
Information Processing Letters 103 (2007) 195–202

www.elsevier.com/locate/ipl

Primal-dual approximation algorithms for the Prize-Collecting
Steiner Tree Problem ✩

Paulo Feofiloff, Cristina G. Fernandes ∗,1, Carlos E. Ferreira 2, José Coelho de Pina

Departamento de Ciência da Computação, Instituto de Matemática e Estatística,
Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo/SP, Brazil

Received 19 September 2006; received in revised form 1 March 2007; accepted 30 March 2007

Available online 13 April 2007

Communicated by K. Iwama

Abstract

The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave
a (2 − 1/(n− 1))-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n3 logn) time—it applies the primal-
dual scheme once for each of the n vertices of the graph. We present a primal-dual algorithm that runs in O(n2 logn), as it applies
this scheme only once, and achieves the slightly better ratio of (2 − 2/n). We also show a tight example for the analysis of the
algorithm and discuss briefly a couple of other algorithms described in the literature.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Approximation algorithms; Primal-dual method; Prize-collecting Steiner tree
1. Introduction

The Prize-Collecting Steiner Tree Problem is an ex-
tension of the Steiner Tree Problem where each vertex
left out of the tree pays a penalty. The goal is to find
a tree that minimizes the sum of its edge costs and
the penalties for the vertices left out of the tree. The
problem has applications in network design. Also, al-
gorithms for it have been used for approximating other

✩ Research supported in part by PRONEX/CNPq 664107/1997-4
(Brazil).

* Corresponding author.
E-mail addresses: pf@ime.usp.br (P. Feofiloff), cris@ime.usp.br

(C.G. Fernandes), cef@ime.usp.br (C.E. Ferreira),
coelho@ime.usp.br (J.C. de Pina).

1 Research supported in part by CNPq Proc. 301174/97-0 (Brazil).
2 Research supported in part by CNPq Proc. 300752/94-6 (Brazil).
0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.03.012
problems, such as the one of finding a minimum tree
spanning k vertices or a k-Steiner tree and the surviv-
able network problem [1,6].

The best approximation algorithms known for the
Prize-Collecting Steiner Tree Problem are based on
the primal-dual scheme. This scheme has been used to
provide exact and approximation algorithms for many
problems. Different linear programming formulations
for a problem may lead to different algorithms. In this
paper we present one such formulation for the Prize-
Collecting Steiner Tree Problem and use it in the design
of a new approximation algorithm.

Consider a graph G = (V ,E), a function c from
E into Q� (non-negative rationals) and a function π

from V into Q�. For any subset F of E and any subset
W of V , let

c(F ) :=
∑

ce and π(W) :=
∑

πw.
e∈F w∈W



196 P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202
The Prize-Collecting Steiner Tree Problem (PCST) con-
sists of the following: given G, c, and π , find a tree T

in G such that c(ET )+π(V \VT ) is minimum. (We de-
note by VH and EH the vertex and edge sets of a graph
H , respectively.) The rooted variant of the problem re-
quires T to contain a given root vertex.

Goemans and Williamson [7,8] used a primal-dual
scheme to derive a (2 − 1/(n − 1))-approximation for
the rooted PCST, where n := |V |. Trying all possible
choices for the root, they obtained a (2 − 1/(n− 1))-ap-
proximation for the unrooted PCST. The resulting al-
gorithm runs in time O(n3 logn). Johnson et al. [9]
proposed a modification of the algorithm that permits
running the primal-dual scheme only once, resulting in
a running-time of O(n2 logn). They claimed the mod-
ification, which we refer to as JMP, achieves the same
approximation ratio as the original algorithm for the un-
rooted PCST. Unfortunately, their claim does not hold
(as we show here). Cole et al. [2] proposed a faster im-
plementation of Goemans and Williamson’s algorithm,
which also runs the primal-dual scheme only once, and
derived a (2 + 1/poly(n))-approximation for the un-
rooted PCST.

This paper contains two results. The main one is a
modification of Goemans and Williamson’s algorithm
for the PCST based on a somewhat different linear pro-
gram. We show that this new algorithm achieves a ratio
of 2 − 2/n. It requires only one run of the primal-dual
scheme, resulting in a running time of O(n2 logn). Also,
we present a family of graphs which proves that the
given analysis is tight. The second result is an example
where the JMP algorithm achieves a ratio of 2. (This
shows that their claim on the approximation ratio of
their algorithm does not hold.)

Our new algorithm improves slightly the best ap-
proximation ratio for the problem. Though the improve-
ment is small, the algorithm seems interesting and might
be useful for the design of a better algorithm for PCST.
Its behavior is not far from the behavior of the JMP al-
gorithm. It somehow stops before that one does, and,
for this, achieves a better ratio. The artifact that makes
it stop earlier is subtle and is not obviously polynomi-
ally testable.

The paper is organized as follows. The next section
introduces some notation and shows some preliminar-
ies. Section 3 has the description of the new algorithm,
while its analysis is given in Section 4. Section 5 dis-
cusses the JMP algorithm and a variant of it for the
rooted PCST. The pruning phase is briefly discussed in
Section 6.
2. Notation and preliminaries

The description of the algorithm in the next section
will use a notation slightly different from the one in the
seminal paper by Goemans and Williamson [7]. With
this notation, we found it easier to be sure of the cor-
rectness of all the technical details in the analysis.

For any subset X of V , let X := V \ X. For any col-
lection L of subsets of V and any e in E, let L(e) :=
{L ∈ L: e ∈ δGL}, where δGL stands for the set of edges
of G with one end in L and the other in L. Also,

⋃
L

denotes the union of all sets in L. For any function y

from L into Q� and any subcollection M of L, let
y(M) := ∑

L∈M y(L).
We say that y respects a function c defined on E

(relative to L) if

y
(
L(e)

)
� ce for each e in E. (1)

An edge e is tight for y if equality holds in (1). The in-
equality in (1) is the usual restriction on edge e: the sum
of yR for all R in L that e “crosses” does not exceed ce .

We say y respects a function π defined on V (rela-
tive to L) if∑
S⊆L

yS +
∑
S⊇L

yS � π(L) for each L in L (2)

and∑
S⊆L

yS +
∑
S⊇L

yS � π(L) for each L in L. (3)

An element L of L is tight for y if equality holds in
(2). If equality holds in (3), we say L is tight for y.
The inequality in (2) is slightly different from the usual
one for PCST. The usual one says that the sum of yS

for all S in L contained in L does not exceed the sum
of the penalties of all elements in L. In (2), we include
in the sum the yS for supersets S of L as well. This
has the effect of making the algorithm stop earlier. The
inequality in (3) is the same as in (2) for the complement
of a set in L.

An edge is internal to a partition P of V if both of
its ends are in the same element of P . All other edges
are external to P . For any external edge, there are two
elements of P containing its ends. We call these two
elements the extremes of the edge in P .

A collection L of subsets of V is laminar if, for any
two elements L1 and L2 of L, either L1 ∩ L2 = ∅ or
L1 ⊆ L2 or L1 ⊇ L2. The collection of maximal ele-
ments of a laminar collection L will be denoted by L∗.
So, L∗ is a collection of disjoint subsets of V .

For a graph H and a set S of vertices of H , we de-
note by H [S] the subgraph of H induced by S. We say



P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202 197
Fig. 1. A connected graph T and a laminar collection of sets whose
union contains VT . In a thicker line, set S as in the proof of
Lemma 2.1. The dotted sets form the collection D, the dashed ones
together with set S form C and the remaining sets form B.

a forest F in G is connected in a subset L of V if
F [VF ∩L] is connected. For any laminar collection S of
subsets of V , we say a tree T of G has no bridges in S
if |δT S| �= 1 (therefore, either δT S = ∅ or |δT S| � 2) for
all S in S .

We denote by opt(PCST(G, c,π)) the minimum
value of the expression c(ET ) + π(VT ) when T is a
tree in G. The following lower bound serves as motiva-
tion for the new algorithm.

Lemma 2.1. Given a connected subgraph T of G, a
laminar collection L of subsets of V , and a function
y from L into Q� that respects c and π , then y(L) �
c(ET ) + π(VT ).

Proof. Let S be a minimal set in L containing VT . If
there is no such set, let S := V . Now, consider the par-
tition of L into the following three sets: B := {L ∈ L:
δT L �= ∅}, C := {L ∈ L: L ⊆ S or L ⊇ S}, and D :=
{L ∈ L: L ⊆ S \ VT }. (See Fig. 1.) We have that

y(B) =
∑
L∈B

yL �
∑
L∈B

|δT L|yL

=
∑
e∈ET

y
(
L(e)

)
�

∑
e∈ET

ce = c(ET ),

y(C) =
∑
L∈C

yL =
∑
L⊆S

yL +
∑
L⊇S

yL � π(S),

y(D) =
∑
L∈D

yL =
∑

L∈D∗

∑
X⊆L

yX

�
∑

L∈D∗
π(L) � π(S \ VT ).

The lemma follows from the three inequalities. �
Corollary 2.2. For any laminar collection L of subsets
of V and any function y from L into Q� that respects c

and π , we have that y(L) � opt(PCST(G, c,π)).

The proposed algorithm relies on Corollary 2.2. The
above lower bound on opt(PCST(G, c,π)) can also be
obtained from the following linear program: find vectors
x and z that

minimize
∑
e∈E

cexe +
∑
L⊆V

π(L)zL

s.t.
∑

e∈δGS

xe +
∑
L⊇S

zL +
∑
L⊇S

zL � 1

for each S ⊆ V,

xe � 0 for each e in E,

zL � 0 for each L ⊆ V.

(4)

Given a solution T for PCST(G, c,π), set xe := 1 if
e ∈ ET and xe := 0 otherwise. Set zL := 1 if L = V \VT

and zL := 0 otherwise. The pair (x, z) is a feasible so-
lution for (4) and its value is c(ET ) + π(V \ VT ). Thus
this program is a relaxation of PCST(G, c,π). Let R de-
note the collection of all subsets of V . The dual of this
program consists of: find vector y that

maximize y(R)

s.t. y
(
R(e)

)
� ce

for each e in E,∑
S⊆L

yS +
∑
S⊇L

yS � π(L)

for each L ⊆ V,

yS � 0 for each S ⊆ V.

(5)

Linear program (4) is a modification of the original
linear program used by Goemans and Williamson for
the rooted PCST. The idea behind it is simple. It says
that, in the solution given by x and z, for each set S,
either there is an edge in δGS, or S is contained in a
set that pays penalty (a set L with zL = 1), yet or its
complement S is contained in a set that pays penalty.
This difference, though apparently minor, introduces
a few interesting questions that might pass unnoticed
by a distracted reader. The main one is the following.
When growing the values of the yL variables as in Goe-
mans and Williamson’s algorithm, how does one detect
that a dual inequality becomes tight? What dual in-
equalities go tight first? The answers to these questions
are not straightforward as in the original Goemans and
Williamson’s algorithm. Lemma 2.1 and Corollary 2.2
indirectly answer these questions. They guarantee that,



198 P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202
in the algorithm, when looking for tight inequalities, one
has only to search among the inequalities for the sets in
a laminar collection and for their complements.

Corollary 2.2 is closely related to the traditional ar-
gument that any feasible solution for (5) gives a lower
bound on opt(PCST(G, c,π)). It is stronger in a sense
than this argument though. Indeed, note that (5) has
inequalities for all subsets in R, while a y as in Corol-
lary 2.2 is required to satisfy restrictions only to some
of these inequalities. It is not straightforward that such
a y is a feasible solution for (5). The proof of this fact is
very similar to the proof of Lemma 2.1.

3. Unrooted growth clustering algorithm

Our algorithm, which we call GW-UNROOTED-
GROWTH, receives G, c, π and returns a tree T in G

such that

c(ET ) + π(VT ) �
(

2 − 2

n

)
opt

(
PCST(G, c,π)

)
.

We first give a description of the algorithm. It follows
the Goemans and Williamson’s primal-dual scheme. It
consists of two phases. In the first phase a tree is ob-
tained, and in the second phase some edges are possibly
removed from this tree to result in the final output.

The first phase works in iterations. Each iteration
begins with a spanning forest F and a dual feasible so-
lution y for the linear program (5). We say a component
of F is active if its vertex set is not a tight set. If there
is only one active component, the first phase stops and
gives to the second phase the tree induced by F in this
component. If there is more than one active component,
let A denote the collection of the vertex sets of active
components of F . The algorithm increases uniformly
the values of the y variables corresponding to all sets
in A, stopping when (at least) one of the three events
happens: an external edge, or a set in A, or the com-
plement of a set in A becomes tight. If the third event
happened, the first phase stops and gives to the second
phase the tree induced by F in a component of F whose
complement became tight. Otherwise, in the first event,
a new iteration starts after we added an external tight
edge to F . In the second event, a new iteration starts
(the only effect is a change in the collection A). If these
two previous events happened at the same time, the al-
gorithm chooses arbitrarily any of them.

The second phase does not use the reverse delete
strategy as in Goemans and Williamson’s pruning al-
gorithm. In fact, it requires that in the first phase we
keep track of a collection S of sets. Roughly, these are
the vertex sets of components that in some iteration
changed from active to inactive (the second event men-
tioned above). So, the second phase receives a tree T

and this collection S of sets, and it works in iterations.
While there is a set S in S that has only one edge of T

in its boundary, then we remove from T all edges with
at least one endpoint in S. The second phase returns the
resulting tree.

In the following we provide a detailed version of the
algorithm that we need for our analysis. For a graph H

and a set S of vertices of H , we denote H −S the graph
obtained from H after the removal of all vertices in S.
Recall that H [S] denotes the subgraph of H induced
by S.

GW-UNROOTED-GROWTH (G, c,π)� First phase
1 F ← (V ,∅)

2 L← {{v}: v ∈ V }
3 S ← ∅ M ← ∅ y ← 0
4 while |L∗ \ S| > 1 and M = ∅ do
5 let ε be the largest number in Q�

such that the function y′ respects c and π ,
where y′ is defined by y′

L
= yL + ε

if L ∈L∗ \ S , and y′
L

= yL otherwise.
6 if some edge e external to L∗ is tight for y′
7 then let L1 and L2 be the extremes of e in L∗.
8 y′

L1∪L2
← 0

9 F ← F + e

10 L ←L∪ {L1 ∪ L2}
11 else if some element L of L∗ \ S is tight for y′
12 then S ← S ∪ {L}
13 else let M in L be such that the set M is tight for y′
14 M ← {M}
15 y ← y′
16 if M �= ∅
17 then let M be the only element of M
18 else let M be the only element of L∗ \ S
19 T0 ← F [M]
� Second phase
20 while |δT0S| = 1 for some S in S do
21 T0 ← T0 − S

22 T ← T0[M] − (
⋃

Z ∩ M)

23 return T

Note that each iteration of the while of the second
phase begins a tree T connected in each element of L.
At the end, the tree T is connected in each element of L
and has no bridges in S .

As for the first phase of GW-UNROOTED-GROWTH,
the following invariants hold in line 4: F is a spanning
forest F in G, L is a laminar collection of subsets of V

such that
⋃

L = V , S is a subcollection of L, M is a
subcollection of L, and y is a function from L into Q�
such that:



P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202 199
(i1) all edges of F are internal to L∗;
(i2) F is connected in each element of L;
(i3) y respects c and π relative to L;
(i4) each edge of F is tight for y;
(i5) each element of S is tight for y;
(i6) |M| � 1 and, if M ∈ M, then M is tight for y;
(i7) for any tree T in G, if T is connected in each ele-

ment of L and has no bridges in S , then∑
e∈ET

y
(
L(e)

) +
∑

L⊆VT

yL +
∑

L⊇VT

yL

�
(

2 − 2

n

)
y(L). (6)

The proof of these invariants is done in the next section.

4. Analysis of the algorithm

At the beginning of each iteration of while of lines 4–
15, invariants (i1) to (i6) hold trivially. Let us verify that
invariant (i7) holds as well. It is clear that it holds at
the beginning of the first iteration, because yL = 0 for
all L in L. Now assume that invariant (i7) holds at the
beginning of an iteration where lines 7–10 are executed.
Let T be a tree in G, connected in each element of L′ :=
L ∪ {L1 ∪ L2}, with no bridges in S . We must show
that (6) holds with L′ and y′ in the roles of L and y.
Since y′

L1∪L2
= 0, this is equivalent to

∑
e∈ET

y′(L(e)
) +

∑
L⊆VT

y′
L +

∑
L⊇VT

y′
L

�
(

2 − 2

n

)
y′(L). (7)

If ε = 0 then (7) is true because it is identical to (6). Now
suppose ε > 0 and let A := L∗ \S . Since y′ differs from
y only in A, this is equivalent to∑
e∈ET

∣∣A(e)
∣∣ + ∣∣{L ∈A: L ⊆ VT

}∣∣ + ∣∣{L ∈ A: L ⊇ VT

}∣∣

�
(

2 − 2

n

)
|A|. (8)

Let N := {L ∈ L∗: δT L = ∅}. Since T is connected,
N ∩ A = {L ∈ A: L ⊆ VT } ∪ {L ∈ A: L ⊇ VT }.
As

∑
e∈ET

|A(e)| = ∑
L∈A |δT L| and (2 − 2/n)|A| �

2|A| − 2, the inequality (8) will follow from∑
L∈A

|δT L| + |N ∩A| � 2|A| − 2. (9)

If A ⊆ N , then (9) holds because
∑

L∈A |δT L| + |N ∩
A| = |A| � 2|A| − 2, since |A| > 1 inside the while
of lines 4–15. Now assume A �⊆ N and consider the
graph H := (L∗,E′), where E′ is the set of edges of
T external to L∗ and each element of E′ is incident to
its two extremes in L∗. Since T is connected in each
element of L, this graph is a forest. It has one nontrivial
component and |N | trivial components. Hence, |E′| =
|L∗| − 1 − |N | and
∑
L∈A

|δT L| =
∑

L∈L∗
|δT L| −

∑
L∈L∗∩S

|δT L|

= 2|E′| −
∑

L∈L∗∩S
|δT L|

= 2|L∗| − 2 − 2|N | −
∑

L∈L∗∩S
|δT L|

� 2|L∗| − 2 − 2|N | − 2
∣∣(L∗ ∩ S) \N ∣∣ (10)

= 2|L∗| − 2 − 2|N | − 2|L∗ ∩ S| + 2|N ∩ S|
= 2|L∗ \ S| − 2 − 2|N \ S|
� 2|A| − 2 − |N ∩A|,

where (10) holds because T has no bridges in S . We
have thus shown that invariant (i7) remains valid after
the execution of lines 10 and 15. The very same proof
applies in the case where line 12 is executed and in the
case where lines 13–14 are executed.

Having proved invariants (i1) to (i7), we are ready to
analyze the finalization of the algorithm (lines 16–23).
By virtue of invariant (i4), the tree T produced by the
algorithm is such that

c(ET ) =
∑
e∈ET

ce =
∑
e∈ET

y
(
L(e)

)
.

If M �= ∅, let X := {M} ∪ Z∗; else, let X := (L∗ ∩
S) ∪ Z∗. In either case, X is a collection of disjoint
sets. Every element of X is tight for y, according to
invariants (i5) and (i6). Hence,

π(VT ) =
∑
X∈X

π(X)

=
∑
X∈X

(∑
L⊆X

yL +
∑
L⊇X

yL

)

=
∑
X∈X

∑
L⊆X

yL +
∑
X∈X

∑
L⊇X

yL

�
∑

L⊆VT

yL +
∑
X∈X

∑
L⊇X

yL (11)

�
∑

L⊆VT

yL +
∑

L⊇VT

yL . (12)

Inequality (11) holds since every element of X is dis-
joint from VT . In order to explain inequality (12), we



200 P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202
Fig. 2. (a) The dark edges indicate the solution produced by the
GW-UNROOTED-GROWTH algorithm, a solution of cost 2(n − 1). (b)
The only dark edge indicates the optimal solution, whose cost is n+ε.

reason as follows. First, observe that VT ⊆ X and there-
fore {L ∈ L: L ⊇ X} ⊆ {L ∈ L: L ⊇ T } for every X in
X . Next, {L ∈ L: L ⊇ X} ∩ {L ∈ L: L ⊇ X′} = ∅ for
any two different elements X and X′ of X , since X is a
collection of disjoint sets.

The tree T is connected in each element L of L. In-
deed, for any u and v in L ∩ VT , the path from u to
v in T is the same as in F and uses only vertices of
L because of invariant (i2). In addition, the while of
lines 20–21 makes sure T has no bridges in S . Hence,
invariant (i7) holds for T and therefore

c(ET ) + π(VT )

�
∑
e∈ET

y
(
L(e)

) +
∑

L⊆VT

yL +
∑

L⊇VT

yL

�
(

2 − 2

n

)
y(L).

Finally, by virtue of invariant (i3) and Corollary 2.2,

c(ET ) + π(VT ) �
(

2 − 2

n

)
opt

(
PCST(G, c,π)

)
.

(In fact, as in Goemans and Williamson’s analysis,
one can easily prove the stronger statement c(ET ) +
2π(VT ) � (2 − 2/n)opt(PCST(G, c,π)).) This com-
pletes the proof of the following theorem:

Theorem 4.1. Algorithm GW-UNROOTED-GROWTH is
a (2 − 2/n)-approximation for PCST(G, c,π).

The approximation ratio stated in Theorem 4.1 is
tight, as the example in Fig. 2 shows. The graph in this
example is a circuit with n vertices. All edges but one
have cost 2. The remaining edge has cost 2 + ε. All
vertices but the ones incident to this special edge have
penalty 1. The two vertices incident to the special edge
have penalty 10. The algorithm increases yL to 1 for
each singleton set L. At this point, all the edges but the
special one (the dark edges in Fig. 2(a)) become tight
and enter the forest F one by one (in an arbitrary order).
When all of them enter F , the algorithm stops (the sec-
ond phase does nothing in this example) and outputs the
tree induced by the dark edges, which has cost 2(n−1).
The optimal tree, on the other hand, consists only of
the special edge (the dark edge depicted in Fig. 2(b)).
The ratio between the costs of these two solutions ap-
proaches 2 − 2/n as ε tends to zero.

Algorithm GW-UNROOTED-GROWTH can be imple-
mented to run in O(n2 logn) time. The details of such
implementation are analogous to those of Goemans and
Williamson’s algorithm for the rooted PCST. There are a
few differences, though, that are worth mentioning. One
should carry, for each set L in L, two values that we call
�1(L) and �2(L), defined as

�1(L) := Π(L) −
∑
S⊆L

yS −
∑
S⊇L

yS

and

�2(L) := Π(L) −
∑
S⊆L

yS −
∑
S⊇L

yS.

In other words, each set L in L keeps the current slack in
inequalities (2) and (3). During the algorithm, one has to
keep such values updated. In the algorithm, in each iter-
ation, in lines 7–10, one has to decrease �1(L) by ε, for
every maximal active set L in L, and one has to decrease
�2(L) by tε, where t is the number of maximal ac-
tive sets in the iteration, for every L in L. Additionally,
one has to set �1(L1 ∪ L2) and �2(L1 ∪ L2). Roughly,
�1(L1 ∪L2) := �1(L1)+�1(L2) and �2(L1 ∪L2) :=
(�2(L1) + �2(L2) − �1(L1) − �1(L2))/2. A few ad-
justments are needed in �1(L1 ∪ L2) when the current
forest has few (two or three) components. The overall
time required for these calculations is O(n) per iteration,
since L has O(n) sets. Therefore, it is indeed possible
to get an O(n2 logn) implementation, as in the orig-
inal Goemans and Williamson’s algorithm. (For more
details, see [3].)

Also, the ideas proposed by Klein [10] and by
Gabow et al. [5] can be used, resulting in implemen-
tations with running time O(n

√
m logn) and O(n(n +√

m logn )), respectively, where m := |E|. Finally, us-
ing the technique of Cole et al. [2], one can get
a (2 − 2/n + 1/poly(n))-approximation that runs in
O((n + m) log2 n)-time.

5. Previous unrooted growth clustering algorithms

The JMP algorithm seems to be based on the same
LP as Goemans and Williamson’s algorithm, which dif-
fers from the one presented above only at the definition



P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202 201
Fig. 3. (a) An instance of the PCST. (b) The solution produced by the JMP algorithm when ε > 0. Its cost is 4. (c) The optimal solution, consisting
of only vertex u, has cost 2 + ε. (d) A similar instance of arbitrary size.
of “y respects π”. In this case, (2) and (3) are replaced
by∑
S⊆L

yS � π(L) for each L in L. (13)

Set L is said to be tight if equality holds in (13). Of
course, JMP has no set M and does not have the case
considered in lines 13–14, since either an edge exter-
nal to L∗ or a set in L∗ \ S becomes tight for y′. The
associate LP would be: find vectors x and z that

minimize
∑
e∈E

cexe +
∑
L⊆V

π(L)zL

s.t.
∑

e∈δGS

xe +
∑
L⊇S

zL � 1

for each S ⊆ V,

xe � 0 for each e in E,

zL � 0 for each L ⊆ V.

(14)

(Remember that R denotes the collection of all subsets
of V .) The dual of this linear program is: find vector y

that

maximize y(R)

s.t. y
(
R(e)

)
� ce for each e in E,∑

S⊆L

yS � π(L) for each L ⊆ V,

yS � 0 for each S ⊆ V.

(15)

Unfortunately, (14) is not a relaxation of PCST, so its
optimal value cannot be used as a lower bound for
opt(PCST(G, c,π)). Algorithm JMP finds a feasible so-
lution for (15) (see Minkoff’s thesis [11] for the analy-
sis). But the value of this feasible solution might be
larger than opt(PCST(G, c,π)), as the example in Fig. 3
shows. Indeed this example shows that the approxima-
tion ratio of the JMP algorithm can be arbitrarily close
to 2, independent of the size of the graph. This contra-
dicts Theorem 3.2 in [9].

Minkoff [11] proposed the use of the JMP algorithm
for the rooted PCST. (A small adaptation is required, so
that the algorithm produces a tree that always contains
the root vertex.) Unfortunately, the example in Fig. 3
with u as root contradicts Theorem 2.6 in [11], which
claims that this algorithm is a (2−1/n)-approximation.

To our knowledge, there is no published (correct)
proof that these two algorithms have any approxima-
tion guarantee. We have verified that they are 2-approxi-
mations [4]. The analysis that shows this is not straight-
forward: there are some nontrivial technical details.

6. Strong pruning

The second phase of the algorithm, where edges
are deleted from the tree produced in the first phase,
is sometimes called pruning phase. This phase can be
viewed as an algorithm that solves (exactly or approxi-
mately) the original problem in a tree. When an efficient
algorithm to solve the problem in a tree exists, it is nat-
ural to use it, at least experimentally, as it is likely to
produce solutions better than the usual procedure pro-
posed by Goemans and Williamson.

A dynamic programming approach can solve the
PCST on trees in polynomial time. The second phase
of the GW-UNROOTED-GROWTH algorithm can be re-
placed by this dynamic programming, which is called
“strong pruning”. Johnson et al. [9] and Minkoff [11]
have already suggested this procedure.

Consider the modified JMP algorithm that uses
strong pruning. Its approximation ratio is at least as
good as the original one. However, the example shown
in Fig. 3 does not apply anymore. The worst example we
have for it is depicted in Fig. 2 and the ratio achieved
is 2 − 2/n. We conjecture that the JMP algorithm with
strong pruning achieves a ratio better than 2. The ap-
proximation ratio of our algorithm does not improve by
using strong pruning, as the example in Fig. 2 shows.

References

[1] F. Chudak, T. Roughgarden, D.P. Williamson, Approximate
k-MSTs and k-Steiner trees via the primal-dual method and
Lagrangean relaxation, Mathematical Programming A 100 (2)
(2004) 411–421.



202 P. Feofiloff et al. / Information Processing Letters 103 (2007) 195–202
[2] R. Cole, R. Hariharan, M. Lewenstein, E. Porat, A faster imple-
mentation of the Goemans–Williamson clustering algorithm, in:
Symposium on Discrete Algorithms, 2001, pp. 17–25.

[3] P. Feofiloff, C.G. Fernandes, C.E. Ferreira, J. de Pina,
O(n2 logn) implementation of an approximation for the prize-
collecting Steiner tree problem. Manuscript available at http://
www.ime.usp.br/~cris/publ/implpcst.ps.gz, 2002.

[4] P. Feofiloff, C.G. Fernandes, C.E. Ferreira, J. de Pina, A note on
Johnson, Minkoff and Phillips’ algorithm for the prize-collecting
Steiner tree problem. Manuscript available at http://www.ime.
usp.br/~cris/publ/jmp-analysis.ps.gz, 2006.

[5] H.N. Gabow, M.X. Goemans, D.P. Williamson, An efficient ap-
proximation algorithm for the survivable network design prob-
lem, Mathematical Programming Ser. B 82 (1–2) (1998) 13–
40.
[6] N. Garg, A 3-approximation for the minimum tree spanning
k vertices, in: Proceedings of the 37th Annual Symposium on
Foundations of Computer Science (FOCS), 1996, pp. 320–309.

[7] M.X. Goemans, D.P. Williamson, A general approximation
technique for constrained forest problems, SIAM Journal on
Computing 24 (2) (1995) 296–317.

[8] D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard
Problems, PWS Publishing, 1997.

[9] D.S. Johnson, M. Minkoff, S. Phillips, The prize collecting
Steiner tree problem: theory and practice, in: Symposium on
Discrete Algorithms, 2000, pp. 760–769.

[10] P. Klein, A data structure for bicategories, with applica-
tion to speeding up an approximation algorithm, Information
Processing Letters 52 (6) (1994) 303–307.

[11] M. Minkoff, The prize-collecting Steiner tree problem, Master’s
thesis, MIT, 2000.


