Bifurcation and symmetry breaking in geometric variational problems Joint work with M. Koiso and B. Palmer

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

EIMAN I ENCONTRO INTERNACIONAL DE MATEMÁTICA NO NORDESTE BRASILEIRO

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

General bifurcation setup:

\square \mathfrak{M} differentiable manifold (possibly dim = ∞)

Paolo Piccione Bifurcation and symmetry breaking

▲□ → ▲ □ → ▲ □ → □

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- $\lambda \mapsto x_{\lambda} \in \mathfrak{M}$ smooth curve of critical points: $d\mathfrak{f}_{\lambda}(x_{\lambda}) = 0$ for all λ .

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- λ ↦ x_λ ∈ 𝔐 smooth curve of critical points: df_λ(x_λ) = 0 for all λ.

Definition

Bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with:

- (a) $df_{\lambda_n}(x_n) = 0$ for all n;
- (b) $x_n \neq x_{\lambda_n}$ for all n.

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- λ → x_λ ∈ M smooth curve of critical points: df_λ(x_λ) = 0 for all λ.

Definition Х Bifurcation at $\lambda_0 \in]a, b[\text{ if } \exists \lambda_n \to \lambda_0]$ and $x_n \to x_{\lambda_n}$ as $n \to \infty$, with: (a) $df_{\lambda_n}(x_n) = 0$ for all n; (b) $x_n \neq x_{\lambda_n}$ for all *n*. a

Assume:

- G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Assume:

- G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with: (a) df_{λ_n}(x_n) = 0 for all n; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all n.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Assume:

- G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with: (a) $df_{\lambda_n}(x_n) = 0$ for all n; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all n.

Standard bifurcation theory requires a quite involved variational setup: differentiability, Palais–Smale, Fredholmness...

(日) (圖) (E) (E) (E)

Assume:

- G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with: (a) df_{λ_n}(x_n) = 0 for all n; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all n.

Standard bifurcation theory requires a quite involved variational setup: differentiability, Palais–Smale, Fredholmness...

Bifurcation occurs at *degenerate* critical points with *jumps* of the Morse index. In the equivariant case, bifurcation occurs at degenerate critical orbits where jumps of the *critical groups*.

M^m compact oriented manifold

▲□ → ▲ □ → ▲ □ → □

M^m compact oriented manifold

 \blacksquare (*Nⁿ*, *g*) oriented Riemannian manifold

< 回 > < 回 > < 回 > -

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold

■ *n* = *m* + 1

▲□→ ▲ □→ ▲ □→ ----

르

- *M^m* compact oriented manifold
- \blacksquare (N^n , g) oriented Riemannian manifold
- $\blacksquare n = m + 1$

$x: M \hookrightarrow N$ embedding

< □→ < □→ < □→ □ □

- *M^m* compact oriented manifold
- \blacksquare (N^n , g) oriented Riemannian manifold
- $\square n = m + 1$

$x: M \hookrightarrow N$ embedding

• Mean curvature: $H_x = tr(2^{nd} \text{ fund. form})$

< □→ < □→ < □→ □ □

- *M^m* compact oriented manifold
- \blacksquare (N^n , g) oriented Riemannian manifold
- $\square n = m + 1$

$x: M \hookrightarrow N$ embedding

• Mean curvature: $H_x = tr(2^{nd} \text{ fund. form})$

Variational principle

x has *constant* mean curvature (CMC) iff *x* is a stationary point for the *area functional* restricted to embeddings of fixed *volume*.

@▶ ▲ 重 ▶

The nodary and the symmetry axis.

< 🗗 ►

< 2> < 2> < 2> < 2> < 2< 2> < 2> < 2< 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2> < 2>

3

The nodary

The nodary and the symmetry axis.

A portion of nodoid, with boundary on parallel planes orthogonal to the axis.

Paolo Piccione

Bifurcation and symmetry breaking

Fixed boundary problem

Circles for the CMC fixed boundary problem, lying on the planes Π_0 and Π_1 . In the middle, the symmetry plane Π .

The 1-parameter family of nodoids

 Σ_{a,H,t_0} surface of revolution around the x_3 -axis with generatrix the *nodary*:

$$x_1(t) = rac{\cos t + \sqrt{\cos^2 t + a}}{2|H|}, \qquad \boxed{t \in [-t_0, t_0]}$$

$$x_3(t) = \frac{1}{2|H|} \int_0^t \frac{\cos \tau + \sqrt{\cos^2 \tau + a}}{\sqrt{\cos^2 \tau + a}} \cos \tau \, \mathrm{d}\tau$$

▲□ → ▲ □ → ▲ □ → □

The 1-parameter family of nodoids

 Σ_{a,H,t_0} surface of revolution around the x_3 -axis with generatrix the *nodary*:

$$x_1(t) = rac{\cos t + \sqrt{\cos^2 t + a}}{2|H|}, \qquad t \in [-t_0, t_0]$$

$$x_3(t) = \frac{1}{2|H|} \int_0^t \frac{\cos \tau + \sqrt{\cos^2 \tau + a}}{\sqrt{\cos^2 \tau + a}} \cos \tau \, \mathrm{d}\tau$$

H= mean curvature

a = 2cH from conservation law: $2x_1 cc$

$$\boxed{2x_1\cos t+2Hx_1^2=c}$$

The 1-parameter family of nodoids

 Σ_{a,H,t_0} surface of revolution around the x_3 -axis with generatrix the *nodary*:

$$x_1(t) = rac{\cos t + \sqrt{\cos^2 t + a}}{2|H|}, \qquad t \in [-t_0, t_0]$$

$$x_3(t) = \frac{1}{2|H|} \int_0^t \frac{\cos \tau + \sqrt{\cos^2 \tau + a}}{\sqrt{\cos^2 \tau + a}} \cos \tau \, \mathrm{d}\tau$$

H= mean curvature

a = 2cH from conservation law: $2x_1 \cos t + 2Hx_1^2 = c$

proposition

There exist *real-analytic* functions $a = a(t_0)$ and $H = H(t_0)$ such that $\Sigma_{t_0} = \Sigma_{a(t_0), H(t_0), t_0}$ satisfies the boundary condition.

$a = a(t_0)$

a 12 9-6 F 3 t_0 $\frac{9\pi}{2}$ $\frac{11 \pi}{2}$ $\frac{3\pi}{2}$ $\frac{5\pi}{2}$ $\frac{7\pi}{2}$ $\frac{\pi}{2}$ 0

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

Nodaries through two circles

Nodary curves that generate nodoids which pass through 2 circles. The bifurcation point is in the middle (thicker/red), it has horizontal tangent at the point of intersection with the circles. The inner circle is a limit of the family when $a \rightarrow 0$.

The Jacobi operator

$$Jf = -\Delta f - (k_1^2 + k_2^2)f$$

Eigenvalues $\lambda_1 < \lambda_2 < ... \rightarrow +\infty$

Courant's nodal domain theorem

 $Jf = \lambda_k f \implies f$ has at least k nodal domains

Separation of variables: $f = T(\theta) \cdot S(s)$

$$T'' + \kappa T = 0, \quad T(0) = T(2\pi), \quad T'(0) = T'(2\pi),$$

$$-(xS')'+\left(rac{\kappa}{x}-x(k_1^2+k_2^2)
ight)S=\lambda xS, \quad S\left(-rac{L}{2}
ight)=S\left(rac{L}{2}
ight)=0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Spherical caps with the same boundary

くヨ→

▲ □ ▶ ▲ 三

æ

Degenerate nodoids

Degenerate nodoids are tangent to the planes containing their boundary. On the left, nodoids from the family Σ , on the right nodoids that are not symmetric with respect to the reflection around the plane Π .

Degenerate nodoid with one bulge

ъ

Two nodal domains

Paolo Piccione Bifurcation and symmetry breaking

Six nodal domains

Paolo Piccione Bifurcation and symmetry breaking

▲日 → ▲圖 → ▲ 画 → ▲ 画 → 二 画

The degenerate nodoid Σ_{π}

Paolo Piccione Bifurcation and symmetry breaking

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Bifurcating branch of nodoids at the instant $t_0 = \pi$

< ≣ > _

크

Position vector

A picture of Miyuki and Bennett

Paolo Piccione Bifurcation and symmetry breaking

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