Short course
On the isometry group of Lorentz manifolds
GELOGRA’11
VI International Meeting on Lorentzian Geometry
Granada 2011

Paolo Piccione

Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo

September 6–9, 2011
Global geometry: Riemannian vs. Lorentzian

Compact Riemannian manifolds:
- are complete and geodesically complete
- are geodesically connected
- have compact isometry group

Compact Lorentz manifolds:
- may be geodesically incomplete
- may fail to be geodesically connected
- have possibly non compact isometry group
Why is the set of Lorentzian isometries a (finite dimensional) Lie group?

Classify the Lie groups that act isometrically (and faithfully) on (compact) Lorentzian manifolds.

Discuss compactness and non compactness issues.

Can one obtain geometric information on the manifold when its isometry group is given?

Examples

Paolo Piccione

Isometry group of Lorentz manifolds
Why is the set of Lorentzian isometries a (finite dimensional) Lie group?
Topics

- Why is the set of Lorentzian isometries a (finite dimensional) Lie group?
- Classify the Lie groups that act isometrically (and faithfully) on (compact) Lorentzian manifolds.
Topics

- Why is the set of Lorentzian isometries a (finite dimensional) \textit{Lie} group?
- Classify the Lie groups that act isometrically (and faithfully) on (compact) Lorentzian manifolds.
- Discuss compactness and non compactness issues.
Topics

- Why is the set of Lorentzian isometries a (finite dimensional) Lie group?
- Classify the Lie groups that act isometrically (and faithfully) on (compact) Lorentzian manifolds.
- Discuss compactness and non compactness issues.
- Can one obtain geometric information on the manifold when its isometry group is given?
Topics

- Why is the set of Lorentzian isometries a (finite dimensional) *Lie* group?
- Classify the Lie groups that act isometrically (and faithfully) on (compact) Lorentzian manifolds.
- Discuss compactness and non compactness issues.
- Can one obtain geometric information on the manifold when its isometry group is given?
- Examples
Let \((M, g)\) be a compact manifold, and let \(G\) be a connected Lie group acting by isometries locally faithfully on \(M\). Then either of the two possibilities occur:

- \(G\) is locally isomorphic to \(\text{SL}(2, \mathbb{R}) \times K\), with \(K\) compact;
- \(G\) is amenable (equiv., compact modulo radical).

If \((M, g)\) is a Lorentz manifold with finite volume, and let \(G\) be a Lie group acting locally faithfully and isometrically on \(M\). If the Zariski closure \(G_a\) of \(\text{Ad}(G)\) \(\subset \text{Aut}(g)\) has no co-compact normal algebraic subgroup, then:

- for almost every \(m \in M\), the stabilizer \(G_m \subset G\) is discrete;
- either \(g = \text{sl}(2, \mathbb{R}) \oplus \text{abelian}\), or there exists a one-dimensional ideal \(I_0 \subset g\) such that \(g/I_0\) is abelian.
R. J. Zimmer, Inventiones 1986:

Let \((M, g)\) be a compact manifold, and let \(G\) be a connected Lie group acting by isometries locally faithfully on \(M\). Then either of the two possibilities occur:

- \(G\) is locally isomorphic to \(\text{SL}(2, \mathbb{R}) \times K\), with \(K\) compact;
- \(G\) is amenable (equiv., compact modulo radical).
R. J. Zimmer, Inventiones 1986:
Let \((M, g)\) be a compact manifold, and let \(G\) be a connected Lie group acting by isometries locally faithfully on \(M\). Then either of the two possibilities occur:

- \(G\) is locally isomorphic to \(\text{SL}(2, \mathbb{R}) \times K\), with \(K\) compact;
- \(G\) is amenable (equiv., compact modulo radical).

M. Gromov, 1988

If \((M, g)\) is a Lorentz manifold with finite volume, and let \(G\) be a Lie group acting locally faithfully and isometrically on \(M\). If the Zariski closure \(G^a\) of \(\text{Ad}(G) \subset \text{Aut}(g)\) has no co-compact normal algebraic subgroup, then:

- for almost every \(m \in M\), the stabilizer \(G_m \subset G\) is discrete;
- either \(g = \text{sl}(2, \mathbb{R}) \oplus\) abelian, or there exists a one-dimensional ideal \(I_0 \subset g\) such that \(g/I_0\) is abelian.
Some Bibliography. —2

If (M, g) is a compact, simply connected real analytic Lorentz manifold, then $\text{Iso}(M, g)$ is compact.

Example of compact simply connected pseudo-Riemannian manifold of type $(7, 2)$ with non-compact isometry group.

If G acts non properly on a compact Lorent manifold, and all G-stabilizers are discrete, then G is locally isomorphic to $\text{SL}(2, \mathbb{R})$.

In general, if G acts non properly, then G is locally isomorphic to either $\text{SO}(1, n)$ or to $\text{SO}(2, n)$.

Paolo Piccione

Isometry group of Lorentz manifolds
G. D’Ambra, Inventiones 1988

If \((M, g)\) *is a compact, simply connected real analytic Lorentz manifold, then* \(\text{Iso}(M, g)\) *is compact.*
G. D’Ambra, Inventiones 1988

If (M, g) *is a compact, simply connected real analytic Lorentz manifold, then* $\text{Iso}(M, g)$ *is compact.*

Example of compact simply connected pseudo-Riemannian manifold of type $(7, 2)$ with non compact isometry group.
G. D’Ambra, Inventiones 1988

If (M, g) *is a compact, simply connected real analytic Lorentz manifold, then* $\text{Is}_0(M, g)$ *is compact.*

Example of compact simply connected pseudo-Riemannian manifold of type $(7, 2)$ with non compact isometry group.

- *If* G *acts non properly on a compact Lorent manifold, and all* G-*stabilizers are discrete, then* G *is locally isomorphic to* $\text{SL}(2, \mathbb{R})$.*
- *In general, if* G *acts non properly, then* G *is locally isomorphic to either* $\text{SO}(1, n)$ *or to* $\text{SO}(2, n)$.
Let G be a connected, simply connected Lie group. The following are equivalent:

1. G is the universal cover of $\text{Iso}^0(M, g)$ for some compact Lorentz manifold M;
2. G is isomorphic to $L \times K \times \mathbb{R}^d$, where K is compact and semisimple, $d \geq 0$, and L in the list:
 - $\tilde{\text{SL}}(2, \mathbb{R})$
 - Heisenberg group Heis^{2n+1}
 - An oscillator group.

A. Zeghib, 1998

Geometric description of compact Lorentz manifold with $\text{Iso}^0(M, g)$ non compact.

P. P., A. Zeghib, 2010

Geometric description of compact Lorentz manifold with $\text{Iso}(M, g)/\text{Iso}^0(M, g)$ infinite.
S. Adams, G. Stuck, Inventiones 1997, & A. Zeghib, 1997

Let G be a connected, simply connected Lie group. The following are equivalent:

- G is the universal cover of $\text{Iso}_0(M, g)$ for some compact Lorentz manifold M;
- G is isomorphic to $L \times K \times \mathbb{R}^d$, where K is compact and semisimple, $d \geq 0$, and L in the following list:
 - $\text{SL}(2, \mathbb{R})$
 - Heisenberg group Heis^{2n+1}
 - an oscillator group.
S. Adams, G. Stuck, Inventiones 1997, & A. Zeghib, 1997

Let G be a connected, simply connected Lie group. The following are equivalent:

- G is the universal cover of $\text{Iso}_0(M, g)$ for some compact Lorentz manifold M;
- G is isomorphic to $L \times K \times \mathbb{R}^d$, where K is compact and semisimple, $d \geq 0$, and L in the the following list:
 - $\text{SL}(2, \mathbb{R})$
 - Heisenberg group Heis^{2n+1}
 - an oscillator group.

A. Zeghib, 1998

Geometric description of compact Lorentz manifold with $\text{Iso}_0(M, g)$ non compact.
Let G be a connected, simply connected Lie group. The following are equivalent:

- G is the universal cover of $\text{Iso}_0(M, g)$ for some compact Lorentz manifold M;
- G is isomorphic to $L \times K \times \mathbb{R}^d$, where K is compact and semisimple, $d \geq 0$, and L in the following list:
 - $\tilde{\text{SL}}(2, \mathbb{R})$
 - Heisenberg group Heis^{2n+1}
 - an oscillator group.

A. Zeghig, 1998

Geometric description of compact Lorentz manifold with $\text{Iso}_0(M, g)$ non compact.

P.P., A. Zeghig, 2010

Geometric description of compact Lorentz manifold with $\text{Iso}(M, g)/\text{Iso}_0(M, g)$ infinite.
Isometry group and covering spaces

\[(\tilde{M}, g) \text{ semi-Riemannian manifold} \]

\[\pi: \tilde{M} \to M \text{ covering}, \quad \tilde{g} = \pi^* (g) \]

\[H = \{ \tilde{\psi} \in \text{Iso}(\tilde{M}, \tilde{g}) : \pi(\tilde{\psi}(x)) = \pi(\tilde{\psi}(y)) \text{ if } \pi(x) = \pi(y) \} \]

\[H \ni \tilde{\psi} \Phi \mapsto \tilde{\psi} \in \text{Iso}(M, g) \quad (\psi \circ \pi = \pi \circ \tilde{\psi}) \]

\[\Gamma = \text{Ker}(\Phi) \text{ group of covering automorphisms of } \pi \]

If \(\tilde{M} \) is the universal cover of \(M \) then:

\[\Phi \text{ is onto} \quad H = \text{Nor}(\Gamma) \implies \text{Iso}(M, g) = \text{Nor}(\Gamma) / \Gamma. \]
(\(M, g\)) semi-Riemannian manifold
(\(M, g\)) semi-Riemannian manifold

\(\pi : \tilde{M} \rightarrow M\) covering, \(\tilde{g} = \pi^*(g)\)
\((M, g) \) semi-Riemannian manifold

- \(\pi : \tilde{M} \to M \) covering, \(\tilde{g} = \pi^*(g) \)

- \(H = \{ \tilde{\psi} \in \text{Iso}(\tilde{M}, \tilde{g}) : \pi(\tilde{\psi}(x)) = \pi(\tilde{\psi}(y)) \text{ if } \pi(x) = \pi(y) \} \)
(\(M, g\)) semi-Riemannian manifold

\[\pi : \tilde{M} \rightarrow M \] covering, \(\tilde{g} = \pi^*(g)\)

\[H = \{ \tilde{\psi} \in \text{Iso}(\tilde{M}, \tilde{g}) : \pi(\tilde{\psi}(x)) = \pi(\tilde{\psi}(y)) \text{ if } \pi(x) = \pi(y) \} \]

\[H \ni \tilde{\psi} \xrightarrow{\Phi} \psi \in \text{Iso}(M, g) \quad (\psi \circ \pi = \pi \circ \tilde{\psi}) \]
(\(M, g\)) semi-Riemannian manifold

\(\pi : \tilde{M} \rightarrow M\) covering, \(\tilde{g} = \pi^*(g)\)

\(H = \{\tilde{\psi} \in \text{Iso}(\tilde{M}, \tilde{g}) : \pi(\tilde{\psi}(x)) = \pi(\tilde{\psi}(y)) \text{ if } \pi(x) = \pi(y)\}\)

\(H \ni \tilde{\psi} \mapsto \psi \in \text{Iso}(\tilde{M}, \tilde{g})\) \(\quad (\psi \circ \pi = \pi \circ \tilde{\psi})\)

\(\Gamma = \text{Ker}(\Phi)\) group of covering automorphisms of \(\pi\)
(\(M, g\)) semi-Riemannian manifold

\(\pi : \tilde{M} \to M\) covering, \(\tilde{g} = \pi^*(g)\)

\(H = \{ \tilde{\psi} \in \text{Iso}(\tilde{M}, \tilde{g}) : \pi(\tilde{\psi}(x)) = \pi(\tilde{\psi}(y)) \text{ if } \pi(x) = \pi(y) \}\)

\(H \ni \tilde{\psi} \mapsto \psi \in \text{Iso}(M, g) \quad (\psi \circ \pi = \pi \circ \tilde{\psi})\)

\(\Gamma = \text{Ker}(\Phi)\) group of covering automorphisms of \(\pi\)

If \(\tilde{M}\) is the *universal cover* of \(M\) then:

- \(\Phi\) is onto
- \(H = \text{Nor}(\Gamma) \implies \text{Iso}(M, g) = \text{Nor}(\Gamma)/\Gamma\).
\(M^n \) smooth manifold, \(L(M) \) frame bundle, \(\text{GL}(n) \)-principal bundle

- \(g \) semi-Riemannian metric on \(M \) of index \(k \)
- \(\text{Iso}(M, g) \) isometry group
- \(L_g(M) \) \(g \)-orthogonal frame bundle, \(\text{O}(n, k) \)-principal subbundle
- \(p \in L_g(M) \), orbit: \(O_p = \{ \psi \circ \psi : \psi \in \text{Iso}(M, g) \} \) is a closed subset of \(L_g(M) \)
- \(\text{Iso}(M, g) \ni \psi \mapsto \psi \circ p \in O_p \) is a homeomorphism
Two direct consequences

Proposition

- If \((M, g)\) is a compact Riemannian manifold, then \(\text{Iso}(M, g)\) is compact.

Corollary (J. L. Flores, M. A. Javaloyes, P. P.)
Compact stationary Lorentzian manifolds admit at least two non-trivial closed geodesics.
Two direct consequences

Proposition

- If \((M, g)\) is a compact Riemannian manifold, then \(\text{Iso}(M, g)\) is compact.

- If \((M, g)\) is compact Lorentzian, \(K \in \text{Kill}(M, g), p \in M, g(K_p, K_p) < 0\), then the 1-parameter group of isometries generated by \(K\) is pre-compact.
Two direct consequences

Proposition

- If \((M, g)\) is a compact Riemannian manifold, then \(\text{Iso}(M, g)\) is compact.

- If \((M, g)\) is compact Lorentzian, \(K \in \text{Kill}(M, g), p \in M, g(K_p, K_p) < 0\), then the 1-parameter group of isometries generated by \(K\) is pre-compact.

Corollary (J. L. Flores, M. A. Javaloyes, P.P.)

Compact stationary Lorentzian manifolds admit at least two non trivial closed geodesics.
Theorem 1 (Gleason 1952, Yamabe 1953)

If G is a \textit{locally compact} topological group, then G admits a (necessarily unique) Lie group structure compatible with the topology, if and only if G doesn’t have \textit{small subgroups}.
Theorem 1 (Gleason 1952, Yamabe 1953)

If G is a *locally compact* topological group, then G admits a (necessarily unique) Lie group structure compatible with the topology, if and only if G doesn’t have *small subgroups*.

Def.: G has *small subgroups* if every neighborhood of 1 contains a nontrivial subgroup of G.
Riemannian isometries 1

Theorem 1 (Gleason 1952, Yamabe 1953)

If G is a \textit{locally compact} topological group, then G admits a (necessarily unique) Lie group structure compatible with the topology, if and only if G doesn’t have \textit{small subgroups}.

Def.: G has \textit{small subgroups} if every neighborhood of 1 contains a nontrivial subgroup of G.

Theorem 2

If G is a \textit{locally compact} topological group, M is a smooth manifold that carries a continuous \textit{effective} action by diffeomorphisms $G \times M \to M$ of G, then G admits a Lie group structure compatible with the topology, and the action is smooth.
Riemannian isometries 2

\((M, g)\) Riemannian manifold

The isometry group of a locally compact metric space is a locally compact topological group, endowed with the compact-open topology. It follows from Theorem 2 that \(\text{Iso}(M, g)\) is a Lie group with the compact-open topology.

This theory does not work for Lorentzian isometries/conformal diffeomorphisms

General question: For which groups \(G \subset \text{GL}(n, \mathbb{R})\) the set of automorphisms of a \(G\)-manifold is a Lie transformation group?
(M, g) Riemannian manifold, d_g metric on M induced by g
(M, g) Riemannian manifold, d_g metric on M induced by g

\[
\text{isometries of } (M, g) \leftrightarrow \text{isometries of } (M, d_g)
\]
(\(M, g\)) Riemannian manifold, \(d_g\) metric on \(M\) induced by \(g\)

\[
\text{isometries of } (M, g) \leftrightarrow \text{isometries of } (M, d_g)
\]

The isometry group of a locally compact metric space is a locally compact topological group, endowed with the compact-open topology.
(\(M, g\)) Riemannian manifold, \(d_g\) metric on \(M\) induced by \(g\)

isometries of \((M, g)\) \(\leftrightarrow\) isometries of \((M, d_g)\)

The isometry group of a locally compact metric space is a locally compact topological group, endowed with the compact-open topology.

It follows from Theorem 2 that \(\text{Iso}(M, g)\) is a Lie group with the compact-open topology.
(\(M, g\)) Riemannian manifold, \(d_g\) metric on \(M\) induced by \(g\)

\[\text{isometries of } (M, g) \leftrightarrow \text{isometries of } (M, d_g)\]

The isometry group of a locally compact metric space is a locally compact topological group, endowed with the compact-open topology.

It follows from Theorem 2 that \(\text{Iso}(M, g)\) is a Lie group with the compact-open topology.

This theory does not work for Lorentzian isometries/conformal diffeomorphisms
\((M, g)\) Riemannian manifold, \(d_g\) metric on \(M\) induced by \(g\)

isometries of \((M, g)\) \(\iff\) isometries of \((M, d_g)\)

The isometry group of a locally compact metric space is a locally compact topological group, endowed with the compact-open topology.

It follows from Theorem 2 that \(\text{Iso}(M, g)\) is a Lie group with the compact-open topology.

This theory does not work for Lorentzian isometries/conformal diffeomorphisms

General question: For which groups \(G \subset \text{GL}(n, \mathbb{R})\) the set of automorphisms of a \(G\)-manifold is a Lie transformation group?
Definitions and examples

Notation

- M: differentiable (smooth) manifold of dimension $n < \infty$.
- G: Lie subgroup (not necessarily closed) of $GL(n)$.
- $L(M)$: the frame bundle of M.

Obs.: G may be non-connected, but we require that it is second-countable.

A G-structure B_G on M is a reduction $\pi: B_G \to M$ of the structural group of $L(M)$ to G.

Characterization

Given $p \in B_G$ and $g \in GL(n)$, we have $p \circ g \in B_G \iff g \in G$.

Paolo Piccione

Isometry group of Lorentz manifolds
Definitions and examples

Notation

- M: differentiable (smooth) manifold of dimension $n < \infty$.
- G: Lie subgroup (not necessarily closed) of $GL(n)$.
- $L(M)$: the frame bundle of M.

Obs.: G may be non-connected, but we require that it is second-countable.

Definition

A G-structure B_G on M is a reduction $\pi : B_G \to M$ of the structural group of $L(M)$ to G.

Isometry group of Lorentz manifolds
Definitions and examples

Notation

- \(M \): differentiable (smooth) manifold of dimension \(n < \infty \).
- \(G \): Lie subgroup (not necessarily closed) of \(GL(n) \).
- \(L(M) \): the frame bundle of \(M \).

Obs.: \(G \) may be non-connected, but we require that it is second-countable.

Definition

A \(G \)-structure \(B_G \) on \(M \) is a reduction \(\pi : B_G \to M \) of the structural group of \(L(M) \) to \(G \).

Characterization

Given \(p \in B_G \) and \(g \in GL(n) \), we have \(p \circ g \in B_G \iff g \in G \).
1-structures or parallelisms

When $G = \{1\}$, a G-structure is a choice of frame at each tangent space, $T_x M$; i.e., a parallelism on M.
Definitions and examples

1-structures or parallelisms

When $G = \{1\}$, a G-structure is a choice of frame at each tangent space, T_xM; i.e., a parallelism on M.

$O(n, \nu)$-structures

When $G = O(n, \nu)$, a G-structure is equivalent to a semi-Riemannian metric on M of index ν.
1-structures or parallelisms

When \(G = \{1\} \), a \(G \)-structure is a choice of frame at each tangent space, \(T_x M \); i.e., a \textit{parallelism} on \(M \).

\(O(n, \nu) \)-structures

When \(G = O(n, \nu) \), a \(G \)-structure is equivalent to a semi-Riemannian metric on \(M \) of index \(\nu \).

\(Sp(n) \)-structures

When \(G = Sp(n) \), a \(G \)-structure is equivalent to an \textit{almost symplectic} structure on \(M \). This means that the symplectic form \(\Omega \) is not necessarily closed. One may write the integrability condition \(d\Omega = 0 \) in the language of \(G \)-structures, as we’ll see.
Example: $O(n, \nu)$-structures

To define a semi-Riemannian metric from a given $O(n, \nu)$-structure:

(1)

Conversely, to define a $O(n, \nu)$-structure from a given semi-Riemannian metric:

(2)
Example: $O(n, \nu)$-structures

To define a semi-Riemannian metric from a given $O(n, \nu)$-structure: given $u, v \in T_x M$, put

$$\langle u, v \rangle_x := \langle p^{-1}(u), p^{-1}(v) \rangle_{\mathbb{R}^n}, \quad p \in \pi^{-1}(x).$$ \hfill (1)
Example: $O(n, \nu)$-structures

To define a semi-Riemannian metric from a given $O(n, \nu)$-structure: given $u, v \in T_x M$, put

$$\langle u, v \rangle_x := \langle p^{-1}(u), p^{-1}(v) \rangle_{\mathbb{R}^n}, \quad p \in \pi^{-1}(x).$$ \hfill (1)

Conversely, to define a $O(n, \nu)$-structure from a given semi-Riemannian metric:
Definitions and examples

Example: $O(n, \nu)$-structures

To define a semi-Riemannian metric from a given $O(n, \nu)$-structure: given $u, v \in T_x M$, put

$$\langle u, v \rangle_x := \langle p^{-1}(u), p^{-1}(v) \rangle_{\mathbb{R}^\nu}, \quad p \in \pi^{-1}(x). \quad (1)$$

Conversely, to define a $O(n, \nu)$-structure from a given semi-Riemannian metric:

given $x \in M$, put

$$\pi^{-1}(x) := \{ p \in Iso(\mathbb{R}^n; T_x M) : p \text{ is a linear isometry} \}. \quad (2)$$
Isomorphisms

Let B^1_G, B^2_G be G-structures on M_1, M_2, respectively.
Isomorphisms

Let B^1_G, B^2_G be G-structures on M_1, M_2, respectively.

Each diffeomorphism $f : M_1 \rightarrow M_2$ induces a map f_\ast such that the following diagram commutes.

\[
\begin{array}{ccc}
L(M_1) & \xrightarrow{f_\ast} & L(M_2) \\
\pi^1 \downarrow & & \downarrow \pi^2 \\
M_1 & \xrightarrow{f} & M_2 \\
\end{array}
\]
Isomorphisms

Let B^1_G, B^2_G be G-structures on M_1, M_2, respectively.

Each diffeomorphism $f : M_1 \to M_2$ induces a map f_* such that the following diagram commutes.

We say that f is an isomorphism of B^1_G onto B^2_G if $f_*(B^1_G) = B^2_G$.

In this case, f is an automorphism when $M_1 = M_2$ and $B^1_G = B^2_G$.

Paolo Piccione
Isometry group of Lorentz manifolds
Let $\pi : B_G \to M$ be a G-structure. There’s a canonical vector-valued 1-form defined on B_G:

$$\theta_p : T_p(B_G) \to \mathbb{R}^n$$

$$X \mapsto p^{-1} \circ d\pi_p(X) \quad (3)$$

Differentiating θ_p, we get

$$d\theta_p : T_p(B_G) \wedge T_p(B_G) \to \mathbb{R}^n \quad (4)$$

Choose H such that $H \oplus V_p = T_p(B_G)$. Then, we can define $c_H : \mathbb{R}^n \wedge \mathbb{R}^n \to \mathbb{R}^n$

$$u \wedge v \mapsto d\theta_p(X \wedge Y) \quad (5)$$

where $X, Y \in H$, $\theta_p(X) = u$, $\theta_p(Y) = v$.

Paolo Piccione
Isometry group of Lorentz manifolds
Let $\pi : B_G \to M$ be a G-structure. There's a canonical vector-valued 1-form defined on B_G:
\[
\theta_p : T_p(B_G) \to \mathbb{R}^n
\]
\[
X \mapsto p^{-1} \circ d\pi_p(X)
\] \hspace{1cm} (3)

Differentiating θ, we get
\[
d\theta_p : T_p(B_G) \wedge T_p(B_G) \to \mathbb{R}^n
\] \hspace{1cm} (4)
Let $\pi : B_G \to M$ be a G-structure. There’s a canonical vector-valued 1-form defined on B_G:

$$\theta_p : T_p(B_G) \to \mathbb{R}^n$$

$$\begin{align*}
X &\mapsto p^{-1} \circ d\pi_p(X)
\end{align*}$$

(3)

Differentiating θ, we get

$$d\theta_p : T_p(B_G) \wedge T_p(B_G) \to \mathbb{R}^n$$

(4)

Choose H such that $H \oplus \nu_p = T_p(B_G)$. Then, we can define
First-order structure function

Preliminaries

Let $\pi : B_G \to M$ be a G-structure. There's a canonical vector-valued 1-form defined on B_G:

$$\theta_p : T_p(B_G) \to \mathbb{R}^n$$

$$X \mapsto p^{-1} \circ d\pi_p(X) \quad (3)$$

Differentiating θ, we get

$$d\theta_p : T_p(B_G) \wedge T_p(B_G) \to \mathbb{R}^n \quad (4)$$

Choose H such that $H \oplus \nu_p = T_p(B_G)$. Then, we can define

$$c_H : \mathbb{R}^n \wedge \mathbb{R}^n \to \mathbb{R}^n$$

$$u \wedge v \mapsto d\theta_p(X \wedge Y), \quad (5)$$

where $X, Y \in H$, $\theta_p(X) = u$, $\theta_p(Y) = v$.

Paolo Piccione
Isometry group of Lorentz manifolds
Dependence on horizontal complements

Let H_1, H_2 be such that $H_1 \oplus V_p \simeq H_2 \oplus V_p \simeq T_p(B_G)$.

Define $S_{H_2, H_1} : \mathbb{R}^n \rightarrow V_p \simeq \mathbb{R}^n$ such that $X_2 - X_1$, (6)

Then, the following equation holds

$c_{H_2}(u \wedge v) - c_{H_1}(u \wedge v) = A(S_{H_2, H_1})(u \wedge v)$, (7)

where $A : \text{hom}(\mathbb{R}^n; \mathbb{R}) \rightarrow \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R})$ is the antisymmetrization operator.
Dependence on horizontal complements

Let H_1, H_2 be such that $H_1 \oplus \mathcal{V}_p \simeq H_2 \oplus \mathcal{V}_p \simeq T_p(B_G)$.

Define

$$S_{H_2,H_1} : \mathbb{R}^n \to \mathcal{V}_p \simeq g$$

$$u \mapsto X_2 - X_1,$$

where $X_i \in H_i, \ i = 1, 2$, and $\theta_p(X_2) = \theta_p(X_1) = u$.

(6)
Dependence on horizontal complements

Let H_1, H_2 be such that $H_1 \oplus \mathcal{V}_p \simeq H_2 \oplus \mathcal{V}_p \simeq T_p(B_G)$.

Define

$$S_{H_2, H_1} : \mathbb{R}^n \to \mathcal{V}_p \simeq g$$

$$u \mapsto X_2 - X_1,$$ \hspace{1cm} (6)

where $X_i \in H_i$, $i = 1, 2$, and $\theta_p(X_2) = \theta_p(X_1) = u$.

Then, the following equation holds

$$c_{H_2}(u \wedge v) - c_{H_1}(u \wedge v) = \mathcal{A}(S_{H_2, H_1})(u \wedge v),$$ \hspace{1cm} (7)

where

$$\mathcal{A} : \text{hom}(\mathbb{R}^n; g) \to \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$

is the antisymmetrization operator.
The first-order structure function of B_G is

$$c : B_G \rightarrow \frac{\text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)}{\mathcal{A} (\text{hom}(\mathbb{R}^n; g))}$$

(8)

$p \mapsto [c_H]$
First-order structure function

Definition

The first-order structure function of B_G is

$$c : B_G \rightarrow \frac{\text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)}{\mathcal{A} \left(\text{hom}(\mathbb{R}^n; g) \right)}$$

$$\rho \mapsto [c_H] \quad \quad \quad \quad \quad (8)$$

Remarks

- c is an invariant of B_G.

- For some G-structures, c is identically zero, giving no information.

- In some cases, c measures (obstruction to) integrability. For instance: almost symplectic structures, distributions, almost complex structures (Newlander-Nirenberg theorem).
The first-order structure function of B_G is

$$c : B_G \rightarrow \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R})$$

$$\mathcal{A}(\text{hom}(\mathbb{R}^n; g))$$

$$p \mapsto [c_H] \quad (8)$$

Remarks

- c is an invariant of B_G.
- For some G-structures, c is identically zero, giving no information.
First-order structure function

Definition

The first-order structure function of B_G is

\[c : B_G \rightarrow \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}) \]

\[\mathcal{A}(\text{hom}(\mathbb{R}^n; g)) \]

\[\rho \mapsto [c_H] \]

(8)

Remarks

- c is an invariant of B_G.
- For some G-structures, c is identically zero, giving no information.
- In some cases c measures (obstruction to) integrability. For instance: almost symplectic structures, distributions, almost complex structures (Newlander-Nirenberg theorem)
First prolongation of a G-structure

Definition

Choose $\mathcal{H} \subseteq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$ such that

$$\mathcal{H} \oplus A(\text{hom}(\mathbb{R}^n; g)) \simeq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$
First prolongation of a G-structure

Definition

Choose $\mathcal{H} \subseteq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$ such that

$$\mathcal{H} \oplus \mathcal{A}(\text{hom}(\mathbb{R}^n; \mathfrak{g})) \simeq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$

This choice induces a family of special frames on B_G

$$z : \mathbb{R}^n \times \mathfrak{g} \to T_p(B_G)$$

such that:
First prolongation of a G-structure

Definition

Choose $\mathcal{H} \subseteq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$ such that

$$\mathcal{H} \oplus A(\text{hom}(\mathbb{R}^n; g)) \cong \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$

This choice induces a family of special frames on B_G

$$z : \mathbb{R}^n \times g \to T_p(B_G)$$

such that:

- $z(A) = A$, for $A \in g$;
First prolongation of a G-structure

Definition

Choose $\mathcal{H} \subseteq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$ such that

$$\mathcal{H} \oplus \mathcal{A}(\text{hom}(\mathbb{R}^n; g)) \simeq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$

This choice induces a family of special frames on B_G

$$z : \mathbb{R}^n \times g \to T_p(B_G)$$

such that:

- $z(A) = A$, for $A \in g$;
- $z(\mathbb{R}^n \times \{0\}) = H$, for which $c_H \in \mathcal{H}$.
First prolongation of a G-structure

Definition

Choose $\mathcal{H} \subseteq \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$ such that

$$\mathcal{H} \oplus \mathcal{A}(\text{hom}(\mathbb{R}^n; g)) \cong \text{hom}(\mathbb{R}^n \wedge \mathbb{R}^n; \mathbb{R}^n)$$

This choice induces a family of special frames on B_G

$$z : \mathbb{R}^n \times g \to T_p(B_G)$$

such that:

- $z(A) = A$, for $A \in g$;
- $z(\mathbb{R}^n \times \{0\}) = H$, for which $c_H \in \mathcal{H}$.

These frames are actually a $G^{(1)}$-structure on B_G, called the *first prolongation of B_G* and denoted by $B_G^{(1)}$.
Prolongations of g

Definition

To understand the group $G^{(1)}$, define the first prolongation of $g \subseteq \mathbb{R}^n \otimes (\mathbb{R}^n)^*$ by

\[
g^{(1)} := \left(g \otimes (\mathbb{R}^n)^* \right) \cap \left(\mathbb{R}^n \otimes S^2((\mathbb{R}^n)^*) \right)
\]

Remark

$g^{(i)}$ may be realized as the space of multilinear symmetric functions $T: (\mathbb{R}^n)^{i+1} \to \mathbb{R}^n$ such that $\forall v_1, \ldots, v_i \in \mathbb{R}^n, v \mapsto T(v_1, \ldots, v_i, v) \in g$.

Paolo Piccione | Isometry group of Lorentz manifolds
Prolongations of g

Definition

To understand the group $G^{(1)}$, define the first prolongation of $g \subseteq \mathbb{R}^n \otimes (\mathbb{R}^n)^*$ by

$$g^{(1)} := \left(g \otimes (\mathbb{R}^n)^* \right) \cap \left(\mathbb{R}^n \otimes S^2((\mathbb{R}^n)^*) \right)$$ \hspace{1cm} (9)

We define inductively the ith prolongation of g by

$$g^{(i)} := \left(g^{(i-1)} \otimes (\mathbb{R}^n)^* \right) \cap \left(\mathbb{R}^n \otimes S^i((\mathbb{R}^n)^*) \right)$$ \hspace{1cm} (10)

Remark

$g^{(i)}$ may be realized as the space of multilinear symmetric functions $T: (\mathbb{R}^n)_{i+1} \to \mathbb{R}^n$ such that

$$\forall v_1, \ldots, v_i \in \mathbb{R}^n, \quad v \mapsto T(v_1, \ldots, v_i) \in g.$$ \hspace{1cm} (11)
Prolongations of g

Definition

To understand the group $G^{(1)}$, define the first prolongation of $g \subseteq \mathbb{R}^n \otimes (\mathbb{R}^n)^*$ by

$$g^{(1)} := \left(g \otimes (\mathbb{R}^n)^* \right) \cap \left(\mathbb{R}^n \otimes S^2((\mathbb{R}^n)^*) \right) \quad (9)$$

We define inductively the ith prolongation of g by

$$g^{(i)} := \left(g^{(i-1)} \otimes (\mathbb{R}^n)^* \right) \cap \left(\mathbb{R}^n \otimes S^i((\mathbb{R}^n)^*) \right) \quad (10)$$

Remark

$g^{(i)}$ may be realized as the space of multilinear symmetric functions $T : (\mathbb{R}^n)^{i+1} \rightarrow \mathbb{R}^n$ such that

$$\forall v_1, \ldots, v_i \in \mathbb{R}^n, \quad v \mapsto T(v_1, \ldots, v_i, v) \in g. \quad (11)$$
Definition

The group $G^{(1)} \subseteq GL(n + \dim(g))$ consists of all the matrices of the form

\[
\begin{pmatrix}
I_{\mathbb{R}^n} & 0 \\
T & I_g
\end{pmatrix},
\]

where $T \in g^{(1)}$.

Remark

In general, the Lie algebra of $G^{(i)}$ is a representation of $g^{(i)}$. If $g^{(i)} = \{0\}$ for some i, then $G^{(i)} = \{1\}$.

Prolongations of B_G
Prolongations of B_G

Definition

The group $G^{(1)} \subseteq GL(n + \dim(g))$ consists of all the matrices of the form

$$
\begin{pmatrix}
I_{\mathbb{R}^n} & 0 \\
T & I_g
\end{pmatrix},
$$

where $T \in g^{(1)}$.

We define, inductively, $G^{(i)} := (G^{(i-1)})^{(1)}$, $\forall i \geq 1$.

Remark

In general, the Lie algebra of $G^{(i)}$ is a representation of $g^{(i)}$.

If $g^{(i)} = \{0\}$ for some i, then $G^{(i)} = \{1\}$.

Paolo Piccione

Isometry group of Lorentz manifolds
Prolongations of B_G

Definition

The group $G^{(1)} \subseteq GL(n + \dim(g))$ consists of all the matrices of the form

$$
\begin{pmatrix}
I_{\mathbb{R}^n} & 0 \\
T & I_g
\end{pmatrix},
$$

where $T \in g^{(1)}$.

We define, inductively, $G^{(i)} := (G^{(i-1)})^{(1)}$, $\forall i \geq 1$.

Remark

In general, the Lie algebra of $G^{(i)}$ is a representation of $g^{(i)}$. If $g^{(i)} = \{0\}$ for some i, then $G^{(i)} = \{1\}$.

Paolo Piccione & Isometry group of Lorentz manifolds
Example

The group $O(n, \nu)$ is of finite type and order 1.
The group $O(n, \nu)$ is of finite type and order 1. To see this, let $u, v, w \in \mathbb{R}^n$ be any vectors, and let $A \in \mathfrak{o}(n, \nu)^{(1)}$. Then,

$$\langle A(u)v, w \rangle_{\mathbb{R}^n_\nu} = \langle A(v)u, w \rangle_{\mathbb{R}^n_\nu} = -\langle v, A(u)w \rangle_{\mathbb{R}^n_\nu} =$$

$$-\langle v, A(w)u \rangle_{\mathbb{R}^n_\nu} = \langle A(w)v, u \rangle_{\mathbb{R}^n_\nu} = \langle A(v)w, u \rangle_{\mathbb{R}^n_\nu} =$$

$$-\langle w, A(v)u \rangle_{\mathbb{R}^n_\nu} = -\langle A(v)u, w \rangle_{\mathbb{R}^n_\nu}, \implies A = 0. \quad (12)$$
Example

The group $O(n, \nu)$ is of finite type and order 1. To see this, let $u, v, w \in \mathbb{R}^n$ be any vectors, and let $A \in o(n, \nu)^{(1)}$. Then,

$$
\langle A(u)v, w \rangle_{\mathbb{R}^n_\nu} = \langle A(v)u, w \rangle_{\mathbb{R}^n_\nu} = -\langle v, A(u)w \rangle_{\mathbb{R}^n_\nu} =

-\langle v, A(w)u \rangle_{\mathbb{R}^n_\nu} = \langle A(w)v, u \rangle_{\mathbb{R}^n_\nu} = \langle A(v)w, u \rangle_{\mathbb{R}^n_\nu} =

-\langle w, A(v)u \rangle_{\mathbb{R}^n_\nu} = -\langle A(v)u, w \rangle_{\mathbb{R}^n_\nu}, \quad \Rightarrow \quad A = 0.
$$

(12)
The semi-Riemannian isometry group

Example

The group $O(n, \nu)$ is of finite type and order 1. To see this, let \(u, v, w \in \mathbb{R}^n \) be any vectors, and let \(A \in o(n, \nu)^{(1)} \). Then,

\[
\langle A(u)v, w \rangle_{\mathbb{R}^n_\nu} = \langle A(v)u, w \rangle_{\mathbb{R}^n_\nu} = -\langle v, A(u)w \rangle_{\mathbb{R}^n_\nu} = -\langle v, A(w)u \rangle_{\mathbb{R}^n_\nu} = \langle A(w)v, u \rangle_{\mathbb{R}^n_\nu} = \langle A(v)w, u \rangle_{\mathbb{R}^n_\nu} = -\langle w, A(v)u \rangle_{\mathbb{R}^n_\nu} = -\langle A(v)u, w \rangle_{\mathbb{R}^n_\nu}, \quad \implies \quad A = 0. \tag{12}
\]

Some other groups

- \(Sp(n) \), the symplectic group, is of \textit{infinite type}.
The semi-Riemannian isometry group

Example

The group $O(n, \nu)$ is of finite type and order 1. To see this, let $u, v, w \in \mathbb{R}^n$ be any vectors, and let $A \in \mathfrak{o}(n, \nu)^{(1)}$. Then,

$$\langle A(u)v, w \rangle_{\mathbb{R}^n} = \langle A(v)u, w \rangle_{\mathbb{R}^n} = -\langle v, A(u)w \rangle_{\mathbb{R}^n} =$$

$$-\langle v, A(w)u \rangle_{\mathbb{R}^n} = \langle A(w)v, u \rangle_{\mathbb{R}^n} = \langle A(v)w, u \rangle_{\mathbb{R}^n} =$$

$$-\langle w, A(v)u \rangle_{\mathbb{R}^n} = -\langle A(v)u, w \rangle_{\mathbb{R}^n}, \implies A = 0. \quad (12)$$

Some other groups

- $Sp(n)$, the symplectic group, is of infinite type.
- $CO(n, \nu)$, the semi-Riemannian conformal group, is of finite type and order 2, for $n > 2$.
The semi-Riemannian isometry group

Example

The group $O(n, \nu)$ is of finite type and order 1. To see this, let $u, v, w \in \mathbb{R}^n$ be any vectors, and let $A \in \mathfrak{so}(n, \nu)^{(1)}$. Then,

\[
\langle A(u)v, w \rangle_{\mathbb{R}^n_\nu} = \langle A(v)u, w \rangle_{\mathbb{R}^n_\nu} = -\langle v, A(u)w \rangle_{\mathbb{R}^n_\nu} = \\
-\langle v, A(w)u \rangle_{\mathbb{R}^n_\nu} = \langle A(w)v, u \rangle_{\mathbb{R}^n_\nu} = \langle A(v)w, u \rangle_{\mathbb{R}^n_\nu} = \\
-\langle w, A(v)u \rangle_{\mathbb{R}^n_\nu} = -\langle A(v)u, w \rangle_{\mathbb{R}^n_\nu}, \implies A = 0. \tag{12}
\]

Some other groups

- $Sp(n)$, the symplectic group, is of infinite type.
- $CO(n, \nu)$, the semi-Riemannian conformal group, is of finite type and order 2, for $n > 2$.
- In general, $\forall k \in \mathbb{N} \exists n \in \mathbb{N}$ and $G \subseteq GL(n)$ s.t. G is of finite type and has order k.

Paolo Piccione Isometry group of Lorentz manifolds
Proposition 1

There is a sequence of principle fiber bundles

\[M \xleftarrow{\pi} B_G \xleftarrow{\pi^1} B_G^{(1)} \xleftarrow{\pi^2} B_G^{(2)} \xleftarrow{\pi^3} \ldots \]

such that the structure group of \(B_G^{(i)} \) is \(G^{(i)} \). \(B_G^{(i)} \) is defined as \(\left(B_G^{(i-1)} \right)^{(1)} \).
Proposition 1

There is a sequence of principle fiber bundles

\[M \xleftarrow{\pi} B_G \xleftarrow{\pi^1} B_G^{(1)} \xleftarrow{\pi^2} B_G^{(2)} \xleftarrow{\pi^3} \ldots \]

such that the structure group of \(B_G^{(i)} \) is \(G^{(i)} \). \(B_G^{(i)} \) is defined as \((B_G^{(i-1)})^{(1)} \).

Definition

If \(g^{(i)} = \{0\} \) for some \(i \in \mathbb{N} \), we say that \(G \) (and any \(G \)-structure, for such \(G \)) is of finite type. The smallest such \(i \) is called the order of the \(G \)-structure.
Proposition 2

Let $\text{Aut}_G(M)$ be the group of automorphisms of $\pi : B_G \rightarrow M$. If $f \in \text{Aut}_G(M)$, then f_\ast is an automorphism of $B_G^{(1)}$, that is, $(f_\ast)_\ast$ is a diffeomorphism of $B_G^{(1)}$ onto $B_G^{(1)}$.
Proposition 2

Let $\text{Aut}_G(M)$ be the group of automorphisms of $\pi : B_G \to M$. If $f \in \text{Aut}_G(M)$, then f_* is an automorphism of $B_G^{(1)}$, that is, $(f_*)_*$ is a diffeomorphism of $B_G^{(1)}$ onto $B_G^{(1)}$.

Proposition 3

Let $\text{Aut}_{G(i)}(B_G^{(i-1)})$ be the group of automorphisms of $B_G^{(i)}$. The inclusions

$$\text{Aut}_G(M) \hookrightarrow \text{Aut}_{G(1)}(B_G) \hookrightarrow \text{Aut}_{G(2)}(B_G^{(1)}) \hookrightarrow \ldots$$

given by the map $*$ are group monomorphisms. Each image is closed in the C^0 topology.
Parallelisms

Notation

- M: connected manifold with a complete parallelism $\{X_1, \ldots, X_n\}$.
- G: the automorphism group of the correspondent 1-structure. Here, G is given the C^0 topology.
- $\beta_x : G \rightarrow M$: action of G on $x \in M$.

Theorem 1

Given $x \in M$, the action $\beta_x : G \rightarrow M$ is a homeomorphism onto its image, the latter with the induced topology. Moreover, $\beta_x(G)$ is a closed submanifold of M, and the differentiable structure G inherits from it makes G a Lie group, now acting smoothly on M. This differentiable structure does not depend on x.

Paolo Piccione

Isometry group of Lorentz manifolds
Parallelisms

Notation

- \(M \): connected manifold with a complete parallelism \(\{X_1, \ldots, X_n\} \).
- \(G \): the automorphism group of the correspondent 1-structure. Here, \(G \) is given the \(C^0 \) topology.
- \(\beta_x : G \to M \): action of \(G \) on \(x \in M \).

Theorem 1

Given \(x \in M \), the action \(\beta_x : G \to M \) is a homeomorphism onto its image, the latter with the induced topology. Moreover, \(\beta_x(G) \) is a closed submanifold of \(M \), and the differentiable structure \(G \) inherits from it makes \(G \) a Lie group, now acting smoothly on \(M \). This differentiable structure does not depend on \(x \).
Proof sketch

Step 1

Given $\nu = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$, define the induced vector field

$$X_\nu(x) := \sum_{i=1}^{n} \lambda_i X_i(x).$$

Denote by $\exp(\nu)$ the time 1 flow of X_ν, which is defined on a (possibly empty) open subset of M.

Paolo Piccione

Isometry group of Lorentz manifolds
Step 1

Given \(v = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \), define the induced vector field

\[
X_v(x) := \sum_{i=1}^{n} \lambda_i X_i(x).
\]

Denote by \(\exp(v) \) the time 1 flow of \(X_v \), which is defined on a (possibly empty) open subset of \(M \). Given \(x, y \in M \), there exists \(v_1, \ldots, v_k \in \mathbb{R}^n \) such that

\[
y = \exp(v_1) \circ \cdots \circ \exp(v_k)(x).
\]
Proof sketch

Step 1

Given \(\nu = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \), define the induced vector field

\[
X_{\nu}(x) := \sum_{i=1}^{n} \lambda_i X_i(x).
\]

Denote by \(\exp(\nu) \) the time 1 flow of \(X_{\nu} \), which is defined on a (possibly empty) open subset of \(M \). Given \(x, y \in M \), there exists \(\nu_1, \ldots, \nu_k \in \mathbb{R}^n \) such that

\[
y = \exp(\nu_1) \circ \cdots \circ \exp(\nu_k)(x).
\]

Using this, it’s easy to prove that \(G \) acts freely on \(M \) and that, given \(x \in M \) and \(g \in G \), if \(\{g_i\}_{i \in \mathbb{N}} \) is a sequence on \(G \) such that \(g_i(x) \rightarrow g(x) \), then \(g_i \rightarrow g \) in the compact-open topology.
Proof sketch

Step 2

In order to show that $\beta_x(G)$ is closed in M, consider a sequence $\{g_i(x)\}_{i \in \mathbb{N}}$ such that $g_i(x) \to q \in M$.

We introduce a Riemannian metric on M such that G becomes a subgroup of $\text{Iso}(M)$. Since Riemannian isometries are equicontinuous, an application of Arzelá-Ascoli yields a limit $g \in \text{Iso}(M)$ for the sequence $\{g_i(x)\}_{i \in \mathbb{N}}$. This g actually belongs to G, since it will commute with the flows the form $\exp(v)$, for $v \in \mathbb{R}^n$. It is then easy to see that $g(x) = q$, so that $\beta_x(G)$ is closed.
Step 2

In order to show that $\beta_x(G)$ is closed in M, consider a sequence $\{g_i(x)\}_{i \in \mathbb{N}}$ such that $g_i(x) \to q \in M$.

We introduce a Riemannian metric on M such that G becomes a subgroup of $\text{Iso}(M)$. It is then easy to see that $g_i(x) = q$, so that $\beta_x(G)$ is closed.
Proof sketch

Step 2

In order to show that $\beta_x(G)$ is closed in M, consider a sequence $\{g_i(x)\}_{i \in \mathbb{N}}$ such that $g_i(x) \to q \in M$.

We introduce a Riemannian metric on M such that G becomes a subgroup of $Iso(M)$.

Since Riemannian isometries are equicontinuous, an application of Arzelá-Ascoli yields a limit $g \in Iso(M)$ for the sequence $\{g_i\}_{i \in \mathbb{N}}$. This g actually belongs to G, since it will commute with the flows the form $\exp(v)$, for $v \in \mathbb{R}^n$. It is then easy to see that $g(x) = q$, so that $\beta_x(G)$ is closed.
Proof sketch

Step 3

Consider the sets

\[D_x := \{ v \in T_x M : \exp(sv) \text{ exists and belongs to } \beta_x(G), \forall s \in \mathbb{R} \} \]

One can show that \(D \) is actually a smooth, integrable distribution on \(M \).
Proof sketch

Step 3

Consider the sets

\[D_x := \{ v \in T_x M : \exp(sv) \text{ exists and belongs to } \beta_x(G), \forall s \in \mathbb{R} \}. \]

One can show that \(D \) is actually a smooth, integrable distribution on \(M \).

The maximal, connected, integral submanifolds of \(D \) that intersect \(\beta_x(G) \) are precisely the connected components of \(\beta_x(G) \). Thus, \(\beta_x(G) \) naturally inherits a differentiable structure from these submanifolds.
Proof sketch

Step 3

Consider the sets

\[D_x := \{ v \in T_x M : \exp(sv) \text{ exists and belongs to } \beta_x(G), \forall s \in \mathbb{R} \}. \]

One can show that \(D \) is actually a smooth, integrable distribution on \(M \).

The maximal, connected, integral submanifolds of \(D \) that intersect \(\beta_x(G) \) are precisely the connected components of \(\beta_x(G) \). Thus, \(\beta_x(G) \) naturally inherits a differentiable structure from these submanifolds.

As a consequence of this, we may give \(G \) a differentiable structure, using \(\beta_x \). This differentiable structure does not depend on \(x \in M \), and it makes \(G \) a Lie group, acting smoothly on \(M \). ■
Remark

Let $\pi : B_H \rightarrow N$ be a H-structure of finite type and order k. To conclude that $\text{Aut}_H(N)$ is a Lie group, we must apply Theorem 1 in the following context:

$$M = B(k-1)_H \quad G = \text{Aut}_H(k)(B(k-1)_H)$$

But M, being the total space of a fibre bundle whose structure group is possibly non-connected, may be non-connected itself. Thus, we need a more general version of Theorem 1.
Remark

Let $\pi : B_H \to N$ be a H-structure of finite type and order k.

In order to conclude that $\text{Aut}_H(N)$ is a Lie group, we must apply Theorem 1 in the following context:

- $M = B_H^{(k-1)}$
- $G = \text{Aut}_{H(k)}(B_H^{(k-1)})$

But M, being the total space of a fibre bundle whose structure group is possibly non-connected, may be non-connected itself.

Thus, we need a more general version of Theorem 1.
The non-connected case

Lemma

Let G_0 be a normal subgroup of a purely algebraic group G such that G/G_0 is at most countable. Suppose G_0 is a Lie group and the maps $h \mapsto ghg^{-1}$ from G_0 to itself are smooth, for every $g \in G$.

Then, G admits a Lie group structure such that G_0 is an open Lie subgroup.
The non-connected case

Lemma

Let G_0 be a normal subgroup of a purely algebraic group G such that G/G_0 is at most countable. Suppose G_0 is a Lie group and the maps $h \mapsto ghg^{-1}$ from G_0 to itself are smooth, for every $g \in G$.

Then, G admits a Lie group structure such that G_0 is an open Lie subgroup.

Theorem 2

Let M be a smooth manifold of dimension n such that

$$M = M_1 \cup \ldots \cup M_k,$$

where each M_i is connected. If M has complete parallelism, the automorphism group of the corresponding 1-structure is a Lie group with respect to the compact-open topology.
The non-connected case

Proof sketch

By Theorem 1, each $\text{Aut}_1(M_i)$ is a Lie group with respect to the compact-open topology, and the same is true for the product

$$G_0 := \prod_{i=1}^{k} \text{Aut}_1(M_i)$$
By Theorem 1, each $\text{Aut}_1(M_i)$ is a Lie group with respect to the compact-open topology, and the same is true for the product

$$G_0 := \prod_{i=1}^{k} \text{Aut}_1(M_i)$$

G_0 is a normal subgroup of $\text{Aut}_1(M)$, of index at most $k!$, satisfying the conditions stated in the previous Lemma. The topology obtained using the Lemma is precisely the compact-open topology. □
The non-connected case

Proof sketch

By Theorem 1, each $\text{Aut}_1(M_i)$ is a Lie group with respect to the compact-open topology, and the same is true for the product

$$G_0 := \prod_{i=1}^{k} \text{Aut}_1(M_i)$$

G_0 is a normal subgroup of $\text{Aut}_1(M)$, of index at most $k!$, satisfying the conditions stated in the previous Lemma. The topology obtained using the Lemma is precisely the compact-open topology. ■

Corollary

The automorphism group of a G-structure of finite type and order k is a Lie group, with respect to the topology of C^k-uniform convergence over compact sets.
First examples of Lorentz isometries:

Constant curvature models
Zero curvature: Lorentz–Minkowski space

\[M = \mathbb{R}^n + 1 = \left\{ (x_0, x_1, ..., x_n) : x_i \in \mathbb{R} \right\} \]

\[g = \begin{pmatrix} \cdots \ \cdots \ \cdots \ \cdots \\
-1 & 1 & 0 & 0 \\
1 & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots \\
0 & 0 & \cdots & -1 \end{pmatrix} \]

Linear isometries:

\[O(1, n) = \left\{ T \in \text{GL}(n+1) : T^t L = L \right\} \text{ non compact} \]

Transitive actions

On spheres:

\[S_c = \left\{ v \in \mathbb{R}^{n+1} : g(v, v) = c \right\}, \quad c \in \mathbb{R} \]

On planes:

\[P^+ = \left\{ P \subset \mathbb{R}^{n+1}, \text{dim}(P) = 2, P \text{ spacelike} \right\} \]

\[P_0^+ = \left\{ P \subset \mathbb{R}^{n+1}, \text{dim}(P) = 2, P \text{ lightlike} \right\} \]

\[P^- = \left\{ P \subset \mathbb{R}^{n+1}, \text{dim}(P) = 2, P \text{ timelike} \right\} \]

On subspaces with fixed \(g \)-signature.
Zero curvature: Lorentz–Minkowski space

\[M = \mathbb{R}^{n+1} = \{(x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R}\} \]
Zero curvature: Lorentz–Minkowski space

- $M = \mathbb{R}^{n+1} = \{(x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R}\}$

- $g = \langle L_{1,n}(\cdot), \cdot \rangle$, $L = \begin{pmatrix} -1 & & 0 \\ & 1 & \vdots \\ 0 & \ddots & 1 \end{pmatrix}$
Zero curvature: Lorentz–Minkowski space

\[M = \mathbb{R}^{n+1} = \{(x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R}\} \]

\[g = \langle L_{1,n}(\cdot), \cdot \rangle, \quad L = \begin{pmatrix} -1 & 0 \\ 1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 1 \end{pmatrix} \]

Linear isometries:
\[O(1, n) = \{ T \in \text{GL}(n + 1) : T^t L_{1,n} T = L_{1,n} \} \text{ non compact.} \]
Zero curvature: Lorentz–Minkowski space

\[M = \mathbb{R}^{n+1} = \{(x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R}\} \]

\[g = \langle L_{1,n}(\cdot), \cdot \rangle, \quad L = \begin{pmatrix} -1 & 0 \\ 1 & 0 \\ 0 & \ddots \\ 0 & \ddots & 1 \end{pmatrix} \]

Linear isometries:
\[\text{O}(1,n) = \{ T \in \text{GL}(n+1) : T^tL_{1,n}T = L_{1,n} \} \text{ non compact.} \]

Transitive actions

- **On spheres:** \(S_c = \{ v \in \mathbb{R}^{n+1} : g(v, v) = c \}, \ c \in \mathbb{R}. \)
Zero curvature: Lorentz–Minkowski space

- \(M = \mathbb{R}^{n+1} = \{ (x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R} \} \)

- \(g = \left\langle L_{1,n}(\cdot), \cdot \right\rangle \), \(L = \begin{pmatrix} -1 & 0 \\ 1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 1 \end{pmatrix} \)

- **Linear isometries:**
 \(O(1, n) = \{ T \in \text{GL}(n+1) : T^t L_{1,n} T = L_{1,n} \} \) \(\text{non compact.} \)

Transitive actions

- **On spheres:** \(S_c = \{ v \in \mathbb{R}^{n+1} : g(v, v) = c \}, c \in \mathbb{R} \).

- **On planes:**
 - \(\mathbb{P}^+_2 = \{ P \subset \mathbb{R}^{n+1}, \ \text{dim}(P) = 2, \ P \text{ spacelike} \} \)
 - \(\mathbb{P}^0_2 = \{ P \subset \mathbb{R}^{n+1}, \ \text{dim}(P) = 2, \ P \text{ lightlike} \} \)
 - \(\mathbb{P}^-_2 = \{ P \subset \mathbb{R}^{n+1}, \ \text{dim}(P) = 2, \ P \text{ timelike} \} \)
Zero curvature: Lorentz–Minkowski space

- $M = \mathbb{R}^{n+1} = \{(x_0, x_1, \ldots, x_n) : x_i \in \mathbb{R}\}$

- $g = \left\langle L_{1,n}(\cdot), \cdot \right\rangle$, $L = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$

- Linear isometries: $O(1, n) = \{ T \in GL(n+1) : T^t L_{1,n} T = L_{1,n} \}$ non compact.

Transitive actions

- On spheres: $S_c = \{ v \in \mathbb{R}^{n+1} : g(v, v) = c \}$, $c \in \mathbb{R}$.

- On planes:
 - $\mathbb{P}^+ = \{ P \subset \mathbb{R}^{n+1}, \dim(P) = 2, P \text{ spacelike} \}$
 - $\mathbb{P}^0 = \{ P \subset \mathbb{R}^{n+1}, \dim(P) = 2, P \text{ lightlike} \}$
 - $\mathbb{P}^- = \{ P \subset \mathbb{R}^{n+1}, \dim(P) = 2, P \text{ timelike} \}$

- On subspaces with fixed g-signature.
The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n) \]

Observations:

- \(O(1, n) \) has four connected components.

Proof of ***.

If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM}) \) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore \(T \) is linear.

Homogeneous space structure:

Stabilizer of \(e_n = (0, 0, \ldots, 0, 1) \):

\[O(1, n-1) \sim (\mathbb{R}^{n+1} \rtimes O(1, n))/O(1, n-1) \]
The full isometry group of Lorentz–Minkowski space

$$\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes \text{O}(1, n)$$

Observe:

$$\text{O}(1, n)$$ has four connected components.

Proof of ***.

If $$T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM})$$ fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore $$T$$ is linear.

Homogeneous space structure:

Stabilizer of $$e^n = (0, 0, \ldots, 0, 1)$$: $$\text{O}(1, n - 1)$$

$$\left(\mathbb{R}^{n+1} \rtimes \text{O}(1, n)\right)/\text{O}(1, n - 1)$$
The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n) \]

\(\mathbb{R}^{n+1} = \) translations
The full isometry group of Lorentz–Minkowski space

$$\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n)$$

$\mathbb{R}^{n+1} = \text{translations}$

$O(1, n) = \text{linear isometries}$

Observe:

$O(1, n)$ has four connected components.

Proof of ***.

If $T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM})$ fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore T is linear.

Homogeneous space structure:

Stabilizer of $e_n = (0, 0, \ldots, 0, 1)$:

$$O(1, n-1)$$

$$\mathbb{R}^{n+1} \sim = \left(\mathbb{R}^{n+1} \rtimes O(1, n) \right)/O(1, n-1)$$
The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n) \]

\(\mathbb{R}^{n+1} = \) translations
\(O(1, n) = \) linear isometries

Observe: \(O(1, n) \) has **four** connected components.
The full isometry group of Lorentz–Minkowski space

\[
\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n)
\]

\[\mathbb{R}^{n+1} = \text{translations}\]
\[O(1, n) = \text{linear isometries}\]

Observe: \(O(1, n)\) has four connected components.

Proof of *.** If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM})\) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics),

Paolo Piccione Isometry group of Lorentz manifolds
The full isometry group of Lorentz–Minkowski space

\[
\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n)
\]

\(\mathbb{R}^{n+1}\) = translations

\(O(1, n)\) = linear isometries

Observe: \(O(1, n)\) has four connected components.

Proof of *.** If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM})\) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore \(T\) is linear.
The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \rtimes O(1, n) \]

\[\mathbb{R}^{n+1} = \text{translations} \]
\[O(1, n) = \text{linear isometries} \]

Observe: \(O(1, n) \) has four connected components.

Proof of *.** If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM}) \) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore \(T \) is linear.

Homogeneous space structure:

The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \ltimes O(1, n) \]

\[\mathbb{R}^{n+1} = \text{translations} \]

\[O(1, n) = \text{linear isometries} \]

Observe: \(O(1, n) \) has **four** connected components.

Proof of *.** If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM}) \) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore \(T \) is linear.

Homogeneous space structure:

Stabilizer of \(e_n = (0, 0, \ldots, 0, 1) \): \(O(1, n - 1) \)
The full isometry group of Lorentz–Minkowski space

\[\text{Iso}(\mathbb{R}^{n+1}, g_{LM}) = \mathbb{R}^{n+1} \ltimes O(1, n) \]

\[\mathbb{R}^{n+1} = \text{translations} \]
\[O(1, n) = \text{linear isometries} \]

Observe: \(O(1, n) \) has four connected components.

Proof of *.** If \(T \in \text{Iso}(\mathbb{R}^{n+1}, g_{LM}) \) fixes 0, then it sends lines through 0 into lines through 0 (because they are geodesics), and therefore \(T \) is linear.

Homogeneous space structure:
Stabilizer of \(e_n = (0, 0, \ldots, 0, 1) \): \(O(1, n - 1) \)

\[(\mathbb{R}^{n+1}, g_{LM}) \cong (\mathbb{R}^n \ltimes O(1, n))/O(1, n - 1) \]
Positive curvature model: de Sitter space

\(n \)-dimensional de Sitter space: \((dS^n, g_{dS^n})\)
Positive curvature model: de Sitter space

n-dimensional de Sitter space: (dS^n, g_{dS^n})

\[
dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, nx, x \rangle = 1 \right\}
\]
Positive curvature model: de Sitter space

n-dimensional de Sitter space: \((dS^n, g_{dS^n})\)

\[
dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, n x, x \rangle = 1 \right\}
\]

\[
g_{dS^n} = g_{LM} \big|_{dS^n}
\]
Positive curvature model: de Sitter space

n-dimensional de Sitter space: (dS^n, g_{dS^n})

\[dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, n, x, x \rangle = 1 \right\} \]

\[g_{dS^n} = g_{LM} \bigg|_{dS^n} \]

\[\text{Iso}(dS^n, g_{dS^n}) = O(1, n) \]
Positive curvature model: de Sitter space

n-dimensional de Sitter space: (dS^n, g_{dS^n})

\[
dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, n x, x \rangle = 1 \right\}
\]

\[
g_{dS^n} = g_{LM}\big|_{dS^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = O(1, n)
\]

Homogeneous space structure:
Positive curvature model: de Sitter space

\(n \)-dimensional de Sitter space: \((dS^n, g_{dS^n})\)

\[
dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, nx, x \rangle = 1 \right\}
\]

\[
g_{dS^n} = g_{LM} \bigg|_{dS^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = O(1, n)
\]

Homogeneous space structure:
Stabilizer of \(e_{n+1} = (0, 0, \ldots, 0, 1) \): \(O(1, n - 1) \)
Positive curvature model: de Sitter space

n-dimensional de Sitter space: \((dS^n, g_{dS^n})\)

\[
dS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_1, nx, x \rangle = 1 \right\}
\]

\[
g_{dS^n} = g_{LM} \big|_{dS^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = O(1, n)
\]

Homogeneous space structure:
Stabilizer of \(e_{n+1} = (0, 0, \ldots, 0, 1)\): \(O(1, n-1)\)

\[
(dS^n, g_{dS^n}) \cong O(1, n)/O(1, n-1)
\]
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: (AdS^n, g_{AdS^n})
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: \((AdS^n, g_{AdS^n})\)

\[
AdS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1} x, x \rangle = -1 \right\}
\]
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: \((\text{AdS}^n, g_{\text{AdS}^n})\)

\[
\text{AdS}^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1}x, x \rangle = -1 \right\}
\]

\[
g_{\text{AdS}^n} = g_{\text{LM}} \Big|_{\text{AdS}^n}
\]
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: \((AdS^n, g_{AdS^n})\)

\[
AdS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1} x, x \rangle = -1 \right\}
\]

\[
g_{AdS^n} = g_{LM} \bigg|_{AdS^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = O(2, n-1)
\]
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: \((AdS^n, g_{AdS^n})\)

\[
AdS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1} x, x \rangle = -1 \right\}
\]

\[
g_{AdS^n} = g_{LM} \bigg|_{AdS^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = O(2, n - 1)
\]

Homogeneous space structure:
Negative curvature model: anti-de Sitter space

n-dimensional Anti de Sitter space: $(\text{AdS}^n, g_{\text{AdS}^n})$

\[
\text{AdS}^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1} x, x \rangle = -1 \right\}
\]

\[
g_{\text{AdS}^n} = g_{\text{LM}} \big|_{\text{AdS}^n}
\]

\[
\text{Iso}(dS^n, g_{dS^n}) = \text{O}(2, n-1)
\]

Homogeneous space structure:
Stabilizer of $e_1 = (1, 0, \ldots, 0)$: $\text{O}(1, n-1)$
n-dimensional Anti de Sitter space: (AdS^n, g_{AdS^n})

$$AdS^n = \left\{ x \in \mathbb{R}^{n+1} : \langle L_{2,n-1} x, x \rangle = -1 \right\}$$

$$g_{AdS^n} = g_{LM} \bigg|_{AdS^n}$$

$$\text{Iso}(dS^n, g_{dS^n}) = O(2, n-1)$$

Homogeneous space structure:
Stabilizer of $e_1 = (1, 0, \ldots, 0)$: $O(1, n-1)$

$$(AdS^n, g_{AdS^n}) \cong O(2, n-1)/O(1, n-1)$$
Lack of compactness of $\text{Iso}(M, g)$

Unlike Riemannian isometries, Lorentzian isometries:

- need not be *equicontinuous*
- may generate *chaotic dynamics* on the manifold
Lack of compactness of $\text{Iso}(M, g)$

Unlike Riemannian isometries, Lorentzian isometries:

- need not be *equicontinuous*
- may generate *chaotic dynamics* on the manifold

Example

Dynamics of Lorentzian isometries can be of *Anosov type*, evocative of the fact that in General Relativity one can have contractions in time and expansion in space.
Lack of compactness of $\text{Iso}(M, g)$

Unlike Riemannian isometries, Lorentzian isometries:

- need not be *equicontinuous*
- may generate *chaotic dynamics* on the manifold

Example

Dynamics of Lorentzian isometries can be of *Anosov type*, evocative of the fact that in General Relativity one can have contractions in time and expansion in space.

- q Lorentzian quadratic form in \mathbb{R}^n,
 $\text{Iso}(\mathbb{R}^{n+1}, q) = O(q) \cong O(n, 1)$ non compact.
Lack of compactness of $\text{Iso}(M, g)$

Unlike Riemannian isometries, Lorentzian isometries:

- need not be *equicontinuous*
- may generate *chaotic dynamics* on the manifold

Example

Dynamics of Lorentzian isometries can be of *Anosov type*, evocative of the fact that in General Relativity one can have contractions in time and expansion in space.

- q Lorentzian quadratic form in \mathbb{R}^n, $\text{Iso}(\mathbb{R}^{n+1}, q) = O(q) \cong O(n, 1)$ non compact.
- The *orthogonal frame bundle* $\text{Fr}(M, g)$ has non compact fibers. $\text{Iso}(M, g)$ is identified topologically with any of its orbits in $\text{Fr}(M, g)$.
An easy examples of non compactness (D’Ambra)

Consider

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$$

satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
 - Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1 - 1$
 - e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting

$$g(e_1, e_1) = g(e_2, e_2) = 0, g(e_1, e_2) = 1.$$

g induces a (flat) metric on the torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$

A is an isometry of (\mathbb{R}^2, g) and also of (T^2, g).

$\text{Iso}(T^2, g)$ is not compact, since $A_k \to \infty$ as $k \to +\infty$ ($\lambda_k \to \infty$).
An easy examples of non compactness (D’Ambra)

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):

$$\text{Eigenvalues: } \lambda_1, \lambda_2 \in \mathbb{R}, \quad \lambda_1 > 1, \quad \lambda_2 = \lambda_1 - 1$$

Define a Lorentz metric g on \mathbb{R}^2 by setting $g(e_1, e_1) = g(e_2, e_2) = 0$, $g(e_1, e_2) = 1$.

g induces a (flat) metric on the torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$. A is an isometry of (\mathbb{R}^2, g) and also of (T^2, g).

$Iso(T^2, g)$ is not compact, since $A_k \to \infty$ as $k \to +\infty$ ($\lambda_k \to \infty$).
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$

g induces a (flat) metric on the torus $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. A is an isometry of (\mathbb{R}^2, g) and also of (\mathbb{T}^2, g). $\mathrm{Iso}(\mathbb{T}^2, g)$ is not compact, since $A^k \to \infty$ as $k \to +\infty$ ($\lambda_k \to \infty$).
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

g induces a (flat) metric on the torus $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$

A is an isometry of (\mathbb{R}^2, g) and also of (\mathbb{T}^2, g)

$\text{Iso}(\mathbb{T}^2, g)$ is not compact, since $A^k \to \infty$ as $k \to +\infty$ ($\lambda_k \to \infty$)
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting $g(e_1, e_1) = g(e_2, e_2) = 0$, $g(e_1, e_2) = 1$.

$\text{Iso}(T^2, g)$ is not compact, since $A_k \to \infty$ as $k \to +\infty$ ($\lambda_k \to \infty$).
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting $g(e_1, e_1) = g(e_2, e_2) = 0$, $g(e_1, e_2) = 1$.

- g induces a (flat) metric on the torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting

$g(e_1, e_1) = g(e_2, e_2) = 0$, $g(e_1, e_2) = 1$.

- g induces a (flat) metric on the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$
- A is an isometry of (\mathbb{R}^2, g)
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 > 1$, $\lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting $g(e_1, e_1) = g(e_2, e_2) = 0$, $g(e_1, e_2) = 1$.
- g induces a (flat) metric on the torus $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$
- A is an isometry of (\mathbb{R}^2, g) and also of (\mathbb{T}^2, g)
Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ satisfying:

- A diagonalizable on \mathbb{R} (for instance, $b = c$):
- Eigenvalues: $\lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 > 1, \lambda_2 = \lambda_1^{-1}$
- e_1, e_2 eigenvectors

Define a Lorentz metric g on \mathbb{R}^2 by setting $g(e_1, e_1) = g(e_2, e_2) = 0, g(e_1, e_2) = 1$.

- g induces a (flat) metric on the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$
- A is an isometry of (\mathbb{R}^2, g) and also of (\mathbb{T}^2, g)
- $\text{Iso}(\mathbb{T}^2, g)$ is not compact, since $A^k \to \infty$ as $k \to +\infty$ ($\lambda_1^k \to \infty$)
A slightly more elaborate example

A quadratic form on \mathbb{R}^n induces a flat metric on $T^n = \mathbb{R}^n / \mathbb{Z}^n$.

"Linear" isometry group of (T^n, q):

$$O(q, \mathbb{Z}) = GL(n, \mathbb{Z}) \cap O(q)$$

Full isometry group:

$$O(q, \mathbb{Z}) \ltimes T^n$$

for generic q, $O(q, \mathbb{Z}) = \{1\}$

if q is rational, then $O(q, \mathbb{Z})$ is big (a lattice in $O(q)$, by Harich–Chandra–Borel thm)

when q is not rational, many intermediate situations, can be co-compact.

Isometry group of Lorentz manifolds
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
- q induces a flat metric on $T^n = \mathbb{R}^n/\mathbb{Z}^n$
A slightly more elaborate example

- \(q \) quadratic form on \(\mathbb{R}^n \)
- \(q \) induces a flat metric on \(\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n \)
- “linear” isometry group of \((\mathbb{T}^n, q)\):
 \[
 \text{O}(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap \text{O}(q)
 \]
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
- q induces a flat metric on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$
- "linear" isometry group of (\mathbb{T}^n, q):

 \[
 O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)
 \]
- full isometry group: $O(q, \mathbb{Z}) \ltimes \mathbb{T}^n$

Paolo Piccione

Isometry group of Lorentz manifolds
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
- q induces a flat metric on $T^n = \mathbb{R}^n / \mathbb{Z}^n$
- “linear” isometry group of (T^n, q):
 \[O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q) \]
- full isometry group: $O(q, \mathbb{Z}) \rtimes T^n$
- for generic q, $O(q, \mathbb{Z}) = \{1\}$
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
- q induces a flat metric on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$
- “linear” isometry group of (\mathbb{T}^n, q): $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
- full isometry group: $O(q, \mathbb{Z}) \ltimes \mathbb{T}^n$
- for generic q, $O(q, \mathbb{Z}) = \{1\}$
- if q is rational, then $O(q, \mathbb{Z})$ is big (a lattice in $O(q)$, by Harich–Chandra–Borel thm)
A slightly more elaborate example

- q quadratic form on \mathbb{R}^n
- q induces a flat metric on $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- “linear” isometry group of (\mathbb{T}^n, q):
 \[
 O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)
 \]
- full isometry group: $O(q, \mathbb{Z}) \rtimes \mathbb{T}^n$
- for generic q, $O(q, \mathbb{Z}) = \{1\}$
- if q is rational, then $O(q, \mathbb{Z})$ is big (a lattice in $O(q)$, by Harich–Chandra–Borel thm)
- when q is not rational, many intermediate situations, can be co-compact.
Homogeneous Lorentz Geometries

A Lie group, $H \subset G$ closed subgroup, a homogeneous space G/H is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor.

A compact manifold M is locally modeled by $(G, G/H)$ (or, M is a realization of $(G, G/H)$ if there exists an atlas of charts of M taking values in an open subset with transition maps in G.

In this case, all G-invariant objects on G/H pass to M.

$(G, G/H)$ is maximal if $\not\exists H' \supset G$ acting on G/H. W. Thurston (1983): classification of maximal Riemannian 3-geometries that admit a compact realization.

Paolo Piccione

Isometry group of Lorentz manifolds
Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
- $(G, G/H)$ is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor

Paolo Piccione
Isometry group of Lorentz manifolds
Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
- $(G, G/H)$ is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor
- A compact manifold M is locally modeled by $(G, G/H)$ (or, M is a realization of $(G, G/H)$ if there exists an atlas of charts of M taking values in open subset with transition maps in G

Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
- $(G, G/H)$ is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor
- A compact manifold M is locally modeled by $(G, G/H)$ (or, M is a realization of $(G, G/H)$ if there exists an atlas of charts of M taking values in open subset with transition maps in G
- In this case, all G-invariant objects on G/H pass to M

Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
- $(G, G/H)$ is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor
- A compact manifold M is locally modeled by $(G, G/H)$ (or, M is a realization of $(G, G/H)$ if there exists an atlas of charts of M taking values in open subset with transition maps in G
- In this case, all G-invariant objects on G/H pass to M
- $(G, G/H)$ is maximal if $\not\exists G' \supsetneq G$ acting on G/H

Paolo Piccione

Isometry group of Lorentz manifolds
Homogeneous Lorentz Geometries

- G Lie group, $H \subset G$ closed subgroup
- homogeneous space G/H
- $(G, G/H)$ is a Lorentz geometry if the action of G on G/H preserves a Lorentzian metric tensor
- A compact manifold M is locally modeled by $(G, G/H)$ (or, M is a realization of $(G, G/H)$ if there exists an atlas of charts of M taking values in open subset with transition maps in G
- In this case, all G-invariant objects on G/H pass to M
- $(G, G/H)$ is maximal if $\not\exists G' \supsetneq G$ acting on G/H
Examples of Lorentzian 3-geometries

Lorentz Minkowski:
\[(\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1,2)) / O(1,2)\]

de Sitter:
\[(dS^3, g_{dS}) = O(1,3) / O(1,2)\]

By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act properly on dS\(n\)).

anti de Sitter:
\[(AdS^3, g_{AdS}) = O(2,2) / O(1,2)\]

Alternative description:
\[SL(2,\mathbb{R}) \times \mathbb{R}\]

Lorentz–Heisenberg geometry
Lorentz–Sol geometry

Paolo Piccione
Isometry group of Lorentz manifolds
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski:** \((\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1, 2))/O(1, 2)\)

By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act properly on \(dS^n\)).

- **Anti de Sitter:** \((AdS^3, g_{AdS}) = O(2, 2)/O(1, 2)\)

Alternative description: \(SL(2, \mathbb{R})\) Lorentz–Heisenberg geometry Lorentz–Sol 3-geometry
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski:** $(\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \ltimes O(1, 2))/O(1, 2)$

- **de Sitter:** $(dS^3, g_{dS}) = O(1, 3)/O(1, 2)$
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski:** $(\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1,2))/O(1,2)$

- **de Sitter:** $(dS^3, g_{dS}) = O(1,3)/O(1,2)$
 By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act *properly* on dS^n).
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski:** \((\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1,2))/O(1,2)\)

- **de Sitter:** \((dS^3, g_{dS}) = O(1,3)/O(1,2)\)
 By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act *properly* on \(dS^n\)).

- **anti de Sitter:** \((AdS^3, g_{AdS}) = O(2,2)/O(1,2)\)
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski**: \((\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1, 2))/O(1, 2)\)

- **de Sitter**: \((dS^3, g_{dS}) = O(1, 3)/O(1, 2)\)
 By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act properly on \(dS^n\)).

- **anti de Sitter**: \((AdS^3, g_{AdS}) = O(2, 2)/O(1, 2)\)
 Alternative description: \(SL(2, \mathbb{R})\)
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski**: \((\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1, 2))/O(1, 2)\)

- **de Sitter**: \((dS^3, g_{dS}) = O(1, 3)/O(1, 2)\)
 By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act *properly* on \(dS^n\)).

- **anti de Sitter**: \((AdS^3, g_{AdS}) = O(2, 2)/O(1, 2)\)
 Alternative description: \(SL(2, \mathbb{R})\)

- **Lorentz–Heisenberg geometry**
Examples of Lorentzian 3-geometries

- **Lorentz Minkowski:** \((\mathbb{R}^3, g_{LM}) = (\mathbb{R}^3 \rtimes O(1, 2))/O(1, 2)\)

- **de Sitter:** \((dS^3, g_{dS}) = O(1, 3)/O(1, 2)\)
 By a result of E. Calabi (1963), it does not have compact realizations (only finite groups can act *properly* on \(dS^n\)).

- **anti de Sitter:** \((AdS^3, g_{AdS}) = O(2, 2)/O(1, 2)\)
 Alternative description: \(SL(2, \mathbb{R})\)

- Lorentz–Heisenberg geometry

- **Lorentz–Sol\(_3\) geometry**
The solvable case: $\text{SL}(2, \mathbb{R})$

- \(G = \text{SL}(2, \mathbb{R})\) semi-simple Lie group, \(\dim(G) = 3\)

- Lorentzian Killing form on \(\text{sl}(2, \mathbb{R})\):
 \[\langle A, B \rangle = \text{tr}(AB)\]

- Bi-invariant Lorentz metric \(g\) on \(\text{SL}(2, \mathbb{R})\)

- Iso\(0(\text{SL}(2, \mathbb{R}))\) = \(\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R})/Z \sim \text{O}(2, 2)\)

- \(Z\) group generated by \((-I_2, -I_2)\)

- \(\text{Iso}(M, g)\) isometric to \(\text{AdS}_3\)

- \(\Gamma \subset \text{SL}(2, \mathbb{R})\) co-compact lattice (i.e., discrete subgroup with \(M = G/\Gamma\) compact), then \((M, g)\) is a compact homogeneous Lorentz manifold

- \(\text{Iso}(0(M, g)) = \text{PSL}(2, \mathbb{R})\) (non compact)
The solvable case: $\text{SL}(2, \mathbb{R})$

- $G = \text{SL}(2, \mathbb{R})$ semi-simple Lie group, $\dim(G) = 3$
The solvable case: $\text{SL}(2, \mathbb{R})$

- $G = \text{SL}(2, \mathbb{R})$ semi-simple Lie group, $\dim(G) = 3$
- *Lorentzian* Killing form on $\mathfrak{sl}(2, \mathbb{R})$: $\langle A, B \rangle = \text{tr}(AB)$
The solvable case: $SL(2, \mathbb{R})$

- $G = SL(2, \mathbb{R})$ semi-simple Lie group, $\dim(G) = 3$
- *Lorentzian* Killing form on $\mathfrak{sl}(2, \mathbb{R})$: $\langle A, B \rangle = \text{tr}(AB)$
- bi-invariant Lorentz metric g on $SL(2, \mathbb{R})$
The solvable case: $\text{SL}(2, \mathbb{R})$

- $G = \text{SL}(2, \mathbb{R})$ semi-simple Lie group, $\dim(G) = 3$
- Lorentzian Killing form on $\mathfrak{sl}(2, \mathbb{R})$: $\langle A, B \rangle = \text{tr}(AB)$
- bi-invariant Lorentz metric g on $\text{SL}(2, \mathbb{R})$
- $\text{Iso}_0(\text{SL}(2, \mathbb{R})) = (\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R}))/Z \cong O_0(2, 2)$
 Z group generated by $(-I_2, -I_2)$
The solvable case: $SL(2, \mathbb{R})$

- $G = SL(2, \mathbb{R})$ semi-simple Lie group, $\dim(G) = 3$
- Lorentzian Killing form on $\mathfrak{sl}(2, \mathbb{R})$: $\langle A, B \rangle = \text{tr}(AB)$
- bi-invariant Lorentz metric g on $SL(2, \mathbb{R})$
- $\text{Iso}_0(SL(2, \mathbb{R})) = (SL(2, \mathbb{R}) \times SL(2, \mathbb{R})) / Z \cong O_0(2, 2)$
 - Z group generated by $(-I_2, -I_2)$
- $(SL(2, \mathbb{R}), g)$ isometric to AdS^3
The solvable case: \(SL(2, \mathbb{R}) \)

- \(G = SL(2, \mathbb{R}) \) semi-simple Lie group, \(\dim(G) = 3 \)
- \textit{Lorentzian} Killing form on \(\mathfrak{sl}(2, \mathbb{R}) \): \(\langle A, B \rangle = \text{tr}(AB) \)
- bi-invariant Lorentz metric \(g \) on \(SL(2, \mathbb{R}) \)
- \(\text{Iso}_0(SL(2, \mathbb{R})) = (SL(2, \mathbb{R}) \times SL(2, \mathbb{R})) / Z \cong O_0(2, 2) \)

 \(Z \) group generated by \((-I_2, -I_2) \)
- \((SL(2, \mathbb{R}), g) \) isometric to \(AdS^3 \)
- \(\Gamma \subset SL(2, \mathbb{R}) \) co-compact lattice (i.e., discrete subgroup with \(M = G/\Gamma \) compact), then \((M, g) \) is a compact homogeneous Lorentz manifold
The solvable case: $SL(2, \mathbb{R})$

- $G = SL(2, \mathbb{R})$ semi-simple Lie group, $\text{dim}(G) = 3$
- *Lorentzian* Killing form on $\mathfrak{sl}(2, \mathbb{R})$: $\langle A, B \rangle = \text{tr}(AB)$
- bi-invariant Lorentz metric g on $SL(2, \mathbb{R})$
- $\text{Iso}_0(SL(2, \mathbb{R})) = (SL(2, \mathbb{R}) \times SL(2, \mathbb{R}))/Z \cong O_0(2, 2)$
 - Z group generated by $(-I_2, -I_2)$
- $(SL(2, \mathbb{R}), g)$ isometric to AdS^3
- $\Gamma \subset SL(2, \mathbb{R})$ co-compact lattice (i.e., discrete subgroup with $M = G/\Gamma$ compact), then (M, g) is a compact homogeneous Lorentz manifold
- $\text{Iso}_0(M, g) = PSL(2, \mathbb{R})$ (non compact)
The nilpotent case: Heis^3

$G = \text{Heis}^3 = \{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \}$

$\text{heis}^3 = \text{span}\{X, Y, Z\}$, $X \in z$, $[Z, Y] = X$ up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:

- $g(X, X) \to$ flat metric
- $g(X, X) = -1$, $X \perp \text{span}\{Y, Z\}$ \Rightarrow Riemannian-like $g(X, X) = 1$, X orthogonal to the Lorentz plane spanned by Y and Z,
- $g(Y, Z) = 1$ \Rightarrow Lorentz–Heisenberg geometry

Isometry group:

$\mathbb{R} \ltimes \text{Heis}^3$ (4-dim)

\mathbb{R}: 1-parameter group of automorphisms that fix X.
The nilpotent case: Heis^3

$G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

Paolo Piccione

Isometry group of Lorentz manifolds
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\mathfrak{heis}^3 = \text{span}\{X, Y, Z\}, X \in \mathfrak{z}, [Z, Y] = X$
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\text{heis}^3 = \text{span}\{X, Y, Z\}, \ X \in 3, \ [Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\text{heis}^3 = \text{span}\{X, Y, Z\}, \ X \in \mathfrak{z}, [Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:
 - $g(X, X) = 0 \rightarrow \text{flat metric}$
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\text{heis}^3 = \text{span}\{X, Y, Z\}, X \in \mathfrak{h}, [Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:
 - $g(X, X) = 0 \rightarrow \text{flat metric}$
 - $g(X, X) = -1, X \perp \text{span}\{Y, Z\} \rightarrow \text{Riemannian-like}$
The nilpotent case: Heis3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\text{heis}^3 = \text{span}\{X, Y, Z\}, \ X \in \mathfrak{z}, \ [Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis3:
 - $g(X, X) = 0 \rightarrow$ flat metric
 - $g(X, X) = -1, \ X \perp \text{span}\{Y, Z\} \rightarrow$ Riemannian-like
 - $g(X, X) = 1, \ X$ orthogonal to the Lorentz plane spanned by Y and $Z, \ g(Y, Z) = 1 \rightarrow$ Lorentz–Heisenberg geometry

Isometry group:

$\mathbb{R} \ltimes \text{Heis}^3$ (4-dim)

maximal geometry
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\mathfrak{heis}^3 = \text{span}\{X, Y, Z\}, \ X \in \mathfrak{z}, [Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:
 - $g(X, X) = 0 \rightarrow \text{flat metric}$
 - $g(X, X) = -1, X \perp \text{span}\{Y, Z\} \rightarrow \text{Riemannian-like}$
 - $g(X, X) = 1, X$ orthogonal to the Lorentz plane spanned by Y and $Z, g(Y, Z) = 1 \rightarrow \text{Lorentz–Heisenberg geometry}$

- Isometry group: $\mathbb{R} \ltimes \text{Heis}^3$ (4-dim)
 \mathbb{R}: 1-parameter group of automorphism that fix X.

Paolo Piccione

Isometry group of Lorentz manifolds
The nilpotent case: Heis^3

- $G = \text{Heis}^3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$

- $\text{heis}^3 = \text{span}\{X, Y, Z\}$, $X \in \mathfrak{z}$, $[Z, Y] = X$

- up to automorphisms, \exists three left-invariant Lorentz metrics on Heis^3:
 - $g(X, X) = 0 \rightarrow$ flat metric
 - $g(X, X) = -1$, $X \perp \text{span}\{Y, Z\} \rightarrow$ Riemannian-like
 - $g(X, X) = 1$, X orthogonal to the Lorentz plane spanned by Y and Z, $g(Y, Z) = 1$ \rightarrow Lorentz–Heisenberg geometry

- Isometry group: $\mathbb{R} \rtimes \text{Heis}^3$ (4-dim)
 - \mathbb{R}: 1-parameter group of automorphism that fix X.

- maximal geometry
The solvable case: Sol^3

\[G = \text{Sol}^3 = \{ (e^{-z}x_0, e^{-z}y_0, 0) \}, \quad x, y, z \in \mathbb{R} \]

3-dim solvable group $\text{sol}^3 = \text{span}\{X, Y, Z\}$,
\[[X, Y] = 0, \quad [X, Z] = X, \quad [Y, Z] = -Y \]

$[\text{sol}^3, \text{sol}^3] = \text{span}\{X, Y\}$

g left-invariant Lorentz metric on G:
\[g(Y, Y) = 1, \quad g(Y, Z) = 0, \quad g(X, Z) = 1 \]

Direct computation:
\[R(Y, Z) = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \] (non flat!)

Isometry group:
\[\mathbb{R} \ltimes \text{Heis}^3, \quad \text{dim} = 4 \]

Obs.: G admits also left invariant flat metrics

Maximal geometry
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{R} \right\}$

3-dim solvable group
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} x, y, z \in \mathbb{R} \right\}$

3-dim solvable group

- $\text{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^{z} & y \\ 0 & 0 & 1 \end{pmatrix} x, y, z \in \mathbb{R} \right\}$

3-dim solvable group

- $\mathfrak{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\mathfrak{sol}^3, \mathfrak{sol}^3] = \text{span}\{X, Y\}$

Paolo Piccione Isometry group of Lorentz manifolds
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} \right\} x, y, z \in \mathbb{R}$

3-dim solvable group

- $\mathfrak{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\mathfrak{sol}^3, \mathfrak{sol}^3] = \text{span}\{X, Y\}$

- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \left(\begin{array}{ccc} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{array} \right) \right\} x, y, z \in \mathbb{R}$

 3-dim solvable group

- $\mathfrak{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\mathfrak{sol}^3, \mathfrak{sol}^3] = \text{span}\{X, Y\}$

- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$

- up to automorphisms, can assume $g(Y, Y) = 1$, $g(Y, Z) = 0$, $g(X, Z) = 1$
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} \right\} x, y, z \in \mathbb{R}$

3-dim solvable group

- $\mathfrak{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\mathfrak{sol}^3, \mathfrak{sol}^3] = \text{span}\{X, Y\}$

- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$

- up to automorphisms, can assume $g(Y, Y) = 1$, $g(Y, Z) = 0$, $g(X, Z) = 1$

- direct computation: $R(Y, Z) = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ (non flat!)

Isometry group of Lorentz manifolds
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{R} \right\}$
- 3-dim solvable group

- $\mathfrak{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\mathfrak{sol}^3, \mathfrak{sol}^3] = \text{span}\{X, Y\}$

- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$

- up to automorphisms, can assume $g(Y, Y) = 1$, $g(Y, Z) = 0$, $g(X, Z) = 1$

- direct computation: $R(Y, Z) = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ (non flat!)

- isometry group: $\mathbb{R} \ltimes \text{Heis}^3$, dim $= 4$!!!
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$
 - 3-dimensional solvable group
- $\text{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$
- $[\text{sol}^3, \text{sol}^3] = \text{span}\{X, Y\}$
- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$
- up to automorphisms, can assume $g(Y, Y) = 1$, $g(Y, Z) = 0$, $g(X, Z) = 1$

- Direct computation: $R(Y, Z) = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ (non flat!)

- Isometry group: $\mathbb{R} \rtimes \text{Heis}^3$, dim = 4!!

- **Obs.**: G admits also left invariant flat metrics
The solvable case: Sol^3

- $G = \text{Sol}^3 = \left\{ \begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^z & y \\ 0 & 0 & 1 \end{pmatrix} x, y, z \in \mathbb{R} \right\}$

 3-dim solvable group

- $\text{sol}^3 = \text{span}\{X, Y, Z\}$, $[X, Y] = 0$, $[X, Z] = X$, $[Y, Z] = -Y$

- $[\text{sol}^3, \text{sol}^3] = \text{span}\{X, Y\}$

- g left-invariant Lorentz metric on G: $\text{span}\{X, Y\} = X^\perp$

- up to automorphisms, can assume $g(Y, Y) = 1$, $g(Y, Z) = 0$, $g(X, Z) = 1$

- direct computation: $R(Y, Z) = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ (non flat!)

- isometry group: $\mathbb{R} \ltimes \text{Heis}^3$, dim $= 4$!!

- **Obs.** G admits also left invariant flat metrics

- maximal geometry
Classification of homogeneous 3-manifolds

Theorem (S. Dumitrescu, A. Zeghib, 2010)

If $(G, G/H)$ is a maximal Lorentzian (non-Riemannian) 3-geometry, then it is isometric to one of the following:

- Lorentz–Minkowski (isometry group of dim=6)
- Anti de Sitter (isometry group of dim=6)
- Lorentz–Heis 3 (isometry group of dim=4)
- Lorentz–Sol 3 (isometry group of dim=4)

Analogies with the Riemannian case

- no models with 5-dim isometry group

Differences with the Riemannian case

- no positive curvature models
- no models with 3-dim isometry group
- lack of completeness
Theorem (S. Dumitrescu, A. Zeghib, 2010)

If \((G, G/H)\) is a maximal Lorentzian (non Riemannian) 3-geometry, then it is isometric to one of the following:

- Lorentz–Minoski (isometry group of dim=6)
- anti de Sitter (isometry group of dim=6)
- Lorentz–Heis\(^3\) (isometry group of dim=4)
- Lorentz–Sol\(^3\) (isometry group of dim=4)
Theorem (S. Dumitrescu, A. Zeghib, 2010)

If \((G, G/H)\) is a maximal Lorentzian (non Riemannian) 3-geometry, then it is isometric to one of the following:

- Lorentz–Minoski (isometry group of dim=6)
- anti de Sitter (isometry group of dim=6)
- Lorentz–Heis\(^3\) (isometry group of dim=4)
- Lorentz–Sol\(^3\) (isometry group of dim=4)

Analogies with the Riemannian case

- no models with 5-dim isometry group
Theorem (S. Dumitrescu, A. Zeghib, 2010)

If \((G, G/H)\) is a \textit{maximal} Lorentzian (non Riemannian) 3-geometry, then it is isometric to one of the following:
- Lorentz–Minoski (isometry group of dim=6)
- anti de Sitter (isometry group of dim=6)
- Lorentz–Heis\(^3\) (isometry group of dim=4)
- Lorentz–Sol\(^3\) (isometry group of dim=4)

Analogies with the Riemannian case
- no models with 5-dim isometry group

Differences with the Riemannian case
- no positive curvature models
- no models with 3-dim isometry group
- lack of completeness
The isometry group of a compact Lorentz manifold

\((M, g)\) compact Lorentz manifold.

Theorem (D'Ambra, Inventiones 1988)
If \((M, g)\) is analytic and simply connected, then \(\text{Iso}(M, g)\) is compact.

Theorem (Adams, Stuck, Zeghib, 1997)
The identity component \(\text{Iso}_0(M, g)\) is direct product:

\[A \times K \times H\]

- A is abelian
- K is compact
- H is locally isomorphic to:
 - \(\text{SL}(2, \mathbb{R})\)
 - an oscillator group
 - a Heisenberg group.
The isometry group of a compact Lorentz manifold

\((M, g)\) compact Lorentz manifold.

Theorem (D’Ambra, Inventiones 1988)

If \((M, g)\) is analytic and simply connected, then \(\text{Iso}(M, g)\) is compact.

Theorem (Adams, Stuck, Zeghib, 1997)

The identity component \(\text{Iso}^0(M, g)\) is direct product:

\[A \times K \times H \]

- \(A\) is abelian
- \(K\) is compact
- \(H\) is locally isomorphic to:
 - \(\text{SL}(2, \mathbb{R})\)
 - an oscillator group
 - a Heisenberg group.
The isometry group of a compact Lorentz manifold

(M, g) compact Lorentz manifold.

Theorem (D’Ambra, Inventiones 1988)

If (M, g) is analytic and simply connected, then Iso(M, g) is compact.

Theorem (Adams, Stuck, Zeghib, 1997)

The identity component Iso₀(M, g) is direct product:

\[A \times K \times H \]

- A is abelian
- K is compact
- H is locally isomorphic to:
 - SL(2, \mathbb{R})
 - an oscillator group
 - a Heisenberg group.
Theorem (Zeghib)

If $\text{ISO}_0(M, g)$ contains a group locally isomorphic to $\text{SL}(2, \mathbb{R})$, then \tilde{M} is a warped product of $\tilde{\text{SL}}(2, \mathbb{R})$ and a Riemannian manifold.
Theorem (Zeghib)

If $\text{Iso}_0(M, g)$ contains a group locally isomorphic to $\text{SL}(2, \mathbb{R})$, then \tilde{M} is a warped product of $\tilde{\text{SL}}(2, \mathbb{R})$ and a Riemannian manifold.

An analogous result when $\text{Iso}_0(M, g)$ contains a group locally isomorphic to an oscillator group.
Theorem (Zeghib)

If $\text{Iso}_0(M, g)$ contains a group locally isomorphic to $\text{SL}(2, \mathbb{R})$, then \tilde{M} is a warped product of $\text{SL}(2, \mathbb{R})$ and a Riemannian manifold.

An analogous result when $\text{Iso}_0(M, g)$ contains a group locally isomorphic to an oscillator group.

Oscillator groups: characterized as the only simply connected solvable non abelian Lie groups that admit bi-invariant Lorentz metrics (Medina, Revoy, 1985). $G = S^1 \ltimes \text{Heis}$
Theorem (Zeghib)

If $\text{Iso}_0(M, g)$ contains a group locally isomorphic to $\text{SL}(2, \mathbb{R})$, then \tilde{M} is a warped product of $\tilde{\text{SL}}(2, \mathbb{R})$ and a Riemannian manifold.

An analogous result when $\text{Iso}_0(M, g)$ contains a group locally isomorphic to an oscillator group.

Oscillator groups: characterized as the only simply connected solvable non abelian Lie groups that admit bi-invariant Lorentz metrics (Medina, Revoy, 1985). $G = S^1 \ltimes \text{Heis}$

Action of S^1 on the Lie algebra \mathfrak{heis}:

- Positivity conditions on the eigenvalues \implies existence of bi-invariant Lorentz metrics
- Arithmetic conditions \implies existence of lattices.
On a (false) conjecture

- (M, g) compact Lorentz manifold
- K Killing field of (M, g), $p \in M$, $g(K_p, K_p) < 0$
- the 1-parameter group of isometries generated by K is pre-compact in $\text{Iso}_0(M, g)$
- in this situation, $\text{Iso}(M, g)$ has a non empty open cone of vectors that generate a precompact 1-parameter subgroup of $\text{Iso}(M, g)$
On a (false) conjecture

- (M, g) compact Lorentz manifold
- K Killing field of (M, g), $p \in M$, $g(K_p, K_p) < 0$
- the 1-parameter group of isometries generated by K is pre-compact in $\text{Iso}_0(M, g)$
- in this situation, $\text{Iso}(M, g)$ has a non empty open cone of vectors that generate a precompact 1-parameter subgroup of $\text{Iso}(M, g)$

Conjecture: Given a connected G Lie group, $\mathfrak{g} = \text{Lie}(G)$, if \mathfrak{g} has a non empty open cone of vectors v such that $t \mapsto \exp(t \cdot v)$ is precompact in G, then G is compact.
On a (false) conjecture

- (M, g) compact Lorentz manifold
- K Killing field of (M, g), $p \in M$, $g(K_p, K_p) < 0$
- the 1-parameter group of isometries generated by K is pre-compact in $\text{Iso}_0(M, g)$
- in this situation, $\text{Iso}(M, g)$ has a non empty open cone of vectors that generate a precompact 1-parameter subgroup of $\text{Iso}(M, g)$

Conjecture: Given a connected G Lie group, $g = \text{Lie}(G)$, if g has a non empty open cone of vectors v such that $t \mapsto \exp(t \cdot v)$ is precompact in G, then G is compact.

Counterexample: $G = \text{SL}(2, \mathbb{R})$
Theorem

Let G be a connected Lie group, $K \subset G$ a maximal compact subgroup and $\mathfrak{k} \subset \mathfrak{g}$ their Lie algebras. Let \mathfrak{m} be an Ad_K-invariant complement of \mathfrak{k} in \mathfrak{g}. Then, \mathfrak{g} has a non empty open cone of vectors that generate precompact 1-parameter subgroups of G if and only if there exists $v \in \mathfrak{k}$ such that the restriction $\text{ad}_v : \mathfrak{m} \rightarrow \mathfrak{m}$ is an isomorphism.
Theorem

Let G be a connected Lie group, $K \subset G$ a maximal compact subgroup and $\mathfrak{k} \subset \mathfrak{g}$ their Lie algebras. Let \mathfrak{m} be an Ad_K-invariant complement of \mathfrak{k} in \mathfrak{g}.

Then, \mathfrak{g} has a non empty open cone of vectors that generate precompact 1-parameter subgroups of G if and only if there exists $v \in \mathfrak{k}$ such that the restriction $\text{ad}_v : \mathfrak{m} \rightarrow \mathfrak{m}$ is an isomorphism.
Proof of the algebraic criterion

Proof

\[\text{Proof} \]

\[C = \{ v \in g : \exp(tv) \text{ is precompact} \} \]

\[C \subset k', k' = \text{Lie}(K') \]

\[\text{all maximal compact subgroups are conjugated} \]

\[\Rightarrow C = \text{Ad}_G(k) \]

\[F : G \times k \to g, F(g, v) = \text{Ad}_g(v) \]

\[C = \text{Im}(F) \]

\[\text{has non empty interior iff} F \]

\[\text{has maximal rank at some point (Sard)} \]

\[\text{by equivariance, iff it has maximal rank at some point } (e, v) \]

\[dF(e, v)(g, k) = [g, v] + k = [m, v] + k. \]
Proof

\[C = \{ v \in g : \exp(tv) \text{ is precompact} \} \]
Proof of the algebraic criterion

Proof

- \(\mathcal{C} = \{ v \in \mathfrak{g} : \exp(tv) \text{ is precompact} \} \)
- \(\mathcal{C} \subset \mathfrak{k}' \), \(\mathfrak{k}' = \text{Lie}(K') \), \(K' \subset G \) maximal compact

All maximal compact subgroups are conjugated.

\[C = \text{Ad}_G(k) \]

\(F: G \times k \to \mathfrak{g} \), \(F(g, v) = \text{Ad}_g(v) \)

\(C = \text{Im}(F) \) has non empty interior iff \(F \) has maximal rank at some point (Sard).

By equivariance, iff it has maximal rank at some point \((e, v)\) such that \(dF(e, v)(g, k) = [g, v] + k = [m, v] + k \).
Proof of the algebraic criterion

Proof

- \(\mathcal{C} = \{ v \in \mathfrak{g} : \exp(tv) \text{ is precompact} \} \)
- \(\mathcal{C} \subset \mathfrak{k}' \), \(\mathfrak{k}' = \text{Lie}(K') \), \(K' \subset G \) maximal compact
- all maximal compact subgroups are conjugated \(\implies \) \(\mathcal{C} = \text{Ad}_G(\mathfrak{k}) \)
Proof of the algebraic criterion

Proof

- \(\mathcal{C} = \{ v \in \mathfrak{g} : \exp(tv) \) is precompact} \)
- \(\mathcal{C} \subset \mathfrak{k}', \mathfrak{k}' = \text{Lie}(K'), K' \subset G \text{ maximal compact} \)
- all maximal compact subgroups are conjugated \(\implies \mathcal{C} = \text{Ad}_G(\mathfrak{k}) \)
- \(F : G \times \mathfrak{k} \rightarrow \mathfrak{g}, F(g, v) = \text{Ad}_g(v) \)
Proof of the algebraic criterion

\[\mathcal{C} = \{ v \in \mathfrak{g} : \exp(tv) \text{ is precompact} \} \]

\[\mathcal{C} \subset \mathfrak{k}', \mathfrak{k}' = \text{Lie}(K'), K' \subset G \text{ maximal compact} \]

all maximal compact subgroups are conjugated \(\Rightarrow \)
\[\mathcal{C} = \text{Ad}_G(\mathfrak{k}) \]

\[F : G \times \mathfrak{k} \to \mathfrak{g}, \ F(g, v) = \text{Ad}_g(v) \]

\[\mathcal{C} = \text{Im}(F) \text{ has non empty interior iff } F \text{ has maximal rank at some point (Sard)} \]
Proof of the algebraic criterion

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (\mathcal{C} = { v \in \mathfrak{g} : \exp(tv) \text{ is precompact} })</td>
</tr>
<tr>
<td>- (\mathcal{C} \subset \mathfrak{k}', \mathfrak{k}' = \text{Lie}(K'), K' \subset G \text{ maximal compact})</td>
</tr>
<tr>
<td>- all maximal compact subgroups are conjugated (\implies \mathcal{C} = \text{Ad}_G(\mathfrak{k}))</td>
</tr>
<tr>
<td>- (F : G \times \mathfrak{k} \to \mathfrak{g}, F(g, v) = \text{Ad}_g(v))</td>
</tr>
<tr>
<td>- (\mathcal{C} = \text{Im}(F)) has non empty interior iff (F) has maximal rank at some point (Sard)</td>
</tr>
<tr>
<td>- by equivariance, iff it has maximal rank at some point ((e, v))</td>
</tr>
</tbody>
</table>
Proof of the algebraic criterion

Proof

- \(\mathcal{C} = \{v \in \mathfrak{g} : \exp(tv) \text{ is precompact}\} \)
- \(\mathcal{C} \subset \mathfrak{k}', \mathfrak{k}' = \text{Lie}(K'), K' \subset G \) maximal compact
- all maximal compact subgroups are conjugated \(\implies \mathcal{C} = \text{Ad}_G(\mathfrak{k}) \)
- \(F : G \times \mathfrak{k} \to \mathfrak{g}, F(g, v) = \text{Ad}_g(v) \)
- \(\mathcal{C} = \text{Im}(F) \) has non empty interior iff \(F \) has maximal rank at some point (Sard)
- by equivariance, iff it has maximal rank at some point \((e, v)\)
- \(dF_{(e,v)}(g, \mathfrak{k}) = [g, v] + \mathfrak{k} = [m, v] + \mathfrak{k}. \)
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.

Proof
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.

Proof

- Assume \(\text{Iso}_0(M, g) = \mathfrak{h} + \alpha + \mathfrak{c}\), \(\mathfrak{h}\)=Heisenberg, \(\alpha\)=abelian, \(\mathfrak{c}\)=compact semi-simple
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.

Proof

- Assume \(\text{Iso}_0(M, g) = \mathfrak{h} + \mathfrak{a} + \mathfrak{c}\), \(\mathfrak{h}\)=Heisenberg, \(\mathfrak{a}\)=abelian, \(\mathfrak{c}\)=compact semi-simple
- Since \(\mathfrak{c}\) is compact, then we can assume \(g = \mathfrak{h} + \mathfrak{a}\)
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.

Proof

- assume \(\text{Iso}_0(M, g) = \mathfrak{h} + \mathfrak{a} + \mathfrak{c}, \mathfrak{h}\text{-Heisenberg, } \mathfrak{a}\text{-abelian, } \mathfrak{c}\text{-compact semi-simple}
- since \(\mathfrak{c}\) is compact, then we can assume \(g = \mathfrak{h} + \mathfrak{a}\)
- can assume \(A\) simply connected
Corollary 1

Let \((M, g)\) be a compact Lorentz manifold that has a Killing vector field which is timelike somewhere. Then, \(\text{Iso}_0(M, g)\) is compact unless it contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group.

Proof

- assume \(\text{Iso}(M, g) = \mathfrak{h} + \mathfrak{a} + \mathfrak{c}\), \(\mathfrak{h}\)=Heisenberg, \(\mathfrak{a}\)=abelian, \(\mathfrak{c}\)=compact semi-simple
- since \(\mathfrak{c}\) is compact, then we can assume \(g = \mathfrak{h} + \mathfrak{a}\)
- can assume \(A\) simply connected
- \(\mathfrak{h} + \mathfrak{a}\) nilpotent \(\implies\) for no \(v \in \mathfrak{h} + \mathfrak{a}\) the map \(\text{ad}_v\) is injective.
Corollary 2

If \((M, g)\) admits a somewhere timelike Killing vector field, then the two conditions are *mutually exclusive*:

(a) \(\text{Iso}_0(M, g)\) is not compact;
(b) \(\text{Iso}(M, g)\) has infinitely many connected components.
Corollary 2

If \((M, g)\) admits a somewhere timelike Killing vector field, then the two conditions are \textit{mutually exclusive}:

(a) \(\text{Iso}_0(M, g)\) is not compact;
(b) \(\text{Iso}(M, g)\) has infinitely many connected components.

\textbf{Proof.} Use Corollary 1 and Zeghib’s classification:
Corollary 2

If \((M, g)\) admits a somewhere timelike Killing vector field, then the two conditions are *mutually exclusive*:

(a) \(\text{Iso}_0(M, g)\) is not compact;
(b) \(\text{Iso}(M, g)\) has infinitely many connected components.

Proof. Use Corollary 1 and Zeghib’s classification:

If \(\text{Iso}_0(M, g)\) contains a group locally isomorphic to \(\text{SL}(2, \mathbb{R})\) or to an oscillator group then:

- \(\text{Iso}(M, g)\) has only a finite number of connected components;
- \(M\) is not simply connected.
Compact Lorentz manifolds with *large* isometry group

Definition

\[\rho : \Gamma \rightarrow \text{GL}(\mathcal{E}) \text{ representation}. \]
Definition

\[\rho : \Gamma \rightarrow \text{GL}(\mathcal{E}) \] representation. Then, \(\rho \) is said to be:

- of Riemannian type if it preserves some positive definite inner product on \(\mathcal{E} \);
- of post-Riemannian type if it preserves some positive semi-definite inner product on \(\mathcal{E} \) with kernel of dimension 1.

Obs.: \(\rho : \Gamma \rightarrow \text{GL}(\mathcal{E}) \) of Riemannian type \(\iff \rho(\Gamma) \) precompact.

Proposition

\((M, g) \) compact Lorentz manifold. If the conjugacy action of \(\Gamma = \text{Iso}(M, g) / \text{Iso}^0(M, g) \) on \(\text{Iso}^0(M, g) \) is not of post-Riemannian type, then \(\text{Iso}^0(M, g) \) has a timelike orbit in \(M \), and \(\text{Iso}(M, g) \) has infinitely many connected components.
Compact Lorentz manifolds with \textit{large} isometry group

Definition

\(\rho : \Gamma \rightarrow GL(\mathcal{E}) \) representation. Then, \(\rho \) is said to be:

- of \textbf{Riemannian type} if it preserves some positive definite inner product on \(\mathcal{E} \);
- of \textbf{post-Riemannian type} if it preserves some positive semi-definite inner product on \(\mathcal{E} \) with kernel of dimension 1.

\(\rho : \Gamma \rightarrow GL(\mathcal{E}) \) of Riemannian type \(\iff \rho(\Gamma) \) precompact.

Proposition

\((M, g)\) compact Lorentz manifold. If the conjugacy action of \(\Gamma = \text{Iso}(M, g) / \text{Iso}_0(M, g) \) on \(\text{Iso}_0(M, g) \) is not of \textbf{post-Riemannian type}, then \(\text{Iso}_0(M, g) \) has a timelike orbit in \(M \), and \(\text{Iso}(M, g) \) has infinitely many connected components.
Compact Lorentz manifolds with *large* isometry group

Definition

\[\rho : \Gamma \rightarrow \text{GL}(E) \]

representation. Then, \(\rho \) is said to be:

- of *Riemannian type* if it preserves some positive definite inner product on \(E \);
- of *post-Riemannian type* if it preserves some positive semi-definite inner product on \(E \) with kernel of dimension 1.

Obs.:

\[\rho : \Gamma \rightarrow \text{GL}(E) \] of Riemannian type \iff \(\rho(\Gamma) \) precompact.
Compact Lorentz manifolds with *large* isometry group

Definition

\[\rho : \Gamma \rightarrow \text{GL}(\mathcal{E}) \] representation. Then, \(\rho \) is said to be:

- **of Riemannian type** if it preserves some positive definite inner product on \(\mathcal{E} \);
- **of post-Riemannian type** if it preserves some positive semi-definite inner product on \(\mathcal{E} \) with kernel of dimension 1.

Obs. : \(\rho : \Gamma \rightarrow \text{GL}(\mathcal{E}) \) of Riemannian type \(\iff \rho(\Gamma) \) precompact.

Proposition

\((M, g)\) compact Lorentz manifold. If the conjugacy action of \(\Gamma = \text{Iso}(M, g)/\text{Iso}_0(M, g) \) on \(\text{Iso}_0(M, g) \) is not of post-Riemannian type, then \(\text{Iso}_0(M, g) \) has a timelike orbit in \(M \), and \(\text{Iso}(M, g) \) has infinitely many connected components.
The Gauss map

Killing fields

$\mathfrak{iso}(M, g) \ni v \mapsto K^v \in \text{Kill}(M, g)$.

K^v infinitesimal generator of $t \mapsto \exp(tv)$.
The Gauss map

Killing fields

\(\mathcal{I}_{\text{so}}(M, g) \ni \nu \mapsto K^\nu \in \text{Kill}(M, g) \).

\(K^\nu \) infinitesimal generator of \(t \mapsto \exp(t\nu) \)

\[\Phi \in \text{Iso}(M, g) \mapsto \Phi^*(K^\nu) = K^{\text{Ad}_\Phi}(\nu) \]
The Gauss map

Killing fields

\(\mathcal{I}_\text{Is}(M, g) \ni \nu \mapsto K^{\nu} \in \text{Kill}(M, g) \).

\(K^{\nu} \) infinitesimal generator of \(t \mapsto \exp(t\nu) \)

\[\Phi \in \text{Iso}(M, g) \implies \Phi_* (K^{\nu}) = K^{\text{Ad}_\Phi}(\nu) \]

Gauss map:

\[\mathcal{G} : M \longrightarrow \text{Sym}(\mathcal{I}_\text{Is}(M, g)) \]

\[\mathcal{G}_p(\nu, \omega) = g(K^{\nu}(p), K^{\omega}(p)) \]
The Gauss map

Killing fields

\[\mathcal{I}_0(M, g) \ni \nu \mapsto K^\nu \in \text{Kill}(M, g). \]

\(K^\nu \) infinitesimal generator of \(t \mapsto \exp(tv) \)

\[\Phi \in \text{Iso}(M, g) \implies \Phi^*(K^\nu) = K^{\text{Ad}_\Phi}(\nu) \]

Gauss map:

\[G : M \longrightarrow \text{Sym}(\mathcal{I}_0(M, g)) \]

\[G_p(\nu, \omega) = g(K^\nu(p), K^\omega(p)) \]

Proposition

If the action of \(\Gamma \) on \(\text{Iso}_0(M, g) \) is not of post-Riemannian type, then \(\text{Iso}_0(M, g) \) has somewhere timelike orbits.

Proof: Use \(\xi(\nu, \omega) = \int_M G_p(\nu, \omega) \, dp \).
Paradigmatic example

In \mathbb{R}^n, it induces a flat Lorentz metric on $T^n = \mathbb{R}^n / \mathbb{Z}^n$.

Linear isometry group of T^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$.

Full isometry group: $O(q, \mathbb{Z}) \rtimes T^n$.

For generic q, $O(q, \mathbb{Z})$ is trivial.

If q is rational, by Harish-Chandra-Borel theorem, $O(q, \mathbb{Z})$ is big in $O(q)$.

When q is not rational, many intermediate situations occur.

Complicated dynamics of hyperbolic elements $A \in O(q, \mathbb{Z})$: they may have Salem numbers in their spectrum.

Theorem (P. P., A. Zeghib): Compact Lorentzian manifolds with large isometry groups are essentially built up by tori.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $T^n = \mathbb{R}^n/\mathbb{Z}^n$

Linear isometry group of T^n: $O(q,\mathbb{Z}) = \text{GL}(n,\mathbb{Z}) \cap O(q)$

Full isometry group: $O(q,\mathbb{Z}) \ltimes T^n$

For generic q, $O(q,\mathbb{Z})$ is trivial.

If q is rational, by Harish–Chandra–Borel theorem $O(q,\mathbb{Z})$ is big in $O(q)$.

When q not rational, many intermediate situations occur.

Complicated dynamics of hyperbolic elements $A \in O(q,\mathbb{Z})$:
- they may have Salem numbers in their spectrum.

Theorem (P. P., A. Zeghib): Compact Lorentzian manifolds with large isometry groups are essentially built up by tori.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- *Linear* isometry group of \mathbb{T}^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- *Linear* isometry group of \mathbb{T}^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes \mathbb{T}^n$

Theorem (P. P., A. Zeghib)

Compact Lorentzian manifolds with large isometry groups are essentially built up by tori.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $T^n = \mathbb{R}^n / \mathbb{Z}^n$
- *Linear* isometry group of T^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes T^n$
- For *generic* q, $O(q, \mathbb{Z})$ is trivial.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $T^n = \mathbb{R}^n/\mathbb{Z}^n$
- *Linear* isometry group of T^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes T^n$
- For *generic* q, $O(q, \mathbb{Z})$ is trivial.
- If q is *rational*, by Harich–Chandra–Borel theorem $O(q, \mathbb{Z})$ is *big* in $O(q)$.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $T^n = \mathbb{R}^n / \mathbb{Z}^n$
- Linear isometry group of T^n: $O(q, \mathbb{Z}) = GL(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes T^n$
- For generic q, $O(q, \mathbb{Z})$ is trivial.
- If q is rational, by Harich–Chandra–Borel theorem $O(q, \mathbb{Z})$ is big in $O(q)$.
- When q not rational, many intermediate situations occur.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $T^n = \mathbb{R}^n/\mathbb{Z}^n$
- *Linear* isometry group of T^n: $O(q, \mathbb{Z}) = GL(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes T^n$
- For *generic* q, $O(q, \mathbb{Z})$ is trivial.
- If q is *rational*, by Harich–Chandra–Borel theorem $O(q, \mathbb{Z})$ is *big* in $O(q)$.
- When q *not rational*, many intermediate situations occur.
- *Complicated dynamics* of hyperbolic elements $A \in O(q, \mathbb{Z})$: they may have *Salem numbers* in their spectrum.
Paradigmatic example

- q Lorentz form in \mathbb{R}^n
- it induces a flat Lorentz metric on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$
- *Linear* isometry group of \mathbb{T}^n: $O(q, \mathbb{Z}) = \text{GL}(n, \mathbb{Z}) \cap O(q)$
- Full isometry group: $O(q, \mathbb{Z}) \ltimes \mathbb{T}^n$
- For *generic* q, $O(q, \mathbb{Z})$ is trivial.
- If q is *rational*, by Harich–Chandra–Borel theorem $O(q, \mathbb{Z})$ is *big* in $O(q)$.
- When q not *rational*, many intermediate situations occur.
- *Complicated dynamics* of hyperbolic elements $A \in O(q, \mathbb{Z})$: they may have *Salem numbers* in their spectrum.

Theorem (P.P., A. Zeghib)

Compact Lorentzian manifolds with large isometry groups are essentially built up by tori.
Theorem

Let \((M, g)\) be a compact Lorentz manifold that has a somewhere timelike Killing vector field, and whose isometry group \(\text{Iso}(M, g)\) has infinitely many connected components. Then:

- \(\text{Iso}_0(M, g)\) contains a torus \(\mathbb{T}^d\) endowed with a Lorentz form \(q\), such that \(\Gamma\) is a subgroup of \(O(q, \mathbb{Z})\);
- up to finite cover, \(M\) is:
 - either a direct product \(\mathbb{T}^d \times N\), with \(N\) compact Riemannian manifold
 - or an amalgamated metric product \(\mathbb{T}^d \times_{S^1} L\), where \(L\) is a lightlike manifold with an isometric \(S^1\)-action.
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:

$Z = (X \times Y) / S^1$ diagonal action.

Assume X Lorentzian, Y Riemannian (or lightlike), and action of S^1 isometric.

Identify $T(x_0, y_0) Z$ with $T_{x_0} X \times \{S^1 - \text{orbit through } y_0\} \perp$.

Endow $T(x_0, y_0) Z$ with the induced metric (Lorentzian).

Long exact homotopy sequence of the fibration $X \times Y \to (X \times Y) / S^1$:

$Z \sim \pi_1(S^1) \to \pi_1(X) \times \pi_1(Y) \to \pi_1(Z) \to \pi_0(S^1) \sim \{1\}$

Proposition

If $\pi_1(X) \times \pi_1(Y)$ is not cyclic, then $(X \times Y) / S^1$ is not simply connected.
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:

- X and Y manifolds carrying a smooth action of S^1.

Long exact homotopy sequence of the fibration $X \times Y \to (X \times Y)/S^1$:

$Z \sim \pi_1(S^1) \to \pi_1(X) \times \pi_1(Y) \to \pi_1(Z) \to \pi_0(S^1) \sim \{1\}$

Proposition

If $\pi_1(X) \times \pi_1(Y)$ is not cyclic, then $(X \times Y)/S^1$ is not simply connected.
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:
- X and Y manifolds carrying a smooth action of S^1.
- $Z = (X \times Y)/S^1$ diagonal action.
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:
- X and Y manifolds carrying a smooth action of S^1.
- $Z = (X \times Y)/S^1$ diagonal action.
- Assume X Lorentzian, Y Riemannian (or lightlike), and action of S^1 isometric
Amalgamated metric products

Amalgamated product \(X \times_{S^1} Y: \)

- \(X \) and \(Y \) manifolds carrying a smooth action of \(S^1 \).
- \(Z = (X \times Y)/S^1 \) diagonal action.
- Assume \(X \) Lorentzian, \(Y \) Riemannian (or lightlike), and action of \(S^1 \) isometric
- Identify \(T_{(x_0,y_0)}Z \) with \(T_{x_0}X \times \{S^1 - \text{orbit through } y_0\} \perp \)
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:

- X and Y manifolds carrying a smooth action of S^1.
- $Z = (X \times Y)/S^1$ diagonal action.
- Assume X Lorentzian, Y Riemannian (or lightlike), and action of S^1 isometric
- Identify $T_{(x_0,y_0)}Z$ with $T_{x_0}X \times \{S^1 - \text{orbit through } y_0\}^\perp$
- Endow $T_{(x_0,y_0)}Z$ with the induced metric (Lorentzian).
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:
- X and Y manifolds carrying a smooth action of S^1.
- $Z = (X \times Y)/S^1$ diagonal action.
- Assume X Lorentzian, Y Riemannian (or lightlike), and action of S^1 isometric.
- Identify $T_{(x_0,y_0)}Z$ with $T_{x_0}X \times \{S^1 - \text{orbit through } y_0\}^\perp$
- Endow $T_{(x_0,y_0)}Z$ with the induced metric (Lorentzian).

Long exact homotopy sequence of the fibration $X \times Y \to (X \times Y)/S^1$:

$$Z \cong \pi_1(S^1) \to \pi_1(X) \times \pi_1(Y) \to \pi_1(Z) \to \pi_0(S^1) \cong \{1\}$$
Amalgamated metric products

Amalgamated product $X \times_{S^1} Y$:
- X and Y manifolds carrying a smooth action of S^1.
- $Z = (X \times Y)/S^1$ diagonal action.
- Assume X Lorentzian, Y Riemannian (or lightlike), and action of S^1 isometric.
- Identify $T_{(x_0,y_0)}Z$ with $T_{x_0}X \times \{S^1 - \text{orbit through } y_0\}^\perp$.
- Endow $T_{(x_0,y_0)}Z$ with the induced metric (Lorentzian).

Long exact homotopy sequence of the fibration $X \times Y \to (X \times Y)/S^1$:

$$Z \cong \pi_1(S^1) \to \pi_1(X) \times \pi_1(Y) \to \pi_1(Z) \to \pi_0(S^1) \cong \{1\}$$

Proposition

If $\pi_1(X) \times \pi_1(Y)$ is not cyclic, then $(X \times Y)/S^1$ is not simply connected.
Two interesting consequences

Theorem

Assume $\text{Iso}(M, g)$ non compact. If there is a somewhere timelike Killing vector field, then there is an everywhere timelike Killing vector field.
Two interesting consequences

Theorem

Assume $\text{Iso}(M, g)$ non compact. If there is a somewhere timelike Killing vector field, then there is an everywhere timelike Killing vector field.

Theorem

If (M, g) admits a somewhere timelike Killing vector field and M is simply connected, then $\text{Iso}(M, g)$ is compact.
Theorem

Assume $\text{Iso}(M, g)$ non compact. If there is a somewhere timelike Killing vector field, then there is an everywhere timelike Killing vector field.

Theorem

If (M, g) admits a somewhere timelike Killing vector field and M is simply connected, then $\text{Iso}(M, g)$ is compact.

Proof.

When $\text{Iso}_0(M, g)$ contains a group locally isomorphic to $\text{SL}(2, \mathbb{R})$ or to an oscillator group use Zeghib’s classification.

When $\text{Iso}(M, g)$ has infinitely many connected components, use the structure result.
That’s all.
That’s all.
THANKS
That’s all.

THANKS

See you all at GeLo??2013!!!