Bifurcation of CMC Clifford Tori in Euclidean Spheres

Joint work with Luis J. Alías

Paolo Piccione

Universidad de Murcia

International Symposium on Differential Geometry "In honor of *Marcos Dajczer* on his 60th birthday"

IMPA, Rio de Janeiro, Brazil, August 2009

Bifurcation of CMC Clifford Tori in Euclidean Spheres

Joint work with Luis J. Alías

Happy birthday Marcos!

On the conference speakers

On the conference speakers

On the conference speakers

Outline of this talk.

- 1 CMC Clifford tori in spheres
- 2 Spectrum of the Jacobi operator
- 3 Statement of the result
- 4 Bifurcation
- 5 Abstract equivariant bifurcation result
- 6 The CMC variational problem
 - Area and volume functionals
 - Manifold of unparameterized embeddings
- 7 Local homological invariants
- 8 A fixed boundary CMC bifurcation problem

CMC Clifford tori

$$1 \leq j < m, \quad r \in]0,1[$$

$$x_r^{j,m}: \mathbb{S}^j \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$$

 $(p,q) \longmapsto (r \cdot p, \sqrt{1-r^2} \cdot q)$

Constant mean curvature:

$$H_r^{j,m} = \frac{mr^2 - j}{mr\sqrt{1 - r^2}}$$

 $r = \sqrt{\frac{j}{m}}$ minimal Clifford torus.

William Kingdon Clifford

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\|A_r^{j,m}\right\|^2$$

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\| A_r^{j,m} \right\|^2$$

• $\operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N})$ Ricci curvature of \mathbb{S}^{m+1} , constant $\equiv 1$

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\| A_r^{j,m} \right\|^2$$

- Ric_{Sm+1}(\vec{N}) Ricci curvature of S^{m+1}, constant $\equiv 1$
- $\left\| A_r^{j,m} \right\|$ norm of the second fundamental form, constant $\equiv \frac{j}{r^2} + \frac{m-j}{1-r^2}$

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\| A_r^{j,m} \right\|^2$$

- Ric_{Sm+1}(\vec{N}) Ricci curvature of S^{m+1}, constant $\equiv 1$
- $\left\|A_{r}^{j,m}\right\|$ norm of the second fundamental form, constant $\equiv \frac{j}{r^{2}} + \frac{m-j}{1-r^{2}}$
- $\Delta_r^{j,m}$ Laplacian of $\mathbb{S}^j(r) \times \mathbb{S}^{m-j}(\sqrt{1-r^2})$.

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\| A_r^{j,m} \right\|^2$$

- Ric_{Sm+1}(\vec{N}) Ricci curvature of S^{m+1}, constant $\equiv 1$
- ► $\left\| A_r^{j,m} \right\|$ norm of the second fundamental form, constant $\equiv \frac{j}{r^2} + \frac{m-j}{1-r^2}$
- $\Delta_r^{j,m}$ Laplacian of $\mathbb{S}^j(r) \times \mathbb{S}^{m-j}(\sqrt{1-r^2})$.

$$\zeta \in \Sigma(\Delta_r^{j,m}) \quad \Longleftrightarrow \quad \zeta = \sigma + \rho, \quad \sigma \in \Sigma(\Delta_r^j), \ \rho \in \Sigma(\Delta_{1-r^2}^{m-j})$$

$$J = -\Delta_r^{j,m} - m \cdot \operatorname{Ric}_{\mathbb{S}^{m+1}}(\vec{N}) - \left\| A_r^{j,m} \right\|^2$$

- Ric_{Sm+1}(\vec{N}) Ricci curvature of S^{m+1}, constant $\equiv 1$
- $\left\|A_{r}^{j,m}\right\|$ norm of the second fundamental form, constant $\equiv \frac{j}{r^{2}} + \frac{m-j}{1-r^{2}}$
- $\Delta_r^{j,m}$ Laplacian of $\mathbb{S}^j(r) \times \mathbb{S}^{m-j}(\sqrt{1-r^2})$.

$$\zeta \in \Sigma(\Delta_r^{j,m}) \quad \Longleftrightarrow \quad \zeta = \sigma + \rho, \quad \sigma \in \Sigma(\Delta_r^j), \ \rho \in \Sigma(\Delta_{1-r^2}^{m-j})$$

multiplicity of ζ = sum of multiplicities of σ and ρ

•
$$\Sigma(\Delta_r^j) = \{\sigma_1 < \sigma_2 < \cdots < \sigma_i < \dots\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2}$$

$$\blacktriangleright \Sigma(\Delta_r^j) = \{\sigma_1 < \sigma_2 < \dots < \sigma_i < \dots\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2}$$

•
$$\Sigma\left(\Delta_{\sqrt{1-r^2}}^{m-j}\right) = \left\{\rho_1 < \rho_2 < \dots < \rho_l < \dots\right\}, \quad \rho_l = \frac{(l-1)(m-j+l-2)}{1-r^2}$$

$$\blacktriangleright \Sigma(\Delta_r^j) = \big\{ \sigma_1 < \sigma_2 < \cdots < \sigma_i < \dots \big\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2}$$

•
$$\Sigma\left(\Delta_{\sqrt{1-r^2}}^{m-j}\right) = \left\{\rho_1 < \rho_2 < \dots < \rho_l < \dots\right\}, \quad \rho_l = \frac{(l-1)(m-j+l-2)}{1-r^2}$$

► $\mathbf{0} \in \Sigma(J)$ \iff $\sigma_i + \rho_I - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) = \mathbf{0}$

•
$$\Sigma(\Delta_r^j) = \{\sigma_1 < \sigma_2 < \dots < \sigma_i < \dots\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2}$$

• $\Sigma(\Delta_{\sqrt{1-r^2}}^{m-j}) = \{\rho_1 < \rho_2 < \dots < \rho_l < \dots\}, \quad \rho_l = \frac{(l-1)(m-j+l-2)}{1-r^2}$
• $0 \in \Sigma(J) \iff \sigma_i + \rho_l - (\frac{j}{r^2} + \frac{m-j}{1-r^2}) = 0$

 $\sigma_2 + \rho_2 - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) = 0,$ multiplicity = m + 1 + j(m-1) back

•
$$\Sigma(\Delta_r^j) = \{\sigma_1 < \sigma_2 < \dots < \sigma_i < \dots\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2}$$

• $\Sigma(\Delta_{\sqrt{1-r^2}}^{m-j}) = \{\rho_1 < \rho_2 < \dots < \rho_l < \dots\}, \quad \rho_l = \frac{(l-1)(m-j+l-2)}{1-r^2}$
• $0 \in \Sigma(J) \iff \sigma_i + \rho_l - (\frac{j}{r^2} + \frac{m-j}{1-r^2}) = 0$

 $\sigma_2 + \rho_2 - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) = 0, \quad \text{[multiplicity} = m + 1 + j(m-1)] \text{(back)}$ Other zeros of $\Sigma(J)$ are of the form:

$$\sigma_1 + \rho_l - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right)$$
 or $\sigma_i + \rho_1 - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right)$.

$$\begin{split} & \Sigma(\Delta_r^j) = \left\{ \sigma_1 < \sigma_2 < \dots < \sigma_i < \dots \right\}, \quad \sigma_i = \frac{(i-1)(j+i-2)}{r^2} \\ & \Sigma\left(\Delta_{\sqrt{1-r^2}}^{m-j}\right) = \left\{ \rho_1 < \rho_2 < \dots < \rho_l < \dots \right\}, \quad \rho_l = \frac{(l-1)(m-j+l-2)}{1-r^2} \\ & \mathbf{0} \in \Sigma(J) \iff \sigma_i + \rho_l - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) = \mathbf{0} \\ & \sigma_2 + \rho_2 - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) = \mathbf{0}, \quad \text{multiplicity} = m+1+j(m-1) \end{split}$$

Other zeros of $\Sigma(J)$ are of the form:

$$\sigma_1 + \rho_l - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right) \text{ or } \sigma_i + \rho_1 - \left(\frac{j}{r^2} + \frac{m-j}{1-r^2}\right).$$

Proposition

There exists two monotone sequences $(r_i)_{i=1}^{\infty}$ and $(s_i)_{l=1}^{\infty}$, with

$$\lim_{l\to\infty} s_l = 0, \quad \text{and} \quad \lim_{i\to\infty} = 1,$$

where the *Morse index* of the CMC Clifford torus $x_r^{j,m}$ has a *jump*.

► *M^m* compact oriented manifold

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold
- ▶ *n* = *m* + 1

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold
- ▶ *n* = *m* + 1

$x: M \hookrightarrow N$ embedding

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold
- ▶ *n* = *m* + 1

$x: M \hookrightarrow N$ embedding

• Mean curvature: $H_x = tr(2^{nd} \text{ fund. form})$

- *M^m* compact oriented manifold
- (N^n, g) oriented Riemannian manifold
- ▶ *n* = *m* + 1

$x: M \hookrightarrow N$ embedding

• Mean curvature: $H_x = tr(2^{nd} \text{ fund. form})$

Variational principle

x has *constant* mean curvature (CMC) iff *x* is a stationary point for the *area functional* restricted to embeddings of fixed *volume*.

Isometric congruence

Definition

 $x_1, x_2 : M \longrightarrow N$ embeddings are *congruent* $(x_1 \cong x_2)$ if there exists $\phi \in \text{Diff}(M)$ and $\psi \in \text{Iso}(N, g)$ such that $x_2 = \psi \circ x_1 \circ \phi^{-1}$.

Isometric congruence

Definition

 $x_1, x_2 : M \longrightarrow N$ embeddings are *congruent* $(x_1 \cong x_2)$ if there exists $\phi \in \text{Diff}(M)$ and $\psi \in \text{Iso}(N, g)$ such that $x_2 = \psi \circ x_1 \circ \phi^{-1}$.

If x_1 has CMC and $x_1 \cong x_2$, then x_2 has CMC!

Isometric congruence

Definition

 $x_1, x_2 : M \longrightarrow N$ embeddings are *congruent* $(x_1 \cong x_2)$ if there exists $\phi \in \text{Diff}(M)$ and $\psi \in \text{Iso}(N, g)$ such that $x_2 = \psi \circ x_1 \circ \phi^{-1}$.

If x_1 has CMC and $x_1 \cong x_2$, then x_2 has CMC!

Group actions:

- Diff(*M*) acts on the right (*free* action)
- ▶ Iso(*N*, *g*) acts on the left (action not free, but group *compact*)

Theorem

Theorem

 $x_r^{j,m}$: $\mathbb{S}^j \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ CMC Clifford torus, $1 < j < m, r \in]0, 1[$. \exists two sequences $(r_i)_{i \in \mathbb{N}}$ and $(s_i)_{i \in \mathbb{N}}$ such that:

$$\lim_{i\to\infty}r_i=1, \lim_{l\to\infty}s_l=0$$

Theorem

 $x_r^{j,m}$: $\mathbb{S}^j \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ CMC Clifford torus, $1 < j < m, r \in]0, 1[$. \exists two sequences $(r_i)_{i \in \mathbb{N}}$ and $(s_i)_{i \in \mathbb{N}}$ such that:

$$\lim_{i\to\infty}r_i=1, \lim_{l\to\infty}s_l=0$$

► the embeddings x^{j,m}_{ri} and x^{j,m}_{si} are accumulation of pairwise non congruent CMC embeddings of S^j × S^{m-j} into S^{m+1}, each of which is not congruent to any CMC Clifford torus.

Theorem

 $x_r^{j,m}$: $\mathbb{S}^j \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ CMC Clifford torus, $1 < j < m, r \in]0, 1[$. \exists two sequences $(r_i)_{i \in \mathbb{N}}$ and $(s_i)_{i \in \mathbb{N}}$ such that:

$$\lim_{i\to\infty}r_i=1, \lim_{l\to\infty}s_l=0$$

► the embeddings x^{j,m}_{ri} and x^{j,m}_{si} are accumulation of pairwise non congruent CMC embeddings of S^j × S^{m-j} into S^{m+1}, each of which is not congruent to any CMC Clifford torus.

For all other values of r, the CMC Clifford family is stable, i.e., if $x : \mathbb{S}^{j} \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ is a CMC embedding which is sufficiently close to some $x_{r}^{j,m}$, with $r \neq r_{i}$ and $r \neq s_{l}$, then x is congruent to some $x_{r}^{j,m}$.

Theorem

 $x_r^{j,m}$: $\mathbb{S}^j \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ CMC Clifford torus, $1 < j < m, r \in]0, 1[$. \exists two sequences $(r_i)_{i \in \mathbb{N}}$ and $(s_i)_{i \in \mathbb{N}}$ such that:

$$\lim_{i\to\infty}r_i=1,\ \lim_{l\to\infty}s_l=0$$

► the embeddings x^{j,m}_{ri} and x^{j,m}_{si} are accumulation of pairwise non congruent CMC embeddings of S^j × S^{m-j} into S^{m+1}, each of which is not congruent to any CMC Clifford torus.

For all other values of r, the CMC Clifford family is stable, i.e., if $x : \mathbb{S}^{j} \times \mathbb{S}^{m-j} \longrightarrow \mathbb{S}^{m+1}$ is a CMC embedding which is sufficiently close to some $x_r^{j,m}$, with $r \neq r_i$ and $r \neq s_i$, then x is congruent to some $x_r^{j,m}$.

Observation. $r = \sqrt{\frac{j}{m}}$ (minimal) is *not* a bifurcation radius!

CMC tori bifurcation

picture

Generalities on variational bifurcation

General bifurcation setup:

• \mathfrak{M} differentiable manifold (possibly dim = ∞)

Generalities on variational bifurcation

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
Generalities on variational bifurcation

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- $\lambda \mapsto x_{\lambda} \in \mathfrak{M}$ smooth curve of critical points: $d\mathfrak{f}_{\lambda}(x_{\lambda}) = 0$ for all λ .

Generalities on variational bifurcation

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- $\lambda \mapsto x_{\lambda} \in \mathfrak{M}$ smooth curve of critical points: $d\mathfrak{f}_{\lambda}(x_{\lambda}) = 0$ for all λ .

Definition

Bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with:

- (a) $df_{\lambda_n}(x_n) = 0$ for all n;
- **(b)** $x_n \neq x_{\lambda_n}$ for all *n*.

Generalities on variational bifurcation

General bifurcation setup:

- \mathfrak{M} differentiable manifold (possibly dim = ∞)
- $\mathfrak{f}_{\lambda}:\mathfrak{M}\to\mathbb{R}$ family of smooth functionals, $\lambda\in[a,b]$
- $\lambda \mapsto x_{\lambda} \in \mathfrak{M}$ smooth curve of critical points: $d\mathfrak{f}_{\lambda}(x_{\lambda}) = 0$ for all λ .

Definition

Bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with: (a) df $_{\lambda_n}(x_n) = 0$ for all n;

(b) $x_n \neq x_{\lambda_n}$ for all *n*.

Assume:

- ▶ G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Assume:

- ▶ G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with:

(a) $df_{\lambda_n}(x_n) = 0$ for all *n*; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all *n*.

Assume:

- ▶ G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with:

(a) $df_{\lambda_n}(x_n) = 0$ for all *n*; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all *n*.

Standard bifurcation theory requires a quite involved variational setup: differentiability, Palais–Smale, Fredholmness...

