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Preface

This is the textbook for a short course given by the authorinduhe 23rd
Brazilian Colloquium of Mathematics, held at thestituto de Materatica Pura e
Aplicada (IMPA), Rio de Janeiro, in July 2001. The purpose of the ceussto
introduce the reader, supposedly a second or third yeaugradtudent in Math-
ematics, to the main ideas and techniques of Morse Theowelss some of its
most well known applications in Geometry and Analysis.

Even though the lectures of the course are planned to be giyeortuguese,
the choice of english for this textbook is due to the hopetiinete notes may serve
for a wider purpose and that they could be used elsewherés tmirent form, the
presentation of the material is very far from being optindlaie partly to the short
amount of time in which the book had to be written.

The central idea of Morse Theory is to describe the relatignbetween the
topology of a differentiable manifold and the structure ofical points of a real
valued differentiable function defined on it. The choicehi$ tsubject for a course
was based on two main reasons. First and foremost, Morseryl liedoth an
elegantand apowerfultheory; such aspects of the theory could not be described
better than it was done by the words of Richard Palais (5&€)

The essence of Morse Theory is a collection of theorems itbescr
ing the intimate relationship between the topology of a rivdahi
and the critical point structure of real valued functiondlemman-
ifold. This body of theorems has over and over proved itselia
one of the most powerful and far-reaching tools availabteaft
vancing our understanding of differential topology andlgsia.
But a good mathematical theory is more thast a collection of
theorems; in addition it consists of a tool box of related cagn
tualizations and techniques that have been gradually ha&#mp
to help understand some circle of mathematical problemgs#&lo
Theory is no exception, and its basic concepts and consingct
have an unusual appeal derived from an underlying geonreitic
urality, simplicity and elegance.

The second reason that motivated the choice of this sulgeouf short course
is the fact that Morse Theory is a truigterdisciplinary issue. As it will be evi-
dent to the reader of this booklet, an enormous amount céréifit results from a
wide variety of areas of Mathematics play some role in themyieGeneral and
Algebraic Topology, Homological Algebra, finite and infeitlimensional Differ-
ential Geometry, Real and Functional Analysis as well asestimaory of ODE’s

ix
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participate in the construction of this magnificent “tookhoAs a result, the the-
ory offers many different aspects and it can be employed useleeral viewpoints
to obtain results of interest by mathematicians workingiffecent areas. For in-
stance, typically an analyst would use Morse Theory to datex existence and
multiplicity results for solutions of ordinary or partialférential equations satis-
fying suitable boundary conditions, and that can be desdrds solutions of vari-
ational problems. Under a different perspective, a typgsaimeter’'s approach to
Morse Theory is to use the property of some well known fumstito obtain results
concerning the topology and the geometry of the underlyiagifold.

Morse Theory can be thought as one of the keystones of GiRmiat Theory,
which, very roughly speaking, is a theory devoted to findimgptogical invariants
for the critical points of a smooth map and to developing méapies for estimating
the value of such invariants. The nice feature here is thadt mesults of Criti-
cal Point Theory have an analytical statement and a gearaktunterpart. Just
to mention a very elementary example of what a Critical P@inéorem looks
like, one can think of the following statement: ‘M is a compact manifold and
f : M — R is a smooth map, thefi has at least two critical points”; namely, the
maximum and the minimum. A geometric counterpart of the alstatement is the
following: “Assume that)/ is a manifold such that every smooth M/ — R has
at least two critical points. Thel/ is compact.” In a sense, the topological prop-
erty of compactness for the manifold produces the invatiava” for the number
of critical point of just abouainy smooth map, and vice versa.

The very basic idea of Morse theory is the following.

Given a smooth may : M — R, with M, say, a compact manifold, then
the sublevely® = f~!(]—o0,a] ) andf® = f~*(]—oc,b] ) are homeomorphic if
there is no critical value of in the intervalla, b]; on the other hand, if there is a
critical valuec € ]a, b[, then f? is obtained, as a topological space, by “attaching”
to £ one cell for each critical point ifi—*(c), whose dimension equals the index of
such critical point. Since the operation of attaching alogits boundary produces
an effect in the homology of a topological space, the presamd the quantity of
critical points having a given index can be measured by loplat the homology
groups ofM.

In this book we have made an effort to offer a presentatiorhefdifferent
aspects of the subject, both in the general theory and inhbEe of its applica-
tions. We hope we have been able to pass to the reader atheafsavor of all
the ingredients of the theory, whichever his/her persamstes might be. We will
consider a major accomplishment of our efforts if we knew this book has man-
aged to motivate an analyst to learn about the elegant cmtisins of Riemannian
Geometry and Algebraic Topology, or to convince a geomatartopologist to get
involved into the delicate estimates that produce poweettihniques in Real and
Functional Analysis. We must confess that, during the ngitf the book we have
often opted for mathematical statements or arguments thatl have a stronger
impact on the reader’s curiosity, rather than following thest direct path to the
desired conclusion.
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The book was written with a purely didactical purpose, astie®s first four
chapters where the classical theory and some well knowricapiphs are dis-
cussed. Keeping in mind a typical student’s exigences, we haade our best
to make a self-contained text and to providanytechnical details of pretty much
all the statements and claims made. In order to get the reade directly in-
volved into the development of the theory (and also in ordeetove excessive
burden from some technical proofs) we propose a series otiegs at the end
of each one of the first four chapters. The results obtaingddrexercises are in
general secondary to the main development of the theoryehenvin the course of
some proofs we have made explicit use of results mentionesh@rtne exercises.
Usually, in these circumstances we have presented theisxavith a suggestion
of consecutive steps to be followed to get to its solution.

Caring about th&isual aspecof the material of the book was one of our origi-
nal goals, which ended up suffering very much from time latditn. Many figures
that ought to have been inserted to visualize some techmioafs are still missing,
and in some parts of the text we may even have forgotten tovemsderences to
some figure which in fact never came to life. We very regrstfapologize with the
reader for such failure. On the other hand, we have made avease of diagrams
to visualize compositions of maps or even association o€epts, as customary
in modern Algebraic Topology textbooks. Some boring “folankiunting” sort of
proof has been occasionally replaced by a more appealiagain chasing” pro-
cedure, and in some parts of the text we have made of “diagoammuitativity” a
real philosophy of life; the choice of this language is mgiematter of personal
taste.

The material of the book is organized according to the falhgoutline. Chap-
ter 1 contains everything the reader needs to know conagthimalgebraic topo-
logical notions involved in Morse Theory: starting from thery basic definitions
and properties of singular homology, relative and local blagy, orientation on
topological manifolds to the theory of CW-complexes andrthemology. The
results that are more relevant in the context of Morse Thewmeycontained in
Section 1.16, where we prove the relations between the Battibers of a CW-
complex and its cellular structure. Propositions 1.16.196.20, 1.16.21 and
1.16.22 constitute the body of what could be called a “topiclal Morse Theory”.

The basic notions of Morse Theory for real valued maps on emnmani-
folds are discussed in Chapter 2. After a brief review ofediéhtial and Riemann-
ian geometry, as well as some basic notions concerning mesaand densities on
manifolds, we study the local and global properties of theated Morse func-
tions which are smooth maps whose critical points are nondegenerhe kernel
of Morse Theory consists of the so callddformation LemmagSections?? and
2.5), that tell us how the topology of the sublevels of a Mdtsgtion changes
when passing through a non critical interval and throughtecal value. The gen-
eral theory is introduced by a simple and instructive exangiven by the height
function on a torus (Section 2.2). As observedlaq, this is everyone’s favorite
example, because it has the nice features of being nonltreaay to understand
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and sufficiently general to describe satisfactorily all dligtinctive characteristics
of the theory.

In Chapter 3 we discuss in some details three classicalcgpigins of Morse
Theory in Submanifolds Theory: a generalized Gauss-Baheerem for even di-
mensional compact manifolds (Corollary 3.3.3), the theooé Chern and Lashof
(Theorem 3.4.1), and a characterization of Riemannian irsiores with non neg-
ative isotropic curvature (Theorem 3.6.14).

In Chapter 4 we discuss the generalization of Morse Theargrwoth maps
defined on non compact manifolds. Such generalized theddg fimr maps that are
bounded from below (or from above) and that satisfy a suatédsthnical condition,
known as the Condition (C) of Palais and Smale. Moreovenrdeicto avoid trivial
results, the critical points of the map under considerasioould have finite indeéx
(or co-index). It is a surprising fact that, once these aggioms are established,
Morse theory is extended at once from the case of compactfoidsito the case
of infinite dimensional Hilbert manifolds. Adapting the proofs of all the results of
Morse Theory for this general situation is a matter of mirtmar@yes, mostly sim-
ple restatements of results in a form which makes sense infimité dimensional
Hilbertian setting. It would be a legitimate doubt to ask s&lewhy bothering
about Morse Theory in compact manifolds, which causes aeagssary dupli-
cation of results (compare the statements of the resulteatid® ?? with those
in Sections?? and??!) when a full extension of the theory can be presented by
such minor adaptations. Our decision of splitting the tii@éora seemingly irra-
tional way was based on two considerations. In first pla@e¢ctimpact case can be
handled with relatively elementary notions of differehtiaometry and topology,
without assuming knowledge of sophisticated technigues filbert space and
Hilbert manifold theory. Observe that using the Morse Tldor smooth maps on
compact manifolds one is able to obtain deep and non triegllts (as for instance
the theorem of Reeb, Theorem 2.3.13) in a form which is addes® a wider au-
dience. Secondly, given the didactical purpose of the baekielt that treating the
compact case first and leaving the non compact case to afaterwould lead the
student to comprehension by a gentler approach.

In Chapter 4 we also discuss one of the most well known agpitaof infinite
dimensional Morse Theory, which is the study of the Riemameinergy functional
in the space of curves joining two fixed points in a finite digienal Riemannian
manifold. It is well known that the critical points of thisrational are precisely
the geodesics joining the two points, and Morse theory is tlaise gives highly
non trivial global results in Riemannian geometry. Givea importance of this
example, and considering also a certain lack of rigorositye classical literature,
we have treated the subject with a very special care of dihieal details. We give
a somewhat original approach to the study of the manifolacture for the space

Lthis is due to the disturbing occurrence that infinite dinemes Hilbertian ballsare indeed
retractible onto their boundaries (Propositi®#), and therefore the operation of attaching an infinite
dimensional cell produces no effect in the homology of tHeesels of the map.

2Observe that such manifolds are not elarally compadt
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of curves in a differentiable manifold satisfying suitabdgularity assumptions by
introducing the notion obne-parameter family of char@®efinition 5.1.7). We
have preferred this approach which seems more suited fale&tital presentation
than the classicalector Bundle Neighborhoaapproach of Palais (se&16, 119);
however, it must be observed that the two methods are eskbgm=ifjuivalent. We
then prove the details of the smoothness of the energy imadtiand the Palais—
Smale condition, obtaining the desired results.

In Chapter??we give a short and informal presentation of some recenttsesu
obtained by the authors and some collaborators concerhentylorse Theory for
geodesics in manifolds endowed with a non positive defingg&im The idea here
is simply to show how the theory can be used successfullyialsocumstances
when the most crucial assumptions of the infinite dimensgidarse theory do
not quite “fit as a glove” in the variational setup. For ingtanin the case of non
positive definite metrics, the energy functional does satisfy the Palais—Smale
condition, it isnot bounded from below, and it istrongly indefinitei.e., all its
critical points have infinite index. In the case pdirtially definite positive met-
ric tensors (the so-calleslib-Riemannian metrigsthe main problem in applying
techniques from Morse Theory is given by the fact that, inegah the space of
trial paths for the variational problem has singulariti€fapter??is written under
a totally different perspective from the previous chaptarel most of the proofs
are either simply sketched or totally omitted. The readeukhalso be warned of
the fact that some minor discrepancies between the notatied in this chapter
and that used in the previous chapters may occur occasjionall

Appendix E was written by Claudio Gorodski; the author gisesurvey and
detailed bibliography on some developments of the theotheko-called “tight”
and “taut” immersions in Riemannian manifolds. These insiogis are character-
ized by the property of “minimizing” (in a suitable senseg thumber of critical
points respectively for the height and the distance funstithat are Morse func-
tions. This is a very active field of research today and it &hattract the attention
of graduate students and researchers who work in the aredfefddtial Geome-

try.

The subject of Morse Theory is far from being exhaustivegated in this
book; many important aspects of the theory have not evenineationed in these
pages. Most notably, we have not touched at all the issujoivariant Morse
Theory, which studies situations where functional is irairby a group of trans-
formations of the underlying manifold. Applications of subeory are ubiquitous
both in Analysis and in Geometry; as an example, we mentioa the celebrated
result of Gromoll and Meyer on the existence of infinitely malosed geodesics in
a broad class of compact Riemannian manifol@8]jf We have also omitted men-
tions to several applications of Morse Theory to the thedistamiltonian systems
and Symplectic Geometry, particularly with the works of Gny, E. Zehnder,
H. Hofer, D. Salamon, I. Ekeland, A. Floer, M. Struwe, Y. Laargd many others.
Extensions of Morse Theory to the case of Finsler (Banachjifislds have not
been touched upon in this book. It should also be given a metdi the existence
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of an alternative approach to Morse Theory, not discusselisnbook, which is
known asMorse homology The Morse homology approach consists in studying
the gradient flow lines connecting the critical points of osth functionalf on

a Riemannian manifold/: under generic assumptions, they constitute a manifold
whose dimension equals the difference between the Morsaésdf the two criti-
cal points, and their combinatorics can be used to build gotexwhose homology
coincides with the homology df/. Most of the interest of such an approach relies
in its infinite dimensional generalizations: in some sitwad the spaces of gradient
flow lines connecting two critical points are finite dimemsg also if the critical
points have infinite Morse index, so this approach can be inseakes where stan-
dard deformation arguments are not applicable.

In spite of these omissions, we have nevertheless triecbtode a sufficiently
general bibliography, in which the interested reader may $unggestions for fur-
ther reading on these subjects. Hopefully, future versadrkis book will reduce
the amount of such regretful gaps by including a discussf@ome of the above
mentioned topics.

Thanks are due to many friends and colleagues who have gingrod to us
during the writing of these notes.

Our colleague Fabio Giannoni has offered mathematical atigluring dif-
ferent stages of the writing, since the beginning until teeyvend. He is a deep
connaisseunf Morse Theory and very many of its modern applications irthiva
ematical Analysis, and he is probably the main responsireniaking two of us
addicted to the beauties of the theory. Particularly, Falionstant support and
encouragement to the second author weay beyond the call of duty. We thank
him a lot for doing so.

Our colleague Claudio Gorodski has written a beautiful appe(Appendix E)
about the so called “tight” and “taut” immersions in Riem@ammanifolds. His
contribution is extremely valuable and it gives the book sidctive touch of so-
phistication we are so proud of.

Our old friend Antonella Marquez has helped us finding theemirtext of
the Kant’s citation which was used asertureof the book; we appreciated very
much her enthusiastic contribution to the work. In the citedlds, the philosopher
indicate the two things that cause him a profound admiratéostarry sky above
him and the moral law inside him. We like to share his pointiefw

Our own institutions, théJniversidade de & Pauloand theUniversidade
Estadual de Campinaprovide the most adequate environment to do, read and
write Mathematics. All the people of the Differential Gednyegroup at USP
and Unicamp have surrounded us with constant support aneéaafion for our
work; we wish to thank each and everyone of them. Our statdeatedal agencies
that support the scientific research, FAPESP, CNPq and CAR&% provided
funds and equipment to carry on our research. We gratefekyna@vledge their
generosity.

We wish to take the opportunity for expressing our gratitta@ée organizers
of the 23rd Brazilian Colloquium of Mathematics who gave lus opportunity of
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teaching the course and publishing these notes. Parfigula want to thank them
for their patience and willingness to tolerate the greaaylelith which the final
manuscript of these notes was delivered.

Finally, the second author wishes to express his deepugtatto his son Pietro
and his wife Diacuy for constantly reminding him that thesdifie beyond Morse
Theory.

The authors
Sao Paulo, June 23rd 2001.
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... der bestirnte Himmeiber mir
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CHAPTER 1

Singular Homology and CW-complexes

1.1. Short Review of Abelian Groups

A few generalities about abelian groups should be studiddrdave enter
the territory of homology theory. General group theory i$ mdevant here; only
abelian groupsare needed. In fact, when studying homology theory and hagrol
ical algebra, we rarely think of abelian groupsgasupsbut rather a¥-modules
more explicitly, the binary operation of an abelian groumlisays denoted by a
plus sign, the neutral element is always denotedzbyo and the inverse element
of g is denoted by—g. If g is an element of an abelian groGpandn € Z is an
integer we can as usual define the produgt G (see Exercise 1.1). roup ho-
momorphisnior, more simply, &@omomorphismbetween abelian grougs, H is
amapf : G — H such thatf (g1 + g2) = f(91) + f(g2) forall g1, g2 € G; group
homomorphisms are automaticaltlinear, i.e., f(ng) = nf(g) for all n € Z,

g € G. We repeat below, in the context of abelian groups, someitiefis that are
probably better known by students in the context of linegelta. ByG we will
denote an arbitrary abelian group.

1.1.1. DEFINITION. A family (n;);er of integer numbers is callegssentially
zeroif the set{i € I : n; # 0} is finite. Given an essentially zero family; )icr
of integer numbers and a family; );c; of elements of then the sund _, _; n;g;
is well-defined in the obvious way and it is calledimear combinationof the
family (g;)icr. The family* (g;)sc; is calledlinearly independenif Y icrmigi =0
impliesn; = 0 for all i € I, a family that is not linearly independent is called
linearly dependentThe family(g;);c; is calledgeneratingfor G if every element
of G is a linear combination of the family (see also Remark 1.&l2w). A family
(gi)ier that is both generating fak and linearly independent is callecbasisfor
G, in this case the abelian grodpis also said to béree over (g;);c7. An abelian
group that admits a basis is calledree abelian group

Iwe in principle distinguish theamily (gi)icr fromtheset{g;}icr = {g: : ¢ € I} inthe sense
that the family keeps some extra information, namely, tidexng map — g;. It is quite possible
for instance thay; = g; for ¢ # j, i.e., that a family contains “repeated elements”, whilehsu
repetition is obviously lost when we look at the correspagdset. On some occasions, however,
we will (with a little abuse) use in the context of sets, notighat were in principle defined only for
families (and vice-versa). Observe, for instance, thaf#maily (g;):c is linearly independent then
the mapi — g; is indeed injective, so that ignoring the difference betwte family(g:):cr and
the set{g; }:c1 is not so bad.
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In linear algebra the term “free” is rarely used since anytaegspace admits a
basis. It is quite easy though to give examples of abelianggdhat are not free
(see Exercise 1.9).

1.1.2. REMARK. One usually defines thepanof a subset of an abelian group
G to be the smallest subgroup 6f containing such set. A familyg;);cs is thus
generating folZ when the span of the séy; : i € I} equalsG (see Exercise 1.5).

Keeping in mind the analogy with linear algebra, the follogishould be no
surprise:

1.1.3. RROPOSITION LetG, H be abelian groups. Given a badig;);c; for
G and an arbitrary family(h;);c; of elements off then there exists a unique
homomorphisny : G — H such thatf(g;) = h; forall i € I.

PROOF Definef by f( > ,c;nigi) = ;e nihi. The proof thatf is well-
defined and is indeed a homomorphism is straightforward. a

The proposition above can be nicely pictured in the langudg®mmutative
diagrams as follows. Lef/, H be abelian groups and;);c; a basis forG. De-
noting by A the set{ g; }:c; then Proposition 1.1.3 says that givenaahitrary map
fo: A — H, there exists a unigue homomorphigm G — H that extendsfy,
i.e., that fills in the place of the dotted arrow in the comniwsadiagram:

o ton

inclusi
mcusmnT /f:

A

Conversely, the validity of the property above implies tha};c; is a basis ford
(see Exercise 1.11).

A basic notion needed in the construction of singular hogppliheory is that
of a free abelian group spanned by a set. The idea is the folfpwone starts
with an arbitrary sed where no operations are defined. Then, one wants to create
an environment where expressions like- b with a,b € A make sense; more
specifically, one wants an abelian groGpthat contains the set in such a way
that A form a basis folG. This is achieved in the following:

1.1.4. CEFINITION. Let A be a set. Théree abelian group spanned by is
the groupFree[A] consisting of all mapg : A — Z that areessentially zeroi.e.,
such that the sefa € A : f(a) # 0} is finite. The group operation iRree[A]
is pointwise additioni.e., (f1 + f2)(a) = fi(a) + f2(a) for all « € A and all
f1, f2 € Free[A]. We think of A as a subset dfree[A] in the following way: each
a € Ais identified with the map that carries\ {a} to zeroanci to 1 € Z.

By consideringA as a subset dfree[A] in the way explained above, an ele-
mentf € Free[A] is written as:

F=Y flaa;

acA
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it is thus very easy to see that is indeed a basis foFree[A]. Typically, the
elements ofree[A] are thought of as finite linear combinations of elementsl of
and not asZ-valued maps om. Actually, the only important thing to be kept in
mind aboutFree[A] is that it is a free abelian group over. The use ofZ-valued
maps onA is just a “trick” to produce a set-theoretic rigorous couastion for
Free[A]. In Exercise 1.12, the reader is asked to show Fnet¢[A] is actually the
uniquefree abelian group ovet, up to isomorphisms (in a suitable sense).

When studying algebraic topology and homological algebtas frequently
to deal with lots of abelian groups and homomorphisms andrakyelations be-
tween such objects. The use of commutative diagrams tolizasusuch relations
is unavoidable. The terminology we introduce below is aeotmportant tool to
describe relations between groups and homomorphisms.

1.1.5. DEFINITION. If G4, ..., G, are abelian groups anf] : G; — G;.1,
i=1,...,n — 1 are homomorphisms then we say that the sequence:
el f1 Gy f2 fi—1 G fi Gi—i—l fit1 fn-1 G,

isexactatG; (1 = 2,...,n — 1) if Ker(f;) = Im(f;—1). The sequence above is
calledexactif it is exact at evenyG;,i = 2,...,n — 1.

A particularly important type of exact sequences are thet &xact sequences;
ashort exact sequends an exact sequence of the form:

(1.1.1) 0—a L, a0

whereG1, G2, G3 are abelian groupd;, fo are homomorphisms arfildenotes the
one element group0} (obviously there is no need to explain who the unlabelled
arrows are!). Exactness of (1.1.1) means thats injective, f5 is surjective and
thatKer(f2) = Im(f1). If G is an abelian group and C G is a subgroup oty
then:

(1.1.2) 0—H - G- G/H—0

is a short exact sequence, wheéreH — G denotes inclusion angl: G — G/H
denotes the canonical quotient map. The short exact seg&ric?) is essentially
the most general type of short exact sequence, in the foilpwense: if (1.1.1) is
exact,G = Gy andH = Im(f,) thenH is a subgroup o7, f; gives an isomor-
phism betweerG; and H and, sinceéKer(f2) = H, f2 induces an isomorphism
from G/H ontoGs. The mere existence of isomorphisiis = H, G3 = G and
Gs = G/H doesn't quite say that (1.1.1) and (1.1.2) are “equivaleetjuences
for the existence of such isomorphisms does not relate thps myapearing in both
sequences. Observe though that the particular isomorphigenhave described
give us a commutative diagram:

0 LI N LA 0
Nl ! lN
¥
0 el G G/H —0

q
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the existence of such diagram is the correct notion of etpnieg for exact se-
quences!

It is well-known from linear algebra that a subspace of aaespace is al-
ways a direct summand, i.e., admits a complementary subsfd® correspond-
ing statement in the theory of abelian groups is not trué; i§ an abelian group
and H C G is a subgroup then there may not exist a subgréupC G with
G = H @ K, in fact, it is even possible that be not isomorphic to the direct
sumH & (G/H) (take for instanc&sy = Z and H = 2Z). These considerations
imply that it is not in general possible to determine the rfedgtoupG- of a short
exact sequence (1.1.1) (up to isomorphism) only from therkedge ofG; and
(Gi3. In some situations though, one has an extra bit of infoironasibout (1.1.1)
that implies thatz, = G @ Gjs; this is the subject of the following:

1.1.6. DEFINITION. We say that a short exact sequence (1.4plijsif one of
the following equivalent conditions hold:

e f1 has a left inverse that is a homomorphism, i.e., there egistsmo-
morphism¢ : Go — G with ¢ o f; = Idg,;

e Im(f1) = Ker(f2) is adirect summand ¥, i.e., there exists a subgroup
K Cc Gwith G =1Im(f1) ® K = Ker(f2) ® K;

e f5 has aright inverse that is a homomorphism, i.e., theresgistomo-
morphismy : G3 — G with f 0 ¢ = Idg,.

The equivalence between the three conditions in the defmabove follows
directly from the result of Exercise 1.16.

The following result gives a sufficient condition for a shexact sequence to
split:

1.1.7. RRoPOSITION Any short exact sequen¢k.1.1)with G5 free splits.
ProoF Follows directly from the result of Exercise 1.17. O

An abelian group> is said to befinitely generatedf it admits a finite gener-
ating family. We recall the following theorem from elemantaourses of group
theory:

1.1.8. THEOREM (classification of finitely generated abelian groupE\ery
finitely generated abelian grou@ is isomorphic to a direct sum of the form:

ZGBZEB---@Z@ZPM EBZpaz D DL ey,
1 2 Py

wherep; > 2 is a prime andy; is a positive integer foi = 1, ..., k. Moreover,
the number of summands and the number of summanids. (for a fixed prime
p > 2 and a fixed positive integer) is uniquely determined b§.

PROOF See 5, Section 3.8]. O

1.1.9. DEFINITION. The Betti numberof a finitely generated abelian group
G is defined to be the number of summarisn the decomposition given by
Theorem 1.1.8. If5 is not finitely generated, we define the Betti numbe(afo
be+occ.
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We finish this section with a short exposition of the notiothaf tensor product
of two abelian groups. We remark that this material won’'t becluntil we study
homology with arbitrary coefficients in Section 1.13.

Most students begin to learn the concept of tensor produttemsors in lin-
ear algebra courses, in the context of finite dimensiondl (macomplex) vec-
tor spaces. In such context, tensors are often identifielal nvitlti-linear maps or
(when basis are chosen) with multi-indexed matrices. Sumhlgications already
fail when one studies tensor products of infinite dimendiamegtor spaces and
they are far away from reality in the context of (possibly free) modules over
arbitrary rings. We will be concerned below with the caseernfsbr products of
Z-modules, i.e., abelian groups; we develop a bit of the geribeory of tensor
products of general modules in Exercises 1.21 and 1.22.

Although the definition of tensor product may seem a bit awkiwehen stud-
ied for the first time, the use of tensor products is spreadrat@everal fields of
mathematics. For now, let us just say that the basic matiwdtr the definition of
a tensor product is the possibility of identifying bilineaaps with linear maps. In
Section 1.13, we will make use of tensor products to give galahically elegant
treatment of the theory of singular homology with arbitrapefficients.

If G1, Gy andH are abelian groups, we recall thatamap G; x Gy — H
is calledbilinear (or Z-bilinear) if for every g1 € Gy, g2 € G2 the mapsB(¢1,-) :
Go — H andB(-, g2) : G1 — H are group homomorphisms.

1.1.10. D=FINITION. Let Gy, G4 be abelian groups. #ensor producbf G
and G is a pair(T,b) whereT is an abelian group antl: G; x Gy — T'is
a bilinear map such that the following property holds: gieenarbitrary abelian
group H and an arbitrary bilinear map : G; x G, — H then there exists a
unique homomorphisn® : 7' — H such that the diagram:

G x Gy 2> p

T
b e
" B

T
commutes.

1.1.11. LEMMA (uniqueness of tensor productf.(7',b) and (T”,b") are both
tensor products of two abelian groug$, and GG, then there exists a unique iso-
morphism¢ : T — T’ such that the diagram:

(1.1.3) G1 x Gy

T

T/

| IR

commutes.

PROOF Sincel' is bilinear and(7, b) is a tensor product aff; andGs, there
exists a unigue homomorphisgfor which (1.1.3) commutes; our problem is to
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prove thaty is actually an isomorphism. Singeis bilinear and(7”,?’) is a ten-
sor product ofG; andG», there exists a uniqgue homomorphisgirfor which the
diagram:

(1.1.4) Gl X G2
/ K
/
T w T

commutes. We show that andy are mutually inverse. The commutativity of
(1.1.3) and (1.1.4) imply easily that also the diagram:

commutes. The diagram above still commutes if we replacey in the dashed
arrow by the identity off’; but by the definition of tensor product, the map on the
dashed arrow is supposed to be unique and s@ = Id. An analogous argument
shows thaty o ¢ = 1d, concluding the proof. O

We now give an explicit construction of a tensor product af aelian groups
G1 andG,. Let F = Free[G1 x (3] be the free abelian group spanned by the
setG; x Go; let R C F be the subgroup spanned by the elements of the form
(91 + 91,92) — (91,92) — (91, 92) and (g1, 92 + g5) — (91,92) — (g1, 95) with
g1,9; € G1andgy, g, € G. We setlG; @Gy = F/R and we defing : Gy xGy —
G1 ® Ga by b(g1,92) = 91 ® g2, Whereg; ® go denotes the coset ifi/ R of the
element(g;, g2) € F'; below we will denote by the symbab the mapb. We have
the following:

1.1.12. LEmMMA (existence of tensor product)lhe pair (G; ® G3,®) is a
tensor product of7; and G-.

PROOF Observe first that the mgp,, g2) — g1 ® g2 is indeed bilinear. Let
thenB : G; x Gy — H be a bilinear map, whetH is an arbitrary abelian group;
we have to show that there exists a uniqgue homomorpBsmG; @ Gy — H
such that

(1.1.5) B(g1 ® g2) = B(g1,92),

forall gy € Gy, g2 € G5. To prove the uniqueness @, observe that (1.1.5)
determinesB on the set{91 ®ge2:91 € Gy, g2 € Gg} which is a generating set
for G (because is surjective and the pai(g, go) generate’ = Free[G1 x G3]).
Finally, to prove the existence d8, observe first thaf3 extends uniquely to a
homomorphismB : F — H; the bilinearity of B implies easily thats vanishes
on the subgrougk of F and therefore defines a homomorphighon the quotient
F/R = G ® G5. Obviously B satisfies (1.1.5). O
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From now on we will callG; ® G2 the tensor product of5; and Gs; we
may think of the construction given above as the definitioteasor product, but
as Lemma 1.1.11 shows, any other construction of a tensaoiuptavould yield
essentially the same object. The important property oféhedr product is the one
given in Definition 1.1.10; namely, that given an abelianugré/ and a bilinear
mapB : G; x Go — H then there exists a uniqgue homomorphiBm G, ® G —
H such that (1.1.5) holds for &}y € G4, g2 € Go.

1.1.13. EMARK. As it was observed in the proof of Lemma 1.1.12, elements
of the formg; ® go with g1 € G4, g2 € G9 form a generating set for the tensor
productG; ® Gs. Itis not in general true however that all the element&of Go
are of the formg; ® g2 (see Exercise 1.19). Elements of the fosm® go are
usually calledsimple tensorslt is also not true in general that ® g2 = ¢} ® g5
impliesg, = ¢4 andg, = ¢4 (for instance) ® g2 = g1 ® 0 = 0 for all g, € G1,
g2 € G3). In fact, there is no general simple algorithm to decide tivbietwo
linear combinations of simple tensors are equal (unfésandG, are free — see
Exercise 1.20)

1.1.14. XAMPLE. The tensor product ® Z can be naturally identified with
G; more explicitly, the homomorphism:

(1.1.6) Gogr—gR1eGRZ

is an isomorphism. To prove that, we construct explicitlyimrerse for (1.1.6).
Let B : G®Z — G be the uniqgue homomorphism that corresponds to the bilinear
map B(g,n) = ng, i.e., B has the property thaB(g ® n) = ng for all g € G,

n € Z. Itis obvious that (1.1.6) is a right inverse f&. We now have to check
that B(u) ® 1 = u for all w € G ® Z; but this is obvious when is a simple tensor.
Since simple tensors form a set of generatorsiap Z the conclusion follows.

Homomorphisms between abelian groups induce homomorghistween the
corresponding tensor products. More explicitly, we haweftilowing:

1.1.15. DEFINITION. Let f; : G; — G} and f» : G2 — G be homomor-
phisms. Thdensor producof f; and f> is the unique homomorphistfi ® f :
G1 ® Gy — G ® Gy such that(f1 @ f2)(g1 ® g2) = fi(g1) ® f2(g2) for all
g1 € G1, g2 € Ga.

The fact thatf; ® f5 is well-defined follows from the observation that the map:

G1 X G2 3 (91,92) — f1(91) ® fa(g2) € G1 ® GY
is bilinear.

1.2. Singular Homology

The basic idea of algebraic topology is to associate algebtauctures to topo-
logical spaces in such a way that homeomorphic spaces porrégo isomorphic
algebraic structures. The algebraic structure (like gspupodules, vector spaces)
should capture part of the geometric properties of the maigopological space. In
general, information will be lost during the passage fromttbpological space to
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the algebraic structure and that’s pretty much the key asjeloe theory; namely,
since the algebraic structures are in general simpler tharmtiginal topological
spaces, it should be easier checking that the algebraictstes are not isomor-
phic than checking that topological spaces are not homgamwrThus algebraic
topology provides help in the (huge) problem of classifyiogological spaces up
to homeomorphisms. It can also be used to produce “cleanhitefis for no-
tions like intersection numbers of manifolds and degreesayfs; such notions are
usually defined in differential topology courses by someawhassier techniques
involving, for instance, approximation theory.

The program of associating algebraic structures to topedbgpaces goes
through two separate routdsomotopytheory anchomologytheory. The objective
of this section is to define the singular homology groups daflogical space.
There are actually several ways of associating abelianpgrtutopological spaces
that go by the name of “homology theories”; such “homologgadtties” are sup-
posed to agree on “nice” spaces. Singular homology is piglihl easiest to
define and it has the advantage of making sensalfdopological spaces; it is also
very easy to prove its invariance under homeomorphissimaglicial homology
for instance, is defined only for polyhedrons and its invez@aunder homeomor-
phisms is quite hard to be proven). The definition of singhlamology though,
may look a little obscure in principle and it takes some wafobe we can actually
compute it, even for very simple spaces. Enough being saich@iivation, let's
dive into the technical stuff.

For every integep > 0 we denote by(e;)?_, the canonical basis dk? and
by e the origin of R?. The convex hull of the sefe; }?_ is denoted by\, and is
called thestandardp-simplex more explicitly:

p p .
Ap: {ZizotiEi : Zi:(]ti = 1, tz 207 'LZO,...,p},

Observe that\, consists of the single poiry = 0, A; is the unit intervall0, 1]
in R, A, is a triangle inR? and A3 is a tetrahedron ifk?; obviously, one should
picture A, for p > 4 as a “hyper-tetrahedron” iiR?. It should be pointed out
that the notation just introduced has a harmless ambigtotyy > p > i > 0, ¢;
denotes a point of botlR? andRR?. If one is bothered by that, simply identifg?
with a subspace dR? (and both of them with a subspacel®?).

We will also take this opportunity to introduce some genadhtion that will
be used throughout the book concerning balls and sphereg. ¥ we set:

_P _ . P 2 _ . P 2
B —{wERp.Zi:lxigl}, Bp_{xeRp.Zizlwi<l},

_ 1. NP o
SP = {x e R? .Zizl x; = 1},
i.e., B” is theclosed unit ballof R?, B? is theopen unit ballof R? and S? is the
unit sphereof RP+!. Observe thaB’ = B® = {0}, §° = {—1,1}; it will also
be convenient to make the convention tat' (the “—1-th dimensional sphere”)

equals the empty set. In some occasions we may also havé @bialit balls and
spheres of arbitrary radii and centers; to fix the notatioceaand for all, consider
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an arbitrary metric spadg\/, dist) and set:

Blzo;r] = {o € M : dist(z,z0) <7}, B(zo;r) = {x € M : dist(z,20) < r},
S(zo;r) = {x e M : dist(z,z0) =1},

for everyzy € M, r > 0.

Let X be atopological space. Our goal now is to define the singalardiogy
groups ofX. This will take quite a few preliminary definitions. We starith the
following:

1.2.1. DEFINITION. A singular p-simplexin the spaceX (p > 0) is a con-
tinuous magl’ : A, — X from the standarg-simplexA, to X. We denote by
S, (X) the free abelian group spanned by the set of all singuimplexes inX.
The elements o6, (X) will be calledsingular p-chainsin X.

The reader may draw a mental picture of a singplsimplex in.X as a sort
of a “curved tetrahedron” embedded . Of course, this may not in general be
a very good picture. For instance, a constant fiapA, — X is a singulaf p-
simplex; moreover, a singular simplex isrepping?” and not just the sdin (7).

A singular p-chain is a finite formal linear combination of singulgisimplexes
with integer coefficients; typically, the whole gro@g,(X) is huge and very hard
to picture.

1.2.2. EMARK. We will not distinguish between a singuléssimplexT :
Ay — X and the unique point € X such thalm(7) = {z}; the groupS(X)
of singular 0-chains is therefore identified with the free abelian groppnsied
by the setX itself. We remark also that a singulérsimplex in X is simply a
continuous curvd” : [0, 1] — X.

The next ingredient we need is the notion of the boundary wfgutar simplex.
Roughly speaking, the boundary of a singytesimplex’I” should be a singular
(p — 1)-chain which is a linear combination of the facesIof We thus need first
to introduce formally the notion of a face of a singular siexpl Of course, for
i =0,...,p, thei-th face ofI" : A, — X should be defined as the restriction of
T to thei-th face of the standard simple,, i.e., the convex hull of the vertices
ej, j = 0,...,p with j # 7. We want however the faces @f to be singular
(p — 1)-simplexes and so the definition just proposed doesn’t wiorki ( p); we
need an auxiliary map which performs the identification lestwthei-th face of
A, and the standart — 1)-simplexA,,_;. With that purpose in mind we give the
following:

1.2.3. DEFINITION. Given pointsv;, ¢ = 0, ..., p in a real vector spacé we
denote byl(v, ..., vp) : A, — V the restriction ta\,, of the affine map froniR?
to V which takese; tov;, i = 0, ..., p; more explicitly:

p p
E('U(],... ,’Up) : Ap = Ztiei — Ztivi eV,
=0 =0

2Actually, the namesingular comes from the fact that the image of a singgl@implex can be
a “degenerate” version dk,,.
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for every(p + 1)-tuple (¢;)?_, of non negative real numbers with”_,¢; = 1.

The image off(vy, . .., vp) is the convex hull of the sef;}7_,. Obviously
if V' has a topology for which the vector space operations aremcants (i.e., if
V' is atopological vector spagethen/(vy, ..., v,) is a singularp-simplex inV;
typically, V will be finite dimensional.

We can now formally define the boundary of a singular simplex.

1.2.4. DEFINITION. Forp > 1 andi = 0,...,p, thei-th faceof a singular
p-simplexT : A, — X is the singularp — 1)-simplexT o {(eq, ..., &;,...,€p),
where the hat means that the term has been omitted from therse®; Thédound-
ary of T' is the singulafp — 1)-chain defined by:

p
(1.2.1) 0,T =) (~1)' Tolleg,... b,...,e) € Sy 1(X).
i=0
Thep-th boundary homomorphism
p : 6p(X) — 6,_1(X)
is defined as the unique group homomorphism satisfyingi(Lf@r every singular
p-simplexT" : A, — X. For every singulap-chainc € &,(X) we call9, c the
boundaryof c.

One should note thdi(ey, ..., é;, ..., e,) is an affine linear homeomorphism
from A,_; onto thei-th face ofA,. At this point one could be curious about the
sign (—1)? in the definition of the boundary &f; the signs in formula (1.2.1) are
motivated by the following:

1.2.5. LEMMA. For everyp > 2 we haved,_; o 9, = 0.

PrOOF It suffices to show thadl,_; o d, vanishes on singulgs-simplexes.
We compute:

H— 5 5
Op—10,T = E ]Toﬁeo,...,ej,...,e,-,...,ep)
i<t

+ 3 (=) T o ke, . 61, 65, ) = O, O
j>i
The propertyd,_1 o 9, = 0 is in the very heaftof homology theory. This will
be made clear in the following:

1.2.6. DEFINITION. Forp > 1 we setZ,(X) = Ker(9,) and forp > 0
we setB,(X) = Im(0p41); We also setZy(X) = Sy(X). We call Z,(X) the
p-th singular cycle grougdor p-th dimensional cycle groypof the spaceX and
B,(X) the p-th singular boundary grougor p-th dimensional boundary grojip
of X; the elements of,,(X) and B, (X) are respectively callesingular p-cycles

3The reader which is familiarized wittle Rham cohomology theofyr differentiable mani-
folds should keep in mind the analogy between Lemma 1.2.8tandhct that the iterated exterior
differentiation of differential forms is zero. One shouldserve though that exterior differentiation
increaseglegree while the boundary operator decreases dimension.
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(or cycles of dimensiop) andsingular p-boundarieg(or boundaries of dimension
p). By Lemma 1.2.5 we obviously hav8,(X) C Z,(X) and the quotient group
H,(X) = Z,(X)/By(X) is called thep-th singular homology grougor p-th
dimensional singular homology grolpf the topological spac&’. If c € Z,(X)
is a singularp-cycle then the equivalence classt+ B,(X) determined by in
H,(X) is called thesingular homology clasdetermined by:. If ¢;,c; € Z,(X)
determine the same singular homology class, i.e;, # ¢ € B,(X) then we say
that the singulap-cyclesc; andce arehomologous

While the singular cycle, boundary and chain groups arellysurareasonably
large, it is an amazing fact that the singular homology gsocgn be explicitly
computed when the space is not too complicated. Of coursesloould not expect
to compute singular homology groups directly from Defimitib.2.6, except for
very simple cases; in Exercise 1.23 the reader is asked tpwenthe singular
homology of the empty spac& = () and of a one-point space. The examples
below should illustrate the geometrical ideas behind Difimil.2.6.

1.2.7. XAMPLE. Consider a singulat-simplexT in X, i.e., a continuous
curveT : [0,1] — X. Its boundaryd, T is the formal differencé’(1) — 7'(0)
(recall Remark 1.2.2). It follows th&t is a cycle iff T" is a closed curve. Assume
that X c R? denotes the boundary of the squétgl]?, i.e.:

X = ({0,1} x [0,1]) U ([0,1] x {0,1});

if vo = (0,0), v1 = (1,0), v2 = (1,1), v3 = (0,1) denote the vertices oX then
the singularl-chain

¢ =Ll(vg,v1) + £(v1,v2) + £(ve,v3) — L(vg,v3) € &1(X)
is a cycle. If we had takeX to be the whole squar@®, 1) thenc would be the
boundary of the-chain{(vg, v1,v2) + £(vg, v2, v3), SO thate € By (X). Butif X
is just the boundary of the squal@ 1] thenc is not a singular boundary iX;
this should be geometrically plausible and it is indeed,talithough not easy to be

proven rigorously with the theory developed so far. Theycle ¢ thus determines
anon trivial singular homology class the spaceX.

1.2.8. XaMPLE. Consider the unit closed sphei_%?’ and its boundarys?.

Choose a homeomorphisin: A — B° that carriebthe boundary of\5 (i.e., the
union of the4 faces ofA3) onto .S2. The singulaR-chain

¢ =hot(e,ez,e3) —hol(ey, ez, e3)+ holleger,es) —holley,er,es)

is a cycle in both the spacE = S? and in the spac& = Eg; in the latter,c is
the boundary oh € &3 (E?’). It can be shown thatis not a singular boundary in
X =52

4Actua||y every homeomorphism from; to B” carries the boundary ak3 onto the bound-

ary of B®. The proof of this fact depends on thieeorem of the invariance of the boundgsee
Exercise 1.62) whose proof depends on the theotgazl homology developed in Section 1.9.
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1.2.9. XAMPLE (zero-dimensional homology). By convention, every siagul
0-chain is a cycle. If the spac¥ is path connected then two pointg, z; € X
always determine homologouscycles; namely, a continuous cur¥e: [0,1] —

X from z( to x; is a singularl-chain whose boundary is; — x. It follows that
the 0-th singular homology groupy(X) is cyclic and spanned by the homology
class of any point: € X. We will prove now that the homology class of a point
x € X is afreegenerator ofy(X), i.e., that ifn € Z is a non zero integer then
n - x is not a boundary. It will then follow that

Ho(X) 27

wheneverX is a non empty path connected space. The trick to provesthatcan
not be a boundary is the introduction of the homomorphism

(1.2.2) €:69(X) — Z

characterized by the property thamaps every point o to 1 € Z. The homo-
morphism (1.2.2) is known as tleeigmentation mapWe have the identity

(1.2.3) e€o 0 =0;

to check (1.2.3) one simply computes its lefthand side onsamyular1-simplex
T :[0,1] — X. It follows that the augmentation map vanishesOeoundaries
and since(n - ) = n, the0-chainn - x is a boundary iffn. = 0.

1.2.10. XAMPLE. LetV be a real topological vector space (for instance, a
finite dimensional real vector space endowed with the tapoinduced by any
norm) and letX C V be a subset that star-shapedaround a pointy € X, i.e.,
for everyz € X the line segmenizg, 2] = Im(¢(zo,z)) is contained inX. It
follows from Example 1.2.9 thall(X) = Z. We will now show that,(X) = 0
for everyp > 1. To this aim, we introduce the following notation.nf: A, — X
is a singulap-simplex then we denote By, 7] : A,41 — X the singular(p+1)-
simplex that coincides with" on A, C A, 1, maps the vertex,,; € A, tothe
pointz, € X and is affine on each line segment of the faume,, 1] with u € A;
more explicitly:

(1.2.4)
[xo,T] : Ap-i-l > (1—t)u+tep+1 — (1—t)T(u)+two eX, ue Ap, tc [O, 1].

The reader is asked to show in Exercise 1.24 that (1.2.4ethdefines a con-
tinuous map inA,;;. The operatioril’ — [z, T extends uniquely to a group
homomorphism

(20, ] 1 Gp(X) — Gp1(X).
For a singulap-chainc € &,(X) the boundary ofzy, c] € &,41(X) is given by:

Cc— [x()?apc]v D 2 17
1.25 0 ] =
(1.2:9) bilro. ] {C —e(c)rg, p=0,
wheree is the augmentation map. Namely, since the three expressgiofi.2.5)
define group homomorphisms when seen as functionsefS,(X), in order to
check (1.2.5) it suffices to consider the case whena singulap-simplexT’; this
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is easily done using the definition of the boundary of a siagsimplex. It follows
directly from (1.2.5) that it is a singulap-cycle withp > 1 thencis the boundary
of [z, ¢]; henceH,(X) = 0forall p > 1.

Motivated by the constructions above we now give the foltayabstract defi-
nition:

1.2.11. DEFINITION. A chain complexs a pair (¢, 0) where€ = (€,),cz
is a family of abelian groups and = (9,),cz is a family of group homomor-
phismso, : €, — &,_; satisfyingd,_; o 9, = 0 for all p € Z. We call¢, the
p-dimensional groupf the chain compleXc, 9) ando, the p-th boundary homo-
morphismof (¢, 9). The groupZ,(¢) = Ker(0,) is called thep-th cycle group
(or p-th dimensional cycle grogmf ¢ and the groum3,,(¢) = Im(J,+1) is called
the p-th boundary grougor p-th dimensional boundary groyif €. Obviously
B,(€) is contained inZ,(¢) and the quotient ,(¢) = Z,(¢)/B,(¢) is called the
p-th homology grougor p-th dimensional homology grolpf the chain complex
(¢,0).

1.2.12. XAMPLE. Let X be a topological space. For every integer> 0
denote byS, (X) the group of singulap-chains inX and for everyp > 1 let 9,
denote they-th boundary homomorphism introduced in Definition 1.2f4vé set
Sp(X) = 0forp < 0andd, = 0 for p < 0 then, by Lemma 1.2.46(X),9) be-
comes a chain complex called thimgular chain complewf the topological space
X. Another important example of a chain complex associated topological
spaceX is theaugmented singular chain compl(aé(X),c‘)) defined as follows:
for p # —1 we setS(X) = S,(X) and forp # 0 we take thep-th boundary ho-
momorphism oI(é(X), 8) to be equal to the-th boundary homomorphism of the
singular chain compleX&(X), d); moreover, we se6_;(X) = Z and we take
the0-th boundary homomorphism aéé(X), d) to be the augmentation map intro-
duced in Example 1.2.9; equality (1.2.3) implies t(@(X),a) is indeed a chain
complex. Thep-th homology group of the chain compleé%(X), 8) is called the
p-th reduced singular homology grougd the topological spac& and is denoted
by H,(X). We obviously have:

Hy(X) = Hp(X),

forall p ¢ {0,—1}. If X is empty thenH_,(X) = Z and H_;(X) = 0; oth-
erwise, if X is not empty, the augmentation map is surjective so fhaf(X) =
H_1(X) = 0. The reader is asked to determine the relation betwé&grX ) and
Hy(X) in Exercise 1.28.

Our next task is to show how a continuous map between topabgpaces
induces a homomorphism between their singular homologymroWe start with
the algebraic part of the task.
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1.2.13. CEFINITION. Given chain complexe® and®, then achain mapirom
¢to® is afamilyg, : &€, — D,, p € Z, of homomorphisms such that:

(126) Z?p o (bp = (bp—l o 8p,
forall p € Z.
Condition (1.2.6) can be pictured in the following commivadiagram:
B B d Op
. p+2 1 p+1 ¢p P ¢p—1 p—1
¢p+1l l@) ld)pl
D D D
ap+2 ptl ap+1 P ap p-1 apfl

Chain maps induce homology homomorphisms in a natural way:

1.2.14. RoPOSITION If ¢ : € — D is a chain map the mapsZ,(<¢)
to Z,(®) and B,(€) to B,(®). In particular, ¢ induces a homomorphisi, :
H,(¢) — H,(®) so that the diagram:

®lz,(¢)

Zy(€) ———= Z,(D)
quotient guotient
map map

H,(€) —— H,(D)

commutes.

PROOF. If 9, ¢ = 0thend, ¢,(c) = ¢p—1(d,c) = 0, which means thap,
mapsZ,(€) to Z,(®). Similarly, if ¢ = 0p+1(d) thenp,(c) = Opt1 dp+1(d),
which means thap, mapsB, (<) to B, (D). O

Observe now that ifX, Y are topological spaces arfd X — Y is a continu-
ous map then, for eagh> 0, we can define a homomorphism:

(fi)p : Gp(X) — G&p(Y)
by requiring that(f4),(7") = f o T for every singulap-simplexT : A, — X.
Moreover, if we set f4), = 0 for p < 0 then itis easy to see thiy : 6(X) —
S(Y) becomes a chain map (see Exercise 1.31). Observedlift ), = € so that

we also obtain a chain mafp. : 6(X) — &(Y) by setting(f4)_1 = Id : Z — Z.
Keeping in mind Proposition 1.2.14 we can now give the foilayy

1.2.15. CEFINITION. Given topological space&’, Y and a continuous map
f: X — Y then we denote by:

(1.2.7) fot Hy(X) — Hy(Y)

the homomorphism induced in homology by the chain rfiagp &(X) — &(Y).
We also denote by:

(1.2.8) fo s Hy(X) — Hy(Y)
the homomorphism induced in homology by the chain rfiap ENS(X) — GNS(Y).



1.3. RELATIVE HOMOLOGY 15

Itis easy to see that the homomorphisms (1.2.7) and (1.&2&aqual fop > 0;
if p = 0then (1.2.8) is simply a restriction of (1.2.7).

1.3. Relative Homology

The examples discussed in Section 1.2 should give the readague geo-
metrical idea of what a non zero homology class is. One canngidt as a linear
combination of singular simplexes i that “surrounds a hole”. The methods used
so far to compute singular homology are very primitive. Idearto increase our
computational power of singular homology, given a compéidatopological space
X, we will employ a certain strategy that can be roughly désctias follows:

Step 1. identify a subspacél C X that contains the complicated part of
X, i.e., such that the space obtained by collapsing a point
is topologically simple;

Step 2. define a notion of homology of modulo A4;

Step 3. prove a general principle that allows to remove the comfdita
part of A and X when computing the homology of modulo
4

Step 4. establish nice algebraic relations between the homologl ,of
the homology ofA and the homology oK modulo A4;

Step 5. use the relations established in Step 4 to “deterniitie& ho-
mology of X in terms of the homology ofi and the homology
of X modulo A.

Observe that the machinery above can be applied recursivelgtermine the
homology of A; hopefully one gets the homology & after a finite number of
reductions. If a finite number of reductions is not sufficjemme limit processes
can be used (see Exercises 1.32, 1.33 and 1.34).

In practical computations of homology, the scheme abovansly used di-
rectly because such scheme was condensed in a more systemé#tiod of com-
putation of homology which is known as cellular homologye(tmderstanding of
such method is actually the final goal of this whole chaptd@fle reader should
think of the scheme above as a motivation for all the techmuiefinitions and re-
sults presented below.

Let X be a topological space antlC X a subspace; we then say thiat, A)
is apair of topological spacesBy amap of pairsf : (X, A) — (Y, B) we mean a
continuous mayf : X — Y which carriesA into B, i.e., such thaf (A) C B.
Singularp-simplexes inA can obviously be seen as singutasimplexes inX
and therefores,(A) can be seen as the subgroup&f(X') which has as a basis

SThe reader should be warned that the homologydoénd the homology ofX modulo A
do not literally determine the homology df. The precise meaning of Step 5 will be stated in
Corollary 1.3.7 below.
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the singularp-simplexesT : A, — X with image inA. Moreover, the bound-
ary homomorphisnd, : 6,(X) — &,_1(X) of §(X) restricts to the boundary
homomorphism of5(A); we thus say thai(A) is achain subcomplerf S(X)
(see Exercise 1.36). Obviously the chain mgp 6(A) — &(X) induced by the
inclusioni : A — X is simply the inclusion of5(A) in &(X). For eachp we set:

Sp(X, 4) = 6,(X)/6,(A),

and we consider the homomorphisip : &,(X, A) — &,-1(X, A) induced by
Jp  6,(X) — 6,-1(X) on the quotient. Clearly we obtain a chain complex
(6(X.4),0).

1.3.1. DEFINITION. The chain complexs (X, A) = 6(X)/6(A) is called
the singular chain complex of the paftX, A). The homology groups ab (X, A)
are called theingular relative homology groups of the p&iX, A) and are denoted
by H,(X, A).

The p-th cycle andp-th boundary groups of5(X, A) are subgroups of the
quotient&,(X)/6,(A) and hence the relative homology gro#f (X, A) is by
definition a quotient of quotients. As usual (see Exerci$&)] we have a “cancel-

lation rule” g;;g ~ (3, /G, that says that a quotient of subgrou@s/H, G,/ H
of a quotient groug7/H of an abelian groug~ can be naturally identified with
a quotient of subgroup&,, G, of G. Keeping this in mind, for a pair of spaces
(X, A) we define the following subgroups &f,(X):

Z)(X,A) ={c€6y(X):9pc€ Gy 1(A)} = 8171(617—1(14))7

By(X,A) ={0pp1c+d:ceSp1(X), d e Sy(A)} = By(X) + 6,(A);
we call Z, (X, A) the group ofelativep-cyclesand B, (X, A) the group ofelative
p-boundariesof the pair(X, A). Observe thaZ, (X, A) (respectively,B,(X, A))
equals the inverse image of the cycle gratip(S(X, A)) (respectively, of the
boundary groupB,(&(X, A))) by the quotient maj®,(X) — &,(X, 4). The
relative homology group can therefore be identified withdhetient:

HP(X’ A) = ZP(X’ A)/B;D(Xv A)>

forall p € Z.

1.3.2. XAMPLE. If A is empty then the subcomplex(A) of &(X) is identi-
cally zero, so tha6 (X, A) is just the singular chain compleXx(X) of X. There-
fore, the relative homology groups, (X, #) are simply equal to the absolute ho-
mology groupsH,(X).

As in the case of absolute singular homology, continuoussniagbwveen pairs
of spaces induce chain maps (and therefore homology honpdisans).

1.3.3. DEFINITION. Assume that X, A), (Y, B) are pairs of spaces and that
f:(X,A) — (Y, B) is amap of pairs. The chain m&p : 5(X) — &(Y) takes
G(A) to &(B) and therefore induces a chain mép : 6(X,A) — &(Y,B);
the latter is called thehain map induced by the map of paifs The chain map
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fu 1 6(X,A) — &(Y, B) induces a homomorphism frofd, (X, A) to H,(Y, B)
that will be denoted by,.

In order to relate the homologies df, X and (X, A), we start by observing
that for everyp € Z we have a short exact sequence:

(1.3.1) 0 — 6,(A4) 2 6,(X) 1 6,(X,4) — 0

of abelian groups and homomorphisms, whereA — X is the inclusion and
q : 6,(X) — 6,(X,A) is the quotient map. Observe also that the quotient
mapq : 6(X) — &(X, A) can also be thought as the chain map induced by the
inclusiony : (X,0) — (X, A) (j is just the identity ofX seen as a map of pairs).

In general, a sequence of chain complexes and chain mapsexdtilledexact
if it is exact at every dimension. Thus (1.3.1) can actuadlysben as short exact
sequence of chain complexes and chain maps

(1.3.2) 0 &(4) . 5(X) = S(X, A) — 0
where0 denotes the zero complex. The following algebraic resulttake care of
Step 4 of our program:

1.3.4. LEMMA (zig-zag). Consider a short exact sequence

(1.3.3) 0—ect.o e

of chain complexes and chain maps. One has a long exact hgymséguence:

(1.3.4) -.. % H,(¢) IPLEN Hy(®) 2 H,(E) N 1 (€) e

where theconnecting homomorphis@, : H,(£) — Hp—1(€) is defined by:
O (e + By(€)) = ¢+ Bp-1(9),

forall e € Z,(€), wherec € €,_; is chosen so thaf(c) = J,d andd € ©, is
chosen withy(d) = e. The definition ob), does not depend on the various choices
involved. The long exact homology sequenceaigiralin the sense that given a
commutative diagram of chain complexes and chain maps

(1.3.5) 0 ¢ D & 0

|

A R
Y
0 Q:/ - @/ - g/ 0
f g
with exact rows then the diagram
(1.3.6)
8* f* gx a* f*
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commutes, where the rows(ih.3.6)are the long exact homology sequences corre-
sponding to the rows of1.3.5)

PrROOFE See 07, §24]. O

As a corollary, we obtain the nice algebraic relations betw#ne homologies
of A, X and(X, A) that were mentioned in Step 4:

1.3.5. @WROLLARY (long exact homology sequence of a pai@iven a pair
of spaceg X, A) there exists a long exact sequence:
(1.3.7)
D

O H(A) s H(X) 2 Hy (X, A) 2 Hyi(A) <

wherei : A — X andj : (X,0) — (X, A) are inclusions and theonnecting
homomorphisnd, : H,(X, A) — H,_;(A) is defined by:

Oi(c+ Bp(X, A)) = dpc+ By_1(A),

for every relative cycle: € Z,(X, A). The long exact homology sequence of a
pair is naturalin the sense that given a map of pajfts (X, A) — (Y, B) then the
diagram

(1.3.8)

O« Tx ) % O« Tx
e Hy(A) = Hy(X) L= Hy(X, A) "> Hpoq(A) —> -

(f|A)*l f*l lf* l(fA)*

5 Hy(B) —— Hy(Y) —— Hy(Y, B) =5~ Hy1(B) —— -

commutes, where the rows(ih.3.8)are the long exact homology sequences of the

pairs (X, A) and (Y, B). There is also a long exact sequence in reduced homology
= Hy(A) < Hy(X) o Hy(X, A) =2 Hypy(A) =

where the connecting homomorphiginis defined as before. The long exact se-

guence in reduced homology is also natural with respect tpara pairs f :
(X, A) — (Y, B) in the sense above.

PrROOF The long exact sequence (1.3.7) follows by applying the-ZAg
Lemma to the short exact sequence (1.3.2). The long exaaeseq in reduced
homology is obtained by applying the Zig-Zag Lemma to thatséxact sequence:

0— &(A) - 5(X) 1= &(X, 4) — 0

of augmented singular chain complexes (note that we do rext ae augmented
version of& (X, A)!). O

The following technical algebraic lemma (and its corol)anjll take care of
Step 5 of our program.
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1.3.6. LEMMA (Steenrod’s five lemma)Consider a commutative diagram of
abelian groups and homomorphisms:

(2.3.9) Aq Ag Asg Ay Ag
|
fll f2l f3 lf4 lfs
\
Bl B2 B3 B4 B5

If the rows in(1.3.9)are exact andfy, fs, f1, f5 are isomorphisms then alsfj is
an isomorphism.

PrROOF See 107, Lemma 24.3]. O

1.3.7. ®ROLLARY. Letf : (X,A) — (Y, B) be a map of pairs. If any two
ofthemapsf : X — Y, fla: A— B, f:(X,A) — (Y, B) induce homology
isomorphisms (in all dimensions) then also the third onesdoe

ProoOF Follows by applying the five lemma to a suitable portion a tha-
gram (1.3.8). O

1.3.8. EXAMPLE. A spaceX will be called acyclic if ﬁp(X) = 0 for all
p € Z. It follows directly from the long exact sequence of the p@ai, A) in
reduced homology that il is acyclic thenH, (X, A) = ﬁp(X); the isomorphism
is induced by the inclusiotX, () — (X, A). Similarly, if X is acyclic then
H,(X,A) = pr_l(A); in this case, the isomorphism is induced by the connecting
homomorphisno,.

1.4. Excision in Singular Homology

In Section 1.2 we have shown how one can associate a chaineo®pX )
(an algebraic entity) to a topological spa&e(a geometric entity). If one modi-
fies a topological spac& or, more generally, if one combines several topological
spaces by means of a geometric construction (like uniotexsiections and prod-
ucts) then it is natural to expect that such geometric coaostms will have alge-
braic analogues in the world of chain complexes. In someaitns the relation
between the geometric and the algebraic construction ie durect, while in others
it requires more care and some additional technical assongobdn the topological
spaces involved. It is an amazing fact that algebraic coastns in the theory of
chain complexes that were originally inspired by geometastructions turn out
to be fundamental tools in abstract algebra; this phenomgaee birth to the field
of homological algebra.

In order to motivate the material in this section we will exaenbelow the
algebraic analogues of the geometric operations of uni@himtersection. We
remark that when dealing with other homology theories (ikaplicial homology)
the link between the algebraic and the geometric constmgtis more concrete.
Singular homology has the advantage of being defined fotrarpitopological
spaces (simplicial homology is defined only for triangutabpaces); the harder
understanding of the relations between algebraic and geicngenstructions is a
price to be paid for such generality.
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1.4.1. XAMPLE. Given subspaceX;, X, of a topological spac& then a
singularp-simplexT" : A, — X has image inX; and in X, iff its image is in the
intersectionX; N X5. It follows easily that (see Exercise 1.13):

Gp(Xl) N Gp(XQ) = Gp(Xl N XQ).

The equality above means that the geometric operation efsattion of topolog-
ical subspaces corresponds directly to the algebraic tiperaf intersection of
chain subcomplexes (in Exercise 1.40, the reader is askgenteralize this result
to an arbitrary family of subspaces &f).

1.4.2. XAMPLE. Motivated by Example 1.4.1, one could guess that the alge-
braic operation of sum of subcomplexes should somehow sjmorel to the geo-
metric operation of union of subspaces of a topological spddis is indeed the
case, but the relation is not direct: given subspakesX, C X then obviously
it is not true in general tha®,(X; U X3) = 6,(X1) + 6,(X2), since itis quite
possible that the image of a singufasimplex7” : A, — X; U X3 is not entirely
contained either ik or in Xs. The equalityS,(X; U X2) = 6,(X1) + 6,(X2)
holds only under quite restrictive hypotheses (whé&nand X, are arc-connected
components o, for instance). The theory presented in this section withsthat
not everything is lost, though.

Although the union of spaces does not usually corresponideteim of com-
plexesat the chain levelsuch correspondence holds in many important situations
at the homology level et us give the following:

1.4.3. CEFINITION. A pair{X;, X5} of subspaces of is calledexcisiveif the
inclusion&(X1) + 6(X2) — &(X1 U X2) induces an isomorphism in homology.

The lemma below (or its corollary) gives a sufficient coratitfor a pair to be
excisive.

1.4.4. LEMMA (small simplices).Let X be a topological space and I&t
be a collection of subsets of whose interiors coverX. SettingG&(X;2) =
> acu ©(A) then the inclusions(X;2A) — &(X) induces an isomorphism in
homology.

PrROOF See 07, Theorem 31.5]. O

1.4.5. @ROLLARY. Given a pair{ Xy, X»} of subspaces o, if the interiors
of X; and X, coverX then{X;, X,} is an excisive pair. d

1.4.6. REMARK. The condition thaf X, X»} is an excisive pair depends only
on the spacesx(;, X, and X; U X5, not on the environment space. For this
reason, we will usually work with the hypothess = X; U X5 for simplicity.
Observe for instance that the hypotheses of Corollary Imdply X = X; U Xo.
One can generalize Corollary 1.4.5 in the following wayhié interiors ofX; and
X, with respect taX; U X5 coverX; U X, then{ X7, X»} is an excisive pair. The
proof is obtained by takingd = X; U X» in Corollary 1.4.5.



1.5. THE MAYER-VIETORIS SEQUENCE 21

We want to show now how one can rephrase the condition that & fa, X, }
is excisive in terms of certain relative homology groupss@ie that from Exam-
ple 1.4.1 and basic group theory (see Exercise 1.14) we wdadhat there is a
chain isomorphism

S(X1) ~ 6(X1)+6(Xy)
1.4.1
( ) S(X1 N Xy) S(X3)
induced by inclusion. Consider the following chain maps

S(X1) S(X1 U X>)

1.4.2 N
( ) S(X1 N Xo) S(Xy)
(1.4.3) S(X1) +6(Xs)  S(X1UXs)

6(Xa) 6(X2)

both induced by inclusion. It follows from (1.4.1) that (2¥induces a homology
isomorphism iff (1.4.3) does. Using Exercise 1.38 we cothelihat (1.4.3) induces
a homology isomorphism iff the inclusia®i(X;) + S(X32) — &(X; U Xy) does.
We have proven the following:

1.4.7. LEMMA. A pair { X1, X} is excisive iff the inclusion
(Xl,Xl N Xg) — (X1 U XQ,XQ)
induces a homology isomorphism. O

The following corollary takes care of Step 3 of the programspnted in the
beginning of Section 1.3.

1.4.8. ®ROLLARY (excision). Let (X, A) be a pair of spaces and |é&f C A
be a subset whose closure is contained in the interiod.oThen for every € Z
we have an isomorphism

Hy(X \U,A\U) —— Hy(X, A)
induced by inclusion.

PROOF. The hypothesi€/ C int(A) implies that the interiors of the subsets
X\ U, A C X coverX; from Lemma 1.4.4, we get thatX \ U, A} is an excisive
pair. The conclusion follow from Lemma 1.4.7. O

1.5. The Mayer-Vietoris Sequence

Given a chain compleX and chain subcomplexe®, €, with € = ¢ + €,
then we have the following short exact sequence of chain e and chain
maps:

(1.5.1) 0—ene e ee, e 0

where€; & €, denotes the (external) direct sum&fand<, andsi, j, k, [ denote
inclusion maps. An application of the Zig-Zag Lemma 1.3.41t®.1) yields the
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following long exact homology sequence (see also ExercBg)1

(IR K+l
C— Hy(€1 N @) s (€)@ H,y(€) < ()
Dy
We consider now the case whetfe and €, are the singular chain complexes

S(X1) and S(X2) of subspacesY;, X, of a topological spac&. By Exam-

ple 1.4.1, we have; N €, = S(X; N Xo). If the pair{ X, X} is excisive then

¢ = ¢ + ¢ andS(X; U Xy) may not in general be the same chain complexes
but they play the same role at the homology level. We havegortive following:

1.5.1. RRoPOSITION (Mayer-Vietoris sequence)lf {X;, X5} is an excisive
pair then we have a long exact homology sequence:

(i*,_j*) kil

ce— Hp(Xl N Xg) Hp(Xl) & Hp(Xg) Hp(Xl U XQ)

Ox
o p—l(Xl QX2) O
wherei : X1N Xy — X1, : XiNXe — Xo, k: X3 — X7 UXs and
l: Xs — X7 U X5 denote inclusion maps. O

1.6. Rudiments of Homotopy Theory

In this section we simply recall a few basic definitions froomtotopy theory.
The relations between homotopy and homology will be explareSection 1.7
below.

1.6.1. DEFINITION. Given topological spaceX, Y then ahomotopy of maps
from X to Y is a continuous mag@l : X x [0,1] — Y; for eacht € [0, 1] we write
H; : X — Y for the mapx — H(x,t). If (X, A) and(Y, B) are pairs of spaces
then we say that7 is ahomotopy of maps froriX, A) to (Y, B) if in addition
H is a map of pairsd : (X x [0,1],4 x [0,1]) — (Y, B), i.e., if H,(4) C B
forall ¢t € [0,1]. A homotopyH is calledrelative to a subsefS of X if the map
t — H(z,t) is constant orj0,1] for all z € X, i.e., if H(x,0) = H(z,t) for
allz € S, t €[0,1]. If H is a homotopy relative t&, i.e., if H, = H for all
t € [0,1] then we callH aconstant homotopyf Hy = f andH; = g then we call
H ahomotopy fromf to g and we writeH : f = g. When a homotopy fronf to
g exists we say thaf andg arehomotopic

We define two basic operations between homotopie#l IfX x [0,1] — Y
andK : X x [0,1] — Y are homotopies wittl/; = K, then theconcatenatiorof
H and K is the homotopy H - K) : X x [0,1] — Y defined by:

H(z,2t), teo,3],

(H - K)(z,t) = {K(m,%— 1), te[z1],

forall 2 € X. Theinverseof the homotopyf is the homotopyd ~! : X x[0,1] —
Y defined by:
H Y (z,t) = H(z,1 —1t),
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forallz € X,t € [0,1]. Itis easy to see that the formulas above do define
continuous mapg$7 - K and H~'; it follows in particular that f is homotopic

to ¢” is an equivalence relation in the set of continuous maps1féd to Y. In
Exercise 1.57 the reader is asked to show a few basic prepeartithe homotopy
operations defined above.

We recall below another couple of definitions from homotdpsotry.

1.6.2. DEFINITION. Two continuous mapg : X — Y andg : Y — X are
calledhomotopy inverses go f : X — X is homotopic to the identity ofX
andfog :Y — Y is homotopic to the identity ot". If f : X — Y admits
a homotopy inversg : Y — X then we callf a homotopy equivalencef a
homotopy equivalencg : X — Y exists we say thak andY havethe same
homotopy type

1.6.3. DEFINITION. If Ais asubspace of then a continuous map: X — A
such thatr| 4 = Id 4 is called aretractionfrom X to A; if a retractionr : X — A
exists we callA aretract of X. We say thatd is adeformation retraciof X if
there exists a retraction: X — A that is homotopic to the identity oX when
considered as a map: X — X. If there exists a homotopy relative tbbetween
r : X — X and the identity ofX then we callA a strong deformation retracbf
X.

Observe that ifA ¢ X is a deformation retract ok then the inclusion :
A — X is a homotopy equivalence.

1.7. Homotopy Invariance of Singular Homology

The goal of this section is to show that homotopic maps indheesame ho-
momorphisms in homology and that spaces having the sametbpyntype have
isomorphic homology. We start by introducing an algebrasion of the notion
of homotopy.

1.7.1. DEFINITION. Given chain mapg,g : € — © then achain homotopy
from ftogis afamilyD, : ¢, — ©,.1, p € Z, of group homomorphisms such
that

(171) fp —0p = 8p+1 o Dp + Dp—l ¢} ap,

forallp € Z. We write D : f = ¢. If there exists a chain homotopy frofito g
then we say thaf andg arechain homotopic

1.7.2. RRoPOSITION If f,g : € — D are chain homotopic therf and g
induce the same homomorphisms in homology.

PROOF. If ¢ € €, is a cycle then (1.7.1) implies thafi,(cy) — gp(cp) =
Op+1Dy(cp); in particular, f,(c,) and g,(c,) are homologous and hengg
Js- O

The lemma below relates the algebraic and geometric notibhemotopy.
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1.7.3. LEMMA. Let X be atopological space. The continuous maps
ix,jx X — X X [0,1]

defined byix (x) = (z,0), jx(z) = (,1) induce chain homotopic magsyx ).,
(x)#. More specifically, one can associate a chain homotbpy : (ix)y =
(jx )4 to every topological spac&’ in a naturalway, i.e., in such a way that for
every continuous map : X — Y between topological spaces, Y the diagram:

Sp(X) — 2%

Spr1(X x [0,1])
f#l/ l(fXId)#

S,(Y) P Sp1(Y x [0,1])
commutes for every € Z.
PrROOF See 107, Lemma 30.6]. O

The homotopy invariance of singular homology now followsly by putting
all the pieces together.

1.7.4. THEOREM (homotopy invariance)lf f,g : (X, A) — (Y, B) are ho-
motopic maps of pairs then the induced homomorphigms,. : H,(X,A) —
H,(Y, B) are equal for every € Z.

PROOF LetH : (X x [0,1],A x [0,1]) — (Y, B) be a homotopy frony to
g. By Lemma 1.7.3, there exists a chain homotdpy : ix = jx; the naturality
of this chain homotopy implies thabx carriesS,(A) to S,41(A x [0,1]) for
all p € Z (observe indeed thdD x restricts toD 4). It follows that Dx induces a
chain homotopy from

(ix): 6(X,A) — &(X x [0,1], 4 x [0,1])
to
(x)# : 6(X,A) — &(X x [0,1], 4 x [0,1]).

Sincef = Hoix,g = H o jy, it follows from Exercise 1.41 thafy is chain
homotopic togx. The conclusion is now obtained from Proposition 1.7.2. [

1.7.5. @ROLLARY. If f : X — Y is a homotopy equivalence thefy :
H,(X) — H,(Y) is an isomorphism for alp € Z.

PrROOF It follows from Theorem 1.7.4 that i is a homotopy inverse fof
then f, andg, are mutually inverse homology homomorphisms. O

1.7.6. WROLLARY. If X is contractible thenX is acyclic, i.e.,H,(X) = 0
forall p € Z.

PROOF Observe that a contractible space has the same homotopyofyg
one point space (see Exercise 1.58). O
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1.7.7. ®ROLLARY. If f : (X,A) — (Y, B) is a map of pairs and if both
f:X —=Yandf|s: A— B are homotopy equivalences thgn: H,(X,A) —
H,(Y, B) is an isomorphism for alp € Z.

Proor Follows from Corollaries 1.7.5 and 1.3.7. O

1.8. A Computation of the Singular Homology of Spheres and ta Torus

In this section we show how the techniques developed in tidqus sections
can be used to compute the singular homology of some simplesp

1.8.1. ExampPLE. Denote byn, s respectively the north and the south pole of
S™ and identify.S”~! with the equator o™, i.e.,n is the(n + 1)-th vector of the
canonical basis oR"*!, s = —n and S~ ! is identified with the intersection of
S™ with the hyperplaner,, .1 = 0. SinceS™ \ {s} is contractible, it follows from
Example 1.3.8 and Corollary 1.7.6 that we have an isomomhis

Hy (8", 8™\ {s}).

By excision of the subséf = {n} (see Corollary 1.4.8), we have an isomorphism:

induced by inclusion

(1.8.1) H,(S™)

=

(1.8.2) Hp(Sn \ {n},S" \ {n,ﬁ}) induced t;y inclusion Hp(Sn,Sn \ {5})

SinceS™ \ {n} is contractible, Example 1.3.8 and Corollary 1.7.6 givegaiman
isomorphism:

(1.83)  Hy(5"\ {n}, 8"\ {n,s}) —== Hy, 1(5"\ {n,5}).

Finally, we observe that the equat8f—! is a deformation retract o™ \ {n,s}
and therefore, by Corollary 1.7.5, we have an isomorphism:

Hy 1 (S™\ {n,s}).

induced by inclusion

(1.8.4) H, 1(S")

We have proven that:
Hy(S™) = Hy-1(S" 7).
By induction it follows that:
Hy(S™) &= Hy—n(S°).

Since Y consists of two points, it follows thatly(S°) = 7 and H,(S°) = 0 for
q # 0, from which we obtain:

T n\ ~v Zv b=mn,
Hp(s):{o p;én

For later use we will compute in the example below the homgfmism in-
duced onH,,(S™) by the reflection on the equator.
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1.8.2. XAMPLE. LetR: R"t! — R"*! denote the reflection map:
(1.8.5) R(x1,29,...,xpy1) = (—21, 22, ..., Tpt1)-

We will show by induction om that the homeomorphism|g» : S™ — S™ in-
duces minus the identity map dﬁn(S"). Forn = 0 the result is obvious, since
R|g0 : S° — S° simply exchanges the two points 6f. Forn > 1, consider the
isomorphism:

¢ : Hn(S") — n—l(Sn_l)
obtained by the composition of the isomorphisms (1.8.1)-8-4) (withp = n).
The validity of the induction step will follow if we can showadt the diagram:

~ (R\sn)* fIn(S”)

‘|- s

ﬁn—l(sn_l) ﬁn—l(sn_l)

(R|s”*1)*

commutes. To this aim we argue as follows. The ndapreserves the spacs¥,
S™\{n}, S"\{s}, S™\{n,s} andS™~1. Moreover, the homology homomorphisms
induced byR “intertwine” with all the isomorphisms (1.8.1)—(1.8.4@rfexample,
we have a commutative diagram:

(5™ (Blr). (5™

the isomorphis the isomorphism
(1.8.1) (1.8.1)

H,(5™,5™\ {s}) H, (8", 8™\ {s})

(Rlsn),

and one can construct similar commutative diagrams carrespg to the isomor-
p~hisms (1.8.2)—(1.8.4). This proves th@®|s»). equals minus the identity of
H,(S™)foralln > 0.

In the example below we compute the singular homology of Wweedimen-
sional torusT = S* x S'. In spite of the large amount of technology developed
so far, the reader will see that such computation is ratheiviad. This serves as
a motivation for developing a more systematic method of agaipn for singular
homology.

1.8.3. EXAMPLE. In what follows we will think ofS* as the unit circle in the
planeR?; let’s start by naming the auxiliary spaces and maps thatbeiused in
the computation.

e T = S! x S! denotes the torus;

xo, 1 € S! are two antipodal points;

a C S'is aclosed arc that is symmetric aroung
o andzg are the two endpoints of;
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A= 8" (S {wo});

C=5"xaq;

D; =S x {z;},i=0,1,2,3andD = Dy U Ds;

r: ST — Slis the reflection with respect to the lingx;
e R:T — Tisthe mapR = Id x r.

Clearly the circlesD, and D3 are (strong) deformation retracts of bothand C;
moreover,Dy is a (strong) deformation retract 6f, D, is a (strong) deforma-
tion retract ofA and D is a (strong) deformation retract 6f \ D,. Consider the
pairs(C, D), (T, A) and(C, C'\ Dy); we have the following commutative diagram
whose arrows are induced by inclusions:

isomorphism Hp(Ca C \ DO) isomorphism

by homotopy iW wmsion

Hyp(C) D) v > H,(T, A)

It follows that the dotted arrow above is an isomorphism.
We can now prove easily thadf,(T) = 0 for p > 3. We have the following
exact sequences:

(1.8.6) H,(A) — Hp(T) — H,(T, A)
(1.8.7) H,(C) — H,(C,D) — Hp,_1(D)
extracted from the long exact homology sequences of the #&ird) and(C, D).

Since A andC have the homotopy type of a circle afitlhas two arc-connected
components homeomorphic to circles, by Example 1.8.1, we:ha

Hy(A) = Hy(C) = Hp1(D) =0,
for p > 3. The exactness of (1.8.7) impliés,(C, D) = 0 and sinceH,(T, A) =
H,(C, D), the exactness of (1.8.6) gives us:
H,(T)=0, forallp>3.
Let us now compute the remaining homology groups of the tougsng the

long exact sequence in reduced homology (and its naturalgyget a commutative
diagram with exact lines:

(1.8.8)

| |
H3(A) —— H3(T) —— H3(T, A) —— H1(A) — Hy(T) —

—— H1(C,D) — Hy(D) — Hy(C)

N T

— H{(T,A) — Hy(A) —= Hy(T)
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We now try to identify explicitly some of the groups and honarphisms appear-

ing in diagram (1.8.8). We will see that all the groups appegin diagram (1.8.8)

are free of finite rank and therefore we will be able to idgntifem as a finite di-
rect sum of copies d?.. Nevertheless, we emphasize that in order to describe the
homomorphisms in diagram (1.8.8) we will have to make cloafegenerators for
some of these groups.

e The groupsH,(A) and Hy(C') are zero becausé andC' have the same ho-
motopy type of a circle (see Example 1.8.1); moreo¥® D) = Hy(D3) ®
Hy(D3) = 0.

e For the reasons abové, (A) = Z, H,(C) = Z andH (D) = Z & Z.

o Hy(C) = Ho(A) = Hy(T) = 0 because”, A andT are arc-connected and
Hy(D) = Z becausé) has two arc-connected components.

e Denote byi¥ : D, — C, j¥ : D, — A, v = 2,3, the inclusion maps
and lety, denote a generator dff;(Dy) = Z. Since D, is a deforma-
tion retract ofC' and R mapsD, homeomorphically ontds, it follows that
c = i%(7y2) is a generator off;(C) = Z and thatys = R.(72) is a gener-
ator of Hy(Ds3). Similarly, a = j2(v2) is a generator off;(A) = Z. The
homomorphisn¥; (D) — H;(C) in diagram (1.8.8) ii2, i2) and the homo-
morphismH1 (D) — Hy(A) is (j2,73). We know thati¥ maps the generator
v3 of Hy(Ds3) to somegenerator ofH;(C), i.e., i3(y3) = +ec. It will be
proven below thai2(vy3) = c. Similarly, we know thatj?(v3) = 4a and
we will see below that indeegf(y3) = a. It follows that both the homo-
morphismsH; (D) — H;(C) andH,(D) — H;(A) in (1.8.8) are given by
sum: Z @& 7Z — 7 and in particular they have the same kernel. By the ex-
actness of the first line of (1.8.8), the compositionfdf(C, D) — Hi(D)
andH, (D) — Hy(A) is zero in (1.8.8); the commutativity of the third square
implies that the homomorphisitiz(T, A) — H;(A) in (1.8.8) is zero.

e SinceH:(C) = 0, the homomorphisnt/z(C, D) — H;(D) in (1.8.8) is in-
jective and hencél,(C, D) is isomorphic to the kernel of the homomorphism

(1.8.9) H(D)~2Z®7Z =" 7> H /().
ThenHs(C, D) = Z and alsoH»(T, A) = Z.
e Since (1.8.9) is surjective, the mdp (C') — Hi(C, D) in (1.8.8) is zero.

Therefore H,(C, D) — Hy(D) is an isomorphism and

Hy(C,D) = H(T, A) = Z.
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We now rewrite the diagram (1.8.8) using all the informatwa obtained in
the items above:

(1.8.10)

0 0 72 ey B O g =g
DR
0 — Hy(T) —= 7, Z Hy(T) —Z —= 0 —0

0
Exactness of the second line in (1.8.10) implies immedjatedt:
Hy(T) = Z;
moreover, we get a short exact sequence:
0—Z2Z—H(T)—7Z—0
that splits, becausé is free. Hence:
H(T)=ZaoZ.

We are left with the problem of proving(13) = c and;j3(vy3) = a. We prove
i3(y3) = c. Observe firstthaR, : H,(C) — H,(C) is the identity; this follows
from the commutative diagran

Hy(C) Hy(C)
Hy(Dy) mHl(DO)

The equalityi3(vy3) = ¢ now follows from the commutative diagram:

H(C) 2= Hy(0)

o

Hy(D2) —— Hi(Ds)

* W

The proof of the equalityi?(v3) = a is carried out in a similar way, usingy
instead ofD;.

1.9. Local Homology

Homology groups are a global topological invariant of tagital spaces: if
one establishes that theth dimensional homology group of is not isomorphic
to the p-th dimensional homology group of then X cannot be homeomorphic
to (or even have the same homotopy type ¥5f) But what about if one wants to
decide whether some small portion®fis homeomorphic to a small portion Bf?
For instance, it is quite plausible (and will be proven by tieory of this section)

6observe thaR. : Hi(Do) — Hi(Dy) is the identity becaus®|p, : Do — Dy is the
identity.
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that a non empty open subsetRf* cannot be homeomorphic to an open subset of
R™ if m # n. There is a special type of relative homology groups thakaoevn
aslocal homology groupghat are suitable for solving this kind of problem.

For the development of the theory presented below we wilehavassume
thatall the topological spaces appearing in this sectiand all topological spaces
in the book for which we talk about local homolggsatisfy the separation axiom
T,. We say that a topological spage satisfies the separation axiom {or, more
simply, that the spac& is T;) when the points ofX are closed subsets df,
i.e., if given any pair of distinct points, y € X we can find a neighborhood af
in X that does not contai. Observe that all Hausdorff spaces ake(actually,
Hausdorff spaces are also callEgspaces

1.9.1. CeFINITION. Let X be atopological space. Thecal homology groups
of X with respect to a point, € X are defined to be the relative homology groups
Hy(X, X\ {zo}).

The name “local homology” is motivated by the following:

1.9.2. LEMMA. If zg € X andV is a (not necessarily open) neighborhood of
o then the inclusion of V, V' \ {zo}) in (X, X \ {zo}) induces an isomorphism
in homology.

ProOF Follows immediately from the excision principle, obsexyithat the
closure ofX \ V (i.e., the complement of the interior &) is contained in the open
setX \ {zo}. O

1.9.3. EMARK. In what follows we will usually not distinguish between the
groups H,, (X, X \ {zo}) and H, (V,V \ {z¢}) whenV is a neighborhood of
xg in X. For example, ifVV is a neighborhood ofy in X, h : V — Y is a
continuous map taking values in a topological sp&ceh(zy) = yo € Y and
h(V \ {z0}) C Y \ {yo} then we will say that induces a homomorphism:

he s Hy(X, X\ {z0}) — Hy(Y,Y \ {t0}),

for everyp € Z. More explicitly, the homomorphism above is the dashedvwaimo
the commutative diagram:

H, (X, X\ {z0})

~
~
~
=4 ~
~
~
EN

Hy (V. VA A{z0}) —— Hp (Y, Y\ {w0})

where the vertical unlabelled arrow is induced by inclusion

1.9.4. XAMPLE. Let’s compute the local homology groups Bf* at an ar-
bitrary point; we consider, for instance, the origin. By Lma 1.9.2, the local
homology groups ofR™ at the origin are isomorphic to the relat|ve homology
groupsH, (B",B;), whereB; denotes theunctured closed balB" \ {0}. Since

the unit sphere&s” ! is a deformatlon retract of the punctured lﬁ[f , it follows
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from the homotopy invariance of homology that the inclusan(B", S*~1) in
(B",B}) induces an isomorphism in homology. Siri&€ is contractible, the long
exact homology sequence of the péiB", S»~!) implies thatH,(B", S" 1) =
H,_1(5"'). By Example 1.8.1, we have:

Z, p=n,
0, p#n.

1.9.5. ExamPLE. Denote byH" the closed half-spacgér € R"™ : z,, > 0}
and byBd(H") the hyper-plandx € R™ : z,, = 0} (that we identify withR"~1).
ObviouslyH™ is contractible because it is convex; it \ {0} is also contractible
because it is star-shaped around any point of the open peatles!™ \ Bd(H™). It
follows that the local homology groups &f* at the origin (and also at any point
of Bd(H™)) are all identically zero, i.e.:

H,(H",H"\ {0}) =0, peZ.

On the other hand, by Lemma 1.9.2 the local homology groupt'adt the points
of the open half-spacel” \ Bd(H") are the same as those B&f* (see Exam-
ple 1.9.4).

H,(R",R"™\ {0}) = {

The simple results obtained above have some very integesfiplications that
are developed in Exercises 1.61, 1.62 and 1.63. We finistettteoa by proving a
result that will be used in Section 1.10 to relate the geoesatf the local homology
groups of a manifold with the orientations of that manifold.

1.9.6. RROPOSITION Let f : U — R™ be a continuous map defined on an
open neighborhood of the origin inR™. Assume thaf is differentiable at the
origin, the differentialdf(0) : R™ — R™ is an isomorphismf(0) = 0 and
f(U\{0}) c R™\ {0}. Then the homomorphism:

(1.9.2) fo t Ho(R", R™\ {0}) — H,(R",R™\ {0})
equals the identity i@l f (0) has positive determinant an equals minus the iden-
tity if df(0) has negative determinant.

PROOF Set:

c= ”Hﬁilll |df(0) - v > 0.

Sincef(0) = 0 and f is differentiable at the origin, it follows that:

o L@ =)

2—0 [l

in particular, we can find an open neighborhdéd- U of the origin such that:
C
1f(2) = df (0) - al| < 5 ]

for all z € V. This implies that||f(z) — df(0) - z| < ||df(0) - z|| for all
z € V'\ {0} and thereforef is homotopic tod f(0) as a map fron(V, V' \ {0})
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to (R",R™ \ {0}) (see Exercise 1.54). We have proven that the homomorphism
(1.9.1) equals:

(1.9.2) df(0), : H,(R™,R"™\ {0}) — H,(R",R™\ {0}).

If df(0) has positive determinant thelrf (0) is homotopic to the identity as a map
from (R”, ]R”\{O}) to itself (see Exercise 1.55); therefore (1.9.2) equalsdéie-
tity. On the other hand i@ f(0) has negative determinant theyfi(0) is homotopic
to the reflection magk : R" — R" (see (1.8.5)) as a map frofR", R" \ {0})

to itself and therefore (1.9.2) equals minus the identige(Exercise 1.59). This
concludes the proof. a

1.10. Orientation on Manifolds

An orientation for a differentiable manifold/ is usually defined as a map-
ping that assigns to each point &8f an orientation for the tangent space at that
point; such choice of orientation should depend continlyoas the point of A/
(such continuity can for instance be stated in terms of thistexce of an atlas of
positively oriented charts). In the case of topological ifwds there is no tangent
space and so there is no obvious way of generalizing themofi@rientation to
the topological case. The goal of this section is to show hog/ean use homology
theory to give an elegant definition for the concept of oaéioh for topological
manifolds.

Before one tries to find an intrinsic definition for the conicep orientation
on a topological manifold, one should take a look at tramsifunctions between
charts of a topological manifold (i.e., homeomorphismsmveein open subsets of
R™) and try to define a notion of orientation preserving traosifunction. In
the differentiable case, such task is easy: a diffeomonpthistween open subsets
of R™ is called orientation preserving when its linear approdioraaround each
point is orientation preserving, i.e., when its differahtit each point has positive
determinant. Once a notion of orientation preserving ttimmsfunction between
charts has been defined, one can proceed to give an intriefidtidn of orien-
tation: in the differentiable case, one easily finds the iofearienting the “linear
approximations” of the differentiable manifold, i.e., tengent spaces. Proposi-
tion 1.9.6 showed that orientation preserving diffeomampis between open sub-
sets ofR™ are precisely those that induce the identity on the localdiogy groups
of R™; one now observes that this latter conditiorpigrely topologicaland thus
also makes sense for homeomorphisms. Now that a notion dfveds oriented
transition function has been found in the topological cdsenot so hard to guess
what the intrinsic definition of orientation for topologiaaanifolds should be; at
the very least, one can guess that such definition should/ientioe local homology
groups of the manifold.

The definition of a topological manifold (and also of a togptal manifold
with boundary) is recalled in Exercise 1.63. In what follows will always denote
ann-dimensional topological manifold (without boundary).
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1.10.1. CEFINITION. An orientationfor M at a pointz € M is a generator of
the infinite cyclic groupH,, (M, M \ {z}).

The fact thatH,, (M, M \ {z}) is indeed infinite cyclic (i.e., isomorphic to
7)) is a rather trivial consequence of Lemma 1.9.2 and Examj8el see also
Exercise 1.63). Observe that (as it should be expectedychtgointr € M there
are precisely two orientations.

A global orientation forM should be defined as a continuous map that as-
sociates an orientation to each point/Mdf, our next task is to define a notion of
continuity for such maps. We denote ) M) the disjoint union of the local
homology groupdd,, (M, M \ {z}), i.e., we set:

OM) = | {z} x Hy(M, M\ {z}),

zeM
and we callO (M) theorientation bundleof the topological manifold//. Observe
that there is a canonical projection:

m:OM)— M,
that takes{z} x H, (M, M \ {z}) to z. By asectionof O(M) along a subset
AC Mwemeanamap : A — O(M) such thatro7 : A — M is the
inclusion map of4 in M, i.e., 7 is a map that associates to each A an element
of the infinite cyclic groupH,, (M, M \ {z}); when A = M, we say thatr is
a global section(or simply asectior) of the orientation bundl€()/). Observe
that if 7 is a section ofO(M) then, for eache € M, 7(z) is simply an element
of Hn(M, M\ {x}) and not necessarily a generator (although we will be mostly
concerned with sections 6#(M) that assign a generator &, (M, M \ {z}) for
everyx € M).

We now define a topology for the orientation bund¢)/). This will take a

little work. For every pair of subsetd, B ¢ M with B C A, we consider the
homomorphism:

pap : Hy(M, M\ A) — H,(M, M\ B),
that is induced by the inclusion 68/, M \ A) in (M, M \ B); in particular, when
B = {z} consists of a single point we obtain a homomorphism:
(1.10.1) paz : Ho(M, M\ A) — H, (M, M\ {z}),
taking values in the local homology group, (M, M \ {z}) (we prefer writing

paz than using the awkward notatigny(,;). WhenC' C B C A C M we have
an obvious commutative diagram:

(1.10.2) Hy, (M, M\ A)

PAB PAC

H,(M,M\ B) H,(M,M\ C)

PBC

The setup above constitutes what is usually callpskasheaf of abelian groups
in M (see Exercise 1.64).
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If A C M is fixed then each homology classe H, (M, M \ A) induces a
sectionO(«; A, M) of O(M) along A defined by:

forall x € A. WhenM is fixed by the context we write simpl§(«; A) instead of
O(a; A, M).

1.10.2. EMARK. It is a simple consequence of the commutativity of the di-
agram (1.10.2) thatiB ¢ A ¢ M anda € H,(M,M \ A) then the section
O(pap(); B) is simply the restriction td3 of the sectiorO(a; A).

Our plan is to topologize the orientation bund¥ M) by requiring that the
image of the section®(a; U) be a basis of open sets 6f(M), whereU runs
over theopensubsets of\/ anda runs overH,, (M, M \ U). In order to make this
definition valid, we have to prove a few things (see Exerci§é)l

1.10.3. LEMMA. Given a pointz € M and a local homology classy €
H, (M, M \ {z}) then there exists an open neighborhdéaf = and a homology
classa € H,, (M, M \ U) such thatoy,(a)) = ap; more concisely:

Hy(M,M\{z}) = | J Im(pva)-
U an open
neighborhood of:

PROOE It is a simple consequence of the fact that homology clasmsesom-
pactly supported (see Exercise 1.47). Namely, we can findt d ia, K5) of com-
pact topological spaces withi; € M, Ko C M \ {z} and such thaty belongs
to the image of the homomorphish, (K1, K2) — H, (M, M \ {z}) induced by
inclusion. The conclusion is obtained by takibig= M \ K. O

1.10.4. LEMMA. Letsubsets!, B C M be given and choose homology classes
ay € Hy(M, M\ A), ag € H,(M, M \ B). Assume that for somee AN B we
havepa,(a1) = ppz(ag), i.e., the section®)(a;; A) and O(«e; B) agree on the
pointz. ThenO(aq; A) and O(ae; B) agree on a neighborhood afin AN B,
i.e., there exists an open neighborhddwf x in M such thatpa,(a1) = ppy(a2)
forally e UNn AN B.

PrROOF Observe first that by replacing and B with A N B and «; and
o respectively withp 4 anp)(a1) and ppang)(az2) (keeping in mind also Re-
mark 1.10.2) one concludes that there is no loss of geneialiassuming that
A = B. Now the result is a simple consequence of the fact that hogyote-
lations are compactly supported (see Exercise 1.48). Namsigicea; — as IS
mapped to zero by the homomorphidify, (M, M \ A) — H, (M, M \ {z}) in-
duced by inclusion, we can find compact subg€tsc M, Ky C M \ {z} with
Ky C Kj and such thaty; — oy is also mapped to zero by the homomorphism
H,(M,M\ A) — H,(M, (M \ A) U K>) induced by inclusion. The conclusion
is obtained by taking/ = M \ K. O

In the language of sheaf theory, Lemmas 1.10.3 and 1.10¥edabwly that
the local homology grougd,, (M, M\ {w}) can be identified with the group of
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germs atc of the pre-sheaf determined by the groupg(M, M \ U) and the maps
puv- Thus, the orientation bundt@ (/) is nothing more than the sheaf of germs
corresponding to such pre-sheaf. Below we describe thddgp®f O(M) in
sheaf-free language. For those who like the sheaf theomoaph, take a look at
Exercise 1.66.

1.10.5. RoPOSITION The setdm|[O(w; U)], whereU runs over all open
subsets of\/ and « runs throughH,,(M, M \ U) is a basis of open sets for a
(unique) topology IfO(M).

PrROOF We use the criterion given in Exercise 1.65. We start by olisg
that Lemma 1.10.3 implies directly that the skts/O(a; U)| coverO(M). Now
choose open setg, V ¢ M and homology classes

ay € Hy(M,M\U), «ase H,(M,M\V),

assume that some, belongs to the intersectidm [O(ay; U)] N Im[O(ag; V)],
i.e., a9 = puz(a1) = pyz(ag) for somex € UNV. By Lemma 1.10.4 we
can find an open neighborhoddl of = (that can be assumed to be contained in
U N V) such thatO(ay;U) andO(ag; V') agree oriV. Then (by Remark 1.10.2)
Im[O(pyw (n); W)] is contained idm [O(a1; U)] N Im|[O(ag; V)]. This con-
cludes the proof. O

From now on we will always assume that the orientation budd{|&/) is en-
dowed with the topology defined by Proposition 1.10.5.

The following lemma gives a simple criterion for checking tontinuity of
sections ofO(M).

1.10.6. LEMMA. Let A C M be a subset an@ : A — O(M) a section of
O(M) along A. Thenr is continuous at a point € A if and only if there exists an
open neighborhood’ of z in M and a homology class € H,,(M, M \ U) such
that O(«; U) equalston AN U.

PROOF Assume that is continuous at. By Lemma 1.10.3 we can find an
open neighborhoodl” of z in M and a homology class € H,, (M, M \ V) such
that py, (o) = 7(x). Thenr(z) belongs to the open sk [O(«; V)] and by the
continuity ofr atz we can find an open neighborhoddof « in M such that- (AN
U) C Im[O(a; U)]. This implies thatO(a; U) equalst on AN U. Conversely,
assume that we can find an open neighborhdanf = in M and a homology class
a € Hy(M, M\ U) such thatr equalsO(«; U) on AN U. Choose a basic open
setlm [O(3; V)] containingr(z), i.e.,V is an open neighborhood ofin M, 3 €
H,(M,M\V)andpy,(8) = 7(x) = prz(a). By Lemma 1.10.4 we can find an
open neighborhoot” of = contained inJ NV such thatO(«; U) equalsO(3; V)
onW. Butthen alsa- equalsO(3; V') onW and therefore- (W) C Im[O(5; V)].
This establishes the continuity ofat z and concludes the proof. O

1.10.7. @ROLLARY. For any subsetdA ¢ M and any homology class €
H, (M, M\ A) the sectiorD(«; A) of O(M) along A is continuous. O

We are now ready to give the following:
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1.10.8. CEFINITION. An orientationfor the topological manifold/ is a con-
tinuous (global) sectiom of O(M) such thatr(x) is a generator of the local ho-
mology groupH,, (M, M \ {z}) (i.e.,7(x) is an orientation fof\/ atz) for every
x € M. If the manifold M admits an orientation thef/ is calledorientable a
manifold M endowed with an orientation is called anentedmanifold.

If U is an open subset aff then one should expect that orientationsiéf
can be restricted to orientations Gt In order to formalize that thought we have
to relate the orientation bundl€3(U) andO(M ). First, for everyz € U we can
identify the local homology groupl,, (U, U \ {z}) with the local homology group
H, (M, M\{x}) via the isomorphism induced by inclusion (recall Remark3).9
In particular, we can identify the orientation bund¥U ) with the subset o (M)
that projects ontd/ via the canonical projection : O(M) — M. Moreover, we
have the following:

1.10.9. LEMMA. If U is open inM thenO(U) is open inO(M ); moreover,
the topology of2(U) is induced from the topology &?(M).

PROOF Forevery subset C U and every homology clagse H,(U,U\A),
we denote by(«) € H, (M, M \ A) the image ofx by the homomorphism:

H,(UU\ A) — H,(M,M\ A)

induced by inclusion. We have a commutative diagram:

O(M)
@) (KW ]inclusion
A o)

O(e;AU)

that implies thafm[O(a; A,U)] = Im[O(i(a); A, M)]. Let nowT be a subset
of O(U). We show thaf is open inO(M) if and only if itis open inO(U). If Tis
open inO(U) then everyr € T belongs to some basic open $et[O(«; V,U)],
whereV C U is open andx € H,(U,U \ V) is a homology class; but then
7€ Im[O(a; V,U)] = Im[O(i(); V, M)] and thusr is an interior point oft in
O(M). Conversely, assume thatis open inO(M ). Then everyr € T belongs to
some basic open sk [O(6; V, M )] with V. C M open and3 € H,,(M,M \ V)

a homology class. We can replaZeby a smaller open set such tHatc U; then,
by excision the homomorphism:

H,(U,U\V) — H,(M,M\V)

induced by inclusion is an isomorphism. We can thus find H,,(U, U \ V) with
i(a) = 8. ThenIm|[O(o; V,U)] = Im[O(B; V, M)] is open inO(U), containsr
and is contained iff. This concludes the proof. O

1.10.10. ®ROLLARY. If U C M is open andr : M — O(M) is an orienta-
tion for M thent|y : U — O(U) is an orientation forU. O
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If 7 is an orientation fofM/ then it is easy to see thatr is also an orientation
for M (see Exercise 1.67). ¥/ is connected and orientable, we now show that
has precisely two orientations.

1.10.11. RoPoSITION If M is connected and, 7’ are orientations ford/

then eitherr = 7' or 7 = —7'.

ProoEF It follows easily from Lemmas 1.10.6 and 1.10.4 that the set
{zeM:7(z)=7"(2)}
is open. Similarly, its complement:
{zeM:7(@)=1(x)} ={zeM:7(z) =—7'(2)},
is also open. The conclusion follows. O

Homeomorphic manifolds have homeomorphic orientatiordles More pre-
cisely, if f : M — N is a homeomorphism between topological manifolds then
we can define a map:

O(f) : O(M) — O(N),

by requiring that the restriction @ () to H,,(M, M \ {z}) is equal to the homo-
morphism:

(1.10.4) fo: Hy (M, M\ {z}) — H,(N,N\ {f(x)}),
for everyxz € M. Moreover, we have the following:

1.10.12. RoOPOSITION If f : M — N is a homeomorphism then the map
O(f) is also a homeomorphism.

PrRoOOF Since (1.10.4) is an isomorphism for everye M, it follows that
O(f) is bijective. Moreover, for every open gétC M and every homology class
a € Hy,(M, M \ U) we have a commutative diagram:

o) =2 o)
O(a;U)T TO(f*(a);f(U))
U - fU)

that implies that)( f) maps the basic open set [O(a; U)] € O(M) to the basic
open seim[O(f.(a); f(U))] € O(N). ThusO(f) is an open map. But then
O(f)~' = O(f!) is also an open map. This concludes the proof. O

1.10.13. D=FINITION. A homeomorphismf : M — N between oriented
topological manifoldg M, 7), (N, 7’) is calledpositively orientedor, more sim-
ply, positivg if O(f) o 7 = 7'. Similarly, we say thaff : M — N is negatively
oriented(or, more simplynegative if O(f) o1 = —7'.
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1.10.14. BEMARK. If M is orientable and connected then one need not choose
an orientation for\/ in order to talk about positivity and negativity of homeomor
phismsf : M — M (or, more in general, of homeomorphisms between open
subsets of\f). Namely, ifr is an orientation fodM/ thenf : (M,7) — (M, 7) is
positively oriented (or negatively oriented) if and onlyfit (M, —7) — (M, —7)
is.

The following is a simple consequence of Proposition 1.10.1

1.10.15. ROPOSITION Let f : M — N be a homeomorphism between ori-
ented topological manifoldéM, 7), (N, 7). If M is connected therf is either
positively oriented or negatively oriented.

PROOF By Proposition 1.10.120(f) : O(M) — O(N) is a homeomor-
phism and thu€(f)~! o 7’ o f is an orientation fo\/; such orientation is either
equal tor or equal to—7, by Proposition 1.10.11. In the first casgjs positive
and in the latter, negative. O

Let's now take a look at the cagéd = R". For everyv € R"™ we denote by,
thetranslation map in the direction:

t, ) R">2+— a2 +veR"
Obviouslyt, induces an isomorphism:
()« : Hn(]R",]R” \{0}) — H,(R",R"\ {v}).

It would be natural to expect that, given a generatofgf( R, R" \ {0}), one
can “spread around” such generator using the nigps in order to produce an
orientation forR™. This is indeed true, but the proof is not so straightforwasd
one could expect. It actually depends on the following:

1.10.16. LEMMA. For everyn > 1 and everyv € B" there exists a homeo-
morphismh : R™ — R"™ satisfying the following properties:
e h equals the identity outside™;
e h equals the translation, in a neighborhood of the origin (in particular
h(0) = v).

PrROOF Let¢ : R — R be a differentiable map that equalsin a neigh-
borhood of zero, vanishes outsiflecc, 1| and such thasup,cg [€/(t)| < .

vl
Consider the map : R™ — R™ defined by:
h(z) =z +&(||lz]))v, z€R™

using the estimate off and the mean value inequality, it is easy to see that the
mapz — &(||z||)v is a contraction and thereforeis a global homeomorphism

of R™ (see Exercise 1.69). Moreover, it is obvious thasatisfies the required
properties. d

We can now prove the following:
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1.10.17. RopPosITION Choose a generator, of H,(R",R" \ {0}). The
map7 : R” — O(R") defined by:

(1.10.5) T(z) = (t2)«(70) € Hn(]R",]R” \ {x}), rz e R",
is an orientation forR™.

PrROOF Obviously each () is an orientation for the point and thus we only
have to prove the continuity of. We show that- is continuous at the origin. Set
U = B"; sinceR™ \ B" is a (strong) deformation retract & \ {0} the map:

puo : Ho(R™,R"\ B") — H, (R",R™\ {0})

is an isomorphism (recall thatyo is simply the homomorphism induced by in-
clusion). We can thus find € H,(R",R" \ B") such thatoyo(a) = 7. We
claim thatr equalsO(«; U) onU = B™ (this will imply the continuity ofr at the
origin by Lemma 1.10.6). Let € B" be fixed and choosk : R — R™ as in
Lemma 1.10.16. The commutative diagram:

H,(R", R"\ B") —==%+ H,(R", R" \ B")

pUOl \Lva

H,(R*,R™\ {0}) —— H,(R*,R"™\ {v})
implies thatoy, (o) = 7(v), proving the claim and the continuity efat the origin.
The continuity ofr at the other points dR’™ can be proven in a similar way using
the (obvious) version of Lemma 1.10.16 for balls with othenters. O

1.10.18. @®ROLLARY. For any orientation chosen oR", the translationg,
are positively oriented homeomorphisms.

PROOF Observe that Proposition 1.10.11 implies that any ortemtar for
R™ must be of the form (1.10.5), for some generatpof H,, (R", R\ {0}). For
such an orientationr, the mapO(t,) carries7(0) to 7(v) and hence, must be
positively oriented by Proposition 1.10.15. O

1.10.19. ®ROLLARY. Letf : U — V be a diffeomorphism between open sub-
setsU, V C R™. Choose an arbitrary orientation foR™ and assume thdt’ and
V' are endowed with the restriction of such orientation. Tlfee a positively ori-
ented homeomorphism (respectively, negatively orientedelomorphism) if and
only ifdf(z) has positive determinant (respectively, negative deteant) for ev-
eryx € U.

PROOFE Since translations are positively oriented, it followatthis positively
oriented (respectively, negatively oriented) if and offithhe homomorphism:

(tr@ 0 fote), - Ha(R™, R\ {0}) — Ho(R",R"\ {0})

equals the identity (respectively, minus the identity)dgeryx € U. The conclu-
sion follows from Proposition 1.9.6. O
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1.10.20. EMARK. Observe that during the proof of Proposition 1.10.17 we
have actually shown (keeping in mind also Corollary 1.1pth& following fact:
if 7 is an orientation folR™ and ifa € H,,(R",R" \ {0}) is mapped ta-(0) by
the homomorphism:
H,(R",R"\B") — H,(R",R"\ {0})
induced by inclusion then for everye B™ the homomorphism:
Hn(]R”, R™\ B”) — H,(R",R"™\ {v})
induced by inclusion takes to 7(v).

1.10.21. XAMPLE (zero-dimensional manifolds). [/ is a zero-dimensional
topological manifold (i.e., a discrete topological spattedn the orientation bun-
dle O(M) is also a discrete topological space; namely, for every M the set
U = {z} is open inM and for everya € Hy(M,M \ U) the basic open set
Im[O(a; U)] is the singleton{a}. Thus, every sectiom : M — O(M) of
O(M) is continuous. Moreover, for every € M the local homology group
Ho(M,M \ {z}) has a canonical generator, namely, the homology class of the
singular0-simplexz. If we identify the generators and—x of Ho (M, M \ {z})
respectively withl and —1 then choosing an orientation for a zero-dimensional
topological manifoldd/ becomes the same as choosing an arbitrary map/ —

{-1,1}.

1.10.22. XAMPLE (orientation on the sphere). For everyc S™, since the
spaceS™ \ {z} is contractible, the homomorphis#, (S™) — H, (5™, 8"\ {z})
induced by inclusion is an isomorphism. In other words, thebmorphisms:

psng : Ho(S™) — H,o(S", 8™\ {z}),
are isomorphisms forn. > 1 and in the case. = 0, the restriction ofpgn, to
ﬁn(S") is an isomorphism. Thus ik is a generator of the infinite cyclic group

H,(5™) thenO(a; S™) is an orientation fols™ (see Lemma 1.10.7). i > 1 then
Proposition 1.10.11 implies that we have a one-to-one sparedence:

(1.10.6) {generators of7,(S")} > a — O(a; S™) € {orientations ofs™ },

between the (two element set of) generators’?gf(sn) = H,(S,) and the set
of orientations ofS™. Forn = 0, the sphereS’ = {—1,1} has actuallyfour
orientations (see Example 1.10.21), so that the image dhjbetive map (1.10.6)
contains only two of them (namely, those attaching oppasipes to the two points
of S9); we will not be interested in the other two orientationss8f Hence, from
now on, we shall identify the orientations $% with their corresponding generators
of ﬁn(S”) via the correspondence (1.10.6); more explicitlyyifs a generator of
H,(S™) then for everyz € S™ we will write a(z) for the image ofx by the
isomorphism,, (S™) — H,,(S", S\ {z}) induced by inclusion.

1.10.23. EMARK. Regarding the convention we made in Example 1.10.22
of identifying orientations ofS™ with generators off,,(S™), we observe in ad-
dition that a homeomorphisrh : S™ — S™ is positively oriented (respectively,
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negatively oriented) if and only if the automorphism of ﬁn(S") is the identity
(respectively, minus the identity). This follows easilpiin the commutativity of
the diagram:

*

H, (5" H,(5™)

psnil \LPS”}L(JC)

H, (5", 5™\ {z}) H, (5", 5™\ {h(z)})

s

We now study the relations between the notion of orientatimoduced in this
section (let’s call ithomological orientatiorfor the moment) and the standard no-
tion of orientation for differentiable manifolds definedterms of orientations for
the tangent spaces (let’s caldifferentiable orientatiorfor the moment). Most of
the work is encoded in Corollary 1.10.19. A basic difficultat appears right away
when one tries to relate homological and differentiablertgtion is the following:
the model space for manifolds, i.e., the Euclidean sf&¢das a canonical dif-
ferentiable orientation (corresponding to the vector spaientation defined by
the canonical basis) while it has in principle no obviousiceédor a homological
orientation. The natural way around this difficulty is to maak choice (once and
for all) for an orientation orR™ that will be called “canonical”; we thus make the
following:

1.10.24. ®NVENTION. Let us choose a homological orientatioffl : R —
O(R™) for R™. If n = 0 we orient the unique point @&° with a plus sign (see Ex-
ample 1.10.21), i.e., we simply také’ (0) € Hy(R) to be the homology class of
the singularo-simplex determined by the origin. Assume now that 1. Propo-
sition 1.10.17 tells us that an orientatiefi’ for R™ is obtained if one chooses
a generator-")(0) for H,(R™,R" \ {0}) and then set"(v) = (t,).(71"(0))
for all v € R™. Let us now choose!™(0). We start by fixing an isomorphism
betweenH,, (R”, R" \ {0}) and H,_1(S"'). We choose the isomorphism used
in Example 1.9.4 to compute the local homologyRif; namely, we consider the
isomorphism given by the dotted arrow in the commutativeydien:

(1.10.7) H,(R",R™\ {0})

Hn(ﬁn’sn—l) Ti) ~n_1(5n—1)

R

where the unlabelled vertical arrow is induced by inclusiBmally, we choose a
generator!™ for ﬁn(S”) for everyn > 0 and then, for every, > 1, we take
717(0) to be the inverse image off*~!/ by the dotted arrow in (1.10.7). We now
defineal”! recursively. We choose the generato?! of Hy(S°) = Ho({-1,1})
by taking a plus sign o € S° and a minus sign in-1 € S° Assuming that
a1 is defined for some > 1, we taken!”] € H,,(S™) to be the element that is
mapped ta(—1)"~al"~1 by the isomorphismi,, (S™) = H,_,(5"') defined
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in Example 1.8.1, i.e., the composition of the isomorphi¢in8.1)—(1.8.4) (with
p=n).

From now on, we will call-I! the canonicalhomological orientation oR"
anda!™ the canonicalhomological orientation of™ (see also Example 1.10.22).

Let now M be ann-dimensional differentiable manifold withn, > 1. A
differentiable orientatiorfor M at a pointz € M is by definition a vector space
orientation for the tangent spa¢g M.

Letz € M and lety : U — U be a (smooth) chart fob/ with U an open
neighborhood of: in M andU an open subset dR”; setz = o(z). The vec-
tor space isomorphismyp, : T, M — R"™ induces a bijection between the (two
element) set of vector space orientationg’pl/ and the set of vector space orien-
tations ofR™. Moreover, the group isomorphism:

Ox Hn(M,M \ {x}) — Hn(R", R™\ {:Z"})

induces a bijection between the (two element) set of gemeraf H,, (M, M\ {z})
and the set of generators &f, (R",R™ \ {Z}). We have a canonical bijection
between the set of vector space orientation®Rbfand the set of generators of
H,(R™,R" \ {#}); namely, this bijection takes the orientation Bf induced
by the canonical basis to the generatdt! (z). The charty therefore induces
a bijection between the set of vector space orientations,.aff and the set of
generators off,, (M, M \ {z}); namely, such bijection is the dotted arrow in the
commutative diagram:

Orientation Generators of
(1.10.8) of T, M j ____________________________________ - {HH(M,M\{:U})}

induced induced
by d¢a by .
Orientationg e s
of R" canonical— 71" (&) {T (x), T (x)}

The crucial point here is that the top arrow of the diagramvelolmes notdepend
on the choice of the chagt. To prove that, choose another charvf M aroundz

and seti’ = 1(x); we denote byf = v o ¢! the transition map fronp to ¢ so
that f is a diffeomorphism between open subset®8fand f () = #’. Consider

7If M has dimension zero, one usually takes by convention th#fexentiable orientatioron
M is simply an arbitrary map : M — {—1,1}. By Example 1.10.21 this is actually compatible
with the notion of homological orientation for zero-dimesl manifolds.
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the following diagram:

Orientation
of T,M

d Generators of
........... >{ Hn(M’M\{I})

Orientations
of R™

where the dotted arrow at the top of the diagram is the bgacinduced by the
chartp; by definition, the square in the back of the diagram commu@early,
the triangle on the left side of the diagram commutes by thenclule and the
triangle on the right side commutes by the functoriality iofsilar homology. The
dashed square at the bottom of the diagram also commutesojlaty 1.10.19;
it follows that the front square commutes and therefore titeed arrow coincides
with the bijection induced by.

We have proven that, given a differentiable manifdld then for everyr € M
there exists @anonicalbijection between the set of orientations/af at x in the
homological sense (i.e., the set of generatorsip{ M, M \ {z})) and the set
of orientations ofM at x in the differentiable sense (i.e., the set of vector space
orientations off’, M).

Now let 7 : M — O(M) be a section of the orientation bundle such that
() is a generator ofd,, (M, M \ {z}) for all z € M; let 7(z) be the vector
space orientation &f, M that corresponds to,. To finish our comparison between
homological and differentiable orientation we sill haveskow thatr is continuous
if and only if the family (7,).cas define a differentiable orientation fav/; we
briefly recall below what the latter condition means.

1.10.25. DEFINITION. Let M be ann-dimensional differentiable manifold
with n > 1. Assume that for every € M one chooses a vector space orien-
tation 7, for T, M. A (smooth) charty : U ¢ M — U C R" is calledposi-
tively orientedfor the family 7 = (7,).ens if for every z € U the isomorphism
dp, : T, M — R™ carries the orientatiom, of 7). M to the canonical orientation
of R™. We say that the family defines an orientatiofor M (in the differentiable
sense) ifM admits an atlas of positively oriented charts, i.eMifcan be covered
by the domaing/ of the positively oriented charts: U — U.

We can now finally prove the following:

1.10.26. ROPOSITION Let M be ann-dimensional differentiable manifold
withn > 1. LetT : M — O(M) be a section of the orientation bund@(M)
such thatr (x) is a generator offf,, (M, M \ {z}) for everyz € M; denote by,
the vector space orientation @f, M that corresponds te(z) by the rule explained
in diagram(1.10.8) Then the family = (7,.). s defines an orientation fak/ (in
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the differentiable sense) if and onlyrifs an orientation forM (in the homological
sense), i.e., if and only if is a continuous section @ (M ).

PROOF Assume that defines an orientation fak/. For everyr € M we
can find a positively oriented (smooth) chart: U — U with z € U. Then
dyp, carries the orientatiofi, of T}, M to the canonical orientation dt" for every
y € U; hence the isomorphism:

(1.10.9) st Hy (M, M\ {y}) — Hn(R",R™\ {(y)})

carriesr (y) to 71" (¢(y) ). Therefore we have a commutative diagram:

O(p)

O(M) > OU) O(U) c O(R")

TU] TT["]lg

M>U % UcCR"

SinceO(p) is a homeomorphism (see Proposition 1.10.12), it folloved ty; is
continuous; but: is arbitrary and therefore is continuous.

Conversely, assume thatis continuous. Letr € M and lety : U — U
be a (smooth) chart witly a connected open neighborhoodaof By Proposi-
tion 1.10.15,p is either a positive or a negative homeomorphism; by conmgosi
 on the left with a negative isomorphism Bf* if necessary, we can assume that
¢ Is positive. This means that (1.10.9) carridy) to T[”](go(y)) foreveryy e U
and therefore the isomorphisdy, carries7, to the canonical orientation dt".
Thusy is positively oriented forr. O

We have completed the prove of the equivalence between tlmamf homo-
logical and differentiable orientation. Actually, one shlbprove now (and that’s
very easy) that a diffeomorphism between oriented difféable manifolds is pos-
itively oriented in the differentiable sense if and onlytifd positively oriented in
the homological sense (see Exercise 1.68).

In our Convention 1.10.24 we have fixed the canonical ortenta " for R
and the canonical orientation™ for the sphereS™. But to what differentiable
orientations do this conventions correspond? Well, it isttgrobvious that-"
corresponds to the canonical differentiable orientatibik®, i.e., the one induced
from the canonical basis. But what abaut!? We will have to work a little to
answer that. First, let's fix some terminology.

1.10.27. EFINITION. For everyn > 0 the outward pointing orientatioron
S™ is defined as follows; for, = 0 we simply take a plus sign for the poihte S©
and a minus sign for the pointl € S°. If n > 1 then for everyr € S” c R*+!
we orientT, M in such a way thatx, by, ...,b,) is a positively oriented basis of
R"+! for every positively oriented basig, . .., b,) of T, M.

It is a very elementary exercise to check that the outwardtpg orientation
is indeed a differentiable orientation f6f".
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Now we can compare explicitly the homological and the défgiable orien-
tations of the sphere.

1.10.28. ROPOSITION For everyn > 0, the differentiable orientation asso-
ciated to the canonical homological orientatiaf” of S™ is the outward pointing
orientation (recall Example 1.10.22, Convention 1.10.8d Rroposition 1.10.26).

PROOF If n = 0 there is nothing to do, so assume> 1. By Proposi-
tion 1.10.11 it suffices to check that the homological oaéoh corresponding to
the outward pointing orientation equais® at one specific point, say the south
pole. We use the notation of Example 1.8.1. Lket: S\ {n} — R" de-
note the stereographic projection from the north pole ohtoglane containing
the equator, i.e., for every € S™, = # n, ¢(x) is the unique point of the half-line
{n+t(z—n): ¢t > 0} that belongs to the hyper-plaf’ x {0} ¢ R"!. If 5™ is
endowed with the outward pointing orientation then a shtfi@yward computation
(see Exercise 1.70) shows thigt, : 7,5™ — RR™ is a positive isomorphism for odd
n and it is a negative isomorphism for evenhence the proof will be concluded if
we can show that:

pe(al(s)) = (=1)"'7"(0).

Consider the following diagram of abelian groups and isghisms:

Ho (57) —= Ho (87, 5™\ {s}) < H,(S™\ {n}, 5"\ {n,s})

e

Px

- —

Hy, (R, R™\ {0})

wherei, and the unlabelled arrows are induced by inclusion. Thesdqtiath in
the diagram above corresponds precisely to the isomorpbmween?[n_l(sn‘l)

andH,(S™) describe in Example 1.8.1, i.e., the composition of the mg@hisms
(1.8.1)—(1.8.4). Hence such dotted path carti€s ! to (—1)"~'al”l. Moreover,
the dashed path in the diagram cartie® to . (a!"l [s]); it follows that:

(1.10.10) (px 007 o) (@7 1) = (=1)" o, (al"l(s)).
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We will show now that the lefthand side of (1.10.10) equal$(0). To this aim,
consider the commutative diagram:

fﬁn_l(sn \ {n,8}) =5 Ha(S™\ {n}, 5™\ {n,5}) —= H,(R", R"\ {0})

where the unlabelled arrows are induced by inclusion. Tielosion is obtained
by observing that the dotted path in the diagram above takes! to the lefthand
side of (1.10.10) while the dashed path takés ! to 711 (0). O

Let us now study orientations on manifolds with boundarg (Egercise 1.63
for the exact definition and the terminology we adopt). Indhse otifferentiable
manifolds with boundary, there is no real additional diffigun comparison with
the case of manifolds without boundary; namely, there is lkdefined notion of
tangent space also at the points of the boundary and one naieovector space
orientations on such tangent spaces. Moreover, in theeliftable case, it is well
known (for instance by those who have studied Stoke’s tlmeane manifolds) that
an orientation on a manifold with boundary induces candiyiea orientation on
the boundary; namely, one uses the canortreaisversalorientation of the bound-
ary, given by the outward pointing tangent vector. In theegagtopological mani-
folds with boundary, there is a difficulty with the homologii@pproach for orien-
tation; namely, all the local homology groups vanish at tharaary points. We
use the following strategy to go around this difficulty: wmply don't talk about
oriented topological manifolds with boundary — we just tablout orientations for
theinterior of the manifold with boundary (which is a manifold withoutlaary).
Nevertheless, we have to clarify how an orientation on tkerior of a topological
manifold with boundary induces an orientation on the bowndd the manifold.
Such notion ofnduced orientation on the boundawjill be achieved by an elegant
trick using the connecting homomaorphigmof the long exact homology sequence
of a pair (keep in mind the isomorphisa : H,(B",$" ') — H,_;(S" ') asa
model for the general construction we explain below).

In what follows, M will always denote am-dimensional topological mani-
fold with non emptyboundary (in particulam cannot be zero). Recall from Exer-
cise 1.63 that it/ is a non empty open subsetif thenU is also am-dimensional
topological manifold with boundary and:

inter(U) = inter(M)NU, Bd(U)=Bd(M)NU.
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For every open subsét in M and everyr € inter(U) we define, in analogy with
(2.10.1), a homomorphism:
puz 2 Hn (M, M \ inter(U)) — H,y, (inter(M), inter(M) \ {z})

by requiring the commutativity of the diagram:

H, (M, M \ inter(U)) H, (M, M\ {z})

PUz T_

H, (inter(M), inter(M) \ {z})

in which the unlabelled arrows are induced by inclusion. Nfw everya <
H, (M, M \ inter(U)) we define (in analogy with (1.10.3)) a sectiOq(a; U, M)
of the orientation bund|€ (inter(M)) along the open séhter(U) C inter(M)
by setting:
Oi(a; U, M)(x) = prz(a),

for all z € inter(U). When M is fixed by the context we write simpl§; (a; U)
instead ofO; (o; U, M).

Assume now that: belongs to the boundary of the open g§&tC M, i.e.,
x € Bd(U). Observe thaBd (M) is a neighborhood of in the topological space
M \ inter(U); namely,Bd(U) = U N (M \ inter(U)) is an open set in the space
M \ inter(U) that containg: and is contained id (/). It follows that the local
homology groups ol \ inter(U') and of Bd(M) atx are isomorphic (by the usual
isomorphism induced by inclusion); we can thus define a hoarphism:

Juz : Hy(M, M \ inter(U)) — H,—1(Bd(M),Bd(M) \ {z})

by requiring the commutativity of the diagram:
(1.10.112)

H, (M, M \ inter(U)) H, (M \ inter(U))

o |

H,—1(BA(M),Bd(M) \ {x}) —— H,_1 (M \ inter(U), [M \ inter(U)] \ {x})

Ox

in which the unlabelled arrows are induced by inclusion dreltop arrowo, is
the connecting homomorphism of the long exact homology ecri of the pair
(M, M \ inter(U)). f o« € Hy(M,M \ inter(U)) is fixed then the homomor-
phisms.7;,, can be joined together to form a sectioq(a; U, M) of O (Bd(M))
alongBd(U); more explicitly, we set:

Oy(o; U, M)(x) = Tyz(a),

for all z € BA(U). Again, if M is fixed by the context we write simpl§y, (co; U).
Using the terminology introduced above, we can give thevalhg:

1.10.29. DEFINITION. If 7 is an orientation fointer(M ) then an orientation
7> for Bd(M) is calledinducedfrom  if for every pointz € Bd(M) we can find
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an open sel/ in M containingx and a homology class € H, (M, M\inter(U))
such that:

(1.10.12) Thnter(y = Oi(a; U),  7°|gar) = Op(as; U).

Our task now will be to prove that for every orientationf inter (M) there is a
unique orientation® on Bd (M) that is induced fromr; after this fact is established
we shall simply say thatP is the orientation induced by on the boundary of/.

We start by stating some simple naturality results reggrdire homomor-
phismspy,. and 7.

1.10.30. LEmMMA. If U, V C M are open subsets withi C U then for every
x € inter(V), y € Bd(V) the diagrams:

(1.10.13)  H,(M, M \ inter(D))

PUE
H, (inter (M), inter(M) \ {z})

PVa

H, (M, M \ inter(V))

(1.10.14)  Hy,(M, M \ inter(U))
Juy

Hy,—1 (BA(M), BA(M) \ {y})

Jvy
H, (M, M \ inter(V))

commute, where the unlabelled vertical arrows are inducgthblusion.
In particular, if « € H,(M, M \ inter(U)) is a homology class and’ €
H, (M, M \ inter(V)) is the image ofv by the homomorphism:

(1.10.15) H, (M, M \ inter(U)) — H, (M, M \ inter(V))

induced by inclusion the@®;(a/; V) is the restriction ofD;(«; U) to inter(V') and
Oy (a/; V) is the restriction of0y, («; U) to Bd(V).

PrROOF This is basically a consequence of the fact that the hompiniems
we used to assemble tias and the7’s are all natural with respect to inclusions.
For example, in order to prove the commutativity of (1.10 dde can draw a cubic
diagram as follows: the bottom face of the cube is diagrart0(11), the top face
of the cube is diagram (1.10.11) with replaced byV; the top and the bottom
faces of the cube are connected by (downward pointing)ocarirrows which are
all induced by inclusion. One has now to observe that fivesfadehis cube are
commutative and then use this fact to conclude the commityadf the sixth face,
which relates the map%;, and. Jy ... The proof of the commutativity of (1.10.13)
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is obtained in a similar way, considering a diagram havirgfthm of a prism of
triangular basis. The (boring) diagram-chase detailsedted the reader. O

Observe that Lemma 1.10.30 implies that if one can findnd « that satisfy
equalities (1.10.12) then for every smaller openiéet- U one can find' (the
image ofa by (1.10.15)) such that (1.10.12) is satisfied witheplaced by and
a replaced by'. In particular, we obtain the following:

1.10.31. ®ROLLARY. If an orientation on Bd(M) is induced from an
orientationr oninter(M ) then for every open sét C M with BA(W) # 0, the
restriction of 7" to Bd(W) = Bd(M) N W is induced from the restriction of to
inter(W) = inter(M) N W.

PROOF For everyx € Bd(WW) one can find an open sEt C M containingz
and a homology class € H,, (M, M\inter(U)) satisfying (1.10.12); as observed
above, one can pick a smallrsuch that7 c 1. By excision, we know that the
homomorphism:

(1.10.16) H,, (W, W \ inter(U)) — H, (M, M \ inter(U))

induced by inclusion is an isomorphism; we can thus find a Hogyoclassg <
H, (W, W \inter(U)) that is mapped by (1.10.16) onto The conclusion follows
from Exercise 1.72. O

1.10.32. [EMMA. Leth : M — N be a homeomorphism betweerdimen-
sional topological manifolds with (non empty) boundary tisat »~ automatically
mapsBd(M) ontoBd(N) (see Exercise 1.63). For every open suliset M and
for everyz € inter(U), y € Bd(U) the diagrams:

H, (M, M \ inter(U)) U . H, (inter(DM), inter(M) \ {z})

s |

H,(N,N \ inter(U")) LN H, (inter(N), inter(N) \ {z'})

jUy

H, (M, M \ inter(U)) H,(Bd(M),Bd(M) \ {y})

) |-

Tyry!
H,(N, N \ inter(U)) H,(BA(N),Bd(N)\ {¢'})

commute, wheré/’ = h(U) C N, 2/ = h(xz) € inter(U’) andy’ = h(y) €
BA(U").

In particular, if « € H, (M, M \ inter(U)) is a homology class and’ €
H, (N, N \ inter(U’)) is the image of: by the homomorphism:

By Hn(M,M \ inter(U)) — Hn(N,N\inter(U'))
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then h also “relates” the mapsO;(«; U, M) and Oy («; U, M) with the maps
O;(a/;U',N) and Oy (o/; U’, N) respectively; more precisely, the diagrams:

o (h‘intcr(kf) )
_—

O (inter(M)) O (inter(N))
Oi(a;U,M)T Toi(a’;U’vN)
inter(U) pY— inter(U")

oeain) ) o)
(’)b(a;U,M)T T(Db(a’;U’,N)
BA(U) —— > BA(U')

commute.

ProOOFE This is basically a consequence of the fact that the hompiniems
we used to assemble th&s and the7’s are all natural with respect to homeomor-
phisms (one can also think about cubic and prismic diagrasrexplained in the
proof of Lemma 1.10.30). The details are left to the reader. O

1.10.33. @WROLLARY. Leth : M — N be a homeomorphism between
dimensional topological manifolds with (non empty) bougydao that automat-
ically h(Bd(M)) = Bd(N). Assume that, 7>, o, o” are orientations re-
spectively fotinter(M ), BA(M), inter(N) and BA(N). If the homeomorphisms
Plinter(ary : inter(M) — inter(N) and h|gq(ar) : Bd(M) — Bd(N) are posi-
tively oriented and if-> is induced fromr then alsos® is induced fron.

PrROOF Observe that if an open sét C M and a homology clasa €
H, (M, M \ inter(U)) satisfy equalities (1.10.12) then the open&Bét= h(U)
and the homology class = h.(«) satisfy:

Olinterry = Oi(a;U”),  0®|an = Op(c/sT).
The conclusion follows. O

We now prove the unigueness of the induced orientation obdhadary.

1.10.34. IEMMA. If 7 is an orientation forinter(M ) then there exists at most
one orientationr® for Bd(M) that is induced fromr.

PROOF Letr} andr) be both induced from. For any fixedy € Bd(M) we
will show thatrP (y) = 72 (y). By the definition of induced orientation, we can find
an open neighborhoad; of y and a homology class; € Hn(M, M\ inter(Ui))
such that:

(1.10.17) Tlinter(y) = Oi(ai; Us),
(1.10.18) 7 lBawy) = Ovlau; Ui),
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for ¢ = 1,2. Using a local chart aroung we can find an open neighborhood
U of y contained inU; N U, such thatU is homeomorphic to the half closed
ball B" n H" by a homeomorphism that carriéster(U/) to the half open ball
B" N inter(H™). Observe that for every € inter(U), the topological boundary
dinter(U)] = U \inter(U) of inter(U) is a strong deformation retract 6f\ {x};

it follows that M \ inter(U) is also a strong deformation retract of \ {z} and
therefore the homomorphisp, is an isomorphism. Denote hy, the image of
«; by the homomorphism:

H, (M, M \ inter(U;)) — H,,(M, M \ inter(U))
induced by inclusion. From (1.10.17) and Lemma 1.10.30 viainlhat:

puz(ay) = 7(x) = pra(as),
for everyz € inter(U) and thereforex| = «f. Finally, using (1.10.18) and
Lemma 1.10.30 we obtain:

TP(Z/) = jUy(O/l) = jUy(O‘é) = Tb(y)- g

Observe that we have not yet presented a single example tfadicn where
an orientation® on Bd (/) is induced from some orientatianon inter(M). A
simple example is given below.

1.10.35. XAMPLE. Let M denote the unit closed baB" (with n > 1),
so thatBd(M) is the sphereS™~!. We claim that ifr is the orientation on
inter(M) = B™ obtained by restricting the canonical orientatiofil of R™ then
the canonical orientation® = «["~1l of the spheres”! is induced fromr. To
prove the claim, let the open s&t ¢ M be the whole closed baB" and let
the homology class: € H,, (M, M \ inter(U)) = H,(B",S"!) be the one
that is mapped to the canonical orientatigfi—! ¢ fIn_l(S”‘l) via the isomor-
phisma, appearing in the long exact homology sequence of the (fair, S*~!)
(that's the horizontal arrow in diagram (1.10.7)). The miawill follow once
we show that equality (1.10.12) holds. To this aim, obserk& that equality
™|aw) = Ob(e; U) means thatfy, () = ol"~Y(z) for everyz € S"~1; this
is a direct consequence of the definition’sf, and of the relation betweewn !l
anda!"~!(z) (recall Example 1.10.22). Finally, the equality,c. i) = Oi(a; U)
means that the homomorphism:

(1.10.19) H,(B",8" ') — H,(R",R"\ {v})

induced by inclusion carries to T["}(v) for all v € B™ (as usual we identify
the local homology group&/,, (B", B™ \ {v}) and H,, (R",R" \ {v})). This last
assertion follows easily from Remark 1.10.20 (see Exertig&) by observing
that forv = 0 the map (1.10.19) takesto 7[")(0) (recall Convention 1.10.24 and
diagram (1.10.7)).

We can now finally prove the following:

1.10.36. ROPOSITION If 7is an orientation orinter(M ) then there exists a
uniqueorientationT® on Bd(M) that is induced by-.
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PrRoOF During the course of this proof we will say that a topologimanifold
M with non empty boundary acceptabléaf the statement of the proposition holds
for M. Our goal is to prove that all manifolds (with non empty boary) are
acceptable. Observe that the uniqueness of the orienfatiored on the boundary
was already proven in Lemma 1.10.34. The proof of the exigtavill be split in
three steps.

e If the boundary of\/ can be covered by a family\/;);c; of open subsets of
M, each of them acceptable, théh is acceptablelet = be an orientation for
inter(M). For everyi € I the orientationr |i,e,(as,) Of inter(M;) induces a
orientationr” on Bd(M;). Moreover, fori, j € I, Corollary 1.10.31 implies
that the orientations,”|ga(as,nns,) @A 7} |Ba(a,naz,) @re both induced from
T’inter(MiﬁMj); thus, by Lemma 1.10.34, we have thé’dBd(MmMj) equals
7 [Ba(as,nn,)- We can therefore define a map:

™ Bd(M) — O(Bd(M)),

by requiring thatr® equals7® on Bd(M;). It is now easy to check that’
is indeed an orientation oRd (A7) and thatr® is induced fromr (see Exer-
cise 1.72).

e If M is homeomorphic to an acceptable manifold thiéns also acceptable
follows trivially from Corollary 1.10.33.

e If inter(M) is connected and/ is open in some acceptable orientable man-
ifold N then M is also acceptablelet 7 be an orientation fointer(M ).
Choose an orientation’ for N; by replacingr’ with —7' if necessary, we
can assume that equalsr at some point ofnter(M). It then follows from
Proposition 1.10.11 that = T’]intor(M). SinceN is acceptable, we can con-
sider the orientatiori7’)® on Bd(V) induced fromr’; by Corollary 1.10.31,
the restriction of7')> to Bd(M) is induced fromr = 7/ier (a1)-

Finally, the thesis of the proposition (i.e., the fact thHabhsnifolds are acceptable)
follows from the fact thaB " is acceptable (see Example 1.10.35) and from the fact
that everyn-dimensional topological manifold with boundaky can be covered by
open sets that are homeomorphic to open subsés'dfaving connected interior.

O

1.10.37. @ROLLARY. If M is orientable then als®d (M) is orientable. [J

In practical situations, how does one determine the oriemanduced on the
boundary? We answer this question below by given a simpéepregtation for the
induced orientation on the case of differentiable mangold

If M is a differentiablen-dimensional manifold with boundary then the tan-
gent spacd, M (and hence the set of its vector space orientations) isaetihed
for everyx € M (even ifx € Bd(M)!). One can thus adapt Definition 1.10.25
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to the case of differentiable manifolds with boundary afiteg a concept of dif-
ferentiable orientation for such manifolds; more explgian orientation (in the
differentiable sense) fai/ is a family 7 = (7). such that each, is a vector
space orientation for the tangent spd¢e/ and such thail/ admits an atlas of
chartsp : U C M — U C R" that are positively oriented far (the definition is
the same as before, with the exception that now we accepffthaﬂy not be open
in R™, but open on the half-spa¢¢?).

We recall that for points € Bd(M) the tangent spacgE,Bd (M) has acanon-
ical transverse orientatioln 1, M, i.e., one can distinguish canonically between
the two half-spaces defined by the hyper-pldh&d (M) in T, M. More explic-
itly, one defines that a vectar € T, M is outward pointingif for some chart
¢ :U — U, withU > z open inM andU open inH", the vectordy, (v) € R™
does not belong tél” (i.e., it has negative-th coordinate). It is not hard to check
that if such condition holds for one chagtaroundz then it will hold for every
charty aroundz. Using the notion of outward pointing vectors we can give the
following:

1.10.38. EFINITION. If M is ann-dimensional differentiable manifold with
boundary ¢ > 2) and7T = (7.)zenm iS an orientation forM (in the differen-
tiable sense) then theutward pointing orientatioron Bd(M) is the (differen-
tiable) orientationr® = (7),epa(nr) for which the following property holds: if
r € Bd(M), vy € T, M is an outward pointing vector an@s, ... ,v,) is a7b-
positive basis fofl,, Bd(M) then(vy,ve, ..., v,) is aT,-positive basis fofl, M.

It is well known that the property given above does define &@ntation7> on
Bd(M) (this is the orientation ofd (M) used to formulate Stoke’s theorem on
manifolds). Observe that the outward pointing orientafimnthe spheres™—! is
precisely the outward pointing orientation that the clobal B" (endowed with
the restriction of the canonical orientationl®f) induces on its boundary.

As one should be guessing by now, we have the following:

1.10.39. ROPOSITION Let M be ann-dimensional differentiable manifold
with non empty boundary (with, > 2). If 7 = (T2 )ze M is @ differentiable orien-
tation for M and if 7 is the homological orientation omter(A/) corresponding to
(Tz)zeinter(ar) then the (homological) orientation® on Bd (M) induced fromr is
precisely the one that corresponds to the outward pointirgntation onBd (M)
induced fromr.

ProOOF The idea of the proof is to compard locally with the closed ball
B". Let thenz, € Bd(M) be fixed and choose a diffeomorphism: U — V
from an open connected neighborhddaf , in M onto an open subsét of B".
Assume thaB" is endowed with the differentiable orientation inducedhirthe
canonical orientation oR™ and thatS™~! is endowed with the outward pointing
orientation. For every € U the isomorphismsly, : T,M — Tw(x)E" = R?
are either all positive or all negative; for definitenessslassume that they are all

8See Remark 1.10.40 below for the case- 1.
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positive. By Proposition 1.10.28 and Exercise 1.68 the fovath be completed
once we manage to show that:

(@) ¢lpawy : BA(U) — Bd(V) is a positively oriented diffeomorphism (in
the differentiable sense) when bddd(U') andBd(V') are endowed with
the outward pointing orientation;

(b) wlpaw) : BA(U) — Bd(V) is a positively oriented homeomorphism (in
the homological sense) whéd(U) is endowed with the restriction of
7P andBd (V') is endowed with the restriction of 1.

To prove (a), observe that for every € Bd(U), the isomorphismiy,, is
positive and it takes outward pointing vectors to outwaréhfimg vectors; thus
dyp, also restricts to a positive isomorphism between the tangpaces of the
boundaries. To prove (b), observe thaf, .y : inter(U) — inter(V) is
a positively oriented homeomorphism in the homologicalsseand hence so is
¢lBa) : Bd(U) — Bd(V), by Corollary 1.10.33 and Example 1.10.35. This
concludes the proof. O

1.10.40. RMARK (zero-dimensional boundary). Assume thdt is a one-
dimensional differentiable manifold with boundary, otieth in the differentiable
sense. Denote by the homological orientation dhiter()/) associated to such
differentiable orientation and by the homological orientation on the zero-dimen-
sional manifoldBd(A/) induced fromr. By Example 1.10.21, we may iden-
tify 7> with a {1, 1}-valued map on the s@d(M). We claim that for every
r € Bd(M), 7°(x) = 1 (respectivelyr®(z) = —1) if and only if the outward
pointing vectors at the point define the positive orientation (respectively, the neg-
ative orientation) of the one-dimensional vector spégé/. The claim is proved

by first observing that such property holds\if = B! (recall Convention 1.10.24);
for generalM, one simply use diffeomorphisms to compare open subseld of
with open subsets a' asin the proof of Proposition 1.10.39. The details are left
to the reader.

1.10.41. XKAMPLE. Let M C R? be a compact convex polyganThen}M is
a2-dimensional topological manifold with boundary, becaisés homeomorphic

to the disdB” via radial projection from an interior point (see Exercisé2). The
interior of M as a manifold with boundary (respectively, the boundanjbfas

a manifold with boundary) coincides with the topologicateior (respectively,
the topological boundary) of/ as a subset oR2. Assume thainter(M) =
int(M) is endowed with the (restriction of) the canonical orieiotat-?l of R2.
Let's describe the induced orientation on the boundary/ofLet M’ denote the
complement inM of the (finite set) consisting of the verticesaf. ThenM’ is a
differentiablemanifold with boundary, with the differentiable structuhat makes

it embedded irfR?. Assume thaf\/’ is endowed with the canonical differentiable

%We don’t care much about the precise definition of polygore i@cause we will be using the
content of this example only for the case of tegular n-agon (which may be defined as the convex

hull of the pointse **~ € C, k= 0,...,n — 1).
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orientation induced fronik?, so that the corresponding homological orientation on
inter(M’) = inter(M) is just (the restriction ofy-[2l. By Corollary 1.10.31, the
orientation thafl/’ induces oBd (M) is precisely the restriction of the orientation
that M induces onBd(M). Therefore, if we determine the orientation thdt
induces onBd(M’) we will have a good description of the orientation thdt
induces onBd(M). SinceM’ is a differentiable manifold, we can compute the
orientation induced on the boundary using Proposition.B40LetS C Bd(M')
denote an open side (i.e., a side without the vertices) optiygon M. If x € S
andv € T, M’ = R? is an outward pointing vector (in this case, this means that
x +ev ¢ M' for smalle > 0) then a vectow € 7,5 C R? (i.e., a vector parallel
to S) defines the positive orientation fdr, S if (v,w) is a positive basis oR?.
Hence, ifxg andz; are the vertices of and if (v, z1 — zo) is a positive basis for
R? then the map:

10,1[ >t — xp + t(x1 — x) € S,
is a positively oriented homeomorphism if the interi@l1] is endowed with (the
restriction of) the canonical orientatian!) of R and S is endowed with (the re-
striction of) the orientation oBd (/) induced fromM .

1.11. Degree Theory

The degree of a continuous map, roughly speaking, is anéntegued homo-
topic invariant that measures how many times a manifoldlgefbaround another
one by such map; the concept of degree generalizes the @nadig numbenof a
closed curve around a point in the plane (or of a closed curtied circleS'). The
degree of a map is also a particular case of the more generaépbofintersec-
tion numberetween a map and a submanifold (the degree corresponds ¢agh
where the submanifold reduces to a single point). When artkest integration of
differential forms on differentiable manifolds, the degaf a smooth may ap-
pears as the multiplicative factor that relates the infegra formw with the inte-
gral of its pull-backf*w. The formal definition of degree can be given for instance
by techniques of differential topology; one defines the degf a smooth mayp
to be an algebraic count of the number of inverse imageg bla regular value.
The proof that such number is independent of the regulaevaha the proof of the
homotopy invariance takes some work (typically involvinetential forms and
Stoke’s theorem); the generalization of the notion of dedgeecontinuous maps
is carried out using approximation theorems and the honyoimyariance. The
use of techniques of algebraic topology (or, more precisg#ijiomology theory)
provides in many cases an almost “magically” simple (algioless geometric)
definition for the degree of a map. The simplest case is theconeerning maps
f from the sphere5™ to itself; the degree of such a map equals the multiplicative
factor corresponding to the homomorphigin : ﬁn(S”) — ﬁn(S") (recalling
that H,(S™) = Z).

The most general definition of degree can be given for pro@gsyi: M —
N between oriented topological manifolds of the same dinmenévith N con-
nected); such degree is invariant under proper homotogias. amount of work
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required to develop degree theory in such general case isextensive, so we
prefer to stick with a simpler case that will be sufficient éar purpose¥. The
case we consider will be the one of a continuous map defined open subset of
the sphere™ taking values in an oriented-dimensional topological manifold. In
Definition 1.11.1 below, we start by introducing a notion eficee that depends on
a fixed point of the counter-domain; under certain cond#jonwill be possible to
prove that the degree is independent of the choice of suctt. poi

1.12.1. CEFINITION. LetU C S™ be an open subsel/ ann-dimensional
topological manifold,g € M a point andr, an orientation forM atgq, i.e., a
generator of the local homology group, (M, M \ {¢}). Letf : U — M be a
continuous map such thit ! (¢) is compact; we define thaegree off at the value
q with respect to the orientation, to be the unique integer numbesg, (f) € Z
for which the equality:

qb(oz["]) = degq(f)Tq
holds, wherep : H,(S™) — H, (M, M \ {¢}) is the homomorphism obtained by
the composition of maps pictured in the diagram:

(111.1)  H,(S") — H, (5", 5"\ f~'(q))

|

H,(UU\ f~(q) 2 Ho (M, M\ {q})

the unlabelled arrows in the diagram above are induced bysiomn.

The fact that the vertical arrow in diagram (1.11.1) is amisgohism follows
by excision, observing that~!(q) is a closed subset of the open Eetc S™.

1.11.2. REMARK. If K is any compact subset bf containingf —!(q) then one
could replace the two occurrencesfof! (¢) with K on diagram (1.11.1) obtaining
a new commutative diagram:

(1.11.2) H,(S") — H,(S",S" \ K)

|

H,(U,U\ K) —> H,(M,M \ {q})

¢K/

where (as before) the unlabelled arrows are induced bysdimiu Observe that,
since K is closed inS™, we can still use excision to conclude that the vertical
arrow is an isomorphism; moreover, sinkecontainsf~!(q), the mapyf indeed

10we want to use degree theory to give an explicit method of edgimg the cellular complex
of a CW-complex. See Section 1.17.
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carriesU \ K to M \ {q}. One can now define an integer numbdeg, (f; K) € Z
by the equality:

é (") = deg,(f; K)7g.
What is the relation between the integekg, (f; K) anddeg,(f)? It's simple:
they are equal. Such equality follows from the fact that tbenbmorphismsp
and ¢ are equal; namely, we can glue diagrams (1.11.1) and (J.1dg2ther
obtaining the larger commutative diagram:

H,(S™, 5"\ f~4(q)) ~— H,(S", 5"\ K)

Tg

H, (U, U\ f~q)) H,(U,U\ K)

_J
. //,/’//

- ~H, (M, M\ {g})=<~~~ B

where the unlabelled arrows are induced by inclusion. Thidgath in the dia-
gram above defines, while de dashed path defingg . The conclusion follows.

Let’'s now prove the basic properties of degrees.

1.11.3. RoOPOSITION Let f : U C S*™ — M, q and 7, be as in Defini-
tion 1.11.1. The following assertions hold.

(1) (invariance of degree by restriction of domalh)l” C U is an open set
containing f~'(q) thendeg, (f) = deg,(f|v).

(2) (invariance of degree by restriction of counter-domdinZ is an open
neighborhood ofy in M containing the image of then the degree of
f:U — M atq equals the degree ¢f: U — Z at q (where we identify
the local homology group#,,(Z, Z \ {q}) and H,,(M, M \ {¢}) in the
usual way).

(3) (vanishing of the degredf) ¢ ¢ Im(f) thendeg,(f) = 0.

(4) (additivity of degree by disjoint unionlf U is a disjoint unionU =
Uxer Ux of open subsetd/y C U thendeg,(f) = >\ deg(flu,)
(only a finite number of terms on that sum are non zero).

(5) (degree of a homeomorphist)f : U — M is a homeomorphism then
deg,(f) = £1; more preciselydeg,(f) = 1 (respectivelydeg, (f) =
—1) if the isomorphism:

fa: Hn(5n75n \ {f_l(Q)}) - Hn(MaM \ {Q})

takes the canonical orientation™ ( f~*(¢)) to 7, (respectively, takes the
canonical orientatiom™! (f~1(q)) to —).
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(6) (homotopy invariancelf f : U — M is homotopic togy : U — M by
a homotopyH : U x [0,1] — M for which H~!(g) is compact then
deg, (f) = deg,(9).

(7) (invariance by positive homeomorphisms on the couddenain)If V is
a topological manifoldf, : M — N is a homeomorphism and:

Thig) = 1(7q) € Ha(N, N\ {M(a)}),

then the degree of at ¢ with respect to the orientatiom, equals the
degree of o f at h(q) with respect to the orientatiorn,’l(q).

(8) (invariance by positive homeomorphisms on the domiéih). 5™ — S™
is a positive homeomorphism then the degre¢ of: : h=1(U) — M at
g equals the degree gfat q.

PrRoOF The proof of item (1) follows easily from the commutativib§ the
diagram:

i (57) — Ho(5%. 5"\ ] (@) —— Ha (VY 5@)

T ET J/(flv)*
|

| Hy (U, UN fH(g) ——= Ho (M, M\ {q})<_£

where the unlabelled arrows are induced by inclusion. Ngntieé dashed path
takes the generater™ of H,(S") to deg,(f)7, and the dotted path takes" to
degq(fh/)T(I'

The proof of item (2) follows from the commutativity of theadjram:

H,(2,Z\{q})
S

(U0 £ (@)~ Hi(M.AM {g))

by observing that the unlabelled arrow (induced by inclajsis precisely the iso-
morphism we use to identify orientations df at ¢ and orientations of the open
setZz atgq.

The proof of item (3) follows from the observation that!(q) = § implies
H,(U, U\ f~'(q)) = H,(U,U) = 0.

To prove item (4), we start by observing that, sinte'(q) is compact, the
intersectionf —!(q) N U, is non empty only for a finite number of indexasc L.
Using items (1) and (3) we can discard the for which Uy N f~!(q) = 0 and
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therefore we can assume thats finite. Consider now the commutative diagram:

diagonal inclusion D i (S™)

H(5™) AEL
H, (5.8 \ /(@) @ (5,57 3 @)
Hy(UUN (@) < = == = = @ Ha(U0 DN 17 (0)
I« /\GgL(fA)*
Ho (M, M\ {a)) gy G (M- M )

where the unlabelled arrows are induced by inclusion ané= f|y,. The fact
that the dashed arrow is indeed an isomorphism follows frioenrésult of Exer-
cise 1.49. The left column of the diagram map8l to deg,(f)r, and the right

column of the diagram maps the famii["!), _, to the family (deg, (fx)7,)

: . AeL
This proves item (4).

AeL”

To prove item (52, we start by observing that sirfce (¢) is a single point then
the homomorphisnt,,(S™) — H, (5™, 5™\ f~*(q)) induced by inclusion is an

isomorphism that maps™ to al"! (f~1(g)). The conclusion follows by observing
that the homomorphism:

fe : Ho(U,UNA{f7Hq)}) — Hn(M, M\ {q})

is an isomorphism and therefore it mapé! (f~(q)) to eitherr, or —7,.

To prove item (6) we argue as follows: 168 C U be the projection ont&/
of the compact setl ~!(¢q) C U x [0,1]. ThenK is a compact subset &f that
contains bothf ~!(¢) andg~!(q), so that (recall Remark 1.11.2):

deg,(f; K) = deg,(f), deg,(g; K) = deg,(g)-

The conclusion follows by observing that actually defines a homotopy between
the maps of pairg, g : (U, U \ K) — (M, M \ {q}) and therefore the homomor-
phisms:

fo: Ho(U, U\ K) — Hn (M, M\ {q}),

g« Ho(U,U\ K) — Hyp (M, M\ {q})

used to defineleg, (f; K) anddeg,(g; K) are equal.
Item (7) is trivial consequence of the equalffyo f). = h, o f,.
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Finally, to prove item (8) consider the commutative diagram

ShEREEE ,(5") - ,(5")

1R
IR

where the unlabelled arrows are induced by inclusion. Tlet olumn of the
diagram takes:™ to deg, ()7, and the dashed path take&' to deg,(f o h)7,.
The conclusion follows by observing that, sincés positive, the top arrow of the
diagram is the identity (see Remark 1.10.23). O

We now study conditions under with the degreg, (f) is independent of the
pointq € M.

1.11.4. RROPOSITION Letf : U — M be a continuous proper map defined
on an open subséf C S™ taking values on an oriented-dimensional connected
topological manifold M, 7). Then the integer numbeleg,, (f) (defined using the
orientationr(g) for M at ¢) is independent of € M.

PROOF. It suffices to show that the map— deg,(f) € Z is locally constant.
Let ¢ € M be fixed. Sincer : M — O(M) is continuous, we can find an open
neighborhoodV” of ¢ in M and a homology class € H, (M, M \ V') such that
Tly = O(«; V) (recall Lemma 1.10.6). By passing to a smaliéand using a
local chart aroundy) we can assume that there exists a homeomorphism Ffom
to B" that carriesV to B" andq to the origin; thenV’ \ V = 9V is a strong
deformation retract o’ \ {¢} and alsoM \ V is a strong deformation retract of
M\ {q}. In particular, the homomorphism:

pvg: Ho(M, M\ V) — H, (M, M\ {q})

induced by inclusion is an isomorphism amds a generator off,, (M, M\V') = Z
(becausepy,(a) = 7(q) is a generator of,, (M, M \ {q})). Let K denote the
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compact sef ! (V') C U (here we use thaf is proper!) and consider the homo-
morphism : H,,(S™) — H, (M, M \ V) defined by the commutative diagram:

H,(S") — H,(S", 5"\ K)

1

H, (U, U\ K) —= H, (M, M\ V)

where the unlabelled arrows are induced by inclusion. Sintea generator of
H,(M,M \ V) we can find an integef € Z with A(al"l) = da. But for every
¢’ € V we have (see Remark 1.11.2):

degy (f; K)7(d') = (pvg 0 A) () = dr(¢),
and thereforeleg,, (f) = deg,/ (f; K) = d. O
We can finally give the following:

1.11.5. CERINITION. If f : U C 8™ — (M, 7) are as in the statement of
Proposition 1.11.4 then then integer numbeg(f) = deg,(f) € Z (that does not
depend oy € M) is called thedegreeof the mapf (with respect to the orientation
T of M).

1.11.6. XAMPLE. If U = S™ andM = S™ is endowed with the canonical
orientationa!™ then the degree of a (automatically proper) continuous Jrapm
U = S"to M = S™ has a particularly simple interpretation (as mentionedé t
beginning of the section). Choose any S™ and lete : ﬁn(S”) — Hn(S", S™\
{q}) denote the homomorphism defined by diagram (1.11.1). lt9g &asee that
¢ makes the following diagram:

H,(S™) H,(S™)

S |

H, (8", 5"\ {a})

commute, where the vertical arrow is induced by inclusiomc& such vertical
arrow mapsx™ to ol"l(¢), it follows thatthe degree of equals the unique integer
d € Z for which the homomorphisrf. : H,(S™) — H,(S™) equals multiplica-
tion byd.

Now we give a simple method for computing degrees of smootbhsma

1.11.7. RoprosiTION(differential degree)Let f : U — M be a proper map
of classC'! defined on an open subggtof 5™ (with'* n > 1), taking values on
an oriented connected-dimensional differentiable manifold\/, ). If ¢ € M

l1see Example 1.11.8 below for the case- 0.
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is a regular value off (i.e., ifdf, : T,,8™ — T, M is an isomorphism for every
x € f~1(q)) then the sef ~!(q) is finite and the degree gfis given by:

deg(f) = ) sign(df.),
z€f~1(q)
wheresign(df,) = 1if df, is a positively oriented isomorphism asg@n(df,) =
—1if df, is a negatively oriented isomorphism (we consider the sphéren-
dowed with the outward pointing orientation).

PrROOE It follows from the inverse function theorem that the cowtpset
f~(q) is discrete and hence finite; we wrife ' (¢) = {z1,...,z;}. Again by
the inverse function theorem, we can choose an open neigbbdt/; of x; in S™
such thatf (U;) is open inM and f|y, : U; — f(U;) is a diffeomorphism; we can
also assume thdf; " U; = () for i # j (becauses™ is Hausdorff). By item (1) of
Proposition 1.11.3, the degree pfat ¢ (which equals the degree ¢f by defini-
tion) equals the degree abf the restriction off to the open s@le U;; now by
item (4) of Proposition 1.11.3, we have:

k
deg,(f) =Y _ deg,(flu,)-
=1

Since f|y, : Uy — f(U;) is a homeomorphism onto an open subsef\bf the
degree off|y, at ¢ equalst1 by items (2) and (5). The sign afeg,(f|v,) de-
pends on whether the homeomorphigify, is positively oriented or negatively
oriented. The conclusion follows from the result of Exeecls68 (see also Propo-
sition 1.10.28). O

1.11.8. EXAMPLE (degree on the zero-dimensional case). Lete a zero-
dimensional topological manifold (i.e., a discrete togidal space)g € M a
point andr, an orientation forM/ atq. We identify 7, with an element of —1,1}
as explained in Example 1.10.21. llétc S = {—1, 1} be a (open) subset. Using
items (2), (3), (4) and (5) of Proposition 1.11.3 and rengliConvention 1.10.24
for the definition ofal?), one checks easily that the degrée, (f) of a mapf :

U — M is equal to:
e zero, if f1(q) is either empty or equal t8° = {—1,1};
e 7, if f71(¢) contains only the “north polef € S;
e —7,, if f~1(q) contains only the “south pole>1 € S°.

1.11.9. EMARK. As mentioned in the beginning of the section, it is possible
to give a notion of degree for a continuous proper map betwaegitrary oriented
topological manifolds of the same dimension (actually,dbenter-domain should
be connected to guarantee thif, (f) is independent ofy). Let's just take a

glimpse at this more general definition. First, observe ithae replace(S”, a["})
with an arbitrary orientedh-dimensional topological manifold&v then it would
make no sense to care about maps definedroapen subsdt/ C N, since such
open set is again am-dimensional topological manifold (liké/). So, consider a
continuous mayf : N — M, a pointg € M, a generator, of H,, (M, M \ {q})
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and assume that = f~!(¢) is compact. As in Definition 1.11.1, we can consider
the homomorphism:

For Ho(N, N\ K) — Hy (M, M\ {q});

the problem is: how do we choose the homology clasg#oiN, N \ K) that

is going to be pushed-forward bf; to give us an integer multiple af,? When

N were an open subset &f* then such homology class was induced from the
canonical generator df,,(S™) (that defines the canonical orientationsf). For
the general case, one has to work more to understand theusé&of the homology
group H,(N, N \ K). It can be shown that for any compact sub&ebf an n-
dimensional topological manifold/ the map:

H,(N,N\K)>a+— O(a; K)

gives an isomorphism between the homology gréyg N, N \ K') and the abelian
group of all continuous sections of the orientation bur@lgV) along K. Thus,
the general definition ofeg, (f) can be given as follows: let € H, (N, N \ K)

be the unique homology class such fﬁdt)(a; K) equals the restriction t& of
the orientation ofV; the integerdeg,,(f) € Z is thus defined by the equality:

f*(Oé) = degq(f)T(I'

One can now easily generalize Propositions 1.11.3, 1.1dd4141.7 to this con-
text (for Proposition 1.11.7 one obviously has to assumenhss a differentiable
manifold). See39, Chapter VIIl,54] for details.

1.11.10. BEMARK. In some situations we will have in hand continuous maps
f U — M defined on open subset$ of orientedn-dimensional topologi-
cal manifoldsX that are noexactlythe sphereS™ but arehomeomorphido the
sphere. In such situations, we should choose a positivégnted homeomor-
phism A : (S",a[”]) — X and use our degree theory on the composite map
foh:hY(U) c 8" — M. Observe though that using item (8) of Proposi-
tion 1.11.3, it is easy to see that the degre¢ ofh does not depend on the choice
of the positively oriented homeomorphism We will therefore use our degree
theory freely for maps defined on open subsets of orientealdgjzal manifolds
X that are homeomorphic to the sphéfé without making explicit references to
positively oriented homeomorphisms: ™ — X.

1.12. Index of a Vector Field at an Isolated Singularity

The theory of this section will not be used elsewhere. Wed#detto presented
this material here because it is nicely related to the naifafegree.

By a vector fieldon an open subséf C R™ we mean a continuous map
X : U — R™; we call a pointzy € U asingularity for X if X (zg) = 0.

120bserve that itV = U is an open subset ¢f" then the homology class € H,, (U, U \ K)
obtained by pushing™ forward to H,,(S™, S™ \ K) and then pulling it back tdZ,,(U,U \ K)
satisfy this condition; so we are indeed generalizing Ddinil.11.1 here.
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1.12.1. CEFINITION. Let X : U — R™ be a vector field and lety € U
be an isolated singularity oX (i.e., x¢ is a singularity ofX and X has no other
singularities in some neighborhood &f). Choose a neighborhodd of xy in U
such thatz is the only singularity ofX|y/; the dotted arrow in the commutative
diagram:

H, (R™,R"\ {zo})
(%)*TN
H, (Rn’ R™ \ {0}) ............ > H,, (R"7 R"™ \ {O})

defines an endomorphism &f, (R",R™ \ {0}) = Z that equals multiplication
by an integerind(X; (), called theindex of the vector field at the isolated
singularity xg.

(XIV)*

Alternatively (recall Convention 1.10.24) one can defireitidex of X at the
isolated singularitycg by the equality:

(1.12.1) (X[v)« (71" (20)) = ind(X;20)7(0).

1.12.2. XAMPLE. If x¢ is a singularity ofX and if X is a homeomorphism
from an open neighborhood of xy onto an open neighborhood of the origin in
R" then (X|y ). is an isomorphism and therefoted(X;zo) = £1; more pre-
cisely (see (1.12.1)), we haved (X; zy) = 1 (respectivelyind(X;xq) = —1) if
the restriction ofX to V' is a positively oriented homeomorphism (respectively, a
negatively oriented homeomorphism) onto an open neigltoattof the origin in
R™. In particular, by Corollary 1.10.19 and the inverse functineorem, ifX is of
classC! and ifdX,, : R® — R" is an isomorphism themd(X;z¢) = +1 and
ind(X; zp) has the same sign of the determinant of the isomorphi&iy),.

We now relate indexes of vector fields at isolated singuéaritvith degrees.
Letxzg € U be an isolated singularity of a vector field: U — R". Lete > 0
be such that the closed b@[z; ¢] is contained iU and such thakX has no other
singularities inB[x; £]. Consider the map : S"~! — S(x; ) defined by:
AMz) =ex + xg

and denote by : R" \ {0} — S™~! the radial projection:
r(z) =
]l
We can then associate 10, 2, ande a continuous mag : S"~! — S"~! defined
by:
(1.12.2) f=roXoA
The indexind(X; zo) can then be computed usitfgas shown in the following:

1.12.3. RopPoOSITION If X, 29 ande are chosen as above then the index of
X at the isolated singularity:y equals the degree of the mgp: S»~1 — Sn—1
defined in(1.12.2)
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PROOF. First observe that the vector fieK o t,, has an isolated singularity
at the origin whose index equadlsd (X ; zp); moreover, the continuous mgpthat
corresponds to the singularity at the originXfo t,, is precisely the same as the
continuous may that corresponds t& andxzg. We may thus assume without loss
of generality thatry = 0.

Consider the following commutative diagram:

oo Ho(R™ R\ {0})  muttiplication

N by ind(X; 0)
H, (B[0: €], B[0se] \ {0}) —= H, (R",R" \ {0}) —
O | = = |0,
~ L

H,—1(B[0;e] \ {0}) Hy—1(R™\ {0})

A | :lr*

S >ﬁn_1(sn—1) ﬁn_l(sn—1)< _J

f

where the unlabelled arrow is induced by inclusion. The keion will follow
once we show that the isomorphisms defined by the dotted ardbshed paths in
the diagram above are equal (recall from Example 1.11.6fthajuals multipli-
cation bydeg( f)). But such equality can be easily established in the comtivata
diagram below:

T P TP STER N

¢ Hu(B™R™\ {0}) <—— H, (B[0:e], B[0se] \ {0})

o] o

~ I~

 Ha (R (0))

r*l: ZTA*

L ﬁn_l(sn—l)

(rod)«=Id

in which the unlabelled arrows are induced by inclusion. O

1.13. Homology with General Coefficients

In Section 1.2, the singular homology of a topological spacevas defined
in terms of the singular chain compleéx(X) of X; for eachp € IN, the group
S,(X) was defined as the free abelian group spanned by the set ohguilar
p-simplexes inX. Thus, the grou®,(X) can be seen intuitively as the group of
formal linear combinations with integer coefficiemsingularp-simplexes. This
is why the groupd7,(X) defined in Section 1.2 are also callgidgular homology
groups with integer coefficientd the topological spac& . Can we use other types
of coefficients? Sure we can (as you could guess from the nanmesasection).
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Actually, one can use the elements of any fixed abelian géoag coefficients for
singular chains. The group,(X; G) of singularp-chains inX with coefficients

in G could be defined as the group of all essentially z8rsalued maps defined
on the set of all singulap-simplexes ofX. Although it seems very reasonable to
use such simple definition for the grodg,(X; G), we won't do so. Alternatively,
we use a more elegant algebraic technique that producesuaalhg isomorphic
object: we set5,(X;G) = 6,(X) ® G. The advantage of doing so are the
following:

o the boundary homomorphism 6f(X ; G) can be very elegantly defined
by tensoring the boundary homomorphism@&fX') with the identity of
G.

e |t becomes easier to prove theorems about singular homelagycoef-
ficients inG because we can use well-established techniques of algebra
for dealing with tensor products.

Observe that the operation of “tensoring wiifi makes sense not only f@(X),
but for arbitrary chain complexes. We will therefore comesidbelow this more
general situation.

1.13.1. EFINITION. If (€, 0) is a chain complex an€ is an arbitrary abelian
group therthe tensor product of and G is the chain comple¥ ® G defined by
setting(¢ ® G), = ¢, ® G for all p € Z; the boundary homomorphism éf® G
is defined byo, ®1d : €, ® G — €,_1 ® G for all p € Z, whereld stands for the
identity map ofG.

The fact that® ® G is indeed a chain complex, i.e., the fact that the composi-
tion of two subsequent boundary homomorphisms is zerovalidirectly from the
result of Exercise 1.18.

The homology of the chain complex® G will be called thehomology of®
with coefficients irG; we write:

Hy(&;G) = Hy(€ @ G),
forall p € Z.
A chain map between chain complexes induces a chain map &ettheir

respective tensorizations with; more explicitly, if f : € — © is a chain map then
one obtains achain mghx Id : € ® G — ® ® G by setting:

(feld),=/f,0Id: €, G — D, G,

for all p € Z, whereld stands for the identity map @f. One can also define chain
maps induced from homomorphisms of coefficient groups; harfep : G — H

is a homomorphism between abelian groGpand A then for every chain complex
¢ one obtains a chain map:

[dee¢:CG — C®H,

13Imagine how ugly the precise definition of the boundary ofrgslar chain with coefficients
in G would be if one decided not to talk about tensor products.ifi&iance, observe th&(X; G)
is not free over the set of singularsimplexes, so it does not suffice to define the boundary homo-
morphism for simplexes — one has to give the formula direfcthchains.
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defined by(Id ® ¢), = Id ® ¢ for all p € Z, whereld stands for the identity
map ofc,. If we are given both a chain map: ¢ — © and a homomorphism
¢ : G — H then we can take the composition pfz Id andId ® ¢ obtaining a
chain mapf ® ¢; more explicitly, we have:

(fRd)p=1rhoe=(fold)o(ld® ),
forall p € Z.

1.13.2. XamMPLE. If X is a topological space and is an abelian group
then thesingular chain complex oK with coefficients inG is the chain complex
S(X; G) defined by:

S(X;G)=6(X)®dG.
The homology groups o6 (X; G) are called thesingular homology groups of
with coefficients irG; we write:

Hy(X;G) = Hy(6(X;G)) = Hy(6(X) ® G) = Hy(&(X);G).

Similarly, one can define the reduced singular homology pgaaf a topological
spaceX with coefficients inG and the relative homology groups of a pak, A)
with coefficients inGG. More explicitly, we set:

G(X;G)=6(X)®G, Hy(X;G)=H,(6(X):G),
S(X,A;G) =6(X,A) @G, Hy(X,A;G) = Hy(6(X,A);G),

forallp e Z. If f: X — Y is a continuous map between topological spakes
andY then the chain mapy : 6(X) — &(Y') induced byf induces a chain map:

fe@Id: S(X;G) — 6(Y;G),

between the singular chain complexes with coefficient§s/in Such chain map
induces a homomorphism:

Ja HP(X;G) - Hp(Y§ G)

between singular homology groups with coefficient€sinMoreover, if¢ : G —
H is a coefficient group homomorphism then we can also lookeahtimomor-
phism:

¢ Hy(X;G) — Hy(X; H),
induced in homology by the chain mdg ® ¢ : §(X;G) — &(X; H). Similar
considerations can also be made for reduced and relativelbggn

The natural question that arises now is: how do | compute hmggowith
coefficients inG? One could imagine thd{,(¢; G) is just H,(¢) ® G; this is not
true, as the following simple example shows.

1.13.3. XAMPLE. Consider the chain compleX defined by¢, = Z for
p = 0,1,2 and¢, = 0 otherwise; the boundary homomorphisms are described

below:

times2 0

7 7 T () —s -
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Obviously Hy(€) = 0, Hi(€) = Zs and Hy(€) = Z. If G = Zy then the chain
complex ® G is given by:

times2=0 0

= g Zs

and thereford?,(¢; Zy) = Zy forp = 0,1, 2. Observe in particular thaf»(C; Z» )|}
is not equal taH»(¢) ® Zs = 0.

In spite of what we saw in Example 1.13.3, it is indeed true thiafree chain
complexe<r the homology with coefficients i& is exclusively determined by the
homology of¢; the theorem relating the homologies ®fx G and € is known
asthe universal coefficient theorem for homologiyhappens that the rule relating
H,(¢;G) andH, (<) is not as simple afl,,(¢; G) = H,(€)®G; in fact, the group
H,(¢; G) depends not only ofif,,(€) but also onf,,_; ().

Let's first of all define a map relating/,(¢) ® G and H,(¢ ® G). Consider
a fixed chain complex, an abelian groug- and an integep € Z. We have a
canonical bilinear map:

(1.13.1) ¢, xG—¢,aG

that sendgc, g) to ¢ ® g. Obviously, ifc is a cycle (respectively, a boundary) in
¢ then alsa: ® g is a cycle (respectively, a boundary)dnz GG. We can therefore
restrict (1.13.1) tdZ, (<€) and pass it to the quotient (in the first variable) obtaining
a bilinear map:

(1.13.2) Hy(€) x G — Hy(€® G) = Hy(¢; G),

that takes(c + B,(€), g) to ¢ ® g + B,(€ ® G) for everyc € Z,(¢) and every
g € G. Finally, the bilinear map (1.13.2) gives rise (by the fuméstal property
of tensor products) to a unique homomorphism:

(1.13.3) 0y : Hy(C) ® G — Hp(C;G).

As we already knowd is not in general an isomorphism. Nevertheless, we have
the following:

1.13.4. LEMMA. If Cis free then, for every € Z, the homomorphisi, given
in (1.13.3)is injective and its image is a direct summandidp(¢ ® G).

PROOF. Since¢ is free, the cycle grou, (<) is a direct summand i,
(see Exercise 1.39); then, the canonical projecig(¢) — H,(¢) extends to a
homomorphism:

A €, — H,y(Q).
We can regardd (€) as a chain complex whogeth group isH,(¢) and all the
boundary homomorphisms are zero; it is then easy to see\thdt— H (<) is a
chain map. We have thus an induced chain map:

AId:¢®G — H(C)®G,
and a induced homomorphism in homology:
(1.13.4) A®Id)s : Hy(€® G) — Hp(€) @ G;
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observe that in the comple{ (¢) @ G the boundary homomorphisms are all zero
and therefore itg-th homology group is indeed/,(¢) ® G. It is now easy to
check that (1.13.4) is a left inverse fé. The conclusion follows from the result
of Exercise 1.16. O

In order to finish our task of computing the homology ®fx G from the
homology of&, we “only” have to determine the grouf,(¢;G)/Im(6,); but
that’s not so easy.

1.13.5. DEFINITION. A short free resolutiorof an abelian group- is a short
exact sequence of the form:

0—R—F—G—0

where bothR and F' are free abelian groups. Tleanonical free resolutionf G is
defined by:

0 — Rel[G] —"5, Free[G] —1 G — 0

whereq : Free[G] — G is the homomorphism characterized by the condition
dl¢ = Id : G — G andRel[G] = Ker(q). The groupRel|[G] is called the
relations groupof G.

1.13.6. D=FINITION. Let G, H be abelian groups and consider the groups
Rel[G] C Free[G] appearing in the canonical free resolution®f The group
Tor(G, H) is by definition the kernel of the homomorphism:

Rel[G] ® H _Inclusiony # , Free|G]
obtained by tensoring witf/ the inclusion ofRel[G] in Free[G].

If ¢ : Gi — Ga,v¢ : Hi — H, are abelian group homomorphisms, we now
want to define a homomorphism:

(1.13.5) Tor(¢, 1) : Tor(Gy, Hy) — Tor(Gs, Hs).

We proceed as follows: lgt : Free[G1] — Free[G2] be the unique homomorphism
that extends : G; — G2. We have thus a commutative diagram:

(1.13.6) 0 0
Rel[Gy] - > Rel|Gs]
inclusion inclusion
Free|G1] Free[Go]
q q
G1 5 G
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with exact columns; such diagram implies thatarriesRel[G1] to Rel[Gy], i.e.,
we can actually put an arrow in the place where the dottedvaiso We now
take the square in (1.13.6) containing the dotted arrow amdewsor it with the
commutative square

H1—w>H2

al |

Hl—w>H2

As a result we get another commutative square:

(1.13.7) Rel[G1] ® Hy «o > Rel[Gs] ® H,
Free[G] ® Hy — Free|G3] ® Ho

The dotted arrow in diagram (1.13.7) above is just the dostedw in (1.13.6)
tensored withyy). The commutativity of (1.13.7) implies that the dotted arrof
(1.13.7) takes the kernel of the left arrow (i.@€qr(G1, H;)) inside the kernel of
the right arrow (i.e.;Tor(G2, Hs)). We thus define (1.13.5) to be the restriction of
the dotted arrow of (1.13.7).

The proposition below states the main propertyl'of.

1.13.7. RROPOSITION To every abelian grougs and every short exact se-
qguence:

(1.13.8) 0—A-22B 720 —0

of abelian groups and homomorphisms it is possible to aat®e homomorphism
from Tor(C, G) to A® G (depending otz and on(1.13.8) that makes the follow-
ing sequence:

Tor(o,1d)

0 — Tor(A,G) ———— Tor(B, G) _Torlrld) |

Tor(C,G) —
_,A®GﬂB®Gﬂ>C_,O
exact. Let's call it theconnectinghomomorphism corresponding t@ and to
(1.13.8)
The connecting homomorphisior(C,G) — A ® G is naturalin the sense
that given a homomorphism : G — G’ and a commutative diagram:

(1.13.9) 0 A—"=B—">C 0
|
¢>1J/ o2 l(ﬁs
\
0 A —= B ——= (' 0

[en T
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with exact rows then the square:

.
Tor(C, G) connecting Y
Tor(¢37¢)l l¢1®¢
/ / S / /
Tor(¢", &) connecting AeG
commutes.
PrROOF See 07, §54]. O

We also have the following:

1.13.8. THEOREM. Given abelian groups:, H thenTor(G, H) is isomorphic
to Tor(H, G). Such isomorphism is natural with respect to maps inducegrdayp
homomorphisms.

PrROOF See 107, §54]. O

1.13.9. THEOREM. Given abelian groups~, H, if either G or H is Torsion
free thenTor (G, H) = 0.

PrROOFE See 07, §54]. O
1.13.10. XAMPLE. We have a short exact sequence:
0—7Z-7— Z, — 0

By tensoring it withGG and using Proposition 1.13.7 and Theorem 1.13.9, it is easy
to see that:
Tor(Zy,G) = Ker(G — G),
for every abelian grougyr. In particular:
Tor(Zin, Zim) = ZLgea(mm), Tor(Z,Zy) = Tor(Zy, Z) = 0.
We can now state the following:

1.13.11. THEOREM (universal coefficients theoremiziven a free chain com-
plex € there exists a short exact sequence:

(113.10) 0 — H,(€) ® G —2 H,(C;G) —> Tor(H,1(€),G) — 0

whered,, is the homomorphisi(i.13.3) The sequencfl.13.10)splits and isnat-
ural with respect to chain mapg : € — © and homomorphismg : G — H
between coefficient groups. More precisely®ifs a free chain complext is an
abelian group,f : € — © is a chain map and : G — H is a homomorphism
then the diagram:

0 — Hy(€) ® G —— H,(¢; G) —= Tor(H,_1(€),G) —= 0
|
Y

0—H,(D)® H — H,(9D;H) — Tor(H,—1(D),H) —0

commutes.
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PROOF . See 107, §55] O

1.13.12. @ROLLARY. Given free chain complexe® © and a chain map
f : € — © that induces an isomorphism in homology (in all dimensidhsh the
chainmapf ®Id : € ® G — ® ® G also induces an isomorphism in homology
(in all dimensions) foeverycoefficient grougs.

ProoOFE Follows directly from the naturality of the universal cfigEnt se-
guence (1.13.10). O

Assume now that the coefficient grodpis endowed with the structure of a
(left) R-module, for some ring?. Then each groug, ® G can be endowed with
the structure of arR-module; with suchR-module structure, the boundary map
0p ® Id becomesR-linear. We give the following:

1.13.13. EFINITION. Given aringR, A chain complex of (leftR-moduleds
apair(¢, 9), where€ = (&,),cz is a family of (left) R-modules and = (9,) ez
is a family of R-linear maps), : ¢, — &,_; suchthav,_,00, = Oforallp € Z.

Obviously a chain complex ak-modules can also be thought of as a chain
complex (of abelian groups) when one forgets aboutthreodule structure in the
chain groupsZ,,. One can therefore talk about cycles, boundaries and h@yolo
groups for chain complexes d@-modules and all the theorems presented so far
can be applied in this context. We now make a few remarks abbsih the com-
patibility of the R-module structure of the chain grougs with some of the results
we have presented so far in homology theory.

e If ¢ is a chain complex oRR-modules then the cycle grougs,(¢) and
boundary groups3,(¢) are R-submodules of,, for everyp € Z. In
particular, the homology grouff,,(¢) can also be endowed with d-
module structure so that the quotient mag <) — H,(<) is R-linear.

e If €, © are chain complexes dg-modules and iff : € — © is an R-
linear chain mapi.e., f is a chain map and eadf) is R-linear, then the
induced mapy. : H,(¢) — Hy(®) areR-linear.

e If (1.3.3) is a short exact sequence of chain complexe®-ofiodules
and R-linear chain maps then the connecting homomorphignn the
corresponding long exact homology sequence (1.3.B}lisear.

We are mainly concerned with the case that the abelian géoup R is a
ring itself (endowed with the canonical lef-module structure) and even more
specifically with the case th&t is a fieldK. In the latter case we talk abocitain
complexes oK-vector spacesather than chain complexes&fmodules.

As observed above, & is endowed with arR-module structure (for instance,
if G = R is aring) then the homology grougs,(X;G) and H,(X, A; G) are
canonically endowed withR-module structures. In particular, we can give the
following:

1.13.14. ZEFINITION. Given a topological spac¥ and a fieldK then thep-th
Betti number ofX is defined as the (possibly infinite) dimension oleof the K-
vector spacéd,(X; K) and is denoted by, (X; K). Similarly, given a paif.X, A)
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of topological spaces one defines the Betti numpg(s(, A; K) of the pair(X, A)
with respect to the field.

1.13.15. [IEMMA. Consider a topological spac& whose singular homology
groups with integer coefficients are all finitely generated &anish above a certain
dimension. Then for every coefficient fiéldve haves,(X;K) < +oo for all p
andj,(X; K) = 0 for p sufficiently large. Moreover, the Euler characteristicXof
(recall Exercise 1.125) is given by:

X(X) =D (-1)8,(X;K) € Z,

PEZ
for every coefficient fieldK.

ProoOF Follows from the universal coefficient theorem (Theoremh3111).
O

1.14. Quotient Topology and Attachment Spaces

1.14.1. CEFINITION. A mapq : X — Y between topological spaces is called
aquotient magf a subset/ C Y is open if and only if 1 (U) C X is open.

Obviously, the “only if” part in the definition above meansath is continuous.
Alternatively, one can define that : X — Y is a quotient map ift” has the
finest topology that makeg continuous; observe in particular that such topology
is unigue (see Exercise 1.81). When a topological spacand an equivalence
relation~ in X is given, we will implicitly assume that the quotient s€f ~ is
endowed with the unique topology that makes the canonicggiionX — X/ ~
a quotient map.

We do not assume in principle that a quotient mapX — Y is surjective, as
some authors do; observe though that quotient maps are stlmarjective (see
Exercise 1.83).

1.14.2. RoPoOSITION(universal property of quotient mapskiven a commu-
tative diagram

(1.14.1) X
| N
Y 7 w7

with ¢ a quotient map ang continuous thery is also continuous.

1.14.3. CEFINITION. Given a setX and an equivalence relation on X then
a subsefS C X is calledsaturated with respect te if S is a union of equivalence
classes, i.e., iffor € X,2’ € S,z ~ 2/ impliesz € S. If ¢ : X — Y is any map
theng defines an equivalence relatienin X by z ~, 2’ < ¢(x) = ¢(2'); we say
that a subse$' C X is saturated with respect t@if it is saturated with respect to
~g, e, if S = q_l(q(S)).
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1.14.4. IEMMA. If ¢ : X — Y is a quotient map and C X is saturated and
either open or closed iX theng|s : S — ¢(S) is a quotient map.

1.14.5. ROPOSITION Letg : X — Y be a surjective quotient map and I8t
be a locally compact Hausdorff space. Thenthemapld : X x Z — Y x Z is
also a quotient map.

The following immediate corollary of Proposition 1.14.5asuseful tool for
defining homotopies by passage to the quotient.

1.14.6. ®ROLLARY. LetH : X x [0,1] — Y be a continuous map. Assume
that we are given a surjective quotient mgp: X — X’ and a continuous map
q2 : Y — Y’ such that there exists a map : X’ x [0,1] — Y’ for which the
diagram

X x[0,1] sy

qlxldl ltn

X/ X [0,1] T>Y,
H

commutes. TheH is continuous. O

1.14.7. DEFINITION. Given a topological spac& and a family(X;);c; of
subspaces ok then we say thak is the (internal}opological sunof the family
(Xi)ier it X = ;¢ Xi is a disjoint union and each;; is open inX. If (X;)cr
is a family of topological spaces then its (exterriafpological sums defined as
the disjoint unionX = |J,.;{i} x X; topologized as followsU C X is open iff
U = Ui} x U; with eachU; open inX;;.

Up to obvious identifications, the notions of internal anteexal topological
sum are equivalent (see Exercise 1.94)Xlis either the internal or the external
topological sum of the spacés\;);c; we will write X = % ., X;; for finite
families we may also use the simpler notati&n= X; + - - - + X,,.

Obviously, if X is a topological sum of a family of subspades; );c; then a
mapf : X — Y is continuous ifff| x, is continuous for every € I. This property
characterizes the topological sum (see Exercise 1.95).

1.14.8. EFINITION. Given a spac& and a family(X;);c; of subspaces of
with X = (J,o; X; then we say thak’ is the coherent union of the fami{yX;);cs
if the following condition holds: given a subsEt C X, if U N X is open inX;
for everyi € I thenU is open inX.

The definition above can be restated in terms of closed sul§see Exer-
cise 1.96).

1.14.9. RRoposITION(universal property of coherent unionf. X = J;c; X;
is a coherent union then a map: X — Y is continuous ifff| x, is continuous for
every: € 1.
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1.14.10. ZEFINITION. Let X, Y be topological spacesi C X a subspace
andf : A — Y acontinuous map. Thattachment spac&’ U, Y is the quotient
spaceX +Y/ ~ of the topological sunX +Y, where~ is the equivalence relation
in X +Y spanned by: ~ f(z), z € A; more precisely, foe,z’ € X +Y we
havez ~ 7/ iff one of the following holds:

1) z=2;

(2) 2,2 € Aandf(z) = f(&);
() ze Aandz = f(z) €Y;

4) 27eAandz = f() €Y.

1.14.11. IeMMA. If Ais closed inX then the quotient map : X +Y —
X UyY mapsY homeomorphically onto a closed set akid A homeomorphically
onto an open set.

PROOF SinceX \ A is open and saturated X + Y, it follows thatq(X \ A)
is open (see Exercise 1.91) and thg, 4 : X \ A — ¢(X \ A) is a quotient map
(see Lemma 1.14.4); sinefx\ 4 is injective, then it is a homeomorphism (see
Exercise 1.84). Since|y is injective, to prove thay mapsY” homeomorphically
onto a closed set, it suffices to show that : Y — X Uy Y is a closed map. This
follows by observing that the saturation of a closed sulbset Y is the closed
subsetF" U f~}(F)of X +Y. O

The factthaty : X +Y — X Uy Y mapsY homeomorphically onto a (not
necessarily closed) subset &fU; Y is also true whem is not closed inX; the
proof is a little more delicate (see Exercise 1.113).

Whenf : A C X — Y isinjective, the attachment spadé U, Y can be
visualized in the following way: assume that in some envinent space” there
are homeomorphic copies df andY in a way that the copy ok €¢ A C X
in £ coincides with the copy of () € Y in E. It would be natural to expect
that the subspace df which is the union of the copies of andY should be
homeomorphic to the attachment spaceJ, Y. This holds for instance when the
copies ofX andY are closed in&; more generally, we have the following:

1.14.12. IEMMA. LetX, Y, E be topological spacesi C X a subspacef :
A — Y aninjective continuous maparid : X — X' C E,hy: Y - Y' CE
homeomorphisms. Assume that,foe X,y € Y, hi(x) = ha(y) iff z € A and
y = f(z). Then there exists a unique maguch that the diagram

X+Y
SN
XUpY ; XUy’

commutes, wheré is defined byh|x = h; and h|ly = he. The mape is a
continuous bijection; it is a homeomorphism Xf U Y is a coherent union (for
instance, ifX’ andY” are closed inF).



76 1. SINGULAR HOMOLOGY AND CW-COMPLEXES

PrROOF The existence and the bijectivity @f is easy. The continuity op
follows from the continuity of, and of the universal property of quotient maps;
the continuity ofh follows from the universal property of topological sums.eTh
map¢ is a homeomorphism iff it is a quotient map; by Exercises hidd 1.86,
is a quotient map iff is a quotient map. We have a commutative diagram:

h1+ha

X+Y - X' +Y’
X'uy’
wherei is induced by the inclusions df’ andY” in X’UY’. The maph is quotient
iff the maps is quotient. The conclusion follows from Exercise 1.98. O

Recall that a topological space is said tolhdf it is T, and if any two disjoint
closed subsets admit disjoint open neighborhoods.

We recall the following two standard results from generpbtogy concerning
T, spaces.

1.14.13. HEOREM (Urysohn’s lemma).If X is a T, topological space then,
given disjoint closed subsels G C X, there exists a continuous map: X —
[0,1] such thatp|r = 0 and¢|g = 1.

PrROOF See for instancel34, Theorem IV.7]. O

1.14.14. HEOREM (Tietze). If X is a T, topological space then every con-
tinuous mapp : F' — R defined on a closed subsBtC X admits a continuous
(R-valued) extension to the whole spake

PrROOF See for instancel34, Theorem IV.11]. O

1.14.15. [EMMA. If X, Y are T, topological spacesd C X is a closed subset
andf : A — Y is a continuous map then the attachment spéice; Y is also T,.

PrRoOOF The fact thatX U, Y is T; follows directly from the fact that is
closed inX. In order to prove thaiX U; Y is T4, we will use the converse of
Tietze's theorem (see Exercise 1.89). betF — R be a continuous map defined
on aclosed subséf of X Uy Y. If ¢ : X +Y — X U; Y denotes the canonical
projection theng='(F) = Fy U Fy, with F; closed inX, F; closed inY and
FiNnA = f~YF,). The composite map o ¢ : F; U F, — R restricts to a
continuous mayp; : F; — R and to a continuous map, : F» — IR; moreover,
p20 f = ¢1]a. SinceY is Ty, Tietze's theorem gives us a continuous extension
<;~32 Y — R of ¢o. The functionsgs o f : A — R and¢; : F; — R agree
on F; N A and, sinceF’, and A are closed, we obtain a well-defined continuous
function on the unior¥; U A. Now we can apply again Tietze’s theorem on the
T, spaceX to obtain a continuous functiop, : X — R that extends botk; and
$2 o f. The functions;, : X — R and¢, : ¥ — R now give us a continuous
function onX + Y that passes to the quotient, producing a continuous egrtensi
¢: XU Y — Rof ¢. O
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1.14.16. IEMMA. Let X be atopological space and assume that we have an
increasing sequenc&; C X, C --- C X of closed subsets oX such that
X = U,,>1 X, is a coherent union and such that ea&h, is T,. ThenX is also
Ty. -

PROOF Obviously X is T;. In order to prove thak is T, we will use again
the converse of Tietze's theorem (see Exercise 1.89)¢pLel’ — R be a contin-
uous map defined on a closed subspBce X. We will construct a sequence of
continuous mag,, : X,, — R such that,, equalsp on F'N X,, and such thap,, 1
extendsp,, for everyn. Since the unionX = | J,,~.; X,, is coherent, this will yield
a continuous extension gfto X. We definep,, inductively using Tietze's theorem
on eachX,,. Start with an arbitrary continuous extensipn: X; — R of ¢|rnx;, -

If ¢, : X,, — R is a continuous extension @f -~ x, , define a continuous map on
(F N Xpq1)UX, by gluing ¢ prx,, ., ande,; finally, let ¢, : X,,11 — R be
an arbitrary continuous extension of such continuous map. O

1.14.17. DEFINITION. Given a topological spack¥ and a subspacd C X
then the space&/A is defined to be the quotient spaceXfby the equivalence
relation ~ whose equivalence classes atend the singletongz}, x € X \ 4;
more explicitly, forz, 2’ € X we haver ~ 2’ iff x = 2’ orz, 2’ € A.

1.14.18. EFINITION. Let f : X — Y be a continuous map. Thmaapping
cylinder of f, denoted byM, is the attachment spac(é( x [0, 1]) Uy Y, where
f is identified with the mapX x {0} > (z,0) — f(z) € Y. Themapping cone
of f, denoted byC/, is the quotient\ /(X x {1}), whereX x {1} is identified
with its image under the canonical ma§ x [0,1]) +Y — Mj.

1.14.19. XaMPLE. The cylinder of the identity mapd : X — X of a topo-
logical spaceX can be identified with the producf x [0, 1] (this is sometimes
called thecylinder of the spaceX). The cone of the identity map df is identified
with the quotient(X x [0,1])/(X x {1}) and is called theoneof X; it will be
denoted byCx.

1.14.20. XAMPLE. The cone of the spheis” ! can obviously be identified
with the closed balB" via the map induced bg"~! x [0,1] > (z,t) — tz € B".
More generally, ifU C R™ is an open bounded convex subset then the cone of the
boundary ofU can be identified witlt/ (see Exercise 1.42).

The mapping cylinder and the mapping cone of a map are rekatsimple
notions that are useful in many situations. Our interesth@msd concepts come
from their relation with attachment of cells:

1.14.21. IEMMA. If Y is a topological space and : S"' — Y is a con-
tinuous map then the mapping conefaé homeomorphic to the attachment space
B" Uy Y by a homeomorphism that fixéS

PrRoOOF Follows immediately from Example 1.14.20 and Exercisd 6.1 [J

We now want to relate the mapping cylinders and the mappingsof homo-
topic maps. To this aim, given a homotopl/: X x [0,1] — Y from f to g we
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define a continuous mapy, : My — M, as follows. Letgy : (X x [0,1]) +Y —
My, qq : (X x [0,1]) +Y — M, be the canonical quotient maps and consider
the homotopiegy, o H : X x [0,1] — My andqy|xyjo1) : X x [0,1] — M,.
We define the mapy by requiring thatpr o g5 equalsg, onY and equals the
concatenation of homotopigg, o H) - (gq|x x[0,1]) ON X x [0, 1]. More explicitly,

we have:

b (as(a,1) = {Z((H e

or(ar(y)) = aq(y),

forallz € X,y € Y. Itis easy to see thaty induces a mapy : Cy — Cy
between the mapping cones pandyg.
We now present some properties of the mags

(1.14.2)

1.14.22. IEMMA. The following properties hold:
(a) if two homotopiesH, H' : X x [0,1] — Y from f to g are homotopic
relatively toX x {0, 1} then¢y and ¢y are homotopic relatively td;
(b) given homotopied?, H' : X x [0,1] — Y with H; = H], then the
composite magg o ¢ : My, — My, is homotopic relatively td” to
the mapg .z corresponding to the concatenated homotapy H';
(c) if H: X x [0,1] — Y is a constant homotopy, sd; = f : X — Y for
all t € [0, 1], theng g is homotopic relatively td” to the identity map of
M;.
Analogous statements hold by replacing, ¢r by ér, ¢ and mapping cylin-
ders by mapping cones.

PrROOF It follows easily using Exercise 1.57 and the following ebstions.
Regarding item (b), we observe thaly o ¢r) 0 q| x «[0,1) €quals the concatenated
homotopy(q'oH)-[(¢'oH")-(¢'| xx[0.1))], Whereg : (X x[0,1]) +Y — My, and
¢ : (X x[0,1]) +Y — My are the canonical projections. Regarding item (c), we
observe that ;; o ¢ equals the concatenation of the homotopyt) — ¢(x,0) and
the homotopyy| x «[o,1), whereg : (X x [0, 1]) +Y — M/ denotes the canonical
projection. O

1.14.23. @ROLLARY. If f,g : X — Y are homotopic continuous maps
between topological spaces, Y then the mapping cylinders/; and M, (re-
spectively, the mapping coné€s and C,) are homotopy equivalent. Explicitly, if
H : f = gis a homotopy then the mapsg; : My — My and¢y—1 : My — My
(respectivelypy : Cy — Cy and ¢y : C, — Cy) are mutual homotopy in-
verses; moreovet; and¢ -1 (respectivelyg; andg ;1) restrict to the identity
onY (recall (1.14.2).

ProoOF Follows easily from Lemma 1.14.22 and Exercise 1.57. O

1.14.24. IEMMA. Let X, Y be topological spaces; : X — Y,g:Y —» Y
be continuous maps such that there exists a homotépyg = Id. Denote by
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q: X x[0,1] +Y — M; the canonical projection and consider the continuous
mapt : My — My such thaty o qly = g o g and o q|xxp, equals the
concatenation of the homotopi¢s,¢) — ¢ o H(f(x),t) and q|xx[,1)- Then

1 is homotopic to the identity relatively tp(X X {1}). In particular, the map

Y : Cy — Cy induced byy is also homotopic to the identity.

ProoF We will explicitly exhibit a homotopyK : i) = 1d relative t0q(X X
{1}). Foreverys,t € [0,1], z € X,y € Y we set:
Ks(q(y)) = qo H(y,s),
qu(f(x),s+2t), te [O, %],
K, (q(2,t) =

2(t—1) 1—

g(z, T +1), te[Fh1)
The verification thatil is well-defined and satisfies the required properties is left
to the reader. O

1.14.25. ®ROLLARY. Given topological spaceX, Y, Y’, a continuous map
f: X — Y and a homotopy equivalende: Y — Y’ then the magh : My —
M}, induced by the identity oX x [0, 1] and byh onY" is a homotopy equiva-
lence. Moreoverh induces a homotopy equivalence fréfpto Choy.

PROOF. Letk : Y’ — Y be a homotopy inverse fdr and consider the map
k- Mhof — Mpono s induced by the identity oiX x [0, 1] and byk onY". We claim
thatk o h is a homotopy equivalence; this will imply thathas a left homotopy
inverse and that has a right homotopy inverse. In order to prove the claim, set
g =kohandletH : ¢ = Id be a homotopy frony to the identity ofY"; then
(z,t) — H(f(x),t) defines a homotopﬁ from go f to f. By Corollary 1.14.23,
we have a homotopy equwalene,‘% Mgy — My, itis easy to see that the
composite mag ; o k o h is precisely the mag of Lemma 1.14.24. We conclude

thatgy o koh and¢; are both homotopy equivalences, proving the claim.

To conclude the proof of the corollary, we make the followwmlgservations:
sincek is a homotopy equivalence, the arguments above can alscedegaishow
that k (like h) has a left homotopy inverse. Sinéealso has a right homotopy
inverse, it follows that: is a homotopy equivalence. Finally, since bétandk o i
are homotopy equivalences, it follows tfeis a homotopy equivalence. The proof
that the map induced by on the mapping cones is also a homotopy equivalence is
totally analogous. O

1.15. CW-complexes

A CW-complex is a topological spacg endowed with a special kind of de-
composition that allows one to systematize the strateggrites! in the beginning
of Section 1.3 for computing the singular homology groupXofSuch decompo-
sition consists in fixing a partition oX into smaller subspaces that are homeomor-
phic to open balls; such subspaces are calledfi®n cellsof the decomposition.
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The cells are glued together along each others boundarfesmahe whole space
X. The simplest example of a CW-complex is the one of a triaadglal space (see
Exercises 1.43, 1.44, 1.45, 1.46, 1.107 and 1.124). Fanost assume that one
chooses a triangulation for the two-dimensional torus, it&t one identifies the
torus with a polyhedron by means of a homeomorphism. Suahdulation gives
a decomposition for the torus into open two-dimensionangies (the faces of
the polyhedron), that are glued together along open linensats (the edges of
the polyhedron); such open line segments are glued togelbieg isolated points
(the vertices of the polyhedron). Triangulations can alsaibed to compute the
singular homology of a space (that's what's calidhplicial homology), but the
decompositions in cells allowed for CW-complexes are ugualich more eco-
nomic. For instance, we will see below that it is possible it@ @ structure of
CW-complex on the torus having only four cells; in the casdhef sphere, it's
possible to use onliwo cells.

In this section, we present the general theory of CW-comgdexIin Sec-
tion 1.16, we will show how one can compute the singular hogwlof a CW-
complex.

We start by introducing formally the terminology of cellsdampen cells.

1.15.1. DeFINITION. If p > 0 is an integer then by eell of dimensiorp (or
ap-cell) we mean a topological space that is homeomorphic tpitienensional
closed ballB”; by anopen cell of dimensiop (or anopenp-cell) we mean a
topological space that is homeomorphic to thdimensional open balb?.

Observe that &-cell or an operd-cell is the same thing as a topological space
having only one point. Observe also that timensionof a cell (or of an open
cell) is well-defined, i.e., a topological space cannot bthatsame time a-cell
(respectively, an opep-cell) and ag-cell (respectively, an opegcell) for p # ¢
(see Exercise 1.63).

We can now give the formal definition of CW-complex. This iseaywtechnical
definition and not so easy to digest at first sight. The exasngileen below should
be able to clarify the spirit of the definition.

1.15.2. DEFINITION. A CW-complexonsists of a Hausdorff topological space
X and a collectiore of subsets ofX such that the following conditions hold:

(1) X = U,ce e is adisjoint union;

(2) eache € € is an open cell;

(3) for everyp > 0 and every opem-cell e € & there exists a continuous
mapf : B” — X that restricts to a homeomorphism frds ontoe;

(4) for everyp > 0 and every opep-cell e € € the set defined bye =€\ e
is contained in a finite union of open cellsdnof dimension less thap;

(5) the unionX = | J .« € is coherent.

The collection¢ is called acellular decompositiorior the topological spac&’.

Condition (4) above is usually calle@losure-finitenesand condition (5) is
usually calledWeak-topologythus the name CW-complex).
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If e € & is an openp-cell then a continuous map : B’ — X that maps
BP homeomorphically onte is called acharacteristic mapfor the celle; thus
condition (3) above says that every open eedl ¢ admits a characteristic m&p
We will usually denote by, the set of opep-cells of X, i.e., we set:

¢, = {e € ¢ :dim(e) = p}.
Thedimensiorof the CW-complexX is the (possibly infinite) natural number:

dim(X) = supdim(e).
ec€

Regarding Definition 1.15.2, a few remarks are in order.

o If f: B” — X is a characteristic map for an opgrcell ¢ € & then
the image off equals the closure ef Namely, sinced? is dense iB”,
f(BP) = eis dense inf (B”); hencef (B”) is contained in the closure
of e. Moreover, the sef (B”) is compact and therefore closed (s
Hausdorff!); sincef (Ep) containse, it also contains the closure ef

e If e € €is an operp-cell andf is a characteristic map ferthen the set
¢ =\ eis the image byf of the unit spheres?—! (see Exercise 1.118).

e If ¢ € € is an operd-cell thene = e (again we use thaX is Hausdorff!)
and hence = (). Property (4) is thus vacuously satisfied fecells (even
though there are no cells of dimension less than zero). @bsdso that
the existence of characteristic maps for opesells is trivial.

e If e € Eis an operp-cell then in general the closu®eof e is nota p-cell
and the set is not homeomorphic to the sphese—! (see Example 1.15.3
below).

e By Exercise 1.97, Property (5) is automatically satisfiedfiioite CW-
complexesi.e., CW-complexes having only a finite number of open cells

Let’'s now give examples of cellular decompositions for séameiliar topolog-
ical spaces.

1.15.3. XaAMPLE (CW-complex structure for the sphere). Let’s give a cetlula
decomposition for the-dimensional spheré?. We assume > 1 (the zero-
dimensional spher&® has an obvious cellular decomposition with two offen
cells). It is not hard to see that there exists a continuousqnaB” — S? that is
constant onS?~! ¢ B” and that maps the open b@P homeomorphically onto
the complement of the poig( SP~1) in SP (see Exercise 1.119). We can therefore
define a cellular decompositiot = {e°, eP} for SP by takinge® to be the open
0-cell ¢(SP~1) andeP to be the opem-cell S \ ¢°. Observe that the mapis a
characteristic map for the open celll. The sphere can thus be given the structure
of a CW-complex having only two open cells.

14ne observe that the characteristic maps for the open cellmtifiorm a part of the structure
of the CW-complex; only the spac€ and the cellular decompositiatdo. More precisely, a CW-
complex is just a paifX, €); the characteristic maps for the open cells are assumeds lext no
particular privileged set of characteristic maps is firgatiori.
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1.15.4. XAaMPLE (CW-complex structure for the torus). Lét denote the
squarg0, 1]> ¢ R2 and let~ be the equivalence relation i spanned by:

(#,0) ~ (z,1) and (0,y) ~ (1,y),

forall z,y € [0, 1]. Itis well known that the quotient spaé&/ ~ is homeomorphic
to the torusT = S x S'. Letq: R — T = R/ ~ denote the quotient map. We
can thus define a cellular decompositiérior the torusT having one oper-cell
e2, two openl-cellsel, el and one open-cell ° as follows:

62 ZQ(]Ovl[z)a
e% = q(]O,l[ X {O}), e% = q({O} X ]0,1[),
¢ = {g(0,0)};

namely, the interiointer(R) = ]0,1[* of the squareR is a saturated open set for
the mapy. By Lemma 1.14.4 and Exercise 1.84maps|0, 1[2 homeomorphically
onto e?, so thate? is indeed an opef-cell; a characteristic map farf is q itself
(see Remark 1.15.5 below). The restrictiongdb a closed side of the squafe
is a quotient map by item (4) of Exercise 1.91; the interioa@ide is a saturated
open set of that side, so that by Lemma 1.14.4 and Exercideth8mapy carries
]0,1[ x {0} homeomorphically onte} and {0} x ]0, 1[ homeomorphically onto
es. Thusel andel are indeed opei-cells and characteristic maps for them are
obtained by taking restrictions gfto [0, 1] x {0} and to{0} x [0, 1] respectively.
The remaining properties of a CW-complex listed in Defimitih15.2 are trivially
verified.

1.15.5. REMARK. If a topological spacé3 is homeomorphic t8” (i.e., if B
is ap-cell) and if f : B — X is a continuous maps takirigter(B) homeomor-
phically onto some opep-cell e € € then we will in general (with some abuse)
call f acharacteristic magor e. Obviously a real characteristic map focan be
obtained by considering the compositigr h, whereh : BY — B is an arbitrary
homeomorphism.

1.15.6. EXAMPLE. Let R be a regulam-agon in the plandR? and letR/ ~
be a quotient space d? obtained by identifying some of the closed sidesrof
with each other, generalizing the situation of Example #1% is known for in-
stance that every compact surface (possibly with boundaype obtained by this
construction (see€9f]). The spaceR/ ~ is always Hausdorff by the result of Ex-
ercise 1.90. Moreover, a cellular decomposition Rf ~ can be described in the
following way: the image by the quotient map R — R/ ~ of the interior ofR
is an oper-cell; the images by of the interiors of the sides dt are operi-cells
and the images by of the vertices ofk are operD-cells. The characteristic maps
for such open cells are all obtained by taking suitable ii&ins of . Detailed
arguments that justify that we indeed have obtained a eelll#composition for
R/ ~ can be given in analogy with the ones given in Example 1.15.4.

1.15.7. XAMPLE (CW-complex structure on the real projective space). The
n-dimensional real projective spadgP" is the space obtained by identifying
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antipodal points inS”, i.e., RP" = S™/ ~ where ~ is the equivalence re-
lation spanned by-z ~ z, x € S™. We will prove by induction om that
R P™ admits a CW-complex structure having exactly one open dedirmension
ifori =0,1,...,n. The caserw = 0 is trivial, sinceRPY consists of just one
point. To prove the induction step, we think 6f as the equator af"*!, i.e.,
we identify R with the subspace dR™*! spanned by the first vectors of the
canonical basis. The quotient map: S"*t! — RP"*! restricts to a quotient
mapgq|s» : S™ — ¢q(S™) (by item (4) of Exercise 1.91) so that we can identify
q(S™) c RP™ with RP™. Obviously, RP"*! is the union ofRP™ and the
homeomorphic image by of any open hemisphere ¢"*!, which is an open
(n+ 1)-cell. A characteristic map for such opém+ 1)-cell is obtained by taking
the restriction of; to a closed hemisphere 611,

1.15.8. XAMPLE (CW-complex structure on the complex projective space).
We think of $?7*! as the unit sphere of the complex sp&te! = R?"*+2 and we
consider the action of the grouff c C in $?"+! given by

A (2’1,. .. 7Zn+1) = ()\2’1,. .. ,)\Zn+1), PYS Sl, (2’1,. .. 7Zn+1) S (Dn+1.

The corresponding orbit spac®™*! /S is called then-dimensionaP complex
projective spacand is denoted b§{f P". We now show by induction on thatCP"
admits a cellular decomposition having exactly one opehofalimension2: for
i=0,1,...,n. The spac€ P° consists of one single point. To prove the induction
step, we identifys?"*+1 with the subset 062" *+3 consisting of thosén + 2)-tuples

in C?"*2 whose last coordinate is zero. The quotient mapS?*+3 — Cpnt!
therefore restricts to a quotient map frg# ™! to ¢(S?"*1) c CP**! and so we
can identifyq(S?"*1) with CP™. The complement o€ P" in CP™*! is an open
(2n + 2)-cell; namely, the restriction af to the set

{(#1,- - 2nt2) € S¥"3 : 29040 €10, +00[ } € §¥F3

is a homeomorphism ontoP" 1\ CP" and this set can be identified with an open
hemisphere of?"+2 c R?"*+3 =~ C"*! x R. A characteristic map for such open
cell is obtained by taking the restriction @to the set:

{(zl, L. ,Zn+2) S S2n+3 D Zop42 € [0, —1—00[} C 52n+3.

1.15.9. DEFINITION. A CW-subcomplexor simply asubcomplexof a CW-
complexX is a closed subséf C X that is the union of some open cells &t It
is easy to see that the cellular decompositioXahduces a cellular decomposition
for Y making it a CW-complex (see Exercise 1.122).

1.15.10. XAMPLE. Forp > 0, thep-th skeleton of a CW-compleX, denoted
by X7, is the subcomplex ak that is the union of all open cells &f of dimension

less than or equal to:
XP = U e.

ec€
dim(e)<p

15A(:tually n is the dimension o€ P™ as acomplexmanifold.
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Forp < 0 we setX? = ().

1.15.11. EFINITION. If X, Y are CW-complexes then we say that X —
Y is acellular mapif f is continuous and maps each skeleféh of X into the
corresponding skeletayi” of Y for everyp.

1.15.12. RoOPOSITION Let X be a CW-complex of dimensign(p > 1).
For each operp-cell e € &, choose a characteristic mafy. : B? — € fore.
Then the maypy : (Zeee,, B”) + XP~! — X induced by thef.’s and by the

inclusion of XP~! on X is a surjective quotient map. In particulay,induces a
homeomorphism from the attachment sp4g€,., B”) Uy XP~! to X, where

[P eee, Sp—1 — xP~1is the sum of the restrictions of thi’s to the spheres
Sp—1,

PROOF. Observe first thak is the coherent union of the skeletéf?—! and
of the closures of the openp-cellse € &,. Moreover, each characteristic map
f. : B — eis a quotient map, foB” is compact and is Hausdorff. The
conclusion follows from Exercise 1.105. O

1.15.13. @ROLLARY. Every CW-complex is a;Ttopological space.

PROOF Let X be a CW-complex. We first show by induction that every skele-
ton X? is T4. TheO-skeleton is discrete and hence obviously F X? is T4 then
by Proposition 1.15.12, the skeletdf?™! is homeomorphic to the attachment of
X7 with the topological sum of a family of closed balle’ along their boundaries.
It follows from Lemma 1.14.15 thak?*! is T,. Now, since all skeletons are, T
and closed inX and since the unioX = J ., X, is coherent, it follows from
Lemma 1.14.16 thaX is T,. O

1.15.14. ROPOSITION Let X be a CW-complex and I&t,_; B” be an ar-
bitrary topological sum of closed balls, where thés are arbitrary integers. Let
f 3 er SPit — X be a continuous map such thatsP—!) c X7i~! for every
i € I. Then the attachment spag& = Y"._; B” U; X is a CW-complex whose
open cells are identified with the open cellsX6fand with the open ballB?:.

ProOF It follows from Corollary 1.15.13 and Lemma 1.14.15 thétis T,
and therefore Hausdotfi The canonical projection: >°,.; B" +X — X' maps
X homeomorphically onto a closed subsefi@fand} ., B”* homeomorphically
onto an open subset dt’ (see Exercise 1.108). It follows easily th&t is the
disjoint union of the (image by of) the open cells ofX and the image by
of the open ball83?: (that are the new open cells). The characteristic maps for
the cells of X’ are obtained using the old characteristic maps for the oéll¥
and appropriate restrictions gffor the characteristic maps of the new cells. For
closure-finiteness we need the closure-finiteness propéityand Exercise 1.123
to conclude thay(S?i~1) is contained in a finite union of opeip; — 1)-cells of

16This was the hard part of the proof. Namely, this was the ratitm for the development of
theory of T, spaces in Section 1.14.
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X'. Finally, it follows from Exercise 1.106 tha’ is the coherent union of the sets
q(B"),i € I, andg(X); the weak-topology property ot’ follows then from the
weak-topology property ok . a

1.15.15. ROPOSITION Let X be a topological space an@X,),>: an in-
creasing sequence of subspaceso$uch that the unioX’ =, X, is coher-
ent. Assume that eacki,, is endowed with the structure of a CW-complex in such
a way thatX, is a subcomplex oX,, ., for all n. ThenX is a CW-complex whose
open cells are precisely the open cells of fig's.

PrROOF. Since the unionX = J,,~; X, is coherent, the fact that,, is closed
in X,, for n < m imply that eachX,, is closed inX. It follows that X is T,
(see Corollary 1.15.13 and Lemma 1.14.16) and, in particitls Hausdorff. The
other properties of a CW-complex are of straightforwardfigation. O

1.15.16. IEMMA. If X is a CW-complex and € €& is an openp-cell then
for everyq € e the seté is a strong deformation retract of the punctured cell

€x :E\ {Q}

PROOF Let f : B” — € be a characteristic map fer using Lemma 1.10.16
it is easy to see that can be chosen so th#(0) = ¢. Now the spheres?—!
is a strong deformation retract of the punctured closed Eéllin the obvious
way; sincef is a quotient map fronﬁi’ to e« the conclusion follows easily from
Corollary 1.14.6. a

1.15.17. ®ROLLARY. If one chooses a poinf. in each operp-cell e € €&,
then the skeletoX?~! is a strong deformation retract of the set

(XP)x = XP\ {ge: e € €,}.

PROOEF Itis an easy consequence of Exercise 1.102 and the fagttiay, is
the coherent union of the family consisting of the skelel@r ! and the punctured
p-cellsey, e € €, (see Exercise 1.100). O

1.15.18. LEMMA. Let M be a differentiable manifold and leét: M — R™ be
a continuous map. Given a continuous function}/ — ]0, +oc[, a closed subset
F C M and an open subsét ¢ M with U N F = () then there exists a continuous
mapy : M — R™ suchthat)|p = ¢|p, ¢|v is smooth andj(z) —¢(z)|| < e(x)
forall z € M.

PROOF For everyr € M, letU, C M be an open neighborhood ofsuch
that||¢(y) — ¢(z)|| < e(y) for all y € U,. We can subordinate a smooth partition
of unity > ., = 1 to the open covering/ = J .y, Uz, i.€., €acht, :
M — [0,1] is a smooth map whose supperippé, is contained inU, and the
family (suppé, ). is locally finite in M. Define a mag : M — R by ¢(y) =
Y wen @) (y); since eaclt, is smooth andsuppé,).cas is locally finite, it
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follows that¢ is smooth. Moreover, for eveny € M:

o) — o) = || Y ¢@)ey) = D d(y)é(y)
reM xeM
< [é@) = 6| &y) < (v);
xeM

the last inequality is obtained by observing that wi§efy) # 0 theny € U,. In
order to conclude the proof, let: M — [0, 1] be a smooth map with|» = 0 and

alz =1, sety = ag+(1—a)¢ and observe thaty (z) — ¢(z)|| < ||¢(z) —d(2)||
forall x € M. O

1.15.19. @®ROLLARY. Under the hypothesis of Lemma 1.15.18/it- R" is
an open subset containing the imagesdhen the map in the thesis of the lemma
can be chosen in such a way that its image is containdd.in

PROOF Apply Lemma 1.15.18 replacing(z) with the minimum between
e(z) and the distance betweerix) and the complement df in R™. O

1.15.20. RoOPOSITION LetM be ap-dimensional differentiable manifold
a CW-complex ang : M — X a continuous map whose image is contained in
some skeleton oX (this happens, for instance, M is compact). Then, given a
subsetS C M with f(S) C XP, there exists a continuous map M — X thatis
homotopic tof relatively toS and such that the image gfis contained inX?.

ProOOEF It suffices to show that iff (M) C X™ for somen > pthenf is
homotopic relatively tc5 to a continuous map whose image is contained itr!.
Moreover, by Corollary 1.15.17, it suffices to find a continganapg : M — X
homotopic tof relatively toS such thay(X) C X™ and such thag(M ) does not
contain at least one point in each opercell of X, i.e., such that ¢ ¢(M) for
everye € &,. We identify every opem-cell e € &, with the unit open ball ilR"™
via an arbitrary homeomorphism; once this identificatiomede, we denote by
er, 1 €10, 1[, the open subset inthat corresponds by such homeomorphism to the
open ball of radiug. Observe that sinceis an open cell of maximal dimension in
X", thene is indeed an open subset & (see Exercise 1.120) and thgis!(e)
(and eachf~!(e,)) is an open subset af/. We now apply Corollary 1.15.19 to
the mapf\ffl(e) on the differentiable manifold~*(e), where the open subset
Uc fle)is f‘l(e%), the closed subset C f~1(e)is f~1(e) \ f‘l(e%) and
e = ¢; we thus obtain a continuous map : f~'(e) — e that is smooth on
f—l(e%), equalsf outsidef—l(e%) and such thaf|y.(z) — f(z)|| < % for all

x € f;l(e). Oncev), is defined for every € €&, we defineg : M — X by:
o f(x)a ngeeén f_l(e)y
g(z) = -1
Ye(x), x€ f~'(e).
Observe thay actually equalg’ on M\ ¢, ft (@); this setis open i/, for
Ueee, % is closed inX by the weak-topology axiom. It follows that: M — X
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is continuous. Sinceg is smooth onf‘l(e%) anddim(M) < dim(e), it follows
thatg mapsf‘l(e%) onto a subset of null measurednForz ¢ f~!(e1) it cannot
beg(z) € e, becausg(x) ¢ f~e)forz & f~1(e) anng(x) — f(2)]| < % for

x € f1(e). Sincee% cannot be contained in a set of null measure, it follows that
e1 (and hence) is not contained in the image gf Finally, one can construct a
homotopy betweer andg that is constant o/ \|J,ce /7' (@) and “linear” on

eachf~!(e), e € &, (see Exercise 1.53). Observe that such homotopy is relative
to S becauses is disjoint from everyf ~!(e), e € &,,. O

Wl

1.16. Homology of CW-complexes

To every CW-complexX we will associate a chain complex called the cellu-
lar chain complex ofX. We then show that the homology of the cellular chain
complex is naturally isomorphic to the singular homologyXaf

In what follows, X will always denote a CW-complex ar#lits set of open
cells. Recall thatX? denotes the-th skeleton ofX.

1.16.1. DEFINITION. For everyp € Z, we setD,(X) = H,(X?, X?~1) and
we consider the homomorphisty : D, (X) — D,_1(X) obtained by the compo-
sition:

Hy (X7, XP~h) 2 H, (X771 s H, (X771, X772)
whered, is the connecting homomorphism of the long exact homologyaece
of the pair(X?, XP~1) andi : (XP~1,0) — (XP~! XP~2) denotes the inclu-
sion map. We cal(D(X),d) the cellular chain comple)associated toX (see
Lemma 1.16.2 below)

Since (by convention)? = () for all p < 0, we haveDy(X) = Hy(X,) and
Dy(X)=0forallp <0.
We start by showing thgtD(X), 9) is indeed a chain complex.

1.16.2. LEMMA. (D(X),d) is a chain complex, i.ed,—1 o 8, = 0 for all
pE .

PROOFE The mapd,_; o 9, is given by the composition of the following four
homomorphisms:

H,(XP, X771 O o1 (XP1) CEN 1 (XP1 XP2) O

O p—Z(Xp_Z)i—*> (X2 XP3)

The vanishing ob,_, 09, follows by observing that the middle part of the sequence
above is part of the long exact homology sequence of the(pairt, X»=2). O

The results below will provide a better understanding of tlogcellular chain
complexD(X) is related to the cellular structure &f.
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1.16.3. LEMMA. Letf : B” — X be a characteristic map for an opencell
e € €. Then, for every € Z, the mapf induces an isomorphism:
(1.16.1) fo o Hy(BY, 8771 — H;(E, ¢é);
in particular H; (e, é¢) is zero fori # p and is infinite cyclic for = p.

PROOF Setq = f(0) € e and consider the commutative diagram:

K

31

(1.16.2) Hi(e,¢) Hy(e,x) <——— Hi(e, ex)
f*

i(e, =
N | |

H;(B”, 571y —= H,;(B",BY) <]i2 :(B?,B)

-

R

1R

-
* N

whereil, i2,j!j? denote inclusions ard, = 2\{¢}, ex = e\{q}, BL = B"\{0},

BY, = B\ {0}. The fact that! andi? are isomorphisms follows from the fact that
¢ is a deformation retract af,, (see Lemma 1.15.16) ansP—! is a deformation
retract ofB ’X’. The fact thaj! andj? are isomorphisms follows by excision. Finally,
the fact that the mayf, on the rightmost column of the diagram is an isomorphism
follows by observing thaf : (B?,BY) — (e, ex) is @ homeomorphism of pairs.
The conclusion now follows by observing that the commuiigtief the diagram
implies that the other two maps. on the vertical arrows are isomorphisms, as
well. O

1.16.4. LEMMA. Lete € €& be an opermp-cell of X and letg be a generator
of the infinite cyclic groupH, (e, é). For everyq € e, if we sete, = e\ {q}
ande, = e\ {¢}, then the top row of diagrar(l.16.2)(with i = p) defines an
isomorphism front7,, (e, ¢) to H, (e, e \ {¢}) that carriesj to a generatorr(q) of
the local homology groupi,, (e, e \ {q}). The map:

e>q+— 7(q) € O(e)

thus obtained is a continuous section of the orientationdi®i® (e) and is there-
fore an orientation for the»-dimensional topological manifold. Moreover, the
correspondence — 7 just described is a bijection between the (two element) set
of generators ofi),(e, ¢) and the set of orientations of the topological manifeld

PROOF The case = 0 is trivial, so assume > 1. Letf : B — X be a
characteristic map for and denote by the generator of the infinite cyclic group
H,(B",$P~1) that is mapped to the canonical orientatiof 1) € H,_;(SP~!)
of SP~! via the connecting homomorphisf) of the long exact homology se-
quence of the paifB”, SP~1). The isomorphism (1.16.1) (with= p) takesa to
+0; for definiteness, let's assunje(a) = . For everyv € B? we claim that the
isomorphism:

fo: Hp(BP, BP\ {v}) — Hy (e, e\ {f(v)}),

takes the canonical orientatiet?! (v) of R? to 7(f(v)). Once we prove the claim,
the continuity ofr will follow (using Proposition 1.10.12). To prove the clgiset
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q=f(v) €e,ex =e\{q},ex =€\ {¢} and consider the commutative diagram
(1.16.2) withBY andB?”, replaced byB” \ {v} and byB? \ {v} respectively; more
explicitly:

(1.16.3) HZ‘(E, 6) Hi(é,éx) Hi(e,ex)

/| B 1

H, (E”,Sp_l) = HZ,(EP’EP \ {v}) <= H; (BP,BP \ {v})

Recalling Convention 1.10.24 (see diagram (1.10.7)) lib¥es from the result of
Exercise 1.71 that the bottom arrow of (1.16.3) carsi¢s 77! (v). The claim (and
the continuity ofr) follows then easily from the commutativity of (1.16.3)nse
the top row of (1.16.3) takeS to 7(q).

Finally, the last assertion on the statement of the lemmawvisltrivially from
Proposition 1.10.11. O

1.16.5. DEFINITION. If e € € is an operp-cell of X then a generator of the
groupH, (€, é) = Z will be called anorientationfor e.

1.16.6. EMARK. According to Lemma 1.16.4, the orientations eoin the
sense of Definition 1.16.5 above can be identified with thentations of the topo-
logical manifolde.

1.16.7. EMARK. A nice way of fixing an orientation for an opercelle € &
consists in choosing a characteristic mapB” — X for ¢; namely, the homeo-
morphismf|g» : B? — e carries the canonical orientatiot?) of B? to a orienta-
tion  for the manifolde (so thatf|g» : (B, 7)) — (e,7) becomes a positively
oriented homeomorphism).

During the proof of Lemma 1.16.4, we have actually shown dtlewing fact:
for p > 1, if o denotes the generator &f,(B”, SP~1) that is mapped ta.P~
via the connecting homomorphisth of the long exact homology sequence of the
pair (B”, SP~1) then the generatos of H, (e, ¢) corresponding to the orientation
7 of e is precisely the image af by the isomorphism (1.16.1) (with= p). This
same statement (obviously) also holds ot 0 if one takesx to be the canonical
generator off, (EO,S—l) = Hy({0}), i.e., the homology class of the singular
0-simplex determined by the poifit

We can now finally describe the grodp,(X). Recall that¢, denotes the set
of openp-cells of X.

1.16.8. LEMMA. For anyp > 0, the homomorphism
P Hi(e,¢) — Hi(x?, xP71)
ec€,

induced by inclusion is an isomorphism. In particuldf;(X?, XP~!) = 0 for
i # pand H,(XP?, XP~!) is free and its rank equals the number of opecells of
X.
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PrRoOF. Choose a poinj,. € e for every operp-celle € €, and defing X?)
andey as in Corollary 1.15.17. Consider the commutative diagram:

H,(e,¢ _
(1.16.4) 692,, p(€,€) Hy(XP, xP~1)
by Lemma 1.15.16= ~ | by Corollary 1.15.17
H (s
82% p(e,ex) Hp(ij(Xp)X)
by excision| =~ | by excision
D Hyeex) ___H,( Ue, Uex)
ec¢y = ec, ecg,

where all arrows are induced by inclusion. The fact that thiggoln arrow of the
diagram is an isomorphism follows from the result of Exexcis49 (observe that
eache € €, is open inX? by the result of Exercise 1.120). The commutativity
of the diagram now implies that the top arrow is also an isqiiem and that is
precisely our thesis. O

Lemma 1.16.8 tells us in particular that the homomorphisms
Hy(e,é) — Hy(XP, XP71)

induced by inclusion are injective. We shall therefore tifgnt,, (e, ¢) with a sub-
group of H,(XP?, XP~1) for everye € ¢,. Keeping in mind also the identification
between the orientations of tipedimensional topological manifold and the gen-
erators of the groupi,, (e, é¢) = Z (see Remark 1.16.6) we obtain the following:

1.16.9. @ROLLARY. For eachp € Z the groupD,(X) is free. One obtains a
basis forD,(X) by choosing orientations for all opgrcells of X O

1.16.10. BEMARK. If f: X — Y is a cellular map between CW-complexes
X andY then for everyp € Z, f restricts to a map of pairs:

fo(XP,XPT — (vP Y Pl

such map of pairs induces a homomorphism in ke homology group, i.e., a
homomorphism fronD,,(X) to D,(Y'). We shall denote such homomorphism by:

(f#)p 1 Dp(X) — Dp(Y),

and we call it thechain map induced by the cellular mafp The fact thatf
indeed defines a chain map frad{X) to D(Y") follows easily from the naturality
of the long exact homology sequence of a pairAlfs a subcomplex oX then
the inclusioni : A — X is a cellular map; keeping in mind Lemma 1.16.8 and
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denoting byQE; C ¢, the set of opep-cells of A, we get a commutative diagram:

Dree, Hp(€,€) —— H, (AP, AP~

l l(z’#»)

@pe@p Hy(e, e) —= Hy(XP, XP~1)

in which all arrows are induced by inclusion. It follows thithe chain map.
induced by the inclusiom : A — X is actually a chain isomorphism frof(A)
onto the subcomplex dP(X) spanned by the orientations of the open cellslof
Hence,we can identify the cellular complex of a CW-subcomplex X with a
chain subcomplex of the cellular complexXfy means of the chain map induced
by inclusion

We are now going to prove that the homology of the chain compéX)
is isomorphic to the singular homology &f. Our strategy is to construct two
subcomplexesZ(X') and B(X) of the singular chain comple®(X) in such a
way thatD(X) = Z(X)/B(X) and that both the inclusiog(X) — &(X) and
the quotient magg (X) — D(X) induce an isomorphism in homology.

We start by definingZ(X) andB(X) by setting, for every € Z:

Zy(X) = Z,(XP, XP71) = {c € 6,(XP) : 9pc € &p_1(Xp-1)},
By(X) = Bp(XP, XP71) = By(XP) + 6,(XP7).

It is easy to see thag(X) and B(X) are subcomplexes a&(X); moreover,
Dy(X) = Z,(X)/B,(X) for everyp € Z. By looking explicitly at the defini-
tion of the connecting homomorphisfiy of the long exact homology sequence of
the pair(X?, XP~1) (see Corollary 1.3.5) it is easy to see that the boundary ho-
momorphism of the cellular chain compl(ﬂO(X), 8) is induced by the boundary
homomorphism o (X), i.e., (D(X), ) is equal to the quotient chain complex
Z(X)/B(X).

Before establishing the relation between the homologies (of), D(X) and
S(X), we need a few technical lemmas regarding the homologidsedafkeletons
of X.

1.16.11. LEMMA. For anyp € Z, the inclusionX?*! — X induces an iso-
morphismH,,(X?P*1) — H,(X).

PROOF. The long exact homology sequence of the pait*!, X*) shows that

Hypoy (X X1 “2 H (XYY — Hy (X)) — Hy (X XY
is exact, where the unlabelled arrows are induced by immiusiFor every in-
tegeri > p + 1, we conclude from the exactness of the sequence above and
from Lemma 1.16.8 that the inclusioki’ — X**! induces an isomorphism from
H,(X")to H,(X"'); hence (by composition), the inclusidff — X7 induces an
isomorphism fromH,,(X*) to H,(X7), for everyj > i > p + 1. The conclusion
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now follows from the result of Exercise 1.34; namely, we haygivial) filtration:
Xpr1 C Xpp1 CXpp1 € C Xpy
of the topological spacg&,; and a filtration:
Xpr1 CXpp2 CXpy3C---C X

for the topological spac&’. The inclusionX,; — X is a filtration preserving
map. The fact that the hypotheses of the result stated incEEeet.34 are indeed
satisfied is a consequence of the first part of the proof antieofdsult of Exer-
cise 1.123. a

1.16.12. LEMMA. Foranyp,i € Z withi < p we haveH,(X*) = 0.

PROOFE Givenintegers, j € Z with j < i, the long exact homology sequence
of the triple(X?, X7, X7~1) (see Exercise 1.52) shows that the sequence:

Hy(X7, X771 — Hy(X', X77") — Hy(X', X)) = H, i (X7, X77)
is exact, where the unlabelled arrows are induced by irmtudrorj < p — 2 we
conclude from the exactness of the sequence above and fronmbad..16.8 that the
inclusion of(X*, X9=1) in (X, X7) induces an isomorphism frof, (X*, X7—1)
to H,(X", X7). Therefore (by composition), sincé, = () for k < 0, the inclusion
of X*in (X, X7) induces an isomorphism froi,(X*) to H,(X*, X7), where
j = min{i,p — 2}.

If i < p—2we havej = i, sothatH,(X") = H,(X*, X7) = 0 and the proof is
complete. Otherwise,= p—1 andH,(X") & H,(X?, X7) = H,(XP~1, XP~2);
from Lemma 1.16.8, we havl,,(X?~!, X?~2) = 0 and so the proof is complete
as well. O

We can now prove our two main theorems.

1.16.13. HEOREM. The inclusionZ(X) — S(X) induces an isomorphism
in homology. Such isomorphism is natural, i.e.fif X — Y is a cellular map
then the diagram

(1.16.5) Hy(X) —T 1Y)

T |

Hy(2(X)) —— Hy(2(Y))
commutes for every; the vertical arrows in the diagram above are induced by
inclusion and the bottom arrow is induced by the chain nfign Z(X) — Z(Y)
obtained by restrictingy. : 6(X) — S(Y).

PrROOF For anyp, the p-th cycle group ofZ(X) is Z,(X?) and thep-th
boundary group ofZ(X) is B,(XP*1) N Z,(XP). We have to prove that the
homomorphism:

Z(X") 7%
By(XPH) N Zy(XP)  Byp(X)’




1.16. HOMOLOGY OF CW-COMPLEXES 93

induced by inclusion is an isomorphism.
By Lemma 1.16.11, the homomorphism:
Zy(X")  Zy(X)
By(XrH) T By(X)’
induced by inclusion is an isomorphism. The long exact secgief the pair
(XP*1 XP) shows that the sequence

(1.16.6)

Hy(XP) — Hy(XPT) — Hy (X7, x7) TR0

is exact, where all arrows are induced by inclusion. It feBahat the homomor-
phism:

Z(XP)  Zy(xrt)

Bp(X?) By(XPt1)’
induced by inclusion is surjective; this implies that:

Zp(XPTY) = Z,(XP) + By(XPH),

By the result of Exercise 1.14, the homomorphism:

(1167) ZP(XP) _ Zp(Xp) + BP(XZH_I) — ZP(XIH_I)’
B,(XPH0) N Z,(X7) B,(XPH) By(X#H)
induced by inclusion is an isomorphism.
Since both (1.16.6) and (1.16.7) are isomorphisms, thef mthe first part
of the statement is complete. Finally, the commutativity(fL6.5) follows by
observing that such diagram already commutes at the chagh le O

1.16.14. @WROLLARY. The chain mapZ(X) ® G — &(X;G) induced by
the inclusion ofZ(X) in &(X) induces an isomorphism in homology for every
abelian groupG.

ProOF Follows directly from Corollary 1.13.12, observing ti@&ifX) is free
and hence the subcompléx X) of S(X) is also free. O

1.16.15. HEOREM. The quotient maEZ(X) — D(X) induces an isomor-
phism in homology. Such isomorphism is natural, i.ef,:itX — Y is a cellular
map then the diagram

(1.16.8) Hy(2(X)) 1> H,(2(v))

| |

H,(D(X)) — H,(D(Y))
commutes for eveny, the vertical arrows in the diagram above are induced by the
quotient map, the top arrow is induced by the chain nfap: Z(X) — Z(Y)
obtained by restrictingf : 6(X) — &(Y") and the bottom arrow is induced by
the chain magf, : D(X) — D(Y) induced byf on the cellular complexes.
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PROOF We have a short exact sequence of chain complexes:
0— B(X) — Z2(X) — D(X) — 0.

The corresponding long exact homology sequence, showshbajuotient map
Z(X) — D(X) induces an isomorphism in homology if and only if the homglog
of B(X) vanishes. Let's then try to compute such homology.

For anyp, thep-th cycle group of3(X) is B,(X?) + Z,(XP~!) and thep-th
boundary group oB(X) is B,(X?). We want to show that,,(X?~!) C B,(X?).
By Lemma 1.16.12, we havé,(X?~1) = 0 so that:

Zp(XP7Y) = By(XP7Y) € By(XP).
This concludes the proof of the first part of the statement ddmmutativity of

diagram (1.16.8) follows by observing that such diagrareaaly commutes at the
chain level. O

1.16.16. ®ROLLARY. The chain maE(X) ® G — D(X) ® G induced by
the quotient mag£ (X ) — D(X) induces an isomorphism in homology for every
abelian groupG.

ProOOF Follows directly from Corollary 1.13.12, observing ti&¢X) is free
(since itis a subcomplex @ (X)) andD(X) is free by Corollary 1.16.9. O

We have proven the following:

1.16.17. HEOREM. If X is a CW-complex then there exists an isomorphism
between the homology of the cellular chain com@éX) and the singular homol-
ogy of X. The same statement holds for reduced homology and for legsnalith
arbitrary coefficients. All the isomorphisms are naturaktlwiespect to cellular
maps. O

1.16.18. XAMPLE. We have seen in Example 1.15.8 that the complex pro-
jective spaceC P™ admits a cellular decomposition having exactly one cellief d
mension2; for ¢ = 0,...,n. It follows readily from Theorem 1.16.17 that the
homology ofC P™ is given by:

Hy(CP")=7Z, fori=0,1,...,n,

andH,(CP") = 0 otherwise.

We will now prove some results relating the Betti numbers GVE-complex
X and the number of cells of in each dimension.

1.16.19. ROPOSITION Let X be a CW-complex and, for each integel 0,
denote by, the number of opep-cells of X. Then, for every coefficient field
we have:

(1.16.9) Bp(X;K) < iy,
for everyp.
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PrRoOOF. Follows by observing that th&-vector space?,(X;K) is isomor-
phic to a quotient of a subspace®f,(X) ® K anddimg [D,(X) ® K] = &, for
everyp. O

1.16.20. ROPOSITION Let X be a finite (or, equivalently, compact) CW-
complex. Denote by, the number of opep-cells of X. Then the Euler char-
acteristic of X is given by:

(1.16.10) X(X) =D (~1)k,.
PEZ

PrROOF Apply the result of Exercise 1.78 witfi the identity of D(X) ® K
and Lemma 1.13.15 for an arbitrary coefficient fi&ld O

1.16.21. RoPOSITION LetX be a CW-complex and denote dythe number
of openp-cells of X. Assume that for somie> 0 we havex, < +ooforall p < k.
Then, for any coefficient field:
(1.16.11)
Be(X:K) = Bt (X5 K) + -+ (—1)FBo(XK) < kg — kg1 + -+ (—1) o,

ProoF Define a chain complex df-vector space€ by setting
Q:p = DP(X) ® K7

for p < k and¢, = 0 for p > k; the boundary operator i is defined so that is
a subcomplex oD (X) @ K. If ﬁ; denotes the dimension ov&rof the homology
group H,(€) then, applying Exercise 1.78 withthe identity of¢, we obtain:

Bt = Brr 4+ (C1)M0 = k= w1+ (=) ko

The conclusion follows by observing thgf = £,(X;K) for p < k and g, >
Bp(X; K). O

1.16.22. ROPOSITION Let X be a CW-complex and denote by € IN U
{+0oc} the number of opep-cells of X. Then, for any coefficient field, there
exists a sequendgy,),>o in IN U {+oo} such that:

(1.16.12) ko = Bo(X; K) + qo, Kp = 5p(X§ K) + &+ qp—1, p=1

PrRoOOF Denote byd, : D,(X) ® K — D,_1(X) ® K the p-th boundary
operator of the comple®(X) ® K. Set:

gp = dim (Dp11(X) @ K/Ker(dp41)) = dim(Im(Fp11)),

for all p > 0. The conclusion follows by applying the result of ExercisgQlto the
spacedm(0p41) C Ker(d,) C Dp(X) @ K. O

In spite of the awkward statement of Proposition 1.16.22,nbt hard to show
that such Proposition actually implies Propositions 1.961.16.20 and 1.16.21
(see Exercise 1.126).

The thesis of Proposition 1.16.22 can be nicely summariadtie following
form. Consider the formal “power series” with coefficientsI¥ U {+oc} given
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by Q(\) = ;;’8 gpAP. Then equalities (1.16.12) are equivalent to the following
equality of formal “power series” with coefficients N U {+o0}:

+oo +oo
(1.16.13) D A =" B (G KN + (1+ A)Q(N).
p=0 p=0

The formal power series:
“+00
Pa(XGK) =) B (XK,
p=0

appearing in equation (1.16.13) is known as Hoinca© polynomialof the topo-
logical spaceX with respect to the field coefficiei.

1.16.23. EMARK. If a singular homology groupi,(X) (with integer coef-
ficients) of a CW-compleX is finitely generated then the Betti numbgrX ; K)
is always greater or equal to the Betti numigX') (with integer coefficients) of
X (recall Exercise 1.125). Namely, the universal coeffigghtorem implies that
H,(X) ® Kis aK-vector subspace df,(X; K) and therefore:

B(X;K) = dimg (Hp(X;K)) > dimg (Hy(X) @ K) > 8,(X).

It follows that the lower estimate (1.16.9) fey is always better than (or equivalent
to) the estimated,(X) < «, if Hy(X) is finitely generatedOn the other hand, if
H,(X) is not finitely generated thef,(X) = +oo by convention and it is indeed
true thats,(X) < k,, i.e., thatk, is also equal te-co. Namely, if x, were finite
thenD,,(X') would be free of finite rank and hence al&(X) (being a quotient
of a subgroup ofD,(X)) would be finitely generated. Observe thatf(.X) is
not finitely generated then it may happen thatcoefficient field will give us the
equalitys, = +oo from (1.16.9) (see Exercise 1.79).

1.17. Explicit Computation of the Cellular Complex

Let X be a CW-complex. We have seen in Section 1.16 that the singula
homology of X is isomorphic to the homology of the cellular chain complex
(D(X),0) corresponding toX. The boundary homomorphisms Bf(X) were
defined abstractly in terms of the long exact homology secgieha pair of con-
secutive dimensional skeletons &t The goal of this section is to give an explicit
geometric method for computing such boundary homomorphisiRecall from
Corollary 1.16.9 that for each > 0, the groupD,(X) is free abelian and a basis
for D,(X) is obtained by choosing an orientation for each opeell of X. More
explicitly (recall Lemma 1.16.8), we have an isomorphism:

(1.17.1) P Hy(e,¢) — Dy(X)
ecE,
induced by inclusion (recall that, denotes the set of opencells of X). For

everye € €&,, the generators of the infinite cyclic group,(e,¢) = Z are (by
definition) called theorientationsof the operp-cell e; moreover, there is a natural
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correspondence between the set of generatord 0¢, ¢) and the set of actual
orientations for th@-dimensional topological manifole (recall Remark 1.16.6).

In this section we will always identify the grouP,(X) with the direct sum
@ee% H, (e, é) via the isomorphism (1.17.1). Moreover, once an orientafoy
an openp-cell e is fixed, we will simply denote by the corresponding generator
of H, (€, é). Hence, we write the elements Bf,(X') simply as (finite) linear com-
binations of opem-cells of X with integer coefficients; the sign of the coefficient
appearing next to some opercell e is determined once an orientation feris
fixed.

LeteP™! € & be a fixed operfp + 1)-cell of X. We choose an orientation for
ePT1. A good way of doing that (recall Remark 1.16.7) is choosimgaracteristic
map f : B""' — X for e»*1. The boundaryd,.; eP*! of eP+! in the chain
complexD(X) equals a finite linear integral combination of opewells of X.
Let thene? € €& be a fixed opemp-cell of X; we want to determine the coefficient
next toe? appearing ird,1 eP*1. Such coefficient is only determined up to sign;
by choosing an orientation fa#, this coefficient becomes a well-defined integer
number. The theorem below tells us how such number can biiglyptomputed.

1.17.1. THEOREM. Let X be a CW-complex and le® ePt! < ¢ be re-
spectively an opep-cell and an oper(p + 1)-cell of X (p > 0). Assume that
f: B . X is a characteristic map for?+!, thate?+! has the orientation
induced byf and thate? has a fixed arbitrary orientation. Then the g&t! (e?) is
open inS? and the map:

(1.17.2) Flpreny s F7HeP) C 8P — €P,

is proper. Moreover, the coefficient appearing nexttdn the boundary o#?+! in
the complexD(X) equals the degree of the méh17.2)

PROOF. The fact thatf~!(eP) is contained inSP follows by observing that?
is disjoint fromeP ! = f(BP*1); the fact thatf ~!(e?) is open inS? follows from
the continuity off|s» : SP — XP? and from the result of Exercise 1.120. Moreover,
the properness of (1.17.2) follows from the result of Ex&¥cl.73, observing that
fls» : SP — XP is (obviously) proper.

We have shown so far that it makes sense to talk about thealeg(é.17.2);
we now proceed with the proof that such degree equals théi@ent next toe?
in 9,11 ePTL. Let o denote the generator dpr(EpH, SP) that is mapped to
alPl e H,(57) by the connecting homomorphisf of the long exact homology

sequence of the pa{E”“, S5P); by Remark 1.16.7, the basis elemenff. ; (X)
that is identified with the orientegh + 1)-cell eP*! equals to the image ef by the
homomorphism:

[ Hp+1 (Ep'i‘l’sp) - Hp+1(Xp+l7Xp)7
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induced byf. Such homomorphisnf, is pictured in the leftmost column of the
commutative diagram below:

Hyoy (X7, XP) —2 H(XP) — H,(XP, X771

‘| |

HPH(EHI’SP) — fjp(sp)

the top row of the diagram is the + 1)-th boundary homomorphism of the
chain complexD(X). Sinced.(a) = o), the boundary of (the basis element
of D, 1(X) that is identified with the) open celP*! in the chain compleD(X)
equals the image afl! by the homomorphisnf, represented by the slanted arrow
in the diagram above; such homomorphism is represented agahe top row of
the commutative diagram given below. We choose a pgint e for each open
p-celle € €, and we set, = e\{¢c} and(X?)x = X7\ c¢, {¢c}; here comes
the diagram:

f*

(117.3) - - — - H,(5) Hy(XP, XP71)

o

Hp(SP7Si”\ Uf_l(Qe)) ks Hp(Xp, (Xp)x)

ec¢y

=3 =

H,(UF1O), UF(ex)) Lo Hy( Ue, Uex)

ece, ecE, ec¢, ec¢y
x l
L Hy( Ue, Ue\ {ao})
-~ _ e€C, ecC,

- - A

— =

T Hy(er )

as usual, the unlabelled arrows are induced by inclusiosefe that the top part
of the right column of the diagram above is precisely thetrggtumn of diagram
(1.16.4).

Let 5 € H,(eP, eP) denote the chosen orientation efy the generatop3 of
H,(eP, eP) corresponds to an orientation: e? — O(e?) for the topological man-
ifold eP (see Remark 1.16.6). The left column of diagram (1.16.4yicts to a
homomorphismH,,(e?, e?) — H,(e?, e’ that carries3 to 7(ger). Letd € Z
denote the coefficient appearing nextetoin the boundary ot?*!, i.e., d is the
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integer we want to compute. Denote fy(al?)) the image ofal?! by the top ar-
row of diagram (1.17.3). If we pusfi.(aPl) down the right column of diagram
(1.16.4) and then pull it back using the bottom arrow of (14),6we will obtain
an element of the direct su@®, ., (e, ex) whose component i, (e?, el ) is

d - 7(ger). By the result of Exercise 1.50, it then follows that pushjiaga!?)) all
the way down the right column of diagram (1.17.3) will givedusr (¢er ).

Now let d € Z denote the degree of the map (1.17.2). The proof of the
theorem will be concluded if we can show that the dashed padfagram (1.17.3)
takesal” to @’ - 7(q.»). Let's observe the following things.

e The uniorUeeep e is ap-dimensional topological manifojshamely each
e € €, is open inX? (and hence "Ueec»:,, e) by the result of Exer-
cise 1.120.

o The setlV = e, f~%(e) is open inS?; as in the item above, we know
that eache € €, is open inX?. The conclusion follows from the conti-
nuity of f|sr : S? — XP.

o The setk’ = (¢, f~(qe) is compactobviously, for eacke € €,, the
setf~1(q.) is closed inSP and therefore compact. Observe now that, by
Closure-finitenessf ~!(q.) is non empty for at most a finite number of

e’s.
o U\ K =U,ce, [ (ex); this is obvious.
e The map:
(1.17.4) fhum P U FHe) — U e

ecE, ecE,
is proper;, this follows from the result of Exercise 1.73, observingtth
flsp : SP — XP is proper.
We (as usual) use the isomorphism given by the dotted arrodiagfram

(1.17.3) to identify orientations of the manifodd at the pointy.» with orientations
of the manifoIdUee@p e at the pointg.r. Keeping in mind such identification, the
items above and Remark 1.11.2, it follows that the dashddgdatiagram (1.17.3)
takesal”! to @’ - 7(qer), Wwhered” equals the degree of the map (1.17.4) at the
point ¢.» with respect to the orientation(q.»). We now have only to observe that
d" = d'; this follows from items (1) and (2) of Proposition 1.11.3. O

We are now going to present a few examples in which all the machwe
have developed will be used to actually compute the singudanology of some
spaces. Before that, we make a few remarks that will simpiiéypractical com-
putations.

1.17.2. EMARK. Sometimes (recall Remark 1.15.5), rather than using a char

acteristic mapf : B . X forthe open(p + 1)-cell e, we prefer to work with
a continuous map : B — X that takeinter(B) homeomorphically onte, where

B is an arbitrary topological space homeomorphi(Et%Jrl (.,e.,Bisa(p+ 1)-
cell). Obviously, one can always choose a homeomorplinisrrﬁerl — B and
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then work with the characteristic mégio h, but it would be nicer to work directly
with f. So, how do we adapt Theorem 1.17.1? First, one has to choosgea-
tation 7 for inter(B) (inter(B) has no canonical orientation lik&’*! does); then
the homeomorphisnf|er(p) : inter(B) — ePT1 will induce an orientation on
the open(p + 1)-cell eP*! (so that f|ier(5) DECOMeES positively oriented). The
map (1.17.2) will now be replaced by a map defined on an opesesatbBd(B).

In Remark 1.11.10 we have mentioned that there is no probieming degree the-
ory for maps defined on open subsets of topological spactardhhomeomorphic
to the sphere, as long as ofiees an orientatiorfor such space. What orienta-
tion do we use om3d(B)? The answer is given in Corollary 1.10.33: we use the
orientationr" that is induced from on the boundary oB.

1.17.3. EMARK. If ¢! € ¢ is an openl-cell then it is particularly sim-
ple to determine the boundary ef in the cellular complexD>(X). Namely, let

f:B' — X be a characteristic map fet; we take ore! the orientation induced
by f and we fix an opef-cell e € &. Observe that’ has a canonical orientation
(in the terminology of Example 1.10.21, this is the “+1” ariation). Using Theo-

rem 1.17.1 and Example 1.11.8, we conclude that the coefiafgpearing next to
eV in the boundary ot! in D(X) is equal to:

e zero, if eitherf~1(e?) is empty or if f ~1(e?) contains the two points of
SY;

e one, if f~1(e") contains only the “north polel € S°;

e minus one, iff ~!(e%) contains only the “south pole~1 € S°.

Regarding Remark 1.17.2, we will in some situations prajeneplaceE1 by
an arbitrary oriented-cell (B, 7). Then the “north pole” (respectively, the “south
pole”) of S mentioned in the itemization above should be replaced byt
of Bd(B) in which the orientation-" induced fromr on the boundary of3 is
equal to+1 (respectively, equal te-1). By Remark 1.10.40, iB is viewed as
an orientedl-dimensional differentiable manifold with boundary, thise point
of Bd(B) wherer? equals+1 (respectively, equals-1) is the point where the
outward pointing vector defines the positive orientationtloe tangent space of
B (respectively, the point where the outward pointing vecdkefines the negative
orientation on the tangent spaceRy.

In the examples below we will use freely the contents of Rénarl7.2 and
1.17.3, as well as the basic tools for computing degreesgiveropositions 1.11.3
and 1.11.7.

1.17.4. XAMPLE. We compute the cellular chain complex of the sphete
(n > 1) endowed with the cellular decomposition explained in Egkni.15.3.
We have just an open-cell and an opef-cell, so thatD,(S™) = Z for p = 0,n
andD,(S™) = 0 otherwise. The boundary homomorphisms7efs™) are all
trivially zero, except whem = 1: but in this case the boundary homomorphism
01 : D1(SY) — Dy(S1) is again equal to zero, because a characteristic map for the

openl-cell would collapse both points of the boundaryﬁﬂ‘ to the same)-cell.
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Thus, in any case, all boundary homomorphism®¢0$™) are zero. We conclude
(as we have known already for a long time now) thet(S™) = Z for p = 0,n
andH,(S™) = 0 otherwise.

1.17.5. XaMPLE. We compute the cellular chain complex of the tofus=
S x S! endowed with the cellular decomposition explained in Exanipl5.4.
We obviously have:

Dy(T) =7, Di(T)=Z&Z, Dy(T)=7;

the only non trivial boundary homomorphisms @keand 9,. Since the charac-
teristic maps for the open-cells e} ande} collapse both points of the boundary
of B to the same)-cell, it follows thatd; = 0. Let's now computeds(e2). A
characteristic map far? is given by the quotient map: R — T itself. We have to
choose an orientation for inter(R) = 0, 1[*; we pick the one induced from the
canonical orientatiorr?! of the planeR?. The orientation- of inter(R) induces
an orientationr® on Bd(R). Such orientation is described in Example 1.10.41;
roughly speaking, this is just the “counter-clockwise”emtation. More explic-
itly, since the open sides of the rectandteare (one-dimensional) differentiable
manifolds, the orientation” can be described as follows:
e the restriction ofr” to the bottom sidé0, 1] x {0} of R is the one that
makes the first vector of the canonical basi®Réfpositive;
e the restriction ofr” to the top sidéo, 1] x {1} of R is the one that makes
the first vector of the canonical basisRf negative;
e the restriction of> to the right sidg[1} x ]0, 1] of R is the one that makes
the second vector of the canonical basi®Rafpositive;
e the restriction ofr" to the left side{0} x ]0, 1] is the one that makes the
second vector of the canonical basidisf negative.
We now have to choose orientations for the opetells e} andel. We choose
the ones that makes the homeomorphisig:(« (o} : ]0,1[ x {0} — e} and
ql{oyx0,1[ : 10} x ]0,1[ — es positively oriented (where the open sidesiare
oriented by restrictions of"). Let's compute the coefficient appearing nextto
in the boundary o#%. We have to compute the degree of the map:

(1.17.5) qlg-riery 1 g (ed) — el
such degree is equal to the degree of the map obtained by simypd.17.5) on
the left with the inverse of the positively oriented homeopiism:
Q\}o,l[x{o} 10,1 x {0} — e%.

The map obtained by such composition is described in thedibalow:

10,1[x {0} > (£,0) — (¢, 0)

g '(e1) = U

10,1[x {1} 5 (¢, 1) — (,0)
But considering the orientations induced#¥yon the open sides @, we conclude
that(¢,0) — (¢,0) is a positive diffeomorphism, whil&, 1) — (¢,0) is anegative
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diffeomorphism. Hence the degree of (1.17.5) is equakta A similar reasoning
shows that the degree of the map:

q|q*1(e%) : q_l(e%) - 6%,
is also equal to zero.

1.17.6. XAMPLE. Let’s compute the cellular chain complex of the real pro-
jective spacdR P endowed with the cellular decomposition described in Exam-
ple 1.15.7. Fop < n + 1, we identify R? with the subspace dR"*! spanned
by the firstp vectors of the canonical basis, so that we get a sequencelat in
sionsS® ¢ S' ¢ 82 ¢ .- C S" for the unit spheres. If : S» — RP"
denotes the quotient map that identifies antipodal poirgs #iS?) C RP™ is
identified with RPP for p = 0,...,n, so that we also get a sequence of in-
clusionsRP? ¢ RP' ¢ --- ¢ RP™ Forp = 0,...,n — 1, the difference
ePtl = RPPH\ RPP is exactly the unique opefp -+ 1)-cell of RP"; a character-
istic map foreP*! is obtained by restricting to the closed northern hemisphere:

Sg—i_l = {x S SP+1 C Rp+2 : fL'p+2 2 O}

We orient the northern hemispheis”éJrl with the restriction of the canonical ori-
entationaP+1 (i.e., the outward pointing orientation) of the sphéfe!. We can
now giveeP ™! the orientation induced fromgt by the characteristic mapsgﬂ.
Let's compute the boundary ef*! in the chain comple® (R P™); such boundary
is just an integer multiple o#?. One can check straightforwardly that the orien-
tation 7" that S2™' induces onBd(S2™) = S? equals the canonical (outward
pointing) one if and only if is odd, i.e.,/> = (—1)?*'alPl. Let's now compute
the degree of the map:

(1.17.6) qlg-1(ery 1 ¢ (€P) — €,

whereq=1(e?) = 5P\ SP~! is endowed with the restriction of the orientation
> = (—=1)Pt1alrl. The degree of (1.17.6) equals the degree of the map obtained
by composing (1.17.6) on the left with the positively orishithomeomorphism
Glinter(sy) ¢ (inter(SY), alPl) — eP. The resulting map is pictured below:

open northern hemisphere
(inter (SP), (—1)p+1a[p]) >z +— € (inter(Sh), al”))
q_l(ep) = U
(SP\ SP, (—1)‘”“04[1’}) >z — —z € (inter(Sh), a[p])
open southern hemisphere

It follows now that the degree of (1.17.6) is equaltel)P*1[1 + (—1)P*1], i.e.,
it is equal to0 for evenp and it is equal t@ for oddp. The cellular chain complex
of RP™" is thus given by:

2 2 0

— 0 — Z Z — 0 — ---

n+1 n n—1 n—2 0 —1
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for evenn and by:

0 2 0 0

Z Z
n+1 n n—1 n—2 0 —1

for oddn. Finally, the singular homology groups BfP" are given by:
Zo=17/27, if1<i<n-—1andiisodd

— 0 —Z Z — 0 — -

H(RPY = ) o
! )z, if i = n andn is odd
0, otherwise

Exercises for Chapter 1

Short review of abelian groups.

EXERCISE1.1. LetR be a (associative) ring with uAlt An R-moduleis an
abelian groupV/ (whose operation will be denoted additively) together witimap
R x M > (r,m) — rm € M satisfying the conditions:

(1) r(mq + mo) = rmy + rme, forallr € R, my,mq € M;

(2) (r1 +r9)m =rym+rom,forallri,ro € R,m € M;

(3) (riro)m = ry(rom), forallri,ro € R, m € M,

(4) Im =m, forallm € M.
The conditions above can also be more economically exmtaaste following
way: for everyr € R, we definep, : M — M by ¢,.(m) = rm and we ask that
r — ¢, be a (unit preserving) ring homomorphism fraito the ringHom (M)
of all group homomorphisms af/ (multiplication inHom (M) is composition of
homomorphisms). Observe also that the definitiomlRefnodule is precisely the
same as the definition dB-vector space in linear algebra, except for the fact that
R need not be a field. Don't be fooled by the superficial sintyattiough: after
the basic definitions, module theoryrauchharder than linear algebra.

Show that ifM is an abelian group then there existegquemapZ x M — M
that makes\/ into aZ-module.

EXERCISE1.2. LetR be a ring with unity. Show that the multiplication &f
defines ank-module structure for the subjacent additive abelian g@fui. This
is called thecanonical R-module structure of the ring.

ExeErcISE1.3. If M, N are R-modules thenamap: M — N is said to be
linear (over R) if f is a group homomorphism anfdrm) = r f(m) for all r € R,
m € M. If G, H are abelian groups, show that every homomorphisntz — H
is automaticallyZ-linear whenG, H are endowed with their uniqué&-module
structure.

EXERCISE 1.4. If M is a module over a ring? then asubmoduleof M is a
subgroupN C M such thatrm € N forallr € R,m € N.

170ne can also consider modules over rings without unit; md¢hise, one obviously has to drop
condition (4). Even whei® has a unit element, one can “forget” about such unit, i.ep dondition
(4) anyway, obtaining then a “weaker” notion Bfmodule.
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e If GG is an abelian group (endowed with its unigdemodule structure)
show that the submodules Bfare precisely its subgroups.

e Ifthering R is endowed with its canonicd&t-module structure, show that
the submodules ak are precisely its left ideals.

o If f: M — N isalinear map betweeR-modulesM, N then thekernel
of f is defined byKer(f) = f~1(0) (this is the same as the kernel pf
as a group homomorphism). Show that the kernef &f a submodule of
M and that the image of (denoted byim( f)) is a submodule ofV.

EXERCISE 1.5. LetG be an abelian group. 1§ C G is an arbitrary subset
then thesubgroup ofG spanned bys, denotedZ - S, is the smallest subgroup of
G containings (i.e., the intersection of all subgroups @fcontainings, which is
obviously a subgroup af?). If (g;):cs is a family of elements of7, show that the
subgroup spanned by the s{@;ti S I} equals the set of all linear combinations
of the family (g;)i;cr. Conclude thaty;);cr is generating foi if and only if no
proper subgroup aff contains the sefg; : i € I}.

EXERCISEL.6. If G is an abelian grouf, show thatg;);cs is a basis fo5 if
and only if every element aff can be written uniquely as a linear combination of
the family (g;)ic1, i.€., if everyg € G is a linear combination of the familiy; );cr
andy_,c;nigi = Y nigi impliesn; = n) forall i € 1.

EXERCISEL.7. Generalize Exercise 1.5 to modules; namelyMdbe a mod-
ule over aringR.

e Show that the intersection of a (hon empty) family of submesof A/
is a submodule ofi/. Define thesubmodule spanned by a setc M
to be the intersection of all submodules f containingS (this is the
smallest submodule o¥/ containing.S). The submodule spanned BYy
will be denoted byR - S.

o If (m;)ier is a family of elements of\/ then alinear combinationof
(m4)ier is a sum of the formd_,_; rym; € M, where(r;);cr is an es-
sentially zero family of elements ak (i.e., ;, = 0 except for a finite
number of indices € I). Show that the submodule spanned by the set
{mi NS I} equals the set of all linear combinations of the family
(m;)ier (the fact thatR has a unit elemeris crucial here!).

EXERCISE 1.8. If M is a module over a rind? the a family (m;);c; of el-
ements ofM is calledlinearly independentf for every essentially zero family
(ri)ier In R, > ;. rim; = 0 impliesr; = 0 for all i € I. A family that is not
linearly independent is calldthearly dependentif the set{m, : i € I} spansi/
as a module we sat that the family:;);c; is generatingfor M. A family (m;);cr
that is both linearly independent and generating is callbdsasfor M (we also
say thatM is free over (m;)icr).

e Generalize Exercise 1.6 to modules.

e Generalize Proposition 1.1.3 to modules.

e If A is an arbitrary set, define tifeee R-module spanned byl to be
the setFreer[A] of all essentially zero maps : A — R endowed with
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the R-module structure given by pointwise addition and multiation by
elements ofR. Identify eachu € A with the map that takes to the unit
of RandA \ {a} to zero. Show that th&-moduleFree[A] is free over
A.

EXERCISE1.9. Show that i is a finite abelian group then every non empty
family in G is linearly dependent; conclude that a non zero finite abaji@up
cannot be free.

EXERCISE1.10. LetG be an abelian group. L8t(G) be the set of elements
of G having finite order, i.e.:

T(G) = {g € G : ng = 0 for some positive integet }.

Show thatT(G) is a subgroup of; we call it thetorsion subgroupof G. If
T(G) = 0 we say that5 is torsion free Show that the quotiertt/ T (G) is torsion
free for every abelian groug.

ExXERCISE1.11. LetG be an abelian group and;).c; a family of elements
of G. Assume that the property given in the statement of Prdpasit. 1.3 holds,
i.e., that foreveryabelian groupd and every family(h;);c; of elements of> there
exists a uniqgue homomorphisifh: G — H with f(g;) = h; for all i € I. Show
that (g;);cr is a basis forG (hint: let H be the free abelian group spanned by

{gi}iel)-

EXERCISEL1.12. LetA be an arbitrary set7 an abelian group and: A — G
an injective map such thafA) is a basis forG. Show that there exists a unique
homomorphismp : Free[A] — G such that the diagram:

Free[A] ¢

N

commutes, where the unlabelled arrow denotes the cananidakion of A in
Free[A]. Show thatp is an isomorphism.

G

ExERCISE1.13. LetG be a free abelian group with bagig );c;. Given sub-
setsly, I, C I show that the intersection of the subgroups spanne@byi € I}
and{g; : i € I} is the subgroup spanned By; : i € I; N I5}. Generalize this
result for an arbitrary (non empty) family of subsets/of

EXERCISE 1.14. LetG be an abelian group and |&f, K C G be subgroups
with G = H + K. Show that the inclusion ok in G induces an isomorphism

K ~ G
=T
HNK H
EXERCISEL1.15. Letf : G — H be an epimorphism (i.e., a surjective homo-
morphism) between abelian groups. Show thatifC Sy C H are subgroups of

H then f induces an isomorphism between the quotiefit$(S,)/f~1(S;) and
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S3/S1. Show that this isomorphism gatural in the following sense: given epi-
morphismsf : G — H, f' : G’ — H’ and homomorphismg : G — &,
v : H — H’ such that the diagram

¢—lop

¢>l lw
! /
¢ —~H

commutes then the diagram

FHS2)/FH(S1) — 52/5)

l |

FHSE) /(ST —== S5/

also commutes, where the horizontal arrows are inducefl &yd f/, the vertical
arrows are induced by and, S;,S2 are subgroups off and S = ¥(S1),

Sy = (52).

EXERCISE 1.16. LetG, H be abelian groups anfl: G — H a homomor-
phism. Show that:

(@) f has a left inverse that is a homomorphism if and only i injective
andIm(f) is a direct summand off;

(b) f has aright inverse that is a homomorphism if and onlfi$ surjective
andKer(f) is a direct summand off .

EXERCISE 1.17. Given abelian group&, H with H free, show that every
surjective homomorphisnfi : G — H has a right inverse.

EXERCISE 1.18. Given homomorphisms; : G; — G% andk; : G, — G,
1=1,2, show thal(k:l &® k‘g) o (hl ® hg) = (k?l o hl) &® (]{72 o hg)

EXERCISE1.19. Denote by; = (1,0), e2 = (0,1) the canonical basis of the
free abelian groupr = Z ® Z.. Show that; ® es +e2 ® e1 € G ® G is not of the
form g1 ® go with g1, g0 € G.

ExERCISE 1.20. Show that ifg;);c; is a basis for an abelian grodp and if
(hj)jeu is a basis for an abelian group then(g; ® h;); jyerx.s iS @ basis for the
tensor producti ® H.

0.5)

EXERCISE 1.21. LetR be a commutative ring with unity and |ét/, N be
R-modules. AmapB : M x N — P taking values in amR-module P is called
bilinear (over R) if for everym € M, n € N, the mapsB(m,-) : N — P and
B(-,n) : M — P are linear ovelR. A tensor producof M andN (overR) is a
pair (T,b) whereT is an R-module,b : M x N — T is bilinear overR and the
following property holds: given an arbitray-module P and an arbitrary bilinear
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mapB : M x N — P over R there exists a unique linear map: T'— P overR
such that the diagram:

MxN-2-p
7
”l o
B
T

commutes. Generalize Lemmas 1.1.11 and 1.1.12 to the ¢afté&kmodules by
proving the uniqueness (up to isomorphisms) and the existehtensor products
over R. The (essentially unique) tensor product betwéénand N over R is
denoted byM ®r N.

EXERCISE1.22. LetR be a (non necessarily commutative) ring with unity. A
right R-moduleis an abelian group/ together with a mag x M — M satisfying
the properties (1)—(4) given in the statement of Exerciteelxcept for the fact that
property (3) is replaced by:

(rory)m = ry(rogm),

forall r1,79 € R, m € M; actually, one usually writesyr rather than-m, so that
the property above becomes a natural “associativity lawiori) = (mry)ry.
If M is an R-module (according to the definition given in the statemdrixer-
cise 1.1) then one sometimes c&ll aleft R-modulg if it is necessary to make the
distinction from rightR-modules clearer.

If M is arightR-module andV is a left R-module thenamap : M x N —
G taking values in an abelian grodpis calledbalancedif B is bilinear as a map
of abelian groups and if:

B(mr,n) = B(m,rn),

forallm € M,n € N,r € R. A tensor producof M andN (over R) is a pair
(T, b) whereT is an abelian groug, : M x N — T is balanced and the following
property holds: given an arbitrary abelian gradpand an arbitrary balanced map
B : M x N — H there exists a unique group homomorphiin 7' — H such
that the diagram:

Mx N2~
7
bl L
B
T

commutes. Generalize the result of Exercise 1.21 by praviaginiqueness (up to
isomorphisms) and the existence of tensor products in tritegt.

Singular homology.

EXeERcISE1.23. Identify explicitly the singular chain grougs,(X) and the
boundary homomorphisms, when X is empty and wherX consists of just one
point. Obtain the singular homology grouffs (.X). What happens more generally
whenX is an arbitrary discrete space?
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EXERCISE 1.24. Show that (1.2.4) defines a continuous mapjn; (hint:
[0,1] x Ap 3 (t,u) — (1 — t)u+tepp1 € Apyq iS a quotient map).

EXERCISE 1.25. Given a family(¢?, 8%);c; of chain complexes then thesx-
ternal direct sumis the chain complex¢, 0) defined by:

& = @% Op = @8;
i€l iel
for all p € Z. Show that for every € Z we obtain an isomorphism:
P Hy(@) — Hy(@)
i€l
whose restriction td,(¢?) is induced by the inclusion @’ in €.

EXERCISE1.26. LetX be a topological space and assume that we have a dis-
joint union X’ = J, ., X where eachX, is a union of arc-connected components
of X (this happens for instance when al)’s are open). For ever} € A, denote
byiy : X, — X the inclusion; for some fixed € Z, consider the homomorphism

¢ : EBHP(XA) — Hp(X)
AEA

whose restriction td7, (X)) equals(iy).. Show thatp is an isomorphismhint:
use Exercise 1.25).

EXERCISE 1.27. Given a topological spac€, show thatHy(X) is free and
that a basis fofH,(X) is obtained by choosing a point of each arc-connected com-
ponent ofX and taking their homology classdir{t: use Exercise 1.26).

EXERCISE1.28. LetX be a non empty topological space.

e show that the augmentation map Sy (X) — Z is surjective;
e show that there exists a homomorphismH,(X) — Z such that:

é(c+ Bo(X)) = €e(c),
forall c € Go(X);
e show that we have a short exact sequence

0 HO(X) inclusion HO(X) L, 7 0
and that such sequence splits;

e conclude from the item above thk (X) = Hy(X) & Z;

e denote by(X;);cr the family of all arc-connected componentsXfand
chooser; € X; for eachi € I. Show that for any fixedy € I, the set
{@; — i, 1 i € I, i # iy} is mapped by the quotient map:

Zo(6(X)) = Ker(e) — Ho(X)

onto a basis off,(X) (hint. use Exercise 1.27);

e conclude from the item above th&k (X)) is free and that its rank equals
the number of arc-connected componentsXominus1. Conclude also

that X is arc-connected if and only Pf?o(X) =0.
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EXERCISE1.29. A chain complex is callednonnegativef ¢, = 0 forp < 0.
Given a nonnegative chain complé&then anaugmentatiorfor € is a homomor-
phisme : €y — Z such thak o 9; = 0. The complex €, ¢) obtained from¢ by
replacingdy with e and€_; = {0} with Z is called theaugmented chain complex
corresponding ta& ande. Assuming that the augmentation majs surjective,
generalize the result of Exercise 1.28 by obtaining a smiitthort exact sequence:

0 — Hy(C, ¢) Ho(¢) -7 —0
wheree is induced bye.

inclusion

ExERcCISE 1.30. Given non negative chain complex&s¢’ with augmenta-
tions e and ¢’ respectively (see Exercise 1.29) then a chain rfiap¢ — ¢’ is
calledaugmentation preservinifj ¢’ o fo = ¢. Show that a chainmap: ¢ — ¢’ is
augmentation preserving iff we obtain a chain nfap(@, €) — (¢, €) by setting
fo1=1d:Z — Zandf, = f, for p # —1. Assuming that both augmentations
ande’ are surjective, show that the map:

f« 1 Ho(€) — Hy(<")
induced byf is an isomorphism iff the map:
fo s Hy(C, ) — Ho(e', )
induced byf is an isomorphism.

ExErRCISE1.31. Letf : X — Y be a continuous map between topological
spaces. Show that the homomorphisfiig), : 6,(X) — &,(Y") define a chain
map fx from &,(X) to &,(Y’). Show thatfy is augmentation preserving (see
Exercise 1.30) when one considers the standard augmergt&tio the singular
chain complexes (see (1.2.2)).

EXERCISE 1.32. Show thahomology classes are compactly supporteel.,
given a topological spac& and a homology class € H,(X) then there exists a
compact subspack C X such thatx belongs to the image of the homomorphism
H,(K) — H,(X) induced by inclusion.

EXERCISE 1.33. Show thahomology relations are compactly supported.,
given a topological spac¥, a subspac® C X and a homology class € H,(Y)
such that the homomorphism induced by inclusiép(Y’) — H,(X) mapsa to
zero, then there exists a compact subspdce X such that the homomorphism
induced by inclusionZ,(Y) — H,(Y U K) also maps to zero.

EXERCISE 1.34. Afiltration for a topological spacé’ is a sequencéX,,),>o
of subspaces ok with X,, C X, for all n; a topological space together with a
given filtration is called diltered spaceGiven filtered spaceX’, Y with filtrations
(Xn)n>0, (Yn)n>o for X andY respectively then a continuous mgp X — Y
is calledfiltration preservingif f(X,) C Y, for all n. Suppose that we are given
filtered spacesX, Y and a filtration preserving map : X — Y. Assume that
every compact subset of is contained in somé&,, and that every compact subset
of Y is contained in som&,,. Show that if (for some fixe@) f|x, : X, — Y,
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induces homology isomorphisni$,(X,,) — H,(Y;) for all » then f induces a
homology isomorphisny, : H,(X) — H,(Y).

EXERCISE1.35. Letf : € — D be a chain map. Show thatff, : ¢, — D,
is an isomorphism for every € Z then(f~!), = (f,)~* defines a chain map
f~':® — ¢. Achain map which is an isomorphism in every dimension itedal
achain isomorphism

EXERCISE 1.36. Let¢ be a chain complex. A chain compleX is called a
subcomplexof ¢ if for eachp € Z, Q; is a subgroup off, and the boundary
homomorphism of’ is the restriction of the boundary homomorphisneof

(@) Show that if¢’ is a subcomplex of then we obtain another chain com-
plex whosep-th dimensional group is the quotieﬂ;/% and the bound-
ary homomorphism is induced by the boundary homomorphisen of

(b) Show that iff : € — © is a chain map then we obtain a subcomplex
of ¢ whosep-th dimensional group i¥er(f,) and a subcomplex dd
whosep-th dimensional group i$m(f,). These complexes are called
respectively thd&erneland theimageof the chain magy’.

(c) Given a chain map : € — ®, show thatf induces a chain isomorphism
betweeng/Ker(f) andIm(f) (see Exercise 1.35).

EXERCISE 1.37. Let€ be a chain complex and 181, D’ be subcomplexes of
¢. Foreveryp € Zset(dnN®'), = D,ND,and(D + D), = D, + D,
Show that® N ®’ and® + ©’ are subcomplexes @f. More generally, for an
arbitrary'® family (97)e; of subcomplexes of we set((,c;D"), = N;e; D}
and (>, @i)p = > ie; D;, for everyp € Z. Show tha),.; D" and}_, ;D"
are subcomplexes df.

EXERCISE 1.38. Letf : € — ® be a chain map and &', ®’ be subcom-
plexes of& and® respectively withf (¢’) ¢ ©’. Consider the chain maps

fle:¢ — D, f:¢—2, f:¢/¢ —2/9

induced byf. Show that if any two of the chain maps above induce isomemsi
in homology (in all dimensions) then also the third one does.

EXERCISE 1.39. Let€ be a free chain complex. Show that the cycle group
Zp(€) is a direct summand ig,, for everyp € Z (hint: observe that the image of
0, is free and use the result of Exercises 1.17 and 1.16).

EXeERCISE 1.40. LetX be a topological space affla hon empty collection
of subspaces ak. Show that

ﬁ S(4) = 6<ﬂAemA)'

AeA

18cor the finicky reader we observe that if the index/Sstempty then the intersectign, . , D’

is not defined whereas the sum),_, D" is defined and equals the zero subcompleg of
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EXERCISE1.41. Letf,g: € — D, h:D — D', 1: ¢ — € be chain maps
and assume thgt andg are chain homotopic. Show théto [ is chain homotopic
to g ol and thath o f is chain homotopic ta o g.

EXERCISE1.42. LetC C R"™ be a convex subset.

(1) Show that” is convex.

(2) If z € int(C), y € C, show that the line segmeft, y[ is contained in
the interior ofC'.

(3) Show thaint(C') is convex.

(4) If x € int(C), y € C, show thatfz,y[ C int(C) (hint: show first that
[z,y[ C O).

(5) Letzy € int(C) andv € R™\ {0} be fixed; consider the ray(t) =
zo + tv, t > 0. Show that-—!(C) is an interval whose left endpoint is
zero; denote the right endpoint of 1(C) by b € 0, +oc]. Show that
if b = +oo thenr(t) € int(C) for all ¢ > 0. Moreover, show that if
b < +o0, thenr(t) € int(C) fort € 10,5, 7(b) € OC andr(t) ¢ C for
t>b.

(6) If Cis bounded and € int(C'), show that the map

T — X

9C >z +— e snt

[l — ol
is a homeomorphism. Show that such homeomorphism extends to
homeomorphism front’ to the closed unit balB".

(7) If int(C) = 0 but C # (), show that there exists an affine subspace
A C R™with C C A and such that the interior @f relatively toA is non
empty.

(8) Show thatint(C) = int(C), 9C = dC. Moreover, assumingt(C) #

0, show thatint(C) = C andd(int(C)) = 9C.

EXERCISE 1.43. LetV be a vector space over a fidkl A family (v;);c; of
vectors inV is calledgeometrically independeiftfor every essentially zero family
(c;)ier Of scalars inK, the equalities:

ZCZ' =0 and ZC@U@ =0,
il iel
imply ¢; =0foralli € I.

e Show that a non empty familfw;);c; in V' is geometrically independent
if and only if there existgy € I such that the familyv; — vi, )icr\(io} 1S
linearly independent.

e Show that a family(v;);c; in V' is geometrically independent if and only
if for every i € I the family (v; — vi, )icn fio} IS linearly independent.

e Show that every family having less than two elements is g&ocady
independent. Show that a pair of points is geometricallepmhdent if
and only if the two points are distinct.

e An affine subspacé’ C V is a translationS + v (v € V) of a vector
subspaces C V; thedimensiondim(P) of P is by definition equal to
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the dimension ofS. Show that a finite family(vy, ..., v,) in V having
p + 1 elements is geometrically independent if and only if ther@o
affine subspac® C V containing{wvy, ..., v, } with dim(P) < p.

EXeERCISE1.44. IfV is a real vector space then a subset V is called an
affine simplejf it is the convex hull of a non empty finite geometrically agukn-
dent family (vo, . ..,v,). We say also that is ap-dimensional simplerr, more
simply, ap-simplex; the vectors;, i = 0, ..., p, are called theerticesof o. Show
that the dimension and the set of vertices of a simplex arédedined, i.e., that
if (vo,...,vp) and(wo,...,w,) are geometrically independent families with the
same convex hub thenp = g and{vy, ..., v,} = {wo, ..., wy} (hint: show that
x € o is a vertex if and only if there is no open line segment thataiosx and is
contained irv).

EXERCISE1.45. LetV be areal vector space. dfis ap-simplex inV having
vertices{vy, ... ,v,} then afaces of ¢ is an affine simplex whose set of vertices
is contained in{vo, ..., v,} (i.e., s is the convex hull of a non empty subset of
{vo,...,vp}). If sis aface ofo buts # o then we calls a proper faceof o. The
boundaryof o, denotedBd(¢), is defined as the union of all the proper faces pf
theinterior of o, denotedinter (o), is defined byinter(c) = ¢ \ Bd(o) (observe
that if o is a zero-dimensional simplex, i.e., a single point, thear(c) = o and
Bd(c) = 0). Show that every affine simplex equals the disjoint union of the
interiors of its faces.

EXeRCISE1.46. Asimplicial complexonV is a setK of affine simplexes on
V' for which the following two properties hold:

(a) if o € K then all the faces of are inK;

(b) if 0,7 € K then either N7 = () or o N 7 is a face of bothr andr.
Show that a sek of affine simplexes of¥ is a simplicial complex if and only if
(a) holds and for every pair of distinct simplexesr € K the interiorsinter (o)
andinter(7) are disjoint. Show also that K is a set of affine simplexes dn for
which (b) holds then the set:

K' = {s:sis aface of some € K}
is a simplicial complex (we call it theimplicial complex spanned by).

Relative homology.

EXERCISE 1.47. Generalize the result of Exercise 1.32 to the casdatiue
homology as follows. Given a pair of topological spa¢&s A) and a homology
classa € H,(X, A) show that there exists a pdiK, K») of compactopological
spaces withK; C X, Ky C A and such thatr belongs to the image of the
homomorphisn¥, (K, K2) — H,(X, A) induced by inclusion.

EXERCISE 1.48. Generalize the result of Exercise 1.33 to the caselof re
ative homology as follows. LetX, A), (Y, B) be pairs of topological spaces
withY ¢ X andB C A. Leta € H,(Y,B) be a homology class and as-
sume thato is mapped to zero by the homomorphidiy (Y, B) — Hp(X, A)
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induced by inclusion. Show that there exist compact subsets- X, Ky C A
with Ko C K; and such thaty is also mapped to zero by the homomorphism
H,(Y,B) — Hy(Y UK, BU K>) induced by inclusion.

EXERCISE 1.49. Generalize the result of Exercise 1.26 to the casdatiue
homology, as follows. Suppose that we have a disjoint unton= | J,., X2,
where eachX, is a union of arc-connected componentsXof(this happens for
instance when alK',’s are open). For each € A, let A, be an arbitrary subset of
Xy and setd = (., Ax. Show that (for fixegp € Z) the homomorphism

(1.17.7) P H,(Xx, A)) — Hy(X, A)
AEA

induced by inclusion is an isomorphism.

EXERCISE 1.50. LetX, (X))aea and(Ay)rca be as in Exercise 1.49. For
fixed \g € A, show that the inclusion

i:(X)\O,A)\O) — (X,A)\O U U X)\>
AENo

induces an isomorphism in homology. Moreover, for fixed Z, prove that the
composite map:

Hp<X,A)\O U U XA) L Hp (X, Axo)

A#£o

induced by inclusion

H,(X,A)

equals projection onto the direct summafigd(X,,, Ay,), when one identifies
H,(X, A) with @, Hp(X, 4) via (1.17.7).

hint: consider the commutative diagram:

Hp(Xpg, Axo) & @ Hp(X, Xy) by Exercise 149 H, (X, Axo UUsn, X)\>

AENo

HP(XAO ) AAO)

1R

in which all arrows are induced by inclusion.

EXERCISE 1.51 (the serpent lemma). Consider the commutative diagrfam
abelian groups and homomorphisms given below:

(1.17.8) 0 A—"=B—">C 0
|
fll f2 lfs
\
0 Al —= B —= (' 0

[en T
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Assume that the rows of (1.17.8) are exact. Show that thesésexexact sequence
(called theserpent sequene

olKer(fy) T|Ker(fg)

0 — Ker(f1) Ker(f2) Ker(f3) —

— Coker(f1) —Z— Coker(fy) — Coker(f3) — 0

wheres and7 are induced by andr respectively®. State and prove the naturality
of such sequencdipnt: think of the columns of (1.17.8) as being chain complexes
having at most two non zero groups. Then (1.17.8) may be titoag a short
exact sequence of chain complexes and chain maps. Applyigheag lemma
(Lemma 1.3.4) to such sequence). The homomorphism(f;3) — Coker(f1)
appearing in the serpent sequence is calledtmmecting homomorphism

ExERcISE 1.52. We call(X, A, B) atriple of topological spaces iX is a
topological space an® ¢ A C X;wecallf: (X,A,B) — (X', A, B") amap
of triplesif f : X — X’ is a continuous map anf{A) c A’, f(B) c B'. The
goal of this exercise is to produce a long exact sequencenmlogy associated to
every triple(X, A, B) of topological spaces.

e Consider (for fixegh € Z) the commutative diagram:

0——= 6,(B) -4~ &,(B) 0 0

L |

0—=6p(A4) —= Gp(X) —= 6,(X, 4) —=0

where the unlabelled arrows are induced by inclusion. Afipdyserpent
Lemma (Exercise 1.51) to it and conclude that there existwe gxact
sequence of chain complexes:

0 —6(A,B) — 6(X,B) —6(X,A) —0

with arrows induced by inclusion.
e Apply the zig-zag lemma (Lemma 1.3.4) to the sequence addaatove
to produce a long exact sequence:

- 2 Hy(A, B) — Hy(X, B) — Hy(X, A) = Hy_1(A,B) — ---
where unlabelled arrows are induced by inclusion. The sempiabove is
known as thdong exact homology sequencgthe triple (X, A, B); the
homomorphismo, is called theconnecting homomorphismState and
prove the naturality of the long exact homology sequencetaple with
respect to maps of triples: (X, A, B) — (X', A", B').

e Show that the long exact homology sequence of a t(ifileA, 0)) is equal
to the long exact homology sequence of the pair A).

19The co-kernelof a homomorphisnmyf : G — H, denotedCoker(f), is defined to be the
quotientH /Im( f).
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e Considering the inclusioiX, A,0) — (X, A, B) and the naturality of
the long exact homology sequence of a triple, show that theexing
homomorphism:

Hy(X, A) -2 H, (A, B)

appearing in the long exact homology sequence of the tfi§leA, B)
equals the composition:

Hy(X, A) -2~ H, 1(A) — H,_1(A, B)

of the connecting homomorphisél appearing in the long exact homol-
ogy sequence of the paiX, A) with the homomorphism induced by the
inclusion ofAin (A, B).

Rudiments of homotopy theory.

EXERCISE1.53. LetX, Y be topological spaces such thais homeomorphic
to a convex subset of some normed vector space. Show thatvanyontinuous
mapsf,g : X — Y are homotopic relatively to the sét € X : f(z) = g(x)}).

ExXERCISE1.54. LetX be a topological spac&; a normed real vector space
andf,g: X — Y \ {0} continuous maps such that:

[f (@) = g(@)[| < [[£ ()],
for all x € X. Show that:
H(s,z)=(1—3s)f(x)+sg(z), s€]0,1], z € X,
defines a homotopy fronfi: X — Y \ {0} tog: X — Y \ {0}.

EXERCISEL.55. IfT,S : R — R™ are linear isomorphisms whose determi-
nants have the same sign, show that the iiap$R™, R"\{0}) — (R",R™\{0})
andS : (R",R"\ {0}) — (R™,R™\ {0}) are homotopickint: T and.S can be
connected by a continuous curve in the general linear groli'h

EXERCISE 1.56. LetX be a convex subset of a normed vector space. Show
that a subset C X is aretract ofX if and only if S is a strong deformation retract
of X.

EXERCISEL1.57. Leto : [0,1] — [0, 1] be a continuous map. Given topologi-
cal spacesX, Y and a homotopy/ : X x [0,1] — Y we define theeparameteri-
zationof H by o by:

Hy(z,t) = H(z,0(t)),
forallz € X, t € [0,1].

e Show that ifo(0) = 0 ando(1) = 1 then the magH, is homotopié® to
H relatively to X x {0, 1} (hint: look atH (z, (1 — s)t + so(t))).

e Show that ifo(0) = o(1) = to € [0, 1] then H, is homotopic relatively
to X x {0, 1} to the constant homotopy given Ky, t) — H(z,tg).

20ves, we mean a homotopy of homotopies!
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o If H H' H": Xx|[0,1] — Y are homotopies witlt{, = H|,, H| = H{,
conclude from the items above thd - H') - H” is homotopic relatively
toX x{0,1}toH - (H'- H").

e Conclude from the items above that- H—!' and H~! - H are both ho-
motopic relatively taX x {0, 1} to constant homotopies.

o If HY H' : X x [0,1] — Y are the constant homotopies defined by
H%(z,t) = H(x,0), H'(z,t) = H(x,1) thenH" - H andH - H' are
both homotopic relatively t& x {0, 1} to the homotopy .

o If H K,H : X x[0,1] — Y are homotopies such thaf; = H{ and
such thatd andK are homotopic relatively t& x {0, 1} then (K, = H,
and)H - H' is homotopic toK - H' relatively toX x {0, 1}. Similarly, if
H, = Ky andK is homotopic taK” relatively toX x {0,1} thenH - K
andH - K’ are homotopic relatively t& x {0,1}.

EXERCISE 1.58. A non empty topological spac€ is calledcontractibleif
the identity of X is homotopic to some constant map X — X. Show that the
following are equivalent:

e X is contractible;
e X has the same homotopy type of a one point space.

Show that a contractible space is arc-connected; conchateirt a contractible
spaceX the identity is homotopic teveryconstant map : X — X.
A computation of the singular homology of spheres and the tass.

EXERCISE 1.59. LetR : R"*! — R"*! denote the reflection map (1.8.5).
Show that the homomorphisms:

R* : Hn+1 (En+1,sn) — n+1(§n+lvsn)7
Ry Hppr (R R™ {0}) — Hypar (R™TL R {0}),
are both equal to minus the identityirit: use Example 1.8.2).

ExXERCISE 1.60. The goal of this exercise is to compute the homologhef t
Klein bottle by an argument similar to the one used in Exanip83. Denote
by K theKlein bottlethat is obtained as the quotient of the squiard]? by the
equivalence relation- spanned byx,0) ~ (z,1) and (0,y) ~ (1,1 — y) for
all x,y € [0,1]; we denote by : [0,1]*> — K the quotient map. Consider the
following objects:

o A=q(([0,5[U]3.1]) x[0.1]), C = q([%, 4] x [0,1]);
e D; =q({z;} x[0,1]),i=0,1,2,3, wherezg = 1, z; = 0, z, = 1 and
3

T3 =y,
e D= DyUDs;
e the reflection : [0,1]?> — [0, 1]? defined byr(z,y) = (1 — z,y).

Prove the following:
(b) D; is homeomorphic to a circle for all
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(&) The circlesD, and D3 are strong deformation retracts of bothand C;
Dy is a strong deformation retract 6f, D, is a strong deformation retract
of A andD is a strong deformation retract 6f\ Dj.

(b) r defines by passage to the quotient a homeomorpliisn’ — K; R
leavesC, A, D1 andD invariant and it fixesD.

() R, : Hi(Dy) — Hi(D;) equals minus the identity;

(d) Repeat the steps used in Example 1.8.3 after observaiglite can use
the commutative diagram (1.8.8) with replaced byK'; using item (c)
conclude that the homomorphishiy (K, A) = Z — 7Z = Hyi(A) is
multiplication by2 (instead of zero).

(e) Prove thatdy(K) = 7Z, H|(K) = Z & Zy andHy(K) = 0 for p > 2.

Local homology.

EXERCISE 1.61 (invariance of dimension). Show that if a non empty open
subset ofR™ is homeomorphic to an open subsefRif thenm = n.

EXERCISE 1.62 (invariance of the boundary). Show thatif U — Visa
homeomorphism between open subsets of the closed hak-kfyathen:

h(U NBd(H")) = V N Bd(H").

EXERCISE 1.63. Ann-dimensional topological manifold with boundais/a
non empty Hausdorff second countable topological sgdceuch that each point
in M has an open neighborhood M that is homeomorphic to an open subset
of the closed half-spacd™. Theinterior of M, denotedinter(M), is the set of
points of M that admit an open neighborhood that is homeomorphic to an op
subset ofR"; the other points of\/ constitute theboundaryof M, which we
denoté! by Bd(M). If the boundary of\/ is empty we say that/ is atopological
manifold without boundaryor simply atopological manifolf. Whenn = 0, an
n-dimensional topological manifold with boundary is simglgiscrete topological
spaceM and actuallythere can be no boundary

Let M be ann-dimensional topological manifold with boundary.

e If U C M is a non empty open subset show thats also ann-dimen-
sional topological manifold with boundary and that:

inter(U) = inter(M)NU, Bd(U)=Bd(M)NU.

21one should be careful to distinguish between the notionstefior and boundary just defined
for manifolds and the usual notions of interior and boundzrg subset of a topological space. If
M is a subset of a larger topological spa€ethen it is indeed quite possible that the interioridgf
(respectively, the boundary @ff) as a manifold do not coincide with the interior bf (respectively,
the boundary of\f) as a subset of the topological spakefor instance, ifX = M then the interior
of M (respectively, the boundary @f) as a subset ok would always be the entire manifold (re-
spectively, the empty set). Unfortunately, this messy teotogy is quite useful in the literature. We
somewhat attempt to reduce the confusion by using the follpwotation: the “manifold” interior
and boundary of\f will be denoted respectively biyjiter (M) andBd (A1), while the “topological”
interior and boundary o/ will be denoted respectively biyt(A) andoM.
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e If N is atopological space artd: M — N is a homeomorphism show
that V is also am-dimensional topological manifold with boundary and
thath takes boundary to boundary and interior to interior, i.e.:

h(inter(M)) = inter(N), h(Bd(M)) = Bd(N).

e Show that the local homology groups of at an interior pointr €
inter(M) are given by:

0, n,

Hy (M, M\ {2}) = {z, e
if z € Bd(M) is a boundary point, show that, (M, M \ {z}) = 0 for
allp € Z.

e Show that thelimensiondim (M) of M is well-defined, i.e., that if/ is
also anm-dimensional topological manifold with boundary then= n.

e Show thatH" is ann-dimensional topological manifold with boundary
whose boundary is:

Bd(H") = {z = (z1,...,3,) € H" : 2, = 0},

i.e., the notatioBd(H™) used so far is indeed compatible with the nota-
tion for a boundary of a manifold just introduced.
e Conclude from the items above that4f: U — U is an arbitrary homeo-

morphism between an open sub&et- M and an open subsét c H”
then:

(U Ninter(M)) = {z = (z1,...,2n) € U:x, > 0},
e(UNBA(M)) = {z = (z1,...,3,) € U:xz, =0}.

e Show that the interior of\/ is an open dense subset f and that the
boundary ofM is either empty or arfn — 1)-dimensional topological
manifold (without boundary).

Orientation on manifolds.

EXERCISE1.64. LetX be atopological space. pre-sheaf of abelian groups
on X is a rule’PS that associates to each open EetC X an abelian group
PS(U) and to each pair of open sdi5V C X with V' C U a homomorphism
puv : PS(U) — PS(V) such that given open seltE € V C U C X we have a
commutative diagram:

PS(U)

pUV PUW

PS(V)

PS(W)

PVW

The homomorphismgyy are usually called theestriction mapsof the pre-sheaf
‘PS. Show that the following are examples of pre-sheaves:
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X an arbitrary topological space,
PS(U) = the set of continuous real-valued mapslon

andpyv (f) = fly forall f € PS(U).
X a differentiable manifold,

PS(U) = the set of smooth real-valued mapsn

andpyv (f) = fly forall f € PS(U).
X a differentiable manifold,

PS(U) = the set of smooth differentiatforms onU,,

andppy (w) = wly forallw € PS(U).
X =0
PS(U) = the set of holomorphic complex-valued mapsion

andpyv (f) = fly forall f € PS(U).
e X an arbitrary topological spac&; an arbitrary fixed abelian group,
PS(U) = G for all U andpyry equals the identity of for all U, V.

EXERCISE1.65. LetX be atopological space. Recall thdiasis of open sets
for X is a collection’8 of open subsets ok such that every open subset &f
can be written as a union of elements®f Given a setX and a collectiort of
subsets ofX show that the following conditions are equivalent:

e there exists a (automatically unique) topology fothavingB as a basis
of open sets;

o X = Upey B and for everyBy, B, € B and everyr € By N By there
existsC € B withz € C C B N Bs.

EXERCISE 1.66. LetX be a topological space and IBtS be a pre-sheaf of
abelian groups orX. Thegroup of germsS, of the pre-sheafPS at the point
x € X is defined as follows. Consider the quotient:

Se= | PS(U)/~,

U an open
neighborhood of

where the equivalence relatienis defined by declaring thatc PS(U) is equiva-
lenttog € PS(V) if and only if pyw (f) = pyvw (g) for some open neighborhood
W of x contained inJ N'V. We define an abelian group structureSipby taking
the sum of the class of € PS(U) with the class ofy € PS(V) to be the class of
puw (f) + pvw(g) € PS(W), for some open neighborhoddl of = contained in
UnV.If fePSU)andz € U then we denote bjf], the class off in S,; we
call [f], thegermof f atz.

e Check that all the construction above actually makes sense.

e LetS be the disjoint union of the abelian groufis, = € X. Consider the
collection®B consisting of the set§|f], : « € U}, whereU runs over all
the open subsets df and f runs throughPS(U). Show that there exists
a (unique) topology fosS having®B as a basis of open sets.
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The topological spacs§ is called thesheaf of germsorresponding to the pre-sheaf
PS.

EXERCISE1.67. LetM be a topological manifold. Show that the map:
O(M)>a+— —ac O(M),

is a homeomorphism. Conclude thatrif: M — O(M) is an orientation fo\/
then also(—7)(z) = —7(z), x € M, defines an orientation fav/.

EXERCISE1.68. LetM, N be differentiable manifolds of the same dimension
and letf : M — N be a diffeomorphism. Let : M — O(M), 7" : N —
O(N) be homological orientations fa¥/ and N respectively and let, 7 be the
differentiable orientations that correspond respedtitelr and7’. Show thatf
is a positively oriented (respectively, negatively oreehthomeomorphism in the
sense of Definition 1.10.13 if and only jf is positively oriented respectively
negatively oriented) in the differentiable sense., if and only if the isomorphism
dfy : ToM — Ty, N takesT, to %}(m) (respectively, takes, to —%}(m)) for every
x € M (hint: use local charts and Corollary 1.10.19).

ExXERCISE 1.69 (perturbation of identity). Recall thatcantractionis a map
between metric spaces that is Lipschitz continuous withpsdhitz constant less
than1l. Show that ifg : R® — RR"™ is a contraction then the mdp: R" — R"
defined byh(x) = = + g(z) is a (global) homeomorphism @™ (hint: for fixed
y € R", solving the equatioh(xz) = y is equivalent to find a fixed point for the
contractionz — y — g(x)).

EXERCISEL1.70. Lety : S™\ {n} — R™ denote the stereographic projection
from the north polen = ¢,,.1 onto the hyper-plan®™ x {0} containing the equator
of S™. By identifying the tangent spacg,S™ at the south pole wittlR™ via the
projection onto the first coordinates, show that the differentégp, : 7,5™ — R"
equals multiplication by%. Conclude that, ifS™ is endowed with the outward
pointing orientation, thew is a positive chart if and only if, is odd.

ExXERCISE 1.71. Use the commutative diagram (in which all arrows are in
duced by inclusion):

H,(R™,R™\ B")

R

H,(B",5"1) —— H,(R",R"\ {v})
and Remark 1.10.20 to prove the following factaife H,(B", S"~1) is mapped
to 71" (0) by the homomorphism:

H,(B",8" ') — H,(R",R"\ {0})
induced by inclusion then for everye B™ the homomorphism:

H,(B",8" ') — H,(R",R"\ {v})

induced by inclusion maps to 7"} (v).
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EXERCISE1.72. LetM be ann-dimensional topological manifold with non
empty boundary andiV an open subset af/ with Bd(W) # 0. Assume that
U c W is open and thate € H,(M,M \ inter(U)) is the image of3 €
H, (W, W \ inter(U)) under the homomorphism induced by inclusion. Recall-
ing the usual identifications @ (inter (1)) (respectively, o0 (Bd(W))) with a
subset of0 (inter(M)) (respectively, with a subset 67(Bd(M))), prove that:

Oi(a; U, M) = Os(B; U, W),  Op(a;U, M) = Op(3; U, W).
Degree theory.

EXERCISEL.73. Letf : X — Y be a continuous map. Show that:

e if fisproperand/(X)CY’ CcYthenf: X — Yis proper;
o if f(X)CY',Y'isclosediny andf : X — Y is proper thery : X —

Y is proper;

o if X’ C Xisclosed andf : X — Y is proper thenf|x : X' — Y is
proper;

o foranyA CY,if f: X — Y is proper thenf |14 : f1(4) — Ais
proper;

o if f: X -Yandg:Y — Z are properthensoigo f : X — Z.

EXERCISEL.74. If f : X — Y andf’ : X' — Y’ are proper then so is
fxfl:XxX —-YxY.

EXERCISE1.75. LetH : X x [0,1] — X be ahomotopy with compact sup-
port, i.e., there exists a compact subgétC X such thatd (¢,z) = « for all
t€0,1]and allz € X \ K. Show that ifX is Hausdorff therf is a proper map.

EXERCISE1.76. Assume thak', Y are Hausdorff and that satisfies either
one of the following:

e Y isfirst countable, i.e., every point has a countable fundaahsystem
of neighborhoods;
e Y is locally compact.

Then every proper map: X — Y is closed.

EXERCISE1.77. Letn > 1 be fixed and denote b{5™), and(S™). respec-
tively the northern and the southern hemisphereS™gfi.e.:

(S™)n = {a: € S" i xp > 0}. (S™)s = {:U €S ixp < O}.

Let f : S™ — S™ be a continuous map that presernigg'),, and (S™),, i.e.,
F((S™n) C (S™)n and f((S™)s) C (S™)n; in particular, f must preserve the
equatorS™t = {z € 5" : w41 = 0} of S™. If all spheres are endowed
with their canonical orientation, show that the degreg efjuals the degree of its
restriction f|g.—1 : "1 — S"~! to the equator.
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hint. use Example 1.11.6 and the commutative diagram:

by excision
and retraction

o

Hy(S™) —== Hy (8", (8")s) == Hy (8™, S"71) ——= H,\_y(S™71)

f*l/ f*l \Lf* lf*
H,,(S") ——= H, (8™, (S™)s) =<=— H, ((S")n, S1) —2= H,,_1(S™)
by excision

and retraction
Homology with general coefficients.
EXERCISEL.78. LetK be an arbitrary field anél a chain complex oK-vector

spaces. Assume that evety is finite-dimensional and thatt, # 0 for at most a
finite number of indicep € Z. Given aK-linear chain magf : € — € show that:

Z(_l)p tr(fp) = Z(_l)p tr(fa)ps

PEZ pEZ
where(f.), : Hy(€) — H,(€) is theK-linear map induced in homology hiyand
tr(7") denotes théraceof an endomorphisrii’ of a finite dimensional vector space
(hint: use the equalities:

tr(fu)p = tr(fp’Zp(G)) - tr(fp’Bp(C))v

(1179) tr(fp_1|Bp71(¢)) == tr(fp) — tr(fp|Zp(€)) .
The equality (1.17.9) follows from the commutative diagram

Q::U/Zp(e:) - p/Zp(Q:)

gl lg

Bp1(€) —— B,-1(¢)

where the horizontal arrows are induced jwnd the vertical arrows are induced
by 0).

EXERCISEL.79. Given afield, consider the tensor product of abelian groups
Q ® K endowed with the standaiif-vector space structure. Show thidink (Q ®
K) = 1if K has characteristic zero and tlfatx K = 0 otherwise.

EXeERCISE1.80. LetV be a (possibly infinite dimensional) vector space over
afieldK and letV, C V4 C V be any two subspaces bf. Show that:

dim(V) = dim(V/V7) + dim(V3) + dim(V; /V3).
Quotient topology and attachment spaces.

EXERCISE1.81. Given atopological spacé, asety andamag : X — Y,
show that there exists a unique topologyin Y such thaty : X — (Y, 7,) is a
quotient map; we calt, the quotient topologyn Y corresponding tq. Show that
if 7 is a topology forY” that makes; : X — (Y, 7) continuous them, is finer (or
stronge) thanr, i.e., 7, D 7.
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EXERCISE 1.82. Show that : X — Y is a quotient map if and only if the
following condition hold:F C Y is closed if and only if;~1(F) C X is closed.

EXERCISE 1.83. Show thaty : X — Y is a quotient map iff the following
three conditions hold:
e ¢: X — ¢(X) is aquotient map;
e ¢(X) is both open and closed ij;
e Y\ ¢(X) is discrete.

EXERCISE1.84. Ifg : X — Y is bijective therg is a quotient map iffy is a
homeomorphism.

EXERcCISE 1.85. Show that the composition of quotient maps is a qutien
map.

ExXERCISE 1.86. Show the converse of Proposition 1.14.25if X — Y
is a continuous map and if the continuity gfimplies the continuity off in the
commutative diagram (1.14.1) (for every topological spacend every magf :
X — Z) theng is a quotient map.

EXERCISE 1.87. In the commutative diagram (1.14.1), show that #nd f
are continuous and is a quotient map theyfi is a quotient map; conclude that, if
¢ is a quotient map, thefi is a quotient map ifff is a quotient map.

EXERCISE1.88. Givenamap : X — Y and subset$, So C X, show that
q(S1 N S2) = q(S1) Nq(Ss) if either Sy or S is saturated.

EXERCISE1.89. LetX be a T, topological space. Show that the following are
equivalent:

e given two disjoint closed subsefs G C X, there exists a continuous
map¢ : X — R with ¢|r = 0 andg|g = 0;

e every continuous map : ' — R defined in a closed subsét ¢ X
admits a continuoudR-valued) extension;

o X isTy.

EXERCISE 1.90. Show that iff : X — Y is a continuous, closed surjective
map and ifX is T, then alsaY” is T4 (hint: given disjoint closed subsef§ G C Y,
choose disjoint open neighborhootisand V' of ¢~ (F) andq~!(G) respectively
onX;lookatY \ ¢q(X \U),Y \ qg(X \V)).

EXERCISE1.91. Letg : X — Y be a surjective continuous map. Prove the
following.

(1) ¢ is a quotient map ify maps saturated open (resp., closed) subseks of
to open (resp., closed) subsetsyaf

(2) If ¢ is a quotient map theqis an open (resp., closed) map iff the satura-
tion of open (resp., closed) subsetsXis open (resp., closed) X .

(3) If ¢ is either an open map or a closed map thema quotient map.

(4) If X is compact and” is Hausdorff thery is a closed map and therefore
a quotient map.
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EXERCISE 1.92. If a groupG acts on a topological spacé by homeomor-
phisms then the quotient mgp X — X/G is open.

ExXERCISE1.93. Given a quotient map: X — Y and a subsef C X, show
thatq|s : S — ¢(S) is a quotient map iff the following property holds: given a
subsetA C S that is open (resp., closed) $ and saturated with respect it
then there exists an open (resp., a closed) sulbsiet X, saturated with respect to
g,suchthatd = A'N S.

EXERCISE 1.94. Given a family( X;);c; of topological spaces, denote B
their external topological sum. Prove the following:

e for everyi € I the mapz — (i,x) is a homeomorphism fronX; onto
the subspacé:} x X; of X;
e X is the internal topological sum of the subspa¢8sx X;.
Moreover, if a topological spacé is the internal topological sum of a family
(X;)ics of subspaces oK and if X’ denotes the external topological sum of the
family (X;);c; then we have a homeomorphism froxi to X that carrieqs, =) to
x foreveryi € I,z € X;.

EXERCISE1.95. Assume thaX is the disjoint union of a family of subspaces
(X;)ier- If for every topological spac¥ and every magf : X — Y we have

fiscontinuous <= f|x, is continuous for every € I
thenX is the topological sum of the spac&s.

EXERCISE1.96. Show that a unioX = |J,.; X; is coherent iff the following
property holds: given a subsét C X, if F N X; is closed inX; for everyi € I
thenF'is closed inX.

EXERCISE1.97. Show that the unioX = |
ing situations:
(a) the interiors of the set’; cover.X;
(b) I isfinite and eaclX; is closed;
(¢) (Xi)ier is alocally finite family of closed subsets (recall thiaf; );cs is
locally finite if every point of X has a neighborhood that intercep{s
for at most a finite number of indicé.

se1 Xi is coherent in the follow-

EXERCISEL.98. If X = J;; X, consider the canonical map

q: Z X, — X
iel
such thay|x; is the inclusion ofX; in X for everyi € 1. Show thatX = J,.; X;
is a coherent union iff is a quotient map.

EXERCISE 1.99. LetX be a set and leX = [ J,.; X; be a covering ofX.
Assume that, for every € I, we are given a topology; for the setX; such that
the following conditions are satisfied:

e for everyi, j € I, X; N X; inherits the same topology froX;, 7;) and
from (X, 75);
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e foreveryi,j € I, X; N X is closed in both( X;, 7;) and(X;, 7).
Let 7 be the topology forX that makes the canonical projection

q: Z(Xi,n) — X
el

a quotient map, i.e£ C X is closed in(X, 7) iff F N Xj is closed in(X;, ;) for
everyi € I. Show that:

e 7, is precisely the topology thaX; inherits from(X, 7) and everyX; is

closed in(X, 7).

e X = J;c; X is a coherent union.
Repeat the exercise stated above with the word “closed’acepl by the word
“open” throughout.

EXERCISE 1.100. LetX = [J,.; A; be a coherent union. For eacte I let
B; be an open set id; and assume that for every; € I we haveB; N A; C B;.
Show that the union of thé;’s is coherent lfint:prove that the topological sum
> icr Bi is a saturated open set jn,_; A; with respect to the canonical map
q: Y ;er Ai — X, use Exercise 1.98).

EXERCISE1.101. Show thatifX = |J,.; X; is a coherent union and # is a
locally compact Hausdorff space then also the unioxx Z = | J,.;(X; x Z) is
coherent.

EXERCISE 1.102. LetX = (J,.; X; be a coherent union and let for each
ie€l,H;: X; x[0,1] — Y be a continuous map. Assume that for everye I
the mapsd; and H; agree or(X; N X;) x [0, 1]. Show that there exists a (unique)
continuous mag : X x [0,1] — Y such thatH | x,.(o,1) = H; foralli € I.

EXERCISE 1.103. Show that a disjoint uniol = (J,.; X; is coherent iffX
is the topological sum of the spac&s.

EXERCISE 1.104. Show the converse of Proposition 1.14.9Xit= (J;c; X;
and if for every topological spacde and every mag : X — Y the condition

fiscontinuous <= f|x, is continuous for every € I
holds thenX = [ J,.; X; is a coherent union.

EXERCISE 1.105. If X = |J;c; Xi, Y = ;¢ Y: are coherent unions and
q: X — Yisamap withg(X;) C Y; and such thag|x, : X; — Y; is a quotient
map for everyi € I theng is a quotient map.

EXERCISEL.106. Ifg : X — Y isaquotient surjective map aid = J,.; X;
is a coherent union theri = | J,.; ¢(X;) is a coherent union.

EXERCISE1.107. LetV be areal vector space and Igtbe a simplicial com-
plex in V. Consider each affine simplexc K endowed with the topology it in-
herits from any finite dimensional subspacel/otontainings (finite dimensional
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real vector spaces have a canonical topology, which is ediby any norm). Show

that the set:
Kl=Je

ceK
admits a unique topology that makes the union above cohéFantresulting topo-
logical space is called theolyhedronof the simplicial complex¥. If X is a topo-
logical space then a homeomorphigm X — |K| onto the polyhedron of some
simplicial complexX is called atriangulation for X ; if X admits a triangulation
then we say thak is triangulable.

EXERCISE 1.108. LetX, Y be topological spacesantd: A ¢ X — Y a
continuous map. Show that every open (respectively, c)osgaset ofX disjoint
from A is mapped homeomorphically onto an open (respectivelgecpsubset of
X Uy Y via the canonical projectioX +Y — X U Y.

EXERCISE 1.109. The goal of this exercise is to prove thatif S"~1 —
S57—1is a homeomorphism then the attachment spactel, B" is homeomorphic
to the spheres™.

(a) Show that every homeomorphisn S~ — S"~! extends to a home-
omorphism fromB" to B" (hint: the ball is the cone of the sphere!).

(b) Leth : B" — B" be a homeomorphism that extends! and con-
sider the homeomorphism froB" + B" to itself and gives the identity
on the first ball and» on the second. Show that the latter homeomor-
phism induces a homeomorphism frd@n' U, B" to B" U; B", where
i: 8" 1 — B"is the inclusion.

(c) Conclude the proof by showing thBt" U; B" is homeomorphic t&™.

EXERCISE 1.110. Show that the attachment spaceJ; Y is the coherent
union of the images ok andY” by the quotient magX +Y — X Uy Y.

ExercIse1.111. LetX, Y be topological spaces antl X’ C X subspaces
of X with A C X’. Given a continuous map: A — Y, denote byy: X +Y —
X Uy Y the canonical quotient map.

e If X'is closed inX, show tha restricts to a quotient map: X' +Y —

X' Uy Y, when X’ Uy Y is considered with the topology induced by
X Uy Y (hint: X’ +Y is a saturated closed subsetdf+ Y).

e Generalize the item above to the case thiats not necessarily closed in
X (hint: if F is closed inX’, F; is closed inY’, F; + F; is saturated and
F is a closed subset of with £} = F N X' thenF + F, is saturated;
use Exercise 1.93).

e If X' is a strong deformation retract &f, show thatX’ U; Y is a strong
deformation retract oK U; Y (the items above showed th&t U; Y is
indeed a subspace &f Uy Y'!).

EXERCISE1.112. LetX, Y be topological spaceg,: A — Y a continuous
map defined on a subspacefc X and A’ an open subset of contained inA.
Show that the quotient map: X +Y — X U;Y restricted ta X \ A') +Y is still
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a quotient map ont& Uy Y. Obtain a homeomorphism frofk \ A’) Y

to X Uf Y.

Uf\(A\A/)

EXERCISE1.113. Show that the quotient map X +Y — X U, Y mapsY
homeomorphically ontg(Y") (even if A is not closed inX).

EXERCISE 1.114. Show thatiff : A — f(A) C Y is a quotient map then
q: X+Y — X U; Y restricts to a quotient magy : X — ¢(X). Conclude
thatif f : A — f(A) is a homeomorphism then algox : X — ¢(X) is a
homeomorphism.

EXeERcCISE 1.115. Consider a topological sum = ), _; X; of topological
spacesX;. Show that the map:

X % [0,1] 3 ((@)ier,t) — (i) ,o; € > (Xi x [0,1])
icl
induces a homeomorphism from the cafig to the topological sun _,_; Cx,.

ExXERCISE1.116. LetX, Y be topological spaces arfd: X — Y a continu-
ous map. Consider the commutative diagram:

(X x[0,1) +Y
/ \
Cx +Y My
| l
C'XUfY ........................ e >Cf

where the unlabelled arrows are the canonical quotient m&pew that the dot-
ted arrow defines a homeomorphism from the attachment spgoe, Y to the
mapping con&’’; that fixesY .

EXERCISE 1.117. Generalize Lemma 1.14.21 as follows. Consider alfyami
(vi)ier of positive integers and lef : >, ; Svi—l Y be a continuous map
defined in the topological sum of the sphef#s~!, taking values in a topological
spaceY’. Show that the mapping coiig; is homeomorphic to the attachment space
S ier B Uy Y by a homeomorphism that fix@s (hint: use Exercise 1.115).

CW-complexes.

EXERCISE1.118. If X is a CW-complex ang : BY — X is a characteristic
map for an opep-cell e € & then f maps the unit spher§?~! ontoé (hint: if f
maps some: € SP~! to a point ofe then f(x) = f(y) for somey € BP. Choose
a sequencézy,),>1 in B? with z,, — x; conclude thaff (z,,) — f(y) and obtain

a contradiction from the continuity Oiff]Bp)_l e — BP).

_Exercise1.119. Forp > 1, construct explicitly a continuous surjective map
q : BY — S that is constant on the sphe$é—! ¢ B” and that maps the open ball
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BP homeomorphically ont&? \ ¢(SP~1) (hint: takeq|g» to be the composition of
the mapB? > z — € RR? with the inverse of the stereographic projection

SPA\ {n} — RP).

EXERCISE 1.120. Show that ifX is a CW-complex having dimension <
+oo then every open-celle € € is an open subset &f (hint: check thatne’ = ()
forall ¢/ € € with ¢’ # e).

EXERCISE1.121. LetX be a CW-complex and lef C X be a subset such
that F'Ne has at most one point for evegy= &. Show thatF is closed and discrete
(hint: use the Weak-topology property &f to conclude that every subset Bfis
closed inX).

EXERCISE1.122. LetX be a CW-complex and l&f ¢ X be a subset. Show
that the following conditions are equivalent:

e Y is a subcomplex ok;
o for every open celt of X,if enNY # (thene C Y.

T
1—{|]|

EXERCISE 1.123. LetX be a CW-complex and leK ¢ X be a compact
subset. Show thak intercepts at most a finite number of open cellsXaf Con-
clude thatK is contained in a finite subcomplex &f (hint: let F' ¢ K contain
precisely one point from each open cell¥fthat interceptds. Use the result of
Exercise 1.121 to conclude thAtis compact, discrete and hence finite).

EXERCISE 1.124. Show that the polyhedron of a simplicial compléxcan
be given the structure of a CW-complex whose open cells aréntikriors of the
affine simplexes belonging t&. Conclude that also every triangulable space can
be made into a CW-complex.

ExERCISE1.125. Given a topological space (respectively, a paifX, A) of
topological spaces), we define theh Betti numbeiof X (respectively, of X, A))
to be the Betti number of the abelian grolp(X) (respectively, the Betti number
of the abelian groug, (X, A)); we denote by3,(X) the p-th Betti number ofX
(respectively, bys,(X, A) the p-th Betti number of X, A)). If H,(X) is finitely
generated for every and H, (X)) = 0 for p sufficiently large, we define theuler
characteristicy (X) of X to be the integer number:

X(X) = 3 (-1)PB,(X);
PEZ
similarly, one can define the Euler characteristic{, A) of a pair(X, A) provided
that H, (X, A) is finitely generated for evenyand zero fop sufficiently large.
Compute the Euler characteristic of the sphgfe of the torusT = S' x S!
and of the Klein bottle (see Exercise 1.60).

Homology of CW-complexes.

EXERCISE 1.126. Show that equalities (1.16.12) (or, equivalently1§.13))
imply (1.16.11), (1.16.10) and (1.16.9). More precisedy,(I5,),>0 and (£p)p>0
be sequences iN U {+oo}.



EXERCISES FOR CHAPTER 1 129

e Assume the existence of a sequefgg,>o in IN U {400} such that:
(11710) ko = Bo + qo, Rp zﬂp'i‘Qp""Qp—h p=> 1
Show that, ifs, < +ooforp =0, ...,k then:
(1.17.11) By —Br—1+ -+ (=1 By < kg — kg1 + -+ + (= 1) ko.
e Assume that for some > 0 we have thak, < +ocoforp =0,...,rand
that (1.17.11) is satisfied far= 0, ..., r. Show that there exists (finite)
natural numbersgy, ..., ¢, such that (1.17.10) is satisfied fpr < r.
Conclude thats, < x, forp=0,...,r.
e Assume thak, < +oo for all p and thatx, = 0 for p sufficiently large.
Assuming that (1.17.11) is satisfied for alshow that:
+oo +oo

D VB = (1)

p=0 p=0






CHAPTER 2

Morse Theory on Compact Manifolds

2.1. Critical Points and Morse Functions

If f:U Cc R® — R is a smooth map on an open sub&etC R" then the
Hessiarof f at a pointx is the symmetric bilinear magess f, : R xR" — R that
is canonically identified with the second order differentigdf), : R" — R™".

If we replaceU by an arbitrary differentiable manifold/, then one cannot give
a canonical definition for the Hessian ffat an arbitrary point: € M; namely,
the Hessian of a function in an open subseiRdf does not transform correctly
with respect to a change of coordinates (see Exercise ZR28yever, it is indeed
possible to have a well defined notion of Hessiaryf @t the critical points recall
that for a real valued functiofi : M — R, a critical pointz € M is simply a point
with d f(z) = 0. We set:

Crity = {z € M : df(z) = 0},
Crits(a) = Crit; N f~!(a), a€R;
obviously, Crit; and Crity(a) are closed subsets d@ff and the set of regular
values of f is equal toR \ f(Crity). As we have already observed, the set of
regular values is open jf is proper (this happens, for instance}Mf is compact).

There are several equivalent ways of defining the Hessianfoficion f :
M — R at a critical pointr € M. We give the following:

2.1.1. CerNITION. If f : M — R is a smooth function and € M is a
critical point then theHessianof f at the pointz is the symmetric bilinear form
Hessf, : T.M x T, M — R defined by:

Hess fo (v, w) = v(W(f)),
whereW is an arbitrary smooth vector field aroumds M with W (z) = w.

The fact thah)(W(f)) is symmetric and independent of the extendiBrof w
follows directly from the fact that:

v(W(f) —w(V(f)) = V.Wla(f) = dfa (V. W]) =0,

for every smooth vector fieldg, W aroundz € M with V(z) = v, W(z) = w.
For other equivalent definitions of the Hessian of a funcaba critical point see
Exercise 2.24. In particular, we observe that the above itlefirof Hessian when
written in local coordinates gives the usual Hessian oftions in open subsets of
R™.

131
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Obviously, the local maxima and the local minimafof A/ — IR are critical
points. Using the Taylor polynomial of orderof f in local coordinates around a
critical pointx € M, itis easy to see thgtincreases along the directionss T, M
with Hess f, (v, v) > 0 and thatf decreases in the directionsvith Hess f,, (v, v) <
0. Moreover, ifHessf, is positive definite them is a local minimum off and if
Hess f,. is negative definite thenis a local maximum of . If there exists directions
v € T M with Hess fz(v,v) > 0 and direction® € T,,M with Hess f,(v,v) < 0
thenzx is called asaddle pointof f; obviously a saddle point is neither a local
minimum nor a local maximum.

Before proceeding with the development of Morse theory, eedrto recall a
few things from linear algebra.

2.1.2. DEFINITION. Let V be a real (possibly infinite-dimensional) vector
space an®B : V x V — R a symmetric bilinear form. Thmdexof B, denoted
n_(DB), is the (possibly infinite) natural number defined by:

n_(B) = sup {dim(W) : W subspace o', B|w x negative definit.
Theco-indexof B, denotedn (B), is defined by:
ny(B) =n_(—B).

Thedegeneracyf B, denotedign(B), is defined as the (possibly infinite) dimen-
sion of the kernel of the maly > v — B(v,-) € V*. If dgn(B) is equal to zero
we say thatB is nondegenerate

The following is a very simple result of linear algebra.

2.1.3. THEOREM (Sylvester's theorem of inertia)Let V' be a finite-dimen-
sional real vector space an® : V' x V — R a symmetric bilinear form. Then
there exists a basis df on which B is represented by a diagonal matrix of the
form:

I, 0 0
B~[0 -1, 0
0 0 o0

wherel, denotes thex x « identity matrix,0, denotes thex x « zero matrix.
Moreover, if B is represented by a matrix in the form above in some basis of
thenp = ny(B), ¢ = n_(B) andr = dgn(B). O

We are now ready to give the following:

2.1.4. DEFINITION. A critical pointz € M of a smooth magf : M — R is
callednondegeneratd the symmetric bilinear fornHessf, : T,M x T, M — R
is nondegenerate. Thorse indedof a critical pointr € M is defined as the index
of the symmetric bilinear forniless f,.. By aMorse functionf : M — IR we mean
a smooth map all of whose critical points are nondegenerate.

It follows easily from the Taylor polynomial expansion pthat nondegener-
ate critical points of Morse index zero (resp., of Morse indgual todim (1)) are
strict local minima (resp., strict local maxima) 6f A critical point that is neither
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a minimal nor a local maximum is calledsaddle point Observe that a nondegen-
erate critical point is a saddle point if and only if its Morselex is positive and
less thardim(M).

Around a nondegenerate critical point, a function can ballpédentified with
a quadratic form in a suitable coordinate chart. This thectirgent of the follow-
ing:

2.1.5. THEOREM (Morse lemma).Let f : M — R be a smooth map on an
arbitrary manifold )/ and letp € M be a nondegenerate critical point ¢f There
exists a diffeomorphisip : U — U from an open neighborhoad of p in M to an
open neighborhood of the origin ifi, M such thatp(p) = 0 and f o o1 — f(p)
equals (the restriction t6/ of) the quadratic formy — %Hess fp(v,v).

PROOF Lety : V — V be an arbitrary diffeomorphism from an open neigh-
borhoodV of p in M to an open neighborhooﬁ of the origin inT,,M; we may
choosey with ¢»(p) = 0. Setf = foy~!: V — R, so that) € T, M is a critical
point of f andHess fy = Hess f,. We will determine a diffeomorphism between
open neighborhoods of the origin i,M with a(0) = 0 and f o a = Hess
around the origin.

Sincedf(o) = 0, the first order Taylor expansion @faroundo with remainder
in integral form gives:

~ ~ 1 ~
f(v) = f(0)+ / (1 — t)Hess f1, (v, v) dt,
0
for v € T, M in a neighborhood 0f. We may represent the symmetric bilinear

form fol(l — t)Hess fy, dt with respect to some arbitrarily fixed inner prodygt)
in T,,M, obtaining a symmetric linear endomorphisty € Lin(7},M) such that:

(2.1.1) F(v) = F(0) + (Au(v), v),
for v € T,M in a neighborhood of; obviouslyv — A, is a smoothLin(7,M)-
valued map. The nondegeneracythés f, means that the linear mafy : T,M —

T, M is an isomorphism; since — AglAv takes values in a neighborhood of the
identity of 7), M for v near zero, we may define a smooth map

v +— B, € Lin(T,M)
with By = Id and B2 = AglAv for v near zero (see Exercise 2.1). Thus:
(2.1.2) A, = AgB2.

Since Ay and 4, are symmetric, we may take the transpose with respegt to

in both sides of the equality (2.1.2) obtaininfy, = (B})?A, and thusB? =
(Ang;jAO)Z. By takingv in a sufficiently small neighborhood of zero, we have
both B, and A, ! B} A in a neighborhood of the identity ihin(7),M) where the
square function is injective; then:

(2.1.3) AoB, = B* Ay,
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for v sufficiently close to zero. From (2.1.1), (2.1.2) and (2. W8 obtain:

F(v) = f(0) + (B;AgBy(v),v) = f(p) + Hessf,(By(v), By(v)),

for v sufficiently close to zero. Once we show that the map- B,(v) is a
diffeomorphism in a neighborhood of the origin, the conidaswill follow from

the above equality by taking to be the inverse of such diffeomorphism. The fact
thatv — B,(v) is a diffeomorphism in a neighborhood of the origin is easily
stablished by the inverse function theorem, observingtti@tifferential of such
map at) equalsBy = Id. O

Observe that the origin is the unique critical point of a regeherate quadratic
form in a vector space. We thus obtain the following immesl@drollary.

2.1.6. @ROLLARY. The nondegenerate critical points of a smooth nfap
M — R are isolated inCrit. In particular, if f is a Morse function the@'rit; is
discrete. O

As a matter of fact, the fact that nondegenerate criticahtgsaare isolated is
a rather elementary fact that follows from the inverse fiomctheorem (see Exer-
cise 2.25).

2.1.7. REMARK. It can be proven that every differentiable maniféldadmits
a Morse function. Actually, one can show that Morse fundtiane dense in the
space of continuous mapsM — IR with respect to the topology of uniform
convergence, i.e., every continuous map is the uniformt lohiMorse functions
(see Exercise 2.26).

We will apply the Morse Lemma in order to study the change efttdpology
of the sublevels of a Morse function when passing a critiedll®. The precise
statement (and most of all the proof) of such result is quit®lved and will be
given in Section 2.5. For now we will just give an example owhihe Morse
Lemma can be used to study the topology of the leyélwhena is slightly bigger
then the minimum off.

2.1.8. RROPOSITION LetM be a compact differentiable-dimensional mani-
foldandf : M — R a smooth function whose minimum points are non degenerate
critical points. Then there exists > 0 such that fora € |min f, min f + ] the
sublevelf® is homeomorphic to a topological sumsotlosedn-balls, wherer is
the number of minimum points ¢f

PROOF. letxy,...,z, € M be the minimum points of and letm € R be the
minimum value off. By the Morse lemma, for every=1,...,r, we can find an
open neighborhood; of x; in M and a diffeomorphisny; : U; — U, onto an open
neighborhoodJ; of the origin inT}, M such thatf o; ' (v) = m+ 3 Hessf,, (v, v)
forall v € ﬁi. We can assume that the open détsare disjoint. Since each;
is a nondegenerate minimum point ff the symmetric bilinear forntess f,, in
T, is a positive definite inner product and hence there exists: 0 such that
%Hessfxi(v,v) < g; impliesv € [72-. Choose: > 0 less than the minimum of the
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g;’s and less than the minimum of the positive functibr- m in the compact set
M\ U;_, U;. We have then:

s s

fm-‘ra — U (fm+a N UZ) — U SOZ_l(Bz);

=1 1=1
whereB; C 5} denotes the closed ball:
B; = {v €T, M: %Hessfxi(v,v) < E}.
This concludes the proof. a

2.2. An Instructive Example: the Height Function on the Torus

Given a Morse functiorf : M — R on a compact manifold/, then using the
critical points of f one is able to determine information on the homotopy type of
M. For everyc € R, we define thelosedc-sublevelof f by:

fe={reM: flx) <c} = f(~]-o00,d);
whenc is a regular value foy then f¢ is a smooth submanifold with boundary in
M whose boundary is the level surfage!(c). Whenc is a critical level, the level
surfacef~!(c) may become singular. Usually, it is better to picture theagion
in the following way: we identifyM with the graph off in M x R and thenf
is identified with the “height function’ x R > (m,t) — t € R. With such
identification, the critical points of become the valleys, passes and mountain
summits of the graph of. The basic idea is that the topological type of the sublevel
f¢does not change wheruns through a non critical interval, b}, i.e., an interval
that does not contain critical values. This can be shown Imgidering the flow
of minus the gradient field’ f of f (with respect to some arbitrary Riemannian
metric). This flow gives the direction of “steepest descantthe graph off and
can be used to deform the subleyé&lonto the sublevef®. Clearly, the presence
of a critical value on the intervak, b] is an obstruction to such argument, because
some lines of flow of-V f do not go all the way from the leveélto the levela. We
will show indeed that when passes through a critical value, the topological type
(and also the homotopy type) ¢f changes, according to the number of critical
points inf~!(c) and their Morse indexes.

Before we get into the details of the theory, it will be usatublescribe a very
simple example, which served as a motivation in many clakgxtbooks on the
subject (see for instanc8§, 119).

Let us consider a torud/ = T in R? tangent to a horizontal plane as in
Figure 1; in the language o119, this is described as a “tire standing in a ready to
roll position”. Definef : M — R to be the function that assigns to each point of
M its height above the “floor”. By an elementary analysis offie@ure, one sees
that the functionf has exactly four critical points that are all nondegener&ias
a global minimum pointP, and P; are saddle points (having Morse index equal
to one), P, is a global maximum. Set = f(P;), ¢ = 1,2, 3,4; in Figures 2—6
we give a picture of the closed sublevgl$', fer, f2, fe2 fas  fe3 faa with
¢ < a; < Cjgt, 1=1,2,3.
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FIGURE 1. A*tire in a ready to roll position”

FIGURE 2. The sublevelfe:

e The closed sublevef®! is homeomorphic to a closed disc, i.¢% is
a closed2-cell; observe that the Morse index of the critical poitis
precisely2.

e The closed sublevef2 is no longer homeomorphic t¢*t, but it is a
strong deformation retract gf*2 which is homeomorphic tg** with a
handle[—1, 1] x [—1, 1] attached alon—1, 1] x {—1,1}. Observe that
P; is a critical point of Morse index.

e The closed sublevef®: is no longer homeomorphic t¢“2, but it is a
strong deformation retract gf*3 which is homeomorphic tg*2 with a
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FIGURE 3. The sublevef“

FIGURE 4. The sublevelf“2

handle[—1, 1] x [—1, 1] attached along—1, 1] x {—1,1}. Observe that
Ps is a critical point of Morse index.

e The closed sublevef®« = T is no longer homeomorphic t6*3, but it
is homeomorphic tg?3 with a closed-cell attached along its boundary.
Observe thaf’; is a critical point of Morse indeg.

In this chapter we will show that the sublevels of a generatdddunction on
a compact manifold satisfy relations that are similar toadhes described for the
height function on the torus.

2.3. Dynamics of the Gradient Flow

In this section(M, g) denotes a compact Riemannian manifgld,M — R a
smooth map and’ : R x M — M the flow of -V f, i.e., F(0,z) = x and:
d

EF(t’ x) = —Vf(F(t, x)),
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FIGURE5. The sublevef©s

FIGURE 6. The sublevelf®3

forallt € R, x € M. We also use the short notation:
(2.3.1) t-x=F(t,x),

forallt € R, x € M; then (2.3.1) defines an action of the additive gréum M.
Obviously, ifz € M is a critical point off thenF'(¢,x) = z for all ¢t € R; if
x is not a critical point off then:

%f(tm) = —dft.x(Vf(t-x)) = —g(Vf(t-x),Vf(t-x)) <0, teR,
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so thatt — f(¢ - x) is a strictly decreasing function dR.

2.3.1. LEMMA. Given an isolated critical point: € M of f and a neighbor-
hoodU c M of z then there exists an open neighborhddéd- M of x contained
in U ande > 0 such thatf(t - x) > ¢ — e impliest - = € U for all ¢ > 0.

Thew-limit (resp., thex-limit) of a flow linex — ¢-z is the set of pointg € M
for which there exists a sequen¢s,), > of real numbers witlim,,_ o t, =
+oo (resp.Jimy,— 400 tn, = —00) andlimy,—, 4 o0 tn, - T = ¥.

In what follows we prove a series of lemmas concerning thenasytic behav-
ior of the flow lines of—V f. For simplicity, we only state the results concerning
limits ast — +o0; by replacingf with —f one can obviously obtain analogous
statements for the limits as— —occ.

2.3.2. LEMMA. Thew-limit of any flow linex — ¢ - x consists only of critical
points of f.

PrROOFE Assume by contradiction that there exists a noncriticattpg € M
belonging to thev-limit of = +— t-z. Setc = f(yo). Thenf is a submersion negy
and thus we can find an open neighborhddd: M of 355 such thats = VN f~(c)
is a submanifold of\/ (orthogonal toV f). By the inverse function theorem, we
can find an open subs8 in S containingy, ande > 0 such that the map:

So X |—e,e[ > (y,s) —>s-ye M
is a diffeomorphism onto an open neighborhdod- M of yy. Sincey is in the
w-limit of ¢t — ¢ - x, we can findt{,t5 > 0, with¢; -2 € U, ty -z € U and
to > t1 + 2e. We can now findyy, yo € So, s1,52 € |—¢e,e[with ¢y -z = s1 -1
andts - x = ss - yo. This implies:

(ti—s1) 2=y €S Cf ), (ta—s2)-x=y2€ 8 Cf ()
sincet — f(t - x) is strictly increasing, we hawg — s; = to — s2. Hence:
‘tl — tgy = ‘81 — 82‘ < 26,
which contradictg, > ¢ + 2e¢. [l

2.3.3. LEMMA. Letyq belong to thev-limit of a flow linet — t -  (so thatyg
is a critical point of f, by Lemma 2.3.2). ljy is an isolated critical point of then
limy ot = 1yo.

PROOF LetU C M be a neighborhood ajy; let us show that - z € U
for ¢ sufficiently large. Choose a sequer{¢g),>1 with lim,,_, |  t,, = +o00 and
limy, 4 o0 tp - T = yo. Sete = f(yo). Thenlim,_, 1 f(t,-x) = cand, sincef is
decreasing along the flow lie— ¢ - z, it follows that f (¢- =) > cfor all . Choose
V ande > 0 as in the statement of Lemma 2.3.1 an& 1 with ¢,, -z € V.. Then
t-x € U forallt > t,. This concludes the proof. O

2.3.4. @ROLLARY. If all the critical points off are isolated (in particular, if
f is a Morse function) then each flow line eV f converges to a critical point of
f,1.e., given an arbitrary point € M then the limitlim;_ 1 ¢ - x exists and it is
a critical point of f.
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PrROOF The compactness @il obviously implies that the-limit of any flow
line is nonempty. The conclusion follows. O

Assuming that all critical points of are isolated, Corollary 2.3.4 allows us to
extend the flowF" : R x M — M of —V f to [—o0, +o0] x M by setting:

F(—o00,2) = —c0-xz = lim F(t,z), F(+oo,z)=4oc0-z= lim F(t, x),
t——o0 t—-+o0

for all z € M. SinceR x M is open in[—oo, +00] x M, the extension of”

defined above is continuous at the pointdRok M. However, one should be very

careful about the continuity df at the points of —oo, +o0c0} x M (in fact, F' is not

continuous in general at those points: see Exercise 2.3%.fdllowing weaker

continuity condition holds:F'(¢,,, x,,) tends toF (4o, z) when(t,,, z,,) tends to

(400, z) provided thatf(t,, - z,) > f(+oo - z) for all n. This is proven in the
following:

2.3.5. LEMMA. Chooser € M; sety = +oo-x andc = f(y). The restriction
of F' to the set:

(fo F) ' ([c,400]) = {(t,2) € [~00,+00] x M : f(t-2) > c}
is continuous at the poir(t+-co, z).

PROOF LetU be a neighborhood af. We have to show that ifis sufficiently
large and: is sufficiently close tac thent - z € U, provided thatf (¢ - z) > c. By
Lemma 2.3.1, we can find an open neighborh®oddf y contained inJ such that
the flow lines starting iV remain inU, as long as they don't go below the level
Choosety > 0 such that, - x € V. By the continuity ofF’ on R x M, we have
to - z € V for z in some neighborhood af. But thent - z € U for all t > tg with
flt-z)>c. O

Givena € R then each nonconstant flow line-efV f meets the level at most
once; it will be useful to look at the “arrival time functiomlefined as follows. Set:

Do = {x € M\ Crity : f(t-z) = a, for somet € [—o0, +oc] }
and define\, : D, — [—o0, +00] by the equality:
f(/\a(:n) ac) =a,
forall x € D,. We also set:
D={(a,z) ERxM:z€ D}
and we define\ : D — [—o0, +0o0] by:
AMa, z) = A ().
We will now study the regularity of the mayp We start with the points where
Ais finite.
2.3.6. LEMMA. The set~!(R) C D is open inR x M and the map:
Ay : ATHR) — R
is smooth.
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PROOF Observe thaMkl(R) is the map obtained by solving the equation:
f(t-z)—a=0, xeM)\QCrity, a,t €R,

for t. The derivative with respect toof the lefthand side of the equation above is

—||Vf(t- :U)H2, which is nonzero when is noncritical. The conclusion follows
from the implicit function theorem. a

Now we look at the points wherkis infinite. We will show that the map is
continuous. In fact, we show a little more. We define an extens

X:{(a,z) € Rx M : & ¢ Crity(a)} — [—00, +00],
of A by setting:

Ma,x), if (a,x) € D,
AMa, ) = < +o0, if (a,x) ¢ Dandf(z) > a,
—00, if (a,2) ¢ Dandf(z) < a.

Obviously the domain ok is open inR x M. We now prove the following:
2.3.7. LEMMA. The map\ (and in particular the map\) is continuous.

PROOF. By Lemma 2.3.6, it suffices to prove thatis continuous at those
points wherel is infinite. Let thus(a, z) € R x M be fixed withz ¢ Crits(a) and
A a,z) = Fo0. For definiteness, we assuméu, ) = +oo; the case\(a,z) =
—oco is handled in a similar way. If eithefa,z) € D and A(a,z) = +oo or
(a,z) ¢ D andf(x) > a, we havef(t-z) > aforall t € R. Then giventyg > 0
we havef (o - ) > a and by continuity we havé(to - y) > a + ¢ for somes > 0
and for ally in a neighborhood” of x. Thus, fory € V and|a — b| < £ we have

A(b,y) > to. This concludes the proof. O

In Exercises 2.31 and 2.32 it will become clear that one cahape to find a
continuous extension of to the pairg(a, x) with z € Crits(a).

2.3.8. LEMMA. Letx € M be a point that is not critical and choosec< R.
If there are no critical values of in the open interval with endpoint§(x) anda
thenz € D,. Moreover, ifa is not a critical value off then\,(z) is finite.

PROOF. If f(z) = a there is nothing to prove. We may assume that) > a
(the casef(z) < a can be obtained simply by replacigfgwith — f). If « were not
in D,, then it would bef (¢ - ) > a for all t € [0, +o0]; then+oco - z would be
a critical point of f with a < f(+o00 - x) < f(x), contradicting our hypothesis.
Thusz € D,. If \;(z) = 400 then+oco - z is a critical point off at the levela
and thus\,(z) is finite if a is noncritical. O

2.3.9. RRoPOSITION Choose real numbers < b such thatf has no critical
values in the open intervak, b|. Thenf~!(a) is a strong deformation retract of

f‘l([a, b]) \ Crits(b).
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PrROOF It follows from Lemma 2.3.8 that every poiat ¢ Crits(a) in the
strip

S = f~'([a,b]) \ Crity(b)
belongs taD,. We define a magy : [0, +o0] x S — S by:

| F(min{t, \e(z)},z), if 2 & Crits(a),
Gt 2) = {:U, if x € Crity(a).

Since the restriction of' to
{(t,x) : x € S\ Crity(a), t € [0,\a(2)]},

is continuous (Lemma 2.3.5) and sa\g (Lemma 2.3.7) it follows thaf7 is con-
tinuous in[0, +oo] x (S'\ Crity(a)). The continuity ofG in [0, +-00] x Crits(a)
follows easily from Lemma 2.3.1 (see also Exercise 2.33) désired deforma-
tion retractionH : [0,1] x S — S is now obtained fronG by settingH (¢,z) =
G(a(t),z), wherea : [0,1] — [0, +oc] is an increasing homeomorphism. [

2.3.10. ®ROLLARY. Under the assumptions of Proposition 2.3.9, the sublevel
f®is a strong deformation retract gf \ Crit ;(b).

ProOOF Extend the magH given in the proof of Proposition 2.3.9 by setting
H(t,x) =z forallz € f*and allt. O

2.3.11. RorPosiTION(non-critical neck principle) Choose real numbeis <
b such thatf has no critical values in the closed interv@l,b]. Then for every
to € la,b], there exists a homeomorphiskh : f~'([a,b]) — [a,b] x f~*(to)
whose first coordinate ig, i.e., such that the diagram:

) 1 [a, 8] x f~(to)

\ pry

[a, ]

commutes, whergr; denotes the projection onto the first coordinate. Moreover,
H can be chosen in such a way thd{(z) = (to,z) for all = € f~1(to).

PROOF Sincef has no critical values ofa, b], Lemma 2.3.8 implies that the
setla, b] x f~!([a,b]) is contained inD and that\ takes finite values in such set.
The mapH can be explicitly defined by:

H(x) = (f(x)ﬂ)‘to(x)'w)ﬂ fo_l([a,b]);
we exhibit a continuous inverse féf:
H_l(c,y):)\(c,y)~y, ce [a,b], yEf_l(to). 0

2.3.12. @ROLLARY. If [a,b] C R does not contain critical points of then
the sublevelf® is homeomorphic tg®; moreover, for every,; < a we can find a
homeomorphism fronfi® to ¢ that is the identity orf®!.
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PrRooF Chooses > 0 small enough so that — ¢ > a; and such that the
interval [a — ¢, b] does not contain critical values ¢f Consider the unique affine
increasing bijection:

o:la—eb — [a—e,a]
and the corresponding homeomorphigm= o x Id from [a — £,b] x f~!(a) to
[a—e,a]x f~1(a). By the non-critical neck principle we can find homeomorptss

Hi:fa—eb]) —la—eb] x fl(a—e),
Hy: f ' [a—e,a]) — [a—e,a] x fHa—e),

both with first coordinate equal tp and such that{;(x) = Ha(z) = (a — €, )
forallz € f~'(a —¢). The compositioer‘1 o & o Hy gives a homeomorphism
from f~(Ja — &,b]) to f~*([a — ,d]) that is the identity orf~!(a — ). The
conclusion is obtained by extenditfgf};1 o & o Hj to be the identity orfets, [

Using Corollary 2.3.12 we can now prove one of the most atassesults of
Morse theory.

2.3.13. HEOREM (Reeb). Let M be a compact differentiable manifold. M
admits a Morse function having precisely two critical psithien)M is homeomor-
phic to a sphere.

PROOF Let f : M — R be a Morse function having precisely two critical
points. SinceV/ is compact, one of then is the global minimum and the othdras t
global maximum. Writezy = min f, ¢; = max f and choose any in the open
interval|cy, ¢1[. From Proposition 2.1.8 and Corollary 2.3.12 we concluds tife
sublevel f* is homeomorphic to the closed ba@ll", wheren = dim(M). Since
f is a manifold with boundary whose boundaryfis'(a) (see Exercise 2.11),
a homeomorphisnt : f* — B" takesf~!(a) to S"~!, which is the boundary
of B" (see Exercise 1.63). By a similar argument we get a homedrisonp:
from (— )% = f=!([a,1]) to B"; such homeomorphism also maps! (a)
to S~ 1. Now consider the homeomorphism : S»~! — S"~! given by the
“transition map"h o (h|;-1(4)) . We now obtain thad/ is homeomorphic to the
attachment spacB” U, B" (see Lemma 1.14.12) and such attachment space is
homeomorphic to the sphef (see Exercise 1.109). (]

2.4. The Morse Relations

2.4.1. CeFINITION. If z € M is an isolated critical point of : M — R then
thecritical numbersof f atz with respect to a fiel& are defined by:

p(@, £1K) = B (f°, 9\ ek K) = dimg (Hy, (f9, £\ {2})),
wherec = f(x).

Recall thatHy, (f¢, f©\ {z}) is the local homology group of the spa¢é at
the pointz; thus, for any neighborhoot of = in M we have an isomorphism:

Hy(V 0 fe,(vn £\ {a}) = He(£, £\ {=})
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induced by inclusion.

2.4.2. LEMMA. Given reals numberg < b such that there exists at most one
critical value of f in the interval]a, b] then, for any fieldk, we havé:

(241) ﬁk(fbafa;K) :dlmK(Hk(fb>fa7K)) = Z :U‘k(l'vfaK)?
aiejcc(;l)téb

forall k£ > 0.

PrROOF By Corollary 2.3.10, if there are no critical valuesfoi |a, b] then f©
is a strong deformation retract ¢f and thusH, (f?, f*; K) = Hy(f, f%K) =0
and hence both sides of (2.4.1) vanish. Assume nowdt@aia, b] is the unique
critical value off in ]a, b]. By Corollary 2.3.10,/¢ is a strong deformation retract
of f® andf® is a strong deformation retract ¢f \ Crit¢(c); thus:

Hy(f°, £ 1K) = Hy(f€, fK) = Hy(f6, £\ Critg(c); K).
Write Crits(c) = {z1,...,2,} and choose disjoint open s€fs;);_, in M such
thatz; € U;, i = 1,...,r; setU = |J;_, U;. SinceCrity(c) is a closed set
contained in the open subdétn f€ relatively to f¢, by excision, we have:
Hk(fc,fc \ Crity(c); K) = Hk(U NfUN )N\ Critf(c);]K).

Moreover:

Hy (U N £, (U N £\ Critg(e);K) 2= @ He (Ui 0 £, (U; 0 )\ {zi 1K)

i=1

= P He(f¢, £\ {2} K).

i=1
The conclusion follows. O

2.4.3. THEOREM. Let f : M — R be a smooth function on a compact man-
ifold M having only a finite number of critical points. Then, for arsldiK, the
sequences given by:

pe= Y (@, f;K), B = Br(M;K),

IEGCI‘itf

satisfy the Morse relations.

PROOF Leta; < as < --- < a, be the critical values off and choose
arbitrarily ay < a;. Observe that, sinc&/ is compact,f has a global minimum
and a global maximum and therefate must be the minimum value g¢f anda,
must be the maximum value gt We define a filtration{ X,,),,>¢ in M by setting
X, = foforn =0,...,randX,, = M for n > r; observe thatX, = () and
X, = M for all n > r. Obviously the filtration(X,,),,>( satisfies the hypothesis

The sumin (2.4.1) is understood to be zerg fias no critical values iu, b).
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of Proposition??. To conclude the proof we simply apply Lemma 2.4.2 to compute
as follows:

+00 r—1
> Be(Xng1, X K) = Be(fo+t, oK) = > (e, £;K). O
n=0

n=0 z€Crity

2.4.4. LEMMA. If x € M is a nondegenerate critical point of : M — R
then, for any fieldk, the critical numbers of at x are given by:

1, k= p(z),
0, k# ().

PrROOFE Let r denote the Morse index af, n the dimension ofA\/ and set
¢ = f(x). By the Morse Lemma, some neighborhoodrah f€¢is homeomorphic
to a neighborhood of the origin in the cone:

C={(y1,92) ER" x R"™": |[gaf* — [y [|* < 0} C R™,
by a homeomorphism that sendso the origin. Thus:

for all k. Itis easy to see th&" x {0} and(R" x {0})\ {0} are strong deformation
retracts respectively af' andC' \ {0}; therefore:

Hy(C,C\{0}:K) = Hy(R",R"\ {0};K).
This concludes the proof. d

:uk(x7f7K) = {

2.4.5. @ROLLARY. If f: M — R is a Morse function on a compact manifold
M then, for any fieldK, the sequences given by:

ur, = number of critical points of having Morse index equal to,
B = Br.(M;K),
satisfy the Morse relations.

ProokE It follows from Theorem 2.4.3 and Lemma 2.4.4. O

2.5. The CW-Complex Associated to a Morse Function

In Section?? we have seen that the the sublevgtsand £ of a smooth map
f : M — R are homeomorphic ifa,b] is a non critical interval forf. In this
section we will study the relation between the topologyffand f¢ when|a, b
contains critical values of. More precisely, we will show the following:

2.5.1. RROPOSITION Let f : M — IR be a smooth map wher#/ is a
compactn dimensional manifold. Assume thate |a,b[ is the unique critical
value of f in [a,b] and that all the critical points off at the levelc are nonde-
generate. Hence, there is only a finite humber (sgypf such critical points;
denote byvy, ..., v, their Morse indexes. Then, there exists a continuous map

a: Y0 8% x B"Y — foand a homeomorphism froift to the attachment
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= nN—V;

space( Yoy B" xB Uq f%; moreover, givem; < a, such homeomorphism
can be chosen to be the identity ¢ft.

The proof of Proposition 2.5.1 will take the rest of this samtt By adding a
constant tof, we can assume without loss of generality that 0. Moreover, for
¢ > 0 sufficiently small, we may assume that= —c andb = ¢; namely, from
Corollary 2.3.12, we can find homeomorphisifts— f¢ and f~¢ — f° that are
the identity onf®L. Furthermore, in order to simplify the proof we will assurhatt
there exists a unique critical poipte M at the levek; we denote by the Morse
index of such critical point. The proof in this case illustmthe technique that can
be applied with straightforward adaptations to the germasé. We left the details
to the reader.

The idea of the proof of the proposition is to determine a dimdonction
g : M — R satisfying the following conditions:
g<f;

96 — fE,

[—e, €] is a non critical interval foy;

there exists a homeomorphisgn: Dom(y) ¢ M — B” x B" ™" such
thatx~1(S*~1 x B"™") ¢ f~¢ andDom(x) is a closed subset d¥/
with g=¢ = f~¢ U Dom().

Once we show the existence of sugththe proof of Proposition 2.5.1 will fol-
low easily by applying Corollary 2.3.12 tp Namely, sincé—e, €] is a non critical
interval for g, there exists a homeomorphism frggh = f¢ onto g—¢ that fixes
g™ D f. Moreover, by Lemma 1.14.12,¢ = f~¢ U Dom(x) is homeomor-
phic (by a homeomorphism that is the identity ¢n¢) to the attachment space
(B” xB"™") U f 75, wherear = x|, grnv-

In order to defineg, we consider a diffeomorphismp : U — U as in Theo-
rem 2.1.5; we will defing to be a perturbation of insideU. Let's now go for the
technical details. Considerl&ess f,-orthogonal direct sum decomposition

(2.5.1) T,M =H, &H_

with Hess f,, positive definite orf< and negative definite ok _. We will write
the points of7),M as pairs(z,y) with z € Hy andy € H_. Define an inner
product(-, -) onT}, M by setting:

(2.5.2) ((z1,y1), (x2,y2)) = Hess fp(z1, x2) — Hess f,(y1, y2).
Denoting by|| - || the norm corresponding t@, -) we have:
(foe™)(@y) = llzl” — llyll*,
forall (z,y) € U. The numbee > 0 must be chosen so that:
E(O; \/@) cU.

Let A : R — IR be a smooth function such thatt) = 1 fort < 1, A(t) = 0
fort > 1and—3 < X (t) < 0for all t € R. We definey to be equal tgf outside
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U, in U we defineg by:

2|12 12 2
(gocp_l)(ac,y) :(focp_l)(x,y)—%)\<” E” >)\<” | ;;Hy” >

2 2 2
a2 = )2 = ZEx (B2 5 (llZE Nl
2 € 6e

for all (z,y) € U. Obviouslyg equalsf outside the closed set ! (B(0; v/6¢)),
so thatg is indeed smooth; moreover, singeis non negative, we have < f
everywhere. We now observe théequalsy outsidef* since for(z,y) € U \ f¢
we have||z||? > . It follows that f¢ = ¢°.

Let us now prove thdt-¢, €] is a non critical interval fop. Observe first thaf
equalsg on a neighborhood ot/ \ U and thereforeg’ andg have the same critical
points outsidel; sincep € U is the unique critical point of in f~!([—¢,¢]),
we conclude that the critical points gfin ¢~ ([—¢,¢]) must be inside/. The
differential of g in U is easily computedas:

(253) d(g © (10_1) (‘Ta y) = ((51(.%7 y)<$7 ’>7 52 (x7 y)<y7 >) )
for all (z,y) € U, wheres; andd, are given by:

2 2 2 1 ”xHQ ”xHZ_i_”yHQ
_o_gy (Ll 1 171 (N2l + llyll?
61(z,y) 3/\< - A — : : \ - |
1 €T 2 T 2_|_ 2
52<x,y>:_2_§A<H EH >X<H I + llyll >

6e
SinceX > 0and—-3 < )\ < 0, it is easily seen thaf; > 2 andd, < —%; this
implies that the only critical point of in U is p. However,g(p) = —% and[—e, €]

is a non critical interval fog.
To prove the last item of our scheme, we start by observing tha

(2.5.4) gE=F"Ue Q)
whereQ c B(0,v/3¢) ¢ U C T, M is defined by:

~ 9
Q= {(y) €M xH_: 2l < 5, yl* < ll2]* +<
9
Of @) € My x o5 S < all? < e, r(llell) < i < ol + £},
andr : [\/5,vZ] — Ris defined by:

() = 12 +a[1 - gA(g)}

The verification of the equality (2.5.4) requires a humbeglefmentary arguments
among which we single out the following:
e sinceQ c B(0,v/3¢), the quantity)\(W) appearing in the defi-

~

nition of ¢ is equal tol when(z,y) € Q;

2We identify T, M™* with H*. & H*..
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e the sety¢\ f~¢is contained irU;

o for (z,y) € U, if o~ (z,y) ising==\ f~ then||z|? < ¢ and|jy||? < 2e,
so that again\(%) is equal tal.

To corﬂplete the proof of Proposition 2.5.1 we now must exlthiomeomor-

phismh : Q — B” x B"" such that:
A1 (St xB"Y) € {(z,y) € Hy x Ho : [|z))® — |jy))* < —¢}.
The homeomorphism is defined with the help of the following:

2.5.2. LEMMA. Given subset$),(Qs C [0,+c>o[2 and normed real vector
spacesH , H_ set

Qi = {(z.y) e Hy x H_: (l=, llvl) € @},
for i = 1,2. Assume thah : Q1 — Q2 is a homeomorphism satisfying the
following conditions:
() fori=1,2, the map

{(ul,UQ)Eleui#O}Su»HMGR

7
admits a continuous extension to a map: Q; — R, whereh =

(h1, ha);
(2) fori =1,2, the map

{(vl,vz) €EQ:v; # 0} SvF— klzgv) cR

admits a continuous extension to a miap Q2 — R, wherek = (kq, ko)
andk =h~': Q2 — Q1.
Then the map:
h: Qi3 (x,y) — (el byl ha(l2), [yl)y) € Q2
is @ homeomorphism.
PrROOFE Observe that the map:
k2 Qa3 (z,w) — (Fa(llz], lwl)z Fa (2], wl)w) € Qu
is the continuous inverse &f O
Finally, we define the homeomorphisim

2.5.3. LEMMA. Consider the regioi); [0, +o0[? given by:
Q1= {(U17u2) € [0,+00[ : uf <
U {(ul,uQ) € [0,+OO[2 :

and the unit squaré), = [0, 1]2. There exists a homeomorphism Q; — Q2
satisfying conditiongl) and (2) in the statement of Lemma 2.5.2 and mapping the

graph of [0, /2] 2 u; — \/u} + ¢ to the upper sidé0, 1] x {1} of Q».
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A y
v
R2 R,
R, R
X
FIGURE 7. The regionsky, Rs, R3, R4
ProoOF Consider the regions (see figure 7):
R = [0, /5] < 0],
u2 € € 2 2
{'LLl,UQ O—I—oo[ 1§§,Z§u2§u1+6},
= { (u1,ug) € [0, +o0[? : ud < 27 % <ul < U(u2)2}7
— { (u1,ug) € [0, +oo[? : % <ul < 0(7‘2)2, Z < ul gu%+s}
U {(ul,ug) € [O,+oo[2 : a(%)z < u% <e, m(up) < u% < u% —i—s},

whereo : [0,v2¢] — [\/3, VE] is the inverse of/7 : [\/Z, VE] — [0,V2e];
observe thaf); = R; U Ry U R3 U Ry.

We will construct a homeomorphisi from the region@; to the rectangle
Qb = [0,0(35)] x [0, 37\/;] satisfying conditions (1) and (2) in the statement of
Lemma 2.5.2 and mapping the graph[6f /2] > u1 — +/u} + € to the upper
side of@). The desired homeomorphism frafh to @), is obtained by composing

h with the map(ul, UQ) — (a(%)_lul, 3—\</§EUQ> .
The homeomorphisnk will be defined by describing its restriction to each
regionR;.
e h|g, is the identity.
* hlg, : Ry — [0, /5] X [‘[ 3\f] is the homeomorphism

(u1,u2) — (u1, hao(ur,us)),

wherehs(uy, -) is an increasing affine map for all .
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e h|g, : R3 — [\/g,o—(é)] x [0, @] is the homeomorphism

(ur,ug) — (hi(ug,u2), u2),
whereh (-, us) is an increasing affine map for alp.
e hlg, : Ry — [\/5,0(%)] x [£, v2]isah hism that equal
Ryt Ry 2,0(%)] x [*%5, V] is ahomeomorphism that equals

the identity on the left and bottom sides of the rectarjgJé&, a(%)] X

[@, V2] and that maps the graph p{/<, /2| > u1 — \/uf + e tothe

upper side of[\/g,o—(é)] X [@, VE]. For a explicit construction of

such homeomorphism see Exercise 2.28.
It is easy to see thdt is well-defined and that it is a homeomorphism frgh to
Q% that maps the graph df, /2] 3 w1 — \/uf + ¢ to the upper side of),. For
conditions (1) and (2), observe tl*(étf%—w equalsl near the axis; = 0 and that
alsow%f” equalsl near the axig; = 0 fori =1, 2. O

2.5.4. LEMMA. Leta: Y7_, S¥~! x B — Y be a continuous map, where
Y is a topological space and;, u;, ¢ = 1,...,r, are non negative integers. Let
& be the restriction ofv to Y\, S*i~1, where we identify " with the subspace

B” x {0} of B” x B". Then( S E"i> Ug Y is a strong deformation retract
of (X1, B” x B") Ua Y.
PROOE Set:

X = ZEW xB", A= ZS”’i_l x B",
i=1 =1
X'=> (B”" x{0})u (s xB"),
i=1
A=Y 8% x (BM\ {0}),
=1

sothatX’\ A’ =37 B", A\ A’ = Y7, S¥tanda = af4 4. Itis easy to
see thafX” is a strong deformation retract &f (see Exercise 2.29). It follows from
Exercise 1.111 thak’ U, Y is a strong deformation retract of U, Y’; finally,
Exercise 1.112 implies th&’ U, Y = (X" \ A ) U Y. O

al (A\A)

2.5.5. THEOREM. Let M be a compact differentiable manifold arfd M —
R a smooth Morse function. Théd has the same homotopy type of a (finite) CW-
complexy” such that for every = 0,1,...,dim(M), the number of open-cells
of Y equals the number of critical points ¢fhaving Morse index.

PROOF Sincef is a Morse function and/ is compact, the number of critical
points (and hence of critical values) ffis finite (see Corollary 2.1.6). Denote by
c1 < cg < --- < ¢p the critical values off; chooseby < c1, b, > ¢, and for every
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i=1,...,p—1chooseu;,b; € Rwith¢; < a; < b; < c;y1. Clearly, f® = () and
for = M.

We will construct inductively a sequence of homotopy egeneesh; : f% —
Y;,i1=0,1,...,p, whereY; is a CW-complex and for each=0,1,...,p — 1 we
have:

e Y, is a subcomplex oY;1;
o for every integerr > 0, the number ot/-cells of Y;,1 not inY; equals
the number of critical points of at the levek;, 1 having Morse index;
e h;.1 coincides withh; on f%.
After such construction we will have a homotopy equivalehgéom f» = Mto
the CW-complex” = Y}, which has the desired number of cells on each dimension.

Fori = 0 we havef® = () and there is nothing to do. Now assume that
for somei = 0,...,p — 1 the homotopy equivalenck; : f* — Y; has been
constructed. Assume thgt hasr critical points at the levet;,; whose Morse
indexes are denoted Ry;);_,; sety;, = dim(M) — v;. Sincec;4, is the unique
critical value off on [b;, b;+1], Proposition 2.5.1 gives us a homeomorphism:

(255) ot — <Z§”f x E’”) Ua £,
j=1

that fixes the points of %, wherea : >7_, S¥~! x B" — f% is a continuous
map. By Lemma 2.5.4, we have a strong deformation retraction

(2.5.6) (ZE”}' x E“J’) Ug f* — (ZE”J’) Ua S,
j=1

=1

whereB " is identified withB"? x {0} ¢ B x B’ anda is the restriction ofx
to Zgzl Svi—1. By Exercise 1.117, we have a homeomorphism:

(2.5.7) (ZE”J) Us f — Ca,
j=1

that fixes the points of%, whereCj denotes the cone of the map

a: ZT:SVJ'_I —>fbi.

j=1
Using Corollary 1.14.25, we obtain a homotopy equivalence:
(2.5.8) Ca — Choa,

that extends; : f% — Y;. Applying Proposition 1.15.20 to the restriction/gb &
to each spher&”i—!, we obtain a continuous map: Z§:1 Svi—l 'Y that is
homotopic toh; o & and such thak (5" ') is contained in thé¢v; — 1)-skeleton
v of the CW-complex;. Now Corollary 1.14.23 gives us a homotopy equiv-

2

alence:
(2.5.9) Chioa — Ck,
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that fixes the points of;. Again by Exercise 1.117 we have a homeomorphism:

(2.5.10) Cy — (ZE”’) U Y,
j=1

that fixes the points of;. By Proposition 1.15.14 the topological space:

T
Vi = (zE”J) Y
j=1

can be endowed with the structure of a CW-complex hawings a subcomplex
and the open ballB*s, j = 1,...,r, as open cells. To complete the induction step
and the proof of the theorem, now takg ; to be the composition of the homotopy
equivalences (2.5.5)—(2.5.10). O

NEW PROOF OFCOROLLARY 2.4.5. By Theorem 2.5.5// has the same ho-
motopy type (and hence the same homology) of a CW-compleaving 1, open
cells of dimensiork for everyk > 0. But the singular homology df with coeffi-
cients inK is isomorphic to the homology of the cellular complEXY’; K) of Y,
which is a nonnegative chain complexI§fvector spaces whogeth chain space
has the dimension equal to the numbetketh dimensional open cells &f. The
conclusion follows from Lemma?. O

2.6. The Morse-Witten Complex

2.6.1. DeFINITION. Given a critical poinp € M of f then thestableand the
unstable manifolaf p are defined respectively by:

Ws(p, f) = {x eM: t_1}+moot.x :p}7
Walp, f) = {z € M : Jim t-a —p}.
Whenf is fixed by the context, we will write simpli#/s(p) and Wy (p).

The concepts of stable and unstable manifolds are standaft itheory of
dynamical systems (se®]]. More generally, one can define the stable and unstable
manifolds forhyperbolic singularitief an arbitrary vector field. In Appendix B
we present a summary of the basic concepts of such theorelaasithe proof of
the following:

2.6.2. THEOREM. Let f : M — IR be a smooth function on a Riemannian
manifold (M, g) and letp € M be a nondegenerate critical point ¢f Then the
stable and the unstable manifold;pfre connected embedded submanifolda/of
whose dimensions are respectively equal to the coindexrandhtlex oftlessf,.
The tangent spaceb, Ws(p) and T,,W,(p) are given respectively by the positive
and the negative eigenspaceskidss f,. O

Obviously if z belongs to the stable (resp., the unstable) manifold ofteaki
pointp thent - x also belongs to the stable (resp., the unstable) manifgid Thus
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Ws(p) andWy(p) are unions of flow lines of-V f. In particular, forz € Ws(p)
we have:

d

(2.6.1) —Vf(z)= I t-x o e T, Ws(p),
for all z € Wy(p) and similarly—V f(z) € T,Wy(p), for all z € W, (p). Ob-
viously, the unique critical point of in Wy(p) or in Wy(p) is p itself. Sincef
is strictly decreasing along the nonconstant flow lines-&f f, it follows thatp
is a strict global maximum of |y, ) and a strict global minimum of |y, ). In
particular,iWs(p) N Wyu(p) = {p}.

Given two critical point®, ¢ € M, we will be interested in the set of flow lines
going fromp to ¢, i.e., the flow lines contained i, (p) N Ws(q). We have the
following:

2.6.3. LEMMA. Letp,q € M be critical points off and assume thdd’, (p)
and Wy(q) are transversal and nondisjoint. Then the intersectin(p) N Ws(q)
is an embedded submanifold &f having dimension:(p) — 1(q). Moreover, for
anyz € Wy(p) N Ws(q) we have:

(2.6.2) T, (Wa(p) N Wi(q)) = TeWa(p) N TeWs(q);
in particular (se€(2.6.1), V f(z) € T, (Wu(p) N Ws(q)).

PrROOFE The intersection of embedded transversal submanifolds mmbed-
ded submanifold; moreover, the tangent space of the imtiéoseis equal to the
intersection of the tangent spaces, which proves (2.6.8)foAthe dimension of
Wau(p) N Ws(q) we compute:

dim (Wy(p) N Ws(q)) = dim(Wy(p)) + dim(Ws(q)) — dim(M)
= p(p) + dim(M) — p(q) — dim(M) = p(p) — p(q). O

2.6.4. @ROLLARY. Letp,q € M be distinct critical points off and assume
that W, (p) and W;(q) are transversal and nondisjoint. Thesp) > 1(q).

PROOF Sincep # ¢, there must exist a regular poinof f in W, (p) NW;(q),
so that0 # V f(z) € T, (Wu(p) N Wi(q)). Then:

p(p) — u(g) = dim(Wa(p) N Wi(q)) > 1. O

2.6.5. ®MROLLARY. Letp,q € M be critical points off such thati¥,(p)
and Ws(q) are transversal and let. € R be a regular value off such that the
intersectionW,, (p) N Ws(q) N f~*(a) is nonempty. TheW, (p) N Ws(q) N f~1(a)
is an embedded submanifold &of having dimensiom(p) — u(q) — 1. Its tangent
space is given by:

T, (Wu(p) N Ws(g) N f_l(a)) = T:Wu(p) N T:Ws(q) N Vf(x)l>
forall x € Wy(p) N Ws(q) N f~(a).
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PROOF SinceT,.f~!(a) = V() andV f(z) is tangent tdV, (p) N Wi(q),
we have thatiV,(p) N Ws(q) and f~!(a) are transversal. The conclusion fol-
lows (as in the proof of Lemma 2.6.3) from general facts altoaiintersection of
transversal submanifolds. O

2.6.6. DEFINITION. Givenk € Z, we say thatf : (M, g) — R satisfies the
Morse—Smale condition of ordér if for every pair of critical pointsp,q € M
with u(p) — u(q) < k, the unstable manifold gf and the stable manifold of
are transversal. If : (M,g) — R satisfies the Morse—Smale condition for all
k € Z(i.e., if Wy(p) andW;(q) are transversal for eveny, ¢ € Crits) then we
say simply thatf satisfies the Morse—Smale condition

The following lemma is just a restatement of Corollary 2.6.4

2.6.7.LEMMA. Assume thaf : (M, g) — R satisfies the Morse—Smale condi-
tion of order zero. Then the Morse index decreases stridtignmone goes through
aflow line of-V f, i.e., ifp,q € M are critical points off such that there exists a
flow line of —V f going fromp to ¢ thenu(p) > w(q). O

We now consider fixed a Morse functigh: M — R on a compact Riemann-
ian manifold (1, g) satisfying the Morse—Smale condition of order Our goal
is to associate a chain compléxto f (or, more precisely, t&/ f) which can be
roughly described as follows. For eveky> 0 we defined;, to be the free abelian
group spanned by the set of critical points fohaving Morse index equal tk;
for £ < 0 we set¢;, = 0. Now, if p,q € M are critical points withu(p) = &
andu(q) = k — 1, we have to define the coefficient fgrin the expression for
the boundary op in €. Sinceu(p) — p(q) = 1, by Lemma 2.6.3, the manifold
Wu(p) N Wy(q) of flow lines going fromp to ¢ is one-dimensional, i.e., the flow
lines going fromp to ¢ are isolated (see Exercise 2.34). We will prove that the
number of flow lines going from to ¢ is indeed finite. The coefficient farin the
expression for the boundary pfin € will then be given by an algebraic count of
the number of flow lines going fromto q.

Before giving the details of the construction, we need sauhrtical lemmas.

2.6.8. LEMMA. Letp € Crity. If z is in the closure ofi¥(p) thent - x is also
in the closure ofiVy(p) for all ¢t € [—oo, +00]. In particular, by the continuity of
f,we havef(t-x) > f(p), forall t € [—oc0, +o0].

PROOF Givent € R, we haveF;(Ws(p)) C Ws(p); this implies, by the

continuity of F, that F; (Wy(p)) € Ws(p). Thusaz € Wy(p) impliest -z € Wy(p)
forall t € R and hence also- x € Wy(p) for t = +o0. O

2.6.9. LEMMA. Letp € Crity and setf(p) = c. Then the intersection of the

closure of W (p) with the levelf ~!(c) contains only, i.e., Ws(p)Nf~(c) = {p}.

PROOF Chooser € Wy(p) with f(z) = c and let us show that = p.
First, by Lemma 2.6.8, we havg(t - ) > cfor all t € [—o0,+00]. On the
other hand,f(t - ) < f(z) = cfort > 0,sof(t-z) = cfort > 0 and
x must be a critical point off. Thus+oo - z = x and by Lemma 2.3.5, the
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restriction of " to (f o F')~!([¢, +oc ) is continuous at the poirftt-oo, z). But F
is constant and equal foin {+oo} x W(p) and{+oo} x W;(p) is contained in
(f o F)™'([e,+oc[), so it must beF(+o00,z) = p,i.e.,.z = p. O

2.6.10. LEMMA. Given distinct critical pointg, ¢ € Crity thengq is in the
closure ofWs(p) if and only if there exists: € Wy (q), * # ¢, which is in the
closure of Wy(p).

PROOEF If there existst € W, (q) with z € Wy(p) theng = —oco - zisin
Ws(p), by Lemma 2.6.8. Conversely, assume that Wy(p). If there were no
pointz € Wy(q) \ {¢} in the closure ofiWs(p) thenZ = M \ Ws(p) would
be an open set id/ containingWW,(q) \ {¢}. By Lemma B.22, there exists a
neighborhood/ of ¢ with the following property; fory € V, eithery € Wy(q) or
t-y € Z for somet > 0. Sinceq € Wi(p), we can findy € V N Wy(p) and since
p # q, it cannot bey € Ws(q). Thus, there must exist> 0 with¢ - y € Z. But
this contradicts the fact that y € Wy (p). O

2.6.11. DEFINITION. A broken flow lineis a sequence = (v1,...,7x) of
flow linesy; : R — M of —V f such thatim;_, 4 o i (t) = limy—, _~ vi+1(¢), for
i=1,...,k— 1. We say that: is thenumber of stepsf v or that~ is a k-step
broken flow line If p = lim;—,_~, 71 (t) andq = lim;,  ~ Y%(¢) then we say that
~ is a (k-step) broken flow lindromp to q. If p = g we also say that there exists a
0-step broken flow line fronp to q.

Given distinct critical pointg, ¢ € Crity then obviouslyW, (p) N Wi(q) # 0
if and only if there exists a-step broken flow line fromp to q.

2.6.12. LEMMA. Letp € Crity. If 2 € W(p) then there exists a broken flow
line from+oco - z to p.

PROOF Setq; = 400 -« € Crity. By Lemma 2.6.8¢; € Wy(p). If ¢1 = p,
we are done. Otherwise, by Lemma 2.6.10, we canfind Wy(q1), 1 # q1,

with 21 € Wi(p). Now setgy = +o00 - z1 € Crity. Observe that there exists a

flow line of —V f from ¢; to ¢ and f(q2) < f(q1). Moreover,q, € Wi(p), by
Lemma 2.6.8. Ifgo = p, we are done. Otherwise, we can continue this process
inductively until someg,, = p; otherwise, we would obtain a sequen@g ),>1
of critical points withf(q1) > f(g2) > -- -, which contradicts the fact thgthas
only a finite number of critical points. O

2.6.13. LEMMA. Letp € Crity and setf(p) = c. If a < cis such that there
are no critical values off on [a, c[ then every nonconstant flow line contained in
W (p) intersects the levef~—!(a), i.e., for everyz € Wy(p) \ {p} there exists
t € Rwith f(t-z) = a.

PROOF Chooser € Wy (p),  # p. Thenf(z) < c. If f(z) < a, then, since
f(t-z) — ¢ > aast — —oo, there exists < 0 with f(¢ - z) = a. Now assume
that f(z) > a. It suffices to show thaf(¢ - z) < a for somet > 0. If we had
ft-x) > aforallt > 0theny = +oo - 2 would be a critical point off with
a < f(y) < ¢, which is a contradiction. O
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2.6.14. LEMMA. Assume thatf : (M,g) — R satisfies the Morse-Smale
condition of orderl. Then, giverp, ¢ € Crity with u(p) — pu(q) = 1, there exists
only a finite number of flow lines efV f from p to q.

PrROOF Choosea < f(p) such that there are no critical values fofon the
interval [a, f(p)[. Then, by Lemma 2.6.13, every nonconstant flow line-af f
contained inWW,(p) intersectsf~!(a) (precisely once), so there exists bijection
between the set of nonconstant flow lines-&¥ f contained iV, (p) andW,(p)N
f~(a). Thus, there exists a bijection between the set of flow lifes G f from
p to g and Wy (p) N Ws(q) N f~1(a). We have to prove that/,(p) N Wy(q) N
f~1(a) isfinite. By Corollary 2.6.5W,(p)N"W(¢)Nf~!(a) is a zero-dimensional
embedded submanifold @f/, i.e., it is a discrete subset 61 . O

2.6.15. CEFINITION. A smooth mapf : M — R is said to beself-indexingf
for every critical pointp € M of f, we havef(p) = u(p).

2.6.16. RRoPoOSITION If f : M — R is a self-indexing Morse function on
a compact Riemannian manifold/, g) then the sublevel§f*);, of f form a
cellular filtration of M whose corresponding cellular complex is isomorphic to the
Morse—Witten complex df.

2.6.17. ROPOSITION Letf : M — R be a smooth Morse function on a com-
pact Riemannian manifoltM/, ¢g) satisfying the Morse—Smale condition of order
zero. Then there exists a self-indexing Morse funcﬁonM — R and a Rie-
mannian metrig on M such that the gradient of with respect tg is equal to the
gradient offwith respect tqgj.

2.6.18. LEMMA. Letf : M — IR be a smooth function on a compact Riemann-
ian manifold (M, g). Leta < b be noncritical levels off such thatf~!([a, b])
contains precisely two critical points,q € M of f. Assume thap and ¢ are
nondegenerate and that there are no flow lines-&f f connectingy andg. Then,
givency,cs € R, there exists a smooth functigh: M — R and a Riemannian
metricg on M such that:
e f andg are respectively equal t¢ andg outsidef ([a+e,b—¢l), for
somes > 0;
o f([a,b]) = f1([a,b]); B
e the gradient off with respect tog is equal to the gradient of with
respect tay;

o f(p)=c1. f(q) = ca.
Exercises for Chapter 2
Calculus on manifolds: basic terminology.

EXERCISE 2.1. LetV be a finite dimensional real vector space andglet
Lin(V) — Lin(V) be defined by (T) = T?. Show that the differential of is
given by:

d¢(T)-H=ToH+ HoT,;
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conclude thay restricts to a diffeomorphism between open neighborhoddiseo
identity.

EXERCISE2.2. Show that every differentiable manifold admits a Rieman
metric. More generally, given a vector bundleover a differentiable manifold/,
an open subset C E whose intersection with every fiber éf is convex and non
empty, show thafy admits a global smooth section whose image is contained in
A (hint: use partitions of unity). Obtain the existence of a Rien@mmetric on
M as a consequence of this more general resitit:(let £ be the subbundle of
TM* @ TM* consisting of symmetric bilinear forms and létbe the subset aff
consisting of positive definite forms). Where does the ampuinfail in the case of
Lorentzian metrics?

EXERCISE2.3. Let& be a fiber bundle over a differentiable manifdlfl with
projectiont : £ — M. Assume thatf : N — M is a smooth map defined on
another differentiable manifol&v. The pull-back of the fiber bundle€ by f is
defined by:

£7€ = U {a} x Eswy;
zeN
we have a canonical map : f*¢ — N that sends{z} x Ep,) tox € N. If
a: |y — U x & is atrivialization of E then we define a trivialization:

a:a (D)) — fFHU) x &
of f*£ by setting:
a(z,e) = (w,af(m)(e)),
forall (z,e) € #71 (f~1(U)) (so thatz € f~1(U) ande € £j ). Show that:

e f*£ is afiber bundle oveN;
e themapt' : f*€ — & defined byF'(z, e) = e is smooth and the diagram:

f*ng

N—f>M

commutes;
e given a smooth map : N — & with 7 o s = f show that there exists a
unique smooth sectiohi: N — f*£ of f*& for which the diagram:

f*ng

N ——

f

commutes;
e if N C M is asubmanifold ang : N — M is the inclusion therf*&
can be naturally identified with the restrictiény;
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e if £ has the structure of a vector bundle then so go&s(more precisely,
if «is fiber-linear then alsé: is).

EXERCISE 2.4. LetEy, E5 be vector bundles over a differentiable manifold
M. AmapT : By — Es is called avector bundle morphisnfi for every x € M,
T maps(E1), linearly into (Es), i.e.:

T[(E1)s] C (E2)s, forallze M,
and
T)(gy), : (E1)z — (E2). islinear, for allz € M.

Show that ifT" : Fy — F, is a smooth bijective vector bundle morphism then
T-': Ey — E;is also a smooth vector bundle morphism; we then say that
T is avector bundle isomorphisithint: to prove thatZ’~! is smooth, use local
trivializations and the inverse function theorem).

EXERCISE 2.5. LetFEy, E5 be vector bundles over a differentiable manifold
M and letT : £y — FEs be a smooth vector bundle morphism such that the
rank of T, : (E1), — (E2), is independent ok € M. Show thatKer(T') =
U,en Ker(T,) is a vector subbundle of; andIm(7T) = (U, Im(7%) is a
vector subbundle aof’;.

EXERCISE2.6. If I/ is a vector bundle over a differentiable manifdldl and
E’ is a vector subbundle df, show thatE’ is closed inE.

EXERCISE 2.7. LetE be a vector bundle over a differentiable manifdidl
with projectionw : E — M. For everye € FE, the vertical spac&er, £ may
be identified with the fibei, containingx (as usual, one can identify the tan-
gent space to a vector space with the vector space it sel.thésidentification
Ver, & = E, to construct an isomorphism of vector bundles fr&r £ to the
pull-backn*E.

EXERCISE 2.8. LetE be a vector bundle over a differentiable manifdifl
with projection7. Given horizontal spacddor, F, i = 1,2,3 at a pointe € FE,
show that:

Comp( Horfl3 E, Hori E) =0,
Comp( Hori E, Horg E) = —Comp( Horg E, Hor}3 E),
Comp( Hor! E,Hor? E) = Comp( Hor! E, Hor? E) +
+ Comp(Horg E,Hor? E);

conclude that affine compatibility is an equivalence relatn the set of all hori-
zontal bundles ofs.

EXERCISE 2.9. LetE be a vector bundle over a differentiable manifaif
and letf : N — M be a smooth map defined in another differentiable manifold
N. Assume thaHor F is a connection oy and consider the map : f*F — E
defined in Exercise 2.3. For evefy, e¢) € f*FE, set:

(2.6.3) Hor, o) (f*E) = dF(;}e)(Hor6 E);
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show that (2.6.3) defines a connection . This is called thepull-back of
the connectiorHor £ by the mapf. Denoting byf*V the covariant derivative
operator of (2.6.3), show that for evesy= I'(f*E) and every € T'M we have:

(f*V)pé = Vs,
wheres = ' o s.

EXERCISE 2.10. Given vector bundles;, E> over a differentiable manifold
M, define a natural vector bundle structure on the set:

By @By = | (Bl)e ® (E2)a-
zeM

Given connectiorvV! andV? in E; and E, respectively, show that:

Vv(sl ® 82) = (Vvsl) ® 82+ 81X (Vvsg),
S1 € P(El), S9 € P(EQ), Ve P(TM),

defines a connection oB; ® E,. If E is a vector bundle ovel/ define also a
natural vector structure on the set:

E* = U (Em)*a

rxeM
if V is a connection oy, show that the formula:

(Vis)()=V(s-s')—s(Vvs'), sel(E"), s eT(E), Vel (TM),
defines a connection afi*.

EXERCISE2.11. LetM be ann-dimensional differentiable manifold ardd C
M a subset. We calD a domain with smooth boundaifpr a submanifold with
boundary of codimension zéri for every x € D N 0D there exists a chairp :
U — U of M with z € U andy(U N D) = UNH" (by 9D we mean the boundary
of D as a subset of the topological spadg. Show that:

e if D is a domain with smooth boundary i then D is a topological
manifold with boundary (in the sense of Exercise 1.63), vehioserior
points coincide with the interior points @ as a subset of the topological
spaceM.

o lIf f: M — Ris asmooth map and € R is a regular value forf,
show thatf® = f~!(]—o0,d] ) is a domain with smooth boundary i
whose boundary ig~!(a).

o If f: M — Risasmooth map angl b € R are regular values gf with
a < b, show thatf~!([a,b]) is a domain with smooth boundary i
whose boundary ig~!(a) U f~1(b).

EXERCISE2.12. Asmoothmap : M — N between differentiable manifolds
M, N is said to beransversalto a submanifold® c N if for everyz € f~1(P)
the (not necessarily direct) sum(d f,) + T, P’ equals the whole tangent space

Tt@N. Show that iff : M — N is transversal td> C N then f~i(P)isa
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submanifold ofM whose codimension i/ equals the codimension @t in N;
show thatl, f~*(P) = df,; 1 (T, P) for everyz € f~1(P).

EXERCISE 2.13 (transversality theorem). Lgt: U € M x N — P be a
smooth map, wher€ C M x N isopen andV/, N, P are differentiable manifolds.
For everyy € N, consider the mag, : U, C M — P defined byf, = f(z,y),
whereU, = {# € M : (z,y) € U}. Show that iff is transversal taP then
fy is transversal taP for almost everyy € N (hint: apply Sard’s theorem to the
restriction of the projectiod/ x N — N to the submanifoldf ~!(P) c U).

EXERCISE2.14. LetX, Y be topological spaces. Amgp: X — Y is called
a covering magpf every y € Y admits an open neighborhodd C Y such that
f~1(V) can be written as a disjoint uniofi ! (V') = (J,; U; where eactU; is
open inX and f mapsU; homeomaorphicallynto V. Show that:
(a) every covering map is a local homeomorphism.
(b) If Y is connected and : X — Y is a covering map then the cardinality
of f~1(y) is independent of € Y. In particular, ifY is connected and
X # () then every covering map: X — Y is surjective.
(c) Assume thaX andY are Hausdorff and that satisfies either one of the
following:
— Y is first countable, i.e., every point has a countable fundaahe
system of neighborhoods;
— Y is locally compact;
then every proper map : X — Y which is a local homeomorphism is a
covering mapHint. f is closed by Exercise 1.76).

EXERCISE 2.15. LetSq, S, be finite dimensional real vector spaces and let
w1, wo be volume forms forS; and .S, respectively. Set = S; @ S, and denote
bym : S — Si, m: S — Sy the projections. Show that = (7jw;) A (m5ws) is
a volume form onS such that if(b;)%_, is a basis forS; and (b})!_, is a basis for
Sy then:

w(bl,...,bk,b/l,...,b;) :wl(bl,...,bk)wg( /1771);)

We callw thedirect sunmof the volume formss; andwy and we writev = wq S ws.
Prove a version of the result above for volume densitiesenfélowing sense: if
O; is an orientation foiS;, i = 1, 2, then there exists a unique orientation x O-
in S for which the concatenation of &, -positive basis of; with anOs-positive
basis ofS; is (O; x Oy)-positive. Show that ib; = [O;, w;] is a volume density
inS;, i =1,2,thend = [w; ®wq, 01 x O9] is a well-defined volume density ifi.
We call$ thedirect sunmof the volume densitie§;, andd, and we writed = §; P 5.

EXERCISE 2.16. LetT : V — W be a linear operator, wheré, W are
finite dimensional real vector spaces; set= dim(KerT), | = dim(Im7’) and
n =k +1 = dim(V). Suppose we are given volume fotm on Ker(T") and
a volume formw, on Im(7"). For every subspacd” C V complementary to
KerT define a volume formv on V' = Ker(7T") & W and the direct sum ab; and
(T'|w)*ws. Show that:
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o w = Ty,wi AT wy, Wheremge, : V' — Ker(7') denotes the projection
with respect to the decompositidn = Ker(T') & W;

e w is the pull-back otv; & wy by the isomorphisnyyy : V. — KerT &
Im(7T) defined byoyw = (mker, T');

e w does not depend on the choicel®f (hint: given another complemen-
tary subspacé&l”’, the determinant oy o ¢y;' is equal tol);

Prove a version of the result above for volume densities.

EXERCISE 2.17. LetM be a (semi-)Riemannian manifold,the canonical
volume density ofd/ and X a smooth vector field od/. Thedivergenceof X
is the scalar functionlivX : M — R defined bydivX (z) = trVX(z). Show
that the Lie derivativél x § equals(div.X)é (hint: if (X;)?_, is alocal orthonormal
frame forM andw is then-form that corresponds @in the orientation determined
by (X;)i~, show thatL xw (X7, ..., X,) = divX).

EXERCISE 2.18. LetM be a Riemannian manifold with boundary aifda
smooth vector field od/ with compact support. Show that:

leX d,u(; = / <X, N> d/L(;/,

M oM

whered andé’ denote the canonical volume densitiesMéfanddM respectively
andN : OM — TM is the unit outward pointing normal vector field alo6g/
(hint: apply Stoke’s theorem to the density?).

EXERCISE2.19. Show that the volume of the unit bBII" is given by:

N/2 . .

L if Viseve

e (n/2)! r)
vol(B™) = N N1 <N—1

|
> , if Nisodd

N1
Apply Divergence’s theorem to the identity vector fieldf_bjfv to conclude that:
vol(S¥1) = N - vol (BY).

EXERCISE2.20. LetB : R" x --- x R" — R be ak-linear map. Thdrace
N—————

k times

of B is the(k — 2)-linear maptr B defined by:
trB(z1,...,xp_2) = ZB(l’l, ey Ty G4, éi),
i=1

where(e;)"; is an orthonormal basis @".
(a) show that ift is odd then:

/snl B((m)(k)) dpio (z) = 0,
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wherez(®) = (z,...,z) ando denotes the canonical volume density of
N——
k times
sl
(b) Assume thaB is symmetric. Define a vector field onR"™ such that:
(X(x),v) = B(x,...,z,v),
N——
k — 1times

forall x,v € R"™, where(-, -) denotes the Euclidean inner product. Apply
divergence’s Theorem faX on the balB" to conclude that:

/ B(x(k)) dpe(z) = (k— 1)/_ (trB)(x(k_z)) dz.
gn—1 B"

(c) given an integrable map: B" — R, show that:

/Bm: /01 </S ¢($t)tn_1d,ug(a:)> dt.

(d) AssumingB symmetric and: > 2, show that:

() okl B (k-2 .
/SMB( DY dpig () l<:—|—n—2/sn1(tB)( £-2)) dpig ().

(e) Conclude that ik > 2 is even andB is symmetric:

/ B(:L'(k)) dpe(z)
Snfl

(N (23N (Y L gyt
_<k+n—2><k’+n—4> <n+2>n(tr B)VOI(S )

EXERCISE 2.21. Letm : E — M be a Riemannian vector bundle over a
differentiable manifold\/. Show that

E'={¢cE: ¢ =1}

is a submanifold of2 and thatr|z;: : B! — M is a fiber bundle oveM. If V is
a connection ork for which the Riemannian structure is parallel, show thatfb
¢ € E' the tangent spacE E' is given by:

TeE' =Hor¢ E@® ¢ C Horg E® Eqg) = T¢E.

EXERCISE 2.22. LetE be a vector bundle over a differentiable manifalfi
and letV be a connection oft. If (&;)%_, is a local referential o defined in an
open subsel/ of M then we defingl(k, R)-valued differential formss andf2 on
U by setting:

wij(v) = 0:(Vo&j),
Qij(vvw) = 9@ (R(’Uﬂﬂ)gj)»
fori,j = 1,...,k v,w € T,M, z € M, where(6;)*_, denotes the dual refer-

ential of (¢;)%_; and R denotes the curvature tensoréf The formsw and(2 are
called respectively theonnection formand thecurvature formof V with respect
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to the referential¢;)¥_,. We writed = (6;)_, and if¢ is a section of? we will
denote byd(¢) the mapU > = — 6,(&,) € RF which is simply the coordinate
representation of in the referential¢;)%_,. Show that:
(a) if ¢ € T'(E|y) then the covariant derivative gfin a directionv € T, M,
x € U, is given in coordinates by the formula:

0:(Vug) = v[0(6)] + w(v) - 0(8),

wherev acts on thdR*-valued mag(¢) as a directional derivative oper-
ator andw(v) is thought of as a linear endomorphismif.
(b) The following identity holds:

k
(2.6.4) Qij = dwij + Zwir A Wrj,
r=1
fori,j=1,... k.
(c) If avector bundle morphism: TM — FE is given, we define thorsion
of V with respect ta as the tensol’ € I'(TM* @ TM* ® E):

T(X,Y)=VxuY)—-VyuX)—([X,Y]), X, Yel(TM).
Thetorsion formof V (and:) with respect to the local referenti@-)f:1
is theR*-valued2-form © on U defined by:

O;(v,w) = 0; (T(v,w)),
fori =1,..., k. The following identity holds:

k
(2.6.5) ©;=dfiot) + Y wirA(Bror), i=1,... .k
r=1
wheref; o 1 is regarded as &form onU.
(d) If E is endowed with a Riemannian structure which is parallehwet-
spect toV, show thatv and(2 take values io(k), i.e.,w;; = —wj; and
Qz’j = —jSforallz',j =1,...,k.

Critical points and Morse functions.

EXERCISE 2.23. Letf : V — R, a: (7~—> R" be smooth maps, WNheré
is open inR"™, U is open inR™ anda(U) C V. Show that for every € U the
following holds:

Hess(f o o), = da(z)* (Hess fo(r)) + df (a(z)) o Hessa,.

Conclude that iff : M — R is a smooth map on a manifol, z € M is a point
andy : U ¢ M — U C R"is a local chart with: € U then the symmetric
bilinear formdy(z)* (Hess(f o ¢~ 1), () in T M does not depend on the choice
of the chartp if and only if x is a critical point off.

EXERCISE2.24. Letf : M — R be a smooth map ande M a critical point

of f.
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e Show that the Hessian ¢f at z (introduced in Definition 2.1.1) equals
the symmetric bilinear formy(z)* (Hess(f o go_l)w(x)), given in Exer-
cise 2.23;

e Show that for any smooth curvein M with (0) = = we have

2

(7 07)(0) = Hess . (+/(0),7/(0)).

o |dentify M with the zero section of' A/* and consider the canonical de-
compositionl, TM* = T,M & T, M*. Show that the second coordinate
ofd(df), : T, M — T, M & T, M* is identified withHess f,..

EXERCISE2.25. Letf : U — R be a smooth map defined on an open subset
U c R"™ Show that ifHessf, is nondegenerate for some € U thendf :
U — R™* is a diffeomorphism in an open neighborhoodrdh U. Conclude that
nondegenerate critical points are isolated in the set ti€alipoints.

EXERCISE2.26. Letf : M — R be a smooth map on a differentiable mani-
fold M.

e Show thatf is a Morse functions if and only if the mafyf : M — T M*
is transversal to the zero section.

e Let$ : M — R™be a smooth immersidnDefineF : R"*x M — R by
F(a,z) = f(z) +a(¢(z)). Show that the magL : R™* x M — TM*
is transversal to the zero section’®BM *.

e Conclude from the Transversality Theorem (see Exercisg) 2tfat the
mapF(«,-) : M — R is a Morse function for almost every € R™*.

e By observing that one can chooseto be bounded, show that every
smooth functionf : M — R is the uniform limit of Morse functions.

e Recalling that every continuous mgp: M — R is the uniform limit
of smooth maps, conclude that the set of Morse functions mselén
the space of continuous maps: M — R endowed with the uniform
convergence topology.

The passage through a critical level.

EXERCISE2.27. Letp : [0,1] — R be a continuous function such that:) <
1for x € [0,1] andp(1) = 1. Consider the triangl& with vertices(0,0), (1,1)

and(0,1) and letT be the region:
T={(z,y) eR*:0<a <1, plx) <y <1},

Leth : T — T be the unique map such thatz, p(z)) = (z,z), h(z,1) = (z,1)
andh(z, -) is affine for everyr € [0, 1]. Show thath is a homeomorphism.

EXERCISE2.28. Leto : [0,1] — ]0,+oo[ andos : [3,1] — R be continu-

ous functions such that; (0) = 1, o2(3) = 0, 01(1) = 02(1) andoz(z) < o1 (z)

3Whitney’s Theorem yields the existence of a smooth immargio: M — R" for n >
2dim (M) and the existence of a smooth embeddingM — R" for n > 2dim(M) + 1.
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forall z € [,1[. Consider the regiof given by:
R:{(x,y)€R2:0§:E§%, Ogygal(:n)}
1
U {(az,y) e R?: 3 <z<l1 oyz)<y< 0'1(1')}.
Show that there exists a homeomorphism R — [0, 1] x [0,1] that fixes the
points of [0, 3] x {0} U {0} x [0,1].
Hint:
e Consider the map; : R — R? such thath (x,-) is affine,h;(z,0) =

(z,0) and hi(z,01(z)) = (z,1) for everyz € [0,1]. Thenh, is a

homeomorphism onto the regid® = ([0, 5] x [0,1]) UT, whereT is

given by:

O‘Q(l’)
Jl(l’)
e Use Exercise 2.27 to obtain a homeomorphissn: T — T that fixes
the points of{1} x [0,1], whereT is the triangle with vertice§3,0),
(3,1) and(1,1). Extendh; to R’ by settingh, = Id on [0, 3] x [0, 1],

obtaining a homeomorphism frof' to R” = ([0,4] x [0,1]) UT.

e Definehs : R” — [0,1] x [0,1] to be the homeomorphism such that
hs(-,y) is affine,h3(0,y) = (0,y) andhz (¥, y) = (3,y) forally €
[0,1].

e Seth = hg o hy o hj.

The CW-complex associated to a Morse function.

1
P {wmert beacy

ygl}.

IN

EXERCISE 2.29. Given non negative integers », show that(B” x {0}) U
(Sv=! x B") is a strong deformation retract Bf" x B".

EXERCISE2.30. Letf : M — R be a Morse function on a compact manifold
M. Show that the map/ > x — F(+o0,z) € M is not continuous.

ExercISE 2.31. If z is a nondegenerate saddle pointfofvith f(xz) = a,
show that the map, has no continuous extension:io

EXERCISE2.32. Consider the map: R? — R given by f(z,y) = (2% —
y?). Compute the arrival time majy, identifying its domain.

EXERCISE 2.33. The goal of this exercise is to give a fancier proof @& th
continuity of the map in the proof of Proposition 2.3.9. Lei be an arbitrary
point not in[—oo, +-00] and define a topology on the d&t= [—oo, +0o] U {w} as
follows; the open subsets &f are the open subsets [pfoo, +00] and the sets of
the formU U {w} with U an open subset ¢f-oo, +0oc] containing|0, 4+oc].

e givena € R, then setting\,(z) = w for z € Crit¢(a), show that the
map:

Ao :{z € Dgy: f(z) > a} UCritg(a) — R
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is continuous;
e setF(w, ) = xforz € Crity(a) and, under the notations and hypothesis
of Proposition 2.3.9, show that the restrictionfoto the set:

{(t,z) : & € S\ Critg(a), t € [0, \a(x)] } U (Iﬁ x Crity(a)),

is continuous;
e show that( is continuous.

EXERCISE 2.34. Letf : M — R be a Morse function on a compact Rie-
mannian manifold M, g) and letp, ¢ € M be critical points withu(p) — u(q) =1
and W, (p) transversal toV;(q). Show that ify : R — M is a flow line of
—V f going fromp to ¢ then there exists an open subsetC M with Im(y) =
U N (Walp) N Wi(q)).



CHAPTER 3

Applications of Morse Theory in the Compact Case

In this chapter we will present some applications of Morsedrk for compact
manifolds to the theory of submanifolds of a Euclidean space

The first application is a generalized version of the stahddauss—Bonnet
theorem for compact surfaces. Recall that the Gauss—Bummiem states that the
integral of the Gaussian curvature of a compact surfdcequal27y (M), where
x(M) is the Euler characteristic af/. The generalized version of this result,
called the Gauss—Bonnet—Chern theorem, holds for anampigven-dimensional
compact Riemannian manifolds and it states that the Eularackeristic of\/
can be obtained as the integral of a suitable density/odefined in terms of the
curvature tensor al/.

Then we present the Theorem of Chern and Lashof, which givemieacter-
ization the isometric immersions of Riemannian manifolidsiEuclidean space
having minimalabsolute total curvature

We then give a topological characterization of those cornRaanannian man-
ifolds having positive sectional curvature and that admilsametric immersion in
codimension one and two. Finally we discuss generalizatiminthe above sit-
uations to a class of hypersurfaces, that we gahsi-convexthat includes the
conformally flay hypersurfacesnd the hypersurfaces wittonnegative isotropic
curvature

3.1. The Fundamental Equations of an Isometric Immersion

Let (M, g), (M,g) be Riemannian manifolds and I¢t: (M,g) — (M,q)
be an isometric immersion, i.ef,: M — M is an immersion ang is the pull-
back ofg by f. The inner productg andg will be usually denoted simply by
(-,-). We denote by the Levi—Civita connection af/ and byV the Levi—Civita
connection ofM. For everyz € M, the tangent spadEf(x)H is the direct sum
of the spacesl f, (T, M) = T, M and its orthogonal complemedtf, (T, M)+ in
Tt M. The spacel f, (T, M) will be identified with the tangent spadé M and
the spacel f,.(7,M)*, denoted by, M, is called thenormal spaceorresponding
to the immersiory at the pointc. In the language of vector bundles we can describe
this situation as follows. The differential gfinduces an injective vector bundle
morphism from the tangent bundl&) of M to the pull-backf* T M:; this vector
bundle morphism gives an isomorphism fr@m/ to a vector subbundle ¢f7'M,
that will be identified with'). The spaces, M C (f*T'M), = Ty)M form
another vector subbundte)/ of f*TM and we have g-orthogonal direct sum

167
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decomposition of vector bundles:
f*TM =TM @ vM.

We callv M thenormal bundleof the immersionf. Givenz € M andz € Tf(x)H
we denote by:” and byz' respectively the components efin df,(T,M) =
T, M and inv, M.
Let X, Y be smooth local sections @tA/ and¢ a smooth local section ofM .
Itis easily seen that:
o VxY = (va)T.
° v)i(g := (Vx¢ is a Riemannian connection anV/ called thenormal
connection
Seta(X,Y) = (VxY)4 andA4: X = —(Vx&)T. An easy computation
gives:
e o(X,Y) =a(Y,X)anda(X,Y) atz € M depends only oX (z) and
Y (x). In particular it definesyx € M, a symmetric bilinear map:
oy T, MeT. M — v, M,
called thesecond fundamental forof f atz.
o A:X atx € M depends only o8(x) and X (x), hence define a symmet-
ric linear map:
Ae : T, M — T, M,
called theWeingarten (or shape) operatam the ¢ direction. The eigen-
values ofA, are called therincipal curvatures
o <a(X)Y),{>=<AX,Y >.
Resuming the situation, we have the so caledmulas of Gauss and Wein-
garten

VxY =VxY + a(X,Y),
Vx€&=—AcX + VxE.
A simple computation yields the following:

3.1.1. RROPOSITION If R, R and R denote respectively the curvature ten-
sors ofV, V and V- then the following identities hold:

(R(X,Y)Z,T)
(Gauss)
=(R(X,Y)Z,T)+ (I(X,Z),1(Y,T)) — (I(X,T),1(Y, Z)),
(R(X,Y)Z,n) = (VRI)(Y,Z) — (VYI)(X, Z2),n), (Codazzi)
(R(X,Y)E,n) = (RH(X,Y)En) + ([Ay, A X, Y), (Ricci)

forall X,Y,Z,T € T, M, &,n € v, M,z € M,where[A,, A¢] = A, Ac — AcA,
andV® denotes the connection inducedBynd V- in the tensor bundl& M* ®
TM*®vM ,.e.

(VRI)(Y, 2) = VX (IL(Y, 2)) - L(VxY, Z) - (Y, Vx Z).
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O

For a generalization of Proposition 3.1.1 to the contextasfegal direct sum
decompositions of vector bundles endowed with connectiees Exercis@?.

The equations of Gauss—Codazzi—Ricci are calleduhdamental equations
of the isometric immersion due to the following:

3.1.2. THEOREM. Let M be a simply-connected (and connected) Riemannian
manifold and letE' be a Riemannian vector bundle ov&f; we denote by, -)
both the inner product on the tangent spaced/6fnd on the fibers of’. We also
denote by-, -) the inner product on the fibers @M @ E that correspond to the
orthogonal direct sum of the Riemannian structure¥'6f and E. Suppose we are
given a connectio” on E and a smooth tensor fiell’ € T(TM*@TM*® E)
that is symmetric with respect to the first two variables. \&eate byV the Levi—
Civita connection of\/ and also the connection chiM* ® TM* ® E induced by
V and V¥; by RF we denote the curvature tensorf°. Forz € M, ¢ € E,,
we denote b)ﬁf the symmetric bilinear form offi,, M given by<IIE(-, '),§> and

by Af the symmetric linear endomorphismBfM that represents such bilinear
form. Fixc € R and denote b§¢ the complete, simply connected space of constant
sectional curvature and dimensiom+dimFE ; for x € M, vy,v9,v3 € T,M®OFE,
set:

R(v1,v9)v3 = C[<2)2,2)3>1)1 — (1)1,1)3>v2].
Assume that the equations of Gauss, Codazzi and Ricci asfieatwithll, II¢,
A¢ and R+ replaced byll”, i, Af and R” respectively. Then, there exists an
isometric immersiory : M — S° and a Riemannian vector bundle isometry
from E to the normal bundle M of the immersiory that carriesV” to the normal
connectionV+ and ¥ to the second fundamental form of the immersforAny
other such pair(f, é) differs from(f, ¢) only by left composition with a global
isometry ofS¢.

3.1.3. REMARK. Forthe uniqueness part of Theorem 3.1.2 (up to global isome
tries of the space form) it suffices to assume thiats connected; simply-connect-
edness is used only for the existence.

3.1.4. REMARK. The theorem above tell us that, similarly to what happeh wit
curves whose local geometry is completely described by thadt formulas, the
local geometry of an isometric immersion into a space formospletely deter-
mined by the fundamental equations.

3.2. Absolute Total Curvature and Height Functions

In this section)M denotes am-dimensional Riemannian manifold anfd :
M — R™P denotes an isometric immersion. In this case the equat_ib@aurss,
Codazzi and Ricci can be written in a simplified form using féet thatR = 0.

3.2.1. DEFINITION. Denote byv! M the unitary normal bundle of the immer-
sionf,i.e.:
vVIM = {(2,8) e vM : ||¢|| = 1}.
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The unitary normal bundle is a submanifold wd/ (see Exercise 2.21) and the
map

&M — §tP=l c RNFP
defined by®(x,¢) = £ is smooth. We cal$ the (generalizedbauss mapof the
immersionf.

Observe thats : v'M — S"TP~1is a map between manifolds of the same
dimension.

3.2.2. REMARK. If p = 1, v'M is the orientation covering oM. So the
manifold is orientable if and only i#' M/ is disconnected hence diffeomorphic to
two copies ofM and, in this case, the classical Gauss map is the restriotién
to a connected component of /.

The normal bundle’M is a Riemannian vector bundle with the inner prod-
uct in the fibers induced frof™*?; considering such Riemannian vector bundle
structure, the Riemannian metric 8f and the normal connectiow+, we can
construct a Riemannian metric in the manifeld/ as explained in RemarR?.
The unitary normal bundle' M will be considered with the Riemannian metric
induced fromv M. Recall from Exercise 2.21 that fgre v M we have:

(8.21) Tev'M =Hore)vM @ (£ NvpM) 2 T,M @ (65 N v M).

Observe that by identifyind, M with d f, (T, M), the tangent spack, ¢ M is
identified with7 S™HP—1 = ¢+,

Also the normal bundle and the unit normal bundle can be abiytimmersed
into R2("+7) by the map:

FivM — R, F(2,€) = (f(2),§) € R™P x R = R,
and the induced metric is the one described above. Is than ttiat the tangent

spaceT(m)ulM is spanned by frames of the tydeX,..., X, &1,..., &1}
where theX!s are tangent ta\/ and the¢!s are a basis fof+ N v, M. Choos-
ing such a basis orthonormal and extendig it locally to ahambrmal frame field
of the same type, sincﬁ&fj = —0;;&, we get:

e < X(8),X; >=<Vx,§, X, >=— < A X;, X >,

o <&(®),X; >=< V& X, >=0,

o <&(8),8 >=< Vg, , & >=— < V&, & >= 0.

Hence, the differential of the Gauss map has a matrix reptatsen, in a basis

of the form above, of the type:

—A, *
dﬁ(m,@:( o 1d>'

3.2.3. MROLLARY. If § denotes the canonical volume density bl and o
denotes the canonical volume density of the unit sps&rg—! then

(B70)(we) = | det Az g)] 0z )
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for all (z,&) € v!M. In particular, (z,¢) € v* M is a regular point for® if and
only if A, ¢ is invertible.

We are now ready to define the absolute total curvature ofcamneagric immer-
sionf : M — R™P, which gives a sort of global measure of how myctbends”
the manifoldM inside R"*.

3.2.4. DEFINITION. Theabsolute total curvatur®f the isometric immersion
f is defined by:

1 *

From Lemma 3.2.3 we obtain immediately the following forentdr 7(f):

1

@23 ()= gy

/ ‘ det A(x,g)‘ dpg(x,€) € [0, +00],
viIM

whered denotes the canonical volume densityvéfl/. Moreover, using Fubini’s
theorem (Theorerf??) it follows that:

1
T(f) = W /M (/V%M |det A, )| dﬂoz(f)> dus(z),

where o, denotes the canonical volume density of the unit sphee and §
denotes the canonical volume density\df

3.2.5. REMARK. If M is an oriented surface iR? and f : M — R? is the
inclusion map, therr( f) coincides with the integral ovev/ of the absolute value
of the Gaussian curvature 8f divided by2r7 (see remark ?7?).

When M is compacts(f) is finite; we make the following:

3.2.6. AsSUMPTION In the rest of the section we will assume tiAdtis com-
pact.

We will naw relate the absolute total curvature to the aitjgoint of certain
important functions.

3.2.7. CEFINITION. Let¢ € S™tP~! pe a fixed vector. We define theight
function in the¢ directionas:

h5 M — R, h&((ﬂ) =< f(x),f >

Geometrically,h¢ (x) is the projection off () onto the oriented lingt¢, ¢t €
R} or, equivalently, the (oriented) height ¢fz) in relation to the hyperplang*.
An easy computation gives:
o dhe(x)X =< df(x)X,€ >,
o P(he)(2)(X,Y) =< VyX,& >=< AcX,Y >if (z,§) e viM.
Hence we have:
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3.2.8. ®ROLLARY. A pointz € M is critical for h¢ if and only if (z,&) €
vIM. Moreover such a critical point is nondegenerate if and ahlyl¢ is non-
singular. Finally, k¢ is a Morse function if and only i is a regular value of the
Gauss map.

Let D c S™*tP~! denote the set of regular values®f Since) is compact,
D is open; moreover, by Sard’s theorem, the complemei® of S”+P~! has null
measure. Fok > 0, we define integer valued mapg : D — IN by setting:

ki (&) = number of critical points ofe having indexk;

observe thdt, is a Morse function, fo€ € D, and hence has only a finite number
of critical points in the compact manifoltl/. We also sek(§) = >, _, ki (€), SO
that:

#(€) = number of elements a6~ (&),

forall¢ € D.

3.2.9. LEMMA. The restriction of the Gauss map & !(D) is a (smooth)
covering map ontd.

PROOF. Follows easily from the observation thé&ts-1(p) : YD) - D
is a proper local diffeomorphism (see Exercise 2.14). O

3.2.10. LEMMA. The functionsc;, and s are continuous irD, i.e., constant in
every connected component/of

PROOF Let¢ € D be fixed; we write:

6_1(5) = {(mlvg) S 17 e 7T}7
where eachr; € M. We are going to show that the mapgs are constant in a
neighborhood of. To this aim, we can assume that> 1, otherwise allz;’s are
zero around. Sinced|e-1(p) : &~ !(D) — D is a covering map (Lemma 3.2.9),
we can find an open neighborho®dcC D of £ and, for eachi = 1,...,r, an open
neighborhood],- C v'M of (x;,¢) such that maps each; diffeomorphically
ontoV and&~!(V) is the disjoint union of thé/;’s. Sincell,, ¢ is nondegen-
erate, by continuity one can find an open neighborhapdf x; in M and an
open neighborhood; of ¢ in S™*7~! such thatu_ (I, ,y) = n_ (I, ¢)) for all
(z,n) € v'M with z € Z; andn € W;. We can obviously assume that tHe’s,
i=1,...,r are disjoint. Now it is easy to check that the functienpsare constant
on the open neighborhodd of ¢ in S"+P~! defined by:

W = ﬂ & (Y U;) N Wi,
wherer : ' M — M denotes the canonical projection. O
For everyk = 0,...,n, we set:
1

324)  m(f)= /D 1(€) dpto (€) € [0, 00

VO](S”'HD—I)
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it will follow from Corollary 3.2.12 below thatr(f) is indeed finite for allk.
Moreover, observing thaty (§) = k,—r(—¢) for all ¢ € D we get:

(3.2.5) T%(f) = Tn—k(f),
forallk=0,...,n

3.2.11. LEMMA. Leto : v'M — R be apug-integrable function. Then the
functionD > £ — zm@,l(&) o(x,&) € R is p,-integrable and the following
identity holds:

(326)/ |det Ay )]0, €) dug(, €) = /( > mg)dua(s)-

zeEB™

PROOF. Sincedet A, ¢) vanishes whefiz, ) is a critical point of® and since

the set of regular points @ outside®—! (D) has null measure (see Propositi#)
we have:

[ et A gl dustane) = [ Jdet Aol &) dglo. )

&-1(D)
Keeping in mind Lemmas 3.2.3 and 3.2.9, the conclusionvidalby applying Fu-

bini's theorem for covering maps (Corolla8?) to compute the righthand side of
the equality above. O

For everyk = 0,...,n, we set:
Up = {(z,€) € v'M : I, ¢ is nondegenerate and has index
it is easy to see thaf,, is open for allk.

3.2.12. ®ROLLARY. The following equalities hold:
(3.2.7)

(f) = /\detA(x5|du5x§) 0,400, k=0,...,n,

vol (S”+p 1

1
(3.2.8) T(f) = 7V01(S"+p_1) /D ) dpo (€ E Ti(f
B o _1\k
[ et A ds(o,6) = s /D k§:0:< 1 (€) o ()

= Z(_
k=0

whereo denotes the canonical volume densitys6f?—! andé denotes the canon-
ical volume density af' M.

PrROOF Equalities (3.2.7), (3.2.8) and (3.2.9) follow respeglyvby takingeo
to be the characteristic function &f;, ¢ constant and equal tband¢ equal to the
sign ofdet A¢ in Lemma 3.2.11. O

(3.2.9)
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3.2.13. MROLLARY. The Euler characteristic a#/ is given by:

1
~ vol(Smte-T) /VlMdetA(:cvf) dpg(x,€).

x(M
PrROOF. Given¢ € D, sincehe is a Morse function onV/, Proposition??
implies thatd"}_,(—1)¥xx(¢) = x(M). The conclusion follows from (3.2.9),
observing that the complement Bfin S**P~! has null measure. O

3.3. The Gauss—Bonnet—Chern Theorem

Recall that the classical Gauss—Bonnet theorem stateththattegral of the
curvature of a compact two-dimensional Riemannian mahifidlequal2w times
the Euler characteristic a¥/.

In this section we generalize this result to the case of a egtRiemannian
manifold M whose dimensiom is an arbitrary even number; we set 2s.

Recalling Exercise 2.22, we can associate to a local tarfigene field(X;)? ,
the curvature fornf2 of the Levi—Civita connection, which isg@(n, R)-valued2-
form defined on the domain of th&;’s. If (X;)?_, is an orthonormal frame field,
we set:

Qij(v,w) = <R(v,w)Xj,Xz>>

fori,j =1,...,n. Observe thaf);; = —Q;;, i.e.,Q is aso(n, R)-valued2-form.
Set:
1 g
(331 =5 > (D7) A Q@e@ A - A Dm—1)om)
’ UGGTL

where,, denotes the symmetric group erelements and—1)? denotes the sign
of the permutatiorr. We denote byy then-density corresponding tg, and to the
orientation defined byX;)? ,. Next we compute what happens wiftwhen one
changes the orthonormal fram&;)?_,.

3.3.1. LEMMA. Then-densityy does not depend on the choice of the orthonor-
mal frame(X;)7_,.

PROOF. Let (X/)_, be another local orthonormal frame and wrilg =
(X}, X;), so thatT is an orthogonah x n matrix andX} = 1", T;; X;. The
curvature formf’ corresponding t¢X/)"_, is related td by:

n
A
Qij_ Z Ty iThosj Uik -
ki ka=1
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Let+, be the version ofy, defined for the orthonormal fram&’)"_,. We have to
show thaty, = (det T")yy. We compute as follows:

n

1 g
Yo = “ones E E (1) Th01)  Thpom) | Qhaka A v o Ay _1k,
’ kl,...,knzl UGGn

1 n
- glongs Z det T(kl’m’kn)lekz JARRRWA anflkrﬂ
’ kl:“wkn:l

whereT(*1--*n) s then x n matrix defined byl """ = T, ;. Since the

determinant of/'(*1--#») is zero when the;’s are not distinct we can replade
by 7 (i) with 7 € &,, and then we get:

1 7(1),...,7(n
% = sgms D TN o) A A Q1))
T€G,
1
= s Z (—1)T(det T)QT(I)T(2) VAN QT(?’L—l)T(n) = (det T)7yg. O
’ T€G,

We have proven thai is a (global) smootm-density onM; formula (3.3.1)
is sometimes used to define the so calader classof the tangent bundl@ M
(see [r7, §5, Chap. Xll]). Sincey is ann-density, there exists a smooth function
K : M — R such thaty = K4, whered is the canonical volume density of.
We have the following:

3.3.2. LEMMA. If f : M — R™P is an isometric immersion then for every
x € M:

1
(3.3.2) K(z) = /1Mdet A6y dpto, (£),

V01(S”+p—1) y
whereo,, denotes the canonical volume density of the sphéid.

PROOF. Using the Gauss equation in the language of differentiah$o(see
Exercise 3.4), sinc = 0, we obtain:

p
Qij:ZAﬁa(Xi)/\Afa(Xj)a ,j=1,...,n,
a=1

where(¢, ) _, is alocal orthonormal frame of) aroundz and the vectord,, (X;)Jj
is identified with the covectofA, (X;), ). We can now writey, as:

1 p
0= s 2

cEG, ai,...,as=1

(=17 A¢,, (Xo) AN Ao, (Xo@) Ao A g, (Xom1)) N Ag,, (Xo(m));
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hence:

p
(333) K@) =X X)= o 3 Y ()7

o, TES, ai,...,as=1

(Ao, (Xo(1), Xr1) /(Ata, Xo2), Xr(2))
(A, (Xom-1), Xrin-2)) (Aea, Ko(m) Xr(n))-
Consider the:-linear formB : v, M x --- x v, M — R defined by:

n

B(m,...onn) = > (=17 [[{An(Xi), Xo0)),

ceSy, i=1

and observe thaB(¢, ..., §) = det A¢. Consider the symmetrization & which

n times
is the unique symmetrig-linear form B on v, M such thatB (¢, . .., &) = det Ag;

B is computed explicitly as:

B(n17"'777n) :% Z (_1)0TH<A77i(XT(i))7Xo(i)>'

‘o, 7eG, i=1

Using Exercise 2.20, we can compute the integral on thehrggit side of (3.3.2)
as:

(3.3.4) / det A(I,ﬁ) d,uo(f)
viM

n—1 n—3 3 1
= oo —— ) Zvolr(sPt
<n+p—2> <n+p—4> p+2> p’ (57)

Z B(fal,fal,---,fas>fa5)

) ) e Y Y
n+p—2 n+p—4 p+2p n!

ai,...,os=1 o,TES),

(Ag, (Xr(1), Xo(1)) (Ata, (Xr(2): Xo(2))
(A, (K1) Xo (1)) (Aea, (Xrm)s Xo(m))-

The conclusion follows using formulas (3.3.3), (3.3.4% farmula for the volume
of the sphere (see Exercise 2.19) and a lot of patience idihgnmaasty coefficients.
O

3.3.3. MROLLARY ( Gauss—Bonnet—Chern theorentf) M is a compact even
dimensional manifold thef, , v = x(M).

PrROOF By a well-known result of Nash, every Riemannian manifchth @e
isometrically embedded in some Euclidean space. In p#aticwe can find an
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isometric immersionf : M — R"™P. By Fubini’s theorem (Theorer??) we
have:

@35 [ ( / €A d;m(é)) dusa) = [ det A ).

By Corollary 3.2.13, the righthand side of (3.3.5) equaksHuler characteristic of
M timesvol (S™*P~1). Using Lemma 3.3.2 we get that the lefthand side of (3.3.5)
is equal to:

VO](S"J””_I)/ K(z)dus(x) :VOI(S"H’_I)/ .
M M
The conclusion follows. O

3.4. The Chern-Lashof Theorem

The following theorem is the main result of the section. Wegia characteri-
zation of isometric immersions in Euclidean spaces havimgmal total absolute
curvature.

3.4.1. THEOREM (Chern-Lashof).Let f : M — R"™"P be an isometric immer-
sion of then-dimensional compact Riemannian maniféll Then:
@) 7(f) = 2;
(2) if 7(f) < 3 thenM is homeomorphic to the sphef#;
(3) if 7(f) = 2 then f is an embeddingf (M) is contained in ann + 1)-
dimensional affine subspadeof R"™? and it is the boundary if of a
bounded convex open subsetof

PrROOF. SinceM is compact, for every € D, the height functiorh, has at
least two critical points, so that(¢) > 2. It follows from (3.2.8) that (f) > 2,
which proves part (1). If(f) < 3 thenx(§) = 2 for some{ € D and thereforé,
is a Morse function with precisely two critical points. Th@of of part (2) follows
then from Reeb’s Theorem (Theorem 2.3.13)7(f) = 2 thenx(&) = 2 for all
¢ € D, sincex is locally constant (see Lemma 3.2.10). The proof of pari(8)
be divided into various steps. We will keep the hypothesitheftheorem and, in
order to simplify the language, we give the following:

3.4.2. CEFINITION. A pair (x,€) € v!M is calledseparatingif there are
points of f(M) in both sides of the affine hyper-planféz) 4 ¢+, i.e., if there
existszy, xo € M with he(x1) < he(z) < he(z2).

We make the following simple observations:

(1) if (z,&) € v' M is separating therh: has at least three critical points
namely,z is a critical point ofh¢ that is neither the minimum nor the
maximum.

(2) The set of separating pairs:, £) € v' M is open inv! M; this follows
from an obvious continuity argument.

(3) The set&—1(D) is an open dense subset of the open set of all regular
points(z, ¢) € v' M of &; this follows from Propositior??.
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(4) There are no separating paifx;, ¢) € v* M with A(z,¢) Invertible recall
from Lemma 3.2.3 thatl, () is invertible iff (z, ) is a regular point for
&. If there were separating regular pointstdthen by items (2) and (3)
above there would exist a separating pdint¢) € &-1(D). Then, by
item (1) on page 177h¢ would be a Morse function having more than
two critical points, a contradiction.

Step 1. The image of is contained in arfn+ 1)-dimensional affine subspace
of R"*P,

It suffices to show that ip > 2 then the image of is contained in some affine
hyper-plane (i.e., an affine subspace of dimension p — 1). The conclusion
will follow then by an obvious induction arguméntSuppose thaf (1) is not
contained in any affine hyper-plane. et D and letz € M be a critical point
of he, so that(z,£) € &=1(D) C v!'M. Sincep > 2, there exists) € v M with
(¢,m) = 0. Ford € R, define:

€9 = Ecosf +nsinf € v M,
and denote by the affine hyper-plang (x) + 5(}. Since for everyu € R"*?,
(u— f(:::))L intercepts the plane spannedgndn, it follows that:

(3.4.1) R™7? = | ] Ay.
0eR

Our aim is to show that there exisise R with A¢, () invertible and such that
(x,&) is separating; this will give us a contradiction, by item ¢4) page 178.
Sincef +— det A, is real-analytic and does not vanishéat= 0 then A, is
singular only for a discrete set éfs in R. It follows that, towards our goal, it
suffices to determine one value 6ffor which (z,&y) is separating; namely, by
item (2) on page 177, the set of sk is open inR and hence (if it is non empty)
it must contain a poinf with A¢, () non singular.

Chooser; € M with f(x1) outsideAq = f(z) + &1, By (3.4.1), there exists
01 € R with f(z1) € Ag,. Choosery € M with f(x2) outsideAy,. The proof of
Step 1 will be completed if we can firtle R for which the functions:

(3.4.2) he,(x1) — he,(x) = (f(x1) — f(x),&) cos b+ (f(z1) — f(z),n)sinb,
(343) h£9($2) - hﬁe(m) = <f($2) - f($)>£> cos 0 + <f(l’2) - f(l‘),77> Sin97

have opposite signs. The coefficientook 6 in (3.4.2) is not zero becaugéx;) ¢

Ag; moreover, the coefficients @bs 6 andsin @ in (3.4.3) cannot both be zero,
becausef(z2) ¢ Ag,. We can thus rewrite the righthand sides of (3.4.2) and
(3.4.3) respectively in the formy cos(6 + ¢1), k2 cos(f + @2), With ki, ke > 0;

the differencep; — o cannot be an integer multiple af because the functions
in (3.4.2) and (3.4.3) do not vanish simultaneously at 6. It is now an easy

L f(M) is contained in some affine hyper-plasein R"*? then obviously the isometric
immersionf : M — A = R™™P~! has again the property that all height functions that aresélor
functions have exactly two critical points.
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exercise to show the existenceft R with cos(f + 1) cos(d + p2) < 0. This
concludes the proof of Step 1.

Step 1 allows us to assume from now on that 1. In this case, we will say
that a pointr € M is separatingif (z,&) is separating for one (hence both) the
&sinvlM, i.e., if there are points of (M) on both sides of the affine tangent
spacef (z) + Im(d f,). Obviously the set of separating points is opedin(recall
item (2) on page 177).

STEP 2. Assume thafl/ has no separating points. Thehis an embedding
and f(M) is the boundary of a bounded convex open subsBt'of.

Observe that sincé/ is compact, f(M) cannot be contained in an affine
hyper-planeA of R"*!; otherwise, f would be a local diffeomorphism onto a
(compact) open subset af,

For eachr € M, denote by, the affine hyper-plang(z) +Im(df,) of R"+!
and byH,. the (unique) open half-space determineddgysuch thatf (M) c H,.
SetH = (1, <, He. Clearly,H is convex. Let us now prove the following facts.

(@) For x € M, the open half-spacR™*! \ H, is disjoint from the closure of
H;
for, obviouslyH ¢ H, and hencéd C H,.

(b) The unionJ,.,, A, is closed inR™*! and disjoint fromH;
the fact that J,;, A, is disjoint fromH is obvious. For eack > 1, let
x, € M, v, € T, M be given and assume thitz)+d f,, (v;) converges to
u € R™*1, SinceM is compact, we may assume thatconverges ta: € M;
henced f,, (vi,) converges tar — f(z) € R™1. The set

E= J {y} xIm(df,)
yeM
is a smooth vector subbundle of the trivial bundiex R"*! and therefore is
closed inM x R™*! (see Exercise 2.6); sinde, d f, (vx)) is a sequence in
E that converges t¢z,u — f(z)) € M x R™*!, it follows thatu — f(z) €
Im(df;) and therefore. € A,. This concludes the argument.

(c) His open inR™*!;
let w € H be given. It follows from item (b) that there exists> 0 such
that the ballB(u; €) is disjoint from(J ., A;. Then, forz € M, theB(u;¢)
interceptsH,. and is disjoint fromA; henceB(u, &) C H,.

(d) His bounded ifR"+!;
for ¢ € S™, the functionR" ™ > u +— ge(u) = (£,u) is bounded in
H. Namely, letxy,z1 € M be respectively a minimum and a maximum of
he = ge o f. Thenzy andz, are critical points oh¢ and hencém(d f,,) and
Im(df;,) are both orthogonal t¢. It follows that:

H C Hao N Hay = g2 (The(@0), he(21)]).
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This proves thay, is bounded irH for all £ € S™. In particular, the coordinate
functions of R"*! are bounded .

(e) If z,y € M are such thatf (z) € A, thenA, = Ay;
let{ € S™ be a unit vector that is normal fan(d f,). Sincef (A1) is con-
tained in one half-space determined Ay, it follows that the height function
he has either a minimum or a maximumgte M. But f(z) € A, implies
he(x) = he(y) and hencer is also an extremum o, of the same kind as
y. Thenz is a critical point ofh¢, £ is orthogonal tdm(d f;) andA, = A,
because they are parallel to the same vector space and leas@ntimon point

f(@).

(f) If 2,29 € M are such thatf(xg) ¢ A, then the open line segment with
endpointsf(x¢) and f(z) is contained inH and the open half-line issuing
from f(xo) in the direction off (x) intersectsoH only at f (x);

denote by f(zo), f(x)[ the open line segment with endpointsr,) and
f(z). For everyy € M, the endpointsf(zo) and f(z) are both inH, and
therefore] f (o), f(z)[ is contained inH,. We claim that]f(zo), f(z)[ is
indeed contained ifi,; for, otherwise,f (z() and f(z) would be both om,,.
By item (e) this impliesA, = A, and thereforef (z¢) € A,, contradicting
our hypothesis.

For¢ > 0, denote byu, the pointf(zo) + t(f(z) — f(z0)) on the half-
line issuing fromf () in the direction off (x). We have shown that;, € H
for ¢t € ]0,1[; by item (c),H is open and therefore; ¢ OH. Fort > 1, u,
is in R"*! \ H, and therefore outsidH, by item (a). It is now obvious that
up = f(z) € OH.

(9) f(M)CcoHandf : M — OH is an open map
for everyz € M we can findzg € M with f(xz¢) ¢ A, and therefore
f(x) is indeed inoH, by item (f). To prove thaf : M — OH is an open map,
it suffices to show that it/ is a sufficiently small open neighborhood oin
M thenf(V)is open indH. Let¢ be a smooth unit normal vector field defined
in a neighborhood of in M and choose an open neighborhdddf x small

enough so that¢(y), f(zo) — f(y)) # 0forall y € V; then f () & A, for
y € V. Consider the map:

10,+00[ x V' 3 (t,y) — o(t,y) = f(zo) +t(f(y) — f(z0)) € R"FY;

it follows from item (f) thatlm(¢) NOH = f(V'). Moreover, a simple compu-
tation using the inverse function theorem, shows thatp) is open inR™*!.
This concludes the argument.

(h) fis an embedding andl(M) = OH;
sinceH is an open bounded convex subseRaf !, 9H is homeomorphic
to the spher&™ by Exercise 1.42. By item (g);()) is both open and closed
in H and thereforeH = f(M). Sincef : M — OH is locally injective,
continuous and open, then it is a local homeomorphism. Sihdée compact,
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f is proper and hence a covering map (see Exercise 2.14). Tiwus@n
follows by observing thabH = S™ is simply connected.

The following step will conclude the proof of the Theorem.
STEP 3. There are no separating poinise M.

For the proof of the last step we need the following techrfet, and we refer
to [?] for a proof:

3.4.3. RROPOSITION For everyzx € M set:
D, = KerA(, ¢ C T M,
d(x) = dimension oD, € N,Uj, = {x € M : d(z) = k}

where¢ denotes any one of the two elementsaf/. LetU C M be an open set
contained inA;,. Then:

(1) Dis an integrable distribution it/ and it's leaves are totally geodesic in
R+,

(2) If v : [0,b] — M is a geodesic such that([0, b[) is contained in a leaf of
D c U, thenv(b) € Uy, and the (affine) tangent space &f is constant
along~.

We will prove now Step 3. By item (4) on page 178, there are pasding
pointsx € M with d(x) = 0. So will be enough to prove that the existence of
a separating point with d(x) # 0, implies the existence of another separating
pointy € M with d(y) < d(x). Letxz € U, be a separating point. if € dlU,
sinced : M — IN is an upper semi-continuous function, there are, ardgragar
x, points inlf;, | < k. Suppose now that belongs to the interior d¥/,. LetS
be a maximal leaf of the distributioP,x € S. Lety : R — M be a geodesic
with v(0) = =z, 4(0) € T, S. Sincely, is bounded and is s stright line, as long
asv(t) € Uy, there exists a smallest € R such thaty(b) € dUy. Since the
(affine) tangent space is constant aloy(d, b)), v(b) is again a separating point
andd(~(b)) = k. Arguing as above we get, arbitrarely negp), a separating
pointy with d(y), k. O

We introduce naw an other class of functions which turnsbetvery usefull
in the study of the geometry and topology of submanifolds wflidean spaces.

3.4.4. CEFINITION. Let f : M — R™" be an isometric immersion of an
n-dimensional Riemannian manifold. Rjxc R™*P. Thedistance function from
is the function:
Ly:M—R, Lyz)=<qg—z,9q—z>.

We study now the critical points df,. Set{(z) = ¢— f(z). Identifing (locally)
M with f(M), we haveV x¢ = — X, X1T, M. Hence:
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o dLy(x)X = -2< X, {>.
In particular,z € M is a critical point ofL,, if and only if {(x) € v, M.
e If = is a critical poin ofL,, we have:

PLy(7)(X,Y) = -2V < X, >=2< (Id — Ag) X, Y > .

We want to characterize the points R"*? such thatL, is a Morse function.
This will be done in terms of thendpoint mapor normal exponential map:

E:vM — R"™P E(x,n) = f(x)+n.

We compiute the differential of. Let (z,n) € vM and~y(t) = (x(t),n(t))
be a curve invM such thatz(0) = =, n(0) = n. Then:

dE(x,7)(7(0)) = (z(t) +n(1))'(0) = &(0) + (1(0))" + (7(0)),
where, as before, for € T,R"*?, 2T and 2z denote the projections of onto
T, M andv, M respectively. In particular, taking(t) = x, n(t) = = + tn, we get
that the differential off along the fibres is the identity (which was geometrically
obvious). In particulat £ (x, ) and(/d— A,)) have kernels of the same dimension.
In particular:

3.4.5. LEMMA. L, has only nondegenerate critical poins if and only i a
regular value ofE.

A critical value of £/ is called aocal point

3.4.6. REMARK. If M is non compact and buf()/) is closed, ther, is
a proper function. So, using the Whitney’s theorem on thsterce of closed
embeddings and Sard’s theorem, the above lemma gives thteroe of (proper)
Morse functions on every differentiable manifold.

The following result, due to Nomizu and Rodrigues (s&, [can be seen as
the version of the Chern—Lashof theorem for distance fansti

3.4.7. THEOREM. Let f : M — R™P be an isometric immersion of a com-
pact, connected Riemannian manifold of dimension 2. Suppose that, for every
non focal pointy € R™*?, the functionZ, has only two critical points. Theyi is
totally umbilicaP.In particular f embeds)/ as a round sphere in sone + 1)-
dimensional affine subspace.

PROOF. Let(z,n) € vM and)y, ..., \, be the eigenvalues of,. We want
to show that\; = ... = A,. Suppose\; < Ay, Chooset € R such thatl —
tA1 > 0> 1—tAandl —t); # 0. Then(Id — A,) is non singular with index
different from0,n. In particular(x,tn) is a regular point for the endpoint map
E, henceE maps an open neigborhood @f, tn) diffeomorfically onto an open
neigborhood of; = E(z,tn) € R™™P. By Sard’s theorem there exist a regular
value of £, ¢ = E(a',n') arbitrarely close ta, with (2/,7’) arbitrarely close

“Recall thatf is totally umbilicalif for every (z,n) € vM, the Weingarten operatot,, is a
multiple of the identity. It is a classical fact that for suah immersion, ifn > 2, the connected
components of (M) are open parts of-dimensional affine spacesefdimensional round spheres,
in some(n + 1)-dimensional affine subspace (s€®.[
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to (z,n). ThenL, is a Morse function and’ is a critical point ofL,, which,
by continuity has index# 0,n. ThereforeL, has at least three critical poins, a
contraddiction. O

For a “convex embedding”, the Morse height functions havedritical points,
but the distance functions have, if the embedding is not ad@phere, more then
two critical points. So, in general, “height functions haweore critical points than
distance functions”. Depending on the problem may be momeinient to work
with one or the other class of functions. However, in an egéng case, the two
classes coincide:

3.4.8. RROPOSITION Let f : M — R™"P be an isometric immersion such
that || f(2)||2 = r2 > 0. ThenLy(z) = (1 + ||q||?) — 2hy-

PROOF. An easy calculation. O

The results of this section lead naturally to consider tveses of immersions:
The ones for which the Morse height functions Have the mimmmumber of
critical points allowed by the (weak) Morse inequalities, the clas for which
the same appens for the distance functions. Immersionsdirdt type are called
tight, and the one of the second type are cattmaght Properties of those classes
will be discussed in the Appendix.

3.5. Low Co-dimensional Isometric Immersions of Compact Maifolds with
non Negative Curvature

In this section we will study the topology of compact Riemannmanifolds
with nonnegative sectional curvature, isometrically innseel in Euclidean spaces
in codimension one and two.

The case of codimension one is an easy consequence of tlierthebChern
and Lashof:

3.5.1. THEOREM. Let M be a compact connecteddimensional Riemannian
manifold ¢ > 2) and f : M — R™*! an isometric immersion. If the sectional
curvature ofM is nonnegative the® is homeomorphic to the sphef#, f is an
embedding ang (M) is the boundary of a bounded convex open subsBt'of .

PROOF. Let{ € S™ be such that the height functidy : M — R is a Morse
function. We will show thath¢ has exactly two critical points and then the con-
clusion will follow the Chern—Lashof theorem. For eventical pointz € M of
he, the Hessian of at z is the second fundamental forfiz at the pointz. If
(E;)?_, is an orthonormal basis @f, M that diagonalizes the Weingarten operator
A¢, sayAcE; = A\ ;. Then, by the Gauss equation, the sectional curvature of the
plane spanned by; and E; (i # j) is \;A;. SinceM has nonnegative sectional
curvature, it follows that\;\; > 0, so all \;'s have the same sign. This means
that the Morse index of at z is either0 or n. Using Corollary??, it follows
that (f) = 2. O

The case of codimension two was considered, between otheds,D. Moore
in [?] who proved the following:
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3.5.2. THEOREM. Let (M, g) be ann-dimensional compact connected Rie-
mannian manifold withpositive sectional curvature ane. > 3. If M admits an
isometric immersion iflR™*2 then M has the homotopy type of the sphéfe

During the proof of Theorem 3.5.2 we will need some resultsnfialgebraic
topology that will be stated without proof.

3.5.3. THEOREM (Poincaré duality).Let K be an arbitrary field. IfM is a
compact topological oriented-dimensional manifold then for eveiythe homol-
ogy groupsH;(M;K) and H,,_;(M;K) are isomorphic. IfK = Z,, the same
result holds without the assumption thet is orientable.

3.5.4. THEOREM. Let M be a compach-dimensional differentiable manifold
withn > 1. If there exists a natural numberfor which the Whitney sum:

TM @ (M x RF)
is a trivial vector bundle then the Euler characteristic/df is even.

3.5.5. THEOREM. Let M be a compact, connected, simply-conneetetimen-
sional differentiable manifold. Iff;(M;K) =0fori =1,...,n— 1 and any field
K, thenM has the same homotopy type that the spl$&re

ProoFk We will divide the proof in several steps and will assumehipoth-
esis and notations of the theorem. The starting point isdtewing observation
due to A. Weinstein:

STeEP 4. Givenz € M, II,(v,v) € v, M is non zero whenever is non zero;
in particular, the map:

I,(v,v) 1
(3.5.1) T,M\ {0} 5 v — T € vIM

is well-defined. Its imagé, C v!M is a closed arc of length less thdn
PrRoOOF Forv,w € T, M, the Gauss equation gives us:
2
<R(v, w)v, 'LU> = H]ISC(U7 w) H - <]Ix(va ), Iz (w, w)>§

sinceM has positive sectional curvature, it follows thatjfw € T, M are linearly
independent then:

(3.5.2) HII;C(v,w)H2 — (I (v,v), I (w, w)) < 0.

Sincen > 2, equation (3.5.2) implies thalt, (v,v) # 0 if v # 0, so that the map
(3.5.1) is indeed well-defined. Obvious$, equals the image of the restriction
of (3.5.1) to the unit sphere &f, M. This implies thatS, is compact and con-
nected, i.e., a closed arc. Finally, (3.5.2) implies thatahgle betweeii, (v, v)
andIl(w,w) is less than; whenever, w € T, M are linearly independent. It
follows that the length o, is less tharg. U

The following step is the basic algebraic fact that will allas to estimate the
absolute total curvature:



3.5. LOW CO-DIMENSIONAL ISOMETRIC IMMERSIONS OF COMPACT MNIFOLDS WITH NON NEGATIVE CURVATUREHE

STEPS. Let Ay, Az be twon x n positive definite symmetric matrices. Then:
‘detAo— ! !detAo—i-A )‘

PROOF The result is obvious 1!40 andA% are diagonal matrices. We reduce
the general case to this case by the following argument. \Afatiig A andA%
with positive definite symmetric bilinear formsii*; observe that botl andAg
are inner products. Denote Wy the linear endomorphism d&”™ that represents
Az with respect to the inner produely, i.e., Az (-,-) = Ao(T",-). ThenT'is a
Ap-symmetric linear operator and therefore there existg-@rthonormal basis in
R™ for which the matrix representation @f is diagonal. Hence, we can find an
invertiblen x n matrix P such thatP* Ay P is the identity andD*AgP is diagonal
(and positive). The conclusion follows from the computatimlow:

(det P)?|det(Ag — Az)| = |det(P*AgP — P*Az P)|
< |det(P*AgP + P*Az P)| = (det P)* |det(Ag + Az)|. O
As a consequence we get:

STEPG6. LetAy, Ag be twon x n positive definite symmetric matrices and for
0 € R set:
A(f) = Agcosf + Az sin6.
Then:
[det (A(9))] > |det (A(x —0))],
forall § € [0,5].

PROOF. If § = 0 or 6 = 3 the result is trivial; otherwise, apply Lemma 5 to
the positive definite symmetric matricds cos ¢ andA% sin 6. O

We are now ready to estimate the absolute total curvature:

STEP 7.
) + Talf) > Z (f

ProoOF Using formula (3.2.7) and Fubini’s Theorem (Theore®) we get:

1
Te(f) = W /M </u;Mmuk |det A(z@‘ d/hu(f)) dps(z),

fork =0,...,n. Now letz € M be fixed. The proof will be completed once we
prove that:

@53 [ |detdpg|dun () [ [detAug|due ©)
1 MUy viMNUy,

n—1
> det A, ¢y| dpte, (€)-
I;/V%MWJ et A(y¢)| dio, (€)
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Since the closed ar§, has length less thaf (Lemma 4), we can choose an or-
thonormal basis;, & of v, M which leavesS, in the first quadrant, i.e., such that
(€,&) and (¢, &) are positive for alk € S,. Observe that with such choice &f
and&s, A, are positive definite. Fot € R we setfy = &; cosf + &2 sin 6, and
A(9) = Ag,. Observing thatd(6) is positive definite fov € [0, 5] and negative
definite forg € [r, 2] we get:

(3.5.4) {€:0€[0,Z]} clUy, {&:0€ [ 3Z]} C U,
and hence:

@58 [ |detdp|dun () [ [detAug|due ©)
vi MUy viMNUy,

3

> /05 | det (A(0))] 6 + /f | det (A(6))] do;

the fact that the inequality above is strict follows by olvgsg that the continuous
functiond — | det (A(6))] is positive on[0, 2| U [, 22| and that/, (respectively,
U,) containsgy for ¢ in an interval which is strictly larger thalit, 5] (respectively,
strictly larger than[r, 2]).

Observing that both integrals in the righthand side of &.%re equal and
using Corollary 6, we get:

3

/ * | det (A(9))]d6 + / | det (4(8))] 0
0 ™

/ | det (A(9))]do + fﬁ | det (A(6))]d0.

Finally, (3.5.4) implied J;=; (viM nUy) € {& : 0 € [Z,7] U [3F,2x]} and
hence:

2m
/ | det (A \d9+/3ﬂ | det (A(6))] dO
> Z/ det A(:c,f)‘ d,uoz(f)

Mﬂuk

This proves (3.5.3) and concludes the proof. O

The latter result and Morse inequalities will allow us tdarestte the Betti Num-
bers:

STEP 8. LetK be a field withK = Z4 or M orientable then:
n—1

Z/Bk(Ma K) < Bo(M;K) + B, (M;K) = 2.
k=1
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PrRooOF Using the strong Morse inequality??) with & = 1 and recalling
(3.2.4) we get:

(3.5.6) 7i(f) —T7o(f) = m /D/sl(g) — ko(€) Ao ()
vol(D

where the last equality follows from the fact it ™! \ D has null measure. Using
(3.2.5) and Poincaré duality (Theorem 3.5.3) we get:

(3.5.7) Tn—1(f) = (f) = Bn-1(M;K) — 3, (M;K).
¢From (3.5.6) and (3.5.7) we get:
(3.5.8) 71(f) + n-1(f) — T0(f) — T(f)
> B1(M;K) + Bp—1(M;K) = Bo(M; K) — Bn(M;K).
Using the weak Morse inequalitie87) we get:

n—2 n—2
(3.5.9) > () =D B(M;K).
k=2 k=2
Adding (3.5.8), (3.5.9) and using Lemma 7 we get:
n—1 n—1
> B(M;K) = (Bo(M;K) + B, (M;K)) <Y 7i(f) = (ro(f) +7lf)) <0.
k=1 k=1
Since M is connected/y(M;K) = 1, moreover, Poincaré duality implies also
Bn(M;K) = 1. O

We are now ready for the final steps of the proof.
STEP 9. M is simply connected

PrROOF By the theorem of Bonnet—Myers; (M) is finite, so contain an el-
ementa of prime periodp. Let [a] = Z, be the subgroup generated by Let
m : M, — M be a covering map withr;(M,) = [a] and consider inM,
the covering metric so thaf, := fox : M, — R"? is an isometric im-
mersion. Observe tha¥/, is compact, with positive curvature and orientable if
p # 2, since,m;(M,) does not contain subgroups of order two. We may there-
fore apply the Betti numbers estimate ¢, obtaining 2?2_11 Bi(Mq; Zp) < 1.
But Hy(My;Z,) = Hi(My;Z) ® Z, = Z,, by the universal coefficients theo-
rem, and, by Poinaré dualityf,,_ (M,; Z,) = Z, which gives the contradiction
S (M3 Zy) > 2. O

STEP 10. The normal bundle’M of the isometric immersioyi is trivial.

PrROOF SinceM is simply connected, hence orientable, orientable, thenabr
bundlev M is an orientable vector bundle; since its fibers are two-dsm@al, in
order to prove that M is trivial it suffices to exhibit a continuous never vanighin
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global section of’M (see Exercis@?). We then define a sectign: M — v M by
takingé(x) to be the middle point of the aig, for all x € M. Although intuitive,
the continuity ofs has to be proven by a technical argument, which goes as fallow
Letn, n* be an orthonormal frame defined in an an open neighborboad/ of

x. Denote byd(y, X ) the angle between(y) anda(X, X), X € T, M. SinceS,

#* y;M , Yy € U, it follows that we can choose a continuous determinatio6. of
We set:

Om(y) =inf{0(y,X): X e T,M}, On(y)=sup{f(y,X): X eT,M}.
Themé,,, andd,, are continuous i/, so isf(y) = 3(0,(y) + O (y). But:

§(y) = cosO(y)n + sinb(y)n

so¢ is continuous. a

n
1
)

We can naw conclude the proof of the theorem: From Step ? we kmat M/
is simply connected. So, by theorem ?? it is sufficient to erats; (M; K) =
0,i=1,...,n— 1and for every fieldK. Suppose this is not the case. Then, by
step ?76;(M;K) = 1 for somei = 1,...,n — 1 and all the others Betti numbers
are zero (in the above range). But this would imply that thieEcharacteristic of
M is odd, contradicting Theorem ?7? sine&f is trivial. O

3.5.6. EMARK. If n > 4 a compactn-dimensional manifold, homotopy
equivalent to a sphere, is homeomorphic to a sphere by théveoanswer to
the generalized Poincaré conjecture.

3.5.7. EMARK. If n = 2, the classical Gauss—Bonnet theorem imply that
the manifold is diffeomorphic t? or RP2. We do not know if there exist an
immersion of the real projective plane iniv* such that the induced metric has
positive curvature. It is known, however, that if such imeien exist, it can not be
an embedding.

It is possible to extend Moore theorem to the case of compacifoids with
non negative curvature. However the proof require compieamg techniques an
we refer to ] and [?] for a proof of the following result:

3.5.8. THEOREM. Let M be an n-dimensional compact, connected Riemann-
ian manifold with non negative sectional curvature> 3, and f : M — R"t2
an isometric immersion. Then:

(1) If M is simply connected, then eithéf is a homotopy sphere or it is
isometric to a Riemannian produdt{"* x M3? and f is the product of
two convex embedding : M — R™TL,

(2) If M is not simply connected, either is covered®dyor diffeomorphic to
S x S7=1 in the orientable case, or to a generalized Klein bottie
the non orientable case.

3The generalized Klein bottle is the non orientale " bundle overs®.
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3.6. Quasi-convex hypersurfaces

Let f : M™ — R™*! be an isometric immersion of a compact, connected
Riemannian manifold. If the sectional curvatureMf’ is non negative, we have
seen thaff is an embedding angl(}/) is the boundary of a convex open set. The
main point of the proof was the fact that for a regular vaud the Gauss map and
(x,€) € vM, then the eigenvalues of; have the same sign and, conversely, it is
obvious that a “convex embedding” satisfies the above cimditin this section
we will considere some important geometric conditionsiéfi that imply that f
satisfies the following weaker condition:

3.6.1. CEFINITION. The immersionf is quasi-convexf all but at most one of
the eigenvalues ofl; have the same sign.

The above condition is empty if < 3 sofor the rest of this section we will
assumer > 4. From Theoren?? we have:

3.6.2. THEOREM. Let M™ be ann-dimensional compact, connected Riemann-
ian manifoldn > 4, and f : M™ — R"*! be a quasi-convex immersion. Then
M™ has the homotopy type of a CW-complex with no cell in dimansié <
{2,...,n — 2}. In particular:

(1) H,((M™;Z) ={0},k=2,...,n— 2.
(2) Hi(M™;Z) is a freeAbeliangroup onf; generators.
(3) m (M™) is a free group in3; generators.

We will discuss now two interesting conditions on the irgrngeometry of
M™ that imply thatf is quasi-convex.

3.6.1. Conformally flat hypersurfaces.

Conformally flat manifolds are the analogous, in conforrmeadmetry, of man-
ifolds of constant curvature in Riemannian geometry. Waltdhat:

3.6.3. DEFINITION. An n-dimensional Riemannian manifold” is (locally)
conformally flatif Vx € M", there exist an open neighborhotidC M™ of = and
a conformal diffeomorphism d¥ onto an open set dR”.

We observe that 2-dimensional Riemannian manifolds arayswonformally
flat, due to the existence of isothermal coordinates, so leaggume, in what
follows, thatn > 3.

Let{Ey,..., E,} be an orthonormal basis f@t, M. Recall that theRicci ten-
sorQ : T,M — T,M is defined as:

QX) = Z R(X, E;)E;,
1
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and, for a unit vectoX € T,,M, theRicci curvatureis given byRicc(X) =
< Q(X), X >. Thescalar curvatureof M" atz is the trace of the Ricci tensor,

S=> <QE) E; >=_ Ricc(E;).
1 1

We define the&schouten tensoyy : T, M™ — T, M™ as:
1 SX
X)=—[Q(X) - ——
10X) = SR = 5=
and theWeyl tensoV : T,M™ x T,M™ — End(T,M™) as:
W(X,Y) = R(X,Y) = 7(X) AY = X Ay(Y),
where(Z ANK)T :=< Z,T > K- < K,T > Z.
The basic (pointwise) characterization of conformally fffetnifolds is the fol-
lowing:
3.6.4. THEOREM. letn > 3. ThenM™ is conformally flat if and only if:
Q) W =o.
(2) v is a Codazzi tensor, i.e.
(Vx(Y) = (Vyv(X),VX,)Y e T,M" Vx e M", X,)Y € T,M".
Moreover, ifn = 3 the Weyl tensor always vanishes, and it 4, the vanishing of
the Weyl tensor implies thatis Codazzi.

We will prove the following characterization of conformaflat hypersurfaces,
due originally to Cartan:

3.6.5. THEOREM. Let M™ be a Riemannian manifole, > 4, andf : M™ —
R"*! be an isometric immersion. Thewi” is conformally flat if and only iff
is quasi-umbilici.e., the shape operator has an eigenvalue of multiplicitieast
n — 1. In particular, conformally flat hypersurfaces are quasikgex.

PROOF Let{E,..., E,} bean orthonormal basis @f M" such thatd. £; =}
NE;, (x,€) € vI M. Then, by the Gauss equation, we get:

S

1 .
(ki) = m[RZCC(Ei) - m]Ei-
Therefore, the Weyl tensor vanishes if and only if:
(n —2)\jA\j = Ricc(E;) + Ricc(Ej) — %, i,j=1,...,n

Leti, j, k, 1 be distinct indices. 1#/ = 0, the above equation gives:
AiNj + A — A = NN = (A = ) (A — M) =0,

The above condition is verified for all four distinct indigéand only if at listn — 1
of the \'s are equal i.e., if and only if the immersion is quasi-ungbilConversely
it is obvious that if f is quasi-umbilic, them/™ is conformally flat. O
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3.6.6. REMARK. If f: M3 — R*is a quasi-umbilic immersion, it is easily
seen, that\/? is conformally flat i.e., it's Schouten tensor is Codazzi. wewer
there are example of isometric immersions of conformally 3lenanifolds with
distinct principal curvatures. The classification of sutimersions is still an open
problem.

3.6.7. EMARK. More is known on the structure of compact conformally flat
hypersurfaces dR™*!. In fact is proved inP], that:

3.6.8. THEOREM. Let f: M™ — R"*! be an isometric immersion of a com-
pact, oriented, connected, conformally flat manifold> 4. ThenM™ is confor-
mally diffeomorphic to a sphers” with “handles” of type[0, 1] x S~ attached.

Observe that the above result is quite analogous to thdfatatizn of compact
orientable surfaces.

For isometric immersion of conformally flat manifolds in h&y codimension,
we have the following generalization of the Cartan’s reduk to J. D. Moore]:

3.6.9. THEOREM. Letf : M™ — RR"P? be an isometric immersion of a confor-
mally flat manifoldp < n — 3. ThenvYz € M™ there exist a subspadé C T, M"
of dimension at leastn — p) and ¢ € v M, such that the second fundamental
form, restricted td/, is given by:

a(X,Y) =< XY > &
Again applying Theorer?? to the height functions we get:

3.6.10. ®ROLLARY. f : M™ — R™*P be an isometric immersion of a com-
pact, connected, conformally flat manifold< n — 3. ThenM™ has the homotopy
type of a CW-complex with no cells in dimensiap < & < n — p. In particular
the homology vanishes in that range of dimensions.

PROOF. Let¢ be aregular value of the Gauss map. Then the Hessianluts,
at a critical point, an eigenvalue of multiplicity at legst— p). hence the index is
smaller or equal t@ or greater or equal to» — p) and the conclusion follows. [

3.6.2. Manifolds with nonnegative isotropic curvature.

One of the reasons why sectional curvature is a basic imtainaRiemann-
ian geometry is that it appears in an important way in the tdanof the second
variation of the energy functional, giving therefore infations on the stability
and, more in general, on the index of geodesics. It is a clalsschnique to use
those information to study the topology of the manifold. & i@ok at the space of
sufficiently smooth maps from a surfaketo a Riemannian manifold, we have an
energy functional:

E(¢) = /Z |do|2ds.

whose critical points are the “harmonic maps”. In order tadgtthe topology of
the target manifold, we are naturally lead to consider timeesponding index form.
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This program was essentially introduced #jgnd it turns out that the convenient
invariant to study this index is the conceptsisbtropic curvaturethat we will
describe now.

Let M be a Riemannian manifold. Fer € M we consider theomplexified
tangent spacd, M® = T, M & i T, M and we consider the unique extensions of
the Riemannian inner produ¢t -) of 7,,M to a complex bilinear forn-, -)¢ in
T, M€ and to a Hermitian inner produ¢t -)¢ in 7, M “; more explicitly:

(3.6.1) <U1 + tvg, w1 + iw2>c = <U1,UJ1> — <U2,UJ2> + i(<U2,w1> + <U1,UJ2>),
(3.6.2) (v1 +ivg, wi + iwa)e = (v1,w1) + (va, wa) + i((va, wr) — (v1,w2)),

for all V1, U, Wi, wo € T, M.

3.6.11. DEFINITION. A complex subspacé C T,MF€ is calledisotropic if
(v,w)c =0forallv,w € S.

Obviously S C T, M€ is isotropic if and only if the complex subspacés
andS = {v : v € S} are orthogonal with respect o, -)¢. In particular, if.S

is isotropic thenS N S = {0} anddimg(S) < dim(M). The following lemma
shows how one can construct isotropic subspacés dfc.

3.6.12. LEMMA. If (bﬁ?;l is an orthonormal family ifl’, M then the fam-
ily (%(bj + z‘brﬂ-));:l is a (-, -)¢c-orthonormal complex basis for an isotropic
subspaces of T, M.

Conversely, ifS C 7, M€ is an isotropic subspace and(iZ;);_; is a (-, )¢
orthonormal complex basis fdf then (v2R(Z;), ﬁ%(Zj));zl is an orthonor-
mal family in7, M, whereR(Z;), 3(Z;) € T, M denote respectively the real and
imaginary parts ofZ; € T, M°.

PrROOEF ltis a straightforward calculation using (3.6.1) and (2)6 O

For everyx € M we now consider the unique extension of the trilinear map:
T, M x T,M x T, M > (v1,v2,v3) — Ry (v1,v9)v3 € T, M

to a mapRS : T, M x T,M® x T,M° — T,M¢C that is complex linear in the
first two variables and conjugate linear in the third. We evlRS(X,Y)Z for
the value ofR: on a triple (X,Y, Z) (we will usually omit the pointz € M
for simplicity). From the standard symmetries of the cumattensor, one easily
obtains the following identities:

RYX,Y)Z =—RY,X)Z, (R“X,Y)ZT) =—(RYX,Y)T,Z)

c o

(RUX,Y)Z,T), = (RYZ.T)X,Y ),

[}

foreveryX,Y, Z,T € T,MC®. In particular,(RQ(X, Y)X, Y>(D is a real number.
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Given C-linearly independent vecto8, W € T, M€, we define theomplex
sectional curvaturef the complex plane spanned ByandV to be the real num-
ber:

(RYZ,W)Z, W), B
(2, Z)e(W,W)e — |(Z,W)e|” )

It is easy to see th&k“(Z, W) depends only on the complex plane spanne&by
andW and not on the particular basis chosen on such plane (seei§x8r16).

We will say that am-dimensional Riemannian manifoltd (n > 4) hasnon
negative isotropic curvaturé K°(Z, W) > 0 for everyx € M and everyZ, W €
T, M° that form a basis for an isotropic subspacdpf/®.

KZ,W) = —

3.6.13. LEMMA. Assume thafl/ has non negative isotropic curvature. Then,
for everyz € M and every orthonormal familfe;, es, e3, e4) in T,, M, we have:

Ky + Kig + Koz + K34 > 0,
whereK;; denotes the sectional curvaturefof in the plane spanned by ande;.

PROOF SetZ = e; +ieg andW = ey + ieyq. It is easy to see that and
W form a (complex) basis for an isotropic planedhM€¢. A straightforward
computation using the standard symmetries of the curvaémnsor R shows that
the isotropic curvature corresponding to such plane isgoye

KC(Z, W) =Ko+ K4+ Koz + K34 + 2<R(€3, 61)64, €2>.

Similarly, the isotropic curvature corresponding to thenptex plane spanned by
Z = e —ieg andW is given by:

KY(Z,W) =Kz + K14 + Kos + K3y — 2(R(es, e1)eq, e2).

Adding the two (non negative) isotropic curvatui€$(Z, W) and K°(Z, W) we
have the desired conclusion. O

3.6.14. HEOREM. Let M be a compact-dimensional Riemannian manifold
(n > 4) having non negative isotropic curvature. Then every igomanmersion
f: M™ — R"!is quasi-convex.

3.6.15. EMARK. Using estimates of the index of harmonic spheres in a Rie-
mannian manifold as well as a quite sophisticated Morse fyhiew the energy
functional on the space dff' maps ofS? into a Riemannian manifold, it was
proved in [?] the following beautiful result:

3.6.16. THEOREM. LetM™, n > 4 be a compact, simply connected Riemann-
ian manifold with positive isotropic curvature. Théi” is homeomorphic to the
sphereS™.

It is an open problem if, in the above hypothedig;* is diffeomorphic to a
sphere.
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3.7. Hypersurfaces of finite geometric type.

Let f : M = M™ — R™P be an isometric immersion of andimensional
Riemannian manifold. Recall that timeean curvature vectoH is defined as the
trace of the second fundamental form (see exercised. # 0, the immersion is
called aminimal immersionMinimal immersions are the critical points of the area
functional, i.e., ifD C M is a compact domain anf} is a family of immersions
of D with f;|0D = f|0D, the function:

A(t) = /D dM,,

whered M, is the volume density induced by on D, has zero derivative at= 0.

Forn = 2,p = 1 the theory of minimal surfaces iR? is a classical and
very extended topic in differential geometry and complealgsis, at least if\/ is
orientable. The main point is that, in this case, the clas€@uss map is an holo-
morphic function intoS? ¢ R? and the immersion can be recovered by complex
analytic methods, starting from the Gauss map and the n{Eimitzeper-Weierstrass
representation theorem ). In the class of orientable, cetmphinimal surfaces the
subclass of the ones with finite total curvature, iﬁfw2 kdM > —c0,%is a very
important one and has quite interesting topological-genmproperties. We list
some of them:

e M is conformally diffeomorphic to a compact Riemann surfa¢eninus
a finite number of points, say, ... pr € M. The pointsp; are called the
endsof M.

e The (classical) Gauss map: M — S? extend to an holomorphic map
® : M — S2. In particular it is singular on a finite set i/ is not flat
(hence not totally geodesic).

e For each eng,; € M there exist a neighborhodd; such that the compo-
sition of £|(U; \ p;) with the projection ontab (p;)* is a finite covering
of order(p;) over the complement of a ball 6 (p;)*.

We consider now a class of oriented hypersurface which ghareroperties
of minimal surfaces of finite total curvature. From now on,thg Gauss mapb,
we will intend theclassicalGauss map, i.e. the restriction of the Gauus map to one
of the components of' M.

3.7.1. DEFINITION. An immersionf : M — R"*! of ann-dimensional,
connected, oriented manifold is fafiite geometric typé:

(1) M is complete in the induced metric.

(2) M is diffeomorphic toM \ {pi,...,pr} whereM is compact, andb :
M — S™ extend to a smooth map : M — S™.

(3) For each eng; € M there exist a neighborhodd; such that the compo-
sition of £|(U; \ p;) with the projection ontab (p;)* is a finite covering
of order(p;) over the complement of a ball 6 (p;)*.

40bserve that the Gaussian curvature of a minimal surfaeiis always nonpositive.
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(4) The Gauss-Kronecker curvatuf&(r) = det(Ag ;) is zero only on a
finite union of connected submanifolds of dimensiom — 2.

3.7.2. EMARK. The integerl(p;) is still called thegeometric index of the
immersion at the eng,. If n > 3,1(p;) = 1 since the complement of a ball, in
those dimensions, is simply connectedn lf 2, I(p;) is the number of times that
f1(U; \ p;) wings arounds (p;)*. In particularl (p;) = 1 if and only if f|(U; \ p;)
is an embedding. In this case we will say that &émel is embedded

3.7.3. REMARK. ltis proved in [JM] that conditior§3) in the definition above
is really a consequence of conditiofis and(2) . In fact much moore is proved
in that paper. In particular the fact that the Gauss map dstéman engh means
that M has a “tangent space” atin the following strong sense: The intersection
of f(M) with a sphere of a large radiug, normalized on the unit sphef¥’(1),
converges in the>'! topology, whenR — oo, to the spheres™(1) N &(p)*. It
follows that if f is an embedding, the extended Gauss map assumes, at the ends a
most two values, and, in this case, the values are opposite.

The Gauss-Kronecker curvature is well define up to signesitepend on the
chose of the orientation. However, if the dimension is evers well defined
independently of the orientation. Since we will be esséiptiaterested in the even
dimensional case, the choise of the orientation will not Ipeadolem. Olso, in the
even dimensional case, the condition on the Gauss-Kroreekeature imply that
the total absolute curvature is two, gcembeds)M as the boundary of a convex
body. So we will make, from now on, the following:

3.7.4. ASSUMPTION M is even dimensional, non compact afidgs of finite
geometric type.

3.7.5. EMARK. Since the singular points of the Gauss map do not disconnect
M, the sign of the Gauss-Kronecker curvature is constantywendill denote it by
g.

Let& € S™ be aregular value of the Gauss map, aadbe the height function
in the direction. Them, has only non degenerate critical points and the gradient
of he atz € M is, up to identifying locallyM with f (M), the projection of onto
T, M. So the projection of onto the tangent spaces &é¢ gives a smooth vector
field, X = Vhe whose singularities are the critical points/gf Since the index of
the gradient of a function at a non degenerate critical pafiiMorse) index\ in
(-1, we get:

3.7.6. LEMMA. The index ofX at a singular point is.
We will study now the behavior ak near the ends.
3.7.7. LEMMA. The index ofX at an endp such that®(p) # +£is 1+ I(p).

PROOF We consider, first, the case when the end is embedded,(pe= 1.
Since®(p) # ££, (df)(X¢) is an almost constant vector field alogigin a small
neighborhood of the end) whose projection on the hyperptfe' has norm
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bounded away from zero in a neighborhood of infinity. Theamfthe index of the
projection, along a big sphere &(p)~, is zero and the projection extends to a non
vanishing vector field on the interior of the sphere. We ptdjlee extended field on
the unit sphere oR™*! by stereographic projection obtaining a vector fiélglon
the unit sphere with only one singularity, at the south pGlensequently the index
of X’§ is1+ (—1)" = 2. Since the composition of the immersion, projection onto
&(p)+ and stereographic projection is an orientation preserdiffgomorphism
of a small neighborhood gf onto a small neighborhood of the south pole, which
sendX; onto X¢, the conclusion follows.

For the non embedded case (which occurs onlyfoe= 2), we recall the
tangency formula for computing index of a singularity of an@ vector field:
Let~ be a closed simple curve around a singularity such that the i&enon zero
along~ and tangent only at a finite number of points. betthe number of points
of v where the integral curve of the vector field is (locally) ddesy and n; the
number of points where the integral curve is (locally) irsid Then the index of
the vector field i2 + n; — ne)/2.
Going back to the case in question, we consider a simpledloseey aroundp.
Since the composition of the immersion and the projectiado &r{p)= is anI(p)-
fold covering in a small punctured neighborhoodppthe imagex of  is a closed
curve ink2—{(0,0)} with winding numbet (p). Up to homotopy, we can suppose
that~y is anI(p)-fold covering of a closed simple curve. We proceed as aboue a
observe that, for each lap, the projected vector field haxifd= (2+n; —ne)/2.
Therefore,n; — n. = —2 for each complete lap. We observe that, external (resp.
internal) tangency of the flow of the projected field alengorresponds to internal
(resp. external) tangency alongof the flow of X,. Therefore, the index ok,
along~, is (2 + I(p)(ne —n;))/2 =1+ 1(p). O

From the above, summing the indeces of the vector field, wairbt

3.7.8. THEOREM. The Euler characteristic o/ is

x(M) = Z(l +1(pi) + 20m,

2

wherem is the degree of the (classical) Gauss map.

We will give naw some applications of the above formula.

Since the Gauss map of a minimal surface is holomorphic, laadendency
of an holomorphic map is to be surjective, most attentionlbeen posed on the
problem of determining the “size” of the image of the Gausgnia this context
the best result was obtained by Fujimoto in 1988 who provatttie image of the
Gauss map of aomplete non flat minimal surface can omits at most four points
(and there are many examples whé&@mits exactly four points). In the context
of non flat, complete minimal surfaces of finite total curvafut was proved by
Osserman in 1964 that the Gauss map of such a surface omitsathree point.
Clearly the catenoid is an example of a surface of the ab@ewhose Gauss map
omits two points. It is still an open problem if there are exérof complete, non



3.7. HYPERSURFACES OF FINITE GEOMETRIC TYPE. 197

flat minimal surfaces of finite total curvature, whose Gauap nmits exactly three
points. Using our arguments we will give naw a proof of Ossarisitheorem in
the more general context of surfaces of finite geometric.type

3.7.9. THEOREM. Let f : M? — R? be an immersion of finite geometric type.
Then the Gauss map omits at most three point.

PROOF. By hypothesis, the Gauss mép: M — S?(1) is a branched cover-
ing, branched (possibly) at the flat points and at the ends &anch poinp, the
branching number(p) is the cardinality of the intersection of a small neighbor-
hood ofp with the inverse image of a regular value négp). So, the branching
number is, always, at least one and bigger than one only aftbetive branch
pointswhich, by our assumptions, are finite in number. In this $itlawe have
the so called Riemann-Hurwitz formula:

B7.1)  X(M) =mx(S*) + > _(1—wv(p) =2m+ ) (1—v(p)).
Let us suppose that the Gauss map omipints,&;, ..., &,. Let A, = {p € M :

&(p) =&}, B={pe M:6(p)#& }andC = {g € M;v(q) > 1}. Let¢ be
aregular value o#, ¢ # &; . We write the above formula in the following form:

(3.7.2) x(M) =2m+Y > (1—v(p)+ Y (1 —v(p)+ Y (1-vp).

i=1 pcA; pEB peC
Observe thad " . v(p) = mand} i, [A;| + |B| = k. Then:

(3.7.3) x(M)=(2—-n)m+k— Z v(p) + Z(l —v(p)) .

pEB peC
Comparing with Equation ?, we obtain:

(3.7.4)

Thereforen < 4, as claimed.
O

A simple analysis of the proof gives the following

3.7.10. ®ROLLARY. On the hypothesis of TheoreR®, if n = 3 theny (M) <J]
0. Moreover, ify(M) = 0, we have:
Q) m=k
2 B=0=C, and
(3) > I(pi) =k, i.e., each end is embedded.

3.7.11. EMARK. The proof, in the case of complete minimal surfaces of finite
total curvature, is very similar to this one, but for the fdwt the basic formulas
for the Euler characteristic af/ are obtained via the Weierstrass representation,
which, clearly, does not exist outside the minimal case.
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The advantage of this point of view is that it extends to higtienensional
hypersurfaces, while the use of complex analysis is résttito the case = 2. To
stress this point we will prove the following theorem thahésw even in the case
of minimal hypersurfaces of “finite total curvature”:

3.7.12. HEOREM. Letf : M?" — R?***1 pe an immersion of finite geometric
type,n > 1. Suppose the critical fibers, i.e. the inverse image by thes&aap of
the critical values, form a stratified subs®tof dimension less them — 1. Then:

(1) M?" is, topologically, a sphere minus two points.
(2) If M?"is minimal, it is a catenoid.

PROOF. First we observe that sincel is compact, every regular value &
has a neighborhood that is evenly covered. In particélgd/ \ N) is a covering
map. Consider amap : S* — S?". By the standard transversality theorem, up to
homotopy, we can suppose thais transversal t&| N, hence disjoint fron® (V)
if & < n. Therefore the inclusios?” \ &(N) — S?" induces an epimorphism be-
tween the homotopy groups in dimensigm. Also, if £ < n, « is homotopic to a
constant, hence it extends to a niap D+ — S?". Applying again the transver-
sality argument ta;, we may assume that the extended map has image disjoint from
&(N). ThereforeS?"\& () has vanishing homotopy up to dimensierin partic-
ular is simply connected. It follows tha|(A7-"\ N) : (AM-"\ N) — 2"\ &(N)
is a diffeomorphism, henc® is a map of degree one. It also follows tAdt” \ NV
has vanishing homotopy groups up to dimensigrence the:-dimensional ho-
mology vanishes, it < n. By Poincaré duality the homology vanishes in dimen-

sionk=1,...,2n—1. Hencell " is a simply connected homology sphere, hence
homotopy equivalent to a sphere and homeomorphic to a spidhe positive an-
swer to the generalized Poicaré conjecture.

In particular, Equation®?) implies that

2=x(M)=2(k+0),
hencek = 2 ando = —1. This prove part the first assertion.
the second assertion follows from a theorem of R. Schoen:
The only minimal immersions which are regular at infinity drave two ends are
the catenoid and pairs of planes
We just observe that, minimal hypersurfaces of finite gedmétpe, areregular
at infinity in the sense of Schoen, if the ends are embedded, which iasesstce
n > 1. O

Exercises for Chapter 3
The Fundamental equations of an Isometric Immersion.

EXERCISE 3.1. LetE be a vector bundle over a differentiable manifdif
with a connectioriV with zero curvature. Givemy € M andX € T,,M, show
that there exist a local sectiak of E, defined in a neighborhooll” of x(, and
such thaVy X = 0, VY € T,M,y € U.
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EXeERCISE3.2. Provide details for the following sketched proof ofragiified
version of Theorem ?:

3.7.13. THEOREM. Let 2 be an open, simply connected subselRd{ Let
g be a Riemannian metric if2 with Levi Civita connectiorV, curvature R and
A : Q — End(R"™) be a tensor field valued in thesymmetric endomorphisms.
Suppose thatl verifies the equations of Gauss and Codazzifer0, i.e.
e R(X,Y)=A(X)ANA(®Y),
o Vx(AY) — A(VxY) =Vy(AX) — A(VyX).
Then there exist an isometric immersifn (€2, g) — R™*1,

ProOOFE Considefl’ Q)& ¢, wheree = Q) x R, with the direct sum (fiber) metric.
Let¢ : Q — R, &(x) = 1. Look at{ as a section of Q2 @ e. Define a connection
V'’ by the rules:

o VLY =VxV+ < AX,Y > ¢,

Vi€ =—-AX.
The equations of Gauss and Codazzi imply that the curvatufé’ és zero. Let
p € Q{x1,...,z,} be coordinates if2 such that{a%(p)} is a g-orthonormal

basis atp. Let E; = 2-(p), Eny1 = &(p). SinceV'is flat and( is simply
connected, we can extend the above basis\¢-parallel orthonormal frame field
{E1,...,Epi1}. Then:

0 - ~
9z ZaikEka a2 — R,
k=1
andg;; = g(z%, 72-) = >_pL, aiajk. Since thek;'s are parallel,
% J
9 n+1 da L~
V/a = = J E
92; O 192::1 oy’
Using the symmetry ofi, we get:
8&jk . aaik
al’i N 8:L'j '

Hence, since? is simply connected, there exist functiofis: @ — R, 2t = a ..
J
Then the magf = (f1,. .., fnt1) gives the desired immersion. O

3.7.14. EMARK. The proof of Theorem ? goes essentially on the same lines.

EXERcISE 3.3. Letf : M — R"P be an isometric immersion of a-
dimensional Riemannian manifoltl/. Suppose there exist a 1-dimensional sub-
bundleL C vM such thatv,(X,Y) € L, Yz € M, X,Y € T, M. Prove that\/
admits a (local) isometric immersion inie"*!. In particular ifp = 1 andN is a
g-dimensional totally geodesic submanifold/af, then N admits a local isometric
immersion intoR?+!. Discuss the example of an helix on a cylinder.
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EXERCISE3.4. Letf : M — M be an isometric immersion witthim (M )-
= n,dim(M) = n + p. Let E denote the vector bundlg“T' M over M; as usual,
we identify T M with a subbundle ofs usingdf and: : TM — FE will denote
the inclusion. We have a direct sumt = TM & vM and F is endowed with
the connectiory*V which is the pull-back byf of the Levi-Civita connectio/
of M. The projections ofV in TM andvM (in the sense of Exercisg?) are
respectively the Levi—Civita connectidvi of A/ and the normal connectiow -
of the immersionf; the second fundamental form @fM in E with respect to
vM is the usual second fundamental folirof the immersionf and the second
fundamental form of M in E with respect tal' M is given by:

ToM x v, M > (v,n) — —Ay(v) € T, M,

for all z € M. The vector bundleE @s a Riemannian structure on its fibers
induced from the Riemannian metric &f; such Riemannian structure is parallel

with respect to the connectiofV. Let (Xi,..., X,,) be alocal orthonormal
referential of £ with (X;)_, an orthonormal referential &f M/, so that we also
obtain an orthonormal referentigk, )" | of v ; denote by@1, ..., 0,+,) the
dual referential of X1, ..., X,,+p) and by(6;) , the dual referential ofX;)? ,,
sothatd; o = @, fori =1,...,n. Associated to the given orthonormal frame and

connections of the vector bundI&s\/, v M and F we have associated connection
and curvature forms, Q, wt, Q+, @ andQ) respectively (recall Exercise 2.22).
We will use Latin letterg, j for indices ranging irl, ..., n and Greek lettera, 5
for indices ranging im + 1,...,n + p. Show that:

(@) Wij = wij, Wag = Wiﬁ andw,; = —W;o = Ay, (X;) where we identify
the vectord x, (X;) € TM with the covectof Ay, (X;), -).

(b) f*V has zero torsion.

(c) Show that equation (2.6.5) far and# is equivalent to the symmetry of
the Weingarten operator.

(d) Show that equation (2.6.4) farand(2 is equivalent to the following:

Qij = Qij — Z Ax, (Xi) N Ax, (X;), (Gauss)

Qi = dAx, (X;) + Z Ax, (X;) Awjs + Y wag A Ax,(X;), (Codazzi)
B

Qap = Z Axa ) A Ax, (X)) (Ricci)

EXERCISE 3.5. Letf : M — M be an isometric immersion. Thef (or
sometimes\/) is said to be totally geodesic if the second fundamentath fean-
ishes identically. Show thaf is totally geodesic if and only is, for all geodesic
v : (a,b) — M, f oy is a geodesic id/. Determine the totally geodesic subman-
ifolds of the spaces of constant curvature.

EXERCISE 3.6. Letf : M — R"P be an isometric immersion of a-
dimensional Riemannian manifold. Themean curvature vector fielH : M —
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v M, is the trace of the second fundamental form. More pregidfe{y©1, ..., E,}
is an orthonormal basis far, M and{¢i, ... &,} is an orthonormal basis for, M,

1 & 1&E
H(z) = n Zax(Ei,Ei) = Ztmce(A&)&.
i=1 i=1

Suppose thaf is totally umbilical i.e. Ac = \(§)Id, V¢ € vM.
(1) Show thata(X,Y) =< X,Y > H, and conclude thatl; = 0 if <

& H>=0.
(2) Show thatvgiH =0, ¢=1,...,n. Conclude that/H || is locally con-
stant.

(3) Letx € M be a fixed point andy : [0,¢) — M be a smooth curve
with v(0) = «. Letn : [0,¢) — vM be a normal vector field along,
parallel in the normal connection, with 7(0), H(xz) >= 0. Show that
< n(t), H(y(t)) >= 0 and use this to prove that. ,(t) = 0.

(4) Show that< f(v(t)) — f(x),n(t) >= 0Vt € [0.€) and conclude that
f(~(t)) belongs to the affine subspakér) passing trough and spanned
by H(x) andT, M. Observe that this subspace is eithedimensional or
(n + 1)-dimensional, depending # () = 0 or not.

(5) SupposeM connected. Show that i = 0, f(M) C A(x) = T, M,
and isH # 0, the function:

c(z) = f(z) + |H|°H

is constant and thereforg& M) is contained in the sphere &f centered
atc and of radiug| H||~*.

EXERCISE 3.7. Letf : M — R™P be an isometric immersion of a-
dimensionatonnectedRiemannian manifold/. Suppose there exisyadimensiond]
subbundlel. C v M such thatl. contains the image of the second fundamental form
and L is parallel, i.e., if ¢ € T(L), V¢ € I'(L), VX € TM. Observe that in
this case, the orthogonal complementiofn the normal bundle is also parallel.
Use the ideas of the previous exercise to show ftiaf ) is contained in the affine
subspace trough a poirftz), spanned by, M and L,. Compare this fact with
the results of exercise ??.

EXERCISE 3.8. Letf : M — R"! be an isometric immersion of a-
dimensional Riemannian manifol, and£ a unit normal field. Let\ be a prin-
cipal curvature, i.e. an eigenvalue of the shape operdtoand suppose\ has
constant multiplicityd in an open set/ C M. It is known that the distribution:

D)\ = KGT(Ag — )\Id),
is smooth inU.

(1) Prove thaiD, is integrable and ifl > 2, )\ is constant along the integral
leaves ofD. (Hint: Use the Codazzi equations).

(2) Show that the leaves @ are totally umbilical inR™*+!. If A = 0 they are
actually totally geodesic. In this case, show that the atfaimgent space
is constant along any geodesic of a leaf.
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EXERCISE 3.9. LetM be ann-dimensional differentiable manifold ang :
M — R*"! a smooth immersion. Assume that for everye M, f(M) is
contained in one closed half-space determined by the affipertplanef(z) +
Im(df,). Prove thatV/ is orientable.

ExERCISE3.10. Consider the surfade = {(x1, 2, x3) € R : 22" + 23" +
w%k — 1 = 0}, wheren, m, k are odd positive integers. Prove thetis compact
and use the Gauss Bonnet theorem to compute the integra¢ cltivature ofd/
(hint: Considerz;, = z7, ....)

EXERCISE3.11. Consider the surfadd = {(x1,x2,23) € R? : 22 + 23 +
m%k — 1 =0}, k any positive integer. Prove thaf is compact and all the height
functions have exactly two critical points. Conclude théatis the boundary of a
convex body.

EXERCISE 3.12. LetF : R*"! — R be a smooth function andl € R a
regular value of~'. Consider the hypersurfadd”™ = {x € R"*! : F(x) = 0}. If
¢ =(1,0,...,0) € S", the critical points of the height functiol are solutions
of the system:

oF

(%ci
Use the implicit function theorem to prove that the index.pfat a critical pointr
is the index of the matrix:

oF 1 92F o
_(3—961(96)) (c%ciawj(x))’ 6j=2,...,n+1

()=0, i=2,....,n+1, F(x)=0.

EXERCISE3.13. LetF(z1,...,2n11) = (310 22 —5)2 —16(1— Y10 22).
ConsiderM = F~1(0). Assumen > 4.

(1) Let§ = (1,0,...,0) € S™. Show that the height functioh is a Morse
function with exactly four critical points. Compute de ixdef i, at the
critical points and use it to compute the homology\éf

(2) Show thatM/ may be obtained by the following geometric construction:
ConsiderG = SO(2) x SO(n — 1) and the product actio x (R? x
R 1) — (R? x R*~!) = R"*L. Consider the circle in the {z;, z3}-
plane centered &2, 0) and of radius 1. Thef/ is the orbit ofy under the
action of G. Conclude thatV/ is a manifold of(G- cohomogeneity one,
i.e. G is a group of isometries a¥/ such that the minimal codimension
of the orbits is one.

(3) Show thatM is the image of the map:

fiRx S x 8" S R f(t,u,v) = ((sint + 2)u, costv).

Conclude thaf\/ is a tube of radius one around the cir¢i:, 0).

(4) Use the above considerations to compute the secondrherdal form
of M, at least at points wherg¢ is non singular. Conclude that is
conformally flat.
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3.7.15. EMARK. The hypersurface above has quite interesting propeFfimss.
example it is shown in [MN?] that, up to the choice of the @rg] i.e. its plane,
center and radius, it is the only compact hypersurface okedsionn > 4 which
is conformally flat, of cohomogeneity one (with respect td@sed subgroup of
isometries) ands not an hypersurface of revolutipne. is nor invariant under the
action of a subgroup of isometries of the ambient space whales a straight line
pointwise fixed.

EXERCISE3.14. LetV be areal vector space. domplex structuren V' is a
linear endomorphisnd : V — V with J? = —Id. Given a complex structuré on
V then there is a unique way to extend the scalar multiplicadbl” to C so that
V becomes a complex vector space and= J(v) for all v € V; we denote such
complex vector space by, .J).

Let J¢ be the unique complex linear extensionjofo V¢, so that(.J¢)? equals
minus the identity ol “. Set:

Vi={veV: W) =iv},
Vi={veV9: J%U) = —iv};

VY andV® are called respectively tHelomorphicand theanti-holomorphicsub-
spaces of/® corresponding to the complex structufef V. Show that:

(1) VY andV® are complex subspaces 6f';

(2) the mapgV,J) > v v —iJ(v) € VI9and(V,J) 3 v v+iJ(v) €
V® are respectively a complex linear isomorphism and a cotgugeear
isomorphism;

@ Ve=vipvy

(4) V%is conjugate td’";

(5) if S is a complex subspace bf such that’'® = S @ S then there exists
a unique complex structutéon V with VY = S.

ExERCISE3.15. LetV be areal vector space afid-) a positive definite inner
product inV’. Denote by(-, -)¢ and(, -) respectively the complex bilinear and the
sesqui-linear extensions ¢f,-) to V°. A complex subspacé& of V¢ is called
isotropicif (-, -)¢ vanishes orb. Show that:

(1) if S ¢ V¢isisotropic if and only ifS is (-, -)¢-orthogonal taS;

(2) if S ¢ V¢isisotropic thenS NS = {0} and there exists a unique real
subspacéV C V such thai?V® = S @ S,

(3) if dim(V') = n then every isotropic subspace C V° has complex
dimension less than or equal %9

(4) if dim(V) = nis even then the isotropic subspace¥ 6fhaving complex
dimensionz are precisely the holomorphic subspaces corresponding to
the complex structured of V' that are anti-symmetric with respect to

<'7 >
EXeERcISE3.16. If (Z, W) and(Z’,W') are bases of the same complex sub-
space ofl, M°, show thatK“(Z, W) = K°(Z',W’) (hint: show thatK°(Z +
M, W) = K%Z,W) and thatk “(\Z, W) = K°(Z, W) for complex\ # 0).
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EXERCISE 3.17. Letf : M? — R? be anembeddingof finite geometric
type. In this case it is known that the Gauss map assumeg ahtts, at most two
values, and, if assume two, they are opposite (see Remarké&t?) be the number
of ends andn the degree of the Gauss map. Suppose that the Gaussiarucerrvat
of M never vanishes. Prove that:

(1) E<m+ 1.
(2) Y v(pi) = 2m.
) 2m <k <m+1.
Conclude thabZ” is homeomorphic t&? andk = 2.

3.7.16. EMARK. ltis known that a complete minimal surface with finite total
curvature and two ends is a catenoid. In the context of mihgmdaces of finite
total curvature, the above result is originally due to L. Rgudes (see [R]).

EXERCISE 3.18. Considen/?" = S"(2‘%) X S”(2‘%) ={(z,y) e R @
R : |z = |yl = 272, < 2,y >= 0} C §2+1 C R2+2,

(1) Compute the second fundamental formadfin S?"*! and in R?"+2.
Conclude thaf\/ is minimal in S2*+1 j.e., the trace of the second funda-
mental form ofM in $2"+1 is zero.

(2) Letp = (p1,p2) € M andr : §?"+1 — pl = R27+! pe the stereo-
graphic projection. It can be shown that the Gauss-Krorreclesature
of m (M) vanishes only along (p; x S"(Z‘%) U S”(2‘%) X pg2). Con-
clude thatr (M) is an hypersurface of finite geometric type. This shows
that the hypothesis of Theorem ?? are “almost optimal’.

3.7.17. RMARK. If f : M™ — R™*! is an immersion of finite geometric
type and the ends are embedded, composing with the invetbe sfereographic
projection, we obtain an immersion 8f into S”*!. Conversely, ifM is an hy-
persurface o™ ! andp € M, the stereographic projection 8f from p, gives
an hypersurface dR™*! which is non compact and of finite geometric type if the
condition on the Gauss-Kroneker curvature is verified.



CHAPTER 4

Morse Theory on non Compact Manifolds

4.1. What's not working in the case of non compact manifolds?

If we try to extend the results of Morse theory to the case afcmmpact mani-
folds in a naive way we immediately find counter-exampledltofahe statements
given in Section®?, 2.5,?? and??. To start with, consider the height function
with respect to the axis of an infinite circular cylinder,.i.eonsider the smooth
mapf : R x S' — R given by the projection onto the first coordinate. The map
f has no critical points at all, althoughy(M;Q) = 51 (M;Q) = 1; thus, the
weak Morse inequalities (and hence also the strong onesdtduootd. Even in the
case of bounded functions, trivial counter-examples tdMbese inequalities may
be obtained by considering the height function on a sphetie avfinite number
of points removed. Also the non critical neck principle (arsdCorollaries 2.3.12
and??) do not hold in the non compact case: let for instaiéebe the sphere
with one point in the equator removed and fet M — R be the height function
with respect to the axis passing through the poles. Obshatelte (non empty)
sublevels off below the equator are contractible, although the subldatsy the
north pole containing a neighborhood of the equator havadhgotopy type of the
circle S*.

It is easy to single out the main obstruction caused by tHedhcompactness
in the proof of the non-critical neck principle: the mulgpbf the gradient off
whose flow was used to move the levelsfofnay not be azompletevector field.
If we find a hypothesis that makes such field complete then dimecritical neck
principle (and its Corollaries 2.3.12 af2®) will work! Observe also that compact-
ness is used in the proof of Proposition 2.5.1 only to guaethe finiteness of
critical points at a critical level (and to make the use of@wollary 2.3.12 of the
non-critical neck principle valid).

In order to guarantee that the vector fidldused in the proof of the non critical
neck principle is complete in the non compact case, one carthesfollowing
strategy: if there exists a complete Riemannian metridfofor which ||V f|| stays
away from zero on the inverse image pgf a non critical intervala, b] thenX will
be bounded with respect to such complete Riemannian meutievdl therefore be
a complete vector field.

In order to extend the Morse theory to the case of non compacifoids
we will make an assumption concerning the existence of a EmRiemannian
metric with respect to whiclf satisfies the so calldéalais—Smale conditiowhich

205
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implies in particular thaf| V f|| stays away from zero on the inverse imagefbyf
a non critical intervala, b].

One more essential feature of smooth maps on compact nasifes used in
the proof of Theorem 2.5.5. Namely, we constructed a CW-dexrp inductively,
by analyzing the contribution of each critical valuefoflt was important to know,
however, that this construction had a well-defined stantiomt: the sublevelg®
of f are empty fore < min f. In the non compact case then it will be important to
assume thaf is bounded from below in order to generalize Theorem 2.5.5.

In this chapter we will extend Morse theory beyond the redlicompact man-
ifolds; more specifically, we extend Morse theory to the aasgossibly infinite-
dimensional) Hilbert manifolds. Many readers could wondethis point why
don’t we deal with finite-dimensional non compact manifold&/ell, obviously
the theory developed in this chapter also works on the fifiitgensional case;
if the reader is more interested in such case, he (she) cosatdgnore the de-
tails of functional analysis and read the theory pretendhmag it is written for
finite-dimensional Riemannian manifolds. It happens, h@rehat one extremely
powerful application of Morse theory appears when one camsifunctionals de-
fined on spaces of maps between finite-dimensional manjftiidstudy of critical
points for such functionals is what is usually knowrCedculus of VariationsThe
prettiest and simplest application of Morse theory to itirdimensional mani-
folds is the one concerning the energy functional in the sgdcurves connecting
two fixed points in a complete finite-dimensional Riemanmaanifold; in that
case, critical points are precisely tigeodesicsonnecting those points so that
Morse theory gives us several interesting global resultRi@mannian geometry.
We develop this application of Morse theory in full detail.

4.2. Review of Functional Analysis

In this section we recall a few selected topics from basictional analysis
as well as some simple aspects of calculus on Banach spates &anach man-
ifolds. In this section (and actually in the whole chaptaif)vector spaces are
assumed to be realinless otherwise stated. This assumption may seen a little
odd for those who may be familiar with functional analysiok® that are almost
entirely written only forcomplexvector spaces. Given for instance a normed com-
plex vector space, one can always forget about its complestate and work with
the underlying real normed space. From a topological pdimew, this change
of scalars is irrelevant, although the field of scalars isartgmt from a linear-
algebraic point of view. For instance, in the study of sp@dineory for linear
operators it is almost impossible to work in the real casgesimost of the tech-
niques applied involves holomorphic single-variable (&anspace-valued) func-
tions. But we are not interested in spectral theory and Hgtaththe examples in
which we will apply the theory of this section will concernlpmeal spaces; so,
although many of the results stated in this section woule Resomplex-analogue,
we prefer to work only in the real case for definiteness.

4.2.1. DEFINITION. LetX be a (real) vector space. We call
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e atopological vector spacd X is endowed with a topology that makes
the vector space operations:

XxX3(@yr—azt+yeX, RxX>3(qz)—cxelX,

continuous;

e aBanach spacéd X is endowed with a normj- || : X — R that induces
a complete metric otX (X is automatically a topological vector space
with the topology induced from such metric);

e a Banachable spacd X is a topological vector space for whichere
existsa norm onX that induces the topology of and that make&X into
a Banach space;

e aHilbert spacef X is endowed with an inner produ¢t -) : X x X — R
whose corresponding norm mak&sinto a Banach space;

¢ a Hilbertable spacdf X is a topological vector space for whithere
existsan inner product onX that induces the topology oX and that
makesX into a Hilbert space.

If X is a Banachable space then a ndfm|| on X that induces the topology
of X will be called aBanach space nordor X (every such norm makek into a
Banach space — see Exercise 4.4). Similarly(ifs a Hilbertable space then an
inner product onX that induces the topology of will be called aHilbert space
inner productfor X (any such inner product makesinto a Hilbert space).

Below we recall some classical examples of Banach and Hlifiperces. All
integrals are always understood tolbebesgue integrajsas usual, the expression
“for almost all” (or “almost everywhere”) means that somegerty should hold
outside a set of measure zero.

4.2.2. EXAMPLE. Let f : [a,b] — R™ be a Measurable function. For every
realp € [1, +oo[ we set:

I1fllzr = </b Hf(t)H”dt)i € [0, +o0]

where|| - || denotes an arbitrary norm dR"” (see also Remark 4.2.5 below). We
call || - ||z» the LP-norm (corresponding to the chosen nofm|| onR™); when a
Measurable functiorf : [a,b] — R has finiteLP-norm we usually say that the
function f is in L? or that f is a LP-function The Minkowski inequalitystates that
for every Measurable function§ g : [a, b] — R™ we have:

If +gllze < [[fllze + llgllze;

moreover, it is easy to see thiaf||.» = 0 if and only if f(¢) = 0 for almost
all t € [a,b]. Hence the set of all measurable functiohs [a,b] — R™ with
| fllz»r < 400 is a subspace of the space offall-valued maps ofu, b] and|| - || .»
is a semi-norm on it. The corresponding normed space (sexciEget.l) is de-
noted byL? ([a, b], R"). An element ofL? ([a, b], R"™) is an equivalence class 6f
functions, where the equivalence relatiens f ~ g < f = g almost everywhere.
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Nevertheless, in order to simplify the language, one ugymktends that the ele-
ments ofL?([a, b], R"™) are functions; obviously, one has to be careful with such
attitude in verifying that the statements being made ablements ofZ? ([a, b]R™)

do not depend on the representative of the equivalence (&asastance, you can-
not evaluate an element éf ([a, b], R™) at a point of|a, b]). It is well known that
L?([a,b], R™) is a Banach space with the noff || .»; whenla, b] andn are fixed

by the context, we may simply talk abailie spacel.”. Observe that the topology
on the L? space does not depend on the norm chosdR"inIf the norm|| - || on

R™ is induced by an inner produg¢t, -) and if p = 2 then theLP-norm is induced
from the L2-inner productgiven by:

b
(f 91 = / (F(t), 9(t)) dt,

so thatL?([a, b], R") endowed with(-,-) 2 is a Hilbert space. All the theory of
LP-spaces may be developed, more in generalRfrvalued maps on arbitrary
Measure spaces, but we won't need that. It is also usual toedfel”-space for
p = +oo (see Exercise 4.10); again, we won't use that.

4.2.3. XAMPLE. If A is an arbitrary set and ifX, | - ||) is a Banach space
then the set of all bounded maps: A — X is again a Banach space endowed
with the norm:

||f||sup = sup Hf(a)H,
a€A
we denote such Banach spaceddyA, X). If A is atopological space then the sub-

spaceC?(A, X) of B(A, X) consisting of continuous maps is closed and therefore
it is again a Banach space. Sometimes we may prefer usingptagam:

£ llco = Il fllsup-

Observe that a sequentg,),>1 in B(A, X) converges to somg with respect to

|| - ||sup if @and only if f,, — f uniformly on A. Observe also that, althougjh ||sup
depends on the nori || of X, if one replaces the norm df by an equivalent one
then the normj| - ||, ONB(A, X) will also be replaced by an equivalent one. We
can thus think of8(A, X') as a Banachable spaceifis a Banachable space.

4.2.4. XAMPLE. If f : [a,b] — R™is a map of clas€’* (0 < k < o0) then
we set:

k
e =D 179 cos
i=0

wheref(®) denotes the-th derivative off (and f(?) = f). The space:
C*([a,b), R™) = {f : [a,b] — R™: fis of classC*},
endowed with the nornj - || -« is @ Banach space.

4.2.5. EMARK. In Examples 4.2.2 and 4.2.4 we have considered in principle
only R™-valued maps. Obviously there is no harm in repladrigby an arbitrary
finite-dimensional vector space and we will indeed do th&eaften.
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Recall that a linear mapp : X — Y between Banach spaces is continuous if
and only if (see Exercise 4.3):
(4.2.1) IT| = H81”1p | T(2)]| < 400
z||<1

more in general, a multi-linear map : X; x --- x X — Y is continuous if and
only if (see Exercise 4.5):
(4.2.2) I|B|| = sup |B(z1,... 2| < 4oc.
lo1]|<1,....llze |<1

A linear (respectively, multi-linear) map satisfying cdtiwh (4.2.1) (respectively,
condition (4.2.2)) is usually called loundedlinear (respectively, multi-linear)
map. Observe then that boundedresgually is equivalent to continuity for linear
(or multi-linear) maps.

The notation introduced on pa@& concerning spaces of multi-linear maps is
no longer efficient in the context of functional analysis. kivake the following:

4.2.6. G®NVENTION. When dealing with topological vector spaces (like Ba-
nach spaces or Hilbert spaces) the notations introducedage 3? should be
changed so that the spades(V, W), Lin(V), V*, Bil(V, V/; W), etc. .., contain
only continuouslinear and multi-linear maps. For instance Xf Y are Banach
spaces thehin (X, Y’) denotes the space of continuous linear maps oo Y.

Recall that multi-linear maps defined on finite-dimensioredtor spaces are
automatically continuous, so that the convention abovensgatible with the nota-
tion introduced on page?. We observe also that X, X,, ..., X, Y are Banach
spaces then the space of continuous multi-linear maps ¥em - -- x X, toY is
again a Banach space endowed with the norm (4.2.2).

4.2.7. XAMPLE. If B : R™ x R™ — RRP is an arbitrary bilinear map then the
map:
B: C%([a,b],R™) x L?([a,b],R") — L?([a,b], RP)

defined byB(f,9)(t) = B(f(t),g(t)), t € [a,b], is bilinear and continuous.
Namely:

~ b b
1Bo)l = [ BU@L00) 0 < [BIPISIZ [ )] ar

a

and therefore| B|| < || B||. We will have particular interest in the continuity of the
bilinear map:

(4.2.3)  B:C%[a,b],Lin(R™,R"™)) x L*([a,b], R™) — L*([a,b], R")
given by:
(4.2.4) B(T, f)(t) =T(t) - f(t), t€[a,b],

1one should observe that the term boundedness in the corftextlt-linear maps does not
have its usual meaning; for instance, non zero linear mayer tave bounded image.
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forall T € C°([a,b],Lin(R™,R"™)), f € L*([a,b],R™). Observe that the conti-
nuity of the bilinear map (4.2.3) implies by Exercise 4.9 ¢batinuity of the linear
map:
(4.2.5) R

C%(Ja,b],Lin(R™,R"™)) 5T+ B(T,-) € Lin(L*([a,b], R™), L*([a, b],R")).

In Examples 4.2.2, 4.2.3 and 4.2.4 above, the only space p§ radmitting
the structure of a Hilbert space was. The problem is that, on one hand, Hilbert
spaces are much easier to work with than Banach spacesr(ia térabstract func-
tional analysis) while, on the other hand, differential gpers (like the derivative
operatory — «') cannot be bounded (globally defined) linear mapsién We
thus need a Hilbert space consisting of maps with higheraeitguthan 2. Such
problem is solved by the introduction of ttf&obolev spacesThere are several
possible approaches for the general theory of Sobolev spbaetfor our purposes,
we need only a very particular aspect of such theory; nameayyill define below
the space olR"-valued H' maps on a compact interval. There is a very simple
definition for such Sobolev space using the notion of absbiudontinuous map:

4.2.8. CEFINITION. A curve~ : [a,b] — R™ is calledabsolutely continuous
if for every ¢ > 0 there existsy > 0 such that given disjoint open subintervals

(1, 91)s- - > (21, y) OF [a, b] with S°F_ 4y — 2; < & then:

k
> @) =y <e.
i=1

Obviously every absolutely continuous curve is continuans every Lipschitz
continuous curve (and in particular every piecewiSecurve) is absolutely contin-
uous. The theorem below gives an equivalent definition ohtiteon of absolutely
continuous curve.

4.2.9. THEOREM. A curvey : [a,b] — R™is absolutely continuous if and only
if the following three conditions are satisfied:

. Ehe ]derivativey’(t) = limy_q w exists for almost every in
a, bl;
e the (almost everywhere defined) mgp [a, b] — R" is integrable;
o Y(t) =~(a) + [I+ forall t € [a,b].
Moreover, if¢ : [a,b] — R™ is an integrable map then the curve: [a,b] — R"
defined byy(t) = fat ¢ is absolutely continuous and = ¢ almost everywhere.

PrROOF See for instancel3§. O

We can now proceed with the definition of the Sobolev sgdée

4.2.10. CEFINITION. We say that a curve : [a,b] — R™ is of Sobolev class
H?' (shortly, of classH") if v is absolutely continuous and the (almost everywhere
defined) mapy’ : [a,b] — R™ is in L*([a,b],R™). We denote by ([a, b], R")
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the set of all maps : [a, b] — R" of classH* and we define thél -inner product
of y1,72 € H'([a, b], R") by:

(4.2.6) (1,72 i = (71(a),2(a)) + (y1,72) 2.

The norm corresponding t0, -) ;1 will be denoted byj| - | 71 and will be called
the H'-norm

It is easy to see thatf! ([a, b], R™) is a vector subspace 6f([a, b], R") and
that (-, ) ;1 makesH' ([a,b], R"™) into a Hilbert space such that the inclusion of
H'([a,b],R™) in C°([a, b], R™) is continuous. For more details see Exercise 4.17.

There are several continuous inclusions between the Baspaates discussed
so far. They are listed in Exercise 4.18.

Observe that a continuous bilinear foh: H x H — IR on a Hilbert space
‘H is nondegenerate if and only if the linear map:

(4.2.7) H>x+—— B(z,-) e H

is injective; equivalently,B is nondegenerate if the linear map that represéhts
with respect to the Hilbert space inner product?éfis injective. We give the
following definition:

4.2.11. CEFINITION. A continuous bilinear formB : H x H — R is called
strongly nondegeneratis the linear map (4.2.7) is an isomorphism; equivalently,
B is strongly nondegenerate if the linear map that repreg@ntith respect to the
Hilbert space inner product @{ is an isomorphism.

The following gives a characterization of the Hilbert spameer products of a
Hilbertable space. Recall that, given a Hilbert spéke (-, -)), a bounded linear
operatorP : H — H is calledpositiveif P is self-adjoint (i.e.{Pz,y) = (x, Py)
forall z,y € H) and(Px,z) > 0 forall z € H.

4.2.12. RROPOSITION Let(H, (-,-)) be a Hilbert space and IeB : H x H —
R be a bounded bilinear form. The® is a (positive definite) Hilbert space inner
product forH if and only if B is represented by a positive isomorphisgm H — H
(see Exercise 4.19).

PROOF It is easy to see that, giveR € Lin(H) then(-,-); = (P-,-) is an
inner product inH if and only if P is positive anad injective. We have to show
that(-, -); is a Hilbert space inner product f()H, (-, -)) (i.e., that(-, -); defines the
same topology a$, -)) if and only if P is an isomorphism. Observe that we do
not know whether(, (-,-)1) is a Hilbert space, but it is at least a normed (and a
topological) vector space. Sin¢e-); is a bounded bilinear form of#, (-, -)), it
is easy to see that the identity operator:

(4.2.8) Id : (H, (-, )) — (H, (-, )1)

is bounded. Obviously(-,-); defines the same topology &s-) if and only if
(4.2.8) is a homeomorphism; it thus follows from the Open Mag Theorem
that(-,-); defines the same topology é&s-) if and only if (H, (-,-)1) is a Hilbert
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space. To complete the proof, we will show then tRat bijective if and only if

(H,(-,-)1) is a Hilbert space. To this aim, consider the commutativgraia:

(4.2.9) 1)
) >

(H> < )
Ry m‘
(H7 ('7'>1) (Ha <7>)*
\4 %m
(M. ()

wherefR; is given byz — (z, )1, R is given byx — (x,-), andId* denotes the
transpose operator afl. It follows easily from the Cauchy—Schwarz inequality
thatR andR; are isometric immersions; moreover, sindé, (-,-)) is a Hilbert
space, it follows from Riesz’s representation theorem$hat indeed an isometry.
Moreover,1d* is simply an inclusion map and hence it is injective. Assignin
that P is bijective then both arrows in the bottom triangle of dagr(4.2.9) are
bijective and thereforéd* o R, is bijective. Sincdd* is injective, it follows that
R, is bijective and it is therefore an isometry; we conclude 4, (-,-)1) is a
Hilbert space, since the dual of a normed space is alwaysletenp

Conversely, assume thé}t{, (-, ->1) is a Hilbert space. Then (4.2.8) is a home-
omorphism and therefoilel* is bijective; moreover, by Riesz’s representation theo-
rem, the mapr; is an isometry. But als@t is an isometry and hend@is bijective.
This concludes the proof. O

In order to developed infinite-dimensional Morse theory viéweed a gener-
alization of Sylvester’s theorem of Inertia for Hilbert spa. This task will take a
little work. We start by recalling the following tool:

4.2.13. ROPOSITION (continuous functional calculus).et H be a Hilbert
space and lef’ : H — H be a bounded self-adjoint operator. Then there exists a
unique continuous homomorphism of algebras with @énity

ér : C%o(T),R) — Lin(H)

such that¢r(i) = T, wherei : o(T) — R denotes the inclusion. Moreover,
or(f) is a self-adjoint operator for every continuous map o(7') — R and the
homomaorphismp is an isometry, i.e., the operator norm®f (/) equals the sup
norm of f € CY(o(T), R).

PrROOF See L34, Chapter VII, Section 1] for the case whekgis a complex
Hilbert space. The case of a real Hilbert space can be obithiyna complexifica-
tion argument O

2This means thapr is linear,¢r(fg) = ¢ (f) o dr(g), forall f,g € C°(o(T), R) and that
¢r(1) = 1d.

3Thecomplexificatiomf a real Hilbert space is the complex Hilbert spate = H & H, with
complex structuré(z, y) = (—y, «) and Hermitean product obtained by extending the inner odu
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4.2.14. EMARK. We list a few more properties of the operatgrs(f) that
follow easily from Proposition 4.2.13.

o If p(z) = S°1_, arz® is a polynomial thempr(p) = > 7_, ax Tk, where
T° = 1d. Follows directly from the fact thatr is a homomorphism and
from the fact thatyy maps the inclusion: (7)) — Rto T

e Foranyf,g € C%o(T),R) the operatorssr(f) and¢r(g) commute; in
particular, each operatoryr(f) commutes witll". This follows directly
from the observation that the algelttd (o (T'), R) is commutative.

e If f: o(T) — R is a non negative function thef(T") is a positive
operator  Chooseg € C°(¢(T),R) with g¢> = f and observe that
(or(f)z,z) = (dr(9)z, pr(g9)z) forall z € H.

o If f € CY0o(T),R) satisfiesf? = f thengr(f) is an orthogonal projec-
tion onto a closed subspace Hf Observe simply thapr(f)? = ¢7(f)
and thatpp(f) is self-adjoint (see Exercise 4.28).

¢ If a closed subspacF of H is invariant byT thenV is also invariant by
or(f), forall f € CO%o(T),R). This is immediate iff is a polynomial;
otherwise, it follows from the continuity afr, since any continuous map
in a compact subset @ is a uniform limit of polynomials.

We can now finally prove the following:

4.2.15. LEMMA. LetB : 'H x H — R be a strongly nondegenerate bounded
symmetric bilinear form on a Hilbert spacé, (-, -)). Then there exists a direct
sum decompositioll = H & H_, whereH . and _ are closed subspaces &f
that are orthogonal with respect to both -) and B and such thai3|, , —B|x_
are (positive definite) Hilbert space inner products.

PROOF LetT : H — H be the bounded self-adjoint operator that represents
B. SinceT is an isomorphism we have théitZ o(7") and therefore we can write
o(T) = oy Uo_ whereoy = o(T) N ]0,+oc[ ando_ = o(T") N |—o0,0].
Denote byy,,,x.. € C°0c(T),R) the characteristic maps of, ando_ re-
spectively, i.e.x,, (respectivelyx,_) equalsl on o (respectively, onr_) and
equals zero otherwise. Observe thgt andy,_ are indeed continuous an(7’),
sinceoy ando_ are open ino(T). Using the continuous functional calculus
(Proposition 4.2.13), we obtain bounded self-adjoint afs P, = ¢7(xo0. )
and P_ = ¢r(x,_) on'H. Using the equalitie$x,, )*> = Xo., (Xo_)* = Xo_,
Xo. + Xo. = 1 and Remark 4.2.14 we obtain th&t, and P_ are orthogo-
nal projections onto closed subspadés and H_ of H respectively, and that
H = Hy @ H_ is a direct sum decomposition that is orthogonal with respec
to (-,-). SinceP, and P_ commute withT' (see Remark 4.2.14), it follows that
bothH. andH_ are invariant byl’, so thatH, and’{_ are alsoB-orthogonal. If
i: o(T) — R denotes the inclusion theého P, = ¢r(ix,, ) and, sincéx,, isa
non negative function, Remark 4.2.14 implies that for every H. :

B(z,z) = (Tz,xz) = {(T o Py)z,x) > 0.

of H to a sesqui-linear map. Every bounded self-adjoint opef@toH{ — H extends uniquely to a
(complex linear) bounded self-adjoint operafdt : H® — H®
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Similarly, by considering the non negative functiefiy,_ one shows thaB3 is
negative semi-definite ok _. Finally, the fact thatl’ : H — H is a self-adjoint
isomorphism implies that its restriction to the invariambspacesH, and H_
is again an isomorphism (see Exercise 4.30), so Hiat, and —B|_ are rep-
resented by positive isomorphisms &f. and H_ respectively. The conclusion
follows from Proposition 4.2.12. O

4.3. Calculus on Banach Spaces and Banach Manifolds

We now make a quick review on the subject of Calculus on Baspahes. We
start with the following:

4.3.1. DEFINITION. Let X, Y be Banach space¥, C X an open subset and
f:U — Y amap. We say that is differentiableat a pointz € U if there exists a
continuous linear map' : X — Y such that the map defined by the equality:

f@+h) = f(x)+T(h)+r(h),
satisfiedimy,_.q % = 0.
If fis differentiable at: then it is easy to check that:

(o)  tim LEH 1)~ /(@)

t—0 t
forallv € X. Thisimplies thafl” is unique when it exists; we céll thedifferential
of f atax and we writed f(z) = T.

9

4.3.2. REMARK. ltis easy to see that the stateme}ii$ differentiable at: and
df(x) = T" is invariant under substitution of the normsiandY by equivalent
ones. In particular, differentiability is a well-definedtiom for Banachable spaces.

If f is differentiable at every point d¥, we say thatf is differentiable inU;
in such case, we can consider the map:

df : U — Lin(X,Y),

defined byz — df(z). SinceLin(X,Y") is again a Banach space, we can again
ask whetherl f is a differentiable map. If it is, we obtain a map:

d*f =d(df) : U — Lin(X, Lin(X,Y))

called thesecond order differentiabf f. In general, iff can be differentiated
times, we can consider its-th order differential (defined recursively kif f =
d(d*=1f)) which is a map of the form:

dkf U —>Lin(X,Lin(X7"’ 7Lin(AX,Y)) )

k Lin’s

The counter-domain af® f may be identified with a nicer space, namely we have
an isometry (see Exercise 4.9):

Lin(X,Lin(X,--- ,Lin(X,Y))---) 3 T+ T € Multling(X;Y)

k Lin's
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defined by:

~

T(Uh V2, ... 7UI€) = T(Ul)(UQ) e (Uk’)v

for all vy,...,v, € X, whereMultling(X;Y") denotes the Banach space of all
continuousk-linear mapsB : X x --- x X —» Y.

famapf : U ¢ X — Y is k times differentiable and if it&-th order
differentiald* f : U — Multlin,(X;Y") is continuous then we say thftis amap
of classC*. If f is of classC* for all k € IN, we say thatf is amap of clasg>>®.

From now on, one can develop the theory of differentiablec@ak on Ba-
nach spaces just like one does in finite-dimensional sp&esnow can prove the
chain rule, the mean value inequality, Schwarz’s theoremtlfe symmetry of the
higher order differentials), the inverse and implicit ftino theorems and so on.
The whole theory goes on like in the finite-dimensional casth essentially no
differences (and in most cases no additional difficulty)e Timain relevant differ-
ence lies on the local form of immersions and submersiondo@keat the problem
more closely below.

Recall that a closed subspagef a Banach spac# is calledcomplemented
if there exists a closed subspagec X with X = S & 5.

4.3.3. DEFINITION. Let X, Y be Banach space&, ¢ X an open subset and
f U — Y amap. Assume that is differentiable at some € U. We say that
f is asubmersiorat z if the differentialdf(z) : X — Y is surjective and if its
(automatically closed) kernd{er(df(z)) is complemented ifX. We say thatf
is animmersionat x if the differentiald f (x) : X — Y is injective and if its image
is closed and complemented¥h

Our point here is that the standard proofs of the local fornmmhersions and
submersions only work in the Banach space case if one usestioas of immer-
sion and submersion described above. In finite-dimensigpates, all subspaces
are closed and complemented, so that Definition 4.3.3 redodbe standard one.
We remark also that on Hilbert spaces all closed subspaeesoanplemented
(there is always the orthogonal complement!). Hencé; is a Hilbert space then
f:U C X — Yisasubmersion at € U iff df(x) is surjective; similarly, ifY”
is a Hilbert space thefi is an immersion at: iff df(x) is injective and has closed
image.

What we need now is a practical method for proving differasitity of maps

between Banach spaces in concrete examples. This is thecsobl.emma 4.3.5
below; first we need a definition.

4.3.4. CEFINITION. LetY be a Banach space. geparating familyfor Y is a
setF of bounded linear operators: Y — Z,, with Z, a Banach space, such that
for each non zero € Y there exists\ € F with A(y) # 0.

4.3.5. LEMMA (weak differentiation principle)Let X, Y be Banach spaces,
f : U — Y amap defined on an open subgetC X and F a separating family
for Y. Assume that there exists a continuous mapU — Lin(X,Y") such that
foreveryx € U, v € X, A € F, the directional derivative%(m) exists and
equalsA(g(z) - v). Thenf is of classC! anddf = g.
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PROOF Letzx € U be fixed and define by:
fle+h) = f(x)+g(x) h+rh)

all we have to show is thdim;, . % = 0. If his small enough, the closed line

segmentix, =+ h] is contained irV; moreover, under the hypothesis of the lemma,
it is easy to see that for evelye F the curve:

[0,1] 5t (Ao f)(x + th)
is differentiable and that is derivative is given by:
d
E(A o f)(z +th) = X(g(x +th) - h).
We can thus apply the Fundamental Theorem of Caléutusbtain:

1
A(r (1) :/0 %()\of)(x—i—th) dt — A(g(z) - h)

:)\</01g(w+th)-hdt—g(w)~h>.

Since F separates points il we can “cancel’)\ on both sides of the equality
above obtaining:

r(h) :/Olg(x+th)-hdt—g(x)-h: </01 [9(z + th) — g(z)] dt> - h;

hence:
|r(R)|| < Al sup |g(z + th) — g(a)||-
te[0,1]

The conclusion follows from the continuity gf O

We now make a quick study on the subject of length of curvesanagh
spaces.

A curve~ : I — X defined on an arbitrary intervdl C R, taking values
on a Banach spac& is said to bepiecewiseC' if there exists a finite subset
{to,t1,...,tx} C I, tg < t; < --- < tg, Such that'yhti’tHﬂ is of classC' for
i=1,....k —landy||_o to)nr @nA7|1t, +oojns are of clasgot.

4.3.6. DEFINITION. Let (X, | - ||) be a Banach space and fet I — X be

a piecewiseC'! curve defined in an arbitrary interval C R. Thelengthof v is
defined by:

L(v) = [ [/ ®)] dt € [0, +oc].
1

In Exercise 4.12 the reader is asked to show that a line segmarshortest
path connecting two points in a Banach space.

4Here we need a theory of integration for Banach space valueges. One possibility is to
use theBochner integralsee [L67)), but actually one can use simpler approaches in this dage.
instance, one can use the notioniafak integratior(see Exercise 4.20).
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4.3.7. LEMMA. If v : I — X is a piecewis&'! curve defined on an arbitrary
interval I C R taking values in a Banach spacé and if L(v) < +oo, then the
image ofy is relatively compact inx.

PROOF Givene > 0, since [, ||7/(t)|| dt is finite, we can find a compact
interval J C I such thatl \ J is a disjoint union of two interval$;, I> and:

JIolars [ Jr)at<e

Fort,s € Iy, t < s, using the result of Exercise 4.12 we géty(t) — y(s)|| <
L(v|j,s) < €, so that the diameter of(1;) is less than or equal tg similarly, the
diameter ofy(I,) is less than or equal ta Finally, sincey(.J) C X is compact,
it can be covered by a finite number of subsets{obf diameter less than Thus
~(I) is totally bounded and hence relatively compact in the cetephetric space
X. O

We now deal with Banach manifolds. For the basic stuff, tliere big differ-
ence between the theory of Banach manifolds and the thedmyit-dimensional
manifolds. We just give a few basic definitions for complet&n

Let M be a set. Acharton M is a bijectiony : U — U, whereU is an open
subset of some Banach spake Given chartsp : U — U, YV - V on M,
with U open in the Banach spacé andV open in the Banach spadg then we
say thaty and+ arecompatibleif either U N’V = () or the map:

Yo t:ipUNV)—p(UNV)

is a smooth diffeomorphism between open sets. aflas A for M is a set of
pairwise compatible charts ot whose domains covek1. A Banach manifold
is a setM endowed with a maximal atlad. An atlas.4 on M induces a unique
topology onM for which the domains of the charts i are open and the charts
in A are homeomorphisms. Such topology is defined by:

7 C M s open<— e(ZNU)isopeninX,
foreverychartp: U — U C X in
the atlasA.

If a Banach manifold\ admits an atlas consisting only of charts taking values
on Hilbert spaces then we callt aHilbert manifold

4.3.8. ®NVENTION. Forthe rest of this section and until the end of Sec®@n
we will not make any assumptions on the topology of the BamaahifoldsM (not
even Hausdorff!). In Sectiof??, we will usually deal with a finite-dimensional
manifold M, for which the conventions of Sectid*? apply, i.e.,M should be
Hausdorff and second countable; at the same time, we wik lnafinite-dimen-
sional manifoldsM whose points areurveson M and we do not want to waist
time in proving topological properties of sugit. Actually, we will se in Corol-
lary 4.3.22 that a Hilbert manifold admitting a Riemanniaetnt is automatically
Ty.
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As in the case of Calculus on finite-dimensional manifoled® can now define
the notion of map of clas§” between Banach manifolds (using local charts) and
one can extend all the local theorems of the Calculus on Baespaces to the
context of Banach manifolds. We now make a few remarks conugthe tangent
space of a Banach manifold.

Let M be a Banach manifold and let € M be fixed. As in the finite-
dimensional case, the tangent spaga1 can be defined using equivalence classes
of curves inM passing through. More explicitly, consider the set of all smooth
curvesy : |—e, e[ — M with v(0) = z; we define an equivalence relation dn
by requiring thaty, u € A are equivalent if for some (and hence every) chart
aroundz in M we have(y o v)'(0) = (¢ o u)’(0). The tangent spacg, M is
defined to be the quotient of by such equivalence relation. Observe that every
charty : U — U C X with z € U induces a bijectiop : T, M — X that sends
the class ofy to (¢ o 7)’(0). If v and are both charts around then the bijec-
tionsp andy differ by the differential of the transition mao o~ ! atp(x); such
differential is a continuous isomorphism between Banaeltap and therefore all
charts induce off;, M the same vector space structure and the same topology.

Our point here is that the tangent spaceM is a Banachable spagenot a
Banach space, i.e., there is no canonically fixed norri,oi. Only the topology
of 7, M is canonical. Observe that i#1 is a Hilbert manifold then its tangent
spaces are Hilbertable spaces.

One can now, as in the finite-dimensional case, define thereliftial of a
differentiable map between Banach manifolds as being armanis linear map
between the appropriate tangent spaces. Definition 4.3.3i@& be generalized
in the obvious way to the context of manifolds.

We now define the notion of a submanifold of a Banach manifold.

4.3.9. CEFINITION. LetM be a Banach manifold and [&f ¢ M be a subset.
Acharty : U — U C X for M is called asubmanifold charfor A/ if there exists
a closed and complemented subspiice X such thatp(U NN) =UNY. If
N can be covered by the domains of a family of submanifold sHart\V then we
say that\ is aBanach submanifoldf M.

If A is a Banach submanifold of1 then the submanifold charts can be re-
stricted to form an atlas of/, so that\V also becomes a Banach manifold. The
inclusioni : N' — M is a smoothembeddingi.e., it is an immersion and a
homeomorphism onto its image. The differential of the is@u{ can be used to
identify, for everyz € N, the tangent spacgE,\ with a closed and complemented
subspace of the tangent spacgeMv.

The following result should come to no surprise:

4.3.10. ROPOSITION Let M, N be Banach manifolds and l¢t: M — N
be a smooth map. f € N is aregular valueof f, i.e., if f is a submersion at all
points of f ~1(c) thenf~1(¢) is a Banach submanifold gé1. Moreover, its tangent
space is given by:

Txf_l(c) = Ker(df(ac)),
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forall x € f=1(c).

PrROOE ltis a simple consequence of the local form of submersiasd) the
finite-dimensional case. O

Infinite dimensional Banach manifolds cannot be locally paot. This some-
times brings problems. Some of this problems are solved bynha 4.3.12 below.
First, we need a definition.

4.3.11. CEFINITION. If M is a Banach manifold then achart U — IZC X
for M is calledregular if wheneverF' C X is closed inX and contained i®/ then
o Y(F) is closed inM.

4.3.12. IEMMA. If M is a Banach manifold angh : U — U C X is a chart
for M then for every open séf in M with V C U, the chartp|y : V — (V) is
regular. In particular, if M is T3 then for every charp : U — U C X and every
x € U there exists a restriction @b to an open neighborhood efthat is a regular
chart.

PrROOFE We leave it as an exercise to the reader (see Exercise 4.26). [

We now study infinite-dimensional Riemannian manifolds.

4.3.13. DEFINITION. Let M be a Hilbert manifold. ARiemannian metriéor
M is a mapg that associates to evexryc M a Hilbert space inner produgj on
the Hilbertable spac&,.M in such a way that for every chagt: U — UcH
taking values in a Hilbert spadg, the map:

§:U — Bil(H),
defined by:
() = gu(dp(x) ™", dp(x)~" ),

is smooth. A Hilbert manifoldM endowed with a Riemannian metrcwill be
called aRiemannian manifold

The smoothness of the transition maps between local cmapigeis easily that
in order to check thaf is a Riemannian metric one has only to show the smoothness
of g for chartsy running through a fixed atlas d¥1.

We won't need to study much Riemannian geometry in Hilbemifofds. We
just present below a few selected topics that will be usetderdter sections.

We start with the definition of arc-length and distance.

4.3.14. CEFINITION. Let(M,g) be a Riemannian manifold. 4f: I — M is
a piecewiseC'! curve defined on an arbitrary intervAlc R then thelengthof ~ is
the (possibly infinite) non negative real number:

L(y) = /1 1y (®)]| dt € [0, +o0].
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Forx,y € M we define thalistancefrom x to y as the infimum of the lengths of
curves inM connectingr andy, i.e., we set:
(4.3.1)

dist(z,y) = inf {L(y) : v : [a,b] — M piecewiseC", v(a) = z, y(b) = y}.
If the set on the righthand side of the equality above is enfpsy, if z andy are
not in the same connected componeni\dj then we setlist(z, y) = +oc.

The following properties of the distance function definedwatbare obvious:
e dist(xz,z) =0 forall z € M,
o dist(x,y) = dist(y,z) forall z,y € M;
o dist(x,z) < dist(x,y) + dist(y, 2), forall z,y, z € M.
The triangle inequality above follows from the obvious ft length of curves is
additive by concatenation and from the fact that the comesiten of piecewis€!
curves is again piecewisg!.
4.3.15. DEFINITION. Let (M, g) be a Riemannian manifold. We say that a

charty : U — U taking values on an open stof a Hilbert spaceg(H, (-,-)) is
metric-relatingif there exists positive constantg,in, kmax € R such that:

1
(4.3.2) k:min<d<px(v),dgpm(v)>2 < g;v(v,v)% < k:max<d<,0z(v),d<px(v)> ,
forallxz e U,ve T, M.

Since we assume that. is a Hilbert space inner product fa@i, M, the con-
stantsknmin, kmax Satisfying (4.3.2) can be chosen for eack U, saying thaty is
metric-relating means that,;, andk,,.x can be chosemdependenthof xz € U.
The continuity of the Riemannian metric 8# implies that “small” charts are in-
deed metric-relating (see Exercise 4.13).

(SIS

4.3.16. LEMMA. Let (M, g) be a Riemannian manifold and assume that
U — U is a metric-relating chart taking values in a Hilbert spa@’éi, (-, '>).

Choose constantg,,i,, kmax > 0 such that(4.3.2)holds. IfU is convex then for
anyx,y € U we have:

dist (2, y) < Emax||0(x) — (y)]]-
PROOF Sety(t) = ¢~ ((1—t)p(x) +tp(y)) for t € [0,1] and observe that:

1
dist(z, ) < /O |7/ ()] dt < Emas () — o). O

4.3.17. LEMMA. Let (M, g) be a Riemannian manifold and assume that
U — U is a metric-relating chart taking values in a Hilbert spa€el, (-, ).
Choose constantsyi,, kmax > 0 such that(4.3.2)holds. Lett” C H be a closed
subset ofH contained inU and lety : [a,b] — M be a piecewis€' curve with
v(a) € ¢ Y (F). If L(v) < kmin - dist((¢ 0 7)(a), OF) ther? the image ofy is
contained inp~!(F) (and hence ir0).

Sif the boundarnyoF of F'in H is empty (i.e., ifF = H) then the distancéist ((x0v)(a), OF)
should be interpreted asco. In this case the theorem states thay piecewiseC'* curvery starting
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PrRooF Consider the set:

A={tea,b]:v(la,t]) C o (F)};
A is not empty because € A and therefore we can consider the supremum
¢ = supA € [a,b]. Assume by contradiction that < b. Obviously we have
v([a,c]) C o~ (F), so thatp o 7|, is a well-defined piecewis€” curve in.
Since~|, [ has finite length in the Riemannian manifald (becausey|, [ has
a piecewiseC'! extension tda, c]) and sincep is metric-relating, it follows that
¢ 0 7(q,c Is @ curve of finite length in the Riemannian maniféidendowed with
the constant Riemannian metic-). It follows from Lemma 4.3.7 thap o ([, ¢
has relatively compact image #i and therefore we can find a sequeliGg,,>1 in
[a, c[ with t,, — cand(y o 7)(t,) — &, for somez € H. Using thatF is closed,
we obtain thati € F ¢ U and thereforet = () for somez € o~ }(F) c U.
Sincey : U — U is a homeomorphism, we conclude that, ) — = and therefore
r = v(c) € o }(F). But (¢ o v)(c) cannot belong to the interior df because
(sincec < b) this would imply thatc + ¢ € A for some smalkE > 0. We have
proven thaty o v)(c) € OF; now we compute as follows:

¢ ; 1
L(v)z/g(v’(t)v(t )2dt > mm/ ((poy)(t), (poy)(t))? dt
= kminH(‘P oy)(c) = (o) H > Kmin - dlSt((‘F’ O’y)(a),aF),
which is a contradiction. O

4.3.18. ®ROLLARY. Let(M, g) be a Riemannian manifold and assume that
p:U— Uisa metric-relating chart taking values in a Hilbert spaﬁfH, (-, '>).
Choose constant®i,, kmax > 0 such that(4.3.2) holds. Assume thak’ is a
closed subset ¢ contained inlJ. If 2 € ¢ 1(F), y € M satisfy:

dist(2, y) < kmin - dist(¢(z), OF),
theny € o~ (F) C U and:

Hcp(:n) H dlst (z,9).

PROOF. For anye > 0 we can choose a piecewigg' curvey : [a,b] —
M with v(a) = z, v(b) = y and L(v) smaller than bothlist(z,y) + ¢ and
kmindist - (¢(z),0F). By Lemma 4.3.17, we havin(y) C ¢~ '(F) and in
particulary € ¢~ !(F). Moreover:

b b
lete)=em< [ Nor@llat < == [y o] at <= @istlz.n+2),

where in the first inequality we have used the result of Eserdi.12. The conclu-
sion now follows by observing that> 0 can be taken arbitrarily small. (]

ate~!(F) has image contained ip~* (F). In particular,lU is actually an arc-connected component
of M.
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4.3.19. ®ROLLARY. Let(M, g) be a Riemannian manifold and assume that
p:U— Uisa metric-relating chart taking values in a Hilbert spa@H, (-, '>).
Let (2,),>1 be a Cauchy sequence M (i.e., dist(zy, Tm) ——r20 (). As-
sume that we can find a closed subBetf + contained in/ such thate, € F C U
for all n and:

(4.3.3) }Lréfi dist (¢ (), 0F) > 0.

Then, the sequendg(z,)), .., is Cauchy (and hence convergent) in the Hilbert
spaceH. -

PrRoOOF Denote bye > 0 the infimum on the left hand side of formula (4.3.3)
and choose constant$yin, kmax > 0 for which (4.3.2) holds. Sincéz,,),>1 is
Cauchy, we can findhy € IN such thatn, m > ng imply dist(x,, z,,) < kminc.
By Corollary 4.3.18, we have:

H‘P(wn) - Sp(xm)H < kl diSt(xmxm)a

for all n, m > ng. The conclusion follows. O
4.3.20. ROLLARY. Let(M, g) be a Riemannian manifold and assume that
@ : U — U is a metric-relating chart taking values in a Hilbert spa@H, (-, '>).
Choose constant8.i,, kmax > 0 s~uch that(4.3.2) holds. Assume that the closed
ball B[0;r] C H is contained inU for somer > 0 and choosey > 0 small

enough so that:
ro < min{i @i}
O D e 4
then, setting” = ¢! (B(0; 7)) C U, we have:
.
HCP(UU) - SO(y)H < — dist(z,y),
forall z,y € V.

PROOF Letz,y € V be fixed. Sincep(V) is convex, Lemma 4.3.16 implies
that:

kmin
dist(2, ) < Fmax||9(x) — 9(¥)]| < kmaxro <~

Taking F' = B[0; 7], sincep(z) € B(0; %), we have:
dist (¢ (), OF) = dist(¢(z), S(0;7)) >

N3

The conclusion now follows from Corollary 4.3.18. O
We can now prove the following:

4.3.21. ROPOSITION If (M, g) is a connected Riemannian manifold then the
distance function introduced in Definition 4.3.1 is indee@eetric space) metric;
moreover, the topology induced by such metric coincidels thi¢ topology of the
manifold M.
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PROOF In order to prove thadist is a (metric space) metric it suffices to show
thatdist(z,y) > 0 whenz,y € M are distinct. Let therxr,y € M be distinct
and assume by contradiction th#itt(x,y) = 0. Choose a metric-relating chart
p:U— Uwithz € U andp(z) =0, wherel is an open subset of a Hilbert space
(H,(-,")); choose alstyin, kmax > 0 satisfying (4.3.2). Sincaist(z, y) = 0, for
anyr > 0 with B[0;r] C U we can find a piecewis€'! curve connecting: andy
with length less thank.,;,; applying Lemma 4.3.17 with’ = B[0; ] we conclude
thaty € U and thatp(y) is in B[0;r]. Sincer > 0 can be taken arbitrarily small
we obtain thatp(z) = ¢(y), contradicting the injectivity of the chagt.

We now prove that itZ C M is open with respect to the manifold topology
of M thenZ is open with respect to the topology induceddiyt. Chooser € Z
and lety : U — U, H, kmin, kmax andr be as above; we can assume also that
U C Z. Applying Lemma 4.3.17 witiF’ = BJ[0; r] we conclude that if a piecewise
C' curver : [a,b] — M satisfiesy(a) = z and L(7y) < kminr theny(b) € U. It
follows that the open ball of radius,;, and center: with respect to the metric
dist is contained inJ (and inZ). Thus,Z is open with respect to the topology
induced bydist.

Assume now thatZ is open with respect to the topology induced digt.
Chooser € Z and lety : U — U C 'H be a metric-relating chart with € U
and U convex. SinceZ is open in(M,dist), Z N U is open in(U, dist|y);
Lemma 4.3.16 tells us that ™ : U — (U, dist|yx¢) is Lipschitz continuous and
thereforep(Z N U) is open inU (and inH). Sincey is a chart ofM, it follows
thatZ N U is an open neighborhood afwith respect to the manifold topology of
M. ThusZ is open in the manifold topology o¥1. O

4.3.22. ®ROLLARY. If a Hilbert manifold M admits a Riemannian metric
then every connected componentidfis metrizable (we don’'t make araypriori
assumptions on the topology .&f!). In particular, M is Ty. O

The following definition will be essential in the developrehinfinite-dimen-
sional Morse theory.

4.3.23. DEFINITION. If M is a Hilbert manifold and is a Riemannian metric
for M then we say that a subsetC M is completdf its intersection with every
connected component @i is a complete metric space (endowed with the metric
dist).

Now we can generalize Lemma 4.3.7 to the context of manifolds

4.3.24. LEMMA. Let M be a Riemannian manifold. § : I — M is a
piecewiseC! curve of finite length defined on an arbitrary intervAlc R then
the imagey(I) of - is totally bounded. In particular, i#(/) is contained in some
complete subset 0¥1 then~([) is relatively compact.

PROOF ltis identical to the proof of Lemma 4.3.7. O
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4.4. Dynamics of the Gradient Flow in the non Compact Case
4.5. The Morse Relations in the non Compact Case

4.6. The CW-Complex Associated to a Morse Function on a non Qapact
Manifold

4.7. The Morse—Witten Complex in the non Compact Case
Exercises for Chapter 4
Calculus on Banach spaces and Banach manifolds.

ExXERCISE4.1. LetX be a vector space. Amay > = — ||z|| € R is called

a semi-nornif the following conditions hold:

o |[z|| > 0forall x € X;

o |[cx|| = |c|||z|] forallc € R, x € X

o |lz+yll < [zl + [ly| forall z,y € X.
A semi-norm|| - || is called anormif in addition ||z|| = 0 impliesz = 0. If || - || is
a semi-norm onX show that:

e the setN = {z € X : ||z|| = 0} is a subspace of;

e the map:

X/No>x+ N+—|z|| e R
is well-defined and it defines a norm on the quotient spaca'.

EXERCISE 4.2. A normed vector spaces a vector space&X endowed with
anorm| - ||. Show that the topology induced from such norm makemto a
topological vector space.

ExXERCISE4.3. LetX, Y be normed vector spaces and1et X — Y be a
linear map. Show that the following are equivalent:
e T'is continuous;
T is continuous at the origin;
T is bounded on the unit ball of;
|T ()| < cllz| forall z € X and some: € R;
T is Lipschitz-continuous.

EXERCISE4.4. LetX be a vector space and It |
Show that the following conditions are equivalent:
e || -]z and| - ||2 induce the same topology o%j;
o there exists positive constamkg,in, kmax With:

1, || - |l2 be norms onX..

Fuinl|z|l1 < [[2ll2 < kmax/|z (|1,

forallz € X.
(hint: use the result of Exercise 4.3 wilh=1d : (X, || - [1) — (X, ] - [l2))-
EXERCISE4.5. Generalize Exercise 4.3 to multi-linear maps; mordieupy,

given normed spaceky, ..., X, Y and a multi-linear ma@® : X x --- x X, —
Y, show that the following conditions are equivalent:
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e B is continuous;
e B s continuous at the origin;
e Bisbounded o[, B[X;].

Observe that continuous multi-linear maps are not Lipgatontinuous in general.

EXERCISE4.6. LetX be a real vector spac¢Y’, || - ||) a real Banach space
andT : X — Y alinear isomorphism. Show that:

lzllr = [|T(), =€ X,

defines a norm oX that makes it into a Banach space. We ¢all|r the norm
inducedby 7" on X . Observe thaj - ||r is theuniquenorm onX that maked” into

an isometry. Show also that X is previously endowed with a norm that makes
T continuous then such norm is equivalent|to||r (hint: use the open mapping
theorem).

Exercise4.7. Let(X, | - ), (Y,] - ||) be Banach spaces and fEtbe a set
of continuous linear isomorphisnis: X — Y. Assuming that:

sup ||T|| < +o0, sup HT‘1H < 400,
TeT TeT

show that there exists constants k2 > 0 (which do not depend o € 7) such
that:

Eullz| < [lzllr < kol
forallz ¢ XandallT' € 7.

EXERCISE 4.8. Given Banach space$, Y and a bounded injective linear
map7T : X — Y, show thatlm(7") is closed inY ifand only if 7" : X —
T(X) is a homeomorphism whefi(X) is regarded with the topology induced
from Y. Conclude that the followingrinciple of reduction of counter-domain
holds. Assume that we are given a commutative diagram:

/|
T
Z T) X
where X, Y are Banach spaceg, is a topological space aril : X — Y isa
bounded injective linear map with closed image. Thdrm continuous if and only

if fois continuous.

EXERCISEA4.9. If X, Y, Z are normed vector spaces ait X xY — Z
andT : X — Lin(Y, Z) are respectively a bilinear and a linear map related by the
equality:

T(a,y) =T()(y), z€X, yeY,
show that||T|| = ||T|| € [0,+o0]. Conclude thafl" is continuous if and only if
T is continuous. Generalize this result to multi-linear mapproving that if X,
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Xo, ..., X, Y are normed vector spaces then the correspondﬁneef defined
by the equality:

~

T (w1, @2, ..., xx) = T(z1)(22) - .. (wp),
defines an isometry between the normed space of boundedImedtr maps from
X1 x -+ x X toY and the normed space:

Lin(Xl,Lin(Xg, ..., Lin( Xk, Y)) e )

EXERCISE4.10. Let(Q2, A, 1) be a Measure space, i.€,is a set, A is ao-
algebra o2 andy : A — [0, +0o0] is a (o-additive) measure odl. If you're not
very familiar with general measure theory, simply assuna $h= [a,b] C R,
A = Lebesgue measurable subsetfu0b] and thaty = Lebesgue measure. If
f:Q — R™is ameasurable function and|jif || is a fixed norm orfR™ we set:

[ fllzee =sup{c € R: f~'(Je,+oo[) has null measuree [0, +oc].

If ||fllL~ < 400 then we say thaf is essentially boundedShow that the set of
essentially bounded measuralii&-valued maps of is a subspace of the vector
space of allR™-valued maps onf2; show that| - ||~ defines a semi-norm on
that space and thdtf||.~ = 0iff f = 0 almost everywhere. The normed space
corresponding to such semi-norm (see Exercise 4.1) is dérmt L>°(Q2, R").
Show thatZL*>*(£2, R™) is a Banach space.

ExERCISE4.11 (Gronwall’s inequality). Lef, ¢ : [a,b] — R be non negative
maps withd continuous and integrable. Assume that:

(4.7.1) i) <ec +/ @(s)o(s) ds,

for all t € [a,b] and some fixed € R. The goal of this exercise is to prove the
inequality:

4.7.2) o(t) < cexp </at o(s) ds),

forall t € [a, b]. Below we give the main steps of the proof.

¢ Define a sequence of continuous mdps : [a,b] — R recursively by
setting Ky = 1 and:

K +1(t) :/ d(s)Kn(s)ds, n>0.

Show by induction om that:

(4.7.3) 0< K, (1) < %(/t o(s)ds)”.

for all t € [a,b], n > 0 (hint: observe that, under the induction hypothe-
sis, we have:

H)Kn(s) < v +1 i / “pwy )"

forall s € [a,b].)



EXERCISES FOR CHAPTER 4 227

e Show by induction om that:
n t
(4.7.4) 5(t) < 3 Ki(t) + Ka(t) / 6(5)5(s) ds,
i=0 @

forall t € [a,b], n > 0 (hint: use the induction hypothesis to estimate the
integrand on (4.7.1) from above).

e Use (4.7.4) and (4.7.3) to prove (4.7.2)irt: (4.7.3) implies thatk,
tends to zero).

EXERCISE4.12. If X is a Banach space andhf: [a,b] — X is a piecewise
C' curve, show that:

(4.7.5) |7(6) =~(a)|| < L(%).

(hint: choose a linear functional € X* with |[A| = 1 andA(y(b) — v(a)) =
[7(b) = 7)(a)||. Apply the Fundamental Theorem of Calculus to the mapy :
[a,b] — R).

Observe that ifX is a Hilbert space then the equality in (4.7.5) holds if and
only if 4/(t) is a positive multiple ofy(b) — v(a) for (almost) allt € [a,b]. On
the other hand ifX is not a Hilbert space then there may exists curves conmgctin
two pointsp, ¢ € X with length is||p — ¢|| but whose image is not contained in
the line segmenfp, ¢] (can you find an example iR? endowed with the norm

H(xl,ajg)H = max{|:n1|, |:U2|}?).

EXERCISE4.13. LetM be a Riemannian manifold and let: U — U be a
chart, wherdJ is open in a Hilbert spac@-(, (-, ->). Show that every € U has an
open neighborhoo® in U such thatp|y : V' — (V) is a metric-relating chart.

EXERCISE4.14. LetU C R x R™ be an open subset. Show that the set:
HeolU] = {7 € C%([a,b], R") : (t,~(t)) € U, forallt € [a,b]}
is open inC°([a, b], R™). Moreover, given a continuous map: U — R", show
that the map:
Heola] : Heo[U] — C°([a, b], R")
defined by:
Heold](N(t) = a(t, (1), te€[a,b],
for all v € $0[U], is continuous.

EXERCISE4.15. Prove the following elementary properties of abstyuton-
tinuous functions:

e v :[a,b] — R™ is absolutely continuous if and only if each of its coordi-
natesy; : [a,b] — R,i =1,...,n, is absolutely continuous;

e Show that ify : [a,b] — R™ is absolutely continuous thef|;. 4 is
absolutely continuous for every subinter@ld] C [a, b].

e if v : [a,b] — R" is a curve and there existse a, b such thaty|;, 4
and-/||. 5 are absolutely continuous theris absolutely continuous;
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e if f: X — R"is alocally Lipschitz continuoamap defined on a subset
X of R™ and ify : [a,b] — R™ is an absolutely continuous curve with
Im(y) C X thenf o~ : [a,b] — R™ is also absolutely continuous;

e absolutely continuous curves: [a,b] — R form a vector subspace of
C°([a,b],R™); if n = 1, they also form a subalgebra 6f ([a, ], R).

EXERCISE 4.16. Apartition of an interval[a, b] is a finite subseP C [a, b]
such thata,b € P; we write P = {tg,...,tx} Witha =tg <t; < --- <ty = 0.
Thevariation of a curvey : [a,b] — R™ with respect to a partitio® is defined
by:

k—1
Var(vy; P) = Z HV(EH) - 7(&')“%
i=0

the total variation (or length of ~, denoted byar(+y), is defined to be the supre-
mum of the variations ofy with respect to all possible partition of [a, b]. If
Var(vy) < +oco theny is called a map obounded variatior{or arectifiable curvé.
Denote byBV ([a, b], R") the set of all maps : [a, b] — R" of bounded variation.

e Show that “the line is the shortest path between two points’,for every
v : [a,b] — R™ we have:

[7(0) = ~(a)|| < Var(v).

e Show that ify : [a,b] — R™ is of bounded variation then for every
subintervalle,d] C [a,b] the restrictiony|;. 4 is of bounded variation
andVar(v|(.q) < Var(y).

e Show thaty : [a,b] — R is of bounded variation if and only if each of
its coordinatesy; : [a,b] — Ris.

e Giveny : [a,b] — R" andc € |a, b show that ify|, o andy|. are of
bounded variation then so4sand:

Var(y) = Var(yl(q,q) + Var(vljes)-

e Show thaBV ([a,b], R") is a vector subspace of the spa8€[a, b], R")
of all boundedR"-valued functions offu, b].

e Show thatiff : X — R"™ is a locally Lipschitz continuous map defined
on a subsetX ¢ R™ and ifv : [a,b] — R™ is a curve of bounded
variation withIm(v) C X thenf o~ is of bounded variation.

e Show that ifo : [¢,d] — [a,b] is @ monotone surjective map then:
[a,b] — R™ is of bounded variation if and only i o o is, and that
Var(y) = Var(y o o).

e Show that, for fixed, € [a, b]:

7] = [|7(to)| + Var(y)

defined a norm oV ([a, b], R™) that makes it into a Banach space.
e Show that the inclusion @V ([a, b], R") in B ([a, b], R™) is continuous.
e Show that every absolutely continuous curve is of boundetian.

60bserve that this is the caseXfis open andf is of classC*.
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EXERCISE 4.17. Show thatHd!([a,b], R") is subspace of the vector space
C?([a, ], R™) and that the map:

4.7.6) H'([a,b,R") 57+ (v,7) € C°([a,b],R") & L*([a, b],R")

is linear injective with closed image. Conclude tifat ([a,b], R") becomes a
Banachable space with the topology induced from (4.7.6@saible norm for this
topology is:

LI = 11 lloo + 1F | 2

Consider now the linear maps:

@.7.7)  H'([a,b],R") 3 v+ (7,9) € L*([a,b], R") & L*([a, b],R"),
(4.7.8) H'([a,b],R") v — (v(t0),?') € R" & L*([a,b], R"),

wheret, € R is fixed. Assuming thatf* ([a, b], R"™) is endowed with the topology
induced from (4.7.6), show that (4.7.7) is a continuousdiniajective map with

closed image and that (4.7.8) is a continuous linear isohiemn Conclude that
both the inner products:

(4.7.9) (1,71 = (v 2) e + (172) L2,
(4710) <’71>/71> = </71(t0)>/72(t0)> + <7177§>L27

induce the same topology dii' ([a, b], R™) that (4.7.6) does (so that the topolog-
ical vector spacei’([a,b], R™) becomes indeed a Hilbert space with any of the
equivalent inner products (4.7.9) and (4.7.10)).

EXERCISE 4.18. Show that the following inclusion maps are (well-dedin
and) continuous:
(@) L([a,b],R") — LP([a,b],R") for 1 < p < g < 4o0;
(b) C’O(ab ")<—>Lp( ,]R") 1< p<+4o0o;
(c) Cl(a b, R"™) <—>C’f(a b,R"),0 <k <1
d) H'([a,b],R™) — C°([a, b], R™);
(€) C*([a, b, R™) — H*([a,b],R").
hint: for item (a) use thélolder inequality

b
/ 9 < Il + gl 1o
a

where + , =1.

ExERCISE4.19. Let(H, (-,-)) be a Hilbert space. We say that a continuous
linear mapl’ : H — H represents continuous bilinear map : H x H — R if:

B(z,y) = (T(x),y),

forall z,y € H. Show that ifB : H x H — R is a continuous bilinear map then
there exists ainiquecontinuous linear map' : H — H that represents.
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EXERCISE4.20. LetX be a Banach space. A mgp: [a,b] — X is called
weakly integrablef there exists a vectof € X such that for every continuous
linear functionalA € X* the map\ o f : [a,b] — R is (Lebesgue) integrable and
f:)\ o f = A\(I). Show that:

e the vector/ above is unique when it existhi(t: use Hahn—Banach’s
theorem); it is called theveak integralof f and it is denoted by : f.

e weakly integrable maps form a subspace of the space of alhlued
maps ona, b];

e the weak integral is aX -valued linear map on the space of weakly inte-
grable mapg : [a,b] — X;

e if f:[a,b] — X is bounded and weakly integrable then:

b
H/a fH < (b—a) SUp}Hf(t)H.

te€la,b
hint: by Hahn—-Banach’s theorem, there exists X* with ||A|| = 1 and
b b
A
o the uniform limit of weakly integrable maps is weakly intefgte;

o if fissimplei.e., ifIm(f) = {z1,...,2z,} C X isfinite and if the sets
f~Y(z;) C [a,b] are measurable thehis weakly integrable and:

/bf = Zn:xl -measuréf ' (z;)).
a i=1

e every continuous map : [a,b] — X is weakly integrableHint. every
continuous map is a uniformly limit of maps as the one in tamiabove).

o if f: [a,b] — X is continuous therF'(t) = fjf is of classC* and
F' = f.

EXeERCISE4.21. Show that the continuous isomorphism (4.7.8) mapsube
spaceC'™([a,b], R"™) of H' ([a,b], R™) ontoR" & C*([a, b], R™). Conclude (us-
ing the standard fact th&t™ ([a, b], R") is dense inL?([a, b], R™)) that the space
C*([a,b],R™) is dense ind* ([a, b], R").

EXERCISE 4.22. Letf,¢ : [a,b] — R be non negative functions, witfi
absolutely continuous anglintegrable. Show that if:

[f'(6)] < o)V F (),

for almost allt € [a, b] then:

b
VI® - Vi@ <5 [ e

(hint: if f is positive, use the Fundamental Theorem of Calculus foakiselutely
continuous function/f; in the general case, replageby f +  and then make
e — 0.
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EXERCISE4.23. LetM be a Riemannian manifold arfd: M — R be a non
negative map of class'; assume that for some constant 0 we have:

[df (@)]| < kv f (@),

for all z € M. Show that for every, y € M we have:

VIW) ~VT@) | < 5 dist(ar ).

(hint: for every piecewise€'! curver : [a,b] — M connectingz andy we have

|(F 09/ (®)] < 6(H)y/(F o)D), whereo(t) = k[|'(1)||; apply the result of
Exercise 4.22 t¢f o v and¢).

EXERCISE4.24. LetM, N be Riemannian manifolds arfd: M — N amap
of classC!. Assume that for some constant> 0 we have:

ldf @)} < &,
for all x € M. Show thatf is Lipschitz continuous with constaht i.e.:

dist(f(2), f(y)) < kdist(z, y),

for all z,y € M (hint: for every piecewis&'! curve~ connectingr andy, show
that L(f o v) < kL(%)).

EXERCISE 4.25. For every non negative real numbersh, show that(a +
b)? < 2(a? + b?).

EXERCISE4.26. Prove Lemma 4.3.12.

EXERCISE4.27. LetX be atopological space and assume fatan be writ-
ten as a disjoint unioX” = | J,; X; of open subsetX’; C X such that eaclX; is
metrizable. Prove that a subspaeC X is compact if and only i is sequen-
tially compact hint: show that if K is sequentially compact theld intercepts at
most a finite number ak;’s). In particular, a subsekX” of a Riemannian manifold
is compact if and only if it is sequentially compact.

EXERCISE4.28. LetV be a vector space. Given a linear operdtorV — V
show that the following conditions are equivalent:

P is a projection operator;

P(z) =z for all z € Im(P);

there exists a subspat€ C V such thal” = W @ Im(P) and such that
Pw+z)=zforallw e W,z € Im(P), i.e., P is the projection onto
the second coordinate corresponding to the direct Bum Im(P);

V = Ker(P)@Im(P) andP is the projection onto the second coordinate
with respect to the direct sulfer(P) @ Im(P).

Now assume thal’ is real and thal” is endowed with an inner product. Given a
projection operatoP : V' — V, show thatP is the orthogonal projection operator
ontoIlm(P) if and only if P is self-adjoint.
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EXERCISE4.29. LetH be a Hilbert space and I¢t,,),>1 be a sequence in
H that converges weakly to € H. If lim,, 1+ ||| = ||z]| show that(z,,),>1
converges ta in the norm topology.

EXERCISE4.30. LetH be a Hilbert space. Show that a self-adjoint operator
T : H — H is injective if and only if its image is dense # (hint: Ker(7T) is
the orthogonal complement &f(7")). Conclude that iff" is a self-adjoint isomor-
phism and ifV C H is a closed invariant subspace tHERy, : V — V is also an
isomorphism.

EXERCISE 4.31. LetH be a Hilbert space and@ : H — H a self-adjoint
operator. Given a closed invariant subsp&ce H, show that:

o(T|v) C o(T).
(hint: use Exercise 4.30).
Infinite dimensional Morse theory.

EXERCISE4.32. LetH be a Hilbert space and let: H — R be a non zero
continuous linear functional. Show that the restrictiomvad the unit spher&(H)
satisfies the Palais—Smale condition with respect to the&imian metric induced
from H (hint: use the result of Exercise 4.29).

The Hilbert Manifold Structure of H*([a, b], M).

EXERCISE4.33. Letn € IN be fixed and lef)t be a selR™-valued continuous
curves defined on compact intervals (different elemen®iaihay be defined on
different intervals. Assume that the following propertesd:

(@) ify:[a,b] — R™isinM and|c, d] C [a, b] is a subinterval then|. 4 is
in 91;
(b) if v : [a,b] — R™ is a curve and there existse ]a, b[ such that both
Yl(a,e] @NA7Y |y @re ind theny is in M,
() ify:[a,b] - R™isindM, o : U — V is a smooth diffeomorphism
between open subsets V' C R" and ify([a,b]) C U thena o~ is in
M.
Given ann-dimensional differentiable manifoltl/ we say that a curve : [a, b] —
M is of classnt if it is continuous and for every local chagt: U — U and every
[c,d] C [a,b] with y([c,d]) C U we have thatp o 7|, 4 is in M. Show that the
following conditions are equivalent for a curve [a,b] — M:
e v is of classn;
o for everyt, € [a,b] there existg > 0 and acharp : U — U of M such
thaty ([to — &, t0 + €] N [a,b]) € U andep o |j—c to+e)nfa] 1S IND;
e there exists a partitiom = ty) < t; < --- < ¢, = b of [a,b] and
a family of chartsp; : U; — Ui, i = 0,...,k — 1, of M such that
v([ti, tiv1]) € Us ande; o4y, ¢,y isinMforalli =0,... .k — 1.
EXERCISE 4.34. LetM be a differentiable manifold and : [a,b] — M a

curve of classH!. Given a vector field : [a,b] — T'M along~y show that the
following conditions are equivalent:
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e vis of classH!; N
o for everyty € [a, b] there existg > 0 and a charp : U — U in M with
v([to — &, to + €] N [a,b]) C U and such that:

[to —&,t0 + €] Na,b] 3t — de(y(t)) - v(t) € R

is of classH . _
o for every subintervalc, d| C [a,b] and every charp : U — U in M with
v([e,d]) C U the map:

[c,d] 3t — dp(v(t)) -v(t) € R"
is of classH'.

EXERCISE 4.35. The goal of this exercise is to fill in the details of theafi
part of the proof of Proposition 5.2.1.

e Show that the map:
o ([a, b], Bil(R™))

H'([a,b],R™), L*([a, b], R"))

defined by:

b
C(G. Dy, Dy, s, u3) = / (&) [(D1(u1)) (8), (Do) ()] dt,

is multi-linear and continuous.
e Conclude from the item above that:

C%([a, b, Bil(]R”))

Lin(H ([a,b], R"), L*([a,b], R™)) p 3 (G, Dy, Dy) (G, Dy, Ds, -,-)

)
Lin(H" ([a,b], R"), L*([a, b], R™ )
(

defines a continuousil(H* ([a, b], R™))-valued trilinear map.
e Show that the map:

¢ : Bil(R") — Bil(H'([a,b],R"))

defined by¢(B)(u1, uz) = B(ui(a), uz(a)) is linear and continuous.
e conclude the proof of Proposition 5.2.1 by showing that tlag1fb.2.12)
can be assembled as:

~ ~ o~

£ogo (a,Evala) + (o (ﬁf)[é],D,D),
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whereEval, : H!([a,b,R") — R" denotes the mafy — 7(a) of
evaluation at.

EXERCISE4.36. Show that the map:
F:H([a,b], M) — M x M
given by F(y) = (y(a),~(b)) is a smooth submersion. Conclude that the sub-
setH}, ([a,b], M) of H*([a,b], M) consisting of curves connectingandgq is
a smooth submanifold off!([a,b], M) and that its tangent space at a point

consists of the vector fields alonghat vanish at the endpointsigt: use Proposi-
tion 4.3.10).



CHAPTER 5

Applications of Morse Theory in the non Compact Case

5.1. Banach Manifolds of Maps

We now show how Lemma 4.3.5 can be applied in practice to pidferen-
tiability of maps between Banach spaces.

If U ¢ R x R™ is an open subset, we denote H}/] the set of all curves
7 : [a,b] — R™ of classH' whose graph is contained I, i.e.:

HU) = {y € H'([a,b],R™) : (t,7(t)) € U, forallt € [a,b]}.
If o : U — R"™is amap of clas§'?, we define a map:
9] : 9[U] — H'([a, ], R")

by setting:

(5.1.1) Hla)()(®) = a(t.y (1), t € fab],
for all v € $H[U]. We have the following:

5.1.1. THEOREM. If a : U — R™ is amap of clas€* (1 < k < o) defined
on an open subséf C R™ then$H[U] is open inH'([a,b], R™) and H[a] is of
classC*—1. Moreover, ifk > 2 then the differential ofy [a] is given by:

_ 0o

(5.1.2) A9lo], (0)(1) = 22 (t,4(1)) (1), 1€ [a,b),
forall v € H[U], v € H'([a,b],R™).

The proof of Theorem 5.1.1 will be split into several lemmage start by
proving the continuity ofy[a].

5.1.2. LEMMA. If o : U — R™is amap of clas€'! defined on an open subset
U C R™ then§[U] is open inH* ([a, b], R™) and$[a] is continuous.

PROOF The fact that)[U] is open inH!([a,b], R™) follows from the fact
that §[U] is open with respect to th€®-norm (see Exercise 4.14) and from the
fact that the inclusion off! in C? is continuous. Using the result of Exercises 4.8
and 4.17 we see that in order to prove the continuityef] it suffices to prove the
continuity of the composite maps:

(5.1.3) HIU] 2L, [ ([0, b], R™) 12U, 00 ([, 5], R™)

(5.1.4) HU) 22 g1 (g, b, R™) 220N, p2 (g 5] R

235
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The continuity of (5.1.3) follows from Exercise 4.14 andrfr¢he continuity of the
inclusion of H! in CY. In order to prove the continuity of (5.1.4) we evaluate it
explicitly on~ € $[U] obtaining:

d oo e ,

AN = 57 (67(0) + - (H7(1) -7 (@).
It follows that (5.1.4) is the sum of the restriction QEO[%—‘;] to H[U] (see Ex-

ercise 4.14) and of the map[U] — L?([a,b], R™) described by the following
picture:

082
H[U] col5:] C°([a,b], Lin(R™, R"))
h 4.2.3
o memep 823 12(ja, 1), R")
U L? b], R™
Sl derivation ([a, 0, B™)
This conclude the proof. O

5.1.3.LEMMA. If o : U — R™ is a map of clas€? defined on an open subset
U C R™ then$|a] is of classC! and formula(5.1.2)holds.

PrROOF This is a simple application of Lemma 4.3.5. The separdgngjly
F for H'([a,b],R™) is the family ofevaluation mapsi.e., for everyt € [a, b] we
set:
At o H ([a,0), R™) 5 v — (t) € R",
and then we take = {)\; : ¢ € [a,b]}. Now takeg to be what it is supposed to
be, i.e., define:
g : H[U] — Lin(H"([a, ), R™), H' ([a, b], R"))

by setting:
90 = 22 190) (1), 1 f0,8],

forall v € $H[U], v € H'([a, b, R™). Obviously:
20900 () La(tonty + o) = st
s=0

The only non trivial part of the proof is the continuity @fwhich follows from the
continuity of $[42] : H[U] — H'([a,b], Lin(R™, R")) (see Lemma 5.1.2) and
from Lemma 5.1.4 below. O

5.1.4. LEMMA. The map:
O : H'([a,b],Lin(R™,R")) — Lin(H"([a,b], R™), H' ([a,b], R™))
defined by:
O(T)(v)(t) =T(t) - v(t),

forall t € [a,b], T € H'([a,b],Lin(R™,R")), v € H'([a,b],R™) is linear and
continuous.



5.1. BANACH MANIFOLDS OF MAPS 237

PROOF By Exercise 4.9, it suffices to show that the bilinear map:
B : H'([a,b], Lin(R™, R")) x H'([a,b],R™) — H*([a,b], R")
defined by (4.2.4) is continuous. But using the identifigatio
H'([a,b],Lin(R™,R")) x H'([a,b],R™) = H'([a, b}, Lin(R™,R") & R™)
the map§ is precisely$)[B], whereB : Lin(R",R"™) x R™ — R™ is defined by
B(T,v) = T'(v). The conclusion follows from Lemma 5.1.2. O

PROOF OFTHEOREMb5.1.1. It follows from Lemmas 5.1.2, 5.1.3 and 5.1.4, us-
ing induction onk and the fact thatl$)[«] equals the composite ﬁf[g—g] with the
continuous linear maf defined in the statement of Lemma 5.1.4. O

If o is @ smooth map then it is not true in general that “left contfmoswith
«” defines a smooth map oh? spaces; in fact, such map may not even be well-
defined, i.e., it may happen thdtis in LP, « is smooth buix o f is not in LP.
However, “left composition withy” is smooth onL? when is linear; the follow-
ing proposition is a mixture of this observation with Theard.1.1.

5.1.5. RROPOSITION Leta: U x R™ — R™ be amap of clas€* (1 < k <
oo) whereU is open inR x RP; assume that(¢, z, ) is linear onRR™ for every
(t,x) € U. Then the map:

Dprorzlal Hl([a, b],]Rp) X Lz([a, b],]Rm)
U
HIU] x L2([a, b, R™) — L*([a, b], R")
defined by:
Hrr-r2la](y,0)(8) = a(t,y(t),v(t), t€ la,b],
forall v € H[U], v € L*([a,b],R™), is of classC*~1.
PROOF. Consider the map of classC* defined by:
a:U> (t,x) — alt,z,-) € Lin(R™,R");

it follows from Theorem 5.1.1 thab[a] is of classC*~!. The conclusion follows
by observing thaf) ;1.;2[«] is the composite of the map:

9la) x Id : H[U] x L*([a,b],R™) — H'([a,b], Lin(R™, R™)) x L*([a,b], R™)
with (the restriction taH! x L? of) the continuous bilinear map (4.2.3). O

5.1.6. DEFINITION. A curvewy : [a,b] — M on a differentiable manifold
M is calledof Sobolev clasgi! (shortly, of classH!) if it is continuous and for
every local chartp : U — U of M and for every intervalc,d] C [a,b] with
v([e,d]) € U we have thatp o | q : [c,d] — R" is of classH'. We denote by
H'([a,b], M) the set of all curves : [a,b] — M of classH".
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The definition above is not very practical if one wishes tosstitat a particular
curver : [a,b] — M is of classH!. For nicer statements of the definition above
see Exercise 4.33 (where we consider a more general cohtextft! that would
be suitable also for other purposes).

5.1.7. DEFINITION. A one parameter family of charsn ann-dimensional
differentiable manifoldM is a smooth mag : U — R defined on an open
subsety of R x M such that the map:

U (tz) — (tpt,z)) ERxR"
is a diffeomorphism onto an open subgedf R x R™. Fort € R we denote by
U, the (possibly empty) open subset/df defined by:
U={zeM: (tz)ecU};
by ¢: : Uy — R™ we denote the map,(z) = ¢(t, z) and we set:
Uy = Im(py) = {veR™: (tv) e (7}

We will write ¢ = (¢, Ui, ﬁt) to indicate thaty is a one parameter family of
charts and thap;, U; andU; are defined as above.

Obviously, if ¢ = (¢4, U, ﬁt) is a one parameter family of charts thep :
U, — U, is a local chart onV/ for everyt € R. Conversely, it follows from the
inverse function theorem thatf is smooth and eacp; is a local chart ther is a
one parameter family of charts.

If U is an open subset dk x M we denote byH[U] the set of curves :
[a,b] — M of classH! whose graph is contained I, i.e.:

HU) = {y € H ([a,b], M) : (t,7(t)) € U, forall t € [a,b]}.
If N is a differentiable manifold and : U — N is smooth, we define a map:
Hla] : HU] — Hl([a, b],N)
by formula (5.1.1). Observe thati = (4, Uy, ﬁt) is a one parameter family of
charts inM then$[y)] gives a bijection fron®[U] to $[U].

Letp = (¢, Uy, Uy), ¥ = (Y, Vi, V) be one parameter families of charts. If
U NV # () then thetransition functionfrom ¢ to ¢ is the map

a: [ J{t x @0 Vi) — |1t} x ¢(U:n V)

teR teR

e (UNV) Yo(UNV)
defined by:
Oé(t,U) = (t> (¢t o th_l)(v))?
for all (¢t,v) € R x R™ with v € ¢(U; N V;). Obviouslya = ¢° o (¢°)
is a smooth diffeomorphism between open subsetR of R™. It follows from
Theorem 5.1.1 that:
1

Hlv]e (Dlel) = nla] : 9l°(UNV)] — HH°(UNV)]

-1



5.1. BANACH MANIFOLDS OF MAPS 239

is a smooth diffeomorphism between open subsef$dfia, b], R").

We have so far proven that for every one parameter family aftsly =
(1, Us, Up)ter, the maph[] is a chart on the e ([a, b], M) and that the charts
of the form$[p] are pairwise compatible. In order to obtain a differentabilas
for H*([a,b], M) we now need to show that the domains of the ch#fts| cover
H'([a,b], M). This will be a consequence of the following:

5.1.8. RROPOSITION Given a continuous curve : [a,b] — M on a dif-
ferentiable manifold)M then there exists a one parameter family of chasts=
(¢, Uy, Uy) on M such thatU contains the graph ap.

PrROOF Choose an arbitrary Riemannian metricah Recall that a positive
numberr > 0 is called anormal radiusfor a pointx € M if the geodesical
exponential mapxp maps the balB(0;r) of T,,M diffeomorphically onto an
open subset of\/. We callr > 0 atotally normalradius forxr € M if r is a
normal radius forz and for all the points in the open setp (B(0;r)). It is an
standard argument in Riemannian geometry (see, for instged]) that for every
compact subsek’ C M we can find a number > 0 that is a totally normal radius
for all points of K.

Consider an arbitrary continuous extension ¢ a curve defined in the whole
line R. Letr > 0 be a totally normal radius for all points of the compact set
K = ’y([a - 1,b+ 1]). By standard approximation arguments (S&g)[we can
find a smooth curves : Ja —1,b+ 1] — M such thatdist(y(t), u(t)) < r for
all t € Ja—1,b+ 1], wheredist denotes the distance function corresponding to
the Riemannian metric a¥/. Choose an arbitrary parallel referential alqngso
that we obtain an isomorphisey : T,,,) M — R" forallt € Ja—1,b+1[.
The conclusion is now obtained by takiig to be the exponential of the ball
B(0;7) on T,y M and by takingy; to be the composition of the inverse of the
diffeomorphism:

exp : TypyM D B(0;7) — U,
with the isomorphisnw, for allt € Ja — 1,0 + 1]. O

5.1.9. ®ROLLARY. If M is a differentiable manifold then the Séf)[gp]}w,

whereyp runs over all possible one parameter families of charts\énis a differ-
entiable atlas forH* ([a, b], M). O

We have endowedi! ([a, b], M) with the structure of an infinite dimensional
Hilbert manifold. As in the case of any Hilbert manifold, ttengent space of
H'([a,b], M) at a point (i.e., a curvey € H'([a,b], M) is a Hilbertable space
that can be constructed using for instance equivalenceadas curves or any other
general construction for tangent spaces of Hilbert maséfolNevertheless, such
general construction is not useful for practical purposesneed a more concrete
description off’, H' ([a, b], M).

Forty € [a, b] we denote by:

Evaly, : H'([a,0], M) — M
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theevaluation map aty, i.e.,Evaly, (v) = 7(to) forally € H'([a,b], M). If o =
(¢, Uy, ﬁt) is a one parameter family of charts dd then we have a commutative
diagram:

Eval; o

(5.1.5) H'([a,b], M) D> 9[U] U CM

][] ‘(Wo
H([a,b],R") > H[U] ——— U, C R"
to

that says thakval,, is represented in the local chaigy] and ¢, by the map
Evaly, : H'([a,b],R") — R™ of evaluation att,. This implies thatEval,, :
H'([a,b], M) — M is smooth for every, € [a, b].

5.1.10. ROPOSITION Let M be a differentiable manifold. For every <
H'([a,b], M), v € T, H"([a,b], M), set:

v(t) = d(Evaly)(y) - v,

for all t € [a,b], so thatv : [a,b] — T'M is a vector field alongy. The curve
v : [a,b] — TM is of classH' and the map:

(5.1.6) TH' (Ja,b], M) 3 v+ v e H ([a,b],TM)
is a smooth diffeomorphism of Hilbert manifolds.

PROOF Letp = (¢4, Uy, ﬁt)teR be a one parameter family of charts .

For everyt € R, we have thatly; : TU; — U; x R™ is a local chart inT’ M
defined on the open subsél/; C TM; moreover, it is easy to see that =

(depy, TU, U, x R™)ier IS @ one parameter family of charts \/. Now the
differential of $[,] gives a local chart:

d$ilg] : THU] — H[U] x H' ([a,b],R") < H' ([a,b],R") x H' ([a,b],R")
on the tangent bund€H* ([a, b], M ). Moreover,
9e) : H[TU] — H[U x R"] = H[U] x H' ([a, 0], R"),

is a local chart or! ([a, b], TM). Differentiating (5.1.5) one obtains easily the
following commutative diagram:

the map (5.1.6)

5[] %

§[0] x H(la, b, R")

that says that (5.1.6) is represented by the identity witipeet to suitable local
coordinates. The conclusion follows. O

TH[U] H[TU]

5.1.11. DEFINITION. If v : [a,b] — M is a curve of clasgi! then a vector
field v along~ is of classH" if v : [a,b] — T'M is a curve of class7! in the
differentiable manifoldl’M .
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See Exercise 4.34 for equivalent definitions of vector fidldlass H' along
curves.

From now on we will always identify the tangent bundle &t ([a, b], M)
with H ([a, b], TM) via the diffeomorphism (5.1.6). In particular, for everye:
7 : [a,b] — M of classH*, the tangent spacE, H" ([a,b], M) is identified with
the vector space of vector fields of clags along-.

5.1.12. RoPOSITION Given differentiable manifoldd/, N and a smooth
mapa : U — N defined on an open subsét C R x M then$[U] is open in
H'([a,b], M) and ] : H[U] — H'([a,b], N) is smooth. Moreover, for every
v € HU] and everyy € T, H'([a, b], M) we have:

aslal, () = 9o (.7(0) - vlt),

forall ¢t € [a, b].

ProOFE Follows easily from Theorem 5.1.1 using local charts of fitven
Hle]- O

5.1.13. ®ROLLARY. LetM, N be finite-dimensional differentiable manifolds
andletH : N x [a,b] — M be a smooth map (in the sense tliaadmits a smooth
extension to an open neighborhoodMfx [a,b] in N x R). Then the map:

H:N>3z+— H(z,-) € H([a,b], M)
is smooth and its differential is given by:

OH

[dH () -] (£) =

x,t) - v,
forall z € N,v e T;N,t € [a,b].

ProoOF Consider a smooth extension Hfto an open neighborhood &f x
[a,b] in N x R. Denote by the map:

¢: N — H'([a,b],N)
that associates to evetye N the constant curve itV with constant value; it is
easy to see thatis smooth. The conclusion now follows from Proposition 521.
by observing that{ = H[H] o c. O
We set:
C>([a,b], M) = {v: [a,b] — M : v is smooth}.

5.1.14. ROPOSITION The setC™([a, b], M) is dense in the Hilbert manifold
H'([a,b],M).

1A curve : [a,b] — M will be calledsmoothif it admits a smooth extension to some open
interval containinda, b].
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PROOF. Lety = (¢4, Uy, (7}) be a one parameter family of chartsif. Since
9[U] is open inH' ([a, b], R"), it follows from Exercise 4.21 that the intersection
C*([a,b],R™) N H[U] is dense inJ. Sinces[y]~" : H{U] — H[U] is a contin-
uous map that takes smooth curves to smooth curves, it feltbat the closure of
C*([a,b], M) in H([a,b], M) contains$[U]. The conclusion now follows from
Corollary 5.1.9. O

5.2. The Riemannian Metric of H' ([a, b], M)

We will now define a Riemannian metric on the Hilbert maniféid ([a, b], M).

5.2.1. RROPOSITION Let(M, g) be afinite dimensional Riemannian manifold
and letV be an arbitrary connection o/. For everyy € H'([a,b], M) the
formula:

(5.2.1) b

(v,w)y = g(v(a), w(a)) +/ g(Be,Be)dt, v,weT,H([a,b], M),

a

gives a well-defined Hilbert space inner product on the spBcH ([a,b], M).
Moreover, the family:

Hl([a> b]>M) S0 s ('7 ')’77
defines a Riemannian metric éf' ([a, b], M ).

PROOF Lety = (¢, Uy, (7}) be a one parameter family of chartsifi. We
define smooth maps:

b:U — R*, A:U — Lin(R"),
I':U — Bil(R™R"), §:U — Bil(R"),

by setting:
. Oy 0X;
b(t7$) = E(tv*r% A(t,i})(ei) = d('pt(x) ’ ot (t,ﬂj‘),
Tz (eies) =doi(@) - [Vx, X;(62)], Gz = 9= (deu(@) ™ dey(z) ™" ),
for all (t,z) € U, i,j = 1,...,n, wherez = ¢, '(Z), (e;)"_, is the canonical
basis ofR" and X;(¢,z) = dg(x)~! -e;, i = 1,...,n. Inthe formulas above

we have denoted by x, X (¢, z) the covariant derivative of the vector field—
X(t,z) in the directionX;(t,z) and byagii (t,z) the standard derivative of the
curvet — X;(t,x) in T,M. The objectsh, A, I" and g encode all the relevant
information we need to describe (5.2.1) in the chiaip] of H'([a,b], M). Let

v € H[U] be given and sef = H[p](), so that:

(5.2.2) () = ¢(t, (1), te€a,b].
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We denote byl(3) : [a,b] — R” the “coordinaté representation” of/, i.e., we
set:

(5.2.3) d(7)(t) = dee (v(1)) -+'(8),  t € [a,b];
differentiating (5.2.2) we obtain:

(5.2.4) d(3) () =7'(t) — b(t,ﬁ(t)), t € la,b].
Now pickv € T, H' ([a, b], M) and seth = d§[¢],(v), so that:

(5.2.5) 0(t) = dee (v(1)) - v(t), t € [a,];
using the time-dependent referenti&l;)”” ; we can rewrite (5.2.5) as:

(5.2.6) v(t) = () Xi(t,y(t), tE€ la,b].
=1

We denote bﬁﬁ(ﬁ) : [a,b] — R™ the “coordinate representation” of, i.e., we
set:

~ Do
D5(0)(t) = de(y(1) - 75 (1), T € [a,];
taking the covariant derivative of (5.2.6) with respect tee get:

(5.2.7) D5 (8)(t) = ' (£) + A3 (5(t)) + T30 (A3 (1), 8(1)), ¢ € [a,b].
Finally, we can write the representation of (5.2.1) withpexs to the local chart
9] as:

b ~
(5.2.8) (0, 0)5 = J(a(a)) (0(a), ¥(a)) +/ 9a() (D5(2)(t), D3 (w)(t)) dt,

for all 5, € H'([a,b],R"), 7 € H[U]. Itis easy to see that(7) and D5 (?)
are inL?([a,b],R™), so that (5.2.8) is a well-defined positive semi-definite sym

metric bilinear form onf* ([a, b], R™") for every fixedy € $[U]; we claim that

(5.2.8) is indeed positive definite and that it is a Hilberaap inner product in
H'([a,b],R"), i.e., it defines the standard topology#t ([a,b], R™). Keeping in

mind the inequalities:

0 < inf G50 (2,2) < sup g a0 (2, 2) < +o0,
R e
= llz]=1

we see that the claim will be proved once we establish that:

1
2

(5.2.9) H'([a,b],R") 3 & — [H@(a)H2 + Hﬁa(f})HiQ} €R

2ltis indeed possible to give a Hilbert manifold structureite set of allL>-vector fields along
H'-curves inM, so thaty’ would be a point of this Hilbert manifold arid — a(:y) would actually
be the coordinate representation of the operates 4. In order to simplify the exposition we avoid
such construction so that formula (5.2.3) should be simplyeustood as the definition of the term
“coordinate representation of”.
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defines anorm it ([a, b], R™) and that such norm induces the standard topology
of H'([a,b], R™). We define a linear map:

T5 : H' ([a,b], R") — R™ @ L*([a, b],R")
by setting:
(5.2.10) Ts(3) = (9(a), D5 ().
It is easy to see that; is a continuous linear map; moreover, it follows from the
standard theorem on existence and uniqueness of solutidimear ODE’s with

initial data thatT is bijective. If we endow the counter-domain B with the
norm:

1
(6211)  R"®L*([a,BLR") 3 (vo,u) — [Juol + ul?:]* € R,

then (5.2.9) is simply the norm o ([a, b], R™) induced byT from (5.2.11) (see
Exercise 4.6). This proves the claim.
We now have to check that (5.2.8) defines a smooth map:

(5.2.12)  H'([a,b],R") D H[U] 25— (-,-)5 € Bil(H'([a, 0], R")).

To this aim, we check the smoothness of all the objects we inéneeluced. First,
we observe thad defines a smooth map:

d: H'([a,b],R") D H[U] — L*([a,b],R");

namely, this follows from formula (5.2.4), Theorem 5.1.le tcontinuity of the
inclusion of H! in L? and from the continuity of theerivation operatorfrom H'
to L2. Now we must show that (5.2.7) defines a smooth map:

D: H!([a,b],R") D H[U] 5 7 — D5 € Lin(H*([a,b],R"), L*([a, b], R™)).
This can be obtained by using the smoothness die continuity of the linear map
(4.2.5) and by applying Proposition 5.1.5 to the map:

UxR"> (% 2) — Awz) + Tz (z,-) € Lin(R"™)
observing that such map Imear with respect to:. The ﬂngl conclusion (see
Exercise 4.35) can now be obtained using the smoothnd3sdand of the map:
9(g) : 9[U] — H'([a, 0], Bil(R™)). 0

5.2.2. LEMMA. Let (M, g) be a finite dimensional Riemannian manifold and
let V be an arbitrary connection ofl/; assume that*([a, b], M) is endowed
with the Riemannian metric defined {6.2.1) Letyp = (gpt,Ut,ﬁt) be a one
parameter family of charts o/ and letV’ ¢ U be an open subset & x R" such
that the closure oft’ N ([a,b] x R™) is contained iU and it is compact. For a

given positive real number > 0, we set:
U=UrV)={7€nV]: Il <r} CH[U),

andi/ = $[] = (U) C H[U]. Thenld is open in[U], U is open in$)[U] and the
chart (]|, : U — U is metric relating.
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PROOF We define the objects, A, T, g, d andD as in the proof of Proposi-
tion 5.2.1, so that (5.2.8) is the representation in thetchgs] of the Riemannian
metric (5.2.1). Sinc& N ([a,b] x R™) C U is compact, we have:

(5.2.13)

0< _inf Git,3) (2, 2) < sup G(e,3)(2,2) < +oo.
(ti)é‘ﬂﬂl(l[avlblxﬁ”) (t,7)eVN([a,b] xR™)
2= llzll=1

Keeping in mind the inequalities above, we see that in om@rove thatH|e]|;,

is metric-relating, it suffices to find constants that do nepehd ony < U and
that relate the norm defined by (5.2.9) and the norm definedhdoyriner product
(4.2.6) (or any of the usudl '-norms discussed in Exercise 4.17); more explicitly,
we have to finds{, ko > 0 with:

1
2

Billollan < |2 + [Ds@)]7.]* < kallollan,

forallo € H'([a,b), R") and all¥ € U. Recalling that (5.2.9) is the norm induced
from (5.2.11) by the linear isomorphism (5.2.10) we seen@i&xercise 4.7) that
the proof will be completed once we show that:

(5.2.14) sup || 75| < +o0,
Feu

(5.2.15) sup HT{lH < 4o00.
yeu

The compactness 6f N ([a,b] x R") C U yields:

(5.2.16)
sup || A@z)ll <400,  sup |bygzll <4oo,  sup [Tzl < +oo;
(t,x)eV (t,x)eV (t,x)eV
te(a,b] te(a,b] te(a,b]

using (5.2.16), (5.2.4) and keeping in mind tHj&t|| ;- is bounded fory € U we
obtain:

(5.2.17) sup [|d(9)]] ;. < +o0.

Sell
Fory e H[U] we define:

K5 : [a,b] — Lin(R")
by setting:

K5(t) = Aus) + Deaw) (d@)@), ),
for all t € [a, b]; observe that (recall (5.2.7)):
Dy (8)(t) = (1) + K5(t) - 6(2),

forall o € H'([a,b], R") andt € [a, b]. Using (5.2.16) and (5.2.17) we obtain:

(5.2.18) sup || K5|[L2 < 4o0.
=
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Inequality (5.2.14) is now a direct consequence of (5.2.TBg proof of inequality
(5.2.15) is a bit more involved and it requires some basigltefrom the theory of
linear differential ODE's.

Pickvg € R", u € L?*([a,b],R") with |lvo|]| < 1, |lullzz < 1 and sets =
T5(vo, w); this means thai is a solution of the linear differential equation:
(5.2.19) o'(t) = —K5(t) - o(t) + u(t), tE€[a,bl,

satisfying the initial conditiorv(a) = vy. We have to find an upper bound for

|o]| g1 which does not depend ane /. The nonhomogeneous equation (5.2.19)
can be solved using the method of variation of constantsiwyilds:

t
(5.2.20) (1) = ®5(1)[wo + / D5(s)™" u(s)ds|, € lab]
where®s : [a,b] — Lin(R") is defined by the matrix differential equation:
(5.2.21) PL(t) = —K5(t)®5(t), te[a,b],

and by the initial conditionbs(a) = Id. Since||3(a)|| < 1, in order to find an
upper bound for|o|| ;1 it is sufficient to find an upper bound fd&’||;2; using
(5.2.19), (5.2.18) and the fact that||;> < 1, we see that an upper bound for
||t'|| 2 is easily obtained from an upper bound fiat| co. Now (5.2.20) implies:

[2@)]| < [[®5]]co [1 + H‘I’&_lucom};

the proof will then be completed once we show that:

(5.2.22) sup ||®5||co < +o0,
=

(5.2.23) sup || @5 1]| o < +oo.
Feu

The proof of (5.2.22) will be obtained now using Gronwaltigquality (see Exer-
cise 4.11); the proof of (5.2.23) can be obtained with a simrafgument observing
that® ! satisfies the linear ODE:

(@) (1) = K5()25(t)", t€ [a,b].
We start by rewriting (5.2.21) in integral form obtaining:
O5(t) =1d — /t K5(s)®5(s)ds, t € [a,b];
hence:
t
250 < 1+ [ 5@ @s(e) s € fo.t
Using (4.7.2) withi(t) = || ®5(t)

[®@5lco < exp (K5l );
since||K5||.1 < Vb — a||K5|| L2, the conclusion follows from (5.2.18). O

, ¢(t) = || K5(t)|| ande = 1 we obtain:
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5.2.3. DEFINITION. For a finite dimensional Riemannian manifgil, g), the
energy functionall : H'([a,b], M) — R is defined by:

b
:%/ I )] .

5.2.4. LEMMA. The energy functional is smooth and its differential is given
by:

b
(5.2.24) A, (v) = / (+(8), 22(0)) dt.

PROOE In the notation of the proof of Proposition 5.2.1 we see thatrepre-
sentation ofF with respect to the chasj[¢] is given by:

~ 1 b ~
(5.2.25) B&) =5 [ duso @5©.d0)0) d,

for everyd € $[U], whereE = E o $[p]~!. The smoothness df (and hence
of E) now follows from the smoothness df(established in the proof of Proposi-
tion 5.2.1) and from the smoothnesssgfj| (see Theorem 5.1.1), using arguments
similar to (actually simpler than) the ones used in Exerdi$s.

SincedE : TH'([a,b], M) — Ris continuous (actually, it is smooth) and (by
arguments similar to those used to establish the smootlofidsabove) the right-
hand side of (5.2.24) defines a continuous (actually smauo#y on the tangent
bundleT H' ([a, ], M), it follows from Proposition 5.1.14 that it suffices to check
equality (5.2.24) whem (and hencey) is smooth. Let thery : [a,b] — M be a
smooth curve and : [a,b] — T'M a smooth vector field along. There exists a
smooth map—e, €[ X [a,b] > (s,t) — H(s,t) € M such thatd (0,t) = ~(t) and
%—Ij(o,t) = v(t) forall ¢t € [a,b]. Writing v = H(s,-) then]—e,e[ 3 s — v €
ﬁ{l([a, b, M) is a smooth curve withl~,| _ = v (see Corollary 5.1.13). We

ave:

d
dE’Y(v) - &E(VS) 8207
now a simple computation shows that the righthand side offath@ula above
equals the righthand side of (5.2.24). O

5.2.5. @MROLLARY. Foreveryy, u € H'([a,b], M), we have:

IVE() = VE@W| < %dist(%u),

wheredist denotes the distance function @f' ([a,b], M) corresponding to the
Riemannian metri¢5.2.1)

PrRoOOF From (5.2.24) it follows that:

ool < [ ol igote <( [ ora) ([ g ora)

< V2E(Q) (v, 0)3;
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the conclusion is obtained from the result of Exercise 4.23. O

Given continuous curves, u : [a,b] — M on the Riemannian manifold
(M, g) we set:

disteo (v, 1) = o dist (v(t), pu(t)).
t€la,

5.2.6. LEMMA. For everyy, u € H'([a,b], M) we have:
disteo (7, 1) < V2 max {1,Vb — a }dist(v, p),

wheredist denotes the distance function @f' ([a,b], M) corresponding to the
Riemannian metri¢5.2.1)

PROOF We have to show that for every fixed: [a, b] we have:
dist (y(£), u(t)) < V2 max {1,Vb—a} dist(y, p).
This will follow from the result of Exercise 4.24 once we shtvat:
||dEvaly(~)|| < V2 max {1, Vb—a },

for all v € H'([a,b], M), whereEval, : H'([a,b], M) — M denotes the
map~y — ~(t) of evaluation at the instant Lety € H'([a,b], M) andv €
T, H*([a,b], M) be fixed; we want to show that:

Hv(t)H2 < 2max{l,b —a} (v,v),.

To this aim, letX : [a,b] — T'M be a parallel vector field along with X (¢) =
v(t); since the metric oM is parallel, we havg X (s)|| = ||v(t)|| for all s € [a, b].
Moreover:

Hv(t)H2 = <v(t),X(t)> = <v(a),X(a)> —I—/ <%(8),X(s)> ds;

now we compute:

2 ’ Dv
o) < lo@] ool + o] [ 126 as.
Therefore:
b
o] < @] + [ )] ds,

which implies (see Exercise 4.25):

b
Hv(t)H2 < 2Hv(a)H2 +2(b— a)/ | %(S)H2d8 <2max{l,b —a} (v,v),.
This concludes the proof. O

5.2.7. THEOREM. Let (M, g) be a finite dimensional Riemannian manifold
and consider the Hilbert manifold?* ([a, b], M) endowed with the Riemannian
metric (5.2.1) where% denotes covariant derivative with respect to the Levi—
Civita connection. If\/ is complete thed! ([a, b], M) is also complete.
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PROOF Let (vx),>1 be a Cauchy sequence i' ([a,b], M). Lemma 5.2.6
implies that(v;)x>1 is also a Cauchy sequence for the mediit o on the space
of continuous curves id/; sincedistco is complete, we conclude théty, ).>1
converges with respect tist-o (i.e., converges uniformly) to some continuous
curvey : [a,b] — M. Observe that Corollary 5.2.5 also implies that:

(5.2.26) sup ‘E(’Vk” < +o0.
k>1

By Proposition 5.1.8 we can find a one parameter family oftshar= (¢;, U, ﬁt)
such thatU contains the graph of; define? : [a,b] — R" by:

F(t) = (t, (1), t€lab].
Since(,)>1 converges toy with respect to the metridisto, it follows that the

graph of; is contained inU for k sufficiently large; for suclk we can sety, =
H[el(vx), so that(yx)r>1 converges uniformly tg;. ChooseR > 0 such that

B[7(t); R] c U forallt € [a,b] and set:

V={(t#)ecRxR": ||5(t) - 7| < R}NT;
in the formula above we have considered an arbitrary cootisextension of to
the whole lineR. Itis easy to see thaf is an open subset &f and that the closure
of V N ([a,b], xR™) is compact and contained . Since¥, — 7 uniformly, it
follows that |, — ¥[|co < R for k sufficiently large, so that the graph §f is

contained inV for suchk. For the rest of the proof we assume that some initial
portion of the original sequendey),>1 was deleted, so thaf, is (well-defined

and) has its graph contained ¥nfor all k. Keeping in mind formulas (5.2.25),
(5.2.4), (5.2.13) and (5.2.16), it follows from (5.2.26ath

(5.2.27) sup H%HLQ =7 < 4o00.
k>1
By Lemma 5.2.2, if we set:
U=UGBRV), U=9[]'U)

then the char[¢]l; : U — U is metric relating. Consider the closed subset
F C H'([a,b]R™) defined by:

F={jieH (bR : [i oo < £, ]2 <2r):

obviously, F' C u and®, € F for all k sufficiently large. By Corollary 4.3.19, the
proof will be concluded if we manage to fikg € IN such that:

(5.2.28) kléllgo dist (yk, Z?F) > 0.
Observe that (5.2.28) is equivalent to:
(5.2.29) inf |15k — fillco + |7k — &l 2 > 0.
LEOF
k>ko

Finally, (5.2.29) follows from||9x — 7||co — 0 and (5.2.27) by observing that
fi € OF implies eitherl|y — fi]|co = & or || /|| 2 = 2r. O
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5.3. Morse Theory for Riemannian Geodesics
5.3.1. LEMMA. Foreveryy € H([a,b], M) we have:

L(y) < V2(b—a)E(y).

PrROOEF It is an immediate consequence of the Cauchy-Schwarz atiggu
O

Let nowp, ¢ € M be fixed and consider the set:
Hp,([a,b], M) = {~ € H'([a,b], M) : v(a) = p, 7(b) = q};
it follows from the result of Exercise 4.36 thak' ([a, b], M) is a smooth Hilbert
submanifold ofH ! ([a, b], M) and that its tangent space is given by:
T, H,,([a,b], M) = {v e T,H" ([a,b], M) : v(a) = v(b) = 0},

forall v € H} ([a,b], M). Obviously the Riemannian metric (5.2.1) restricts to a
Riemannian metric it/ ([a,b], M) given by:

b
(5.3.1) (v, w)~ :/ g(%,%—f) dt, wv,w € Tﬁ,Hl([a,b],M),

forall v € H},([a,b], M).

5.3.2. ®MROLLARY. Let(vx),>1 be a sequence iff* ([a,b], M) on whichE
is bounded. If for som& € [a, b] the set{~;(to) : k > 1} is bounded inM/ then
the set{~;(t) : k > 1} is bounded inV/ for all ¢ € [a, b).

PROOF. Sincesupy>; E(yx) < +o0o, Lemma 5.3.1 implies that:

sup L(7) < +00;
k>1

the conclusion follows by observing that:
dist (v (), v (t0)) < L(7k),
for all k. O

5.3.3. MROLLARY. If (v;)>1 is a sequence it* ([a,b], M) on whichE is
bounded then the séty;, : k > 1} is equicontinuous.

PrROOF This follows by observing that, for all s € [a, b] and allk > 1:

dist (v (£), 7 (5)) < L(lps) < V20t — s|E(w).

O

5.3.4. RROPOSITION Let (M, g) be a finite dimensional Riemannian man-
ifold and consider the Hilbert manifoldi}, ([a,b], M) endowed with the Rie-
mannian metric(5.3.1) Where£ denotes covariant derivative with respect to
the Levi—Civita connection. I\ is complete then the energy function&l :
H'([a,b], M) — R satisfies the Palais—Smale condition.
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PROOF Let (v;)x>1 be a Palais-Smale sequence forSincevy;(a) = p for
all k, it follows from Corollary 5.3.2 that the sety;(t) : k& > 1} is bounded in
M for all t € [a,b]; sinceM is complete,{~;(t) : k > 1} is relatively com-
pact. Moreover, by Corollary 5.3.3, the s%tk k> 1} is equicontinuous, so
that we can apply Arzela-Ascoli’s theorem to conclude toatto a subsequence)
(7&)k>1 converges uniformly to some continuous curye: [a,b] — M. Let
v = (¢, U, ﬁt) be a one parameter family of charts such that the graphisf
contained irlJ (see Proposition 5.1.8). Férsufficiently large, the graph ofy. will
be contained i/, so that it makes sense to defile= 9H[¢](7x); we define also
5 : la,b] — R™ by:

:Y(t) = (p(t,’y(t)), te [a7 b]a

so that(q;)x>1 converges uniformly tgy (we delete some initial part of the se-
quence(yk)kgl, if necessary). LeV” be an open neighborhood of the graph of
~ whose closure is compact and contained/insety®(V) = V. We now con-
sider the objects4, T, b, g, d andD defined in the proof of Proposition 5.2.1;
sinceV is relatively compact irV, we have the estimates (5.2.13) and (5.2.16).
As in the proof of Theorem 5.2.7, the fact thiatis bounded or{v;)x>1 implies
that (7;,)x>1 is bounded inL? (see (5.2.27)); thus, sind€y)>: is bounded in
CY, the sequencéyy)x>1 is bounded inH!. By passing to a subsequence, we
may assume thdfy,,)x>1 converges weakly i/ (necessarily t); in particular,
3 € H'([a,b], R™). For eachk, we sett;, = 5, — 5 andv, = d$[e];! (tx); we
havedy(a) = x(b) = 0, which impliesv, € T, H} ([a,b], M). Since(ty)x>1
converges uniformly to zero, it follows from (5.2.13) that:

b
~ ~ ~ k—+o00
(Vks Uk )y, :/ 9(t5 (1)) (or(t), Or(t)) dt i N )
Since alsd|dE(vx)|| — 0, we have:
b
~ N~ ~ ~ ~ k—+o00
(5.3.2) dE,, v = / 9(t7x (1)) (d(’yk)(t), D5, (A — ’y)(t)) dt ==+, 0.

Using (5.2.16), the fact thdty; );>1 is bounded inL? and the fact that¥;)x>1
converges uniformly t& we get that:

sup H&(%)Hm < 400,
k>1

and thatDs, (3, — 7) can be written as:

(5.3.3) D5, (G = %) = % — 7' + g,
where:
(5.3.4) up =220 in L2 ([a, b), R).

From (5.3.2), (5.3.3), (5.3.4) and (5.2.13), we get:

b ~
(5:3.5) / e ) (A (0, 74(1) = 7/(1)) d == 0.
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For eachk we define a linear functional;, € L*([a,b],R")" by setting:

b
ak(z)(t) = / g(t,:yk(t)) [b(t,’yk(t)),z(t)] dt, zZ € Lz([a, b],Rn);

since(9x)x>1 converges uniformly tg, the sequence of linear functiondts;, ) ;>4
converges ir.?([a, b], R") " to the linear functional:

b
a(z)(t) = / Jeaw) [0(6AD), 2(0)] dt, =z € L?([a,b], R").
Thusay, — ain L?([a,b],R")" and¥}, — 5 — 0 weakly in L?([a, b], R"); this
implies:
b
~ ~ ~ ~ k—+o00
638 [ Geaon[o(t30) 540 - (0] de A

From (5.3.5) and (5.3.6) we get:

b
- - ~ ~ k—+oco
(5.3.7) / s o) (R, AR ) = 7' (1)) dt === 0.

Sincet — § 5, (1)) converges uniformly to — g(t,5(t)) and(7;,)x>1 is bounded
in L2, it follows from (5.3.7) that:

b
(5:3.8) / G (R =7 (1)) dt == 0,

Sincey;, — 4’ — 0 weakly inL?([a, b], R™) and

2 n b~ ~ ~/
L*([a. b, R") > - H/ G (7 (0. (D) dt € R

is a continuous linear functional, it follows that:

b
(5:3.9) / Gy (7 (00 = 7)) dt == 0,

Finally, from (5.3.8), (5.3.9) and (5.2.13) we get:

- ~ k——+
19 — 7 Iz ——— 0;

thus¥, — 7 in H' ([a, b], R™) and the proof is completed. O

We now recall the statement of the Morse Index Theorem. Wdivgt need a
few definitions.

5.3.5. DEFINITION. Let (M, g) be a Riemannian manifold. If C R is an
interval then ggeodesicy : I — M is a smooth curve satisfying the equation:

D,
—~'(t)=0, tel.
el
A smooth vector field/ along~y is called aJacobi fieldif it satisfies the equation:

/0= R(Y'(t),J()Y' (), tel.
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Given a geodesi¢ : [a,b] — M then an instant € ]a,b] is calledconjugate
for ~y if there exists a non zero Jacobi fieldalong~y with J(a) = J(t) = 0;
the multiplicity of ¢ as a conjugate instant along denotedmul(¢), equals the
dimension of the space of all Jacobi fieldslong~ with J(a) = J(¢) = 0. The
geometric indexf a geodesiey is defined as the sum of the multiplicities of the
conjugate instants € ]a, b[ along~y:

geometric index ofy = Y mul(z).
t€]a,b|

Two pointsp, ¢ € M are callecconjugateif there exists a geodesic: [a,b] — M
with v(a) = p, v(b) = g and such that = b is a conjugate instant along

We can now state the following:

5.3.6. THEOREM (Morse index theorem)lf (M, g) is a finite-dimensional Rie-
mannian manifold ang, ¢ € M are fixed points then the critical points of the en-
ergy functionalE : H'([a,b], M) — R are precisely the geodesigs: [a,b] — M
with v(a) = p, 7(b) = ¢. The Hessian of’ at v is given by the so callethdex
form:

b
HessE, (v, w) = / g(%, %—?) —|—g(R(v/(t),v(t))v/(t),w(t)) dt,

for all v,w € T, H}, ([a,b], M). The kernel of the index form equals the space of
Jacobi fieldsJ along~ with J(a) = J(b) = 0; in particular, v is a nondegenerate
critical point of F iff ¢ = b is not a conjugate instant along. Moreover, all
nondegenerate critical points @f are strongly nondegenerate and the Morse index
of a critical pointy equals the geometric index of the geodesic

PrROOF See $§]. O

In order to present some applications of Morse theory fonting Riemannian
geodesics connecting to fixed points, we state without piusfollowing results.

Recall that thdoop spaceof a topological spac& at the base pointy € X
is defined by:

Q(X;z0) = {7 :[0,1] — X : vis continuous and (0) = (1) = zo};

the spacé)(X; z() is always assumed to be endowed with the compact-open topol-
ogy.

5.3.7. THEOREM. If M is a connected finite-dimensional differentiable man-
ifold and if p, ¢ € M are arbitrary fixed points thed}, ([0, 1], M) has the same
homotopy type aQ(M; xy), for anyzy € M.

PrROOF See 98§, §17]. O

The following is a very deep result relating the singular gy of a space
with the singular homology of its loop space.
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5.3.8. THEOREM. Let X be a simply-connected and arc-connected topological
space and leK be a field. Assume that a poin§ € X is fixed. If for some, > 2
we haveH,(X;K) # 0 and H;(X;K) = 0 for all i > n then the singular
homology of2(X; z() satisfies the following property: for every integer> 0
there exists an integef, 0 < j < n, such thatH; ,; (Q(X; z0); K) # 0.

PROOF See 41, Proposition 11, pg. 483]. O

5.3.9. @WROLLARY. Under the assumptions of Theorem 5.3.8, the loop space
Q(X;x0) has infinitely many non zero Betti numbers with respect tdidte K.
O

Now using Theorem 5.3.7 and the theory developed in Secti@msmd?? we
obtain readily the following:

5.3.10. THEOREM (Morse relations for Riemannian geodesickpt (M, g)
be a complete connected finite-dimensional Riemannianfoldni Assume that
the pointsp, ¢ € M are non conjugate. For every integgr> 0, denote by the
number of geodesies: [0, 1] — M fromp to ¢ having geometric index equal ko
If K is an arbitrary field and if3 (2(M; zo); K) denotes the Poincérpolynomial
of the loop spacé&€)(M; xy) (with an arbitrary base point:y € M) with respect
to the fieldK then there exists a formal power seri€g\) with coefficients in
IN U {400} such that:

+o00
(5.3.10) D kAP =Py (AM;20);K) + (1 +N)Q(N).
k=0

O

5.3.11. ®ROLLARY. If (M, g) is a complete contractible finite-dimensional
Riemannian manifold then the number of geodesics conigewtio non conjugate
points of M is either odd or infinite.

PROOF It can be shown that i/ is contractible then als@(M; xg) is con-
tractible; hence:

P\(QM;x0);K) = 1.

The conclusion follows by using equality (5.3.10) with= 1; namely, ifA = 1
then the lefthand side of (5.3.10) becomes the total numiogeadesics fronmp to
g and the righthand side of (5.3.10) becor@éX1) + 1 (which is either infinite or
odd). This concludes the proof. O

5.3.12. ®ROLLARY. If (M,g) is a compact Riemannian manifold then the
number of geodesics connecting two non conjugate poimg o always infinite.

PROOF. Letp,q € M be two fixed non conjugate points. It follows from
(5.3.10) that the number of geodesics of index A from p to ¢ is greater than
or equal to the:-th Betti number of the loop space 8f with coefficients in the
(arbitrarily fixed) fieldK. Assume thatV/ is simply-connected. If: denotes the
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dimension ofM then it is well-knowr that H,,(M; K) # 0 and thatH;(M; K) =

0 for i > n. It follows from Corollary 5.3.9 that the loop space/df has infinitely
many non zero Betti numbers with respect to the figléind therefore there are
infinitely many geodesics connectipgandg.

We now prove the general case (with not necessarily simply-connected).
Letw : M — M denote the universal covering 8f and considern/ endowed
with the pull-back of the Riemannian metric 6f by~7r. Choosep, § € M with
m(p) = p andn(§) = ¢q. The Riemannian manifold/ is again complete. More-
over, sincer is a local isometry, it is easy to see thfabnd ¢ are non conjugate
in M. If the fundamental group of/ is infinite then the set~1(q) C M is also
infinite and therefore we obtain infinitely many geodesicd4rconnectingp and
q by taking projections of the geodesicsi connectings and points ofr—!(q).
On the other hand, if the fundamental groupMdfis finite thenM is again com-
pact and by the first part of the proof we can find infinitely maepdesics inl/
connectingp andg; their projections inM will provide us with an infinite set of
geodesics inV/ connectingp andg. O

3If M is ann-dimensional topological manifold the; (M; G) = 0 for every abelian group
G and everyi > n. Moreover, if M is orientable (which in our case follows from the simply-
connectedness dff) and connected theH,,(M; G) = G. See, for instance3p, Chapter VIII,§3,
§4] for a proof of such results.
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APPENDIX B

Hyperbolic Singularities of a Vector Field

In this appendix we present an elementary introduction éottieory of dy-
namical systems. We introduce the notion of hyperbolic Wty of a vector
field on a manifold and we study the stable and unstable médsifif such singu-
larities. We also prove the theorem of Hartman—Grobmangivas a topological
characterization of the flow of a vector field near a hypetosingularity.

Let us fix some conventions that will be used throughout theeagdix. LetV
be a real finite-dimensional vector spacedlf V' — V is a linear endomorphism,
we denote by (A) the set of complex roots of the characteristic polynomiaflpf
this means that(A) equals the set of eigenvalues of the complexificatio pf
which is the unique complex linear extensidff of A to the complexificatiori”©
of V. ForA € o(A) N R we write:

Va(A4) = [ Ker(4 - M),
k>1
and forA € o(A) \ R we write:
V\(4) = ( U Ker(A® — \)F @ U Ker(A® — X)k> nv,
k>1 k>1
so thatV, (A) = V5(A). The primary decomposition of is therefore written as:
V=P WA,

A€o (A)
I(A)>0

whereS(\) denotes the imaginary part af Observe that ifA is symmetric with
respect to some inner product Bftheno(A) C R andV)(A) = Ker(A — \) is
simply the \-eigenspace ofl.

We give a basic definition.

B.1. DEFINITION. LetV be a real finite-dimensional vector space. A linear
endomorphism! : V' — V is calledhyperbolicif o(A) contains no purely imagi-
nary complex numbers. Thositiveand thenegativeeigenspaces ol are defined
respectively by:

Vi(A) = > W(4), V(A= > WA,
Aeo(A Aeo(A
m%)\)(x% %%A)(d))

whereR(\) denotes the real part of

259
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Obviously if A : V' — V is hyperbolic we obtain the following direct sum
decomposition of” in A-invariant subspaces:

V=V, (A4) @ V_(A).

We now prove a lemma concerning some estimates on the norhe @xpo-
nential of a linear map. We consider the spaB&sand C™ endowed with their
standard Euclidean norms. The norm of a linear MagR™ — RR"™ is defined by:

|A] = sup [[A(x)],
zeR™
lz]<1
and the norm of a complex linear map: C™ — C" is defined by:
|All = sup [|A(z)].
zeCm
lzl<1

We observe that ifAC : C* — C” denotes the complexification of : R — R"
then||A|| = ||A®| (see Exercise B.2).

B.2. LEMMA. LetA : R™ — R" be alinear map and choosg, A\; € R such
that:
Ao < min R(A) < max R(N) < A;.

A€o (A) T Xeo(A)
Then there exists a constafit> 0 such that:
et < cets, et < cemt,

forall ¢t > 0.

PrROOF Let A = S + N denote the Jordan decomposition Af i.e., S is
semi-simple NV is nilpotent andSN = N.S. Then:

(Bl) etA — etSetN7
and: -
t°N th"N"™
eN =T +tN + 4o >
n:
forallt € R. Thus:
t2||N||? || N||™
[V < 1 g + PV L N
2 n!
for all ¢ > 0 and therefore for every > 0 we can find a constardt, > 0 such that:

(B.2) [e™]] < Coe®,

forall ¢t > 0. Now o (S) = o(A) andS® : € — C is diagonalizable, so that we
can find a complex linear isomorphisB: C* — C" such thatD = BS®B~! is
a diagonal matrix whose diagonal elements belong(té). We have:

etSC — B—letDB
and therefore, for all € R:
(B.3) e = 15| < 1BI B |||
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Obviously:

tD|| _ tRON)
(B.4) He H-)\rerirz%i)e ,

for all £ € R. By choosinge > 0 with ®(\) + & < A forall A € o(A), formulas
(B.1), (B.2), (B.3) and (B.4) imply:

le) < CollBI 1B~ e,
for all t > 0. This proves the desired estimate|pri*||. The estimate offe="4|
is obtained by replacingl with —A.

We now prove a preparatory lemma concerning linear ODE'sseloefficient
matrix is hyperbolic.

B.3. LEMMA. Let A : R™ — R™ be a hyperbolic linear map and denote by
7+ : R" — R} (A), 7— : R" — R™(A) the projections corresponding to the
direct sum decompositioR” = R’ (A) ® R™ (A). Then for everysy € R” (A)
and every continuous map: [0, +oo[ — R™ with lim;_, o, u(t) = 0 there exists
a unique solutionx : [0, +o0o[ — R™ of the nonhomogeneous linear ODE:

(B.5) ¥ = Az +u,
with 7_(z) = z¢ andlim;_, o z(t) = 0.

ProOF Denote byA, and A_ respectively the endomorphisms Bf} (A)

andR" (A) given by restrictions ol and choosé\, A\_ € R such that:

max R(A) <A <0< A < min R(A).
A€o (A_) A€o (Ay)

For allt > 0 we set:

(B.6) z(t) =¢ (:L'(] + /Ot e An_ (u(s))ds — /t e A, (u(s)) ds);

the convergence of the second integral in (B.6) follows bgepbing thatu is
bounded and that, by Lemma B.2:
le™ 4 (u(s))[| = [le™*H mi (u(s)) || < Ce™* uls)]

for all s > 0 and some constaidt > 0. A straightforward computation shows that
x is a solution of (B.5) withr_ (z(0)) = . In order to computéim;_, ;. z(t)
we rewrite (B.6) as:

z(t) = ey +/

—00

“+oo
(B.7) =eluo+ /

—0o0

+oo

)

+o0o
elt=9)4 [X(t — s)m—(u(s)) — x(s — t)my (u(s))} ds
4 [X(S)?T_ (u(t —s)) — x(—s)my (u(t — s))] ds,

wherex : R — R denotes the characteristic function [6f +cc[ and we write
u(s) = 0for s < 0. Sincezy € R™(A), we have:

[e*aol] = [le**~zo]) < Ce™lzolL
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for all t > 0 and some constarit’ > 0. This shows thatim; .. etdzy = 0.

We now compute the limit as — +oo of the integral in (B.7) using Lebesgue’s
dominated convergence theorem. Sitieg_. - u(t) = 0, we have:

lim %4 [X(s)w_ (u(t —5)) = x(—s)m4 (u(t — S))] =0,

t——+o0

for fixed s € IR. Moreover, for allt > 0 ands € IR we have:

esA [X(s)w_ (u(t —s5)) — x(—s)m4 (u(t — s))] ‘
< Hx(s)eSA*W_ (u(t — s)) H + Hx(—s)eSA+7T+ (u(t - s)) H
< O(x(s)e™ +x(=9)e) [ullco,

for some constant’ > 0, where||u|co = sup,> |u(s)||. Obviously:

“+00
/ x(s)eSr + x(—s)es* ds < +oo,
—00

which completes the proof théitn; ., ., x(¢) = 0. Now assume that; andz,
are solutions of (B.5) with:

T (1‘1(0)) = T_ (xg(O)) =20

andlimy_, ;o z1(t) = limy—, 4 & 22(t) = 0. Thenz = x; — x4 is a solution of the
homogeneous ODE' = Az with z(0) € R’ (A4) andlim;_~ z(t) = 0. Thus
z(t) = et4z(0) € R (A) for all t > 0 and:

lz@)[] = [le™ A (®)]| = [l 2@ < e ot

but limy— o e~ ||z(t)|| = 0, which proves thatz(0) = 0 and hencer =
1 —x9 = 0. O

Now we study singularities of vector fields on manifolds Xif: M — T M
is a smooth vector field on a manifold then asingularity of X is a pointp € X
with X (p) = 0. At a singularityp of a vector fieldX, there exists a natural way
of defining a “differential” of X at p, which is a linear endomorphism @f,\/
that we will denote byV X (p). If M is an open subset dR™ then VX (p) is
simply the standard differential X (p) : R — R™. In the case of an arbitrary
manifold, VX (p) can be defined for instance as the covariant derivativ€ ofith
respect to an arbitrary connection; the fact th& a singularity implies that such
covariant derivative does not depend on the choice of theexdion. The linear
mapV X (p) can also be defined more directly using a local chart arguordmore
abstractly, looking at the double tangent burifileé)M . These different possibilities
are discussed in Exercise B.3. We remark also that if/ — R is a smooth map
on a Riemannian manifold)/, g) then the singularitiep € M of the gradient
X = Vf of f are precisely the critical points gfand thatV X (p) is precisely the
linear map that represents the Hessiary @it p with respect to the inner product

9p-
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B.4. DEFINITION. LetX : M — T'M be a smooth vector field on a manifold
M. A singularityp € M of X is calledhyperbolicif the linear endomorphism
VX (p) of T,M is hyperbolic.

We remark that ifX is the gradient of a smooth mgjpon a Riemannian mani-
fold then the hyperbolic singularities &f are precisely the nondegenerate critical
points of f.

Now let X : M — T M be a fixed smooth vector field on a manifdlfl and let
p € M be afixed hyperbolic singularity of . We denote by" : A — M the flow
of X, so thatA is open inR x M, F'is smooth and — F(t, ) is the maximal
integral curve ofX with F(0,x) = z, forall x € M. Fort € R we denote by,
the open subset dff defined by:

Ay ={zeM:(tz)ec A},

and byF; : A, — M the mapF; = F(t,-). ThenF; : A, — A_;is a smooth
diffeomorphism for allt € R. The stable and the unstable manifold$ p with
respect taX are defined respectively by:

Ws(p,X)={z e M:ze€ Ay forallt >0 andt ligl Fy(z) = p},
Walp, X)={zeM:zec A, forallt <0 andt lim Fy(z) = p}.

Obviously:

At this point, there is no evidence that eiti&(p, X) or W, (p, X) is a manifold
of some sort, but this matter will be clarified later in Pragoa B.10, where it will
be established that the stable and unstable manifolds anerised submanifolds
of M.

Due to (B.8), we will from now on only state results concegnihe stable
manifold. Analogous results for the unstable manifold daentbe obtained by
replacingX with —X.

If U ¢ M is an open neighborhood ¢f we will often need to consider the
stable manifoldV;(p, X |7) of p with respect to the vector field restricted taJ.
For shortness, we will now write:

Ws(p) = Ws(p, X) and Wy(p;U) = Wi(p, X1u).
Observe thatV,(p; U) is in generahot the same a#l;(p) N U; namely, we have:
Ws(p; U) = {a: € Ws(p) : Fy(x) € U, forall t > 0} C Ws(p) N U.

We now make a few simple remarks concerning the stable nidrafod the flow
of X that will be used in the proofs of the results presented tater

B.5. REMARK. For anyt € R, the smooth diffeomorphism; : A, — A_;
restricts to a homeomorphism froiis(p) N A; onto Ws(p) N A_y; thus, if Z is
open inW;(p) then bothFy(Z N A;) andF; ' (Z) = F_4(Z N A_;) are open in
Ws(p).
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B.6. REMARK. The stable manifoldV(p) is arc-connected (with respect to
the topology induced by/). Namely, givent € W(p) then

R
defines a continuous curve: [0, 1] — Wy(p) connectinge to p.

B.7. REMARK. If U, V C M are open neighborhoods pthen obviously:
(B.9) Ws(p;U) N Ws(p; V) = Wi(p; UN V).

It is also easy to check that for any open neighborhbod M of p and for any
t € R we have:

(B.10) E,(Ws(p;U) N Ap) = Wy(ps FL(U N Ay)),

(B.11) F (Wa(ps U)) = We(p; F (D).

Moreover:

(B.12) Wi(p) = | B (Wa(p U) = | Wa(ps 71 (0));
t>0 t>0

namely, ifx € W;(p) then, by definition, there existg > 0 with F;(x) € U for
all t > to. This means thak}, (z) € Ws(p; U). Observe that the union in (B.12) is
monotone, i.e., fob < t < s, we have:

Ft_l (Ws(p§ U)) - Fs_l (Ws(p§ U)) .
Now we look at the local structure of the stable manifold.

B.8. LEMMA. There exists an open neighborhobdC M of p such that:

e Wy(p; U) is an embedded submanifold &of whose tangent space atis
equal to the negative eigenspacewi (p);

e if V C M is an open neighborhood @fcontained inU thenWy(p; V')
is open inWs(p; U) (and in particular Wy(p; V') is also an embedded
submanifold of\/).

PrROOF By choosing a local chart aroung we may assume without loss of
generality thatM is an open neighborhood of the origin Rf* and thatp = 0.
For shortness, we denote BY; andRR” respectively the positive and the negative
eigenspaces af X (0) : R — R"™ and byn, andx_ the respective projections
with respect to the direct sum decompositiRit = R’} @ R”.

The strategy is to use the implicit function theorem for map8anach spaces.
We denote byE° the Banach space of continuous maps|[0, +-oo[ — R" such
thatlim;_. 4 7(t) = 0, endowed with the norny||co = sup> ||7(t)||; by E*
we denote the Banach space(®f mapsy : [0, +oo[ — R™ such that:

. IERT / _
Jm () = lim v (t) =0,
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endowed with the norniy||c1 = ||7|lco + [|7/]|co- If U C R™ is an open neigh-
borhood of the origin we write:

EFU) = {y € EF : Im(y) C U},

so thatE*(U) is an open subset d*, for k = 0, 1.
Consider the map:

¢: R x E'(M) 3 (z0,7) — (7-(7(0)) — 20,7 — X oy) € R x E°.
The mapy is smooth and the partial derivati\% at the origin is given by:

g—ﬁ(0,0)v = (7m_(v(0)),v" — dX(0) o v),
for allv € E'. Lemma B.3 implies tha%f(o,o) is an isomorphism and thus, by
the implicit function theorem, we can find, o > 0 and a smooth map:

o :B(0,r;R") — B(0,r9; EY)
such tha3(0,r; R™) x B(0,7r9; B') C R™ x E'(M) and:
(B(0,r; R™) x B(O,T‘Q;El)) N¢~1(0) = Gr(o),

whereB(0, r; X') denotes the open ball of centeand radius- of a normed space
X and Gr(o) denotes the graph af. Observe that(0) = 0 and that for all
heR":

_10%

(B.13) do(0)h = e

wherew : [0, +o00[ — R™ is the unique solution of the ODE = d X (0) o v with
7_(v(0)) = h andlimy_. ;o v(t) = 0. From the proof of Lemma B.3 (see (B.6))
itis clear that is given by:

- [(% (0,0)}h — o,

(B.14) o(t) = et X Op,
We now choosé/ C M to be an open neighborhood of the origin such that:
T T
sup ||z < 52 sup || X (z)|| < 52 sup [|7—(z)|| < r1;
zelU zelU zelU

observe that ify : [0,4+00] — R is an integral curve oK with Im(v) C U and
limy—, 100 7(t) = 0 thenm_((0)) € B(0,r1;R") andy € B(0,ry; E'). This
means that:
(B.15)  Wi(0;U) = {(0) : v € E'(U) and (7 (7(0)),7) € Gr(o)}.
We may thus writd?5(0; U) as the graph of a smooth map; more specifically, let
n:B(0,r1;R") — R’} be the smooth map defined by:

n(wo) = 4 (7(0)),

wherey = o(z9). From (B.13) and (B.14) we see thij(0) = 0. Moreover, from
(B.15) we get:

Wy (0;U) = Gr(nl -1 (o))
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whereo ™! (E'(U)) is an open subset & (0, r1; R™ ). This proves thatV,(0; U)
is an embedded submanifold Bf* whose tangent space@is Gr(dn(0)) = R™.
Moreover, ifVV 5 0 is an open subset &f then:

Ws(0; V) = Gr(n|g—1 (g1 (v)));

which proves thatVs(0; V) is open inW;(0; U), becauses—! (E*(V)) is open in
B(0,r;; R™). O

B.9. REMARK. ChooseU as in the statement of Lemma B.8. Giver R
and an open neighborhood c M of p contained inF; ' (U) then Wy(p; Z) is
open inWs(p; F, ' (U)) = F ' (Ws(p;U)) (recall (B.11)). Namely, we have
Z = F;'(F,(Z)) and thus (B.11) implies:

Ws(p; Z) = F7 (We(p; Fi(2))).

But F}(Z) is an open neighborhood pfcontained inJ and thusiV (p; F;(Z)) is
open inW(p; U); finally, the continuity ofF; implies thatF, ! (W (p; F,(2))) is
open inE, ' (Wy(p; U)).

We can now prove thadt/s(p) is an immersed submanifold @ff. We adopt
the following terminology; if N is an immersed submanifold d@ff, then by the
manifold topologyof NV we mean the topology induced by the atlashof Such
topology is finer than thanduced topologyf IV, which is the topologyV inherits
from M.

B.10. RRoPOSITION There exists a unique manifold structure df(p) such
that W5 (p) is an immersed submanifold &f and such that, for every open neigh-
borhoodV C M of p, Wy(p; V') is open inWy(p) with respect to the manifold
topology. Moreover, the following statements hold:

(1) the tangent space dV4(p) at p is equal to the negative eigenspace of
VX(p);

(2) the vector fieldX restricts to a smooth vector field 6#(p);

(3) for z € Wi(p), the maximal integral curve of passing through: equals
the maximal integral curve of |y, ,,y passing through;

(4) pis a hyperbolic singularity ofX |y, (,) whose stable manifold is equal
to Ws(p);

(5) Wi(p) is arc-connected with respect to the manifold topology.

PROOFR Choosell' C M as in the statement of Lemma B.8. ThiBi(p; U)
is an embedded submanifold &f and for allt > 0, sinceF; is a smooth diffeo-
morphism between open subsetsidf it follows that alsoF[l(WS(p; U)) is an
embedded submanifold dff. By (B.12) we see then that(p) is a monotone
union of embedded submanifolds &f. Our strategy now is to use the result of
Exercise B.1 to construct the manifold structure@f(p). First, observe that the
union in (B.12) can be taken oveérc NN, i.e., it can be replaced by a countable
union. Now we show that, fod < ¢t < s, the setFt‘l(WS(p; U)) is open in
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F; 1 (Ws(p; U)). Using (B.9) and (B.11) we compute:

F Y (Wi(psU)) = F7H(We(ps U)) N F7H(Wa(ps U))
= Wi(p; F; 1 (U)) nWa(p; FH(U)) = Wa(ps FHU) N ESHU)).

SinceF; ' (U)NF;(U) is an open neighborhood pfin M contained inF; "' (U),
by Remark B.9, we know that/;(p; F, ' (U) N F;1(U)) = F7 N (Wi(pU)) is
open inF; ! (W(p; U)). So far, we have proven the following facts:

e there exists a manifold structure &#(p) such thatW(p) is an im-
mersed submanifold ¥/ and such that, for al > 0, Wi (p; F, ' (U))
is open inWW(p) with respect to the manifold topology;
e there exists at most one manifold structurdBy(p) such thatV(p) is an
immersed submanifold af/ and such that, for every open neighborhood
V C M of p, Wy(p; V) is open inWy(p) with respect to the manifold
topology.
To complete the proof of the first part of the statement of ttogp@sition, we con-
sider an open neighborhodd C M of p and we show thalVs(p; V') is open in
Ws(p) with respect to the manifold topology. From (B.9) and (B.02) obtain:

(B.16) Wi(p; V) = | Wa(p: V)N Wi (ps F7H(U)) = | Wa(m VN E7H(D)).
t>0 t>0

SinceV N F;'(U) is an open neighborhood ef contained inF; ! (U), by Re-
mark B.9 we obtain thatV(p; V N F; 1 (U)) is open inWy(p; F,(U)). But
Ws(p; F;H(U)) is open inW;(p) with respect to the manifold topology; more-
over, Wy (p; Ft‘l(U)) inherits the same topology frod/ and from the manifold
topology of W (p). This shows thatV(p; V N F; ' (U)) is open inWy(p) with
respect to the manifold topology and hence, by (B.18)(p; V') is also open in
Ws(p) with respect to the manifold topology. This completes treopof the first
part of the statement of the proposition. Moreover, siiéé¢p; U) is an open sub-
manifold of W;(p), statement (1) follows directly from Lemma B.8. We now prove
statements (2)—(5).

Let z € Wy(p) be fixed and denote by : I — M the maximal integral
curve of X with (0) = z. Obviously~(I) is contained inWs(p), but it is not
clear in principle thaty : I — Ws(p) is smooth. We argue as follows; since
lim;— o 7(t) = p, we havey(t) € U for ¢ sufficiently large and thus, given
a bounded subinterval' C I, we can findt > 0 large enough so thaf(I’) is
contained i, ' (W (p; U)). SinceF, ' (Wy(p; U)) is an embedded submanifold
of M and an open submanifold &f(p), we get thaty|; : I’ — W;(p) is smooth.
Sincel’ C I is an arbitrary bounded subinterval, we obtain thatl — W;(p)
is smooth. Observe that, in particulaf(0) = X (x) is in T, Ws(p). We have thus
proven statements (2) and (3) (see Exercise B.4).

To prove statement (4), observe first tha obviously a singularity oX |y, ()
and thatV (X |y, ) (p) is equal to the restriction o X (p) to T,W(p), which is
equal to the negative eigenspaceNaX (p). Thusp is a hyperbolic singularity of
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X|w,(p)- To prove that¥(p) is the stable manifold g with respect taX |y, ),

we have to show that for every € Wi(p), we havelim;_, - Fi(x) = p with
respect to the manifold topologyf Ws(p). We know thatlim;_, o Fi(z) = p
with respect to the topology aff. But F;(z) € Ws(p; U) for t sufficiently large
andW;(p; U) inherits the same topology frod/ and from the manifold topology

of Ws(p). Thuslim;_ . Fi(x) = p with respect to the manifold topology of
Ws(p). This proves statement (4). Finally, now that the continoft¢ — Fj(x)

and the limitlim;_. ; ., F(x) = p have been established with respect to the man-
ifold topology of Ws(p), statement (5) follows using the same argument used in
Remark B.6. O

We now study conditions under which the stable manifold ibedded inM/.

B.11. RRopPosITION The following conditions are equivalent:

(1) Wi(p) is an embedded submanifold &f;

(2) for every open neighborhood C M of p, Wy(p; V) is open inWs(p)
with respect to the induced topology;

(3) every open neighborhood C M of p contains an open neighborhood
Z C M of p such thatWs(p; Z) is open inWs(p) with respect to the
induced topology;

(4) every open neighborhood C M of p contains an open neighborhood
Z C M of p such thatW(p; Z) = Ws(p) N Z;

(5) there exists an open neighborho®dC M of p such thatiWs(p) NV is
an embedded submanifold bf.

PROOF
(1)=(2). SinceWs(p) is an embedded submanifold df, the manifold structure
given toW;(p) by Proposition B.10 must coincide with the one that madké&sép)
embedded inV/. This proves (2).

(2)=(3). Trivial.

(3)=(4). LetV C M be an open neighborhood pf by (3), there exists an open
neighborhoodV,, C V of p such thatW(p; ;) is open inWWy(p) with respect
to the induced topology. Thus, there exists an open suset M such that
Ws(p; Vo) = Ws(p) N V1. ThenVy € M is an open neighborhood pfand it is
easy to see thaV(p; Vo) C Ws(p; Vh); settingZ = V; NV, we obtain:

Ws(p; Z) C Ws(p)NZ =Ws(p) NViNV =Wi(p; Vo) NV
= Ws(p; Vo) € Ws(p; V1) C Wi(p; Z),

which proves thatVs(p; Z) = Wi(p) N Z.

(4)=(5). ChooseU as in the statement of Lemma B.8. By (4), we can find an
open neighborhood& C U of p such thatWy(p; Z) = Ws(p) N Z. ButZ c U
implies thatiW(p; Z) is an embedded submanifold bf .
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(5)=(1). LetV c M be an open neighborhood pfsuch thatiW;(p) N V is an
embedded submanifold @ff. Obviously:

Wilp) = | Ft (Walp) V),
>0
and sincef; is a smooth diffeomorphism between open subsetd/ofwe have
that F; ' (Ws(p) N V) is an embedded submanifold af for all t > 0. But
E7H(Wi(p) N'V) is open inW(p) with respect to thénduced topology(recall
Remark B.5), which proves théits(p) is embedded /. O

We now study the case th@l/, ¢) is a Riemannian manifold and th&t= V f
is the gradient of a smooth map: M — R. As we have already observed, the
fact thatp is a hyperbolic singularity o' means thap is a nondegenerate critical
point of f; moreover,g(VX(p),-) = Hessf,. Our goal is to show that/s(p) is
always embedded if/, if X is a gradient. We start with the following preparatory
lemma.

B.12. LEMMA. If X = V f andp € M is a nondegenerate critical point of
f: M — Rwith f(p) = ¢ € R then, given an open neighborhodtl C M of
p, we can find a smooth chagt : Z — B(0,r; R¥) on the manifoldi¥s(p) with
peZ cCVand
2
fl@) =c—|le@)]

for all 2 € Z. Moreover, fore € |0, 72| we have:
FH[e—e,+oo[) N Wi(p) C Z C V.

In particular, ¢ restricts to a homeomorphism betwegn' ( [c — ¢, +o0[ ) NWs(p)
andBJ0, \/¢; R¥] that carriesf ~!(c — &) N W;(p) to the spheres[0, \/; R¥] (see
Remark B.13 below).

PrROOF We already know (by Proposition B.10) thidf(p) is an immersed
submanifold of M; thus, f restricts to a smooth maﬁ|WS(p) on the manifold
Ws(p). SinceT,Ws(p) is the negative eigenspace lééss f,,, the existence of the
charty in W;(p) follows directly from the Morse Lemma.

Now choose: > 0 with ¢ < 2. We will show that the set:

f_l( [c —¢, +oo[) NWs(p) = f_l([c — E,c]) N Ws(p)
is contained inZ (and hence irV). Chooser € Wy(p) with f(xz) > ¢ — ¢ and
assume by contradiction that¢ Z. Let~ : I — M denote the maximal integral
curve of X such thaty(0) = z. From Proposition B.10 we know that the map
v : I — Wy(p) is continuous whefV;(p) is endowed with the manifold topology
and thatlim,_,; -, v(t) = p also with respect to the manifold topology f;(p).
Thus, fort sufficiently large, we have(t) € Z andf (y(t)) > c—e. Buty(t) € Z
and f(vy(t)) > c—eimply v(t) € ¢~ 1(B(0, y/; R¥)). Sincey(0) = z is not in
¢~ 1(B[0, y/z; R¥]), it follows from the result of Exercise B.5 that there musisex
t > 0with y(t) € Z and|[¢(~(t))|| = e. Thus:

f(r@®) =c—e < f(7(0)),
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contradicting the fact thaf o v is strictly increasing. g

B.13. REMARK. From the proof of Lemma B.12 we know thdtis open in
W(p) with respect to thenanifold topologyand thaty : Z — B(0,r;RF) is a
homeomorphism i¥Z is endowed with thenanifold topologyof Ws(p). However,
in Theorem B.14 below we will see th&t;(p) is embedded inV/ and thus the
manifold topology ofi¥(p) coincides with the induced topology.

We can now prove that the stable manifold is embedded in the algradient
vector fields.

B.14. THEOREM. Let (M, g) be a Riemannian manifold; : M — R be a
smooth map ang € M be a nondegenerate critical point ¢f ThenWs(p, V f)
is a connected embedded submanifoldvbfvhose tangent space atequals the
negative eigenspace of the linear endomorphisrit,dff that representdlessf,
with respect to the inner produg,.

ProoOF We will prove that condition (4) in the statement of Profiosi B.11
holds. LetV € M be an open neighborhood pf Setc = f(p) and choose > 0
as in the statement of Lemma B.12. Settifig= f~!(]c — e, +oc[) NV then,
since f is increasing in the flow lines of f, it is easy to see thdl/s(p; Z) =
Ws(p) N Z. Thus,Ws(p) is an embedded submanifold &f. The other claims in
the statement of the theorem follow from Proposition B.10. O

Our goal now is to give a topological characterization of flloev of a vector
field near a hyperbolic singularity. We need some definitions

B.15. DEFINITION. LetX : M — TM,Y : N — TN be smooth vector
fields on manifolds\/, N, and letf : M — N be a continuous map. We say that
Y is f-relatedto X if f carries the flow ofX to the flow ofY’, i.e., if for every
integral curvey : I — M of X, f o~ is an integral curve oY'. If there exists a
homeomorphisny : M — N such thatt” is f-related toX, we say thatX andY
aretopologically conjugated

A few simple facts concerning the definition above are disedsin Exer-
cise B.6.
Our goal is to prove the following:

B.16. THEOREM (Hartman—Grobman)Let X : M — T M be a smooth vector
field on a manifold\/ and letp € M be a hyperbolic singularity ok'. Then there
exists an open neighborhodd C M of p and an open neighborhoad C T,,M
of the origin such thatX | is topologically conjugated to the (restricted) linear
vector fieldV X (p)|5-

The proof of Theorem B.16 will take some work. We need seyaeliminary
lemmas. To keep the reader motivated throughout the prosespresent below
an outline of the proof.

Sketch of the proof of Theorem B.18sing a local chart aroung, one can obvi-
ously assume that/ is an open subset " and thaip = 0. The flow at timet of
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the linear vector fieldd = dX (0) : R* — R", is given by the linear isomorphism
e!4. SinceA has no purely imaginary eigenvalues, the isomorphiéhas no
eigenvalues on the unit circle for£ 0; isomorphisms with such property will be
called hyperbolic isomorphismsUsing the implicit function theorem on Banach
spaces in a suitable way, we prove that srédHperturbations of a hyperbolic iso-
morphismL : R™ — R™ aretopologically conjugatedn the sense that given two
such perturbationd + ¢1, L + ¢o we can find a homeomorphisin: R" — R"
such thati(L + ¢2)h ™' = L + ¢1; actually,k is shown to be unique is a smalf-
neighborhood of the identity map. We then replace the vdittat X by a global
vector fieldX : R* — R" which equalsX in a small neighborhood of the origin
and equalsA far from the origin;)? is also chosen so that its flow-at-time-one-map
Fy : R" — R"is Cl-close toL = e?. Thus, we know thaf is topologically
conjugated td. by a homeomorphism : R™ — R"™; we then show that actually
carries the entire flow ok to the flowt — et4 of A. SinceX equalsX near the
origin, the proof is completed.

We now give the details of the proof. First, a formal defimitio

B.17. DEFINITION. LetV be a real finite-dimensional vector space. A linear
isomorphismL : V — V is called ahyperbolic isomorphisnif there is no\ <
o(L) with |[A\] = 1. If L : V — V is a hyperbolic isomorphism, we have the
following direct sum decomposition &f into L-invariant subspaces:

V =Vu(L) ® Vs(L),

where:
V(L) = Z (L), Vi(L)= Z VA(L).
Aeo(L) Aeo(L)
[A[>1 [Al<1

We have thus the following:

B.18. LEMMA. If A : R"” — R" is a hyperbolic linear map theh = e is a
hyperbolic isomorphism.

PrROOF Using the Jordan decomposition df(see the proof of Lemma B.2)
itis easy to see that:
o(L) = {e)‘ :A€a(A)}.
The conclusion follows. O

As explained in the sketch of the proof of Theorem B.16, wé ugk the im-
plicit function theorem on Banach spaces to prove that s@iaperturbations of a
hyperbolic isomorphism are topologically conjugated; whkerifying the hypoth-
esis of the implicit function theorem, we will need some $olwbm linear algebra
that are given below.

B.19. LEMMA. Given a linear map. : R” — R™ and a real numbenr with
a > maxye,(ry |A| then there exists a norip- || on R" such that:

IL|I' = sup HL(’U)H/ < a.

llvll’<1
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PROOF LetL = S + N be the Jordan decomposition bf so thatS is semi-
simple, N is nilpotent andSN = NS. Let B : C* — C" be a complex linear
isomorphism such thab = BS®B~! : C* — C" is diagonal (with diagonal
elements inr(L)). Define a norn| - | on C™ by:

l2][© = [|B(2)

where,|| - || denotes the usual Euclidean norm@h. We denote also by - || the
norm onR™ obtained by taking the restriction ¢f- || . One checks easily that:

ISI¢ < 1S°I® = ID| = sup |Al.
Aeo(L)

, xeC"

Now choose > 0 with supy¢,(r) [A| +¢ < a and define the norr- |’ onR" by
setting:

+o0 n—1

1 1
lall = Y IV @[ =X FIN @, = er™
k=0 k=0

If z € R", ||z]|” < 1 we compute:

n—1
NG =Y Z V@] <,
k=1

n—1
1
S@)| =3 = |ISN*@)|¢ < AL
1)l kZ:OEkH @I < swp I
Hence:
IL]" = IS+ N|" < IS|' + [[N]' < sup [Al+¢<a. O
A€o (L)

Let us introduce some notation. Denote @y, (R") the Banach space of all
uniformly continuous bounded maps R"™ — R"™ endowed with the norm:

lullco = sup [Ju(x)[];
xeR™
by C{,(R™) we denote the Banach space of all bounded map®™ — R" of

classC* such thatlu : R* — Lin(IR™) is bounded and uniformly continuous. The
spaceC (R") is endowed with the norm:

|lullcr = sup Hu(m)H + sup Hdu(az)”
zeR" z€RM™
Observe that each € C[ (R") is Lipschitz (and hence uniformly continuous)
becauselu is bounded.

B.20. LEMMA. Let L : R™ — R"™ be a hyperbolic isomorphism. The linear
map:

(B.17) Cgu(]ﬁn) Sur——uoL—Loué€ Cgu(]Rn)

is an isomorphism.
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PROOF. For shortness, we s&! = R (L), R} = RY(L) and we denote
by L., L respectively the linear isomorphismsBf andR} obtained by taking
restrictions ofL. We can write the Banach spacg, (R") as the direct sum of two
closed subspaces as follows:

Cpu(R") = Cp,(R", Ry) & Cp, (R™, RY),
where:
CouR", RY) = {u € Cp,(R") : Im(u) C RY},
CouR", RY) = {u € Ciy(R") : Im(u) C RY'}.
The subspaces? (R", R?), P (R", R?) are invariant by (B.17); thus, the proof
of the lemma will be completed once we show that the maps:
(B.18) CY (R",R") 3 ur— uoL — Lyouc Co, (R",R"),
(B.19) Y (R™,R?) 3 u+— uoL — Lyou e C) (R™, RY),
obtained by taking restrictions of (B.17) are isomorphiskive have:
wolL — Lyou=Lyo(L ' ouolL —u)

and thus, to prove that (B.18) is an isomorphism, it suffiogsrove that

(B.20) CL. (R, R") Sur— L' ouoL —ue CP(R",RY)
is an isomorphism. But (B.20) is a perturbation of the idgrily the map:
(B.21) CY (R"R") > u+—— L' ouoL € CY (R" R");

the idea is to find a norm ofi, (R, R?), equivalent td| - || o, such that the norm
of (B.21) is smaller thari. This will prove that (B.20) (and hence (B.18)) is an
isomorphism. Since(L,) C C is contained in the complement of the unit closed
ball, o(L;') is contained in the open unit ball and thus, by Lemma B.19, ave ¢
find a norm|| - || on R? such that| L !||' < 1. Then, the norm:

)

lullgo = sup [|u(z)]|
zeR"?

onC? (R™,R?) is equivalent t| - ||co and it is easy to see that, with respect to
I| - ”/00' the operator (B.21) has norm smaller thanThe proof that (B.19) is an
isomorphism is similar; one writes:

uoL — Lyou=(u— LyouoL Y)oL,

and then it is possible to choose a nofm||’ on R? such that| L]’ < 1. The
conclusion follows.

We now prove that”!-small perturbations of a hyperbolic isomorphisms are
topologically conjugated.

B.21. LEMMA. Given a hyperbolic isomorphisth : R™ — RR"”, there exists
e > 0andd > 0 with the following property; givew € CL_(R") with ||¢]|c1 < e
there exists a unique € CP_(R™) with ||u o < & and:

(B.22) (Id+wu)o (L+¢) = Lo (Id + u).
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Moreover, for suchy, the mapld 4+ « : R* — R”™ is a homeomorphism.
PrROOF Consider the map:
F : Cpy(B") x Cpy(R") x Cpy(R") — Gy (R"),

given by:

F(¢1,¢2,u) = (Id+u) o (L + ¢1) — (L + ¢2) o (Id + u).
Then (B.22) is equivalent t&'(¢, 0, u) = 0. We can rewriteF’ as:

F(¢1,¢2,u) =d1+uo(L+¢1) — Lou— ¢yo (Id + u).
One can check thdt is continuous and that the different%fgj exists and it is also
continuous; actuall;% is given by:

(G (61, 8, 0] (2) = [v 0 (L+¢1)](2) — (L ow)(w) — dda(a + u(x))v(x),
forall v € CP (R™), z € R™. In particular:
9C(0,0,0)v =voL—Lou,

and thus, by Lemma B.Z(%%(0,0, 0) is an isomorphism. By the version of the
implicit function theorem given in Exercise B.8, we can findd; > 0 such that
for every ¢1, 2 € CL (R"™) with ||¢1]|c1 < e1, [|¢2]lcr < 1, there exists a
uniqueu € CP (R™) with |luljco < 81 and F(¢1, ¢2,u)=0; moreover, the map
(41, d2) — w is continuous. Thus, setting= ‘571 we can choose > 0, € < &1,
such that if||¢1]|c1 < &, ||p2]lcr < &, then the corresponding mapsatisfies
|ullco < . Obviously, givenp € CL_(R™) with ||¢[|c1 < e, there exists a unique
u € CP (R™) such thatullco < § andF(¢,0,u) = 0, i.e., such that (B.22) holds.
It remains to prove thakd + u is a homeomorphism dk". Letv € CJ, (R™) be
the unique map witfjv||co < § andF'(0, ¢, v) = 0. We have:

(B.23) (Id+v)o L =(L+ ¢)o(Id+v).
From (B.22) and (B.23) we get:

(Id+v)o(Id+u)o(L+¢)=(L+ ¢)o(Id+wv)o (Id + u),
(Id4+u)o(Id+wv)o L =Lo (Id 4+ u) o (Id + v);

in other words:
F(¢,6,(Id+v)o(Id+u) —1Id) =0, F(0,0,(Id+ u) o (Id +v) —Id) = 0.
Observe now thatld + v) o (Id + u) — Id € CP, (R™) and that:

|(Id +v) o (Id + u) = 1d|| 5o = ||u+v o (Id +u)]|| o < 26 = b1;

thus, (Id + v) o (Id 4+ u) — Id = 0. Similarly, (Id + ) o (Id 4+ v) —Id = 0 and
thusld + » andId + v are mutually inverse homeomorphisms. O
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B.22. LEMMA. Let X : M — TM be a smooth vector fielgh € M be a
hyperbolic singularity ofX and letZ C M be an open set containing the whole
unstable manifold¥,(p), except possibly fop itself (i.e., W,(p) \ {p} C Z2).
Then there exists a neighborho®d C M of p such that for every: € V, either
x € Ws(p)ort-x € Z for somet > 0.

PrRoOOF By the Theorem of Hartman—Grobman (Theorem B.16) we can find
an open neighborhood C M of p and an open neighborhocfd C T,M of the
origin such thatX |y is topologically conjugated td X (p)|5. Lety : U — U be
a homeomorphism such tha (p)|; is ¢-related toX|y. We setd = dX(p),
(TryM)4 = (T,M)+(A), (T,M)- = (I,M)_(A) and we denote byl , A_ re-
spectively the endomorphisms(@f, M)+, (1,,M) - obtained by taking restrictions
of A. The flow line ofA passing througlfv;,v_) € T,M = (T,M)+ & (T,M)_
att = 0 is given by:

(B.24) R >t (rog, e v) € (T,M); & (T,M)_.
Choose an arbitrary norm @b, and constanta ., A_ € R such that:

max R(A) <A <0< A< min R(A).
Aea(A) Aea(Ay)

By Lemma B.2 we can find a constatit> 1 such that:
et < cemte, et < ce,

forall t > 0. Thus, forv, € (T,M)4,v— € (T,M)_, we have:

(B.25) e up|| < Cem™ oy ]l < Cllog |,
(B.26) e v || < Ce o < Cllv-],
forall ¢ > 0. Chooser > 0 such that:

(B.27) B(0,7; (T,M)+) x B(0,r; (T,M)_) C U.

Choosingr’ > 0 with 7" < & then inequalities (B.25) and (B.26) show that the
closed balB[0, r'; (T, M )] (resp., the closed bal [0, 7'; (T,M)_]) is contained

in the unstable manifold (resp., in the stable manifoldheforigin with respect to
the vector fieldA|;. Thus, by the result of Exercise B.7, we have:

o (B0 (@M)L]) W) 7 (B[05 (1,M)-]) € Wilp):

It follows that the open sep(Z NU) C T,M containsB|0,r'; (T,M)+] \ {0}.
Since the spherg [0, r’; (T,,M )] is compact, we can find > 0 such that:

(B.28) S[0,7'; (T,M)1] x B(0,&; (T,M)_) C p(ZNU).
Now choose’ > 0 with ¢’ <+’ ande’ < &. We claim that:
V = (B(0.7; (T,M)+) x B(0,£; (T,M)-) )

is the neighborhood gb we are looking for. Namely, choose € V' and write
o(z) = (v4,v-) € T,M, so that|jvy| < " and|lv_|| < &'. If vy = 0 then



276 B. HYPERBOLIC SINGULARITIES OF A VECTOR FIELD

o(z)isinB[0,r"; (IT,M)_], so thatr € Wy(p). Now assume that, # 0. By the
choice ofs” and by inequality (B.26) we have:
(B.29) HetA*v_H <,
(B.30) HetA*v_H <eg,

forall ¢ > 0. Also, fort > 0, we have:
_ 1
et ol 2 [le™ 4 [T vl = e ol

sincev,. # 0, we havelimy_. ;o ||+ v || = +0c0. Moreover, sincéjv, || < r/,
there exists > 0 such that||e!4+v, || = r’; denote byty > 0 the least such.
Then:

HetAﬂurH <7 < T,

for ¢ € [0,¢0]; by (B.27) and (B.29), the flow line (B.24) staysihfor ¢ € [0, t].
Thus:

[0,t0] 2t — gp_l(etA+v+,etA*v_) eUCM

is a flow line of X that passes throughatt = 0. Moreover, by (B.28) and (B.30),
we have:

(et0A+v+, etOA*v_) € S[0,7"; (TyM)+] x B(0,&; (T,M)-) C o(ZNU),
so that:
to-x = gp_l(etOA+v+, etoA*v_) ez

This concludes the proof. O

EXERCISEB.1. LetM be a manifold and I&tV;);c; be a family of embedded
submanifolds of\/. Assume that for all, j € I, the setV; N N; is open inN; and
in N;. Assume also that there exists a countable subset/ such that J,.; N; =
U,cs Ni. Then there exists a unique manifold structureMoe= | J,; V; such that
N is an immersed submanifold éff and such that, for all € I, N; is open in
N with respect to the manifold topology. Moreover, for ale I, the manifold
structure thatV; inherits as an open subsetdfis equal to the manifold structure
that makegV,; an embedded submanifold &f .

EXERCISEB.2. LetV be a real vector space endowed with an inner product
(-,-y and denote by - || the corresponding norm. Assume that the complexification
V® of V is endowed with the unique Hermitean product that exténdsand with

1
the corresponding norm given Wy + iy[| = (||z[|* + [ly[?)?, forall z,y € V.
Show that ifA : V — V is a linear map andi® : V¢ — VC denotes the

complexification ofi then||A|| = ||AC|, i.e.:
sup ||A(z)|| = sup HAC(x—i—z'y)H.
xeV z,yeV

flzlI<1 lz+iyll<1



B. HYPERBOLIC SINGULARITIES OF A VECTOR FIELD 277

EXERCISEB.3. LetX : M — T'M be a smooth vector field on a manifald
and letp € M be a singularity ofX. Show that the covariant derivative &f atp
defines a linear endomorphistX (p) of 7,,M that does not depend on the choice
of the connection. Given a local chast: U — U c R™ on M with p € U, show
that the linear map:

VX (p) = dp(p) " o dX (p(p)) o de(p) : TyM — T, M,

does not depend on the choice of the charwhere X (p(z)) = dep, (X (z))
denotes the coordinate representatiotXofShow that both definitions &7 X (p)
given above coincide. Denote By the zero vector of;, M and consider the direct
sum decomposition:

(B.31) Ty,(TM)=Ha®V,
whereV is the vertical space &, andH is the tangent space to the zero section of
TM at0,. If my : To, (TM) — V = T,M denotes the projection with respect to
the decomposition (B.31), show that the linear n\Yaj (p) equals the composite
of my with dX (p) : T,M — Ty, M.

EXERCISEB.4. Let M be a manifold,X : M — TM be a smooth vector

field and N C M be an immersed submanifold. X (z) € T, N for all z € N,
show thatX |y : N — T'N is a smooth vector field oV.

EXERCISEB.5. Let M be a topological manifold and : U — U be a local
chart onM, with U open inM andU open inR”. Let B be a subset of/ such
thato~!(B) is closed inM. Let~ : [a,b] — M be a continuous curve such that
v(a) & ¢ 1(B), v(b) € U and such tha(y(b)) is in the interior of B in R".
Show that there existse ]a, b[ such thaty(t) € U andy(y(t)) is in the boundary
of Bin R™.

EXERCISEB.6. LetM, N be manifolds,X : M — TM,Y : N — TN be
smooth vector fields anfl : M — N be a continuous map.

o if fis of classC! thenY is f-related toX if and only if d f, (X (z)) =
Y (f(x)) forall z € M;

e if fis a homeomorphism ard is f-related toX thenX is f~!-related
to Y. Moreover, ify : I — M is amaximalintegral curve ofX then
f o~ is also a maximal integral curve of;

e “topological conjugacy” is an equivalence relation on thess of smooth
vector fields on manifolds.

EXERCISEB.7. LetM, N be manifolds,X : M — TM,Y : N — TN be
smooth vector fields anfl: M — N be a continuous map such thats f-related
to X. Show that:

e f carries singularities ok to singularities ofY;

e if p € M is a hyperbolic singularity ok and f(p) is a hyperbolic sin-
gularity of Y then f (W (p, X)) € Wi(f(p),Y) and f(Wy(p, X)) C
Wa(f(p),Y). If fis a homeomorphism conclude thafWs(p, X)) =
Ws(f(p),y) andf(Wu(an)) = Wu(f(p)7y)'
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EXERCISEB.8. Prove the following version of the implicit functiongbrem.
Let F;, i = 1,2, 3, be Banach spaces and jet U; x Uy, — FE3 be a continuous
map defined on an open subggtx Uy C E1 x Es. Let(xq,yo) € Uy x Uz be fixed
and sety = f(zo,yo). Assume that for every € Uy, the mapf(z,-) : Us — E3
is differentiable and thag—g : Uy x Uy — Lin(Fs, E3) is continuous. Then, if

2—5(9607 yo) : B2 — Ej3is anisomorphism, we can find, ro > 0 and a continuous
map:
o : B(xzo,r1; E1) — B(yo,re; E2)

such thalB(l’o, r1; El) c Uy, B(yo, 79; Eg) C Uy and:
(B(I‘Q,Tl; El) X B(yo,rg; Eg)) N f_l(ZO) = GI‘(O’).
In other words, for every € U; with ||z — x¢|| < r1, there exists a unique € Us

with ||y — yol| < 72 and f(z,y) = zp; moreover, the map — y = o(z) is
continuous.



APPENDIX C

The Morse—Smale Condition

279






APPENDIX D

Floer Homology

281






APPENDIX E

Tightness & Tautness

An important step in the development of the theory initiatéth the Chern-
Lashof theorem (see Section 3.4 in this book 88]] was the reformulation of
the point of view in terms of critical point theory by Kuipdi79]). He showed
that for a given compact smodtmanifold M/, the infimum of the total absolute
curvaturer(f) over all immersions of\/ into all Euclidean spaces is the Morse
numbery(M ), which is defined as the minimum number of critical points atahi
any Morse function can possess (see alst?[ 16Q). Moreover, this lower bound
is attained if and only if every Morse height function in theldent space has
~(M) critical points onM. Such an immersiorf is said to haveminimum total
absolute curvature

Further development and reformulation came with the intotion by Kuiper
in [83] of a concept of generalized convexity in terms of intenesad with half-
spaces and injectivity of induced maps on homology. Note it designation
“tight” in this context was first used by Banchoff if][in conjunction with his
introduction of the two-piece property. An immersigrof a compact manifold/
into an Euclidean space is said totight with respect to the field of coefficients
(or, for short,F'-tight) if the induced homomorphism

(E.1) H.(f~'H; F) — H.(M; F)

in singular homology is injective for almost every closedf4space’{ in the am-
bient Euclidean space, whereAss said to have théwo-piece propertfTPP) if
f~'H is connected for every closed half-spdgen the ambient Euclidean space.
It can be easily shown that in both of these definitions we rwdy to consider
half-spacesH which are defined by height functions that restrict to Monsecf
tions on)M. Plainly, then, we see that every tight immersion has the TtRalso
interesting to notice that these properties are invariadeuprojective transforma-
tions, in the sense that one adds a hyperplane at infinity ansiaders images of
submanifolds under projective transformations that donmegt the hyperplane at
infinity.

An equivalent definition off-tightness for an immersioli : M — R™ is
requiring that every height functiol (z) = (f(x),§), + € M, which is a Morse
function has the property that its number of critical poistequal to the sum of the
Betti numbers of\/ relative toF", i. e. h¢ is F'-perfectLikewise, the TPP forf is

Iin spite of the fact that there is an interesting theory obtogical and polyhedral tight & taut
immersions (see’B, 83), we shall restrict our discussion to smooth immersions.
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equivalent to the requirement that every height functipavhich is a Morse func-
tion has exactly one maximum and one minimumadn) It follows that aF'-tight
immersion of a compact manifold has minimum total absoluteature, since to-
tal absolute curvature is the mean number of critical papftseight functions on
M. Note that in this case we also have that the Morse numbgf) equals the
sum of the Betti numbers di/ relative toF'. Hence, we see that the conceptdof
tightness and minimum total absolute curvature are eqmvdbr immersions of
manifolds satisfying the condition that A/) equals the sum of the Betti numbers
of M relative toF, but there are examples of manifolds immersed with minimal
total absolute curvature where this condition does not (ede B6] for the case
whereF' = 7).

An important observation of Kuiper regarding the codimensif substantial
tight immersions into Euclidean spaces appeared alreduly first papersq9, 82
on the subject: a substantial immersigrof a compact:-dimensional manifold
that satisfies the TPP admits a point where the second dsguttace coincides
with the ambient space. Here the second osculating spageabp is the affine
space spanned by the first and second partial derivativésabf. Counting these
derivatives shows that the dimension of the second osnglapace can be at most
sn(n+3). Therefore the codimension of the immersion can be at gt + 1).

The Veronese embedding of the real projective sgaé®" is tight in R>"n+3)
showing that this estimate is optimal.

In the case of surfaces, tightness, minimum total absoluteature and the
TPP are all equivalent concepts. Therefore, as observeBbjnthe tightly em-
bedded compact oriented surfacedRif are precisely the oriented surfacesRA
with the property that points of positive Gauss curvatueedin the boundary of
the convex hull of the surface. As to non orientable surfaaktshese admit tight
immersions intaR?, but the projective plane, the Klein bottle and the projecti
plane with one handle which are prohibited; these resulte weved by Kuiper
in [80, 81], except for the case of the projective plane with one handiiieh was
solved much later by Haab (seg5]).

The easiest examples of tight surfaceRihare the tori given by products of
two convex curves and the stereographic projection of thendgse embedding of
the projective plane ir5* to R*. Otherwise, all compact orientable surfaces ad-
mit substantial tight immersions infA* (see B4]) but the two-sphere, which is
prohibited by the Chern-Lashof theorem. The non orientabiéaces with the ex-
ception of the Klein bottle were claimed also to admit sucmiensions by Kuiper
in [84, 83, although he did not give concrete examples (see &83p pp. 80-81).
The case of the Klein bottle is still open.

The highest dimension of an Euclidean space into which asartan be sub-
stantially and tightly embedded is five. Kuiper proved &3][one of the most re-
markable facts in the theory, namely that a substantiat tighnersion of a surface
in R® is projectively equivalent to the Veronese embedding ofréa projective

2An immersionf : M — R™ is calledsubstantialif its image does not lie in any affine
hyperplane oflR™.
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plane. This result was generalized by Little and Poh8#®j fvho proved that a sub-
stantial tight immersion of a compagtdimensional manifold intd 3"("*+3) that
satisfies the TPP is projectively equivalent to the Veroreabedding of the real
projective spacd& P". We remark that the standard embeddings of the other pro-
jective spaces (complex, quaternionic and octonionicée tight, namelyt’ P"
embeds substantially and tightly in/™ for m = n + d%, whereF = R,
C, H, O andd = dimp F (recall thatOP" is defined only forn = 2). Fur-
ther generalizations of these results were given for tigithersions of compact
2k-dimensional manifolds that afé — 1)-connected but not-connectedighly
connected manifoldissee for exampledd, 85, 153 More examples of tight im-
mersions will be given below when we discuss taut immersions

The beginnings of the study of taut immersions can be tracett kb Ban-
choff’'s paper 8] where he attempted to classify tight surfaces which lie Bua
clidean spheré™ c R™*!. Since a hyperplane IR™*! intersectsS™ in a great
or small(m — 1)-sphere, the usual TPP is equivalent to the TPP with respect t
hyperspheres i8™ for a spherical immersion. This problem is in turn equivélen
via stereographic projection to the study of surface®Rih which have the TPP
with respect to hyperspheres and hyperplanes, i. esgherical two-piece prop-
erty (STPP). It turns out that a compact surfacdRif that satisfies the STPP is
either around sphere or a cyclide of Dupin (& fthe latter can all be constructed
as the image of a torus of revolution under a Mobius tramsé&tion, where one has
to permit that the axis of revolution can meet the generatirgie>.

It is easily seen that the STPP for an immersfonM — R™ is equivalent to
the requirement that every Morse distance funcigtw) = |f(z) — ¢|?, ¢ € R™,
have exactly one maximum and one minimumMdn Carter and West generalized
the STPP in 26] and defined an immersiofi of a compact manifold to btaut
with respect to the field’ (or F'-taut, for short) if every Morse distance function
L, has the minimum number of critical points allowed by the Moirsequalities
with respect taF'. It follows from this definition that a taut immersighmust be
an embedding, for if is was double point in the image then the distance function
L, would have two minima and one could then pertyrlif necessary, in order to
obtain a Morse distance function with two local minima. Mwmrer, as was done
for tightness, one sees that a submanifdldC R™ is F'-taut if and only if the
induced homomorphism

(E.2) H,(M N B;F) — H.(M;F)

in singular homology is injective for almost every closed lain R™. It is then
clear that tautness is conformally invariant. Since angrsgction of a closed ball
in R™ with S~ can also be given as the intersection of some closed hatespa
with S™~1 it also follows that a tight spherical immersion is taut.rthermore,
one sees that a taut submanifdid is tight, because for any half-spatédefined

3The cyclides were introduced by Dupin ] as the envelope of the family of spheres tangent
to three fixed spheres. The characterization of the cyctidesed above is due to Mannheim, see the
account in 88].
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by a Morse height function one can construct a closed®ailich thath\/ NH is a
strong deformation retract ¢/ N B.

We next give some examples of tautly embedded submanifdlds.Clifford
tori S™(ry) x .-+ x S (ry) C S™*Fk(1) wherer? + ... +rf = 1, and
the standard embeddings of the projective spdcBs, F' = R, C, H, O are taut,
since these are tight spherical embeddings. In the casdefesp a substantial taut
embedding of a sphere must be spherical and of codimensmnifact, such an
f 8™ — R™is tight, whencen = n + 1 and f(S™) is a convex hypersurface
by the Chern-Lashof theorem. Now stereographic projeati@ps f(S™) into a
taut submanifold ofR”*+2 which cannot be substantial, again by the Chern-Lashof
theorem. Therefore, we see thdtS™) is spherical. IfM is ann-dimensional taut
hypersurface ifR™*! which has the same integral homology.&sx S™~*, then
Cecil and Ryan proved in3fl] that M has precisely two principal curvatures at
each point and that the principal curvatures are constangahe corresponding
curvature distributions. They called such hypersurfacespact or not, cyclides
of Dupin. This generalizes the two-dimensional cyclides.

A very rich class of examples of tautly embedded submarsfaddgiven by
the generalized (real) flag manifolds. Bott and Samelsawdoiced in R1] (see
also [1L€]) the concept of variational completeness for isometrimugractions.

Roughly speaking, the action of a compact connected Liemooa complete
Riemannian manifold isariationally completéf it produces enough Jacobi fields
along geodesics to determine the multiplicities of focahfmto the orbits. They
proved that the orbits of variationally complete linearresentations are tautly
embedded with respect #, coefficients, and that the isotropy representations of
symmetric spaces are variationally complete. As a conseg,e¢he orbits of the
isotropy representations of the symmetric spaces, whiehatedgeneralized flag
manifolds(or R-spaces although this now seems to be an older terminology),
are allZ,-taut submanifolds. It is very interesting to remark, ppshawing to
the fact that Bott and Samelson neither state their resusumterminology nor
mention total absolute curvature, how far their result mayehgone unnoticed in
this context, as Takeuchi and Kobayashi reproved it latdependently in147).
On another note, a characterization of 8y@nmetricgeneralized flag manifolds
was given by Ferus indb] who showed these to be the only compact extrinsically
symmetric submanifolds of Euclidean space. He also ussdtharacterization to
give another, elegant proof of the tautness of these sulbotdsi

The generalized flag manifolds are homogeneous examplasbafanifolds
which belong to another very important, more general clasalamanifolds, called
isoparametric submanifolds. The theory of isoparameypehsurfaces has a long
story that goes way back but that can be said to hae i@artan the first one of
its main contributors (see the survedsff]). An isoparametric hypersurfaci a
simply-connected real space form is a hypersurface witlsteom principal curva-
tures. In the course of his work on the subject, Cartan ndtibat isoparametric
hypersurfaces in spheres are a much more rich and difficigcbbf study than
its counterparts in Euclidean and hyperbolic spaces. If) tatil today there is
no complete classification of them. The subject seems to bese forgotten for
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over thirty years after Cartan, when Minzner (see al€9]j wrote the two very
influential papers305, 106§. Using his results, Cecil and Ryan observed3a][
that isoparametric hypersurfaces and their focal marsfale taut.

In the eighties, some generalizations of the concept ofisopetric hypersur-
face to higher codimensions were proposed, but the todaynmony accepted one
seems to have been first given by Harle6d][(see also Carter and We&1, 23
and Terng 148]). An isoparametric submanifoldf a simply-connected space form
is a submanifold whose normal bundle is flat and such thatevery locally de-
fined parallel normal vector field, the eigenvalues of theasgonding Weingarten
operator are constant. Examples of inhomogeneous isopéiatypersurfaces in
spheres were constructed itil@, 113 and, more systematically, idf]. In con-
trast, Thorbergsson proved ihg5 the striking result that a compact irreducible
isoparametric submanifold of substantial codimensiomtgrethan or equal t® in
an Euclidean space is homogeneous (8€e 11Q for other proofs of this fact),
and then it follows from 11§ that it must be a generalized flag manifold. Hsiang,
Palais and Terng studied 4] the topology of isoparametric submanifolds and
proved, among other things, that they and their focal sulifislda are taut. This
result also follows from the work of Thorbergsson Ibf]. Both in [74] and [152
the method to prove tautness is to use curvature sphereastrect explicit cycles
that represent a basis for tdg-homology, which can be viewed as a generalization
of the method of Bott and Samelson to show that the geneddliag manifolds are
taut.

Another related class of submanifolds are the Dupin hypkrses. Pinkall
introduced this class inBQ (see also 131]) as a simultaneous generalization of
the cyclides of Dupin referred to above and of isoparamdiyjgersurfaces. Let
M be an immersed hypersurface in a real space fornsuature surfacef M
is a smooth submanifold such that for every € M the tangent spacg,S is
a maximal eigenspace of the Weingarten operatav/oft x. We say thatV/ is a
Dupin hypersurfacéf a continuous principal curvature function dd is constant
along the corresponding curvature surfaced/&f If in addition the multiplicities
of the principal curvatures are constant &h we say thatM is aproper Dupin
hypersurface ike tautness, the Dupin and proper Dupin conditions arariamt
under Mobius transformations and under stereographiegion.

It follows from the Codazzi equation that if the dimensionacfurvature sur-
face S of an arbitrary hypersurface is greater than one, then tineegmonding
principal curvature is constant gfiand S is an open subset of an umbilical sub-
manifold of the space form of dimension equal to the multipti of the principal
curvature. Since the definition of Dupin does not insist anetkistenceof curva-
ture surfaces, one has only to check whether each principahture is constant
along each of its lines of curvature in order to verify the Dugondition.

The natural framework for the study of Dupin hypersurfacekié sphere ge-
ometry (see9, 131), which is a contact geometry and was introduced by Lie.
One reason for introducing Lie sphere geometry is that dlphhgpersurface to a
Dupin hypersurface is also Dupin in some sense, even if it desglop singular-
ities. This situation is similar to the singularities of tbyclides. It turns out that
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the Dupin and proper Dupin conditions are invariant undergitoup of Lie sphere
transformations, which is generated by the Mobius transédions and the paral-
lel transformations. Obviously, the image of an isoparaimétypersurface irb™
under stereographic projection from a point not in the hypdace is a compact
proper Dupin hypersurface embeddedRift. Similarly, the image of isoparametric
hypersurface irt"™ under a Lie sphere transformation $f* is a compact proper
Dupin hypersurface embeddedsfi*, but not all compact proper Dupin hypersur-
faces embedded ifi"™ are obtained this way as the examplesli8d, 10Q show.

Thorbergsson showed ia%2] that a complete proper Dupin hypersurface em-
bedded inR™ is taut. Pinkall 132 and Miyaoka P9] then independently showed
that a taut hypersurface is Dupin (not necessarily progdore generally, a tube
around a taut submanifold is Dupin.

There is a very interesting theorem by Ozawhkl@) which states that the
set of critical points of a distance function of a taut subiftdsh decomposes into
critical submanifolds which are nondegenerate in the sefidgott. As a first
application, we see that the injectivity of the homomorphi&.2) holds forevery
closed ballB in the ambient space if the manifolt! is tautly embedded. As
another application, one sees rather easily that the sshofdDupin hypersurfaces
given by the the taut hypersurfaces admit curvature swsféw®ugh any given
point and any given maximal eigenspace of the Weingarteratqreat that point.
To this day it remains a difficult problem to establish whethecompact Dupin
hypersurface admitting existence of curvature surfacedage needs to be taut.

Most of the examples of taut embeddings known are homogenspaces.
In [154] Thorbergsson posed some questions regarding the prolfl@rhich ho-
mogeneous spaces admit taut embeddings and derived soessalgctopologi-
cal conditions for the existence of a taut embedding whittwald him to con-
clude that certain homogeneous spaces cannot be tautlydeetbésee als®p]),
among others the lens spaces distinct from the real pregesgiace. Olmos showed
in [11]] that a compact homogeneous submanifold embedded in Eadidpace
with a flat normal bundle is a generalized flag manifold. Maryofs have been
given of the tautness of special cases of generalized flagfoigswhere the ar-
guments are easier. No new examples of taut embeddings aidesraous spaces
besides the generalized flag manifolds were known until Gskioand Thorbergs-
son classified ing1] the irreducible representations of compact Lie group®fll
whose orbits are tautly embedded. It turns out that thei@ilzason includes three
new representations which are not isotropy representatidrsymmetric spaces,
thereby supplying many new examples @f,({) tautly embedded homogeneous
spaces. In§2] Gorodski and Thorbergsson provided another proof of Zhe
tautness of those orbits by adapting the construction ofcttodbes of Bott and
Samelson to that case. It is interesting to remark that those representations
coincide precisely with the representations of cohomoiieribree of the com-
pact Lie groups which are not orbit-equivalent to the ismjroepresentation of a
symmetric space.
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Tautness was generalized to immersions into arbitrary ¢eeiRiemannian
manifolds by Grove and Halpering4]) and, independently, by Terng and Thor-
bergsson (50), and it follows from the work of Bott and Samelson that tstof
variationally complete actions are taut. L®tbe a complete Riemannian mani-
fold. A proper immersiorp : M — N is said to beaut if the energy functional
E, : P(N,¢ x p) — R is a perfect Morse function for evegy € N that is
not a focal point ofA/, whereP(NN, ¢ x p) denotes the space of paiig ) such
thatq € M andy a H!-pathy : [0,1] — N such that(y(0),v(1)) = (é(q),p).

In [15Q it is proved that a taut immersion is an embedding if the eaisgsimply-

connected, and an analogue of Ozawa’s theorem is stated@ratp The question
of the tautness of a distance sphere is discussed and shderetquivalent to the
tautness of its center. All points in a compact symmetricepe easily seen to
be taut, but the question of the existence of other simphnreoted compact Rie-
mannian manifolds all of whose points are taut is still opesht@rns out to be more
general than the Blaschke conjecture (s for a discussion of this conjecture).

This short account about the development of the the theorjgbf & taut
immersions has presented only a partial selection of topiosa wider discussion
and more details the reader is referred to the excellenegarfd0, 156, 157 and
monograph33], and to the references therein.






Bibliography

[1] A. AbbondandoloA New Cohomology for the Morse Theory of Strongly Indefinitedtionals
on Hilbert SpacesTop. Math. Nonlin. Anal9 (1997), 325-382.
[2] A. Abbondandolo,Morse Theory for Asymptotically Linear Hamiltonian Systehtonlinear
Anal. TMA 39(2000), 997-1049.
[3] A. Abbondandolo,Morse theory for Hamiltonian systeimBitman Research Notes in Mathe-
matics 425, CRC, London, 2001.
[4] A. Abbondandolo, P. MejetMorse Homology on Hilbert SpaceSommun. Pure Appl. Math.
54 (2001), 689-760.
[5] A.A.Agrachey, A. V. Sarychevibnormal sub-Riemannian Geodesics: Morse Index and Rigid-
ity, Ann. Inst. Henri Poincar&3, n. 6 (1996), 635-690.
[6] V. I. Arnol'd, Characteristic Class Entering in Quantization ConditipRsinct. Anal. Appl.1
(1967), 1-13.
[7] T.F. Banchoff. Tightly embeddeztdimensional polyhedral manifolddmer. J. Math.87:462—
472, 1965.
[8] T. F. Banchoff. The spherical two-piece property andhtigurfaces in sphered. Differential
Geom, 4:193-205, 1970.
[9] J. K. Beem,Conformal Changes and Geodesic Completen€ssnm. Math. Phys49 (1976),
179-186.
[10] J. K. Beem, H. Busemarxiom for Indefinite MetricsCir. Mat. Palermd.5 (1966), 223-246.
[11] J. K. Beem, P. E. Ehrlich, K. L. Easleglobal Lorentzian Geometry2nd Edition, Marcel
Dekker, Inc., New York and Basel, 1996.
[12] J. K. Beem, P. E. ParkeBRseudoconvexity and Geodesic Connectednése. Mat. Pura e
Applicatal55,No. 4, 1989, 137-142.
[13] V. Benci,A New Approach to Morse—Conley Theory and Some Applicathms. Mat. Pura e
Appl. 158(1991), 231-305.
[14] V. Benci, D. Fortunato, F. Giannor@n the Existence of Infinitely Many Geodesics on Space-
Time Manifolds Ann. Inst. Henri Poincaré, Analyse Nonlinéaig«,1991), 79-102.
[15] A. BesseManifolds all of whose geodesics are closedlume 93 ofErgeb. Math. lhrer Grez.
Springer, Berlin, 1978.
[16] R. Bott. An application of the Morse theory to the toppjoof Lie groups.Bull. Soc. Math.
France 84:251-281, 1956.
[17] R. Bott, Lectures on Morse Theory, Old and NeBull. Amer. Math. Soc7, No. 2 (1982),
331-358.
[18] R. Bott, The Periodicity Theorem for the Classical Groupgsn. of Math. (2)70 2 (1959),
179-203.
[19] R. Bott, On the lteration of Closed Geodesics and the Sturm Intemsedtheorem Commun.
Pure Appl. Marth9 (1956), 171-206.
[20] R. Bott,Morse Theory Indomitablénst. Haute€tudes Sci. Publ. Mat68 (1988), 99-114.
[21] R. Bott and H. Samelson. Applications of the theory ofrs®to symmetric space8mer. J.
Math,, 80:964-1029, 1958. Correction in Amer. J. Ma&&B.(1961), 207-208.
[22] H. Brezis,Analyse FonctionelleMasson, Paris, 1983.

291



292 BIBLIOGRAPHY

[23] A. M. Candela, M. Sanchegeodesic Connectedness in Godel Type Space-TifesGeom.
Appl. 12 (2000), 105-120.

[24] M. do CarmoRiemannian GeometrBirkhauser, Boston, 1992.

[25] M. do Carmo, E. L. LimaJmmersions of Manifolds with Non-Negative Sectional Cture
Bol. Soc. Bras. Mat2, vol. 2 (1971), 9-22.

[26] S. Carter and A. West. Tight and taut immersidisc. London. Math. Soc25:701-720, 1972.

[27] S. Carter and A. West. Generalised Cartan polynomialsondon. Math. Soc32:305-316,
1985.

[28] S. Carter and A. West. Isoparametric systems and toansality. Proc. London. Math. Soc.
51:520-542, 1985.

[29] T. E. Cecil.Lie sphere geometryniversitext. Springer, New York, 1992.

[30] T. E. Cecil. Taut and Dupin submanifolds. In T. E. Ryam & -S. Chern, editorgight and
Taut SubmanifoldsMath. Sci. Res. Inst. Publ. 32, pages 135-180. Cambridgeetsity Press,
1997.

[31] T. E. Cecil and P. J. Ryan. Focal sets, taut embeddindgtencyclides of DupinMath. Ann,
236:177-190, 1978.

[32] T. E. Cecil and P. J. RyafTight spherical embeddingpages 94-104. Number 838 in Lecture
Notes in Math. Springer-Verlag, 1981.

[33] T. E. Cecil and P. J. RyafTight and Taut Immersions of Manifolddumber 107 in Research
Notes in Mathematics. Pitman, 1985.

[34] K. C. ChangInfinite Dimensional Morse Theory and Multiple Solution®Blems Birkauser,
Basel, 1993.

[35] S. S. Chern and R. Lashof. On the total curvature of ins@eérmanifoldsAmer. J. Math.
79:306-318, 1957.

[36] S. S. Chern and R. Lashof. On the total curvature of ins@@manifolds [IMichigan Math.
J., 5:5-12, 1958.

[37] E. A. Coddington, N. LevinsorT heory of Ordinary Differential EquationdcGraw—Hill Book
Company, New York, Toronto, London, 1955.

[38] C. Conley, E. ZehnderfThe Birkhoff-Lewis Fixed Point Theorem and a Conjecture .of. V
Arnold, Invent. Math.73 (1983), 33—49.

[39] A. Dold, Lectures on Algebraic Topolog$econd Edition, Springer—\Verlag, Berlin, Heidelberg,
New York, 1980.

[40] J. J. DuistermaatOn the Morse Index in Variational Calculu8dv. in Math.21 (1976), 173—
195.

[41] C. Dupin.Applications de géomeétrie et de méchanidearis, 1822.

[42] H. M. Edwards A Generalized Sturm Theorednn. of Math.80 (1964), 22-57.

[43] P. E. Ehrlich, S. KimA Focal Index Theorem for Null GeodesidsGeom. Phys, n. 4 (1989),
657-670.

[44] 1. Ekeland,An Index Theory for Periodic Solutions of Convex Hamiltoan&stemsProc. of
Symposia in Pure Math. vol. 45 (1986), Part |, 395-423.

[45] D. Ferus. The tightness of extrinsic symmetric subrftdelé. Math. Z, 181:563-565, 1982.

[46] D. Ferus, H. Karcher, and H. F. Muenzner. Cliffordalggrband neue isoparametrische Hyper-
flaechenMath. Z, 177:479-502, 1981.

[47] A. Floer,An Instanton Invariant foB-Manifolds Commun. Math. Phy<.18(1988), 215-240.

[48] A. Floer,Symplectic Fixed Points and Holomorphic Sphe@smmun. Math. Phy4.20(1989),
215-240.

[49] A. Floer, Witten’s Complex and Infinite Dimensional Morse ThedryDiff. Geom.30 (1989),
207-221.

[50] A. Floer, A Relative Morse Index for the Symplectic Acti@ommun. Pure Appl. Mattd1
(1988), 393-407.

[51] A. Floer, The Unregularized Gradient Flow of the Symplectic Acti@@mmun. Pure Appl.
Math. 41 (1988), 775-813.

[52] D. B. Fuks,Maslov-Arnol'd Characteristic ClassgSoviet Math. Dokl 9, n. 1 (1968), 96—99.



BIBLIOGRAPHY 293

[53] R. Giamb6, F. Giannoni, P. Picciortexistence, Multiplicity and Regularity for sub-Riemarmia
Geodesics by Variational Methadsreprint 1999.

[54] F. Giannoni, A. Masiello, P. Piccione, D. Tausk,Generalized Index Theorem for Morse—
Sturm Systems and Applications to semi-Riemannian Gegmpteprint 1999, I(ANL
mat h. DG 9908056), to appear in the Asian Journal of Mathematics.

[55] F. Giannoni, A. Masiello, P. Piccion&, Morse Theory for Massive Particles and Photons by
Fermat Principles in General Relativityournal of Geometry and Physi8s, vol. 1 (2000),
1-35.

[56] F. Giannoni, A. Masiello, P. Piccionéd Morse Theory for Light Rays in Stably Causal
Lorentzian ManifoldsAnnales de I'Institut H. Poincaré - Physique Theorig@eno. 4 (1998),
p. 359-412.

[57] F. Giannoni, P. Piccionén Intrinsic Approach to the Geodesical ConnectednessatioBary
Lorentzian ManifoldsCommunications in Analysis and Geomefryn. 1 (1999), p. 157-197.

[58] F. Giannoni, P. Piccionéin Existence Theory for Relativistic BrachistochronestatiGnary
Spacetimes]). Math. Phys39(1998), vol. 11, 6137-6152.

[59] F. Giannoni, P. Piccione, R. Sampalmietin the Geodesical Connectedness for a Class of
Semi-Riemannian Manifoldgournal of Mathematical Analysis and Applicatia2is2 (2000),
no. 1, 444-476.

[60] F. Giannoni, P. Piccione, J. A. Verderesi Approach to the Relativistic Brachistochrone Prob-
lem by sub—Riemannian GeometlyMath. Phys38, n. 12 (1997), 6367—6381.

[61] C. Gorodski and G. Thorbergsson. Representations mfpeat Lie groups and the osculating
spaces of their orbits. preprint, Univ. of Cologne, 2000.

[62] C. Gorodski and G. Thorbergsson. Cycles of Bott-Saarelype for taut representations.
preprint, Univ. of Cologne, 2001.

[63] D. Gromoll, W. Meyer,Periodic geodesics on compact riemannian manifoldDifferential
Geometry3 (1969), 493-510.

[64] K. Grove and S. Halperin. Elliptic isometries, conditi (C) and proper mapgrch. Math.
(Basel) 56:288-299, 1991.

[65] F. Haab. Immersions tendues de surfaces dzh<omment. Math. Hely67:182—-202, 1992.

[66] U. HamenstadtSome Regularity Theorems for Carnot—Carathéodory MgtdcDiff. Geom.
32(1990), 819-850.

[67] C. E. Harle. Isoparametric families of submanifolBsl. Soc. Brasil. Mat.13:35-48, 1982.

[68] S. W. Hawking, G. F. EllisThe Large Scale Structure of Spacetj@ambridge Univ. Press,
London, New York, 1973.

[69] J. Hebda. The possible cohomology ring of certain tygfetmut submanifoldsNagoya Math.
J, 111:85-97, 1988.

[70] E. Heintze and X. Liu. Homogeneity of infinite-dimensa isoparametric submanifoldann.
Math., 149:149-181, 1999.

[71] A. D. Helfer, Conjugate Points on Spacelike Geodesics or Pseudo-SglfrAtorse-Sturm-
Liouville SystemsPacific J. Math164, n. 2 (1994), 321-340.

[72] A.D. Helfer,Conjugate Points and Higher Arnol'd-Maslov Class€sntemporary Mathemat-
ics vol. 170 (1994), 135-147.

[73] M. W. Hirsch, Differential Topology Springer—Verlag, 1976.

[74] W.-Y. Hsiang, R. S. Palais, and C.-L. Terng. The topglad isoparametric submanifolds.
Differential Geom,.27:423-460, 1988.

[75] N. Jacobson, Basic Algebra |, second edition, W. H. Frae and Co., New York, 1985.

[76] 1. Kishimoto, The Morse Index Theorem for Carnot—Carathéodory Spade$lath. Kyoto
Univ. 38, 2 (1998), 287-293.

[77] S. Kobayashi, K. Nomizuroundations of Differential Geometryol. 2, Interscience, J. Wiley,
1969.

[78] W. Kuehnel.Tight polyhedral submanifolds and tight triangulation®lume 1612 of_ecture
Notes in MathSpringer, 1995.



294 BIBLIOGRAPHY

[79] N. H. Kuiper. Immersions with minimal total absolutereature. InColl. de géomeétrie diff.
pages 75-88. Centre Belge de Recherches Math., Bruxedigs, 1

[80] N. H. Kuiper. On surfaces in euclidean three-sp&udl. Soc. Math. Belg12:5-22, 1960.

[81] N. H. Kuiper. Convex immersions of closed surfacesiifi Nonorientable closed surfaces in
E? with total minimal absolute Gauss-curvatuBmment. Math. Hely35:85-92, 1961.

[82] N. H. Kuiper. Sur les immersions a courbure totale miaie. In Séminaire de Topologie et
Géometrie Différentielle C. Ereshmann, Pariolume Il. 1961. Recueil d'exposés faits en
1958-1959-1960.

[83] N. H. Kuiper. On convex mapdlieuw Archief voor Wisk10:147-164, 1962.

[84] N. H. Kuiper. Minimal total absolute curvature for imnséons.Invent. Math, 10:209-238,
1970.

[85] N. H. Kuiper. Tight embeddings and maps. submanifolidgemmetrical class three iB". In
The Chern Symposium 19%®ages 97-145. Springer-Verlag, 1980.

[86] N. H. Kuiper and W. Meeks lll. Total curvature for knattsurfaceslnvent. Math, 77:25-69,
1984.

[87] S. Lang,Differential Manifolds Springer-Verlag, Berlin, 1985.

[88] R. v. Lilienthal. Besondere Flaechewolume Il of Enzyklopaedie der Math. Wissenschaften
chapter 3. Geometrie. Teubner, Leipzig, 1902—-1927.

[89] J. A. Little and W. F. Pohl. On tight immersions of maxin@dimension.Invent. Math,
13:179-204, 1971.

[90] Chun-gen Liu, Y. Longlteration inequalities of the Maslov-type index theoryjhdpplications
J. Differential Equation465(2000), no. 2, 355-376.

[91] W. Liu, H. J. Sussmanrghortest Paths for Sub-Riemannian Metrics on RariBistribution,
Memoirs AMS564 vol. 118, 1995.

[92] Y. Long, Precise iteration formulae of the Maslov-type index theang ellipticity of closed
characteristics Adv. Math.154(2000), no. 1, 76-131.

[93] Y. Long, X. Xu, Periodic solutions for a class of nonautonomous HamiltarsgstemsNon-
linear Anal.41(2000), no. 3-4, Ser. A: Theory Methods, 455-463.

[94] A. Marino, G. Prodi,Metodi Perturbativi nella Teoria di MorseBoll. Un. Mat. Ital. (4) 11
(2975), no. 3, suppl., 1-32.

[95] A. Masiello, Variational Methods in Lorentzian Geometiiyitman Res. Notes in Mati309,
London, 1994.

[96] W. S. MasseyA basic course in algebraic topologyraduate Texts in Mathematics, 127.
Springer-Verlag, New York, 1991.

[97] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian SystemSpringer-Verlag,
Berlin, 1989.

[98] J. Milnor, Morse TheoryAnnals of Mathematics Studies n. 51, Princeton Univ. RrE389.

[99] R. Miyaoka. Taut embeddings and Dupin hypersurfaaefifferential geometry of submani-
folds, Kyoto, 1984number 1090 in Lecture Notes in Math., pages 15-23. Sprin§&4.

[100] R. Miyaoka and T. Ozawa. Construction of taut embegisliand Cecil-Ryan conjecture. In
Geometry of manifolds, Matsumoto, 1988imber 8 in Perpect. Math., pages 181-189. Aca-
demic Press, 1989.

[101] F. Mercuri, P. Piccione, D. Tausltability of the Focal and the Geometric Index in semi-
Riemannian Geometry via the Maslov Ind@echnical Report RT-MAT 99-08, Mathematics
Department, University of Sao Paulo, Brazil, 1999AKNL mat h. DG 9905096)

[102] R. MontgomerySingular Extremals on Lie Groupslath. Control Signalg (1994), 217-234.

[103] R. Montgomery,Abnormal minimizersSIAM J. Control Optimization32, No. 6 (1994),
1605-1620.

[104] R. MontgomeryA Survey of Singular Curves in Sub-Riemannian Geométrpyn. Contr.
Sys.1(1995), 49-90.

[105] H.F. Muenzner. Isoparametrische Hyperflaechen im8mn, IMath. Ann, 251:57-71, 1980.

[106] H. F. Muenzner. Isoparametrische Hyperflaechen ire8mn, 11.Math. Ann, 256:215-232,
1981.



BIBLIOGRAPHY 295

[107] J. R. MunkresElements of Algebraic Topologffhe Benjamin/Cummning Publishing Co.,
Inc., 1984.

[108] R.C. N.Marques, D. V. Tauskhe Morse Index Theorem for Periodic Geodesics in Stationar
Lorentzian Manifoldspreprint 2000.

[109] K. Nomizu. Some results i&. Cartan's theory of isoparametric families of hyperscefa
Bull. Amer. Math. So¢79:1184-1188, 1973.

[110] C. Olmos. Isoparametric submanifolds and their hoemegus structuresl. Differential
Geom, 38:225-234, 1993.

[111] C. Olmos. Homogeneous submanifolds of higher rankpardllel mean curvaturd. Differ-
ential Geom.39:605—-627, 1994.

[112] B. O'Neill, Semi—Riemannian Geometry with Applications to RelafiRitademic Press, New
York, 1983.

[113] T. Ozawa. On the critical sets of distance functiona taut submanifoldviath. Ann, 276:91—
96, 1986.

[114] H. Ozeki and M. Takeuchi. On some types of isoparamédigipersurfaces in spheres, I.
Tohoku Math. J.27:515-559, 1975.

[115] H. Ozeki and M. Takeuchi. On some types of isoparamédtyipersurfaces in spheres, II.
Tohoku Math. J.28:7-55, 1976.

[116] R. PalaisFoundations of Global Nonlinear Analysi/. A. Benjamin, 1968.

[117] R. PalaisMorse Theory on Hilbert ManifoldsSTopology2 (1963), 299—-340.

[118] R. S. Palais and C.-L. Terng. A general theory of cacarforms.Trans. Amer. Math. Saoc.
300:771-789, 1987.

[119] R. S. Palais, Chuu-lian Tern@yritical Point Theory and Submanifolds Geomethecture
Notes in Mathematics n. 1353, Springer-Verlag, 1988.

[120] P. Piccione, R. SampalmiefGeodesical Connectedness of Compact Lorentzian Manjfolds
Dynam. Sys. Appl5 (1996), 479-502.

[121] P. Piccione, D. Tausk Note on the Morse Index Theorem for Geodesics between 8itbma
folds in semi-Riemannian Geometdy Math. Phys40, vol. 12 (1999), 6682—6688.

[122] P. Piccione, D. Tauskihe Maslov Index and a Generalized Morse Index Theorem for No
Positive Definite MetricsComptes Rendus de I'’Académie de Sciences de Paris, vliskie
5 (2000), p. 385—-389.

[123] P. Piccione, D. Tausln Index Theorem for non Periodic Solutions of Hamiltonigaet&ms
Proceedings of the London Mathematical Society (3) 83 (R0BA1-389.

[124] P. Piccione, D. Tausk)n the Geometry of Grassmannians and the Symplectic Grdwp: t
Maslov Index and Its Applicationsotes of a short course given at the “XI Escola de Geometria
Diferencial”, Universidade Federal Fluminense, NiteRi, Brazil, August 2000.

[125] P. Piccione, D. TauskDn the Banach Differentiable Structure for Sets of Maps \Wtn-
Compact Domainsto appear in Journal of Nonlinear Analysis: Series A Methadd Appli-
cations (2001).

[126] P. Piccione, D. TauskQn the Distribution of Conjugate Points along semi-Riemann
Geodesics to appear in Communications in Analysis and Geometry 20QIANL
mat h. DG 0011038)

[127] P. Piccione, D. V. Tausk)n the Maslov and the Morse Index for Constrained Variationa
Problems to appear in Journal des Mathématiques Pures et Apgiqué

[128] P. Piccione, D. TauskThe Morse Index Theorem in semi-Riemannian Geometeprint
2000.

[129] P. Piccione, D. TauskAn Index Theory for Paths that are Solutions of a Class ofr§iso
Indefinite Variational Problemgreprint 2001.

[130] U. Pinkall. Dupin’sche Hyperflaechen. Doctoral Disagon, Univ. Freiburg, 1981.

[131] U. Pinkall. Dupin hypersurfaceMath. Ann, 270:427—-440, 1985.

[132] U. Pinkall. Curvature properties of taut submani®l@eom. Dedicata20:79-83, 1986.

[133] U. Pinkall and G. Thorbergsson. Deformations of DupypersurfacesProc. Amer. Math.
Soc, 107:1037-1043, 1989.



296 BIBLIOGRAPHY

[134] M. Reed, B. Simoniethods of Modern Mathematical Analysis I: Functional Arsidy Aca-
demic Press, New York, 1980.

[135] A. Romero, M. SancheDn Completeness of Certain Families of Semi-Riemanniani-Man
folds, Geometriae Dedicata3 (1994), 103-117.

[136] A. Romero, M. Sanched\ew Properties and Examples of Incomplete Lorentzian, Tbri
Math. Phys34, 4 (1994), 1992-1997.

[137] A. Romero, M. Sanchef,ompleteness of Compact Lorentz Manifolds Admitting a lfkme
Conformal Killing Vector FieldProc. AMS123 9 (1995), 2831-2833.

[138] W. Rudin, Real and complex analysighird edition, McGraw-Hill Book Co., New York,
1987.

[139] D. Salamon, E. Zehndéyjorse Theory for Periodic Solutions of Hamiltonian Systemdthe
Maslov IndexCommun. Pure Appl. Mathi5 (1992), 1303-1360.

[140] M. SchwarzMorse HomologyBirkauser, Basel, 1993.

[141] J.-P. Serreilomologie Singuliere des Espaces Fihraan. of Math.54, No. 3 (1951), 425—
505.

[142] R. W. Sharpe. A proof of the Chern-Lashof conjectureimensions greater than fiv€om-
ment. Math. Hely.64:221-235, 1989.

[143] S. SmalePn Gradient Dynamical System&nn. of Math.74 (1961), 199-206.

[144] S. SmaleAn Infinite Dimensional Version of Sard’s Theorghmer. J. Math87 (1965), 861—
866.

[145] S. SmaleDifferentiable Dynamical SystepBull. Amer. Math. Soc73 (1967), 747-817.

[146] A. Szulkin,Cohomology and Morse Theory for Strongly Indefinite Fumztlg Math. Z.209
(1992), 375-418.

[147] M. Takeuchi and S. Kobayashi. Minimal embeddings o$g&cesJ. Differential Geom.
2:203-215, 1968.

[148] C.-L. Terng. Isoparametric submanifolds and theix&er groupsJ. Differential Geom).
21:79-107, 1985.

[149] C.-L. Terng,Recent progress in submanifold geomebjfferential geometry: partial differ-
ential equations on manifolds (Los Angeles, CA, 1990), 48%; Proc. Sympos. Pure Math.,
54, Part 1, Amer. Math. Soc., Providence, RI, 1993.

[150] C.-L. Terng and G. Thorbergsson. Taut immersions aaimplete Riemannian manifolds. In
T. E. Ryan and S.-S. Chern, editofidght and Taut Submanifold#lath. Sci. Res. Inst. Publ.
32, pages 181-228. Cambridge University Press, 1997.

[151] R. Thom,Sur une partition em cellules associée a une fonction servarieté C. R. Acad.
Sci. Paris Sér. A-228(1949), 973-975.

[152] G. Thorbergsson. Dupin hypersurfacBsll. London Math. So¢15:493-498, 1983.

[153] G. Thorbergsson. Tight immersions of highly conndateanifolds.Comment. Math. Hely.
61:102-121, 1986.

[154] G. Thorbergsson. Homogeneous spaces without taweaditigs Duke Math. J.57:347-355,
1988.

[155] G. Thorbergsson. Isoparametric foliations and theildings.Ann. of Math, (2) 133:429-446,
1991.

[156] G. Thorbergsson. Smooth tight immersiodiser. d. Dt. Math.-Verein100:23-35, 1998.

[157] G. ThorbergssorA survey on isoparametric hypersurfaces and their geneatibns volume |
of Handbook of Differential Geometrghapter 10. Elsevier Science, 2000.

[158] A.J. TrombaA General Approach to Morse Theow: Diff. Geom.12 (1977), 47-85.

[159] A. Weinstein,Symplectic Manifolds and Their Lagrangian Submanifoldldv. in Math. 6
(1971), 329-349.

[160] J. P. Wilson. The total absolute curvature of an immémnanifold.J. London Math. Sog.
40:362-366, 1965.

[161] E. Witten,Supersymmetry and Morse TheadyDiff. Geom.17 (1982), 661-692.

[162] K. Yosida,Functional AnalysisSpringer-Verlag, 1966.



LIST OF SYMBOLS 297

List of Symbols

(62' le .......................... 8
Bp(X) i 10
Bp(X,A) o 16
COUAX) o oi i 208
CH([a, b, R™) ..o 208
Hy(X) oo 11
Hy(X,A) oo 16
LP([a, b, R™) oo 207
M@RN o 107
S(TO;T) oo 9
S 8
S 8
Zp(X) oo 10
Zp(X,A) oo 16
BA(M)...ooovviiiii 117
BA(H") .o 31
CP™ o 83
By 30
B 8
Coker(f).ovvvviiiiiiin... 114
Critp..ooviiiiiii i, 131
Critp(a) . oveveiiniiiin.. 131
Ap o 8
Am(M) .o 118
Free[A] ... 2
Hr 31
Im(f) oo 104
inter(M) ... 117
Ker(f) .o, 104
L T 42
oM 42
Bl 8
OM) oo 33
Oz A) oo 34
Ola; AL M) oo 34
O ) oo 37
RP™ . 82
Up oo 173
Z-S .. 104
BA,X) oo 208

O B 56
dgn(B)...ovviiiiii 132
e 80
L(V0y ooy Up) e 9
CROG ..o 66
e 80
e 81
PA(XGK) e 96
by 38
B(xo;r) oo 9
Blzo;r] o 9
T(G)eoviii 105
llze et 225
ollgoe e 208
llgr e 208
|1 S 211
ol oo 226
o llme oo 207
e llsup < v oeveeeeeeeeeaeen 208
O 10
O e 10
(y VHT o 211
PAB <ot teeeiia e 33
DAL « o neeee e 33
Gp(X) o 9
Tl(f ) e 172
v 159
Fa e 14,17
Fab oo 14,16
Ne(B) oo 132
No(B) oo 132



298 INDEX

Index
A
abeliangroup.................... 1
finitely generated . ........... 4
free ......... ...l 1
spanned by aset........... 2
absolute total curvature . ... 167,171
absolutely continuous. ......... 210
almost everywhere............. 207
a-limit ... 139
anti-holomorphic subspace ..... 203
atlas...................oL 217
augmentation ................. 109
preservingmap............ 109
augmentatonmap.............. 12
B
balancedmap ................. 107
Banachmanifold .............. 217
Banachspace ................. 207
Banach space norm............ 207
Banach submanifold . .......... 218
Banachable space.............. 207
basis........... ...l 1
ofamodule............... 104
ofopensets............... 119
Betti number
of an abeliangroup .......... 4
bilinearmap..................... 5
overaring................ 106
Bochnerintegral............... 216
boundary
homomorphism......... 10, 13
invariance of .............. 117
of a manifold with boundary117
ofasingular chain.......... 10
of a singular simplex. ....... 10
bounded
(multi-) linearmap ........ 209
C
canonical

homological orientation
of R™ ... 42

of S™ . 42
cell. ..o 80
cellular
decomposition ............. 80
cellularmap.................... 84
chaincomplex.................. 13
augmented................ 109
non negative .............. 109
singular ................... 13
augmented............... 13
ofapair................. 16
chain homotopy ................ 23
chainmap...................... 14

induced by a cellular map ... 90
induced by a continuous map 14
induced by a map of pairs ... 16

characteristic map........... 81, 82
chart.....................L. 217
Chern—Lashof theorem......... 177
closedunitball .................. 8
closure-finiteness. .............. 80
co-index

of a bilinearform.......... 132
Co-kernel..................... 114
Codazzi equation ......... 168, 200
complemented subspace. ....... 215
complete

Hilbert manifold .......... 223
complex projective space........ 83
complex sectional curvature .. .. 193
complex structure. ............. 203

anti-holomorphic subspace . 203

holomorphic subspace...... 203
complexification

of a Hilbert space.......... 212
complexified tangent space...... 192
conformally flat............... 167
conjugate instant .............. 253

multiplicity of. ............ 253
conjugate points............... 253
connecting homomorphism .. 17, 18,

114



INDEX

of the serpent sequence .... 114
connection

onatensorbundle......... 159

onthe dual bundle......... 159
contractible space ............. 116
Critical point

stable manifold of . ........ 152

unstable manifold of . ...... 152
curvature surface . ............. 287
CW-complex................... 80

finite..............o il 81

D

de Rham cohomology........... 10
deformationretract ............. 23
degeneracy

of a bilinear form.......... 132

degree of a map

with respect to a given value . 56
degreeofmap.................. 61
differentiable map

between Banach spaces . ... 214
differentiable orientation ........ 42
differential of a map

between Banach spaces . ... 214
dimension

invariance of.............. 117
ofacell ................... 80
of a CW-complex........... 81
of a topological manifold...118
E
embedding
of Banach manifolds. ...... 218
energy functional . ............. 247
equivariant Morse theory ....... Xiii
essentially bounded map ....... 226
essentially zero................ 1,2
Euler characteristic............ 167
Eulerclass.................... 175
exactsequence .................. 3
short....................... 3
EeXCISION .......cooviiiieenn 21
F
F-tautimmersion.............. 285

299

F-tight immersed manifold. .. .. 283
face

of a singular simplex. ....... 10
finitely generated

abeliangroup................ 4
foralmostall.................. 207
free

module................... 104
function

iNLP. . ... 207

G
Gauss equation ........... 168, 200
Gaussmap.........coiiiiinn.. 170
Gauss—Bonnet theorem. ........ 176
generalized flag manifolds. .. ... 286
generalized Gauss map......... 170
generalized Gauss—Bonnet
theorem.............. 176

generalized symmetric manifolds

symmetric................ 286
generating family . ............... 1

inmodules................ 104
geodesiC. .........ovvviiiinn.. 252
geometricindex............... 253
geIM .. 119
Gronwall's inequality . ......... 226
group

homomorphism.............. 1
groupsofgerms............... 119

H

Hl

inner product ............. 211

NOM . ...ttt 211
half-space...................... 31
Hessian....................... 131
highly connected manifolds. . . .. 285
Hilbert manifold............... 217
Hilbertspace.................. 207
Hilbert space inner product. . ... 207
Hilbertable space.............. 207
Holder inequality . ............. 229
holomorphic subspace ......... 203

homological orientation . ........ 41



300 INDEX

homologous cycles.............. 11
homomorphism.................. 1
induced by achainmap..... 14
induced by a continuous map 14

homotopy . ..................... 22
chain...................... 23
equivalence................ 23
INVEISES .....ovvveieennn, 23

I

index
of a bilinear form.......... 132

indexform.................... 253

interior
of a manifold with boundary117

invariance of dimension........ 117

invariance of the boundary. ..... 117

isometric immersion
absolute total curvature of .. 171

Codazzi equation. ......... 168
Fundamental Theorem of...169
Gauss equation............ 168
Ricciequation ............ 168
isomorphism
of vector bundles .. ......... 158
isoparametric hypersurface . . ... 286
isoparametric submanifold. .. ... 287
isotropic curvature ........ 167, 193
isotropic subspace ............. 203
isotropic subspace of a
Hermitian space....... 192
J
Jacobifield ................... 252
K
Kant, Immanuel............... XVii
kernel

of a module homomorphism 104

L
L2
innerproduct ............. 208
Lebesgue
integral . .................. 207
lengthofacurve............... 216

linear
dependency................. 1
inmodules. ............. 104
independence
inmodules. ............. 104
independency ............... 1
linear combination............... 1
linear map
betweenR-modules ... .... 103
representing a bilinear map . 229
local homology groups........... 30

long exact homology sequence
associated to a short exact

sequence .............. 17
ofapair................... 18
ofatriple................. 114

loopspace.................... 253
LP
NOMM . ...t 207
SPACE. ...t 208
M
manifold
topological ............... 117
with boundary .......... 117

map of class"'*
between Banach spaces . ... 215

map ofpairs.................... 15
map of triples . ................ 114
measure space................. 226
metric-relating chart........... 220

minimum total absolute curvature283
Minkowski

inequality. ................ 207
module....................... 103

free

spanned by aset......... 104

(0[] o/ 1

structure onaring......... 103
morphism

of vector bundles .. ......... 158
Morse function. ............... 132
Morse homology . .............. Xiv
Morse index

of a critical point.......... 132



Morse Lemma................. 133
Morsetheory ............... 1-296
equivariant................ Xiii
Morse—Smale condition . ....... 154
N
negatively oriented
homeomorphism ........... 37
nondegenerate
bilinear form.............. 132
strongly ................ 211
critical point. ............. 132
1101 1 0 224
induced by an isomorphism 225
normalbundle................. 168
normalradius................. 239
normalspace.................. 167
normed vector space........... 224
@]
w-limit ..o 139
one parameter family of charts . . 238
opencell....................... 80
openunitball.................... 8
orientable
topological manifold. ....... 36
orientation
differentiable............... 42
for a topological manifold . .. 36
atapoint................ 33
homological ............... 41
outward pointing ........... 44
orientation bundle .............. 33
oriented
topological manifold. ....... 36
outward pointing orientation . . ... 44
P
pcell. ... 80
pair of topological spaces........ 15
perfect Morse function......... 283
Poincaré polynomial . ........... 96
positive operator. .............. 211
positively oriented
homeomorphism ........... 37
pre-sheaf

301
of abelian groups........... 118
projective space
complex................... 83
real ... 82
proper Dupin hypersurface ..... 287
pull-back
of aconnection............ 159
ofafiberbundle........... 157
punctured closed ball............ 30
R
R-module..................... 103
right ..................... 107
R-spaces................ooout. 286
real projective space ............ 82
reduced singular homology . ..... 13
regularchart.................. 219
restriction maps
ofapre-sheaf............. 118
retraction ...................... 23
Ricciequation............ 168, 200
Riemannian
manifold ................. 219
metric. ................... 219
right R-module................ 107
NG ... 103
S
Saddlepoint................... 133
saddle point................... 132
section
of the orientation bundle
alongasubset............ 33
global................... 33
self-adjoint operator ........... 211
semi-norMm . ................... 224
separating family .............. 215
separation axioms .............. 30
sequence
exact ... 3
Serpentlemma................ 113
sheaf
ofgerms.................. 120
short exact sequence ............. 3

simpletensors................... 7



302 INDEX

singular boundaries . ............ 11
relative.................... 16
singularchain................... 9
boundaryof................ 10
singular chain complex.......... 13
augmented................. 13
ofapair................... 16
singularcycles ................. 10
relative.................... 16
singular homology
class ... 11
group. ...ovii i 11
reduced. ................. 13
relative.................... 16
singular simplex................. 9
boundaryof................ 10
faceof.................. ... 10
Sobolevspaces................ 210
spherical two-piece property. . ..285
splitting
short exact sequence.......... 4
Stable manifold
of a critical point.......... 152
standarcp-simplex............... 8
star-shapedset.................. 12
stereographic projection......... 45
STPP (spherical two-piece property)
285
strong deformation retract ....... 23
strongly indefinite functional . . . . xiii
strongly nondegenerate. ........ 211
sub-Riemannian metric......... Xiii
submanifold chart ............. 218
submersion
between Banach spaces. ... 215
submodule............ ... ..., 103
spanned by aset........... 104
substantial immersion.......... 284
Sylvester’s lemma of inertia . ... 132
T
T 30
T 30
taut immersion............ 285, 289
tensor

simple...................... 7
tensor product
of a chain complex and a group

66
of abelian groups . ........... 5
of homomorphisms.......... 7
ofmodules................ 107
tight immersed manifold ....... 283
topological manifold........... 117
with boundary ............ 117
topological vector space . ... 10, 207
torsion. ...l 105
free ... 105
total absolute curvature. ........ 283
totally normal radius............ 239
TPP (two-piece property)....... 283
translationmap................. 38
triple
of topological spaces ...... 114
triples
mapof................... 114
two-piece property............. 283
U
unitsphere...................... 8
Unstable manifold
of a critical point.......... 152
Vv
variationally complete action of a Lie
group . ... oi e 286
VBN
(Vector Bundle
Neighborhoaod) . ....... Xiii
vector bundle
isomorphism.............. 158
morphism ................ 158

Vector Bundle Neighborhood . .. xiii

w
weakintegral.................. 230
weak integration............... 216
weak-topology ................. 80

weakly integrable map ......... 230



INDEX 303

Z-bilinear. ...................... 5
Z-linear ..........oiiiiiiiii.. 1
Z-module....................... 1



