On the representatives k-fold coloring polytope

Manoel Campêloa Phablo F. S. Mourab Marcio C. Santosc

a Dep. Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil
b Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
c Departamento de Computação, Universidade Federal do Ceará, Brazil

Abstract

A k-fold x-coloring of a graph G is an assignment of (at least) k distinct colors from the set $\{1, 2, \ldots, x\}$ to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The k-th chromatic number of G, denoted by $\chi_k(G)$, is the smallest x such that G admits a k-fold x-coloring. We present an ILP formulation to determine $\chi_k(G)$ and study the facial structure of the corresponding polytope $P_k(G)$. We show facets that $P_{k+1}(G)$ inherits from $P_k(G)$. We also relate $P_k(G)$ to $P_1(G \circ K_k)$, where $G \circ K_k$ is the lexicographic product of G by a clique with k vertices. In both cases, we can obtain facet-defining inequalities from most of those known for the 1-fold coloring polytope. In addition, we present a class of facet-defining inequalities based on strongly χ_k-critical webs, which extend and generalize known corresponding results for 1-fold coloring. We introduce this criticality concept and characterize the webs having such a property.

Keywords: $(k$-fold$)$ graph coloring, facet, web graph, critical graph, lexicographic product.

1 Research supported by CNPq (Proc. 307627/2010-1, 480608/2011-3, 132998/2011-4), Capes, and Project FUNCAP/PRONEM.
2 E-mail address: mcampelo@lia.ufc.br, phablo@ime.usp.br, marciocs5@lia.ufc.br.