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9 A NOTE ON THE MORSE INDEX THEOREM FOR GEODESICS
BETWEEN SUBMANIFOLDS IN SEMI-RIEMANNIAN GEOMETRY

PAOLO PICCIONE AND DANIEL V. TAUSK

ABSTRACT. The computation of the index of the Hessian of the action func-
tional in semi-Riemannian geometry at geodesics with two variable endpoints is
reduced to the case of afixed final endpoint. Using this observation, we give
an elementary proof of the Morse Index Theorem for Riemannian geodesics
with two variable endpoints, in the spirit of the original Morse’s proof. This
approach reduces substantially the effort required in the proofs of the Theorem
given in [1, 5, 10]. Exactly the same argument works also in the case of timelike
geodesics between two submanifolds of a Lorentzian manifold. For the exten-
sion to the lightlike Lorentzian case, just minor changes are required and one
obtains easily a proof of the focal index theorem presented in [8].

1. INTRODUCTION

A geodesic in a semi-Riemannian manifold(M, g) is a smooth curveγ : [a, b] 7−→

M that is a stationary point for the action functionalf(z) = 1
2

∫ b

a
g(ż, ż) dt de-

fined in the set of pathsz joining two given points ofM. If (M, g) is Riemannian,
i.e., if g is positive definite, given one such critical pointγ, the celebrated Morse
Index Theorem relates some analytical properties of the second variation off atγ
with some geometrical properties ofγ. More precisely, theindexof Hessf at γ,
that gives the number ofessentially differentdirections in whichγ can be deformed
to obtain a shorter curve, equals the number of conjugate points alongγ counted
with multiplicity, excluding the endpointsγ(a) andγ(b).

The Index Theorem opened a very active field of research for both geometers
and analysts, and the original result of Morse was successively extended in several
directions. Beem and Ehrlich extended the results to the case of timelike Lorentzian
geodesics (see [3]) and to the lightlike Lorentzian case ([2, 3]). The case of a Rie-
mannian geodesic with endpoints variable in two submanifolds of M has been
treated by several authors, including Ambrose, Bolton and Kalish, (see [1, 5, 10],
see also [17]). Following the approach of Kalish [10], Ehrlich and Kim have then
proven in [8] the Morse Index Theorem for lightlike geodesics with endpoints vary-
ing on two spacelike submanifolds of a Lorentzian manifold.The case of spacelike
geodesics in semi-Riemannian manifolds was treated by Helfer in [9], where an
extension of the Index Theorem was proven in terms of theMaslov index of a
curve, and by the introduction of a notion ofsignaturefor conjugate points. Ed-
wards extended in [7] the Morse Index Theorem to the case of formally self-adjoint
linear systems of ODE’s, and Smale proved in [16] a general version of the Index
Theorem for strongly elliptic operators on a Riemannian manifold.
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The key point in the original Morse’s proof of the theorem wasthe introduction
of a functioni : [a, b] 7−→ IN that gives the index of the formIt, which is the
HessianHessf restricted to the geodesicγ|[a,t]. Using a suitable subdivision of the
interval [a, b] and some geometrical arguments (see [12, 6]) Morse proved that i is
non decreasing and left continuous, with discontinuities precisely at the conjugate
points, and that the jump ofi at each discontinuity pointt0 is given by the value of
the multiplicity of the conjugate pointγ(t0).

When passing to the case of variable endpoints, i.e., when one admits variations
with curves having endpoints varying on two fixed submanifoldsP andQ of M,
in which case a stationary point off is a geodesicγ that is orthogonal toP and
Q at its endpoints, some obstructions to the use of the original argument of Morse
arise, due mainly to the fact that the restricted index formIt does not detect the
influence of the final manifoldQ.

Ambrose [1] gave a proof of the Index Theorem that uses the subdivision argu-
ment, by introducing a familyQt of localized end-manifoldsalongγ, constructed
with the help of the geodesic flow of the normal bundle ofP around(γ(a), γ̇(a)).
This construction leads to technical difficulties (see also[17]), due to the fact
that the submanifoldQt may lose dimension and differentiability. The proof of
Bolton [5] also uses a subdivision argument, and it avoids the introduction of the
manifoldsQt, but it employs a restricted index function which is no longer nonde-
creasing.

The passage to a restricted index function is avoided in Kalish’s proof of the In-
dex Theorem in the variable endpoints case (see [10]). In this article, it is given an
explicit direct sum decomposition of the spaceH(P,Q) = B ⊕Bc

+ ⊕Bc
− of vector

fields alongγ which are everywhere orthogonal toγ and tangent toP andQ re-
spectively atγ(a) andγ(b). The index theorem is deduced with a study of the sign
of the index form in each of the three spaces; the definition ofsuch decomposition
is not very natural, and the remaining calculations are rather involved.

Ehrlich and Kim [8] have adapted Kalish’s proof to the case oflightlike Lorentz-
ian geodesics, where a suitable quotient space is used, in analogy with the null
Morse Index Theorem of [2, 3].

The aim of this paper is to show that the proof of the Morse Index Theorem for
geodesics with two variable endpoints is a simple adaptation of the classical proof
for the fixed endpoints case, in the spirit of the original proof of Morse, which is
well understood. To this goal, the key observation is that the case of a geodesic
with final point varying on a submanifoldQ can be deduced immediately from
the case of a fixed final endpoint (see Theorem 2.7) by using a natural splitting of
the spaceH(P,Q). Moreover, we emphasize that the case of causal (nonspacelike)
Lorentzian geodesics is essentially analogous to the Riemannian case.

We try to keep all the statements and proofs of the paper at themaximum level
of generality; in particular, we present an approach that unifies the Riemannian
and the causal Lorentzian case, obtaining a proof of all the results for Riemannian
and causal Lorentzian geodesics at the same time. In Remark 2.9, among other
things we observe that, in the Lorentzian lightlike case, the use of the quotient
bundle employed in [2, 3, 8] is not really essential for the computation of the (non
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augmented) index, which allows to give an easier statement of the focal index
theorem.

It is also important to observe that the result of Theorem 2.7applies to a great
number of situations in semi-Riemannian geometry where theMorse Index Theo-
rem maynot work, like for instance in the case of spacelike geodesics instationary
Lorentzian manifolds (see Remark 2.10).

2. THE INDEX THEOREM

Let (M, g) be a semi-Riemannian manifold,m = dim(M), P ⊂ M be a
smooth submanifold ofM andγ : [a, b] 7−→ M be a non constant geodesic inM,
with γ(a) ∈ P andγ̇(a) ∈ Tγ(a)P

⊥. We will say thatγ is spacelike, timelike or
lightlike according tog(γ̇, γ̇) positive, negative or zero, respectively; bycausalwe
will mean either timelike or lightlike.

Let∇ denote the Levi–Civita connection ofg and let

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]

be the curvature tensor of∇; moreover, for allp ∈ P and alln ∈ TpP
⊥, let SP

n

be the second fundamental form ofP in the orthogonal directionn, which is the
following symmetric bilinear form onTpP :

SP
n (v1, v2) = g(n,∇v1

V2),

whereV2 is any extension ofv2 to a vector field tangent toP . Observe that we are
not in principle making any non degeneracy assumption onP , but if the metric is
non degenerate onTpP then we can also define a linear mapSP

n : TpP 7−→ TpP
such thatg(SP

n (v1), v2) = SP
n (v1, v2).

Given a (piecewise) smooth vector fieldV alongγ, we denote byV ′ the covari-
ant derivative ofV alongγ; if V is piecewise smooth andτ ∈ [a, b], the symbols
V ′(τ−) andV ′(τ+) will mean respectively the left and right limits ofV ′(t) as
t→ τ .

If (M, g) is Lorentzian, i.e., if the index ofg is 1, andγ is timelike, we have
thatTγ(a)P is spacelike, in the sense that the restriction ofg to Tγ(a)P is positive
definite. More in general, the restriction of the metricg to the orthogonal space
γ̇(t)⊥ is positive definite for allt ∈ [a, b]. If γ is lightlike, the restriction of the
metric to the orthogonal space is just positive semi-definite (having a one dimen-
sional kernel spanned bẏγ(t)). However, if one assumes thatγ̇(a) 6∈ Tγ(a)P , then
againTγ(a)P is spacelike.

Let H̃P denote the vector space of all piecewise smooth vector fieldsV alongγ
such thatV (a) ∈ Tγ(a)P and letHP be the subspace of̃HP consisting of thoseV

such thatg(V, γ̇) ≡ 0 andV (b) = 0; moreover, letIP : H̃P × H̃P 7−→ IR be the
symmetric bilinear form given by:

IP (V,W ) =

∫ b

a

[

g(V ′,W ′) + g(R(γ̇, V ) γ̇,W )
]

dt− SP
γ̇(a)(V (a),W (a)).

