On the single-leaf Frobenius Theorem and Its Applications semi-Riemannian connections Cartan–Ambrose–Hicks theorem Affine immersions

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

Recenti sviluppi della geometria complessa, differenziale, simplettica

マロト イラト イラト

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem
- 2 The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result

Paolo Piccione (IME–USP)

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem
- The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem
- The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n

Existence of affine maps

- Affine manifolds and affine maps
- The Cartan–Ambrose–Hicks Theorem
- Higher order Cartan–Ambrose–Hicks theorem

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem
- The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n

Existence of affine maps

- Affine manifolds and affine maps
- The Cartan–Ambrose–Hicks Theorem
- Higher order Cartan–Ambrose–Hicks theorem

5 Affine immersions in homogeneous spaces Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem...

- Distributions and integral submanifolds
- Horizontal distributions and horizontal liftings
- The Levi form
- The higher order Frobenius theorem
- The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- 3 Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n
- Existence of affine maps
 - Affine manifolds and affine maps
 - The Cartan–Ambrose–Hicks Theorem
 - Higher order Cartan–Ambrose–Hicks theorem
- Affine immersions in homogeneous spaces
 Paolo Piccione (IME–USP) On the single-leaf Frobenius Theorem...

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal*

・ 同 ト ・ ヨ ト ・ ヨ

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal Integral submanifold* of \mathcal{D} : immersed submanifold $\Sigma \subset E$ with

 $\textit{T}_{\textit{e}} \Sigma = \mathcal{D}_{\textit{e}}, \; \forall \, \textit{e} \in \Sigma$

・ 同 ト ・ 三 ト ・ 三

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal Integral submanifold* of \mathcal{D} : immersed submanifold $\Sigma \subset E$ with

$$T_{\boldsymbol{e}}\Sigma = \mathcal{D}_{\boldsymbol{e}}, \; \forall \; \boldsymbol{e} \in \Sigma$$

 \mathcal{D} is *integrable* if \exists an integral submanifold through every $e \in E$.

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal*

Integral submanifold of \mathcal{D} : immersed submanifold $\Sigma \subset E$ with

$$T_{\boldsymbol{e}}\Sigma = \mathcal{D}_{\boldsymbol{e}}, \; \forall \; \boldsymbol{e} \in \Sigma$$

 \mathcal{D} is *integrable* if \exists an integral submanifold through every $e \in E$. \mathcal{D} is *involutive* if $[X, Y \in \mathcal{D} \implies [X, Y] \in \mathcal{D}]$

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal*

Integral submanifold of \mathcal{D} : immersed submanifold $\Sigma \subset E$ with

$$T_{\boldsymbol{e}}\Sigma = \mathcal{D}_{\boldsymbol{e}}, \; \forall \; \boldsymbol{e} \in \Sigma$$

 \mathcal{D} is *integrable* if \exists an integral submanifold through every $e \in E$. \mathcal{D} is *involutive* if $X, Y \in \mathcal{D} \implies [X, Y] \in \mathcal{D}$

Theorem (Frobenius)

 \mathcal{D} is integrable $\iff \mathcal{D}$ is involutive.

イロト イポト イラト イラト

E differentiable manifold $\mathcal{D} \subset TE$ a smooth distribution (constant rank) $v \in \mathcal{D}$: *v* is *horizontal*

Integral submanifold of \mathcal{D} : immersed submanifold $\Sigma \subset E$ with

$$T_{\boldsymbol{e}}\Sigma = \mathcal{D}_{\boldsymbol{e}}, \; \forall \; \boldsymbol{e} \in \Sigma$$

 \mathcal{D} is *integrable* if \exists an integral submanifold through every $e \in E$. \mathcal{D} is *involutive* if $X, Y \in \mathcal{D} \implies [X, Y] \in \mathcal{D}$

Theorem (Frobenius)

 \mathcal{D} is integrable $\iff \mathcal{D}$ is involutive.

Involutivity is a very strong condition.

イロト イポト イラト イラト

In local coordinates: $U \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, $F : U \to \text{Lin}(\mathbb{R}^k, \mathbb{R}^{n-k})$ $\pi : U \to \mathbb{R}^k$ first projection

- A IB N A IB

< A >

In local coordinates: $U \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, $F : U \to \text{Lin}(\mathbb{R}^k, \mathbb{R}^{n-k})$ $\pi : U \to \mathbb{R}^k$ first projection

 $\mathcal{D} = Gr(F)$ is a π -horizontal distribution on U.

・ 同 ト ・ ヨ ト ・ ヨ

In local coordinates: $U \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, $F : U \to \text{Lin}(\mathbb{R}^k, \mathbb{R}^{n-k})$ $\pi : U \to \mathbb{R}^k$ first projection

 $\mathcal{D} = \operatorname{Gr}(F)$ is a π -horizontal distribution on U.

A horizontal section $s : V \subset \mathbb{R}^k \to \mathbb{R}^n$ is a map of the form s(x) = (x, f(x)), where $f : V \to \mathbb{R}^{n-k}$ is a solution of the *total PDE*:

 $\mathrm{d}f(x)=F\big(x,f(x)\big).$

In local coordinates: $U \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, $F : U \to \text{Lin}(\mathbb{R}^k, \mathbb{R}^{n-k})$ $\pi : U \to \mathbb{R}^k$ first projection

 $\mathcal{D} = \operatorname{Gr}(F)$ is a π -horizontal distribution on U.

A horizontal section $s : V \subset \mathbb{R}^k \to \mathbb{R}^n$ is a map of the form s(x) = (x, f(x)), where $f : V \to \mathbb{R}^{n-k}$ is a solution of the *total PDE*:

 $\mathrm{d}f(x)=F\big(x,f(x)\big).$

 $f(x_0) = y_0$, given a curve $u : [0, 1] \to V$ with $u(0) = x_0$ and $u(1) = x_1$, then $g = f \circ u : [0, 1] \to \mathbb{R}^{n-k}$ is a solution of the IVP:

 $g'(t) = F(u(t), g(t))u'(t), \quad u(0) = f(y_0).$

イロト イポト イラト イラト 一手

In local coordinates: $U \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, $F : U \to \text{Lin}(\mathbb{R}^k, \mathbb{R}^{n-k})$ $\pi : U \to \mathbb{R}^k$ first projection

 $\mathcal{D} = Gr(F)$ is a π -horizontal distribution on U.

A horizontal section $s : V \subset \mathbb{R}^k \to \mathbb{R}^n$ is a map of the form s(x) = (x, f(x)), where $f : V \to \mathbb{R}^{n-k}$ is a solution of the *total PDE*:

 $\mathrm{d}f(x)=F\big(x,f(x)\big).$

 $f(x_0) = y_0$, given a curve $u : [0, 1] \to V$ with $u(0) = x_0$ and $u(1) = x_1$, then $g = f \circ u : [0, 1] \to \mathbb{R}^{n-k}$ is a solution of the IVP:

$$g'(t) = F(u(t), g(t))u'(t), \quad u(0) = f(y_0).$$

Involutivity of \mathcal{D} is the integrability condition for such PDE.

通い イヨン イヨン 一旦

 $\pi : E \to M$ submersion. $\mathcal{D} \subset TE$ is π -horizontal if $T_e E = \text{Ker}(\pi_e) \oplus \mathcal{D}_e$ for all $e \in E$.

イロト イポト イラト イラト

 $\pi : E \to M$ submersion. $\mathcal{D} \subset TE$ is π -horizontal if $T_e E = \text{Ker}(\pi_e) \oplus \mathcal{D}_e$ for all $e \in E$.

 $\tilde{\gamma}: I \to E$ is *horizontal* if $\tilde{\gamma}'(t) \in \mathcal{D}$ for all *t*. Given $\gamma: I \to M$ then a *horizontal lifting* of γ is a horizontal curve $\tilde{\gamma}: I \to E$ such that $\pi \circ \tilde{\gamma} = \gamma$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi : E \to M$ submersion. $\mathcal{D} \subset TE$ is π -horizontal if $T_e E = \text{Ker}(\pi_e) \oplus \mathcal{D}_e$ for all $e \in E$.

 $\tilde{\gamma} : I \to E$ is *horizontal* if $\tilde{\gamma}'(t) \in \mathcal{D}$ for all t. Given $\gamma : I \to M$ then a *horizontal lifting* of γ is a horizontal curve $\tilde{\gamma} : I \to E$ such that $\pi \circ \tilde{\gamma} = \gamma$. By standard theory of ODE's, given $t_0 \in I$ and $x_0 \in \pi^{-1}(\gamma(t_0))$ then \exists ! maximal horizontal lifting $\tilde{\gamma}$ of γ with $\tilde{\gamma}(t_0) = x_0$ defined in a subinterval of I around t_0 .

イロト イポト イラト イラト

 $\pi : E \to M$ submersion. $\mathcal{D} \subset TE$ is π -horizontal if $T_e E = \text{Ker}(\pi_e) \oplus \mathcal{D}_e$ for all $e \in E$.

 $\tilde{\gamma} : I \to E$ is *horizontal* if $\tilde{\gamma}'(t) \in \mathcal{D}$ for all t. Given $\gamma : I \to M$ then a *horizontal lifting* of γ is a horizontal curve $\tilde{\gamma} : I \to E$ such that $\pi \circ \tilde{\gamma} = \gamma$. By standard theory of ODE's, given $t_0 \in I$ and $x_0 \in \pi^{-1}(\gamma(t_0))$ then \exists ! maximal horizontal lifting $\tilde{\gamma}$ of γ with $\tilde{\gamma}(t_0) = x_0$ defined in a subinterval of I around t_0 .

A *local section* of a smooth submersion $\pi : E \to M$ is a locally defined smooth map $s : U \subset M \to E$ such that $\pi \circ s = \text{Id}_U$. A local section s is called *horizontal* if the range of ds(m) is $\mathcal{D}_{s(m)}$, for all $m \in U$.

(日)

Λ-parametric family of curves

A-parametric family of curves ψ on M: $\psi : Z \subset \mathbb{R} \times \Lambda \to M$, Z open, such that: $I_{\lambda} = \{t \in \mathbb{R} : (t, \lambda) \in Z\} \subset \mathbb{R}$ is an interval containing the origin, for all $\lambda \in \Lambda$.

イロト イポト イラト イラト

Λ-parametric family of curves

Λ-parametric family of curves ψ on M: ψ : Z ⊂ ℝ × Λ → M, Z open, such that: $I_λ = \{t ∈ ℝ : (t, λ) ∈ Z\} ⊂ ℝ$ is an interval containing the origin, for all λ ∈ Λ.

A *local right inverse* of ψ : a locally defined smooth map $\alpha : V \subset M \rightarrow Z$ such that $\psi(\alpha(m)) = m$, for all $m \in V$.

・ 同 ト ・ ヨ ト ・ ヨ ト

∧-parametric family of curves

Λ-parametric family of curves ψ on M: $\psi : Z \subset \mathbb{R} \times \Lambda \to M$, Z open, such that: $I_{\lambda} = \{t \in \mathbb{R} : (t, \lambda) \in Z\} \subset \mathbb{R}$ is an interval containing the origin, for all $\lambda \in \Lambda$. A *local right inverse* of ψ : a locally defined smooth map $\alpha : V \subset M \to Z$ such that $\psi(\alpha(m)) = m$, for all $m \in V$.

Example

M manifold, ∇ connection on *M*. Given $x_0 \in M$, set $\Lambda = T_{x_0}M$. Λ -parametric family of curves ψ on *M*: $\psi(t, \lambda) = \exp_{x_0}(t\lambda)$;

Λ-parametric family of curves

A-parametric family of curves ψ on M: $\psi : Z \subset \mathbb{R} \times \Lambda \to M$, Z open, such that: $I_{\lambda} = \{t \in \mathbb{R} : (t, \lambda) \in Z\} \subset \mathbb{R}$ is an interval containing the origin, for all $\lambda \in \Lambda$. A *local right inverse* of ψ : a locally defined smooth map $\alpha : V \subset M \to Z$ such that $\psi(\alpha(m)) = m$, for all $m \in V$.

Example

M manifold, ∇ connection on *M*. Given $x_0 \in M$, set $\Lambda = T_{x_0}M$. Λ -parametric family of curves ψ on *M*: $\psi(t, \lambda) = \exp_{x_0}(t\lambda)$; $Z = \left\{ (t, \lambda) : t\lambda \in \text{Dom}(\exp_{x_0}) \right\}.$

Λ-parametric family of curves

A-parametric family of curves ψ on M: $\psi : Z \subset \mathbb{R} \times \Lambda \to M$, Z open, such that: $I_{\lambda} = \{t \in \mathbb{R} : (t, \lambda) \in Z\} \subset \mathbb{R}$ is an interval containing the origin, for all $\lambda \in \Lambda$. A *local right inverse* of ψ : a locally defined smooth map $\alpha : V \subset M \to Z$ such that $\psi(\alpha(m)) = m$, for all $m \in V$.

Example

M manifold, ∇ connection on *M*. Given $x_0 \in M$, set $\Lambda = T_{x_0}M$. Λ -parametric family of curves ψ on *M*: $\psi(t, \lambda) = \exp_{x_0}(t\lambda)$; $Z = \{(t, \lambda) : t\lambda \in \text{Dom}(\exp_{x_0})\}.$

A local right inverse of ψ : V_0 open neighborhood of $0 \in T_{x_0}M$ mapped diffeomorphically by \exp_{x_0} onto an open neighborhood V of $x_0 \in M$. Set:

$$\alpha(m) = (1, (\exp_{x_0} |_{V_0})^{-1}(m)), \qquad m \in V.$$

∧-parametric family of curves

A-parametric family of curves ψ on M: $\psi : Z \subset \mathbb{R} \times \Lambda \to M$, Z open, such that: $I_{\lambda} = \{t \in \mathbb{R} : (t, \lambda) \in Z\} \subset \mathbb{R}$ is an interval containing the origin, for all $\lambda \in \Lambda$. A *local right inverse* of ψ : a locally defined smooth map $\alpha : V \subset M \to Z$ such that $\psi(\alpha(m)) = m$, for all $m \in V$.

Example

M manifold, ∇ connection on *M*. Given $x_0 \in M$, set $\Lambda = T_{x_0}M$. Λ -parametric family of curves ψ on *M*: $\psi(t, \lambda) = \exp_{x_0}(t\lambda)$;

$$\boldsymbol{Z} = \Big\{ (t, \lambda) : t\lambda \in \operatorname{Dom}(\exp_{\boldsymbol{x}_0}) \Big\}.$$

A local right inverse of ψ : V_0 open neighborhood of $0 \in T_{x_0}M$ mapped diffeomorphically by \exp_{x_0} onto an open neighborhood V of $x_0 \in M$. Set:

$$\alpha(m) = (1, (\exp_{x_0} |_{V_0})^{-1}(m)), \qquad m \in V.$$

(same construction holds if one replaces the geodesic spray of a connection with an arbitrary spray).

Paolo Piccione (IME–USP)

If *V*, *W* are (local) horizontal fields, $[V, W]_p + D_p \in T_p M / D_p$ only depends on V_p, W_p .

3

If *V*, *W* are (local) horizontal fields, $[V, W]_p + D_p \in T_p M / D_p$ only depends on V_p, W_p .

Definition

 $\begin{aligned} \mathfrak{L}_{p}^{\mathcal{D}} &: \mathcal{D}_{p} \times \mathcal{D}_{p} \to \mathcal{T}_{p} M / \mathcal{D}_{p} \text{ Levi form of } \mathcal{D} \text{ at } p : \\ \mathfrak{L}_{p}^{\mathcal{D}}(v,w) &= [V,W]_{p} + \mathcal{D}_{p}, \text{ where } v, w \in \mathcal{D}_{p} \text{ and } V, W \text{ are local extensions of } v \text{ and } w \text{ to horizontal fields.} \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト

If *V*, *W* are (local) horizontal fields, $[V, W]_p + D_p \in T_p M / D_p$ only depends on V_p, W_p .

Definition

$$\begin{split} \mathfrak{L}^{\mathcal{D}}_{p} &: \mathcal{D}_{p} \times \mathcal{D}_{p} \to \mathcal{T}_{p}M/\mathcal{D}_{p} \text{ Levi form of } \mathcal{D} \text{ at } p : \\ \mathfrak{L}^{\mathcal{D}}_{p}(v,w) &= [V,W]_{p} + \mathcal{D}_{p}, \text{ where } v, w \in \mathcal{D}_{p} \text{ and } V, W \text{ are local extensions of } v \text{ and } w \text{ to horizontal fields.} \end{split}$$

 $p \in M$ is an *involutive point* for \mathcal{D} if $\mathfrak{L}_p^{\mathcal{D}} = 0$.

If *V*, *W* are (local) horizontal fields, $[V, W]_p + D_p \in T_p M / D_p$ only depends on V_p, W_p .

Definition

$$\begin{split} \mathfrak{L}^{\mathcal{D}}_{p} &: \mathcal{D}_{p} \times \mathcal{D}_{p} \to \mathit{T_{p}M/\mathcal{D}_{p}} \text{ Levi form of } \mathcal{D} \text{ at } p \text{:} \\ \mathfrak{L}^{\mathcal{D}}_{p}(v,w) &= [V,W]_{p} + \mathcal{D}_{p}, \text{ where } v, w \in \mathcal{D}_{p} \text{ and } V, W \text{ are local extensions of } v \text{ and } w \text{ to horizontal fields.} \end{split}$$

 $p \in M$ is an *involutive point* for \mathcal{D} if $\mathfrak{L}_p^{\mathcal{D}} = 0$. **Obs.:** If Σ is an integral submanifold, then every point of Σ is involutive.

・ 同 ト ・ ヨ ト ・ ヨ ト

If *V*, *W* are (local) horizontal fields, $[V, W]_{\rho} + D_{\rho} \in T_{\rho}M/D_{\rho}$ only depends on V_{ρ} , W_{ρ} .

Definition

$$\begin{split} \mathfrak{L}^{\mathcal{D}}_{p} &: \mathcal{D}_{p} \times \mathcal{D}_{p} \to \mathcal{T}_{p} M / \mathcal{D}_{p} \text{ Levi form of } \mathcal{D} \text{ at } p : \\ \mathfrak{L}^{\mathcal{D}}_{p}(v,w) &= [V,W]_{p} + \mathcal{D}_{p}, \text{ where } v, w \in \mathcal{D}_{p} \text{ and } V, W \text{ are local extensions of } v \text{ and } w \text{ to horizontal fields.} \end{split}$$

 $p \in M$ is an *involutive point* for \mathcal{D} if $\mathfrak{L}_{p}^{\mathcal{D}} = 0$. **Obs.:** If Σ is an integral submanifold, then every point of Σ is involutive. Conversely, if:

- Σ is *ruled* by curves tangent to \mathcal{D}
- every point of Σ is involutive

then Σ is an integral submanifold of $\mathcal{D}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

イロト イポト イラト イラト

The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

Lemma

E manifold, $\mathcal{D} \subset TE$ distribution, $\mathbb{R}^2 \supset U \ni (t, s) \longmapsto H(t, s) \in E$ smooth map. $I \subset \mathbb{R}$ interval, $s_0 \in \mathbb{R}$ with $I \times \{s_0\} \subset U$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

Lemma

 $\begin{array}{l} \textit{E manifold, } \mathcal{D} \subset \textit{TE distribution,} \\ \mathbb{R}^2 \supset \textit{U} \ni (t, \textit{s}) \longmapsto \textit{H}(t, \textit{s}) \in \textit{E smooth map.} \\ \textit{I} \subset \mathbb{R} \textit{ interval, } \textit{s}_0 \in \mathbb{R} \textit{ with } \textit{I} \times \{\textit{s}_0\} \subset \textit{U. If:} \\ \bullet \frac{\partial \textit{H}}{\partial t}(t, \textit{s}) \in \mathcal{D} \textit{ for all } (t, \textit{s}) \in \textit{U;} \end{array}$

くぼう イラン イラン

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

Lemma

 $\begin{array}{l} \textit{E manifold, } \mathcal{D} \subset \textit{TE distribution,} \\ \mathbb{R}^2 \supset \textit{U} \ni (t, \textit{s}) \longmapsto \textit{H}(t, \textit{s}) \in \textit{E smooth map.} \\ \textit{I} \subset \mathbb{R} \textit{ interval, } \textit{s}_0 \in \mathbb{R} \textit{ with } \textit{I} \times \{\textit{s}_0\} \subset \textit{U. If:} \\ \bullet \frac{\partial \textit{H}}{\partial t}(t, \textit{s}) \in \mathcal{D} \textit{ for all } (t, \textit{s}) \in \textit{U;} \\ \bullet \ \mathfrak{L}^{\mathcal{D}}_{\textit{H}(t, \textit{s}_0)} = \textit{0 for all } t \in \textit{I;} \end{array}$

・ 同 ト イ ヨ ト イ ヨ ト

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

Lemma

 $\begin{array}{l} E \mbox{ manifold, } \mathcal{D} \subset TE \mbox{ distribution,} \\ \mathbb{R}^2 \supset U \ni (t, s) \longmapsto H(t, s) \in E \mbox{ smooth map.} \\ I \subset \mathbb{R} \mbox{ interval, } s_0 \in \mathbb{R} \mbox{ with } I \times \{s_0\} \subset U. \mbox{ lf:} \\ \bullet \mbox{ } \frac{\partial H}{\partial t}(t, s) \in \mathcal{D} \mbox{ for all } (t, s) \in U; \\ \bullet \mbox{ } \mathcal{L}^{\mathcal{D}}_{H(t, s_0)} = 0 \mbox{ for all } t \in I; \\ \bullet \mbox{ } \frac{\partial H}{\partial s}(t_0, s_0) \in \mathcal{D} \mbox{ for some } t_0 \in I \end{array}$

・ 同 ト イ ヨ ト イ ヨ ト

Problem: We want to find conditions for the existence of *one* integral submanifold of $\mathcal{D} \subset TE$ through some given $e \in E$.

Lemma

 $\begin{array}{l} E \text{ manifold, } \mathcal{D} \subset TE \text{ distribution,} \\ \mathbb{R}^2 \supset U \ni (t,s) \longmapsto H(t,s) \in E \text{ smooth map.} \\ I \subset \mathbb{R} \text{ interval, } s_0 \in \mathbb{R} \text{ with } I \times \{s_0\} \subset U. \text{ lf:} \\ \bullet \frac{\partial H}{\partial t}(t,s) \in \mathcal{D} \text{ for all } (t,s) \in U; \\ \bullet \ \mathfrak{L}_{H(t,s_0)}^{\mathcal{D}} = 0 \text{ for all } t \in I; \\ \bullet \ \frac{\partial H}{\partial s}(t_0,s_0) \in \mathcal{D} \text{ for some } t_0 \in I \\ \text{then } \frac{\partial H}{\partial s}(t,s_0) \in \mathcal{D} \text{ for all } t \in I. \end{array}$

くぼう イラン イラン

Theorem (local single leaf Frobenius)

 $\pi: E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution $\psi: Z \subset \mathbb{R} \times \Lambda \to M$ be a Λ -parametric family of curves with a local right inverse $\alpha: V \subset M \to Z$. Let $\tilde{\psi}: Z \to E$ be a Λ -parametric family of curves on E such that $t \mapsto \tilde{\psi}(t, \lambda)$ is a horizontal lifting of $t \mapsto \psi(t, \lambda)$, for all $\lambda \in \Lambda$.

Theorem (local single leaf Frobenius)

 $\pi: E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution $\psi: Z \subset \mathbb{R} \times \Lambda \to M$ be a Λ -parametric family of curves with a local right inverse $\alpha: V \subset M \to Z$. Let $\tilde{\psi}: Z \to E$ be a Λ -parametric family of curves on E such that $t \mapsto \tilde{\psi}(t, \lambda)$ is a horizontal lifting of $t \mapsto \psi(t, \lambda)$, for all $\lambda \in \Lambda$. Assume that:

(a) the Levi form of \mathcal{D} vanishes on the range of $\tilde{\psi}$;

Theorem (local single leaf Frobenius)

 $\pi: E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution $\psi: Z \subset \mathbb{R} \times \Lambda \to M$ be a Λ -parametric family of curves with a local right inverse $\alpha: V \subset M \to Z$. Let $\tilde{\psi}: Z \to E$ be a Λ -parametric family of curves on E such that $t \mapsto \tilde{\psi}(t, \lambda)$ is a horizontal lifting of $t \mapsto \psi(t, \lambda)$, for all $\lambda \in \Lambda$. Assume that:

(a) the Levi form of \mathcal{D} vanishes on the range of $\tilde{\psi}$;

(b) $\partial_{\lambda} \tilde{\psi}(0, \lambda) : T_{\lambda} \Lambda \to T_{\tilde{\psi}(0, \lambda)} E$ takes values in \mathcal{D} for all $\lambda \in \Lambda$.

< 同 > < 三 > < 三 >

Theorem (local single leaf Frobenius)

 $\pi: E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution $\psi: Z \subset \mathbb{R} \times \Lambda \to M$ be a Λ -parametric family of curves with a local right inverse $\alpha: V \subset M \to Z$. Let $\tilde{\psi}: Z \to E$ be a Λ -parametric family of curves on E such that $t \mapsto \tilde{\psi}(t, \lambda)$ is a horizontal lifting of $t \mapsto \psi(t, \lambda)$, for all $\lambda \in \Lambda$. Assume that:

(a) the Levi form of \mathcal{D} vanishes on the range of $\tilde{\psi}$;

(b) $\partial_{\lambda} \tilde{\psi}(0, \lambda) : T_{\lambda} \Lambda \to T_{\tilde{\psi}(0, \lambda)} E$ takes values in \mathcal{D} for all $\lambda \in \Lambda$.

Then $\mathbf{s} = \tilde{\psi} \circ \alpha : \mathbf{V} \to \mathbf{E}$ is a local horizontal section of π .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (local single leaf Frobenius)

 $\pi: E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution $\psi: Z \subset \mathbb{R} \times \Lambda \to M$ be a Λ -parametric family of curves with a local right inverse $\alpha: V \subset M \to Z$. Let $\tilde{\psi}: Z \to E$ be a Λ -parametric family of curves on E such that $t \mapsto \tilde{\psi}(t, \lambda)$ is a horizontal lifting of $t \mapsto \psi(t, \lambda)$, for all $\lambda \in \Lambda$. Assume that:

(a) the Levi form of \mathcal{D} vanishes on the range of $\tilde{\psi}$;

(b) $\partial_{\lambda} \tilde{\psi}(0, \lambda) : T_{\lambda} \Lambda \to T_{\tilde{\psi}(0, \lambda)} E$ takes values in \mathcal{D} for all $\lambda \in \Lambda$.

Then $s = \tilde{\psi} \circ \alpha : V \to E$ is a local horizontal section of π .

Obs.: If $\lambda \mapsto \widetilde{\psi}(\mathbf{0}, \lambda)$ is constant, then (b) is satisfied.

・ 同 ト ・ ヨ ト ・ ヨ ト

The higher order Frobenius theorem

 $\mathcal{D} \subset TE$ smooth distribution $\Gamma(TE)$ Lie algebra of vector fields on E $\Gamma(\mathcal{D}) = \Gamma^{0}(\mathcal{D})$ space of horizontal vector fields

医下子 医

The higher order Frobenius theorem

 $\mathcal{D} \subset \textit{TE}$ smooth distribution

 $\Gamma(TE)$ Lie algebra of vector fields on E

 $\Gamma(\mathcal{D}) = \Gamma^0(\mathcal{D})$ space of horizontal vector fields

Define recursively $\Gamma^{r+1}(\mathcal{D}) \subset \Gamma(TE)$ as the space spanned by $\Gamma'(\mathcal{D})$ and Lie brackets of the form [X, Y], with $X \in \Gamma'(\mathcal{D})$ and $Y \in \Gamma(\mathcal{D})$. $\Gamma^{\infty} = \bigcup_{r=0}^{\infty} \Gamma^{r}(\mathcal{D})$: Lie subalgebra of *TE* spanned by $\Gamma(\mathcal{D})$.

The higher order Frobenius theorem

 $\mathcal{D} \subset TE$ smooth distribution $\Gamma(TE)$ Lie algebra of vector fields on E $\Gamma(\mathcal{D}) = \Gamma^{0}(\mathcal{D})$ space of horizontal vector fields Define recursively $\Gamma^{r+1}(\mathcal{D}) \subset \Gamma(TE)$ as the space spanned by $\Gamma^{r}(\mathcal{D})$ and Lie brackets of the form [X, Y], with $X \in \Gamma^{r}(\mathcal{D})$ and $Y \in \Gamma(\mathcal{D})$. $\Gamma^{\infty} = \bigcup_{r=0}^{\infty} \Gamma^{r}(\mathcal{D})$: Lie subalgebra of *TE* spanned by $\Gamma(\mathcal{D})$.

Theorem

If *E* is real analytic manifold and \mathcal{D} is a real analytic distribution, then given $e_0 \in E$, there exists an integral submanifold of \mathcal{D} through e_0 iff $X(e_0) \in \mathcal{D}_{e_0}$ for all $X \in \Gamma^{\infty}(\mathcal{D})$.

イロト イポト イラト イラト

Outline

- - The higher order Frobenius theorem
- The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- - Constant connections in Rⁿ
- - The Cartan–Ambrose–Hicks Theorem
 - Higher order Cartan–Ambrose–Hicks theorem

Paolo Piccione (IME–USP)

On the single-leaf Frobenius Theorem...

Sprays on manifolds

M manifold, $\pi : TM \to M$ tangent bundle, $d\pi : T(TM) \to TM$, $\bar{\pi} : T(TM) \to TM$ For $a \in \mathbb{R}, \mathfrak{m}_a : TM \to TM$ multiplication by *a*.

Definition

A spray on *M* is a vector field $S : TM \rightarrow T(TM)$ such that:

- $d\pi \circ S = \bar{\pi} \circ S$
- $a dm_a \circ S = S \circ m_a$ for all $a \in \mathbb{R}$.

イロト イポト イラト イラ

Sprays on manifolds

M manifold, $\pi : TM \to M$ tangent bundle, $d\pi : T(TM) \to TM$, $\bar{\pi} : T(TM) \to TM$ For $a \in \mathbb{R}, \mathfrak{m}_a : TM \to TM$ multiplication by *a*.

Definition

A spray on *M* is a vector field $S : TM \rightarrow T(TM)$ such that:

- $d\pi \circ S = \bar{\pi} \circ S$
- $a dm_a \circ S = S \circ m_a$ for all $a \in \mathbb{R}$.

Integral curves $\lambda : I \to TM$ of S are of the form $\lambda = \gamma', \gamma = \pi \circ \lambda$. Given $\lambda = \gamma'$ integral curve, also $t \mapsto a \cdot \gamma'(at)$ is an integral curve of S.

Example (Geodesic spray)

 ∇ connection on *M*, S(v) is the unique horizontal vector in $T_v(TM)$ with $d\pi_v(S(v))$. Integral curves of *S* are γ' , with γ geodesic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (Geodesic spray)

 ∇ connection on *M*, S(v) is the unique horizontal vector in $T_v(TM)$ with $d\pi_v(S(v))$. Integral curves of *S* are γ' , with γ geodesic.

Example (one parameter subgroup spray) G Lie group, g = Lie(G). $TG \cong G \times g$, hence:

 $T(TG) \cong T(G \times \mathfrak{g}) \cong (TG) \times (T\mathfrak{g}) \cong (G \times \mathfrak{g}) \times (\mathfrak{g} \times \mathfrak{g})$

 $S(g, X) = (g, X, X, 0), g \in G, X \in \mathfrak{X}$ is a spray whose solutions are (translations of) one-parameter subgroups of *G*.

イロト イポト イラト イラト

Example (Geodesic spray)

 ∇ connection on *M*, S(v) is the unique horizontal vector in $T_v(TM)$ with $d\pi_v(S(v))$. Integral curves of *S* are γ' , with γ geodesic.

Example (one parameter subgroup spray) G Lie group, g = Lie(G). $TG \cong G \times g$, hence:

 $T(TG) \cong T(G \times \mathfrak{g}) \cong (TG) \times (T\mathfrak{g}) \cong (G \times \mathfrak{g}) \times (\mathfrak{g} \times \mathfrak{g})$

 $\mathcal{S}(g, X) = (g, X, X, 0), g \in G, X \in \mathfrak{X}$ is a spray whose solutions are (translations of) one-parameter subgroups of *G*.

Local theory of solutions of sprays totally analogous to geodesics. There exist *normal neighborhoods* of every point.

(日)

E, *M* manifolds, $\pi : E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution, S spray on *M*. Fix $x_0 \in M$ and $e_0 \in \pi^{-1}(x_0) \in E$.

< A >

E, *M* manifolds, $\pi : E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution, S spray on M. Fix $x_0 \in M$ and $e_0 \in \pi^{-1}(x_0) \in E$. Assume:

 every piecewise solution γ : [a, b] → M of S with γ(a) = x₀ admits a horizontal lifting γ̃ : [a, b] → E with γ̃(a) = e₀;

E, *M* manifolds, $\pi : E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution, S spray on M. Fix $x_0 \in M$ and $e_0 \in \pi^{-1}(x_0) \in E$. Assume:

- every piecewise solution γ : [a, b] → M of S with γ(a) = x₀ admits a horizontal lifting γ̃ : [a, b] → E with γ̃(a) = e₀;
- if $\widetilde{\gamma} : [a, b] \to E$ is as above, then $\mathfrak{L}^{\mathcal{D}}_{\widetilde{\gamma}(b)} = 0$;

E, *M* manifolds, $\pi : E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution, S spray on M. Fix $x_0 \in M$ and $e_0 \in \pi^{-1}(x_0) \in E$. Assume:

- every piecewise solution γ : [a, b] → M of S with γ(a) = x₀ admits a horizontal lifting γ̃ : [a, b] → E with γ̃(a) = e₀;
- if $\widetilde{\gamma} : [a, b] \to E$ is as above, then $\mathfrak{L}^{\mathcal{D}}_{\widetilde{\gamma}(b)} = 0$;
- M is (connected and) simply connected.

E, *M* manifolds, $\pi : E \to M$ submersion, $\mathcal{D} \subset TE$ horizontal distribution, S spray on M. Fix $x_0 \in M$ and $e_0 \in \pi^{-1}(x_0) \in E$. Assume:

- every piecewise solution γ : [a, b] → M of S with γ(a) = x₀ admits a horizontal lifting γ̃ : [a, b] → E with γ̃(a) = e₀;
- if $\widetilde{\gamma} : [a, b] \to E$ is as above, then $\mathfrak{L}^{\mathcal{D}}_{\widetilde{\gamma}(b)} = 0$;
- *M* is (connected and) simply connected.

Then, there exists a unique global horizontal section s of E with $s(x_0) = e_0$.

Theorem

E, *M* real analytic manifolds, $\pi : E \to M$ real analytic submersion, $\mathcal{D} \subset TE$ real analytic horizontal distribution.

∃ → <</p>

Theorem

E, *M* real analytic manifolds, $\pi : E \to M$ real analytic submersion, $\mathcal{D} \subset TE$ real analytic horizontal distribution. Assume:

- M is connected and simply connected;
- if γ : I → M is real analytic, t₀ ∈ I, e₀ ∈ π⁻¹(γ(t₀)), then there exists a horizontal lifting γ̃ : I → E with γ̃(t₀) = e₀.

Theorem

E, *M* real analytic manifolds, $\pi : E \to M$ real analytic submersion, $\mathcal{D} \subset TE$ real analytic horizontal distribution. Assume:

- M is connected and simply connected;
- if γ : I → M is real analytic, t₀ ∈ I, e₀ ∈ π⁻¹(γ(t₀)), then there exists a horizontal lifting γ̃ : I → E with γ̃(t₀) = e₀.

Then, every local horizontal section of π defined on a nonempty connected open subset of M extends to a global horizontal section of π .

イロト イポト イラト イラ

Theorem

E, *M* real analytic manifolds, $\pi : E \to M$ real analytic submersion, $\mathcal{D} \subset TE$ real analytic horizontal distribution. Assume:

- M is connected and simply connected;
- if γ : I → M is real analytic, t₀ ∈ I, e₀ ∈ π⁻¹(γ(t₀)), then there exists a horizontal lifting γ̃ : I → E with γ̃(t₀) = e₀.

Then, every local horizontal section of π defined on a nonempty connected open subset of M extends to a global horizontal section of π .

In particular, if \mathcal{D} satisfies the assumptions of the Higher Order Frobenius theorem at some point $e_0 \in E$, then π admits a global horizontal section.

< ロ > < 同 > < 回 > < 回 >

Outline

- - The higher order Frobenius theorem
- - Sprays on manifolds
 - The global result
 - Levi-Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n
 - - The Cartan–Ambrose–Hicks Theorem
 - Higher order Cartan–Ambrose–Hicks theorem
 - Paolo Piccione (IME–USP)

On the single-leaf Frobenius Theorem...

 $\pi: E \to M$ vector bundle, $E_m = \pi^{-1}(m)$ fiber,

 ∇ connection on *E*.

 R_m : $T_mM \times T_mM \times E_m \rightarrow E_m$ curvature of ∇ :

$$R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]} \xi$$

 $\pi: E \to M$ vector bundle, $E_m = \pi^{-1}(m)$ fiber, ∇ connection on *E*.

 R_m : $T_mM \times T_mM \times E_m \rightarrow E_m$ curvature of ∇ :

$$R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]} \xi$$

 $\mathcal{D} \subset TE$ horizontal distribution of ∇ : given $\gamma : I \to M$, a horizontal lifting $\tilde{\gamma} : I \to E$ is a ∇ -parallel section of E along γ .

 $\pi: E \to M$ vector bundle, $E_m = \pi^{-1}(m)$ fiber, ∇ connection on *E*.

 R_m : $T_mM \times T_mM \times E_m \rightarrow E_m$ curvature of ∇ :

$$R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]} \xi$$

 $\mathcal{D} \subset TE$ horizontal distribution of ∇ : given $\gamma : I \to M$, a horizontal lifting $\widetilde{\gamma} : I \to E$ is a ∇ -parallel section of E along γ .

- For $\xi \in E_m$, $T_{\xi}E/\mathcal{D}_{\xi} \cong T_{\xi}(E_m) = \operatorname{Ker}(\mathrm{d}\pi_{\xi})$.
- $T_{\xi}(E_m) \cong E_m$
- $d\pi_{\xi}: \mathcal{D}_{\xi} \xrightarrow{\cong} T_m M.$
- $\mathfrak{L}^{\mathcal{D}}_{\xi}: T_mM \times T_mM \longrightarrow E_m$

・ 吊 ト イ ラ ト イ ラ ト 二 ラ

 $\pi: E \to M$ vector bundle, $E_m = \pi^{-1}(m)$ fiber, ∇ connection on *E*.

 R_m : $T_mM \times T_mM \times E_m \rightarrow E_m$ curvature of ∇ :

$$R(X,Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]} \xi$$

 $\mathcal{D} \subset TE$ horizontal distribution of ∇ : given $\gamma : I \to M$, a horizontal lifting $\widetilde{\gamma} : I \to E$ is a ∇ -parallel section of E along γ .

- For $\xi \in E_m$, $T_{\xi}E/\mathcal{D}_{\xi} \cong T_{\xi}(E_m) = \operatorname{Ker}(\mathrm{d}\pi_{\xi})$.
- $T_{\xi}(E_m) \cong E_m$

•
$$d\pi_{\xi} : \mathcal{D}_{\xi} \xrightarrow{\cong} T_m M.$$

• $\mathfrak{L}_{\xi}^{\mathcal{D}} : T_m M \times T_m M \longrightarrow E_m$

Lemma

$$\mathfrak{L}^{\mathcal{D}}_{\xi}(\mathbf{v},\mathbf{w}) = -R_m(\mathbf{v},\mathbf{w})\xi, m \in M, \xi \in E_m.$$

 $\pi: E \to M$ vector bundle, ∇ connection on E.

 $\psi: Z \subset \mathbb{R} \times \Lambda$ a Λ parametric family of curves in M

 $\alpha: \mathbf{V} \subset \mathbf{M} \rightarrow \mathbf{Z}$ local right inverse of ψ

 $\widetilde{\psi}: \mathbf{Z} \to \mathbf{E}$ a section of \mathbf{E} along ψ .

マロト イラト イラ

 $\pi: E \to M$ vector bundle, ∇ connection on E.

 $\psi: \mathbf{Z} \subset \mathbb{R} \times \Lambda$ a Λ parametric family of curves in \mathbf{M}

- $\alpha : \mathbf{V} \subset \mathbf{M} \to \mathbf{Z}$ local right inverse of ψ
- $\widehat{\psi}: \mathbf{Z} \to \mathbf{E}$ a section of \mathbf{E} along ψ . If:

•
$$t \mapsto \psi(t, \lambda)$$
 is parallel for all $\lambda \in \Lambda$;

• $\lambda \mapsto \widetilde{\psi}(\mathbf{0}, \lambda)$ is parallel;

• $R_{\psi(t,\lambda)}(v,w)\widetilde{\psi}(t,\lambda) = 0$ for all $v, w \in T_{\psi(t,\lambda)}M$ and all $(t,\lambda) \in Z$

then $\widetilde{\psi} \circ \alpha$ is a (local) parallel section of E.

 $\pi : E \to M$ vector bundle with connection ∇ . S spray on M, $x_0 \in M$, $e_0 \in \pi^{-1}(x_0)$.

< ロ > < 同 > < 三 > < 三

 $\pi: E \to M$ vector bundle with connection ∇ .

S spray on M, $x_0 \in M$, $e_0 \in \pi^{-1}(x_0)$. Assume:

- if $\gamma : [a, b] \to M$ is a piecewise solution of S with $\gamma(a) = x_0$, and $\widetilde{\gamma} : [a, b] \to E$ is a section of E along γ with $\widetilde{\gamma}(a) = e_0$, then $R_{\gamma(b)}(v, w)\widetilde{\gamma}(b) = 0$ for all $v, w \in T_{\gamma(b)}M$;
- M is (connected and) simply connected.

・ 同 ト ・ ヨ ト ・ ヨ

 $\pi: E \to M$ vector bundle with connection ∇ .

S spray on M, $x_0 \in M$, $e_0 \in \pi^{-1}(x_0)$. Assume:

- *if* $\gamma : [a, b] \to M$ *is a piecewise solution of* S *with* $\gamma(a) = x_0$, *and* $\widetilde{\gamma} : [a, b] \to E$ *is a section of* E *along* γ *with* $\widetilde{\gamma}(a) = e_0$, *then* $R_{\gamma(b)}(v, w)\widetilde{\gamma}(b) = 0$ *for all* $v, w \in T_{\gamma(b)}M$;
- *M* is (connected and) simply connected.

Then there exists a unique global parallel section s of E with $s(x_0) = e_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ .

• I > • I > •

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . If M is simply connected, then any local parallel section s of E, defined on a non empty connected open subset $U \subset M$, extends to a (unique) global parallel section.

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . If M is simply connected, then any local parallel section s of E, defined on a non empty connected open subset $U \subset M$, extends to a (unique) global parallel section.

Corollary

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ .

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . If M is simply connected, then any local parallel section s of E, defined on a non empty connected open subset $U \subset M$, extends to a (unique) global parallel section.

Corollary

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . Given $x \in M$ and $e \in \pi^{-1}(x)$, assume $\nabla^k R(v_1, \ldots, v_{k+2})e = 0$ for all $v_1, \ldots, v_{k+2} \in T_x M$ and all $k \ge 0$.

イロト イポト イラト イラト

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . If M is simply connected, then any local parallel section s of E, defined on a non empty connected open subset $U \subset M$, extends to a (unique) global parallel section.

Corollary

 $\pi: E \to M$ real analytic vector bundle with real analytic connection ∇ . Given $x \in M$ and $e \in \pi^{-1}(x)$, assume $\nabla^k R(v_1, \ldots, v_{k+2})e = 0$ for all $v_1, \ldots, v_{k+2} \in T_x M$ and all $k \ge 0$. Then there exists a local parallel section s of E, defined around x, with s(x) = e. If M is simply connected, then there exists a global parallel section s of E with s(x) = e.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Levi–Civita connections

 $\pi: E \to M$ vector bundle with connection ∇ .

 ∇ induces connections on all vector bundle obtained by functorial constructions on *E*.

→ Ξ →

Levi–Civita connections

 $\pi: E \to M$ vector bundle with connection ∇ .

 ∇ induces connections on all vector bundle obtained by functorial constructions on *E*.

Example

 $E^* \otimes E^*$ vector bundle over *M* with fiber at *m* the space of all bilinear forms on E_m . ∇ induces a connection ∇^{bil} on $E^* \otimes E^*$:

$$ig(
abla^{\mathrm{bil}}_X oldsymbol{g} ig)(\xi,\eta) = oldsymbol{X} ig(oldsymbol{g}(\xi,\eta) ig) - oldsymbol{g} ig(
abla_X \xi,\eta ig) - oldsymbol{g} ig(\xi,
abla_X \eta ig)$$

The curvature tensor R^{bil} of ∇^{bil} is:

$$ig({m{\mathcal{R}}}^{\mathrm{bil}}({m{X}},{m{Y}}){m{g}}ig)(\xi,\eta) = -{m{g}}ig({m{\mathcal{R}}}({m{X}},{m{Y}})\xi,\etaig) - {m{g}}ig(\xi,{m{\mathcal{R}}}({m{X}},{m{Y}})\etaig)$$

Levi–Civita connections

 $\pi: E \to M$ vector bundle with connection ∇ .

 ∇ induces connections on all vector bundle obtained by functorial constructions on *E*.

Example

 $E^* \otimes E^*$ vector bundle over *M* with fiber at *m* the space of all bilinear forms on E_m . ∇ induces a connection ∇^{bil} on $E^* \otimes E^*$:

$$ig(
abla^{ ext{bil}}_X oldsymbol{g} ig)(\xi,\eta) = oldsymbol{X}ig(oldsymbol{g}(\xi,\eta) ig) - oldsymbol{g}ig(
abla_X \xi,\eta ig) - oldsymbol{g}ig(\xi,
abla_X \etaig)$$

The curvature tensor R^{bil} of ∇^{bil} is:

$$ig({m{\mathcal{R}}}^{\mathrm{bil}}({m{X}},{m{Y}}){m{g}}ig)(\xi,\eta) = -{m{g}}ig({m{\mathcal{R}}}({m{X}},{m{Y}})\xi,\etaig) - {m{g}}ig(\xi,{m{\mathcal{R}}}({m{X}},{m{Y}})\etaig)$$

Definition

 ∇ *symmetric* connection on *TM*, *g* semi-Riemannian metric tensor on *M*. ∇ is the *Levi–Civita* connection of *g* if $\nabla^{\text{bil}}g = 0$.

Paolo Piccione (IME–USP)

On the single-leaf Frobenius Theorem...

Problem: given a *symmetric* ∇ , when does there exist g semi-Riemannian metric with $\nabla^{\text{bil}}g = 0$?

Problem: given a *symmetric* ∇ , when does there exist g semi-Riemannian metric with $\nabla^{\text{bil}}g = 0$? Equivalently, does there exist a ∇^{bil} -parallel section g of $T^*M \otimes T^*M$ (symmetric and nondegenerate)?

Problem: given a *symmetric* ∇ , when does there exist g semi-Riemannian metric with $\nabla^{\text{bil}}g = 0$? Equivalently, does there exist a ∇^{bil} -parallel section g of $T^*M \otimes T^*M$ (symmetric and nondegenerate)?

Idea: Given $m_0 \in M$ and a nondegenerate symmetric bilinear form g_0 , one can *spread* g_0 by *parallel transport* along the curves of a Λ -parametric family, or along solutions of a spray.

Problem: given a *symmetric* ∇ , when does there exist g semi-Riemannian metric with $\nabla^{\text{bil}}g = 0$? Equivalently, does there exist a ∇^{bil} -parallel section g of $T^*M \otimes T^*M$ (symmetric and nondegenerate)?

Idea: Given $m_0 \in M$ and a nondegenerate symmetric bilinear form g_0 , one can *spread* g_0 by *parallel transport* along the curves of a Λ -parametric family, or along solutions of a spray.

Frobenius theorem gives us that the metric g obtained in this way is a solution of the problem if and only if $R^{\text{bil}}(\cdot, \cdot)g = 0$. Recalling the form of R^{bil} , this is equivalent to the g-antisymmetry of R. More precisely:

(日)

M manifold, ∇ symmetric connection on *TM*, $m_0 \in M$, $g_0 : T_{m_0}M \times T_{m_0}M \rightarrow \mathbb{R}$, *S* spray on *M*.

< ロ > < 同 > < 回 > < 回 >

M manifold, ∇ symmetric connection on TM, $m_0 \in M$,

 $g_0: T_{m_0}M \times T_{m_0}M \rightarrow \mathbb{R}$, S spray on M. Assume:

- given a piecewise solution $\gamma : [a, b] \to M$ of S with $\gamma(a) = m_0$, $P_{\gamma}^{-1}R_{\gamma(b)}P_{\gamma} : T_{m_0}M \to T_{m_0}M$ is g_0 -antisymmetric;
- M is (connected and) simply connected.

イロト イポト イラト イラ

M manifold, ∇ symmetric connection on TM, $m_0 \in M$,

 $g_0: T_{m_0}M \times T_{m_0}M \rightarrow \mathbb{R}$, S spray on M. Assume:

- given a piecewise solution $\gamma : [a, b] \to M$ of S with $\gamma(a) = m_0$, $P_{\gamma}^{-1}R_{\gamma(b)}P_{\gamma} : T_{m_0}M \to T_{m_0}M$ is g_0 -antisymmetric;
- M is (connected and) simply connected.

Then, g_0 extends to a semi-Riemannian metric on M whose Levi–Civita connection is ∇ .

If M is a simply connected real analytic manifold with real analytic symmetric connection ∇ . If g is a semi–Riemannian metric defined on a non empty open connected subset of M whose Levi–Civita connection is ∇ , then g extends to a globally defined semi-Riemannian metric tensor on M whose Levi–Civita connection is ∇ .

M real analytic, ∇ real analytic symmetric connection on TM. Given $x_0 \in M$ and a nondegenerate symmetric bilinear form g_0 on $T_{x_0}M$ if:

$$(\nabla^k R)(v_1,\ldots,v_{k+2}):T_{x_0}M\longrightarrow T_{x_0}M$$

is g_0 -antisymmetric for all $v_1, \ldots, v_{k+2} \in T_{x_0}M$ and all $k \ge 0$, then g_0 extends to a locally defined semi-Riemannian metric tensor g whose Levi–Civita connection is ∇ .

M real analytic, ∇ real analytic symmetric connection on TM. Given $x_0 \in M$ and a nondegenerate symmetric bilinear form g_0 on $T_{x_0}M$ if:

$$(\nabla^k R)(v_1,\ldots,v_{k+2}):T_{x_0}M\longrightarrow T_{x_0}M$$

is g_0 -antisymmetric for all $v_1, \ldots, v_{k+2} \in T_{x_0}M$ and all $k \ge 0$, then g_0 extends to a locally defined semi-Riemannian metric tensor g whose Levi–Civita connection is ∇ .

If M is simply connected, then g_0 extends to a globally defined semi-Riemannian metric g with Levi–Civita connection ∇ .

イロト イポト イラト イラト

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential)

Paolo Piccione (IME-USP)

On the single-leaf Frobenius Theorem...

Recenti sviluppi ... 27 / 48

・ 同 ト ・ ヨ ト ・ ヨ

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y, \quad X, Y \text{ left invariant vector fields}$

イロト イポト イラト イラト

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y, \quad X, Y \text{ left invariant vector fields}$

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y, \quad X, Y \text{ left invariant vector fields}$

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$. Torsion of ∇ : $T(X, Y) = \Gamma(X, Y) - \Gamma(Y, X) - [X, Y]$

 $(\nabla \text{ symmetric iff } \Gamma : \mathfrak{g} \to \operatorname{Lin}(\mathfrak{g}) \text{ is a Lie algebra homomorphism})$

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y, \quad X, Y \text{ left invariant vector fields}$

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$. Torsion of ∇ : $T(X, Y) = \Gamma(X, Y) - \Gamma(Y, X) - [X, Y]$ (∇ symmetric iff $\Gamma : \mathfrak{g} \to \operatorname{Lin}(\mathfrak{g})$ is a Lie algebra homomorphism) Curvature of ∇ : $R(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])$

マロト イラト イラト ニラ

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y$, X, Y left invariant vector fields

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$. Torsion of ∇ : $T(X, Y) = \Gamma(X, Y) - \Gamma(Y, X) - [X, Y]$ (∇ symmetric iff $\Gamma : \mathfrak{g} \to \operatorname{Lin}(\mathfrak{g})$ is a Lie algebra homomorphism) Curvature of ∇ : $R(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])$

Parallel transport of *Y* along $t \mapsto \exp(tX)$: $t \mapsto e^{-t\Gamma(X)}Y$

く 伺 と く き と く き と

G Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y$, X, Y left invariant vector fields

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$. Torsion of ∇ : $T(X, Y) = \Gamma(X, Y) - \Gamma(Y, X) - [X, Y]$ (∇ symmetric iff $\Gamma : \mathfrak{g} \to \operatorname{Lin}(\mathfrak{g})$ is a Lie algebra homomorphism) Curvature of ∇ : $R(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])$

Parallel transport of *Y* along $t \mapsto \exp(tX)$: $t \mapsto e^{-t\Gamma(X)}Y$

Theorem

 ∇ symmetric left-invariant connection on G, $h : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ nondegenerate symmetric bilinear form. *G* Lie group, ∇ left invariant connection on *G* (i.e., zero Christoffel symbols in a left invariant referential) ∇ determined by a linear map $\Gamma : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$:

 $\Gamma(X, Y) = \nabla_X Y$, X, Y left invariant vector fields

Identify Γ with the map $\mathfrak{g} \ni X \mapsto \Gamma(X, \cdot) \in \operatorname{Lin}(\mathfrak{g})$. Torsion of $\nabla: [T(X, Y) = \Gamma(X, Y) - \Gamma(Y, X) - [X, Y]]$ (∇ symmetric iff $\Gamma : \mathfrak{g} \to \operatorname{Lin}(\mathfrak{g})$ is a Lie algebra homomorphism) Curvature of $\nabla: [R(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])]$

Parallel transport of Y along $t \mapsto \exp(tX)$: $t \mapsto e^{-t\Gamma(X)}Y$

Theorem

 ∇ symmetric left-invariant connection on G, $h : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ nondegenerate symmetric bilinear form. Then, h extends to a local semi-Riemannian metric on G whose Levi–Civita connection is ∇ iff:

$$e^{\Gamma(Z) ig([\Gamma(X), \Gamma(Y)] - \Gamma([X,Y]) ig) e^{-\Gamma(Z)}} \in \mathfrak{so}(h), \quad orall X, Y, Z \in \mathfrak{g}.$$

The condition in the above theorem is equivalent to:

 $\mathrm{ad}_{\Gamma(Z)}^nig([\Gamma(X),\Gamma(Y)]-\Gamma([X,Y])ig)\in\mathfrak{so}(h),\quad \forall\,X,Y,Z\in\mathfrak{g}.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The condition in the above theorem is equivalent to:

 $\mathrm{ad}^n_{\Gamma(Z)}ig([\Gamma(X),\Gamma(Y)]-\Gamma([X,Y])ig)\in\mathfrak{so}(h),\quad \forall\,X,Y,Z\in\mathfrak{g}.$

Since Lie groups are real analytic, and so are left-invariant connections:

Corollary

If G is simply connected, then in the above theorem one has the existence of a globally defined extension of h to a semi-Riemannian metric tensor on G whose Levi–Civita connection is ∇ .

イロト イポト イラト イラト

In the special case $G = \mathbb{R}^n$, a constant connection ∇ has curvature: $R(v, w) = [\Gamma(v), \Gamma(w)] \in \operatorname{Lin}(\mathbb{R}^n)$, where $\nabla_X Y = dY(X) + \Gamma(X, Y)$.

In the special case $G = \mathbb{R}^n$, a constant connection ∇ has curvature: $R(v, w) = [\Gamma(v), \Gamma(w)] \in \operatorname{Lin}(\mathbb{R}^n)$, where $\nabla_X Y = dY(X) + \Gamma(X, Y)$.

Theorem

Let $\Gamma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ a symmetric bilinear map, and let \mathcal{A} be the image of the map $\mathbb{R}^n \ni \mathbf{v} \mapsto \Gamma(\mathbf{v}) \in \operatorname{Lin}(\mathbb{R}^n)$.

In the special case $G = \mathbb{R}^n$, a constant connection ∇ has curvature: $R(v, w) = [\Gamma(v), \Gamma(w)] \in \operatorname{Lin}(\mathbb{R}^n)$, where $\nabla_X Y = dY(X) + \Gamma(X, Y)$.

Theorem

Let $\Gamma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ a symmetric bilinear map, and let \mathcal{A} be the image of the map $\mathbb{R}^n \ni \mathbf{v} \mapsto \Gamma(\mathbf{v}) \in \operatorname{Lin}(\mathbb{R}^n)$.

A nondegenerate symmetric bilinear form g_0 on \mathbb{R}^n extends to a semi-Riemannian metric on \mathbb{R}^n whose Levi–Civita connection ∇ above iff:

 $(\mathrm{ad}_X)^k[Y,Z]\in\mathfrak{so}(g_0),\quad \forall X,Y,Z\in\mathcal{A},\;\forall\,k\geq 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト

In the special case $G = \mathbb{R}^n$, a constant connection ∇ has curvature: $R(v, w) = [\Gamma(v), \Gamma(w)] \in \operatorname{Lin}(\mathbb{R}^n)$, where $\nabla_X Y = dY(X) + \Gamma(X, Y)$.

Theorem

Let $\Gamma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ a symmetric bilinear map, and let \mathcal{A} be the image of the map $\mathbb{R}^n \ni \mathbf{v} \mapsto \Gamma(\mathbf{v}) \in \operatorname{Lin}(\mathbb{R}^n)$.

A nondegenerate symmetric bilinear form g_0 on \mathbb{R}^n extends to a semi-Riemannian metric on \mathbb{R}^n whose Levi–Civita connection ∇ above iff:

 $(\mathrm{ad}_X)^k[Y,Z]\in\mathfrak{so}(g_0),\quad \forall X,Y,Z\in\mathcal{A},\;\forall\,k\geq 0.$

Corollary

Denote by $\mathfrak{g} \subset \operatorname{Lin}(\mathbb{R}^n)$ the Lie algebra generated by \mathcal{A} , and set $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$. The conclusion of the Theorem above holds if $\mathfrak{g}' \subset \mathfrak{so}(g_0)$.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

In the special case $G = \mathbb{R}^n$, a constant connection ∇ has curvature: $R(v, w) = [\Gamma(v), \Gamma(w)] \in \operatorname{Lin}(\mathbb{R}^n)$, where $\nabla_X Y = dY(X) + \Gamma(X, Y)$.

Theorem

Let $\Gamma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ a symmetric bilinear map, and let \mathcal{A} be the image of the map $\mathbb{R}^n \ni \mathbf{v} \mapsto \Gamma(\mathbf{v}) \in \operatorname{Lin}(\mathbb{R}^n)$.

A nondegenerate symmetric bilinear form g_0 on \mathbb{R}^n extends to a semi-Riemannian metric on \mathbb{R}^n whose Levi–Civita connection ∇ above iff:

 $(\mathrm{ad}_X)^k[Y,Z]\in\mathfrak{so}(g_0),\quad \forall X,Y,Z\in\mathcal{A},\ \forall k\geq 0.$

Corollary

Denote by $\mathfrak{g} \subset \operatorname{Lin}(\mathbb{R}^n)$ the Lie algebra generated by \mathcal{A} , and set $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$. The conclusion of the Theorem above holds if $\mathfrak{g}' \subset \mathfrak{so}(g_0)$. If n = 2, the condition $\mathfrak{g}' \subset \mathfrak{so}(g_0)$ is also necessary.

-

< ロ > < 同 > < 回 > < 回 > .

The case n = 2

Lemma

Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be a nonzero linear map. There exists a nondegenerate symmetric bilinear form g_0 on \mathbb{R}^2 with $A \in \mathfrak{so}(g_0)$ if and only if tr A = 0 and det $A \neq 0$; moreover, g_0 is positive definite (resp., has index 1) if and only if det A > 0 (resp., det A < 0).

The case n = 2

Lemma

Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be a nonzero linear map. There exists a nondegenerate symmetric bilinear form g_0 on \mathbb{R}^2 with $A \in \mathfrak{so}(g_0)$ if and only if tr A = 0 and det $A \neq 0$; moreover, g_0 is positive definite (resp., has index 1) if and only if det A > 0 (resp., det A < 0).

Corollary

In the case n = 2, the conclusion of the Theorem above holds if and only if either g' = 0 or if g' has dimension 1 and it is spanned by an invertible 2×2 matrix.

< ロ > < 同 > < 回 > < 回 > < 回 > <

An explicit analysis of 2-dimensional and 3-dimensional Lie algebras \mathfrak{g} with 1-dimensional commutator subalgebra \mathfrak{g}' leads to the following:

B 5 4 B

An explicit analysis of 2-dimensional and 3-dimensional Lie algebras \mathfrak{g} with 1-dimensional commutator subalgebra \mathfrak{g}' leads to the following:

Corollary

Let $\Gamma : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be a symmetric bilinear map and let $\mathcal{A} \subset \operatorname{Lin}(\mathbb{R}^2)$ be the range of the linear map $v \mapsto \Gamma(v, \cdot)$.

An explicit analysis of 2-dimensional and 3-dimensional Lie algebras \mathfrak{g} with 1-dimensional commutator subalgebra \mathfrak{g}' leads to the following:

Corollary

Let $\Gamma : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be a symmetric bilinear map and let $\mathcal{A} \subset \operatorname{Lin}(\mathbb{R}^2)$ be the range of the linear map $v \mapsto \Gamma(v, \cdot)$. Then the conclusion of the Theorem above holds if and only if [X, Y] = 0, for all $X, Y \in \mathcal{A}$. In this case, a semi-Riemannian metric g on \mathbb{R}^2 with the required property can be chosen with an arbitrary value g_0 at the origin.

Outline

- The single-leaf Frobenius theorem
 - Distributions and integral submanifolds
 - Horizontal distributions and horizontal liftings
 - The Levi form
 - The higher order Frobenius theorem
- 2 The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- 3 Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n

Existence of affine maps

- Affine manifolds and affine maps
- The Cartan–Ambrose–Hicks Theorem
- Higher order Cartan–Ambrose–Hicks theorem

Paolo Piccione (IME-USP)

On the single-leaf Frobenius Theorem...

Let M, N be manifolds endowed with connections ∇^M and ∇^N . T^N, T^M, R^M, R^N the torsion and the curvature tensors of ∇^M and ∇^M .

- A B N A B

Let M, N be manifolds endowed with connections ∇^M and ∇^N . T^N, T^M, R^M, R^N the torsion and the curvature tensors of ∇^M and ∇^M .

A smooth map $f: M \to N$ is *affine* if: $df_x(\nabla_v^M X) = \nabla_v^N (df \circ X)$.

Let M, N be manifolds endowed with connections ∇^M and ∇^N . T^N, T^M, R^M, R^N the torsion and the curvature tensors of ∇^M and ∇^M .

A smooth map $f: M \to N$ is *affine* if: $df_x(\nabla_v^M X) = \nabla_v^N (df \circ X)$.

Equivalently, *f* is affine if for every parallel vector field *V* along a curve γ , d*f* \circ *V* is parallel along *f* $\circ \gamma$.

Let M, N be manifolds endowed with connections ∇^M and ∇^N . T^N, T^M, R^M, R^N the torsion and the curvature tensors of ∇^M and ∇^M .

A smooth map $f: M \to N$ is *affine* if: $df_X(\nabla_v^M X) = \nabla_v^N (df \circ X)$.

Equivalently, *f* is affine if for every parallel vector field *V* along a curve γ , d*f* \circ *V* is parallel along *f* $\circ \gamma$.

Example

If $M \subset N$, then the inclusion $i: M \to N$ is affine iff:

• *M* is totally geodesic in *N*;

• ∇^M is the restriction of ∇^N .

Consider the vector bundle E = Lin(TM, TN) over $M \times N$, with fiber $E_{(m,n)} = \text{Lin}(T_mM, T_nN)$.

イロト イポト イラト イラ

Consider the vector bundle E = Lin(TM, TN) over $M \times N$, with fiber $E_{(m,n)} = \text{Lin}(T_mM, T_nN)$. $E = \pi_1^*(TM^*) \otimes \pi_2^*(TN)$ where $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are the projections.

Consider the vector bundle E = Lin(TM, TN) over $M \times N$, with fiber $E_{(m,n)} = \text{Lin}(T_mM, T_nN)$. $E = \pi_1^*(TM^*) \otimes \pi_2^*(TN)$ where $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are the projections. By

functoriality, ∇^{M} and ∇^{N} induce a connection ∇ on *E*: $\begin{bmatrix} (\nabla_{(v,w)}\sigma)(X) = \nabla^{N}_{(v,w)}(\sigma(X)) - \sigma(\nabla^{M}_{v}X) \\ v \in TM, w \in TN, \sigma : M \times N \to E \text{ section.} \\ (\sigma(X) \text{ is seen as a section of the pull back bundle } \pi_{2}^{*}(TN) \text{ over } M \times N)$

Consider the vector bundle E = Lin(TM, TN) over $M \times N$, with fiber $E_{(m,n)} = \text{Lin}(T_mM, T_nN)$. $E = \pi_1^*(TM^*) \otimes \pi_2^*(TN)$ where $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are the projections. By

functoriality, ∇^{M} and ∇^{N} induce a connection ∇ on E: $\begin{array}{l}
\left((\nabla_{(v,w)}\sigma)(X) = \nabla^{N}_{(v,w)}(\sigma(X)) - \sigma(\nabla^{M}_{v}X) \right), X \text{ vector field on } M, \\
v \in TM, w \in TN, \sigma : M \times N \to E \text{ section.} \\
(\sigma(X) \text{ is seen as a section of the pull back bundle } \pi_{2}^{*}(TN) \text{ over } M \times N)
\end{array}$

Given a smooth function $f : M \to N$, the differential is a section of *E* along the map $M \ni x \mapsto (x, f(x)) \in M \times N$, so that it makes sense ∇df .

イロト イポト イラト イラト 一戸

Consider the vector bundle E = Lin(TM, TN) over $M \times N$, with fiber $E_{(m,n)} = \text{Lin}(T_mM, T_nN)$. $E = \pi_1^*(TM^*) \otimes \pi_2^*(TN)$ where $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are the projections. By

functoriality, ∇^{M} and ∇^{N} induce a connection ∇ on E: $\begin{array}{l}
\left(\nabla_{(v,w)}\sigma\right)(X) = \nabla_{(v,w)}^{N}(\sigma(X)) - \sigma(\nabla_{v}^{M}X), X \text{ vector field on } M, \\
v \in TM, w \in TN, \sigma : M \times N \to E \text{ section.} \\
(\sigma(X) \text{ is seen as a section of the pull back bundle } \pi_{2}^{*}(TN) \text{ over } M \times N)
\end{array}$

Given a smooth function $f : M \to N$, the differential is a section of *E* along the map $M \ni x \mapsto (x, f(x)) \in M \times N$, so that it makes sense ∇df .

Lemma

A smooth map $f: M \to N$ is affine iff the differential df is ∇ -parallel.

Consider the submersion $\pi : E \to M$ given by the composition of the projection $E \mapsto M \times N$ and $\pi_1 : M \times N \to M$.

・ 同 ト ・ ヨ ト ・ ヨ

Consider the submersion $\pi : E \to M$ given by the composition of the projection $E \mapsto M \times N$ and $\pi_1 : M \times N \to M$.

Given $\sigma \in \text{Lin}(T_xM, T_yN)$, the tangent space $T_{\sigma}E$ is the direct sum of:

- $T_X M \oplus T_Y N$ (the horizontal space of ∇)
- $Lin(T_xM, T_yN)$ (the vertical space, tangent to the fiber).

・ 吊 ト イ ラ ト イ ラ ト 二 ラ

Consider the submersion $\pi : E \to M$ given by the composition of the projection $E \mapsto M \times N$ and $\pi_1 : M \times N \to M$.

Given $\sigma \in \text{Lin}(T_xM, T_yN)$, the tangent space $T_{\sigma}E$ is the direct sum of: • $T_xM \oplus T_yN$ (the horizontal space of ∇)

• Lin $(T_x M, T_y N)$ (the vertical space, tangent to the fiber).

Define a distribution $\mathcal{D} \subset TE$:

 $\mathcal{D}_{\sigma} = \operatorname{Graph}(\sigma) \oplus \{0\} \subset (T_{x}M \oplus T_{y}N) \oplus \operatorname{Lin}(T_{x}M, T_{y}N).$

イロン イボン イラン イラン 一戸

Consider the submersion $\pi : E \to M$ given by the composition of the projection $E \mapsto M \times N$ and $\pi_1 : M \times N \to M$.

Given $\sigma \in \text{Lin}(T_xM, T_yN)$, the tangent space $T_{\sigma}E$ is the direct sum of: • $T_xM \oplus T_yN$ (the horizontal space of ∇)

• $Lin(T_xM, T_yN)$ (the vertical space, tangent to the fiber).

Define a distribution $\mathcal{D} \subset TE$:

$$\mathcal{D}_{\sigma} = \operatorname{Graph}(\sigma) \oplus \{\mathbf{0}\} \subset (T_{x}M \oplus T_{y}N) \oplus \operatorname{Lin}(T_{x}M, T_{y}N).$$

Lemma

Let $s : U \subset M \to E$ be a smooth local section, $s(x) = (f(x), \sigma(x))$, where $f : U \to N$ and $\sigma(x) \in \text{Lin}(T_xM, T_{f(x)}N)$.

Consider the submersion $\pi : E \to M$ given by the composition of the projection $E \mapsto M \times N$ and $\pi_1 : M \times N \to M$.

Given $\sigma \in \text{Lin}(T_xM, T_yN)$, the tangent space $T_{\sigma}E$ is the direct sum of: • $T_xM \oplus T_yN$ (the horizontal space of ∇)

• $Lin(T_x M, T_y N)$ (the vertical space, tangent to the fiber).

Define a distribution $\mathcal{D} \subset TE$:

$$\mathcal{D}_{\sigma} = \operatorname{Graph}(\sigma) \oplus \{\mathbf{0}\} \subset (T_{x}M \oplus T_{y}N) \oplus \operatorname{Lin}(T_{x}M, T_{y}N).$$

Lemma

Let $s : U \subset M \to E$ be a smooth local section, $s(x) = (f(x), \sigma(x))$, where $f : U \to N$ and $\sigma(x) \in \text{Lin}(T_xM, T_{f(x)}N)$. Then, s is \mathcal{D} -horizontal iff:

• $\sigma(x) = df(x)$ for all x and f is affine.

The Levi form of $\mathcal{D} = \text{Graph}(\sigma) \oplus \{0\}$

Lemma

The curvature tensor R^E of the connection ∇ of *E* is given by:

$$R_{(x,y)}^{\mathcal{E}}((v_1,w_1),(v_2,w_2))\sigma = R_y^{\mathcal{N}}(w_1,w_2)\circ\sigma - \sigma\circ R_x^{\mathcal{M}}(v_1,v_2),$$

for all $(x, y) \in M \times N$, $v_1, v_2 \in T_x M$, $w_1, w_2 \in T_y N$, $\sigma \in \text{Lin}(T_x M, T_y N)$.

・ 同 ト ・ ヨ ト ・ ヨ

The Levi form of $\mathcal{D} = \text{Graph}(\sigma) \oplus \{0\}$

Lemma

The curvature tensor R^E of the connection ∇ of E is given by:

$$R^{\mathcal{E}}_{(x,y)}((v_1,w_1),(v_2,w_2))\sigma=R^{\mathcal{N}}_y(w_1,w_2)\circ\sigma-\sigma\circ R^{\mathcal{M}}_x(v_1,v_2),$$

for all $(x, y) \in M \times N$, $v_1, v_2 \in T_x M$, $w_1, w_2 \in T_y N$, $\sigma \in \text{Lin}(T_x M, T_y N)$.

Lemma

Given $x \in M$, $y \in N$, $\sigma \in Lin(T_xM, T_yN)$, the Levi form of \mathcal{D} at the point $\sigma \in E$ is given by:

$$\begin{split} \mathfrak{L}^{\mathcal{D}}_{\sigma}(\mathbf{v}_1,\mathbf{v}_2) &= \Big(\sigma\big(T^{\mathcal{M}}(\mathbf{v}_1,\mathbf{v}_2)\big) - T^{\mathcal{N}}\big(\sigma(\mathbf{v}_1),\sigma(\mathbf{v}_2)\big), \\ & \sigma \circ R^{\mathcal{M}}_x(\mathbf{v}_1,\mathbf{v}_2) - R^{\mathcal{N}}_y\big(\sigma(\mathbf{v}_1),\sigma(\mathbf{v}_2)\big) \circ \sigma\Big), \end{split}$$

for all $v_1, v_2 \in T_x M$.

Paolo Piccione (IME–USP)

Given $x_0 \in M$, $y_0 \in N$ and $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ and a geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$, one gets a geodesic $\mu : [a, b] \to N$ with $\mu(a) = y_0$ and $\mu'(a) = \sigma_0(\gamma'(a))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given $x_0 \in M$, $y_0 \in N$ and $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ and a geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$, one gets a geodesic $\mu : [a, b] \to N$ with $\mu(a) = y_0$ and $\mu'(a) = \sigma_0(\gamma'(a))$.

Also, obtain a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$: $\sigma = P_{\gamma} \circ \sigma_0 \circ P_{\mu}^{-1}$ where P_{γ} and P_{μ} are the parallel transport.

く 伺 ト く ラ ト く ラ ト

Given $x_0 \in M$, $y_0 \in N$ and $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ and a geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$, one gets a geodesic $\mu : [a, b] \to N$ with $\mu(a) = y_0$ and $\mu'(a) = \sigma_0(\gamma'(a))$.

Also, obtain a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$: $\sigma = P_{\gamma} \circ \sigma_0 \circ P_{\mu}^{-1}$ where P_{γ} and P_{μ} are the parallel transport.

Iterating, given a piecewise geodesic $\gamma : [a, b] \to M$ starting at x_0 , one gets a piecewise geodesic $\mu : [a, b] \to N$ starting at y_0 , and a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$.

イロト イポト イラト イラト 一手

Given $x_0 \in M$, $y_0 \in N$ and $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ and a geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$, one gets a geodesic $\mu : [a, b] \to N$ with $\mu(a) = y_0$ and $\mu'(a) = \sigma_0(\gamma'(a))$.

Also, obtain a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$: $\sigma = P_{\gamma} \circ \sigma_0 \circ P_{\mu}^{-1}$ where P_{γ} and P_{μ} are the parallel transport.

Iterating, given a piecewise geodesic $\gamma : [a, b] \to M$ starting at x_0 , one gets a piecewise geodesic $\mu : [a, b] \to N$ starting at y_0 , and a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$.

We say that μ and σ are *induced by* γ *and* σ_0 .

Given $x_0 \in M$, $y_0 \in N$ and $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ and a geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$, one gets a geodesic $\mu : [a, b] \to N$ with $\mu(a) = y_0$ and $\mu'(a) = \sigma_0(\gamma'(a))$.

Also, obtain a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$: $\sigma = P_{\gamma} \circ \sigma_0 \circ P_{\mu}^{-1}$ where P_{γ} and P_{μ} are the parallel transport.

Iterating, given a piecewise geodesic $\gamma : [a, b] \to M$ starting at x_0 , one gets a piecewise geodesic $\mu : [a, b] \to N$ starting at y_0 , and a linear map $\sigma : T_{\gamma(b)}M \to T_{\mu(b)}N$.

We say that μ and σ are *induced by* γ *and* σ_0 .

Observation: If $f : M \to N$ is an affine map with $f(x_0) = y_0$, $\gamma : [a, b] \to M$ is a (piecewise) geodesic with $\gamma(a) = x_0$, then $f(\gamma(b)) = \mu(b)$ and $df(\gamma(b)) = \sigma$, where μ and σ are the "objects" induced by $df(x_0)$ and γ .

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

- 4 B b 4 B b

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$. **Candidate:** construct *f* using geodesics induced by σ_0 : $f(\gamma(b)) = \mu(b)$.

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$,

 $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Candidate: construct *f* using geodesics induced by σ_0 :

 $f(\gamma(b)) = \mu(b)$. By the single leaf Frobenius theorem, this works iff the Levi form of \mathcal{D} vanishes along the section (x, f(x)).

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$,

 $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Candidate: construct *f* using geodesics induced by σ_0 :

 $f(\gamma(b)) = \mu(b)$. By the single leaf Frobenius theorem, this works iff the Levi form of \mathcal{D} vanishes along the section (x, f(x)).

Theorem

 $U \subset T_{x_0}M$ open and star-shaped at the origin, $\exp_{x_0} : U \xrightarrow{\cong} V \subset N$. assume $\sigma(U) \subset \text{Dom}(\exp_{y_0})$.

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$,

 $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Candidate: construct *f* using geodesics induced by σ_0 :

 $f(\gamma(b)) = \mu(b)$. By the single leaf Frobenius theorem, this works iff the Levi form of \mathcal{D} vanishes along the section (x, f(x)).

Theorem

 $U \subset T_{x_0}M$ open and star-shaped at the origin, $\exp_{x_0} : U \stackrel{\cong}{\to} V \subset N$. assume $\sigma(U) \subset \text{Dom}(\exp_{y_0})$. For $x \in V$, let $\gamma_x : [0,1] \to M$ be the unique geodesic such that $\gamma'_x(0) \in U$ and $\gamma_x(1) = x$; let $\mu_x : [0,1] \to N$ and $\sigma_x : T_x M \to T_{\mu_x(1)}N$ be the "objects" induced by γ_x and σ_0 .

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$,

 $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Candidate: construct *f* using geodesics induced by σ_0 :

 $f(\gamma(b)) = \mu(b)$. By the single leaf Frobenius theorem, this works iff the Levi form of \mathcal{D} vanishes along the section (x, f(x)).

Theorem

 $\begin{array}{l} U \subset T_{x_0}M \text{ open and star-shaped at the origin, } \exp_{x_0} : U \xrightarrow{\cong} V \subset N. \\ assume \sigma(U) \subset \operatorname{Dom}(\exp_{y_0}). \text{ For } x \in V, \text{ let } \gamma_x : [0,1] \to M \text{ be the} \\ unique geodesic such that <math>\gamma'_x(0) \in U \text{ and } \gamma_x(1) = x; \text{ let } \mu_x : [0,1] \to N \\ and \sigma_x : T_x M \to T_{\mu_x(1)}N \text{ be the "objects" induced by } \gamma_x \text{ and } \sigma_0. \text{ If} \\ \forall x \in V, \sigma_x \text{ relates } T^M \text{ with } T^N \text{ and } R^M \text{ with } R^N, \text{ i.e.:} \\ \sigma_x(T^M(\cdot, \cdot)) = T^N(\sigma_x(\cdot), \sigma_x(\cdot)), \quad \sigma_x(R^M(\cdot, \cdot) \cdot) = R^N(\sigma_x(\cdot), \sigma_x(\cdot))\sigma_x(\cdot). \end{array}$

Problem: Given (M, ∇^M) and (N, ∇^N) , $x_0 \in M$, $y_0 \in N$,

 $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$, want to find a (local) affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Candidate: construct *f* using geodesics induced by σ_0 :

 $f(\gamma(b)) = \mu(b)$. By the single leaf Frobenius theorem, this works iff the Levi form of \mathcal{D} vanishes along the section (x, f(x)).

Theorem

 $\begin{array}{l} U \subset T_{x_0}M \text{ open and star-shaped at the origin, } \exp_{x_0} : U \stackrel{\cong}{=} V \subset N. \\ assume \ \sigma(U) \subset \operatorname{Dom}(\exp_{y_0}). \ \text{For } x \in V, \ \text{let } \gamma_x : [0,1] \to M \text{ be the} \\ unique \ \text{geodesic such that } \gamma_x'(0) \in U \text{ and } \gamma_x(1) = x; \ \text{let } \mu_x : [0,1] \to N \\ and \ \sigma_x : T_x M \to T_{\mu_x(1)} N \text{ be the "objects" induced by } \gamma_x \text{ and } \sigma_0. \ \text{If} \\ \forall x \in V, \ \sigma_x \text{ relates } T^M \text{ with } T^N \text{ and } R^M \text{ with } R^N, \ \text{i.e.:} \\ \sigma_x(T^M(\cdot, \cdot)) = T^N(\sigma_x(\cdot), \sigma_x(\cdot)), \quad \sigma_x(R^M(\cdot, \cdot) \cdot) = R^N(\sigma_x(\cdot), \sigma_x(\cdot))\sigma_x(\cdot). \\ \text{Then map } f : V \to N \text{ defined by } f(x) = \mu_x(1) \text{ is affine and } df(x) = \sigma_x \\ \text{for all } x \in V; \ \text{in particular, } f(x_0) = y_0 \text{ and } df(x_0) = \sigma_0. \end{array}$

The global result

Theorem (Cartan-Ambrose-Hicks)

Assume that ∇^N is geodesically complete and that M is connected and simply-connected. Let $x_0 \in M$, $y_0 \in N$ be given and let $\sigma_0 : T_{x_0}M \to T_{y_0}N$ be a linear map. For each piecewise geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$ denote by $\mu_{\gamma} : [a, b] \to N$ and by $\sigma_{\gamma} : T_{\gamma(b)}M \to T_{\mu_{\gamma}(b)}N$ respectively the piecewise geodesic and the linear map induced by the piecewise geodesic γ and by σ_0 .

イロト イポト イラト イラト

The global result

Theorem (Cartan-Ambrose-Hicks)

Assume that ∇^N is geodesically complete and that M is connected and simply-connected. Let $x_0 \in M$, $y_0 \in N$ be given and let $\sigma_0: T_{x_0}M \to T_{y_0}N$ be a linear map. For each piecewise geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$ denote by $\mu_{\gamma} : [a, b] \to N$ and by $\sigma_{\gamma}: T_{\gamma(b)}M \to T_{\mu_{\gamma}(b)}N$ respectively the piecewise geodesic and the linear map induced by the piecewise geodesic γ and by σ_0 . Assume that for every piecewise geodesic γ the linear map σ_{γ} relates T^{M} with T^N and R^M with R^N . Then there exists a smooth affine map $f: M \to N$ such that for every piecewise geodesic $\gamma : [a, b] \rightarrow M$ we have $f \circ \gamma = \mu_{\gamma}$ and $f(\gamma(b)) = \sigma_{\gamma}$; in particular, $f(x_0) = y_0$ and $f(x_0) = \sigma_0$.

The global result

Theorem (Cartan-Ambrose-Hicks)

Assume that ∇^N is geodesically complete and that M is connected and simply-connected. Let $x_0 \in M$, $y_0 \in N$ be given and let $\sigma_0: T_{x_0}M \to T_{y_0}N$ be a linear map. For each piecewise geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$ denote by $\mu_{\gamma} : [a, b] \to N$ and by $\sigma_{\gamma}: T_{\gamma(b)}M \to T_{\mu_{\gamma}(b)}N$ respectively the piecewise geodesic and the linear map induced by the piecewise geodesic γ and by σ_0 . Assume that for every piecewise geodesic γ the linear map σ_{γ} relates T^{M} with T^N and R^M with R^N . Then there exists a smooth affine map $f: M \to N$ such that for every piecewise geodesic $\gamma : [a, b] \rightarrow M$ we have $f \circ \gamma = \mu_{\gamma}$ and $f(\gamma(b)) = \sigma_{\gamma}$; in particular, $f(x_0) = y_0$ and $f(x_0) = \sigma_0$.

Remark. In the statement of the Cartan–Ambrose–Hicks Theorem, if one assumes in addition that σ_0 is an isomorphism, and that ∇^M is geodesically complete then it follows that the affine map $f : M \to N$ is a covering map.

Totally geodesic immersions

Corollary

Let (M, g^M) , (N, g^N) be Riemannian manifolds with (N, g^N) complete and M connected and simply-connected. Let $x_0 \in M$, $y_0 \in N$ be given and let $\sigma_0 : T_{x_0}M \to T_{y_0}N$ be a linear isometry onto a subspace of $T_{y_0}N$. For each piecewise geodesic $\gamma : [a, b] \to M$ with $\gamma(a) = x_0$ denote by $\mu_{\gamma} : [a, b] \to N$ and by $\sigma_{\gamma} : T_{\gamma(b)}M \to T_{\mu_{\gamma}(b)}N$ respectively the piecewise geodesic and the linear map induced by the piecewise geodesic γ and by σ_0 . Assume that for every piecewise geodesic γ the linear map σ_{γ} relates R^M with R^N . Then there exists a totally geodesic isometric immersion $f : M \to N$ with $f(x_0) = y_0$ and $f(x_0) = \sigma_0$.

Higher order Cartan–Ambrose–Hicks theorem

Given a tensor field τ on a manifold endowed with a connection ∇ , we denote by $\nabla^{(r)}\tau$ its *r*-th covariant derivative, for $r \ge 1$; we set $\nabla^{(0)}\tau = \tau$.

くぼう イラン イラン

Higher order Cartan–Ambrose–Hicks theorem

Given a tensor field τ on a manifold endowed with a connection ∇ , we denote by $\nabla^{(r)}\tau$ its *r*-th covariant derivative, for $r \ge 1$; we set $\nabla^{(0)}\tau = \tau$.

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic connections ∇^M and ∇^N . $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$.

< 回 > < 回 > < 回 >

Higher order Cartan–Ambrose–Hicks theorem

Given a tensor field τ on a manifold endowed with a connection ∇ , we denote by $\nabla^{(r)}\tau$ its *r*-th covariant derivative, for $r \ge 1$; we set $\nabla^{(0)}\tau = \tau$.

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic connections ∇^M and ∇^N . $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$. If for all $r \ge 0$ the linear map σ_0 relates $\nabla^{(r)} T^M_{x_0}$ with $\nabla^{(r)} T^N_{y_0}$ and $\nabla^{(r)} R^M_{x_0}$ with $\nabla^{(r)} R^N_{y_0}$

イロト イポト イラト イラト

Higher order Cartan–Ambrose–Hicks theorem

Given a tensor field τ on a manifold endowed with a connection ∇ , we denote by $\nabla^{(r)}\tau$ its *r*-th covariant derivative, for $r \ge 1$; we set $\nabla^{(0)}\tau = \tau$.

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic connections ∇^M and ∇^N . $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \operatorname{Lin}(T_{x_0}M, T_{y_0}N)$. If for all $r \ge 0$ the linear map σ_0 relates $\nabla^{(r)} T^M_{x_0}$ with $\nabla^{(r)} T^N_{y_0}$ and $\nabla^{(r)} R^M_{x_0}$ with $\nabla^{(r)} R^N_{y_0}$ then there exists a real-analytic affine map $f: U \to N$ defined on an open neighborhood U of x_0 in M satisfying $f(x_0) = y_0$ and $\operatorname{df}(x_0) = \sigma_0$.

イロト イポト イラト イラト

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic connections ∇^M and ∇^N , respectively. Assume that ∇^N is geodesically complete and that M is (connected and) simply-connected. Then every affine map $f : U \to N$ defined on a nonempty connected open subset U of M extends to an affine map from M to N. In particular, if in addition $x_0 \in M$, $y_0 \in N$, $\sigma_0 \in \text{Lin}(T_{x_0}M, T_{y_0}N)$ satisfy the hypotheses of Theorem above, then there exists an affine map $f : M \to N$ with $f(x_0) = y_0$ and $df(x_0) = \sigma_0$.

Definition

An *affine symmetry* around a point $x_0 \in M$ is an affine map $f : U \to M$ defined in an open neighborhood U of x_0 with $f(x_0) = x_0$ and $df(x_0) = -Id$.

Definition

An *affine symmetry* around a point $x_0 \in M$ is an affine map $f : U \to M$ defined in an open neighborhood U of x_0 with $f(x_0) = x_0$ and $df(x_0) = -Id$.

Applying the higher order Cartan–Ambrose–Hicks theorem to $\sigma_0 = -\text{Id} : T_{x_0}M \rightarrow T_{x_0}M$ we get the following curious result:

イロト イポト イラト イラト

Definition

An *affine symmetry* around a point $x_0 \in M$ is an affine map $f : U \to M$ defined in an open neighborhood U of x_0 with $f(x_0) = x_0$ and $df(x_0) = -Id$.

Applying the higher order Cartan–Ambrose–Hicks theorem to $\sigma_0 = -\text{Id} : T_{x_0}M \rightarrow T_{x_0}M$ we get the following curious result:

Corollary

Let M be a real-analytic manifold endowed with a real-analytic connection ∇ . Let $x_0 \in M$ be fixed. Then there exists an affine symmetry around x_0 if and only if:

$$abla^{(2r)} T_{x_0} = 0, \quad \textit{and} \quad
abla^{(2r+1)} R_{x_0} = 0, \quad \textit{for all } r \geq 0.$$

Definition

An *affine symmetry* around a point $x_0 \in M$ is an affine map $f : U \to M$ defined in an open neighborhood U of x_0 with $f(x_0) = x_0$ and $df(x_0) = -Id$.

Applying the higher order Cartan–Ambrose–Hicks theorem to $\sigma_0 = -\text{Id} : T_{x_0}M \rightarrow T_{x_0}M$ we get the following curious result:

Corollary

Let M be a real-analytic manifold endowed with a real-analytic connection ∇ . Let $x_0 \in M$ be fixed. Then there exists an affine symmetry around x_0 if and only if:

$$abla^{(2r)} T_{x_0} = 0, \quad \text{and} \quad
abla^{(2r+1)} R_{x_0} = 0, \quad \text{for all } r \geq 0.$$

If M is simply-connected and complete, one has the existence of a globally defined affine symmetry $f : M \to M$ around x_0 .

Outline

- The single-leaf Frobenius theorem
 - Distributions and integral submanifolds
 - Horizontal distributions and horizontal liftings
 - The Levi form
 - The higher order Frobenius theorem
- 2 The global single leaf Frobenius Theorem
 - Sprays on manifolds
 - The global result
- 3 Levi–Civita connections
 - Levi form of the horizontal distribution of a connection
 - Connections arising from metric tensors
 - Left invariant connections in Lie groups
 - Constant connections in \mathbb{R}^n
- Existence of affine maps
 - Affine manifolds and affine maps
 - The Cartan–Ambrose–Hicks Theorem
 - Higher order Cartan–Ambrose–Hicks theorem

5 Affine immersions in homogeneous spaces Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem...

M n-dimensional differentiable manifold, $G \subset \operatorname{GL}(\mathbb{R}^n)$ Lie subgroup

→ ∃ → < ∃</p>

< A >

M n-dimensional differentiable manifold, $G \subset GL(\mathbb{R}^n)$ Lie subgroup Assume that *M* is endowed with a connection ∇ and a *G*-structure $P \subset \text{Ref}(TM)$.

M n-dimensional differentiable manifold, $G \subset GL(\mathbb{R}^n)$ Lie subgroup Assume that *M* is endowed with a connection ∇ and a *G*-structure $P \subset \operatorname{Ref}(TM)$.

- For $x \in M$, let:
 - G_x be the Lie subgroup of $GL(T_xM)$ consisting of *G*-structure preserving endomorphisms of T_xM ,
 - $\mathfrak{g}_x \subset \mathfrak{gl}(T_x M)$ the Lie algebra of G_x
 - $\delta_x : T_x M \to \mathfrak{gl}(T_x M)/\mathfrak{g}_x$ the inner torsion of the *G*-structure *P*.

M n-dimensional differentiable manifold, $G \subset GL(\mathbb{R}^n)$ Lie subgroup Assume that *M* is endowed with a connection ∇ and a *G*-structure $P \subset \operatorname{Ref}(TM)$.

- For $x \in M$, let:
 - G_x be the Lie subgroup of $GL(T_xM)$ consisting of *G*-structure preserving endomorphisms of T_xM ,
 - $\mathfrak{g}_x \subset \mathfrak{gl}(T_x M)$ the Lie algebra of G_x
 - $\delta_x : T_x M \to \mathfrak{gl}(T_x M)/\mathfrak{g}_x$ the inner torsion of the *G*-structure *P*.

The triple (M, ∇, P) will be called an *affine manifold with G-structure*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinitesimally homogenous affine manifolds

Given $x, y \in M$ and a *G*-structure preserving morphism $\sigma : T_x M \to T_y M$ then the Lie group isomorphism $\mathcal{I}_{\sigma} : \operatorname{GL}(T_x M) \to \operatorname{GL}(T_y M)$ defined by:

 $\mathcal{I}_{\sigma}: \mathrm{GL}(T_{x}M) \ni T \longmapsto \sigma \circ T \circ \sigma^{-1} \in \mathrm{GL}(T_{y}M)$

carries G_x onto G_y .

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinitesimally homogenous affine manifolds

Given $x, y \in M$ and a *G*-structure preserving morphism $\sigma : T_x M \to T_y M$ then the Lie group isomorphism $\mathcal{I}_{\sigma} : \operatorname{GL}(T_x M) \to \operatorname{GL}(T_y M)$ defined by:

$$\mathcal{I}_{\sigma}: \mathrm{GL}(T_{x}M) \ni T \longmapsto \sigma \circ T \circ \sigma^{-1} \in \mathrm{GL}(T_{y}M)$$

carries G_x onto G_y . Its differential at the identity $\operatorname{Ad}_{\sigma} : \mathfrak{gl}(T_x M) \to \mathfrak{gl}(T_y M)$ carries \mathfrak{g}_x onto \mathfrak{g}_y and therefore it induces a linear isomorphism $\overline{\operatorname{Ad}}_{\sigma} : \mathfrak{gl}(T_x M)/\mathfrak{g}_x \longrightarrow \mathfrak{gl}(T_y M)/\mathfrak{g}_y$.

Definition

An affine manifold with *G*-structure *M* is said to be *infinitesimally* homogeneous if for all $x, y \in M$ and all *G*-structure preserving morphism $\sigma : T_x M \to T_y M$, the following conditions hold:

•
$$\overline{\mathrm{Ad}}_{\sigma} \circ \delta_{\mathsf{X}} = \delta_{\mathsf{Y}} \circ \sigma;$$

•
$$T_{y}(\sigma(v), \sigma(w)) = \sigma(T_{x}(v, w))$$
, for all $v, w \in T_{x}M$;

• $R_y(\sigma(v), \sigma(w)) \circ \sigma = \sigma \circ R_x(v, w)$, for all $v, w \in T_x M$.

Affine immersions

Theorem (Hypotheses)

M, \overline{M} manifolds, $\pi : E \to M$ be a vector bundle over *M*. Set $\widehat{E} = TM \oplus E$ and denote by $\iota : TM \to \widehat{E}$ the inclusion map. Let $\widehat{\nabla}$ and $\overline{\nabla}$ be connections on \widehat{E} and on $T\overline{M}$ respectively. Let *G* be a Lie group and assume that \widehat{E} and $T\overline{M}$ are endowed with *G*-structures \widehat{P} and \overline{P} , respectively. Assume that $(\overline{M}, \overline{\nabla}, \overline{P})$ is infinitesimally homogeneous and that for all $x \in M$, $y \in \overline{M}$ and every *G*-structure preserving morphism $\sigma : \widehat{E}_x \to T_y\overline{M}$, the following conditions hold:

•
$$\overline{\mathrm{Ad}}_{\sigma} \circ \hat{\delta}_{x} = \overline{\delta}_{y} \circ \sigma|_{T_{x}M};$$

•
$$\overline{T}_{y}(\sigma(v), \sigma(w)) = \sigma(\widehat{T}_{x}(v, w)), \text{ for all } v, w \in T_{x}M;$$

•
$$\overline{R}_{y}(\sigma(v), \sigma(w)) \circ \sigma = \sigma \circ \widehat{R}_{x}(v, w)$$
, for all $v, w \in T_{x}M$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Affine immersions

Theorem (Hypotheses)

Then, for all $x_0 \in M$, all $y_0 \in \overline{M}$ and every G-structure preserving morphism $\sigma : \widehat{E}_{x_0} \to T_{y_0}\overline{M}$ there exists a smooth immersion $f : U \to \overline{M}$ defined on an open neighborhood U of x_0 in M and a G-structure preserving and connection preserving vector bundle isomorphism $L : \widehat{E}|_U \to f^*T\overline{M}$ such that $L|_{TM} = df$, $f(x_0) = y_0$ and $L_{x_0} = \sigma_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト