Phablo Moura

Phablo F. S. Moura

phablo (at) ime usp br

Since April 2017, I am a postdoctoral researcher at Universidade Estadual de Campinas (Unicamp)
(my new homepage)


D.Sc. in Computer Science
Advisor: Yoshiko Wakabayashi
Instituto de Matemática e Estatística
Universidade de São Paulo (USP)
Brazil

Curriculum Vitae

CV Lattes

Main research interests

  • Graph theory
  • Polyhedral combinatorics
  • Computational complexity, (exact and approximate) algorithms
  • Combinatorial optimization

Publications

submitted

  1. Subdivisions in digraphs of large out-degree or large dichromatic number (with Pierre Aboulker, Nathann Cohen, Frédéric Havet, William Lochet, and Stéphan Thomassé). (submitted) (arXiv)

in journals

  1. The \(k\)-hop connected dominating set problem: approximation and hardness (with Rafael S. Coelho, and Yoshiko Wakabayashi). To appear in Journal of Combinatorial Optimization (2017+). (DOI)
  2. Lifted, projected and subgraph-induced inequalities for the representatives \(k\)-fold coloring polytope (with Manoel Campêlo, and Marcio C. Santos). Discrete Optimization 21:131-156 (2016). (DOI)
  3. The convex recoloring problem: polyhedra, facets, and computational experiments (with Manoel Campêlo, Alexandre Freire, Karla R. Lima, and Yoshiko Wakabayashi). Mathematical Programming Ser. A 156:303-330 (2016). (DOI)
  4. On the proper orientation number of bipartite graphs (with Júlio C. Araújo, Nathann Cohen, Susanna de Rezende, and Frédéric Havet). Theoretical Computer Science 566:59-75 (2015). (DOI)
  5. On optimal \(k\)-fold colorings of webs and antiwebs (with Manoel Campêlo, Ricardo C. Corrêa, and Marcio C. Santos). Discrete Applied Mathematics 161:60-70 (2013). (DOI) (pdf)

in conferences

  1. Strong intractability of generalized convex recoloring problems (with Yoshiko Wakabayashi). To appear in Electronic Notes in Discrete Mathematics (2017+). Proceedings of the IX Latin-american Algorithms, Graphs and Optimization Symposium (LAGOS 2017), Marseille, France.
  2. The \(k\)-hop connected dominating set problem: hardness and polyhedra (with Rafael S. Coelho, and Yoshiko Wakabayashi). Electronic Notes in Discrete Mathematics 50:59-64 (2015). Proceedings of the VIII Latin-american Algorithms, Graphs and Optimization Symposium (LAGOS 2015), Beberibe, Brazil. (DOI)
  3. On the proper orientation number of bipartite graphs (with Júlio C. Araújo, Nathann Cohen, Susanna de Rezende, and Frédéric Havet). Proceedings of the 9th International Colloquium on Graph Theory and Combinatorics (ICGT 2014), Grenoble, France.
  4. Polyhedral studies on the convex recoloring problem (with Manoel Campêlo, Karla R. Lima, and Yoshiko Wakabayashi). Electronic Notes in Discrete Mathematics 44:233-238 (2013). Proceedings of the VII Latin-american Algorithms, Graphs and Optimization Symposium (LAGOS 2013), Playa del Carmen, Mexico. (DOI) (pdf)
  5. On the representatives \(k\)-fold coloring polytope (with Manoel Campêlo, and Marcio C. Santos). Electronic Notes in Discrete Mathematics 44:239-244 (2013). Proceedings of the VII Latin-american Algorithms, Graphs and Optimization Symposium (LAGOS 2013), Playa del Carmen, Mexico. (DOI) (pdf)
  6. The \(k\)-th Chromatic Number of Webs and Antiwebs (with Manoel Campêlo, Ricardo C. Corrêa, and Marcio C. Santos). Proceedings of the XLIII SBPO - Simpósio Brasileiro de Pesquisa Operacional, Ubatuba, Brazil (2011) 3448-3458. (pdf)
  7. Sobre a complexidade de coloração mista (On the complexity of the mixed graph coloring) (with Júlio C. Araújo, and Manoel Campêlo). Proceedings of III Encontro Regional de Pesquisa Operacional do Nordeste, Fortaleza, Brazil (2009) 1-10. (pdf in portuguese)

Master Thesis

  • Recoloração convexa de grafos: algoritmos e poliedros (Convex recoloring of graphs: algorithms and polyhedra). Instituto de Matemática e Estatística, Univ. de São Paulo, Brazil (2013). (pdf in portuguese)
    • First Prize in the Latin-American Contest of Master Thesis (CLTM-CLEI) (2014). (info)
    • Honorable Mention in the Master Thesis Competition promoted by the Brazilian Society of Applied and Computational Mathematics (SBMAC) (2014).


Last update
Jul 11 2017