Assume:

- ▶ G Lie group acting on 𝔐
- \mathfrak{f}_{λ} is *G*-invariant for all λ

Note: the orbit $G \cdot x_{\lambda}$ consists of critical points.

Definition

Orbit bifurcation at $\lambda_0 \in]a, b[$ if $\exists \lambda_n \to \lambda_0$ and $x_n \to x_{\lambda_0}$ as $n \to \infty$, with:

(a) $df_{\lambda_n}(x_n) = 0$ for all *n*; (b) $G \cdot x_n \neq G \cdot x_{\lambda_n}$ for all *n*.

Standard bifurcation theory requires a quite involved variational setup: differentiability, Palais–Smale, Fredholmness...

Bifurcation occurs at *degenerate* critical points with *jumps* of the Morse index. In the equivariant case, bifurcation occurs at degenerate critical orbits where jumps of the *critical groups*.

Introduce a set Emb(M, N) of embeddings M → N. (which regularity?)

- Introduce a set Emb(M, N) of embeddings M → N. (which regularity?)
- Manifold structure on the quotient $\mathfrak{M} = \mathrm{Emb}(M, N)/\mathrm{Diff}(M)$.

- Introduce a set Emb(M, N) of embeddings M → N. (which regularity?)
- Manifold structure on the quotient $\mathfrak{M} = \operatorname{Emb}(M, N) / \operatorname{Diff}(M)$.
- Consider the action of the isometry group G = Iso(N, g) on \mathfrak{M} .

- ► Introduce a set Emb(M, N) of embeddings $M \hookrightarrow N$. (which regularity?)
- ▶ Manifold structure on the quotient $\mathfrak{M} = \operatorname{Emb}(M, N) / \operatorname{Diff}(M)$.
- Consider the action of the isometry group G = Iso(N, g) on \mathfrak{M} .
- ▶ Volume and area functionals on \mathfrak{M} (invariant by *G*).

 $\begin{array}{l} \mathsf{CMC} \quad \mathsf{embeddings} \\ \mathsf{M} \hookrightarrow \mathsf{N} \end{array}$

 \longleftrightarrow

constrained critical points of Area with fixed Volume.

- ► Introduce a set Emb(M, N) of embeddings $M \hookrightarrow N$. (which regularity?)
- ▶ Manifold structure on the quotient $\mathfrak{M} = \operatorname{Emb}(M, N) / \operatorname{Diff}(M)$.

 \longleftrightarrow

- Consider the action of the isometry group G = Iso(N, g) on \mathfrak{M} .
- Volume and area functionals on \mathfrak{M} (invariant by *G*).

 $\begin{array}{l} \mathsf{CMC} \quad \mathsf{embeddings} \\ \mathsf{M} \hookrightarrow \mathsf{N} \end{array}$

constrained critical points of Area with fixed Volume.

Accumulation of non congruent CMC embeddings

Constrained critical *G*-orbit bifurcation (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;

A set of axioms for equivariant constrained bifurcation — 1

(A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;

(A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;

A set of axioms for equivariant constrained bifurcation — 1

- (A1) m smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;

A set of axioms for equivariant constrained bifurcation — 1

- (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;

- (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- (A1) M smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on M;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

• $\mathfrak{M} = \mathrm{Emb}(M, N) / \mathrm{Diff}(M)$

- (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- $\mathfrak{M} = \mathrm{Emb}(M, N) / \mathrm{Diff}(M)$
- ► X = space of sections of some vector bundle over M

- (A1) \mathfrak{M} smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on \mathfrak{M} ;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- $\mathfrak{M} = \mathrm{Emb}(M, N) / \mathrm{Diff}(M)$
- ► X = space of sections of some vector bundle over M
- G (connected component of 1 of) isometry group of (N, g)

- (A1) M smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on M;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- $\mathfrak{M} = \operatorname{Emb}(M, N) / \operatorname{Diff}(M)$
- ► X = space of sections of some vector bundle over M
- G (connected component of 1 of) isometry group of (N, g)
- A = area functional, V = volume functional

- (A1) M smooth manifold modeled on a separable Banach space X;
- (A2) G compact (connected) Lie group actiong continuously on M;
- (A3) $\mathcal{A}: \mathfrak{M} \to \mathbb{R}$ smooth *G*-invariant function;
- (A4) $\mathcal{V}:\mathfrak{M}\to\mathbb{R}$ smooth *G*-invariant function without critical points;
- (A5) orbits of critical points of $\mathfrak{f}_{\lambda} = \mathcal{A} + \lambda \cdot \mathcal{V}$ smoooth submanifolds of \mathfrak{M} .

- $\mathfrak{M} = \operatorname{Emb}(M, N) / \operatorname{Diff}(M)$
- X = space of sections of some vector bundle over M
- G (connected component of 1 of) isometry group of (N, g)
- A = area functional, V = volume functional
- λ = mean curvature (up to a factor)

(HF-A) gradient map for f_{λ} : For all λ_0 and all $x_0 \in \operatorname{Crit}(f_{\lambda_0}), \exists U$ neighborhood of x_0 , a Banach space **Y**, a Hilbert space **H**₀, with continuous dense inclusions:

$$\boldsymbol{X} \hookrightarrow \boldsymbol{Y} \hookrightarrow \boldsymbol{H}_0,$$

and a map $F :]\lambda_0 - \varepsilon, \lambda_0 + \varepsilon [\times U \longrightarrow \mathbf{Y}$ such that:

•
$$\mathrm{d}\mathfrak{f}_{\lambda}(x)\mathbf{v} = \langle F(\lambda, x), \mathbf{v} \rangle_{\mathbf{H}_{0}}$$

•
$$\frac{\partial F}{\partial x}(\lambda_0, x_0) : \mathbf{X} \longrightarrow \mathbf{Y}$$
 Fredholm of index 0.

(HF-A) gradient map for f_{λ} : For all λ_0 and all $x_0 \in \operatorname{Crit}(f_{\lambda_0}), \exists U$ neighborhood of x_0 , a Banach space **Y**, a Hilbert space **H**₀, with continuous dense inclusions:

$$\boldsymbol{X} \hookrightarrow \boldsymbol{Y} \hookrightarrow \boldsymbol{H}_0,$$

and a map $F :]\lambda_0 - \varepsilon, \lambda_0 + \varepsilon [\times U \longrightarrow \mathbf{Y}$ such that:

•
$$\mathrm{d}\mathfrak{f}_{\lambda}(x)\mathbf{v} = \langle F(\lambda, x), \mathbf{v} \rangle_{\mathbf{H}_{0}}$$

•
$$\frac{\partial F}{\partial x}(\lambda_0, x_0) : \mathbf{X} \longrightarrow \mathbf{Y}$$
 Fredholm of index 0.

(HF-A) implies:

(HF-A) gradient map for f_{λ} : For all λ_0 and all $x_0 \in \operatorname{Crit}(f_{\lambda_0}), \exists U$ neighborhood of x_0 , a Banach space **Y**, a Hilbert space **H**₀, with continuous dense inclusions:

$$\boldsymbol{X} \hookrightarrow \boldsymbol{Y} \hookrightarrow \boldsymbol{H}_0,$$

and a map $F :]\lambda_0 - \varepsilon, \lambda_0 + \varepsilon [\times U \longrightarrow \mathbf{Y}$ such that:

•
$$\mathrm{d}\mathfrak{f}_{\lambda}(x)\mathbf{v} = \langle F(\lambda, x), \mathbf{v} \rangle_{\mathbf{H}_{\mathbf{C}}}$$

•
$$\frac{\partial F}{\partial x}(\lambda_0, x_0) : \mathbf{X} \longrightarrow \mathbf{Y}$$
 Fredholm of index 0.

(HF-A) implies:

(a) local Palais–Smale condition for f_{λ} ;

(HF-A) gradient map for \mathfrak{f}_{λ} : For all λ_0 and all $x_0 \in \operatorname{Crit}(\mathfrak{f}_{\lambda_0}), \exists U$ neighborhood of x_0 , a Banach space **Y**, a Hilbert space **H**₀, with continuous dense inclusions:

$$\boldsymbol{X} \hookrightarrow \boldsymbol{Y} \hookrightarrow \boldsymbol{H}_0,$$

and a map $F :]\lambda_0 - \varepsilon, \lambda_0 + \varepsilon [\times U \longrightarrow \mathbf{Y}$ such that:

•
$$d\mathfrak{f}_{\lambda}(x)\mathbf{v} = \langle F(\lambda, x), \mathbf{v} \rangle_{\mathbf{H}_{0}}$$

•
$$\frac{\partial F}{\partial x}(\lambda_0, x_0) : \mathbf{X} \longrightarrow \mathbf{Y}$$
 Fredholm of index 0.

(HF-A) implies:

- (a) local *Palais–Smale condition* for f_{λ} ;
- (b) manifold structure of critical orbits near nondegenerate ones, via Implicit Function Theorem.

For the CMC problem:

For the CMC problem:

► **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$

For the CMC problem:

Separability !!!

▶ **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$

For the CMC problem:

Separability!!!

- ▶ **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$
- **Y** = $C^{k-2,\alpha}$ -sections of x_0^{\perp}

For the CMC problem:

Separability!!!

- ▶ **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$
- $\mathbf{Y} = C^{k-2,\alpha}$ -sections of x_0^{\perp}
- $\mathbf{H}_0 = L^2$ -sections of x_0^{\perp}

For the CMC problem:

Separability!!!

▶ **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$

- $\mathbf{Y} = C^{k-2,\alpha}$ -sections of x_0^{\perp}
- $\mathbf{H}_0 = L^2$ -sections of x_0^{\perp}
- ► *F* quasi-linear 2nd-order elliptic operator:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+\|\nabla u\|^2}}\right)$$

For the CMC problem:

Separability!!!

▶ **X** = $C^{k,\alpha}$ -sections of the normal bundle x_0^{\perp} , $k \ge 2$, $\alpha \in]0, 1[;$

- $\mathbf{Y} = C^{k-2,\alpha}$ -sections of x_0^{\perp}
- $\mathbf{H}_0 = L^2$ -sections of x_0^{\perp}
- F quasi-linear 2nd-order elliptic operator:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+\|\nabla u\|^2}}\right)$$

Fredholmness

• $\frac{\partial F}{\partial x}$ Jacobi operator.

Regularity of embeddings
► For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

- For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:
 - Sobolev type H^1 :

- For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:
 - Sobolev type *H*¹:

lacks regularity of weak solutions of CMC equation

- For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H¹: lacks regularity of weak solutions of CMC equation

• Sobolev type H^k , k > 1:

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H ¹ :	lacks regularity of weak solutions of CMC equation		
Sobolev type H^k , $k > 1$:		Hessian not Fredholm (compact!)	

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H¹: lacks regularity of weak solutions of CMC equation

Sobolev type H^k , k > 1: | Hessian not Fredholm (compact!)

Banach manifold structure:

- For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H¹: lacks regularity of weak solutions of CMC equation

Sobolev type H^k , k > 1: | Hessian not Fredholm (compact!)

Banach manifold structure:

 $\blacktriangleright C^{\infty}$:

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

 Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: Hessian not Fredholm (compact!)
- Banach manifold structure:

• C^{∞} : not Banach, only Frechet

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: Hessian not Fredholm (compact!)
- Banach manifold structure:
 - C^{∞} : | not Banach, only Frechet
 - \mathcal{C}^k , k > 2;

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

 Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: Hessian not Fredholm (compact!)
- Banach manifold structure:
 - C^{∞} : not Banach, only Frechet

•
$$C^k$$
, $k \ge 2$: $J: C^k \to C^{k-2}$ is not Fredholm

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

 Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: | Hessian not Fredholm (compact!)
- Banach manifold structure:
 - C^{∞} : not Banach, only Frechet
 - ▶ C^k , $k \ge 2$: $J: C^k \to C^{k-2}$ is not Fredholm

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: Hessian not Fredholm (compact!)
- Banach manifold structure:
 - C^{∞} : not Banach, only Frechet

▶
$$C^k$$
, $k \ge 2$: $J : C^k \to C^{k-2}$ is not Fredholm

► $C^{k,\alpha}$, $k \ge 2$, $\alpha \in]0,1[$: almost fine, but *not separable!*

For Morse theoretical and Fredholmness questions it would be desirable to have a *Hilbert* manifold structure:

 Sobolev type H¹: lacks regularity of weak solutions of CMC equation

- Sobolev type H^k , k > 1: Hessian not Fredholm (compact!)
- Banach manifold structure:

• \mathcal{C}^{∞} : not Banach, only Frechet

•
$$C^k$$
, $k \ge 2$: $J : C^k \to C^{k-2}$ is not Fredholm

► $C^{k,\alpha}$, $k \ge 2$, $\alpha \in]0,1[$: almost fine, but *not separable*!

 $\begin{array}{l} f_a = |x - a|^{\alpha}, \\ f_b = |x - b|^{\alpha}, \\ \mathrm{dist}_{0,\alpha}(f_a, f_b) \geq 2 \\ \mathrm{for \ all} \ a \neq b. \end{array}$

(HF-B) Fredholm Hessian for f_{λ} : For all λ_0 and all

 $x_0 \in \operatorname{Crit}(\mathfrak{f}_{\lambda_0}), \exists$ a Hilbert space \mathbf{H}_1 , with $\mathbf{X} \subset \mathbf{H}_1$ such that $\mathrm{d}^2\mathfrak{f}_{\lambda_0}(x_0)$ extends to an *essentially positive* bounded symmetric bilinear form on \mathbf{H}_1 :

$$\mathrm{d}^2\mathfrak{f}_{\lambda_0}(\textbf{\textit{x}}_0)\big(\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big)=\big\langle \textbf{P}_{\lambda_0,\textbf{\textit{x}}_0}\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big\rangle_{\textbf{H}_1}$$

- $\mathbf{P}_{\lambda_0, x_0} : \mathbf{H}_1 \rightarrow \mathbf{H}_1$ self-adjoint
- ► $\Sigma_{ess}(\mathbf{P}_{\lambda_0,x_0}) \subset]0, +\infty[.$

(HF-B) Fredholm Hessian for f_{λ} : For all λ_0 and all

 $x_0 \in \operatorname{Crit}(\mathfrak{f}_{\lambda_0}), \exists$ a Hilbert space \mathbf{H}_1 , with $\mathbf{X} \subset \mathbf{H}_1$ such that $d^2\mathfrak{f}_{\lambda_0}(x_0)$ extends to an *essentially positive* bounded symmetric bilinear form on \mathbf{H}_1 :

$$\mathrm{d}^2\mathfrak{f}_{\lambda_0}(\textbf{\textit{x}}_0)\big(\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big) = \big\langle \textbf{P}_{\lambda_0,\textbf{\textit{x}}_0}\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big\rangle_{\textbf{H}_1}$$

- $\mathbf{P}_{\lambda_0, x_0} : \mathbf{H}_1 \to \mathbf{H}_1$ self-adjoint
- ► $\Sigma_{ess}(\mathbf{P}_{\lambda_0,x_0}) \subset]0, +\infty[.$

(HF-B) is used:

(HF-B) Fredholm Hessian for f_{λ} : For all λ_0 and all

 $x_0 \in \operatorname{Crit}(\mathfrak{f}_{\lambda_0}), \exists$ a Hilbert space \mathbf{H}_1 , with $\mathbf{X} \subset \mathbf{H}_1$ such that $\mathrm{d}^2\mathfrak{f}_{\lambda_0}(x_0)$ extends to an *essentially positive* bounded symmetric bilinear form on \mathbf{H}_1 :

$$\mathrm{d}^2\mathfrak{f}_{\lambda_0}(\textbf{\textit{x}}_0)\big(\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big) = \big\langle \textbf{P}_{\lambda_0,\textbf{\textit{x}}_0}\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big\rangle_{\textbf{H}_1}$$

- $\mathbf{P}_{\lambda_0, x_0} : \mathbf{H}_1 \rightarrow \mathbf{H}_1$ self-adjoint
- $\Sigma_{ess}(\mathbf{P}_{\lambda_0,x_0}) \subset]0, +\infty[.$

(HF-B) is used:

- (a) to compute *Morse index* of x_0 (sum of dimension of negative eigenspaces of $\mathbf{P}_{\lambda_0, x_0}$)
- (b) to compute *local homological invariants* of critical orbits, via Morse Lemma.

(HF-B) Fredholm Hessian for f_{λ} : For all λ_0 and all $x_0 \in \operatorname{Crit}(f_{\lambda_0}), \exists$ a Hilbert space \mathbf{H}_1 , with $\mathbf{X} \subset \mathbf{H}_1$ such that $d^2 f_{\lambda_0}(x_0)$ extends to an essentially positive bounded symmetric bilinear form on \mathbf{H}_1 :

$$\mathrm{d}^2\mathfrak{f}_{\lambda_0}(\textbf{\textit{x}}_0)\big(\textbf{\textit{v}}_1,\textbf{\textit{v}}_2\big) = \big\langle \textbf{P}_{\lambda_0,\textbf{\textit{x}}_0}\textbf{\textit{v}}_1,\textbf{\textit{v}}_2 \big\rangle_{\textbf{H}_1}$$

- $\mathbf{P}_{\lambda_0, x_0} : \mathbf{H}_1 \rightarrow \mathbf{H}_1$ self-adjoint
- ► $\Sigma_{ess}(\mathbf{P}_{\lambda_0,x_0}) \subset]0, +\infty[.$

(HF-B) is used:

- (a) to compute *Morse index* of x_0 (sum of dimension of negative eigenspaces of $\mathbf{P}_{\lambda_0, x_0}$)
- (b) to compute *local homological invariants* of critical orbits, via Morse Lemma.

D. Hilbert

I. Fredholm

For the CMC problem:

H₁ = Sobolev space of H^1 -sections of the normal bundle x_0^{\perp}

$$d^{2}\mathfrak{f}_{\lambda_{0}}(\boldsymbol{x}_{0})(\boldsymbol{v}_{1},\boldsymbol{v}_{2}) = \int_{M} \nabla \boldsymbol{v}_{1} \cdot \nabla \boldsymbol{v}_{2} - \left[\boldsymbol{m} \cdot \operatorname{Ric}_{N}(\boldsymbol{\vec{n}}_{\boldsymbol{x}_{0}}) + \|\boldsymbol{A}\|^{2}\right] \boldsymbol{v}_{1} \boldsymbol{v}_{2}$$

 $\int_{\mathcal{U}} \nabla v_1 \cdot \nabla v_2 \text{ inner product of } H^1 \quad \rightsquigarrow \quad positive \text{ isomorphism.}$

 $\int_{M} \left[m \cdot \operatorname{Ric}_{N}(\vec{n}_{x_{0}}) + \|\boldsymbol{A}\|^{2} \right] v_{1} v_{2}$

does not contain derivatives \rightsquigarrow compact operator

positive + compact = essentially positive

Theorem

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B), assume:

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B), assume:

(B) given C^1 -maps:

(B1) $[a, b] \ni r \mapsto \lambda_r \in \mathbb{R}$, with $\lambda'_r > 0$; (B2) $[a, b] \ni r \mapsto x_r \in \mathfrak{M}$, with $d\mathfrak{f}_{\lambda_r}(x_r) = 0 \forall r$.

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B), assume:

(B) given C^1 -maps:

(B1) $[a, b] \ni r \mapsto \lambda_r \in \mathbb{R}$, with $\lambda'_r > 0$; (B2) $[a, b] \ni r \mapsto x_r \in \mathfrak{M}$, with $df_{\lambda_r}(x_r) = 0 \forall r$.

(C) The connected component of the identity of the stabilizer of x_r does not depend on r.

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B), assume:

(B) given C^1 -maps:

(B1) $[a, b] \ni r \mapsto \lambda_r \in \mathbb{R}$, with $\lambda'_r > 0$; (B2) $[a, b] \ni r \mapsto x_r \in \mathfrak{M}$, with $df_{\lambda_r}(x_r) = 0 \forall r$.

- (C) The connected component of the identity of the stabilizer of x_r does not depend on r.
- (D1) For $r \neq \bar{r}$, $\mathcal{O}(x_r, \mathfrak{f}_{\lambda_r})$ is a *nondegenerate* critical orbit.
- (D2) For $\varepsilon > 0$ small, Morse index $(x_{\overline{r}-\varepsilon}) \neq Morse index(x_{\overline{r}+\varepsilon})$.

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B), assume:

(B) given C^1 -maps:

(B1) $[a, b] \ni r \mapsto \lambda_r \in \mathbb{R}$, with $\lambda'_r > 0$; **(B2)** $[a, b] \ni r \mapsto x_r \in \mathfrak{M}$, with $df_{\lambda_r}(x_r) = 0 \forall r$.

(C) The connected component of the identity of the stabilizer of x_r does not depend on r.

(D1) For $r \neq \overline{r}$, $\mathcal{O}(x_r, \mathfrak{f}_{\lambda_r})$ is a *nondegenerate* critical orbit.

(D2) For $\varepsilon > 0$ small, Morse index $(x_{\overline{r}-\varepsilon}) \neq Morse index(x_{\overline{r}+\varepsilon})$.

Then, critical orbit bifurcation occurs at $r = \overline{r}$.

- ► *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ *n* = *m* + 1

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- ► x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

$$Area(x) = \int_M \operatorname{vol}^*$$

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

$$Area(x) = \int_M \operatorname{vol}^*$$

Assume $x(M) = M_0 = \partial \Omega$, i.e. $N \setminus M_0$ has 2 connected components.

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

$$\operatorname{Area}(x) = \int_M \operatorname{vol}^*$$

Assume $x(M) = M_0 = \partial \Omega$, i.e. $N \setminus M_0$ has 2 connected components.

$$\operatorname{Volume}(x) = \int_{\Omega} \operatorname{vol}_{g}$$

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

$$\operatorname{Area}(x) = \int_M \operatorname{vol}^*$$

Assume $x(M) = M_0 = \partial \Omega$, i.e. $N \setminus M_0$ has 2 connected components.

$$\operatorname{Volume}(x) = \int_{\Omega} \operatorname{vol}_{g}$$

of connected components of $N \setminus M_0$ = rank $(\widetilde{H}_0(N \setminus M_0))$

- *M^m* compact oriented manifold
- (N,g) oriented Riemannian manifold, vol_g volume form.
- ▶ n = m + 1
- $x: M \rightarrow N$ embedding
- x*(g) pull-back metric
- ► $\operatorname{vol}^* = \operatorname{vol}(x^*(g)).$

$$\operatorname{Area}(x) = \int_M \operatorname{vol}^*$$

Assume $x(M) = M_0 = \partial \Omega$, i.e. $N \setminus M_0$ has 2 connected components.

$$\operatorname{Volume}(x) = \int_{\Omega} \operatorname{vol}_{g}$$

of connected components of $N \setminus M_0$ = rank $(\widetilde{H}_0(N \setminus M_0)) \iff$ reduced homology

Connected components of $N \setminus M_0$

Long exact reduced homology sequence:

Connected components of $N \setminus M_0$

Long exact reduced homology sequence:

Proposition

 $N \setminus M_0$ has 2 connected components

$$\iff$$

$$H_1(N) \longrightarrow H_1(N, N \setminus M_0)$$

is zero

Connected components of $N \setminus M_0$ the picture

homologically non trivial embedding its image is not a boundary

Connected components of $N \setminus M_0$ the picture

homologically non trivial embedding its image is not a boundary

homologically trivial
N non compact \Longrightarrow vol_{*g*} = d η is exact.

N non compact \Longrightarrow vol_{*g*} = d η is exact.

Set Volume(x) = $\int_M x^*(\eta)$

N non compact \Longrightarrow vol_{*g*} = d η is exact.

Set Volume(x) = $\int_M x^*(\eta)$

Note. If $x(M) = \partial \Omega$, then:

$$\operatorname{Volume}(\boldsymbol{x}) = \int_{\boldsymbol{M}} \boldsymbol{x}^*(\eta) = \int_{\partial \Omega} \eta \overset{\text{by Stokes' theorem}}{=} \int_{\Omega} \mathrm{d}\eta = \int_{\Omega} \operatorname{vol}_{\boldsymbol{g}} = \operatorname{Volume}(\Omega).$$

N non compact \Longrightarrow vol_{*g*} = d η is exact.

Set Volume(x) = $\int_M x^*(\eta)$

Note. If $x(M) = \partial \Omega$, then:

$$\operatorname{Volume}(\boldsymbol{x}) = \int_{\mathcal{M}} \boldsymbol{x}^*(\eta) = \int_{\partial \Omega} \eta \stackrel{\text{by Stokes' theorem}}{=} \int_{\Omega} \mathrm{d}\eta = \int_{\Omega} \operatorname{Vol}_{g} = \operatorname{Volume}(\Omega).$$

If *N* is compact, pick $p \in N \setminus x(M)$ and replace *N* with $N \setminus \{p\}$

N non compact \Longrightarrow $vol_g = d\eta$ is exact.

Set Volume(x) = $\int_M x^*(\eta)$

Note. If $x(M) = \partial \Omega$, then:

$$\operatorname{Volume}(\boldsymbol{x}) = \int_{\mathcal{M}} \boldsymbol{x}^*(\eta) = \int_{\partial \Omega} \eta \stackrel{\text{by Stokes' theorem}}{=} \int_{\Omega} \mathrm{d}\eta = \int_{\Omega} \operatorname{vol}_g = \operatorname{Volume}(\Omega).$$

If *N* is compact, pick $p \in N \setminus x(M)$ and replace *N* with $N \setminus \{p\}$

N non compact \Longrightarrow vol_{*g*} = $d\eta$ is exact.

Set Volume(x) = $\int_M x^*(\eta)$

Note. If $x(M) = \partial \Omega$, then:

$$\operatorname{Volume}(\boldsymbol{x}) = \int_{\mathcal{M}} \boldsymbol{x}^*(\eta) = \int_{\partial \Omega} \eta \stackrel{\text{by Stokes' theorem}}{=} \int_{\Omega} \mathrm{d}\eta = \int_{\Omega} \operatorname{vol}_g = \operatorname{Volume}(\Omega).$$

If *N* is compact, pick $p \in N \setminus x(M)$ and replace *N* with $N \setminus \{p\}$

no more compact!

• $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- x^{\perp} normal bundle of x

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- ▶ x^{\perp} normal bundle of x
- $y: M \to N$ nearby $\mathcal{C}^{k,\alpha}$ -embedding

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- x^{\perp} normal bundle of x
- $y: M \to N$ nearby $C^{k,\alpha}$ -embedding
- ► $\exists ! V_{x,y} \in \Gamma^{k,\alpha}(x^{\perp}) \text{ s.t.}$ $y = \exp^{\perp} V_{x,y}$ (up to a reparameterization)

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- ▶ x^{\perp} normal bundle of x
- $y: M \to N$ nearby $C^{k,\alpha}$ -embedding
- ► $\exists ! V_{x,y} \in \Gamma^{k,\alpha}(x^{\perp})$ s.t. $y = \exp^{\perp} V_{x,y}$

(up to a reparameterization)

Proposition

The map Φ_x : y → V_{x,y} is a local chart for Emb(M, N)/Diff(M) with domain a neighborhood of x and taking values in a neighborhood of the null sections of the Banach space Γ^{k,α}(x[⊥]).

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- x^{\perp} normal bundle of x
- $y: M \to N$ nearby $C^{k,\alpha}$ -embedding
- ► $\exists ! V_{x,y} \in \Gamma^{k,\alpha}(x^{\perp})$ s.t. $y = \exp^{\perp} V_{x,y}$

(up to a reparameterization)

Proposition

- The map Φ_x : y → V_{x,y} is a local chart for Emb(M, N)/Diff(M) with domain a neighborhood of x and taking values in a neighborhood of the null sections of the Banach space Γ^{k,α}(x[⊥]).
- The above chart are continuously compatible, but not differentiably.

- $x: M \to N \text{ smooth } (\mathcal{C}^{\infty})$ embedding
- x^{\perp} normal bundle of x
- $y: M \to N$ nearby $\mathcal{C}^{k,\alpha}$ -embedding
- ► $\exists ! V_{x,y} \in \Gamma^{k,\alpha}(x^{\perp})$ s.t. $y = \exp^{\perp} V_{x,y}$

(up to a reparameterization)

Proposition

- The map Φ_x : y → V_{x,y} is a local chart for Emb(M, N)/Diff(M) with domain a neighborhood of x and taking values in a neighborhood of the null sections of the Banach space Γ^{k,α}(x[⊥]).
- The above chart are continuously compatible, but not differentiably.
- If f : Emb(M, N) is a smooth map which is invariant by Diff(M), then f ◦ Φ_x is smooth for all x.

A, B, C smooth manifolds, $F : B \to C$ map of class C^k .

A, B, C smooth manifolds, $F : B \rightarrow C$ map of class C^k .

$$\mathcal{C}^{k}(A,B) \xrightarrow{\mathsf{L}_{F}} \mathcal{C}^{k}(A,C) \qquad \text{left composition} \\ f \xrightarrow{} F \circ f$$

A, B, C smooth manifolds, $F : B \to C$ map of class C^k .

$$\mathcal{C}^{k}(A,B) \xrightarrow{\mathsf{L}_{F}} \mathcal{C}^{k}(A,C) \qquad \text{left composition} \\ f \xrightarrow{} F \circ f$$

$$d\mathbf{L}_f = \mathbf{L}_{dF} \implies \text{if } F \notin \mathcal{C}^{k+1}, \mathbf{L}_F \text{ not differentiable}!$$

A, B, C smooth manifolds, $F : B \to C$ map of class C^k .

$$\mathcal{C}^{k}(A,B) \xrightarrow{\mathsf{L}_{F}} \mathcal{C}^{k}(A,C) \qquad \text{left composition} \\ f \longrightarrow F \circ f$$

$$d\mathbf{L}_f = \mathbf{L}_{dF} \implies \text{if } F \notin \mathcal{C}^{k+1}, \, \mathbf{L}_F \text{ not differentiable}!$$

$$\mathcal{C}^{k}(A, B) \times \mathcal{C}^{k}(C, A) \longrightarrow \mathcal{C}^{k}(C, B) \qquad \text{not differentiable!}$$
$$(f_{1}, f_{2}) \longrightarrow f_{1} \circ f_{2}$$

A, B, C smooth manifolds, $F : B \rightarrow C$ map of class C^k .

$$\mathcal{C}^{k}(A,B) \xrightarrow{\mathsf{L}_{F}} \mathcal{C}^{k}(A,C) \qquad \text{left composition} \\ f \xrightarrow{} F \circ f$$

$$d\mathbf{L}_f = \mathbf{L}_{dF} \implies \text{if } F \notin \mathcal{C}^{k+1}, \, \mathbf{L}_F \text{ not differentiable}!$$

$$\mathcal{C}^{k}(A,B) \times \mathcal{C}^{k}(C,A) \longrightarrow \mathcal{C}^{k}(C,B) \quad \text{not differentiable!} (f_{1},f_{2}) \longrightarrow f_{1} \circ f_{2}$$

► $x_1, x_2 : M \to N$ smooth embeddings, $y : M \to N$ $C^{k,\alpha}$ embedding

Proposition

Emb(M, N)/Diff(M) does not have a natural differentiable structure, i.e., such that Emb(M, N) → Emb(M, N)/Diff(M) is a smooth surjection.

Proposition

- $\operatorname{Emb}(M, N)/\operatorname{Diff}(M)$ does not have a *natural* differentiable structure, i.e., such that $\operatorname{Emb}(M, N) \to \operatorname{Emb}(M, N)/\operatorname{Diff}(M)$ is a smooth surjection.
- The action of G = Iso(N, g) on Emb(M, N)/Diff(M) is continuous.

Proposition

- $\operatorname{Emb}(M, N)/\operatorname{Diff}(M)$ does not have a *natural* differentiable structure, i.e., such that $\operatorname{Emb}(M, N) \to \operatorname{Emb}(M, N)/\operatorname{Diff}(M)$ is a smooth surjection.
- ▶ The action of G = Iso(N, g) on Emb(M, N) / Diff(M) is continuous.
- The G-orbit of any x smooth (in particular, of any CMC embedding) is smooth in local charts.

►
$$x_r^{j,m}(\mathbb{S}^j \times \mathbb{S}^{m-j}) = \mathbb{S}^j(r) \times \mathbb{S}^{m-j}(\sqrt{1-r^2}) \subset \mathbb{S}^{m+1}(1)$$

► $\begin{pmatrix} O(j+1) & 0\\ 0 & O(m-j+1) \end{pmatrix} \subset \operatorname{stab}([x_r^{j,m}]) \text{ (may not be equal!)}$

Corollary

$$\operatorname{stab}_{0}([x_{r}^{j,m}]) = \begin{pmatrix} \operatorname{SO}(j+1) & 0\\ 0 & \operatorname{SO}(m-j+1) \end{pmatrix}.$$

Corollary

$$\operatorname{stab}_0([x_r^{j,m}]) = \begin{pmatrix} \operatorname{SO}(j+1) & 0\\ 0 & \operatorname{SO}(m-j+1) \end{pmatrix}.$$

 $\frac{\dim(\mathcal{O}(x_r^{j,m})) = \dim(\mathrm{SO}(m+2)) - \dim(\mathrm{SO}(j+1)) - \dim(\mathrm{SO}(m-j+1)) = m + 1 + j(m-1)$

RECALL

Corollary

$$\operatorname{stab}_0([x_r^{j,m}]) = \begin{pmatrix} \operatorname{SO}(j+1) & 0\\ 0 & \operatorname{SO}(m-j+1) \end{pmatrix}.$$

 $\frac{\dim(\mathcal{O}(x_r^{j,m})) = \dim(\mathrm{SO}(m+2)) - \dim(\mathrm{SO}(j+1)) - \dim(\mathrm{SO}(m-j+1)) = m + 1 + j(m-1)$

RECALL \implies nondegenerate critical orbits for $r \neq r_i, s_i$

Local homological invariants

Local homological invariants

• $x_0 \in \mathfrak{M}$ critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$
•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

• $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit

- $x_0 \in \mathfrak{M}$ critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$
- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\blacktriangleright \ \mathfrak{f}^c_{\lambda_0} = \mathfrak{f}^{-1}_{\lambda_0} \big(\left] -\infty, c \right] \big) = \big\{ x \in \mathfrak{M} : \mathfrak{f}_{\lambda_0}(x) \leq c \big\} \text{ closed sublevel}$

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\blacktriangleright \ \mathfrak{f}^{c}_{\lambda_{0}} = \mathfrak{f}^{-1}_{\lambda_{0}} \big(\left[-\infty, c \right] \big) = \big\{ x \in \mathfrak{M} : \mathfrak{f}_{\lambda_{0}}(x) \leq c \big\} \text{ closed sublevel}$

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}^c_{\lambda_0},\mathfrak{f}^c_{\lambda_0}\setminus \mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\blacktriangleright \ \mathfrak{f}^{c}_{\lambda_{0}} = \mathfrak{f}^{-1}_{\lambda_{0}} \big(\left[-\infty, c \right] \big) = \big\{ x \in \mathfrak{M} : \mathfrak{f}_{\lambda_{0}}(x) \leq c \big\} \text{ closed sublevel}$

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}^c_{\lambda_0},\mathfrak{f}^c_{\lambda_0}\setminus \mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

Proposition

Assume:

• $\mathcal{O}(x_0)$ nondegenerate

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\blacktriangleright \ \mathfrak{f}^{c}_{\lambda_{0}} = \mathfrak{f}^{-1}_{\lambda_{0}} \big(\left[-\infty, c \right] \big) = \big\{ x \in \mathfrak{M} : \mathfrak{f}_{\lambda_{0}}(x) \leq c \big\} \text{ closed sublevel}$

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}_{\lambda_0}^c,\mathfrak{f}_{\lambda_0}^c\setminus\mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

Proposition

Assume:

- \triangleright $\mathcal{O}(x_0)$ nondegenerate
- $\mu = \text{Morse index}(x_0)$

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\blacktriangleright \ \mathfrak{f}^{c}_{\lambda_{0}} = \mathfrak{f}^{-1}_{\lambda_{0}} \big(\left[-\infty, c \right] \big) = \big\{ x \in \mathfrak{M} : \mathfrak{f}_{\lambda_{0}}(x) \leq c \big\} \text{ closed sublevel}$

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}_{\lambda_0}^c,\mathfrak{f}_{\lambda_0}^c\setminus\mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

Proposition

Assume:

- ▶ O(x₀) nondegenerate
- ▶ µ = Morse index(x₀)
- Axioms (A1)—(A5)

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- ▶ $\mathfrak{f}_{\lambda_0}^c = \mathfrak{f}_{\lambda_0}^{-1}([-\infty, c]) = \{x \in \mathfrak{M} : \mathfrak{f}_{\lambda_0}(x) \leq c\}$ closed sublevel

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}_{\lambda_0}^c,\mathfrak{f}_{\lambda_0}^c\setminus\mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

Proposition

Assume:

- ▶ O(x₀) nondegenerate
- $\mu = Morse index(x_0)$
- Axioms (A1)—(A5)
- ► Axiom (HF–B).

•
$$x_0 \in \mathfrak{M}$$
 critical point of \mathfrak{f}_{λ_0} , $c = \mathfrak{f}_{\lambda_0}(x_0)$

- $G \cdot x_0 = \mathcal{O}(x_0)$ critical orbit
- $\mathfrak{f}_{\lambda_0}^c = \mathfrak{f}_{\lambda_0}^{-1}([-\infty, c]) = \{x \in \mathfrak{M} : \mathfrak{f}_{\lambda_0}(x) \leq c\}$ closed sublevel

Definition

k-th *critical group* $\mathfrak{H}_k(\mathcal{O}(x_0))$ is the *k*-th relative homology space $H_k(\mathfrak{f}^c_{\lambda_0},\mathfrak{f}^c_{\lambda_0}\setminus\mathcal{O}(x_0);\mathbb{F})$ (\mathbb{F} coefficient field)

Proposition

Assume:

- $\triangleright \mathcal{O}(x_0)$ nondegenerate
- $\mu = \text{Morse index}(x_0)$
- Axioms (A1)—(A5)
- Axiom (HF–B).

Then:

 $\mathfrak{H}_kig(\mathcal{O}(x_0),\mathbb{Z}_2ig)\cong H_{k-\mu}ig(\mathcal{O}(x_0),\mathbb{Z}_2ig)$ (shifted homology)

Existence of *slice S* for the action of *G*

• x_0 nondegenerate (isolated) critical point of $f_{\lambda_0}|_S$

Excision + Leray–Hirsch theorem (homology of fiber bundles):

$$\begin{split} & \mathfrak{H}_{k}\big(\mathcal{O}(x_{0}),\mathbb{Z}_{2}\big) \cong \\ & \bigoplus_{i=0}^{\dim\mathcal{O}(x_{0})} H_{i}\big(\mathfrak{f}_{\lambda_{0}}^{c}\cap S,(\mathfrak{f}_{\lambda_{0}}^{c}\cap S)\setminus\{x_{0}\};\mathbb{Z}_{2}\big)\otimes H_{\dim\mathcal{O}(x_{0})-i}\big(\mathcal{O}(x_{0});\mathbb{Z}_{2}\big). \end{split}$$

Corollary

Jump of the Morse index \implies jump of the critical groups.

Corollary

Jump of the Morse index \implies jump of the critical groups.

Proof of main result concluded

• Continuity/smoothness of bifurcating branch.

- Continuity/smoothness of bifurcating branch.
- Break of symmetry.

- Continuity/smoothness of bifurcating branch.
- Break of symmetry.
- ► Joint project with Jorge Herbert de Lira and Levi Lopes de Lima: study bifurcation and symmetry breaking of CMC Clifford tori in *Berger spheres* \mathbf{S}_{B}^{2n+1} . (1-parameter family of rotationally symmetric CMC embeddings $\mathbb{S}^{1} \times \mathbb{S}^{2n-2} \hookrightarrow \mathbf{S}_{B}^{2n+1}$).

A fixed boundary CMC bifurcation problem Work in progress with Miyuki Koiso and Bennet Palmer

A fixed boundary CMC bifurcation problem Work in progress with Miyuki Koiso and Bennet Palmer

Fix parallel planes π_1 and π_2 in \mathbb{R}^3

- Fix parallel planes π₁ and π₂ in R³
- ► C₁ ⊂ π₁, C₂ ⊂ π₂ circles with same radius

- Fix parallel planes π₁ and π₂ in R³
- C₁ ⊂ π₁, C₂ ⊂ π₂ circles with same radius
- ► \exists a 1-parameter family of *nodoids* \mathcal{N}_t , $t \in \mathbb{R}$, intercepting π_i on C_i , i = 1, 2.

- Fix parallel planes π₁ and π₂ in R³
- C₁ ⊂ π₁, C₂ ⊂ π₂ circles with same radius
- ► \exists a 1-parameter family of *nodoids* \mathcal{N}_t , $t \in \mathbb{R}$, intercepting π_i on C_i , i = 1, 2.

- Fix parallel planes π₁ and π₂ in R³
- C₁ ⊂ π₁, C₂ ⊂ π₂ circles with same radius
- ► \exists a 1-parameter family of *nodoids* \mathcal{N}_t , $t \in \mathbb{R}$, intercepting π_i on C_i , i = 1, 2.
- at a *discrete* set $(t_k)_{k \in \mathbb{Z}}$ of values of the parameter t, \mathcal{N}_t is *tangent* to both π_i .

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition.

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry).

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

Proof:

• $\vec{N} = \nu_1 \cdot \vec{e}_1 + \nu_2 \cdot \vec{e}_2 + \nu_3 \cdot \vec{e}_3$ normal field

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

- $\vec{N} = \nu_1 \cdot \vec{e}_1 + \nu_2 \cdot \vec{e}_2 + \nu_3 \cdot \vec{e}_3 \text{ normal field}$

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

- $\vec{N} = \nu_1 \cdot \vec{e}_1 + \nu_2 \cdot \vec{e}_2 + \nu_3 \cdot \vec{e}_3$ normal field
- When N_t is tangent to the planes, then v₁ and v₂ satisfy the boundary conditions: v_i|_{∂Nt} ≡ 0.

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

- $\vec{N} = \nu_1 \cdot \vec{e}_1 + \nu_2 \cdot \vec{e}_2 + \nu_3 \cdot \vec{e}_3$ normal field
- When N_t is tangent to the planes, then ν₁ and ν₂ satisfy the boundary conditions: ν_i|_{∂N_t} ≡ 0.
- Direct analysis of the spectrum of J, ν_1 and ν_2 determine a *jump* of the Morse index \implies bifurcation.

Theorem

At $t = t_k$ there is bifurcation of CMC surfaces satisfying the given boundary condition. Bifurcating branch consists of *non rotationally symmetric* surfaces (break of symmetry). A similar result hold for a more general variational problem (*Anisotropic CMC*).

- $\vec{N} = \nu_1 \cdot \vec{e}_1 + \nu_2 \cdot \vec{e}_2 + \nu_3 \cdot \vec{e}_3$ normal field
- When N_t is tangent to the planes, then ν₁ and ν₂ satisfy the boundary conditions: ν_i|_{∂N_t} ≡ 0.
- ► Direct analysis of the spectrum of *J*, ν_1 and ν_2 determine a *jump* of the Morse index \implies bifurcation.
- the only rotationally symmetric solutions are nodoids => break of symmetry.

Essential bibliography

- L. J. ALÍAS, A. BRASIL, O. PERDOMO, On the stability index of hypersurfaces with constant mean curvatures in spheres, Proc. Am. Math. Soc. 135, no. 11 (2007), 3685–3693.
- L. J. ALÍAS, P. PICCIONE, Bifurcation of constant mean curvature tori in Euclidean spheres, preprint 2009, arXiv:0905.2128.
- M. KILIAN, M. U. SCHMIDT, On the moduli of constant mean curvature cylinders of finite type in the 3-sphere, preprint 2008, arXiv:0712.0108v2.
- R. MAZZEO, F. PACARD, *Bifurcating nodoids*, Contemp. Math. 314 (2002), 169–186.

Essential bibliography

- L. J. ALÍAS, A. BRASIL, O. PERDOMO, On the stability index of hypersurfaces with constant mean curvatures in spheres, Proc. Am. Math. Soc. 135, no. 11 (2007), 3685–3693.
- L. J. ALÍAS, P. PICCIONE, Bifurcation of constant mean curvature tori in Euclidean spheres, preprint 2009, arXiv:0905.2128.
- M. KILIAN, M. U. SCHMIDT, On the moduli of constant mean curvature cylinders of finite type in the 3-sphere, preprint 2008, arXiv:0712.0108v2.
- R. MAZZEO, F. PACARD, *Bifurcating nodoids*, Contemp. Math. 314 (2002), 169–186.

Special thanks to Renato Ghini Bettiol for helping me with the pictures.

Essential bibliography

- L. J. ALÍAS, A. BRASIL, O. PERDOMO, On the stability index of hypersurfaces with constant mean curvatures in spheres, Proc. Am. Math. Soc. 135, no. 11 (2007), 3685–3693.
- L. J. ALÍAS, P. PICCIONE, Bifurcation of constant mean curvature tori in Euclidean spheres, preprint 2009, arXiv:0905.2128.
- M. KILIAN, M. U. SCHMIDT, On the moduli of constant mean curvature cylinders of finite type in the 3-sphere, preprint 2008, arXiv:0712.0108v2.
- R. MAZZEO, F. PACARD, *Bifurcating nodoids*, Contemp. Math. 314 (2002), 169–186.

Special thanks to Renato Ghini Bettiol for helping me with the pictures.

That's all folks, thanks for the attention!

Luis Alías

Bennet Palmer & Miyuki Koiso

Jorge Herbert de Lira and Levi Lopes de Lima

Renato Ghini Bettiol

