its differential at the identity
Adσ : gl(TxM) → gl(TyM) carries gx onto gy and therefore it induces a
linear isomorphism Adσ : gl(TxM)/gx −→ gl(TyM)/gy .

Definition
An affine manifold with G-structure M is said to be infinitesimally
homogeneous if for all x , y ∈ M and all G-structure preserving
morphism σ : TxM → TyM, the following conditions hold:

Adσ ◦ δx = δy ◦ σ;
Ty

(
σ(v), σ(w)

)
= σ

(
Tx(v ,w)

)
, for all v ,w ∈ TxM;

Ry
(
σ(v), σ(w)

)
◦ σ = σ ◦ Rx(v ,w), for all v ,w ∈ TxM.
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Affine immersions

Theorem (Hypotheses)

M, M manifolds, π : E → M be a vector bundle over M. Set
Ê = TM ⊕ E and denote by ι : TM → Ê the inclusion map. Let ∇̂ and
∇ be connections on Ê and on T M respectively. Let G be a Lie group
and assume that Ê and T M are endowed with G-structures P̂ and P,
respectively. Assume that (M,∇,P) is infinitesimally homogeneous
and that for all x ∈ M, y ∈ M and every G-structure preserving
morphism σ : Êx → TyM, the following conditions hold:

Adσ ◦ δ̂x = δ̄y ◦ σ|Tx M ;

T y
(
σ(v), σ(w)

)
= σ

(
T̂x(v ,w)

)
, for all v ,w ∈ TxM;

Ry
(
σ(v), σ(w)

)
◦ σ = σ ◦ R̂x(v ,w), for all v ,w ∈ TxM.
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Affine immersions

Theorem (Hypotheses)

Then, for all x0 ∈ M, all y0 ∈ M and every G-structure preserving
morphism σ : Êx0 → Ty0M there exists a smooth immersion f : U → M
defined on an open neighborhood U of x0 in M and a G-structure
preserving and connection preserving vector bundle isomorphism
L : Ê |U → f ∗T M such that L|TM = df , f (x0) = y0 and Lx0 = σ0.
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