On a Gromoll–Meyer type theorem in globally hyperbolic stationary Lorentzian manifolds Joint work with L. Biliotti and F. Mercuri

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

Santiago de Compostela, February 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline.

Some literature

- 3 On the Lorentzian result
- 4 Variational framework
- 5 Equivariant Morse theory

Outline

1 The celebrated result of Gromoll and Meyer

2 Some literature

- 3 On the Lorentzian result
- 4 Variational framework
- 5 Equivariant Morse theory

医下子 医

< A >

g Riemannian metric on M

医下子 医

< A >

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on $\wedge M$: $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$ $g \in O(2), \gamma \in \wedge M, \theta \in \mathbb{S}^1.$

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on $\wedge M$: $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$

 $g \in O(2), \gamma \in \Lambda M, \theta \in \mathbb{S}^1.$

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on ΛM : $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$

 $oldsymbol{g}\in \mathrm{O}(2),\,\gamma\in\Lambda M,\, heta\in\mathbb{S}^{1}.$

< A > <

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ $\Gamma \subset SO(2)$ is a *finite cyclic group*, and $O(2)/\Gamma \cong O(2) \cong \mathbb{S}^1 \bigcup \mathbb{S}^1$

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on ΛM : $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$ $g \in O(2), \gamma \in \Lambda M, \theta \in \mathbb{S}^1$.

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ $\Gamma \subset SO(2)$ is a *finite cyclic group*, and $O(2)/\Gamma \cong O(2) \cong \mathbb{S}^1 \bigcup \mathbb{S}^1$ **Def.:** γ is prime if $\Gamma = \{1\}$, i.e., if γ is not the *iterate* of some other $\sigma \in \Lambda M$.

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on ΛM : $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$

 $oldsymbol{g}\in \mathrm{O}(2),\,\gamma\in \Lambda M,\, heta\in\mathbb{S}^1.$

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ $\Gamma \subset SO(2)$ is a *finite cyclic group*, and $O(2)/\Gamma \cong O(2) \cong \mathbb{S}^1 \cup \mathbb{S}^1$

Def.: γ is prime if $\Gamma = \{1\}$, i.e., if γ is not the *iterate* of some other $\sigma \in \Lambda M$.

Theorem. *f* satisfies (PS), hence it has infinitely many critical pts in ΛM with diverging energy (Ljusternik–Schnirelman category).

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on ΛM : $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$

 $oldsymbol{g}\in\mathrm{O}(2),\,\gamma\in\Lambda M,\, heta\in\mathbb{S}^{1}.$

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ

 $\Gamma \subset {\rm SO}(2)$ is a finite cyclic group, and $O(2)/\Gamma \cong O(2) \cong \mathbb{S}^1 \bigcup \mathbb{S}^1$

Def.: γ is prime if $\Gamma = \{1\}$, i.e., if γ is not the *iterate* of some other $\sigma \in \Lambda M$.

Theorem. *f* satisfies (PS), hence it has infinitely many critical pts in ΛM with diverging energy (Ljusternik–Schnirelman category).

Problem: How does one distinguish between "iterates" of the same closed geodesic?

g Riemannian metric on M

 $\gamma \in \Lambda M$ is a (closed) geodesic $\iff \gamma$ is a critical point of $f : \Lambda M \to \mathbb{R}$

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}, \dot{\gamma}) \,\mathrm{d}t$$

Equivariant O(2)-action on ΛM : $g \cdot \gamma(\theta) = \gamma(g \cdot \theta)$

 $oldsymbol{g}\in \mathrm{O}(2),\,\gamma\in\Lambda M,\, heta\in\mathbb{S}^{1}.$

Orbit: $O(2)\gamma \cong O(2)/\Gamma$, Γ stabilizer of γ

 $\Gamma \subset {\rm SO}(2)$ is a finite cyclic group, and $O(2)/\Gamma \cong O(2) \cong \mathbb{S}^1 \bigcup \mathbb{S}^1$

Def.: γ is prime if $\Gamma = \{1\}$, i.e., if γ is not the *iterate* of some other $\sigma \in \Lambda M$.

Theorem. *f* satisfies (PS), hence it has infinitely many critical pts in ΛM with diverging energy (Ljusternik–Schnirelman category).

Problem: How does one distinguish between "iterates" of the same closed geodesic? Need distinct *prime* critical orbits.

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

Theorem (Serre, Ann. of Math. 1954)

M compact and simply connected $\Longrightarrow \beta_k(\Lambda M; \mathbb{F}) < +\infty$ for all $k \ge 0$.

医下子 医

< A >

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

Theorem (Serre, Ann. of Math. 1954)

M compact and simply connected $\Longrightarrow \beta_k(\Lambda M; \mathbb{F}) < +\infty$ for all $k \ge 0$.

Theorem (Gromoll & Meyer, J. Diff. Geom. 1969)

M compact and simply connected manifold, $\sup_{k} \beta_k(\Lambda M; \mathbb{Q}) = +\infty$. Then, for all Riemannian metric *g* on *M* there are infinitely many distinct prime closed geodesics in (M, g).

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

Theorem (Serre, Ann. of Math. 1954)

M compact and simply connected $\Longrightarrow \beta_k(\Lambda M; \mathbb{F}) < +\infty$ for all $k \ge 0$.

Theorem (Gromoll & Meyer, J. Diff. Geom. 1969)

M compact and simply connected manifold, $\sup_{k} \beta_k(\Lambda M; \mathbb{Q}) = +\infty$. Then, for all Riemannian metric *g* on *M* there are infinitely many distinct prime closed geodesics in (M, g).

Proof. Based on *equivariant Morse theory* for functions with possibly degenerate critical orbits.

< ロ > < 同 > < 回 > < 回 > < 回 > <

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

Theorem (Serre, Ann. of Math. 1954)

M compact and simply connected $\Longrightarrow \beta_k(\Lambda M; \mathbb{F}) < +\infty$ for all $k \ge 0$.

Theorem (Gromoll & Meyer, J. Diff. Geom. 1969)

M compact and simply connected manifold, $\sup_{k} \beta_k(\Lambda M; \mathbb{Q}) = +\infty$. Then, for all Riemannian metric *g* on *M* there are infinitely many distinct prime closed geodesics in (M, g).

Proof. Based on *equivariant Morse theory* for functions with possibly degenerate critical orbits.

Obs.: Proof *simplified* if all closed geodesics are *nondegenerate*: *bumpy metrics*

3

 \mathbb{F} field, $\beta_k(\Lambda M; \mathbb{F})$ k-th Betti number of ΛM with coefficients in \mathbb{F} .

Theorem (Serre, Ann. of Math. 1954)

M compact and simply connected $\Longrightarrow \beta_k(\Lambda M; \mathbb{F}) < +\infty$ for all $k \ge 0$.

Theorem (Gromoll & Meyer, J. Diff. Geom. 1969)

M compact and simply connected manifold, $\sup_{k} \beta_k(\Lambda M; \mathbb{Q}) = +\infty$. Then, for all Riemannian metric *g* on *M* there are infinitely many distinct prime closed geodesics in (M, g).

Proof. Based on *equivariant Morse theory* for functions with possibly degenerate critical orbits.

Obs.: Proof *simplified* if all closed geodesics are *nondegenerate*: *bumpy metrics*

 Bumpy metrics are generic (Abraham 1970, B. White Indiana J. Math. 1991)

M compact and simply connected

M compact and simply connected

 Vigué–Poirrier & Sullivan (J. Diff. Geom. 1976), sup_k β_k(ΛM; Q) = +∞ equivalent to the fact that the rational cohomology algebra of *M* is not generated by a single element. Examples:

M compact and simply connected

 Vigué–Poirrier & Sullivan (J. Diff. Geom. 1976), sup_k β_k(ΛM; Q) = +∞ equivalent to the fact that the rational cohomology algebra of *M* is not generated by a single element.

Examples:

M homotopically equivalent to the product of two simply connected compact manifolds

M compact and simply connected

 Vigué–Poirrier & Sullivan (J. Diff. Geom. 1976), sup_k β_k(ΛM; Q) = +∞ equivalent to the fact that the rational cohomology algebra of M is not generated by a single element.

Examples:

- M homotopically equivalent to the product of two simply connected compact manifolds
- ▶ *M* hom. equivalent to a simply connected Lie group, except for S³.