(1)
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Observe that if the submanifoldP consists of just one point, the term involving its
second fundamental formSP

γ̇(a) in (1) disappears. In this case we’ll write justI

instead ofIP .
Integration by parts ong(V ′,W ′) gives yet another expression forIP :

IP (V,W ) =

∫ b

a

g(R(γ̇, V ) γ̇ − V ′′,W ) dt+

+ g(V ′(b),W (b)) − g(V ′(a),W (a)) − SP
γ̇(a)(V (a),W (a)) +

+
N−1
∑

i=1

g(V ′(t−i ) − V ′(t+i ),W (ti)),

(2)

wherea = t0 < t1 < . . . < tN = b is a partition of[a, b] such thatV is smooth in
each interval[ti, ti+1], i = 0, 1, . . . , N − 1.

It is well known thatγ is a stationary point for the action functional

f(z) =
1

2

∫ b

a

g(ż, ż) dt

defined in the setΩP,γ(b) of all piecewise smooth curvesz : [a, b] → M joining P
andγ(b). Under the viewpoint of Calculus of Variations and Global Analysis, the
vector spaceHP is a subspace of thetangent spaceof ΩP,γ(b) at γ, andIP

∣

∣

HP is
the bilinear form given by thesecond variationof f at the stationary pointγ. We
will be concerned with theindexof IP in HP , defined as follows. IfK is a vector
subspace of̃HP , then the indexi(IP ,K) of IP in K is the number:

ind(IP ,K) = sup{dim(V) : V subspace ofK with IP
∣

∣

V
< 0},

and we set

ind(IP ) = ind(IP ,HP ).(3)

The numberind(IP ) will be called theMorse Indexof γ.
A Jacobi field alongγ is a smooth vector fieldJ satisfying the linear equation

J ′′ −R(γ̇, J) γ̇ = 0. We say thatJ is aP -Jacobi field if it satisfies in addition:

J(a) ∈ Tγ(a)P,(4)

and

g(J ′(a), w) + SP
γ̇(a)(J(a), w) = 0, for all w ∈ Tγ(a)P.(5)

If the metric is non degenerate onTγ(a)P we can rewrite (5) as

J ′(a) + SP
γ̇(a)(J(a)) ∈ Tγ(a)P

⊥.

In this case, a simple counting argument shows that the dimension of the vector
space ofP -Jacobi fields alongγ is precisely equal tom and that the dimension of
P -Jacobi fields satisfyingg(J, γ̇) = 0 is equal tom − 1 (for P -Jacobi fields the
conditiong(J, γ̇) = 0 is equivalent tog(J ′(a), γ̇(a)) = 0). Observe that ifP is a
point, then aP -Jacobi field is simply a Jacobi fieldJ alongγ such thatJ(a) = 0.

Two pointsq0 = γ(t0) andq1 = γ(t1), t0, t1 ∈ [a, b], are said to beconjugate
alongγ if there exists a non null Jacobi fieldJ alongγ with J(t0) = 0 andJ(t1) =
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0. A point q0 = γ(t0), t0 ∈ ]a, b] is said to be aP -focal point alongγ if there
exists a non nullP -Jacobi fieldJ alongγ such thatJ(t0) = 0; the geometrical
multiplicity µP (t0) of a P -focal pointγ(t0) is the dimension of the vector space
of all P -Jacobi fields alongγ that vanish att0. If γ(t0) is not P -focal, we set
µP (t0) = 0.

It is well known that, ifγ is either Riemannian or causal Lorentzian, andγ̇(a) ∈
Tγ(a)P

⊥ \ Tγ(a)P (see Remark 2.6), then the set ofP -focal points alongγ is
discrete,1 hence finite. Namely, ifJ1, . . . , Jm is a linear basis for the space ofP -
Jacobi fields alongγ andE1, . . . , Em is a parallely transported orthogonal basis
alongγ, then the smooth functionr(t) = det(g(Ji, Ej)) has only simple zeroes on
[a, b], i.e., zeroes of finite multiplicity, exactly at those points t0 ∈ [a, b] such that
γ(t0) is aP -focal point alongγ (see for instance [13, Ex. 8, p. 299]). Similarly,
for all q0 = γ(t0), the set of pointsq1 that are conjugate toq0 alongγ is finite.

We are interested in the kernel of the restriction ofIP to HP . To this aim, we
introduce the spacesN andJ0 as follows:

N =
{

f γ̇ : f : [a, b] 7−→ IR piecewise smooth, f(a) = f(b) = 0
}

;

J0 =
{

P -Jacobi fieldsJ alongγ : J(b) = 0
}

.

(6)

If γ is lightlike we haveN ⊂ HP and in factN is contained in the kernel ofIP

in HP , as follows directly from (1). We now compute this kernel in the case of
Riemannian or causal Lorentzian geodesics.

Lemma 2.1. Let (M, g) be either Riemannian or Lorentzian; in the latter case
assume thatγ is causal. The kernel of the restriction of the bilinear formIP toHP

is equal toJ0 if (M, g) is Riemannian or if(M, g) is Lorentzian andγ is timelike.
If γ is lightlike andγ̇(a) ∈ Tγ(a)P

⊥ \ Tγ(a)P , this kernel is equal toJ0 ⊕N .

Proof. Observe that aP -Jacobi field which vanishes at some instant on]a, b] is
automatically orthogonal toγ, so that we really haveJ0 ⊂ HP . If V ∈ HP is
in the kernel of (the restriction of)IP , it follows from (2) and usual techniques
of calculus of variations thatV ′′ − R(γ̇, V ) γ̇ is parallel toγ̇ and thatV satisfies
equation (5). SinceV ′′ − R(γ̇, V ) γ̇ is also orthogonal tȯγ, it follows thatV is
a Jacobi field, except for the case whereγ is lightlike. In the latter case, we get
V ′′ −R(γ̇, V ) γ̇ = ϕγ̇ for some functionϕ and thereforeV − f γ̇ is a Jacobi field,
wheref satisfiesf ′′ = ϕ andf(a) = f(b) = 0. Observe thatJ0 ∩ N = {0}
becausėγ(a) 6∈ Tγ(a)P .

The proof of the Index Theorem for Riemannian or causal Lorentzian geodesics
with initial endpoint varying on a submanifold and fixed endpoint is a simple adap-
tation of the classical Morse proof of the Index Theorem in the case of fixed end-
points (see for instance [6, 12]). For the reader’s convenience, we outline briefly
such adaptation.

1 As proved in [9], along a spacelike Lorentzian geodesic, or more in general along a semi-
Riemannian geodesic, the conjugate points may accumulate.
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We start with the following:

Lemma 2.2. Let J1, J2, . . . , Jn be any family ofP -Jacobi fields (not necessarily
linearly independent) andφ1, . . . , φn, ψ1, . . . , ψn be real piecewise smooth func-
tions on[a, b]. Then,

IP (

n
∑

i=1

φi · Ji,

n
∑

j=1

ψj · Jj) =

∫ b

a

g(

n
∑

i=1

φ′i · Ji,

n
∑

j=1

ψ′
j · Jj) dt+

+ g(
n

∑

i=1

φi(b) · J
′
i(b),

n
∑

j=1

ψj(b) · Jj(b)).

(7)

Proof. It is a simple computation that uses the Jacobi equation, formulas (5), (1)
and the fact that, forP -Jacobi fieldsJi andJj , one hasg(J ′

i , Jj) = g(Ji, J
′
j).

For Riemannian or causal Lorentzian geodesics, the above Lemma gives immedi-
ately the following Corollary:

Corollary 2.3. Let (M, g) be either Riemannian or Lorentzian; in the latter case
assume thatγ is causal and thaṫγ(a) ∈ Tγ(a)P

⊥ \ Tγ(a)P . Suppose there are no

P -focal points alongγ. Let V, J ∈ H̃P be vector fields orthogonal toγ, with J
a P -Jacobi field and such thatV (b) = J(b). ThenIP (V, V ) ≥ IP (J, J). In the
Riemannian and timelike Lorentzian case equality holds if and only ifV = J , and
in the lightlike Lorentzian case it holds if and only ifV − J ∈ N .

Proof. Setk = dim(P ). For i = 1, . . . , k, choose Jacobi fieldsJi such that the
vectorsJi(a) are a basis ofTγ(a)P and such thatJ ′

i(a) = −SP
γ̇(a)(Ji(a)). For

i = k + 1, . . . ,m− 1, choose Jacobi fieldsJi such thatJi(a) = 0 and the vectors
J ′

i(a) form a basis ofTγ(a)P
⊥ ∩ γ̇(a)⊥. If γ is lightlike chooseJ ′

m−1(a) = γ̇(a).
Then, theJi’s form a basis of the space ofP -Jacobi fields orthogonal toγ. Now,
we can writeV =

∑m−1
i=1 fiJi, for piecewise smooth functionsfi.

For, defineJ̄i = Ji for i = 1, . . . , k andJ̄i(t) = Ji(t)/(t − a), J̄i(a) = J ′
i(a),

for i = k+ 1, . . . ,m− 1. The absence ofP -focal points alongγ and the fact that,
under the hypothesis thatγ̇(a) ∈ Tγ(a)P

⊥\Tγ(a)P , Tγ(a)M = Tγ(a)P⊕Tγ(a)P
⊥,

imply that the vectors̄Ji(t) are a basis foṙγ(t)⊥ for t ∈ [a, b].
Now, we haveJ =

∑m−1
i=1 ciJi, whereci = fi(b). The desired inequality

follows directly from the Lemma 2.2 (equality implies that all fi are constant,
except forfm−1, in the lightlike case).

We give the following definition:

Definition 2.4. A partition a = t0 < t1 < . . . < tN = b of [a, b] is said to be
normal if the following conditions are satisfied:

(a) for all i ≥ 1 and all t ∈ ]ti, ti+1], the pointγ(t) is not conjugate toγ(ti)
alongγ;

(b) for all t ∈ ]t0, t1], the pointγ(t) is notP -focal alongγ.

If γ is either Riemannian or causal Lorentzian andγ̇(a) ∈ Tγ(a)P
⊥ \ Tγ(a)P ,

since the set ofP -focal points alongγ is finite, it is easy to see that there exists
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δ > 0 such that every partitiont0, . . . , tN of [a, b] with ti+1 − ti ≤ δ for all i is
normal. Namely, in order to (b) be satisfied, one can takeδ to be the Lebesgue
number of a covering ofγ by totally normal neighborhoods(see Ref. [6]).

Given a normal partition, we define the following two subspaces ofHP :

HP
0 =

{

V ∈ HP : V (ti) = 0, ∀ i ≥ 1
}

;

HP
J =

{

V ∈ HP : V
∣

∣

[ti,ti+1]
is Jacobi∀ i ≥ 1, andV

∣

∣

[t0,t1]
is P -Jacobi

}

.
(8)

Observe that there exists an isomorphism:

φ : HP
J 7−→

N−1
⊕

i=1

γ̇(ti)
⊥(9)

given by settingφ(V ) =
(

V (t1), V (t2), . . . , V (tN−1)
)

. Namely, sinceγ(ti) and
γ(ti+1) are non conjugate fori ≥ 1, thenV

∣

∣

[ti,ti+1]
is uniquely determined by the

boundary valuesV (ti) andV (ti+1); moreover, sinceγ(t1) is not P -focal, then
V

∣

∣

[t0,t1]
is uniquely determined by the valueV (t1).

This shows thatHP
0 ∩HP

J = {0} and thatHP
0 + HP

J = HP , hence we have:

HP
0 ⊕HP

J = HP .(10)

We are ready to prove the Morse Index Theorem for Riemannian or causal Lorentz-
ian geodesics with variable initial point:

Theorem 2.5. Let (M, g) be either Riemannian or Lorentzian,P a smooth sub-
manifold ofM andγ : [a, b] 7−→ M a geodesic (causal, if(M,g) is Lorentzian)
with γ(a) ∈ P and γ̇(a) ∈ Tγ(a)P

⊥ \ Tγ(a)P . Then,ind(IP ) =
∑

t0∈ ]a,b[

µP (t0) <

+∞.

Proof. For [α, β] ⊂ [ a, b], let I[α,β] be the bilinear form (1) for the restricted
geodesicγ|[α,β] (omitting the term involvingSP

γ̇(a)); if α = a, then we setIP
[α,β] to

be just the bilinear form (1) for the restricted geodesicγ|[α,β]. For t ∈]a, b] let’s
write i(t) = ind(IP

[a,t]); observe thati(b) = ind(IP ). The functioni : [a, b] 7−→

IN is non decreasing (ift < s we can regardIP
[a,t] as a restriction ofIP

[a,s], by
extending vector fields on[a, t] to [a, s] defining them to be zero on[t, s]).

We show thati(t) is piecewise constant and left-continuous on[a, b], and that
i(t+) − i(t−) = µP (t) for all t ∈]a, b[.

Let t ∈ ]a, b] be fixed and choose a normal partitiont0, . . . , tN of [a, b] such that
t ∈ ]ti, ti+1[ for somei ≥ 1 (we allow t = ti+1 if t = b and we seti = N − 1).
Let’s denote byHP

J ([a, t]) andHP
0 ([a, t]) the spaces defined in (8), replacing the

interval [a, b] by [a, t] (and using the normal partitiont0, . . . , ti, t of [a, t]).
We observe that the direct sum (10) (for the interval[a, t]) is IP

[a,t]-orthogonal, i.e.,

IP
[a,t](V0, VJ ) = 0 for all V0 ∈ HP

0 ([a, t]) andVJ ∈ HP
J ([a, t]), which follows

directly from (2).
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Next, we claim thatIP
[a,t]

∣

∣

HP
0

([a,t])
≥ 0. To check this, just observe that for

V ∈ HP
0 ([a, t]) we have:

IP
[a,t](V, V ) = IP

[t0,t1](V, V ) +

i−1
∑

j=1

I[tj ,tj+1](V, V ) + I[ti,t](V, V ).

The claim now follows from Corollary 2.3, by taking the Jacobi field J = 0.
It follows thati(t) = ind(IP

[a,t]) = ind(IP
[a,t],H

P
J ([a, t])); Observe that as in (9)

the spaceHP
J ([a, t]) is isomorphic to the spaceH∗ defined by:

H∗ =
i

⊕

j=1

γ̇(tj)
⊥,

and we’ll call this isomorphismφt : HP
J ([a, t]) 7−→ H∗.

If s ∈]a, b] is sufficiently close tot or, more precisely, ifs ∈]ti, ti+1], the ar-
guments above can be repeated by replacingt with s (observe, in particular, that
the spaceH∗ obtained will be the same). We can use the isomorphismφs between
HP

J ([a, s]) andH∗ to define a symmetric bilinear formIs onH∗ corresponding to
IP
[a,s]. Clearlyi(s) = ind(Is).

We have now a one parameter familyIs of symmetric bilinear forms on the
(fixed) finite dimensional spaceH∗ and it’s not difficult to see thatIs depends
continuously (actually, smoothly) ons.2

Let’s consider the decompositionH∗ = H+
∗ ⊕ H−

∗ ⊕ H0
∗, whereIt is positive

(respectively, negative) definite onH+
∗ (respectively,H−

∗ ) andH0
∗ is the kernel of

It. We can also assume that this decomposition isIt-orthogonal (this is just the
Sylvester inertia Theorem). The dimension ofH−

∗ is i(t).
Since the decompositionHP

0 ([a, t]) ⊕ HP
J ([a, t]) is orthogonal with respect to

IP
[a,t], we know that the kernel of the restriction ofIP

[a,t] to HP
J ([a, t]) (which cor-

responds toH0
∗ by the isomorphismφt) is just the intersection ofHP

J ([a, t]) and
the kernel ofIP

[a,t], the last one being given by Lemma 2.1. Observe thatJ0 ⊂

HP
J ([a, t]) and denote byJ∗ the subspace ofH∗ which corresponds toJ0, i.e.,

J∗ = φt(J0). In the lightlike Lorentzian case, write alsoN∗ = φt(N∩HP
J ([a, t])).

Observe thatN∗ is just the set ofi-tuples of vectors which are parallel toγ̇, so
thatN∗ doesn’t change if we replacet by s in its definition, and thereforeN∗ is
also contained in the kernel ofIs.

We see now thatH0
∗ = J∗, except for the lightlike Lorentzian case whereH0

∗ =
J∗ ⊕ N∗. The dimension ofJ∗ is just the multiplicityµP (t) of γ(t) as aP -focal
point.

By the continuous dependence ofIs on s we see that forǫ > 0 sufficiently
small ands ∈]t − ǫ, t + ǫ[, Is is negative definite onH−

∗ so thati(s) ≥ i(t). For
s ∈]t − ǫ, t] we have alsoi(s) ≤ i(t) so thati(s) = i(t), i.e., i is constant on

2To prove this fact, one uses equation (2) to write a expression for I
P on piecewise Jacobi fields

and observes that the integral vanishes. Thus, formula (2) reduces to a finite sum, and the conclusion
follows from the theorem on smooth dependence on the initialdata for the solutions of the Jacobi
differential equation.
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]t− ǫ, t]. This finishes the proof thati is left continuous. From now on we suppose
t < b.

The same continuity argument show that for someǫ > 0, we have thatIs is
positive definite onH+

∗ for s ∈ [t, t+ǫ[ (and positive semi-definite onH∗⊕N∗ for
γ lightlike), so thati(s) is bounded above by the codimension ofH+

∗ (orH+
∗ ⊕N∗,

respectively). Ifγ(t) is not aP -focal point this codimension equalsi(t) so that
i(s) = i(t) for s ∈]t− ǫ, t+ ǫ[.

Finally, if γ(t) is aP -focal point, by the above argument we only obtain the
inequality i(s) ≤ i(t) + µP

γ (t). We’ll show below that fors ∈]t, ti+1] and for
V = (v1, . . . , vi) ∈ H∗ we haveIs(V, V ) ≤ It(V, V ), the inequality being strict
if vi 6= 0 (or if vi is not parallel tȯγ, in caseγ is lightlike). But this hypothesis onvi

holds ifV ∈ J∗ andV 6= 0, observing that the corresponding vector fieldφ−1
t (V )

onHP
J ([a, t]) is an unbroken Jacobi field. We conclude then thatIs(V, V ) < 0 for

nonzeroV ∈ J∗ and hence for all nonzeroV ∈ H−
∗ ⊕J∗, which implies thatIs is

negative definite on this space andi(s) ≥ i(t) + µP (t).
We are now left with the proof of the inequalityIs(V, V ) ≤ It(V, V ). Towards

this goal, letV1 ∈ HP
J ([a, t]) andV2 ∈ HP

J ([a, s]) be the vector fields correspond-
ing toV ∈ H∗, i.e.,V1 = φ−1

t (V ) andV2 = φ−1
s (V ). ExtendV1 to zero on[t, s].

Then,It(V, V ) = IP
[a,s](V1, V1) andIs(V, V ) = IP

[a,s](V2, V2). The vector fieldsV1

andV2 differ at the most in the interval[ti, s]. The restriction ofV1 to [ti, t] is the
only Jacobi field such thatV1(ti) = vi andV1(t) = 0, while the restriction ofV2 to
[ti, s] is the only Jacobi field such thatV2(ti) = vi andV2(s) = 0. We have:

It(V, V ) − Is(V, V ) = I[ti,s](V1, V1) − I[ti,s](V2, V2).

We now apply Corollary 2.3 to the geodesicγ|[ti,s] (with starting and ending points
interchanged), for the Jacobi fieldV2, vector fieldV1 and submanifold equal to the
point {γ(s)}. For the strict inequality we need the hypothesis thatvi 6= 0 (re-
spectively,vi not parallel toγ̇, in the lightlike Lorentzian case), since this implies
thatV1 is not Jacobi in[ti, s] (respectively, does not differ from a Jacobi field by a
multiple of γ̇, in the lightlike Lorentzian case). This concludes the proof.

Remark2.6. If (M,g) is Lorentzian, then the case thatγ̇(a) ∈ Tγ(a)P ∩ Tγ(a)P
⊥

may happen only whenγ is lightlike andP is a degenerate submanifold atγ(a),
i.e., the restriction ofg to Tγ(a)P is degenerate. Observe that in this case the
thesis of Theorem 2.5 is clearly false. For instance, ifM = IR2 and g is the
flat Minkowski metricdx2 − dt2, P is the diagonalx = t andγ is any segment
contained inP , then every point ofγ is P -focal.

We now want to extend the Morse Index Theorem to the case of twovariable
endpoints. To this end, we now assume thatP andQ are smooth submanifolds of
M, and thatγ : [a, b] 7−→ M is a geodesic withγ(a) ∈ P , γ̇(a) ∈ Tγ(a)P

⊥,
γ(b) ∈ Q andγ̇(b) ∈ Tγ(b)Q

⊥.
We denote byH(P,Q) the vector space of all piecewise smooth vector fieldsV

alongγ, with g(V, γ̇) ≡ 0, V (a) ∈ Tγ(a)P andV (b) ∈ Tγ(b)Q. Moreover, we will
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consider the symmetric bilinear formI(P,Q) onH(P,Q), given by:

I(P,Q)(V,W ) = IP (V,W ) + SQ

γ̇(b)(V (b),W (b)).(11)

Let J Q denote the subspace ofH(P,Q) consisting ofP -Jacobi fields, and letA
be the symmetric bilinear form onJQ obtained by the restriction ofI(P,Q). Then,
it is easily computed from (1) using integration by parts:

A(J1, J2) = SQ

γ̇(b)(J1(b), J2(b)) + g(J ′
1(b), J2(b)), J1, J2 ∈ J Q.

Moreover, fort ∈ [a, b], we introduce the spaceJ [t]:

J [t] =
{

J(t) : J is P -Jacobi
}

⊂ Tγ(t)M;

observe that, fort ∈ ]a, b], γ(t) is notP -focal if and only ifJ [t] = Tγ(t)M.
We can now state and prove the following extension of the Morse Index Theorem

for geodesics between submanifolds:

Theorem 2.7. Let (M, g) be a semi-Riemannian manifold,P,Q submanifolds of
M and γ : [a, b] 7−→ M be a geodesic such thatγ(a) ∈ P , γ̇(a) ∈ Tγ(a)P

⊥,
γ(b) ∈ Q and γ̇(b) ∈ Tγ(b)Q

⊥. Assume thatJ [b] ⊃ Tγ(b)Q. LetV be a subspace

of H(P,Q) that contains the spaceJ Q of P -Jacobi fields alongγ in H(P,Q). Then,
ind(I(P,Q),V) = ind(IP ,HP ∩ V) + ind(A,J ).

Proof. The spaceHP is given by the subspace ofH(P,Q) consisting of those vec-
tor fieldsV such thatV (b) = 0; moreover, the restriction ofI(P,Q) to HP is pre-
ciselyIP . DefiningJ0 as in formula (6), letJ1 be any subspace ofJQ such that
JQ = J0 ⊕ J1. Clearly,H(P,Q) = HP ⊕ J1, becauseJ [b] ⊃ Tγ(b)Q; moreover,

from (11) it follows immediately that this decomposition isI(P,Q)-orthogonal, i.e.,
I(P,Q)(V, J) = 0 for all V ∈ HP and allJ ∈ J1. SinceV containsJ1, then
V = (V ∩ HP ) ⊕ J1. Hence,ind(I(P,Q),V) = ind(IP ,HP ∩ V) + ind(A,J1).
To conclude the proof, we simply observe thatind(A,J1) = ind(A,J ), because
J0 ⊂ Ker(A).

Remark2.8. One can consider suitable Hilbert space completionsH̄P andH̄(P,Q)

of the spacesHP andH(P,Q) with respect to anH1-Sobolev norm. Then, the
bilinear formsIP andI(P,Q) extend uniquely to bounded symmetric bilinear forms
on these Hilbert spaces. Observe that a bounded symmetric bilinear form on a
Hilbert space and its restriction to any dense subspace havethe same index. Using
a Hilbert space approach, Theorem 2.5 can be proven alternatively by means of the
spectral theory for compact self-adjoint operators (see [11, Theorem 5.9.3] for an
idea of such a proof).

Remark2.9. If (M, g) is Riemannian andV = H(P,Q), then Theorems 2.5 and 2.7
give as a particular case the Index Theorem of [10, p. 342] andthe older versions
of the Morse Index Theorem presented in [1, 5]. In [8] it was briefly mentioned the
fact that results analogous to the Riemannian case could apply to the Lorentzian
timelike case. As to the lightlike case, in References [2, 3,8] the authors consider
the index ofI(P,Q) in the quotient spaceH(P,Q)/N (recall formula (6)); in this



THE MORSE INDEX THEOREM IN SEMI-RIEMANNIAN GEOMETRY 11

situation,N is contained in the kernel ofI(P,Q). By a simple linear algebra argu-
ment one proves that the index of a bilinear form in a quotientspace by a subspace
of its kernel is the same as the index of the form in the original space. Hence,
Theorems 2.5 and 2.7 generalize the results of [2, 3, 8].

Remark2.10. The result of Theorem 2.7 becomes significant when the subspace
V of H(P,Q) is chosen in such a way thatind(IP ,HP ∩ V) is finite; observe
that ind(A,J ) is always finite. If one considers geodesics in semi-Riemannian
manifolds with metric of index greater or equal to2, or spacelike geodesics in
Lorentzian manifolds, thenind(IP ,H

P
) is in general infinite (see Refs. [4, 9] for

further results in this direction). Nevertheless, the restriction to suitable subspaces
may yield the finiteness of the index, and, possibly, weaker versions of the Morse
Index Theorem may apply. For instance (see Ref. [15]), let’sconsider the case of a
stationary Lorentzian manifold(M, g), i.e., a Lorentzian manifold endowed with
a timelike Killing vector fieldY . Let γ be a spacelike geodesic; we consider for
simplicity the case that the initial manifoldP reduces to a point. The Killing vector
field Y induces the conservation lawg(γ̇, Y ) ≡ Cγ for all geodesicγ; then, one
can consider only variationsγs of γ such thatg(γ̇s, Y ) ≡ Cs, and the correspond-
ing variational fieldV = d

ds

∣

∣

s=0
γs belongs to the space:

V =
{

V : ∃CV ∈ IR such thatg(V ′, Y ) − g(V, Y ′) ≡ CV

}

.

It is a simple observation thatV contains all the Jacobi fields alongγ; moreover,
using the Sobolev Embedding Theorem one proves that the bilinear formIP is
given by a self-adjoint operatorT on the closure ofV ∩ HP in a suitable Sobolev
space completion ofHP , whereT is a compact perturbationof the identity (see
Ref. [11]). Thus,V ∩H(P,Q) satisfies the hypothesis of Theorem 2.7 and it is such
that ind(IP ,V ∩ HP ) is finite. The question of whether such index equals the
geometrical index ofγ remains still unanswered.
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E-mail address: tausk@ime.usp.br