M compact and simply connected

• Vigué–Poirrier & Sullivan (J. Diff. Geom. 1976),

 $\sup_k \beta_k(\Lambda M; \mathbb{Q}) = +\infty$ equivalent to the fact that the rational cohomology algebra of *M* is not generated by a single element.

Examples:

- M homotopically equivalent to the product of two simply connected compact manifolds
- *M* hom. equivalent to a simply connected Lie group, except for \mathbb{S}^3 .
- Ziller (Inventiones, 1977) If *M* is homotopically equivalent to a compact simply connected symmetric space of rank > 1, then sup_k β_k(Λ*M*, ℤ₂) = +∞.

M compact and simply connected

• Vigué-Poirrier & Sullivan (J. Diff. Geom. 1976),

 $\sup_k \beta_k(\Lambda M; \mathbb{Q}) = +\infty$ equivalent to the fact that the rational cohomology algebra of *M* is not generated by a single element.

Examples:

- M homotopically equivalent to the product of two simply connected compact manifolds
- ▶ *M* hom. equivalent to a simply connected Lie group, except for S³.
- Ziller (Inventiones, 1977) If *M* is homotopically equivalent to a compact simply connected symmetric space of rank > 1, then sup_k β_k(Λ*M*, ℤ₂) = +∞.
 - Curiosity: symmetric spaces of rank 1 (spheres, projective spaces) always admit metrics for which *all* geodesics are closed!!

6 / 29

M compact and simply connected

• Vigué-Poirrier & Sullivan (J. Diff. Geom. 1976),

 $\sup_k \beta_k(\Lambda M; \mathbb{Q}) = +\infty$ equivalent to the fact that the rational cohomology algebra of *M* is not generated by a single element.

Examples:

- M homotopically equivalent to the product of two simply connected compact manifolds
- ▶ *M* hom. equivalent to a simply connected Lie group, except for S³.
- Ziller (Inventiones, 1977) If *M* is homotopically equivalent to a compact simply connected symmetric space of rank > 1, then sup_k β_k(Λ*M*, ℤ₂) = +∞.
 - Curiosity: symmetric spaces of rank 1 (spheres, projective spaces) always admit metrics for which *all* geodesics are closed!!
- McCleary & Ziller (Amer. J. Math., 1987, 1991) sup_k β_k(ΛM, ℤ₂) = +∞ if M is homotopically equivalent to a compact simply connected *homogeneous space* not diffeomorphic to a symmetric space of rank 1.

Outline

The celebrated result of Gromoll and Meyer

Some literature

- 3 On the Lorentzian result
- 4 Variational framework
- 5 Equivariant Morse theory

< A

• Grove, Halperin, Vigué–Poirrier (1978–1982): multiplicity of geodesics satisfying more general boundary conditions $((\gamma(0), \gamma(1)) \in S \subset M \times M)$.

- Grove, Halperin, Vigué–Poirrier (1978–1982): multiplicity of geodesics satisfying more general boundary conditions ((γ(0), γ(1)) ∈ S ⊂ M × M).
- Grove, Tanaka (1978–1982): geodesics *invariant* by an isometry $A : M \to M(\gamma(1) = A(\gamma(0)), \dot{\gamma}(1) = dA_{\gamma(0)}(\gamma'(0)))$

- Grove, Halperin, Vigué–Poirrier (1978–1982): multiplicity of geodesics satisfying more general boundary conditions ((γ(0), γ(1)) ∈ S ⊂ M × M).
- Grove, Tanaka (1978–1982): geodesics *invariant* by an isometry $A: M \to M$ ($\gamma(1) = A(\gamma(0)), \dot{\gamma}(1) = dA_{\gamma(0)}(\gamma'(0))$)
- Matthias (1980): closed geodesics in *Finsler* manifolds

イロト イポト イラト イラト

-

- Grove, Halperin, Vigué–Poirrier (1978–1982): multiplicity of geodesics satisfying more general boundary conditions ((γ(0), γ(1)) ∈ S ⊂ M × M).
- Grove, Tanaka (1978–1982): geodesics *invariant* by an isometry $A: M \to M$ ($\gamma(1) = A(\gamma(0)), \dot{\gamma}(1) = dA_{\gamma(0)}(\gamma'(0))$)
- Matthias (1980): closed geodesics in Finsler manifolds
- Guruprasad, Haefliger (Topology 2006): closed geodesics in orbifolds

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.

.

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.
- Galloway (Trans. AMS, 1984) there exists a *longest* closed timelike curve (necessarily a geodesic) in each *stable* free timelike homotopy class.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.
- Galloway (Trans. AMS, 1984) there exists a *longest* closed timelike curve (necessarily a geodesic) in each *stable* free timelike homotopy class.
- Galloway (Proc. AMS, 1986) example of compact manifolds without closed non spacelike geodesics.

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.
- Galloway (Trans. AMS, 1984) there exists a *longest* closed timelike curve (necessarily a geodesic) in each *stable* free timelike homotopy class.
- Galloway (Proc. AMS, 1986) example of compact manifolds without closed non spacelike geodesics.
- Guediri (Trans. AMS, 2003) There is no closed timelike geodesic in flat 2-step nilpotents Lorentz nilmanifolds.
Results on closed Lorentzian geodesics

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.
- Galloway (Trans. AMS, 1984) there exists a *longest* closed timelike curve (necessarily a geodesic) in each *stable* free timelike homotopy class.
- Galloway (Proc. AMS, 1986) example of compact manifolds without closed non spacelike geodesics.
- Guediri (Trans. AMS, 2003) There is no closed timelike geodesic in flat 2-step nilpotents Lorentz nilmanifolds.
- Masiello (J. Diff. Eq. 1993) there exists one closed spacelike geodesic in standard stationary spacetimes with a compact base.

< ロ > < 同 > < 回 > < 回 > < 回 > <

9/29

Results on closed Lorentzian geodesics

- Tipler (Proc. AMS, 1979) there exists one *timelike* closed geodesic in compact manifolds that admit a regular covering which has a compact Cauchy surface
- Guediri (Math. Z. 2002/2003) Cauchy surface not necessarily compact, ∃ a closed timelike geodesic in each free timelike homotopy class determined by a *central* deck transformation.
- Galloway (Trans. AMS, 1984) there exists a *longest* closed timelike curve (necessarily a geodesic) in each *stable* free timelike homotopy class.
- Galloway (Proc. AMS, 1986) example of compact manifolds without closed non spacelike geodesics.
- Guediri (Trans. AMS, 2003) There is no closed timelike geodesic in flat 2-step nilpotents Lorentz nilmanifolds.
- Masiello (J. Diff. Eq. 1993) there exists one closed spacelike geodesic in standard stationary spacetimes with a compact base.
- Antonacci–Sampalmieri (Proc. Roy. Soc. Edinburgh, 1998)
 One closed geodesic in compact manifolds of *splitting type*.

Paolo Piccione (IME–USP)

Outline

2 Some literature

- 4 Variational framework
- 5 Equivariant Morse theory

Theorem

• (*M*, *g*) Lorentzian manifold

э

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field

< A >

E 5 4

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S

< A

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected

< A >

医下子 医

ъ

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Then, there are infinitely many *geometrically distinct* prime closed geodesics in (M, g).

< A >

ъ

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Then, there are infinitely many *geometrically distinct* prime closed geodesics in (M, g).

Obs. 1: By *causality*, every closed geodesic in (M, g) is *spacelike*.

イロト イポト イラト イラト

э.

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Then, there are infinitely many *geometrically distinct* prime closed geodesics in (M, g).

Obs. 1: By *causality*, every closed geodesic in (M, g) is *spacelike*. **Obs. 2:** Under our assumptions, *M* is homotopically equivalent to *S* (in fact, $M \stackrel{\text{diff}}{\simeq} S \times \mathbb{R}$), hence $\beta_k(\Lambda M; \mathbb{F}) = \beta_k(\Lambda S; \mathbb{F})$.

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Then, there are infinitely many *geometrically distinct* prime closed geodesics in (M, g).

Obs. 1: By *causality*, every closed geodesic in (M, g) is *spacelike*. **Obs. 2:** Under our assumptions, M is homotopically equivalent to S (in fact, $M \stackrel{\text{diff}}{\simeq} S \times \mathbb{R}$), hence $\beta_k(\Lambda M; \mathbb{F}) = \beta_k(\Lambda S; \mathbb{F})$. **Obs. 3:** $\beta_k(\Lambda S^n; \mathbb{F}) = 1$ for all n > 1.

Theorem

- (*M*, *g*) Lorentzian manifold
- (*M*, *g*) *stationary*: there exists a *complete* timelike Killing vector field
- (M, g) globally hyperbolic, with a compact Cauchy surface S
- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$ for *some* coefficient field \mathbb{F} .

Then, there are infinitely many *geometrically distinct* prime closed geodesics in (M, g).

Obs. 1: By *causality*, every closed geodesic in (M, g) is *spacelike*. **Obs. 2:** Under our assumptions, M is homotopically equivalent to S (in fact, $M \stackrel{\text{diff}}{\simeq} S \times \mathbb{R}$), hence $\beta_k(\Lambda M; \mathbb{F}) = \beta_k(\Lambda S; \mathbb{F})$. **Obs. 3:** $\beta_k(\Lambda S^n; \mathbb{F}) = 1$ for all n > 1. By the result of Perelman (*Poincaré conjecture*), the result is empty in dim = 4!!!

- M simply connected
- $\sup_{k} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

Image: A math

→ ∃ → < ∃</p>

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

• $\limsup_{k\to\infty} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

Image: A math

글 노 네 글

 $\sim \rightarrow$

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

• $\limsup_{k\to\infty} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

Example:

• N compact connected, with universal covering N contractible;

 $\sim \rightarrow$

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

• $\limsup_{k\to\infty} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

< A >

Example:

• N compact connected, with universal covering \widetilde{N} contractible;

 $\sim \rightarrow$

Ω_pN space of loops based at p ∈ N has infinitely many connected components (|π₁(N)| = +∞), and they are all contractible.

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

• $\limsup_{k\to\infty} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example:

• N compact connected, with universal covering \widetilde{N} contractible;

 $\sim \rightarrow$

- Ω_pN space of loops based at p ∈ N has infinitely many connected components (|π₁(N)| = +∞), and they are all contractible.
- $\Lambda N \ni \gamma \mapsto \gamma(0) \in N$ is a *fibration*, with typical fiber $\Omega_{\rho}N$;

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

• $\limsup_{k\to\infty} \beta_k(\Lambda M; \mathbb{F}) = +\infty$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

ъ

Example:

• N compact connected, with universal covering N contractible;

 $\sim \rightarrow$

- Ω_pN space of loops based at p ∈ N has infinitely many connected components (|π₁(N)| = +∞), and they are all contractible.
- $\Lambda N \ni \gamma \mapsto \gamma(0) \in N$ is a *fibration*, with typical fiber $\Omega_{\rho}N$;
- ΛN has infinitely many connected components, each of which is homotopically equivalent to N.

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

 $\stackrel{\rightsquigarrow}{\bullet} \lim_{k \to \infty} \sup \beta_k(\Lambda M; \mathbb{F}) = +\infty$

Example:

- N compact connected, with universal covering N contractible;
- Ω_pN space of loops based at p ∈ N has infinitely many connected components (|π₁(N)| = +∞), and they are all contractible.
- $\Lambda N \ni \gamma \mapsto \gamma(0) \in N$ is a *fibration*, with typical fiber $\Omega_{\rho}N$;
- ΛN has infinitely many connected components, each of which is homotopically equivalent to N.
- $\beta_k(\Lambda N; \mathbb{F}) = +\infty$ for some $k \in \{0, \dots, \dim(N)\}, \beta_k = 0$ for $k > \dim(N)$

-

- M simply connected
- $\sup_k \beta_k(\Lambda M; \mathbb{F}) = +\infty$

can be replaced by:

 $\stackrel{\rightsquigarrow}{\bullet} \lim_{k \to \infty} \sup \beta_k(\Lambda M; \mathbb{F}) = +\infty$

Example:

- N compact connected, with universal covering \widetilde{N} contractible;
- Ω_pN space of loops based at p ∈ N has infinitely many connected components (|π₁(N)| = +∞), and they are all contractible.
- $\Lambda N \ni \gamma \mapsto \gamma(0) \in N$ is a *fibration*, with typical fiber $\Omega_{\rho}N$;
- ΛN has infinitely many connected components, each of which is homotopically equivalent to N.
- $\beta_k(\Lambda N; \mathbb{F}) = +\infty$ for some $k \in \{0, \dots, \dim(N)\}, \beta_k = 0$ for $k > \dim(N)$
- if *L* is a compact manifold with β_k(Λ*L*; F) ≠ 0 for infinitely many *k*'s, then β_k(Λ(N × L); F) = +∞ for infinitely many *k*'s (char(F) = 0).

-

Every closed geodesic γ carries two *infinite cylinders* in $\wedge M$:

Image: A math

医下子 医

Every closed geodesic γ carries two *infinite cylinders* in ΛM :

• Action of O(2) by rotations and inversions

< A

글 노 네 글

Every closed geodesic γ carries two *infinite cylinders* in ΛM :

- Action of O(2) by rotations and inversions
- Action of **R** by *time translations*

Every closed geodesic γ carries two *infinite cylinders* in ΛM :

- Action of O(2) by rotations and inversions
- Action of R by time translations

By *iteration* γ^{N} , $N \in \mathbb{N}$, we get a *tower* of double cylinders:

Every closed geodesic γ carries two *infinite cylinders* in ΛM :

- Action of O(2) by rotations and inversions
- Action of R by time translations

By *iteration* γ^{N} , $N \in \mathbb{N}$, we get a *tower* of double cylinders:

Idea of proof:

• quotient out the R-action (by considering curves starting on the Cauchy surface)

Every closed geodesic γ carries two *infinite cylinders* in ΛM :

- Action of O(2) by rotations and inversions
- Action of **R** by *time translations*

By *iteration* γ^{N} , $N \in \mathbb{N}$, we get a *tower* of double cylinders:

Idea of proof:

- quotient out the ${\rm I\!R}\xspace$ -action (by considering curves starting on the Cauchy surface)
- use equivariant Morse theory to count critical O(2)-orbits coming from distinct prime closed geodesics.

Paolo Piccione (IME–USP)

Closed geodesics in stationary Lorentzian

Outline

The celebrated result of Gromoll and Meyer

2 Some literature

- 3 On the Lorentzian result
- 4 Variational framework
- 5 Equivariant Morse theory

For Morse theory it is needed a functional:

- bounded from below
- Palais-Smale
- finite Morse index of critical pts

For Morse theory it is needed a functional:

- bounded from below
- Palais-Smale
- finite Morse index of critical pts

The Lorentzian geodesic action does not satisfy any of the above.

For Morse theory it is needed a functional:

- bounded from below
- Palais–Smale
- finite Morse index of critical pts

The Lorentzian geodesic action does not satisfy any of the above.

A Killing field Y in (M, g) gives a *natural constraint* for geodesics γ :

 $g(\gamma', Y) = c_{\gamma}$ is constant

Introduce: $\mathcal{N} = \{\gamma \in \Lambda M : g(\gamma', Y) = c_{\gamma}(\text{constant})\}$

-

For Morse theory it is needed a functional:

- bounded from below
- Palais-Smale
- finite Morse index of critical pts

The Lorentzian geodesic action does not satisfy any of the above.

A Killing field Y in (M, g) gives a *natural constraint* for geodesics γ :

 $g(\gamma', Y) = c_{\gamma}$ is constant

Introduce: $\mathcal{N} = \{\gamma \in \Lambda M : g(\gamma', Y) = c_{\gamma}(\text{constant})\}$

Proposition

 \mathcal{N} is a smooth Hilbert submanifold of ΛM .

・ 同 ト ・ ヨ ト ・ ヨ

For Morse theory it is needed a functional:

- bounded from below
- Palais–Smale
- finite Morse index of critical pts

The Lorentzian geodesic action does not satisfy any of the above.

A Killing field Y in (M, g) gives a *natural constraint* for geodesics γ :

 $g(\gamma', Y) = c_{\gamma}$ is constant

Introduce: $\mathcal{N} = \{\gamma \in \Lambda M : g(\gamma', Y) = c_{\gamma}(\text{constant})\}$

Proposition

 \mathcal{N} is a smooth Hilbert submanifold of ΛM . If Y is *complete* then the inclusion $\mathcal{N} \hookrightarrow \Lambda M$ is a homotopy equivalence.

-

イロト イポト イラト イラト

The variational principle

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

< 17 ▶

→ Ξ →

The variational principle

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

• $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$

э

The variational principle

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant

э

< ロ > < 同 > < 回 > < 回 >
$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N}/\mathbb{R}$

э

< 同 > < 三 > < 三 >

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N} / \mathbb{R}$
- The restriction of $d^2 f_{\gamma} = I(V, W) = \int g(V', W') + g(RV, W) dt$ to $T_{\gamma} \mathcal{N}$ is essentially positive. (finite Morse index)

< A >

- A IB IN A IB

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N} / \mathbb{R}$
- The restriction of $d^2 f_{\gamma} = I(V, W) = \int g(V', W') + g(RV, W) dt$ to $T_{\gamma} \mathcal{N}$ is essentially positive. (finite Morse index)
- If there is only a finite number of geometrically distinct prime closed geodesics in (M, g), then the critical O(2)-orbits of f in *N* are isolated.

< ロ > < 同 > < 回 > < 回 >

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \, \mathrm{d}t, \quad f : \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N} / \mathbb{R}$
- The restriction of $d^2 f_{\gamma} = I(V, W) = \int g(V', W') + g(RV, W) dt$ to $T_{\gamma} \mathcal{N}$ is essentially positive. (finite Morse index)
- If there is only a finite number of geometrically distinct prime closed geodesics in (M, g), then the critical O(2)-orbits of f in Ñ are isolated.
- For $\varepsilon > 0$ small, $f^{\varepsilon} \cap \widetilde{\mathcal{N}}$ is homotopically equivalent to $f^{0} \cap \widetilde{\mathcal{N}} \cong S$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \,\mathrm{d}t, \quad f: \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N} / \mathbb{R}$
- The restriction of $d^2 f_{\gamma} = I(V, W) = \int g(V', W') + g(RV, W) dt$ to $T_{\gamma} \mathcal{N}$ is essentially positive. (finite Morse index)
- If there is only a finite number of geometrically distinct prime closed geodesics in (M, g), then the critical O(2)-orbits of f in *N* are isolated.
- For $\varepsilon > 0$ small, $f^{\varepsilon} \cap \widetilde{\mathcal{N}}$ is homotopically equivalent to $f^{0} \cap \widetilde{\mathcal{N}} \cong S$.

Corollary. There is one closed geodesic in each free homotopy class of *M*.

Paolo Piccione (IME-USP)

$$f(\gamma) = \frac{1}{2} \int_0^1 g(\gamma', \gamma') \, \mathrm{d}t, \quad f : \Lambda M \to \mathbb{R}$$

Theorem

- $\operatorname{Crit}(f|_{\mathcal{N}}) = \operatorname{Crit}(f) = \{ closed geodesics \}$
- $f \ge 0$ on \mathcal{N} . $f(\gamma) = 0 \iff \gamma$ constant
- f satisfies (PS) on $\widetilde{\mathcal{N}} = \mathcal{N}/\mathbb{R}$
- The restriction of $d^2 f_{\gamma} = I(V, W) = \int g(V', W') + g(RV, W) dt$ to $T_{\gamma} \mathcal{N}$ is essentially positive. (finite Morse index)
- If there is only a finite number of geometrically distinct prime closed geodesics in (M, g), then the critical O(2)-orbits of f in N are isolated.
- For $\varepsilon > 0$ small, $f^{\varepsilon} \cap \widetilde{\mathcal{N}}$ is homotopically equivalent to $f^{0} \cap \widetilde{\mathcal{N}} \cong S$.

Corollary. There is one closed geodesic in each free homotopy class of *M*. There is one non trivial closed geodesic (Masiello).

Paolo Piccione (IME–USP)

Closed geodesics in stationary Lorentzian

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$.

∃ → < ∃</p>

< A >

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to:

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\left| \mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} \right|$

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\left| \mathcal{X} = T_{\gamma} \mathcal{N} \right| \left| B(V, W) = \int g(V', W') + g(RV, W) dt \right|$

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = T_{\gamma}\mathcal{N}$ $B(V, W) = \int g(V', W') + g(RV, W) dt$ $\mathcal{W} = \{ V \in T_{\gamma}\mathcal{N} : V(0) = V(1) = 0 \}$

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} \left[B(V, W) = \int g(V', W') + g(RV, W) dt \right]$

$$\mathcal{W} = \left\{ V \in T_{\gamma} \mathcal{N} : V(0) = V(1) = 0 \right\}$$

 $S = \{ \text{Jacobi fields } J : J(0) = J(1) \}$

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} | B(V, W) = \int g(V', W') + g(RV, W) dt$

$$\mathcal{W} = \left\{ V \in T_{\gamma} \mathcal{N} : V(0) = V(1) = 0
ight\}$$

 $S = \{ \text{Jacobi fields } J : J(0) = J(1) \}$

Periodic Morse index theorem

 $ind(B|_{W})$ is the *Maslov index* of γ (fixed endpoints Morse index thm)

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} | B(V, W) = \int g(V', W') + g(RV, W) dt$

$$\mathcal{W} = \left\{ V \in T_{\gamma}\mathcal{N} : V(0) = V(1) = 0
ight\}$$

 $S = \{ \text{Jacobi fields } J : J(0) = J(1) \}$

Periodic Morse index theorem

 $\operatorname{ind}(B|_{\mathcal{W}})$ is the *Maslov index* of γ (fixed endpoints Morse index thm) $\operatorname{ind}(B|_{\mathcal{S}})$ is the *concavity index* of γ ($\leq \dim(M)$)

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} | B(V, W) = \int g(V', W') + g(RV, W) dt$

$$\mathcal{W} = \left\{ V \in T_{\gamma} \mathcal{N} : V(0) = V(1) = 0 \right\}$$

 $S = \{ \text{Jacobi fields } J : J(0) = J(1) \}$

Periodic Morse index theorem

 $\operatorname{ind}(B|_{\mathcal{W}})$ is the *Maslov index* of γ (fixed endpoints Morse index thm) $\operatorname{ind}(B|_{\mathcal{S}})$ is the *concavity index* of $\gamma \ (\leq \dim(M))$ $\mathcal{W} \cap \operatorname{Ker}(B)$ periodic Jacobi fields *J* with J(0) = 0 (dim $\leq \dim(M)$)

Abstract functional analytical result

 \mathcal{X} Hilbert space, $B : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ essentially positive symmetric bilinear form, $\mathcal{W} \subset \mathcal{X}$ closed subspace, $\mathcal{S} = \mathcal{W}^{\perp_B}$. Then:

 $\operatorname{ind}(B) = \operatorname{ind}(B|_{\mathcal{W}}) + \operatorname{ind}(B|_{\mathcal{S}}) + \dim(\mathcal{W} \cap \mathcal{S}) + \dim(\mathcal{W} \cap \operatorname{Ker}(B))$

Apply to: $\mathcal{X} = \mathcal{T}_{\gamma} \mathcal{N} | B(V, W) = \int g(V', W') + g(RV, W) dt$

$$\mathcal{W} = \left\{ V \in T_{\gamma} \mathcal{N} : V(0) = V(1) = 0
ight\}$$

 $S = \{ \text{Jacobi fields } J : J(0) = J(1) \}$

Periodic Morse index theorem

 $\operatorname{ind}(B|_{\mathcal{W}})$ is the *Maslov index* of γ (fixed endpoints Morse index thm) $\operatorname{ind}(B|_{\mathcal{S}})$ is the *concavity index* of $\gamma \ (\leq \dim(M))$ $\mathcal{W} \cap \operatorname{Ker}(B)$ periodic Jacobi fields J with J(0) = 0 (dim $\leq \dim(M)$) $\mathcal{W} \cap \mathcal{S}$ Jacobi fields J with J(0) = J(1) (dim $\leq \dim(M)$)

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

• Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

- Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$
- i_{Maslov} is related to the *Conley–Zehnder* index i_{CZ} of the corresponding Hamiltonian solution ($i_{Maslov} = i_{CZ} + bounded$ term)

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

- Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$
- i_{Maslov} is related to the *Conley–Zehnder* index i_{CZ} of the corresponding Hamiltonian solution ($i_{Maslov} = i_{CZ} + bounded$ term)
- $i_{CZ} : \pi_1(Sp(n)) \to \mathbb{Z}$ is an isomorphism $\implies i_{CZ}(\gamma^N) \cong N \cdot i_{CZ}(\gamma)$

ъ

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

- Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$
- i_{Maslov} is related to the *Conley–Zehnder* index i_{CZ} of the corresponding Hamiltonian solution ($i_{Maslov} = i_{CZ} + bounded$ term)
- $i_{CZ} : \pi_1(Sp(n)) \to \mathbb{Z}$ is an isomorphism $\implies i_{CZ}(\gamma^N) \cong N \cdot i_{CZ}(\gamma)$

Proposition

 $\exists \alpha \in \mathbb{R}^+, \ \beta \in \mathbb{R}$ such that, given any closed geodesic γ , either $\mu(\gamma^N)$ is *bounded*, or for *s* large enough:

$$\mu(\gamma^{r+s}) \ge \mu(\gamma^r) + \alpha \cdot s + \beta.$$

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

- Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$
- i_{Maslov} is related to the *Conley–Zehnder* index i_{CZ} of the corresponding Hamiltonian solution ($i_{Maslov} = i_{CZ} + bounded$ term)
- $i_{CZ} : \pi_1(Sp(n)) \to \mathbb{Z}$ is an isomorphism $\implies i_{CZ}(\gamma^N) \cong N \cdot i_{CZ}(\gamma)$

Proposition

 $\exists \alpha \in \mathbb{R}^+, \ \beta \in \mathbb{R}$ such that, given any closed geodesic γ , either $\mu(\gamma^N)$ is *bounded*, or for *s* large enough:

$$\mu(\gamma^{r+s}) \ge \mu(\gamma^r) + \alpha \cdot s + \beta.$$

Open problem: What kind of bounded sequences arise from $\mu(\gamma^N)$?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem. Estimate $\mu(\gamma^N)$ in terms of $\mu(\gamma)$.

- Since $\mu(\gamma^N) = i_{Maslov}(\gamma^N) + bounded terms, it suffices to estimate <math>i_{Maslov}(\gamma^N)$
- i_{Maslov} is related to the *Conley–Zehnder* index i_{CZ} of the corresponding Hamiltonian solution ($i_{Maslov} = i_{CZ} + bounded$ term)
- $i_{CZ} : \pi_1(Sp(n)) \to \mathbb{Z}$ is an isomorphism $\implies i_{CZ}(\gamma^N) \cong N \cdot i_{CZ}(\gamma)$

Proposition

 $\exists \alpha \in \mathbb{R}^+, \ \beta \in \mathbb{R}$ such that, given any closed geodesic γ , either $\mu(\gamma^N)$ is *bounded*, or for *s* large enough:

$$\mu(\gamma^{r+s}) \ge \mu(\gamma^r) + \alpha \cdot s + \beta.$$

Open problem: What kind of bounded sequences arise from $\mu(\gamma^N)$? It is clear how to construct examples with $\mu(\gamma^N) = 0$ for all *N*.

$$\mathfrak{P}_{\gamma}: T_{\gamma(0)}M \oplus T_{\gamma(0)}M \to T_{\gamma(0)}M \oplus T_{\gamma(0)}M$$

(a)

э

$$\frac{[\mathfrak{P}_{\gamma}:T_{\gamma(0)}M\oplus T_{\gamma(0)}M\to T_{\gamma(0)}M\oplus T_{\gamma(0)}M}{\mathfrak{P}_{\gamma}(\boldsymbol{v},\boldsymbol{w})=(J(1),J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\frac{\mathfrak{P}_{\gamma}: \mathcal{T}_{\gamma(0)} \mathcal{M} \oplus \mathcal{T}_{\gamma(0)} \mathcal{M} \to \mathcal{T}_{\gamma(0)} \mathcal{M} \oplus \mathcal{T}_{\gamma(0)} \mathcal{M}}{\mathfrak{P}_{\gamma}(\boldsymbol{v}, \boldsymbol{w}) = (J(1), J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\operatorname{nul}(\gamma^{N}) = \sum_{\omega = N \text{-th root of } 1} \operatorname{dim}(\operatorname{Ker}(\mathfrak{P}_{\gamma} - \omega))$$

3 N

$$\frac{\mathfrak{P}_{\gamma}: \mathcal{T}_{\gamma(0)} \mathcal{M} \oplus \mathcal{T}_{\gamma(0)} \mathcal{M} \to \mathcal{T}_{\gamma(0)} \mathcal{M} \oplus \mathcal{T}_{\gamma(0)} \mathcal{M}}{\mathfrak{P}_{\gamma}(\boldsymbol{v}, \boldsymbol{w}) = (J(1), J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\operatorname{nul}(\gamma^{N}) = \sum_{\omega = N \text{-th root of } 1} \operatorname{dim}(\operatorname{Ker}(\mathfrak{P}_{\gamma} - \omega))$$

Def.: γ is *hyperbolic* if spec $(\mathfrak{P}_{\gamma}) \cap S^{1} = \emptyset$.

$$\frac{\mathfrak{P}_{\gamma}: T_{\gamma(0)}M \oplus T_{\gamma(0)}M \to T_{\gamma(0)}M \oplus T_{\gamma(0)}M}{\mathfrak{P}_{\gamma}(\boldsymbol{v}, \boldsymbol{w}) = (J(1), J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\operatorname{nul}(\gamma^{N}) = \sum_{\omega = N \text{-th root of } 1} \operatorname{dim}(\operatorname{Ker}(\mathfrak{P}_{\gamma} - \omega))$$

Def.: γ is *hyperbolic* if spec $(\mathfrak{P}_{\gamma}) \cap S^1 = \emptyset$.

Prop. If γ is not hyperbolic, and the Poicaré map satisfies the assumptions of Birkhoff–Lewis fixed point theorem, then there are infinitely many distinct closed geodesics in (M, g).

$$\frac{\mathfrak{P}_{\gamma}: T_{\gamma(0)}M \oplus T_{\gamma(0)}M \to T_{\gamma(0)}M \oplus T_{\gamma(0)}M}{\mathfrak{P}_{\gamma}(\boldsymbol{v}, \boldsymbol{w}) = (J(1), J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\operatorname{nul}(\gamma^{N}) = \sum_{\omega = N \text{-th root of } 1} \operatorname{dim}(\operatorname{Ker}(\mathfrak{P}_{\gamma} - \omega))$$

Def.: γ is *hyperbolic* if spec $(\mathfrak{P}_{\gamma}) \cap S^1 = \emptyset$.

Prop. If γ is not hyperbolic, and the Poicaré map satisfies the assumptions of Birkhoff–Lewis fixed point theorem, then there are infinitely many distinct closed geodesics in (M, g).

Open problem: Is the set of Lorentzian metrics for which the assumptions of B–L are satisfied by every non hyperbolic geodesic generic?

$$\frac{\mathfrak{P}_{\gamma}: T_{\gamma(0)}M \oplus T_{\gamma(0)}M \to T_{\gamma(0)}M \oplus T_{\gamma(0)}M}{\mathfrak{P}_{\gamma}(\boldsymbol{v}, \boldsymbol{w}) = (J(1), J'(1))}$$

J Jacobi field with J(0) = v, J(1) = w.

$$\operatorname{nul}(\gamma^{N}) = \sum_{\omega = N \text{-th root of } 1} \operatorname{dim}(\operatorname{Ker}(\mathfrak{P}_{\gamma} - \omega))$$

Def.: γ is *hyperbolic* if spec $(\mathfrak{P}_{\gamma}) \cap S^{1} = \emptyset$.

Prop. If γ is not hyperbolic, and the Poicaré map satisfies the assumptions of Birkhoff–Lewis fixed point theorem, then there are infinitely many distinct closed geodesics in (M, g).

Open problem: Is the set of Lorentzian metrics for which the assumptions of B–L are satisfied by every non hyperbolic geodesic generic? (Yes in the Riemannian case: Klingenberg–Takens)

Nullity of an iteration

Tricky Lemma

Assume there is only a finite number of distinct prime closed geodesics in *M*.

Nullity of an iteration

Tricky Lemma

Assume there is only a finite number of distinct prime closed geodesics in *M*. Then, there exists a finite number of closed geodesics (not necessarily geometrically distinct) $\gamma_1, \ldots, \gamma_s$ in *M* such that:

• every closed geodesic γ is the iterate of some γ_i

• $\operatorname{nul}(\gamma) = \operatorname{nul}(\gamma_i)$.

Proof. Purely arithmetical.

Bott's type results on iteration of closed geodesics

(work in progress with M. A. Javaloyes, L. L. de Lima)

Paolo Piccione (IME–USP) Closed geodesics in stationary Lorentzian February 6th, 2007 21 / 29

Bott's type results on iteration of closed geodesics Given a closed geodesic γ , there exists a function $\Lambda : \mathbb{S}^1 \to \mathbb{N}$ with:

(work in progress with M. A. Javaloyes, L. L. de Lima)

Paolo Piccione (IME–USP) Closed geodesics in stationary Lorentzian February 6th, 2007 21 / 29

Bott's type results on iteration of closed geodesics Given a closed geodesic γ , there exists a function $\Lambda : \mathbb{S}^1 \to \mathbb{N}$ with:

•
$$\mu(\gamma^N) = \sum_{k=1}^N \Lambda(e^{2k\pi i/N})$$

(work in progress with M. A. Javaloyes, L. L. de Lima)

21/29

 Paolo Piccione (IME–USP)
 Closed geodesics in stationary Lorentzian
 February 6th, 2007
•
$$\mu(\gamma^N) = \sum_{k=1}^N \Lambda(e^{2k\pi i/N})$$

• the jumps of Λ occur (possibly) at the points of $\operatorname{spec}(\mathfrak{P}_\gamma) \cap \mathbb{S}^1$

(work in progress with M. A. Javaloyes, L. L. de Lima)

Paolo Piccione (IME–USP) Closed ge

Closed geodesics in stationary Lorentzian

February 6th, 2007 21 / 29

•
$$\mu(\gamma^N) = \sum_{k=1}^N \Lambda(e^{2k\pi i/N})$$

• the jumps of Λ occur (possibly) at the points of $\operatorname{spec}(\mathfrak{P}_\gamma) \cap \mathbb{S}^1$

• If γ is hyperbolic $\Longrightarrow \mu(\gamma^N) = N \cdot \mu(\gamma)$

(work in progress with M. A. Javaloyes, L. L. de Lima)

•
$$\mu(\gamma^N) = \sum_{k=1}^N \Lambda(e^{2k\pi i/N})$$

• the jumps of Λ occur (possibly) at the points of $\operatorname{spec}(\mathfrak{P}_\gamma) \cap \mathbb{S}^1$

- If γ is hyperbolic $\Longrightarrow \mu(\gamma^N) = N \cdot \mu(\gamma)$
- Value of the jumps of Λ...to be determined...

(work in progress with M. A. Javaloyes, L. L. de Lima)

•
$$\mu(\gamma^N) = \sum_{k=1}^N \Lambda(e^{2k\pi i/N})$$

• the jumps of Λ occur (possibly) at the points of $\operatorname{spec}(\mathfrak{P}_\gamma) \cap \mathbb{S}^1$

- If γ is hyperbolic $\Longrightarrow \mu(\gamma^N) = N \cdot \mu(\gamma)$
- Value of the jumps of Λ...to be determined...

Example of applications. (Ballmann, Thorbergsson, Ziller) If $\pi_1(M)$ has a non trivial element of finite order a such that every closed geodesic freely homotopic to some power a^q is hyperbolic, then there are infinitely many distinct closed geodesics.

(work in progress with M. A. Javaloyes, L. L. de Lima)

Outline

The celebrated result of Gromoll and Meyer

2 Some literature

- 3 On the Lorentzian result
- 4 Variational framework
- 5 Equivariant Morse theory

Homological invariants at isolated critical points \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function

< A >

→ E → < E</p>

Homological invariants at isolated critical points \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function *p* isolated critical pt of \mathfrak{f} ,

イロト イポト イラト イラト

 \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function *p* isolated critical pt of \mathfrak{f} , Hess_f(*p*) : $T_p\mathcal{M} \to T_p\mathcal{M}$ essentially positive.

< A >

ヨトィヨト

 \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function p isolated critical pt of \mathfrak{f} , $\operatorname{Hess}_{\mathfrak{f}}(p) : T_p\mathcal{M} \to T_p\mathcal{M}$ essentially positive.

Theorem (Generalized Morse Lemma)

Up to a change of coordinates, around p = (0, 0):

$$f(x, y) = \|Px\|^2 - \|(1 - P)x\|^2 + f_0(y)$$

 $\mathfrak{f}_0: \mathrm{Ker}(\mathrm{Hess}_\mathfrak{f}(\rho)) \to \mathbb{R}$ has a completely degenerate critical pt at 0.

A D b 4 A b

 \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function p isolated critical pt of \mathfrak{f} , $\operatorname{Hess}_{\mathfrak{f}}(p) : T_p\mathcal{M} \to T_p\mathcal{M}$ essentially positive.

Theorem (Generalized Morse Lemma)

Up to a change of coordinates, around p = (0, 0):

$$f(x, y) = \|Px\|^2 - \|(1 - P)x\|^2 + f_0(y)$$

 $\mathfrak{f}_0: \operatorname{Ker}(\operatorname{Hess}_\mathfrak{f}(\rho)) \to \mathbb{R}$ has a completely degenerate critical pt at 0.

Closed sublevel: $\mathfrak{f}^{c} = \{x \in \mathcal{M} : \mathfrak{f}(x) \leq c\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト

 \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function p isolated critical pt of \mathfrak{f} , $\operatorname{Hess}_{\mathfrak{f}}(p) : T_p\mathcal{M} \to T_p\mathcal{M}$ essentially positive.

Theorem (Generalized Morse Lemma)

Up to a change of coordinates, around p = (0, 0):

$$f(x, y) = \|Px\|^2 - \|(1 - P)x\|^2 + f_0(y)$$

 $\mathfrak{f}_0: \mathrm{Ker}(\mathrm{Hess}_\mathfrak{f}(\rho)) \to \mathbb{R}$ has a completely degenerate critical pt at 0.

Definition (Local homological invariants)

 $\mathfrak{H}_*(\mathfrak{f}, p; \mathbb{F}) = H_*(\mathfrak{f}^c, \mathfrak{f}^c \setminus \{p\}; \mathbb{F})$

$$\mathfrak{H}^{o}_{*}(\mathfrak{f},\boldsymbol{\rho};\mathbb{F})=H_{*}(\mathfrak{f}^{c}_{0},\mathfrak{f}^{c}_{0}\setminus\{\boldsymbol{\rho}\};\mathbb{F})$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \mathcal{M} smooth Hilbert manifold, $\mathfrak{f} : \mathcal{M} \to \mathbb{R}$ smooth function p isolated critical pt of \mathfrak{f} , $\operatorname{Hess}_{\mathfrak{f}}(p) : T_p\mathcal{M} \to T_p\mathcal{M}$ essentially positive.

Theorem (Generalized Morse Lemma)

Up to a change of coordinates, around p = (0, 0):

$$f(x, y) = \|Px\|^2 - \|(1 - P)x\|^2 + f_0(y)$$

 $\mathfrak{f}_0: \mathrm{Ker}(\mathrm{Hess}_\mathfrak{f}(\rho)) \to \mathbb{R}$ has a completely degenerate critical pt at 0.

Definition (Local homological invariants)

 $\mathfrak{H}_*(\mathfrak{f}, oldsymbol{
ho}; \mathbb{F}) = H_*(\mathfrak{f}^c, \mathfrak{f}^c \setminus \{oldsymbol{
ho}\}; \mathbb{F})$

$$\boxed{\mathfrak{H}^o_*(\mathfrak{f},\boldsymbol{\rho};\mathbb{F})=H_*(\mathfrak{f}^c_0,\mathfrak{f}^c_0\setminus\{\boldsymbol{\rho}\};\mathbb{F})}$$

Shifting theorem (G & M, Topology 1969)

 $\mu(p) = \text{Morse index of } \mathfrak{f} \text{ at } p \implies \left| \mathfrak{H}_{k+\mu(p)}(\mathfrak{f},p;\mathbb{F}) \cong \mathfrak{H}_{k}^{0}(\mathfrak{f},p;\mathbb{F}) \right|$

• \mathcal{M} complete Hilbert manifold

< A

∃ → < ∃</p>

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:
 - G-invariant

医下子 医

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:
 - G-invariant
 - satisfies (PS)

医下子 医

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:
 - G-invariant
 - satisfies (PS)
- $p \in M$ critical point, f(p) = c, with *Gp* isolated critical orbit.

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:
 - G-invariant
 - satisfies (PS)
- $p \in M$ critical point, f(p) = c, with *Gp* isolated critical orbit.

Definition

Homological invariant at Gp: $|_{\mathfrak{H}_{\ast}(\mathfrak{f}, \mathbf{G}p; \mathbb{F})} := H_{\ast}(\mathfrak{f}^{c}, \mathfrak{f}^{c} \setminus \mathbf{G}p; \mathbb{F})$

・ 同 ト ・ ヨ ト ・ ヨ

- \mathcal{M} complete Hilbert manifold
- G compact group acting by isometries on \mathcal{M}
- $\mathfrak{f}:\mathcal{M}\rightarrow\mathbb{R}$ smooth function:
 - G-invariant
 - satisfies (PS)
- $p \in M$ critical point, f(p) = c, with *Gp* isolated critical orbit.

Definition

Homological invariant at Gp: $\mathfrak{H}_{*}(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) := H_{*}(\mathfrak{f}^{c}, \mathfrak{f}^{c} \setminus \mathbf{Gp}; \mathbb{F})$

Theorem

If $f^{-1}(c)$ contains a finite number of critical orbits Gp_1, \ldots, Gp_r :

$$H_*(\mathfrak{f}^{c+\varepsilon},\mathfrak{f}^{c-\varepsilon};\mathbb{F})\cong\bigoplus_{i=1}^r\mathfrak{H}_*(\mathfrak{f},Gp_i;\mathbb{F})$$

Def.: Critical orbit *Gp* nondegenerate if $\dim(\text{Ker}(\text{Hess}_{f}(p))) = \dim(Gp)$.

Def.: Critical orbit *Gp* nondegenerate if $\dim(\operatorname{Ker}(\operatorname{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

If Gp is nondegenerate, then: \mathfrak{H}_k

$$\mathfrak{H}_k(\mathfrak{f}, \boldsymbol{Gp}; \mathbb{F}) = egin{cases} 0, & ext{if } k
eq \mu(p); \ \mathbb{F}, & ext{if } k = \mu(p). \end{cases}$$

Def.: Critical orbit *Gp* nondegenerate if $\dim(\operatorname{Ker}(\operatorname{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

If *Gp* is nondegenerate, then:
$$\mathfrak{H}_k(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) = \begin{cases} 0, & \text{if } k \neq \mu(p); \\ \mathbb{F}, & \text{if } k = \mu(p). \end{cases}$$

Question: Is the nondegenerate case *generic* for the closed geodesic problem?

Def.: Critical orbit *Gp* nondegenerate if $\dim(\text{Ker}(\text{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

f *Gp* is nondegenerate, then:
$$\mathfrak{H}_{k}(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) = \begin{cases} 0, & \text{if } k \neq \mu(p); \\ \mathbb{F}, & \text{if } k = \mu(p). \end{cases}$$

Question: Is the nondegenerate case *generic* for the closed geodesic problem?

Answers:

• Yes in the Riemannian case (bumpy metrics), Abraham 1970, Klingenberg/Takens 1972, White (1991): also for minimal submanifolds!

Def.: Critical orbit *Gp* nondegenerate if $\dim(\text{Ker}(\text{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

f *Gp* is nondegenerate, then:
$$\mathfrak{H}_k(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) = \begin{cases} 0, & \text{if } k \neq \mu(p); \\ \mathbb{F}, & \text{if } k = \mu(p). \end{cases}$$

Question: Is the nondegenerate case *generic* for the closed geodesic problem?

Answers:

- Yes in the Riemannian case (bumpy metrics), Abraham 1970, Klingenberg/Takens 1972, White (1991): also for minimal submanifolds!
- Probably yes in the general Lorentzian case (this is just a guess)

Def.: Critical orbit *Gp* nondegenerate if $\dim(\operatorname{Ker}(\operatorname{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

f *Gp* is nondegenerate, then:
$$\mathfrak{H}_{k}(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) = \begin{cases} 0, & \text{if } k \neq \mu(p); \\ \mathbb{F}, & \text{if } k = \mu(p). \end{cases}$$

Question: Is the nondegenerate case *generic* for the closed geodesic problem?

Answers:

- Yes in the Riemannian case (bumpy metrics), Abraham 1970, Klingenberg/Takens 1972, White (1991): also for minimal submanifolds!
- Probably yes in the general Lorentzian case (this is just a guess)
- Totally open problem in the category of *stationary* Lorentzian metrics.

Image: A math

.

Def.: Critical orbit *Gp* nondegenerate if $\dim(\operatorname{Ker}(\operatorname{Hess}_{\mathfrak{f}}(p))) = \dim(Gp)$.

If *Gp* is nondegenerate, then:
$$\mathfrak{H}_k(\mathfrak{f}, \mathbf{Gp}; \mathbb{F}) = \begin{cases} 0, & \text{if } k \neq \mu(p); \\ \mathbb{F}, & \text{if } k = \mu(p). \end{cases}$$

Question: Is the nondegenerate case *generic* for the closed geodesic problem?

Answers:

- Yes in the Riemannian case (bumpy metrics), Abraham 1970, Klingenberg/Takens 1972, White (1991): also for minimal submanifolds!
- Probably yes in the general Lorentzian case (this is just a guess)
- Totally open problem in the category of *stationary* Lorentzian metrics.

 $\operatorname{Geo}(\mathbb{S}^1, M_0 \times \mathbb{R}) \times \operatorname{Met}(M_0) \times \mathfrak{X}(M_0) \times C^{\infty}(M_0) \ni \left[\gamma, g_0, \delta, \beta\right] \mapsto \left[g_0, \delta, \beta\right]$

is a Fredholm nonlinear map with null index? If yes, apply Sard-Smale.

Definition

Given sequences $(\mu_k)_{k\geq 0}$ and $(\beta_k)_{k\geq 0}$ in $\mathbb{N} \bigcup \{+\infty\}$, they satisfy the *Morse relations* if \exists a formal power series $Q(t) = \sum_{k\geq 0} q_k t^k$ with coefficients in $\mathbb{N} \bigcup \{+\infty\}$ such that:

$$\sum_{k\geq 0}\mu_k t^k = \sum_{k\geq \beta_k} \beta_k t^k + (1+t)Q(t).$$

< A >

B 5 4 B

Definition

Given sequences $(\mu_k)_{k\geq 0}$ and $(\beta_k)_{k\geq 0}$ in $\mathbb{N} \bigcup \{+\infty\}$, they satisfy the *Morse relations* if \exists a formal power series $Q(t) = \sum_{k\geq 0} q_k t^k$ with coefficients in $\mathbb{N} \bigcup \{+\infty\}$ such that:

$$\sum_{k\geq 0}\mu_k t^k = \sum_{k\geq \beta_k} \beta_k t^k + (1+t)Q(t).$$

Strong Morse relations

$$\mu_{0} \geq \beta_{0},$$

$$\mu_{1} - \mu_{0} \geq \beta_{1} - \beta_{0}$$

$$\mu_{2} - \mu_{1} + \mu_{0} \geq \beta_{2} - \beta_{1} + \beta_{0},$$

. . .

医下子 医

< A >

Definition

Given sequences $(\mu_k)_{k\geq 0}$ and $(\beta_k)_{k\geq 0}$ in $\mathbb{N} \bigcup \{+\infty\}$, they satisfy the *Morse relations* if \exists a formal power series $Q(t) = \sum_{k\geq 0} q_k t^k$ with coefficients in $\mathbb{N} \bigcup \{+\infty\}$ such that:

$$\sum_{k\geq 0}\mu_k t^k = \sum_{k\geq 0}\beta_k t^k + (1+t)Q(t).$$

Strong Morse relations

 $\begin{array}{rrrr} \mu_0 & \geq & \beta_0, \\ \\ \mu_1 - \mu_0 & \geq & \beta_1 - \beta_0 \\ \\ \mu_2 - \mu_1 + \mu_0 & \geq & \beta_2 - \beta_1 + \beta_0, \end{array}$

. . .

Weak Morse relations

$$\mu_{\mathbf{k}} \geq \beta_{\mathbf{k}}$$

ヨトィヨト

Definition

Given sequences $(\mu_k)_{k\geq 0}$ and $(\beta_k)_{k\geq 0}$ in $\mathbb{N} \bigcup \{+\infty\}$, they satisfy the *Morse relations* if \exists a formal power series $Q(t) = \sum_{k\geq 0} q_k t^k$ with coefficients in $\mathbb{N} \bigcup \{+\infty\}$ such that:

$$\sum_{k\geq 0}\mu_k t^k = \sum_{k\geq \beta_k} \beta_k t^k + (1+t)Q(t).$$

Strong Morse relations $\mu_0 > \beta_0$.

Weak Morse relations

$$\mu_{1} - \mu_{0} \geq \beta_{1} - \beta_{0} \\ \mu_{2} - \mu_{1} + \mu_{0} \geq \beta_{2} - \beta_{1} + \beta_{0},$$

. . .

$$\mu_{\mathbf{k}} \geq \beta_{\mathbf{k}}$$

Example. X top. space, $(X_n)_{n\geq 0}$ filtration of X, $\mu_k = \sum_{n=0}^{\infty} \beta_k(X_{n+1}, X_n; \mathbb{F}), \beta_k = \beta_k(X, X_0; \mathbb{F})$ satisfy the Morse relations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Given sequences $(\mu_k)_{k\geq 0}$ and $(\beta_k)_{k\geq 0}$ in $\mathbb{N} \bigcup \{+\infty\}$, they satisfy the *Morse relations* if \exists a formal power series $Q(t) = \sum_{k\geq 0} q_k t^k$ with coefficients in $\mathbb{N} \bigcup \{+\infty\}$ such that:

$$\sum_{k\geq 0}\mu_k t^k = \sum_{k\geq 0}\beta_k t^k + (1+t)Q(t).$$

Strong Morse relations $\mu_0 > \beta_0$.

. . .

Weak Morse relations

$$\mu_{1} - \mu_{0} \geq \beta_{1} - \beta_{0}
\mu_{2} - \mu_{1} + \mu_{0} \geq \beta_{2} - \beta_{1} + \beta_{0},$$

 $\mu_{\mathbf{k}} \geq \beta_{\mathbf{k}}$

Example. *X* top. space, $(X_n)_{n\geq 0}$ filtration of *X*, $\mu_k = \sum_{n=0}^{\infty} \beta_k(X_{n+1}, X_n; \mathbb{F}), \beta_k = \beta_k(X, X_0; \mathbb{F})$ satisfy the Morse relations. In particular, $\beta_k(X, X_0; \mathbb{F}) \leq \sum_{n=0}^{\infty} \beta_k(X_{n+1}, X_n; \mathbb{F})$

< ロ > < 同 > < 三 > < 三

 Assume there is only a finite number of distinct prime closed geodesics γ₁,..., γ_r

Image: A math

B 5 4 B

- Assume there is only a finite number of distinct prime closed geodesics γ₁,..., γ_r
- Then all critical orbits are isolated, can use Morse theory

- Assume there is only a finite number of distinct prime closed geodesics γ₁,..., γ_r
- Then all critical orbits are isolated, can use Morse theory
- For each k = 1,..., r, if μ(γ^N_k) is bounded, then the tower (γ^N_k)_{N∈ℕ} contributes only to the low dimensional relative homology of the sublevels of f
Proof of the nondegenerate case Sketch of proof:

- Assume there is only a finite number of distinct prime closed geodesics γ₁,..., γ_r
- Then all critical orbits are isolated, can use Morse theory
- For each k = 1,..., r, if μ(γ^N_k) is bounded, then the tower (γ^N_k)_{N∈ℕ} contributes only to the low dimensional relative homology of the sublevels of f
- If µ(γ^N_k) is not bounded, then by the linear growth, the tower (γ^N_k)_{N∈ℕ} contributes a bounded number of times to the relative homology of fixed dimensions of the sublevels of *f*.

くぼう くきり くきり

Proof of the nondegenerate case Sketch of proof:

- Assume there is only a finite number of distinct prime closed geodesics γ₁,..., γ_r
- Then all critical orbits are isolated, can use Morse theory
- For each k = 1,..., r, if μ(γ^N_k) is bounded, then the tower (γ^N_k)_{N∈ℕ} contributes only to the low dimensional relative homology of the sublevels of f
- If µ(γ^N_k) is not bounded, then by the linear growth, the tower (γ^N_k)_{N∈ℕ} contributes a bounded number of times to the relative homology of fixed dimensions of the sublevels of *f*.
- Apply the Morse inequalities to the filtration $\Lambda M = \bigcup_{n \ge 1} f^{c_n}$ to get a uniform upper bound on the Betti numbers of ΛM , getting a contradiction.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof of the nondegenerate case Sketch of proof:

 If µ(γ^N_k) is not bounded, then by the linear growth, the tower (γ^N_k)_{N∈ℕ} contributes a bounded number of times to the relative homology of fixed dimensions of the sublevels of *f*.

This point does not work in the degenerate case

글 노 네 글

Problem. The contribution to the relative homology of the sublevels at a degenerate critical point occurs at a finite number (but *arbitrarily large*) of dimensions

< A >

A B > A B >

Problem. The contribution to the relative homology of the sublevels at a degenerate critical point occurs at a finite number (but *arbitrarily large*) of dimensions

If $\mu(\gamma^N)$ is not bounded, one needs to find a uniform bound to the dimension of the homological invariant

Problem. The contribution to the relative homology of the sublevels at a degenerate critical point occurs at a finite number (but *arbitrarily large*) of dimensions

If $\mu(\gamma^N)$ is not bounded, one needs to find a uniform bound to the dimension of the homological invariant

Remember the Tricky Lemma? Now, it is needed an

Even Trickier Lemma

If γ_1 is the iterate of γ_2 and if $nul(\gamma_1) = nul(\gamma_2)$, then the homological invariants of γ_1 and γ_2 are (essentially) the same.

Problem. The contribution to the relative homology of the sublevels at a degenerate critical point occurs at a finite number (but *arbitrarily large*) of dimensions

If $\mu(\gamma^N)$ is not bounded, one needs to find a uniform bound to the dimension of the homological invariant

Remember the Tricky Lemma? Now, it is needed an

Even Trickier Lemma

If γ_1 is the iterate of γ_2 and if $nul(\gamma_1) = nul(\gamma_2)$, then the homological invariants of γ_1 and γ_2 are (essentially) the same.

Paolo Piccione (IME–USP) Closed geodesics in stationary Lorentzian February 6th, 2007 29 / 29

(a)

æ

- Establish generic properties of the Lorentzian geodesic flow
 - Main problem: Jacobi differential operator not elliptic

< A

- Establish generic properties of the Lorentzian geodesic flow
 - Main problem: Jacobi differential operator not elliptic
- Weaken topological assumptions on the Cauchy surface (compactness, simple connectedness)

< A >

- Establish generic properties of the Lorentzian geodesic flow
 - Main problem: Jacobi differential operator not elliptic
- Weaken topological assumptions on the Cauchy surface (compactness, simple connectedness)
- Study (causal) geodesics satisfying more general boundary conditions

< A >

- Establish generic properties of the Lorentzian geodesic flow
 - Main problem: Jacobi differential operator not elliptic
- Weaken topological assumptions on the Cauchy surface (compactness, simple connectedness)
- Study (causal) geodesics satisfying more general boundary conditions
- Ultimate challenge: remove the assumption of stationarity
 - Need a more sophisticated Morse theory, capable of dealing with critical pts of *truly* infinite index.

イロト イポト イラト イラト

-

- Establish generic properties of the Lorentzian geodesic flow
 - Main problem: Jacobi differential operator not elliptic
- Weaken topological assumptions on the Cauchy surface (compactness, simple connectedness)
- Study (causal) geodesics satisfying more general boundary conditions
- Ultimate challenge: remove the assumption of stationarity
 - Need a more sophisticated Morse theory, capable of dealing with critical pts of *truly* infinite index.

THANKS FOR YOUR ATTENTION!!

These notes will be available on my web page:

http://www.ime.usp.br/~piccione

-

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト