$O(n^2 \log n)$ implementation of an approximation for the Prize-Collecting Steiner Tree Problem

Paulo Feofiloff *

Cristina G. Fernandes *[†]

Carlos E. Ferreira ^{*‡}

José Coelho de Pina *

February 2002

Abstract

We give a low-level description of an $O(n^2 \log n)$ implementation of Johnson, Minkoff and Phillips' approximation algorithm for the Prize-Collecting Steiner Tree Problem.

1 Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner Tree Problem where each vertex left out of the tree pays a penalty. The goal is to find a tree which minimizes the sum of its edge costs and the penalties for the vertices left out of the tree. Johnson, Minkoff and Phillips [2] presented a 2-approximation for the this problem based on the primal-dual scheme. In this manuscript, we describe in details an $O(n^2 \log n)$ implementation of this algorithm.

We adopt the notation used [1], which is summarized below. We start with a formal definition of the problem. Consider a graph G = (V, E), a function c from E into \mathbb{Q}_{\geq} (non-negative rationals) and a function π from V into \mathbb{Q}_{\geq} . For any subset F of E and any subset W of V, let $c(F) := \sum_{e \in F} c_e$ and $\pi(W) := \sum_{w \in W} \pi_w$. The **Prize-Collecting Steiner Tree Problem** (PCST) consists of the following: given G, c, and π , find a tree T in G such that

 $c(E_T) + \pi(V \setminus V_T)$ is minimum.

 $(V_H \text{ and } E_H \text{ denote the vertex and edge sets of a graph } H.)$

An edge is **internal to** a partition \mathcal{P} of V if both of its ends are in the same element of \mathcal{P} . All other edges are **external to** \mathcal{P} . For any external edge, there are two elements of \mathcal{P} containing its ends. We call these two elements the **extremes** of the edge in \mathcal{P} .

A collection \mathcal{L} of subsets of V is **laminar** if, for any two elements L_1 and L_2 of \mathcal{L} , either $L_1 \cap L_2 = \emptyset$ or $L_1 \subseteq L_2$ or $L_1 \supseteq L_2$. The collection of maximal elements of a laminar collection \mathcal{L} will be denoted by \mathcal{L}^* . So, \mathcal{L}^* is a collection of disjoint subsets of V. Let $\bigcup \mathcal{L}$ denote the union of all sets in \mathcal{L} .

^{*}Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: {pf,cris,cef,coelho}@ime.usp.br. Research supported in part by PRONEX/CNPq 664107/1997-4 (Brazil).

 $^{^{\}dagger}\mathrm{Research}$ supported in part by CNPq Proc. 301174/97-0 (Brazil).

[‡]Research supported in part by CNPq Proc. 300752/94-6 (Brazil).

For any collection \mathcal{L} of subsets of V and any subset X of V, let $\overline{X} := V \setminus X$, $\mathcal{L}^X := \{L \in \mathcal{L} : L \subseteq X\}$ and $\mathcal{L}_X := \{L \in \mathcal{L} : L \supseteq X\}$. When $X = \{v\}$, we write \mathcal{L}^v and \mathcal{L}_v instead, and when $X = V_T$ or $X = \overline{V_T}$, we write T or \overline{T} instead. For any e in E, let $\mathcal{L}(e) := \{L \in \mathcal{L} : e \in \delta_G L\}$, where $\delta_G L$ stands for the set of edges of G with one end in L and the other in \overline{L} . For any function y from \mathcal{L} into \mathbb{Q}_{\geq} and any subcollection \mathcal{M} of \mathcal{L} , let $y(\mathcal{M}) := \sum_{L \in \mathcal{M}} y(L)$.

We say that y respects a function c defined on E (relative to \mathcal{L}) if

$$y(\mathcal{L}(e)) \leq c_e \quad \text{for each } e \text{ in } E.$$
 (1)

An edge e is **tight for** y if equality holds in (1).

We say y respects a function π defined on V (relative to \mathcal{L}) if

$$y(\mathcal{L}^L) \leq \pi(L)$$
 for each L in \mathcal{L} . (2)

(3)

2 Johnson, Minkoff and Phillips' algorithm

In its high-level description below, we refer to an algorithm PRUNING whose high-level description we omit. It corresponds to the second phase of the primal-dual scheme, where edges are deleted from the tree produced in the first phase.

Johnson, Minkoff and Phillips' algorithm receives G, c, π and returns a tree T in G such that $c(E_T) + \pi(\overline{V_T}) \leq 2 \operatorname{opt}(\operatorname{PCST}(G, c, \pi))$. Each iteration starts with a spanning forest F in G, a laminar collection \mathcal{L} of subsets of V with $\bigcup \mathcal{L} = V$, a subcollection \mathcal{S} of \mathcal{L} , and a function y from \mathcal{L} into \mathbb{Q}_{\geq} . The first iteration starts with $F = (V, \emptyset)$, $\mathcal{L} = \{\{v\} : v \in V\}$, $\mathcal{S} = \emptyset$, and y = 0. Each iteration consists of the following:

Case 1: $|\mathcal{L}^* \setminus \mathcal{S}| > 1$.

Let ε be the largest number in \mathbb{Q}_{\geq} such that the function y' defined by

$$\begin{array}{rcl} y'_L & = & \left\{ \begin{array}{ll} y_L + \varepsilon \;, & \text{if} \; L \in \mathcal{L}^* \setminus \mathcal{S} \\ y_L \;, & \text{otherwise} \end{array} \right. \end{array}$$

respects c and π .

Subcase 1A: some edge e external to \mathcal{L}^* is tight for y'.

Let L_1 and L_2 be the extremes of e in \mathcal{L}^* . Set $y'_{L_1 \cup L_2} := 0$ and start a new iteration with F + e, $\mathcal{L} \cup \{L_1 \cup L_2\}$, \mathcal{S}, y' in the roles of $F, \mathcal{L}, \mathcal{S}, y$ respectively.

Subcase 1B: some element L of $\mathcal{L}^* \setminus \mathcal{S}$ is tight for y'.

Start a new iteration with $F, \mathcal{L}, \mathcal{S} \cup \{L\}, y'$ in the roles of $F, \mathcal{L}, \mathcal{S}, y$ respectively.

Case 2: $|\mathcal{L}^* \setminus \mathcal{S}| = 1$.

Let M be the only element of $\mathcal{L}^* \setminus \mathcal{S}$. Call subalgorithm PRUNING with arguments $F \cap M$, \mathcal{L}^M , and \mathcal{S}^M . The subalgorithm returns a subcollection \mathcal{Z} of \mathcal{S}^M . Return $T := (F \cap M) - \bigcup \mathcal{Z}$ and stop.

3 Data structures and basic functions

Here is the list of variables and functions used by the algorithm:

- 1. L_1, \ldots, L_N are nonempty subsets of V_G such that $L_1 \cup \cdots \cup L_N = V_G$ and, for each pair i < j, either $L_i \subset L_j$ or $L_i \cap L_j = \emptyset$, whence N < 2n, where $n := |V_G|$. Each L_i is represented by a bit vector as well as by a linked list. (In the high-level version of the algorithm given in [1], $\{L_1, \ldots, L_N\}$ is denoted by \mathcal{L} .)
- 2. A subset F of E_G , represented as a doubly-linked list (a bit vector would be too long). Since (V_G, F) is a forest, |F| < n.
- 3. A bit vector $\mu[1..N]$ such that $\mu[i] = 1$ iff L_i is a maximal element of $\{L_1, \ldots, L_N\}$. (In the high-level version of the algorithm, this set of maximal elements is denoted by \mathcal{L}^* .)
- 4. An array d indexed by V_G with values in \mathbb{Q}_{\geq} . (In terms of the high-level notation, $d[v] := \mathcal{L}_v \equiv \sum_{L \in \mathcal{L}: v \in L} y_L$ for each vertex v.)
- 5. A function RESIDUALCOST that takes edges into \mathbb{Q}_{\geq} : upon receiving an edge uv, the function returns the number $c_{uv} d[u] d[v]$. Of course this can be implemented to run in O(1) time. (We do not treat RESIDUALCOST as an array because we cannot afford to update RESIDUALCOST every time d changes.)
- 6. An array $\Delta[1..N]$ with values in \mathbb{Q}_{\geq} .¹ (In terms of the high-level notation, $\Delta[i] = \sum_{v \in L_i} \pi[v] \sum_{S \subseteq L_i} y_{S}$.)
- 7. A bit vector $\lambda[1..N]$ such that if $\lambda[i] = 0$ then $\Delta[i] = 0$. We say that L_i is *active* iff $\lambda[i] = 1$. (In terms of the high-level notation, $\lambda[i] = 0$ iff $L_i \in S$.)
- 8. A variable mxActive records the cardinality of the set $\{i : 1 \le i \le N, \mu[i] = 1, \lambda[i] = 1\}$.
- 9. An array A[1..N, 1..N] whose elements are sets of at most one edge each. More specifically, for $i \neq j$ such that $\mu(i) = \mu(j) = 1$,

if $\delta(L_i) \cap \delta(L_j) = \emptyset$ then $A[i, j] = A[j, i] = \emptyset$; otherwise, $A[i, j] = A[j, i] = \{uv\}$ where uv is an element of $\delta(L_i) \cap \delta(L_j)$ that minimizes RESIDUALCOST(uv).

- 10. A function KEY defined on $\{1, \ldots, N\} \times \{1, \ldots, N\}$ as follows: if $A[i, j] = \emptyset$ then KEY $(i, j) = \infty$; else KEY(i, j) = RESIDUALCOST(uv), where uv is the unique edge in A[i, j]. Of course this function can be implemented to run in O(1) time.
- 11. For each *i* such that $\mu[i] = 1$, there are two subsets of $\{1, \ldots, N\}$ denoted by $H_0[i]$ and $H_1[i]$. For each *h*, the set $H_h[i]$ consists of all $j \neq i$ such that

$$\mu[j] = 1, \ \lambda[j] = h, \ A[i, j] \neq \emptyset.$$

Each set $H_h[i]$ is organized as a min-heap, the key of each element j being Key(i, j).² Hence, the first element of $H_h[i]$ minimizes Key(i, *).

¹ Johnson, Minkoff and Phillips say this is the "surplus" of L_i .

² Johnson, Minkoff and Phillips say that the key of j is the "deficit" of the only edge in A[i, j].

12. For $h \in \{0, 1\}$, we assume that we can decide in time O(1) whether or not a statement like " $p \in H_h[i]$ " is true or false. Moreover, if the statement is true, we assume that the deletion of p from $H_h[i]$ can de carried out in $O(\log n)$ time. (This is easy to implement: for each i, each h, and each p in $\{1, \ldots, N\}$, maintain the location of p in $H_h[i]$.)

4 Main functions

The core of the algorithm is given by the next functions.

PCST-LOW-LEVEL (G, c, π) 1INICIALIZATION()2 $N \leftarrow mxActive \leftarrow n$ 3while mxActive > 1 do \triangleright at most 2n iterations4ONEITERATION()5 $(X, F) \leftarrow PRUNING()$ 6return X and F

The number of iterations is $\leq 2n$ because the sum $2 \times mxActive + mxInactive$, where mxInactive is the cardinality of $\{i : 1 \leq i \leq N, \mu[i] = 1, \lambda[i] = 0\}$, starts at 2n and strictly decreases with each iteration.

```
INICIALIZATION()
01
        n \leftarrow |V_G|
        i \leftarrow 0
02
03
        for each v in V_G do
              d[v] \leftarrow 0
04
              i \leftarrow i + 1
05
              L_i \leftarrow \{v\}
06
              o[v] \leftarrow i
07
              \mu[i] \leftarrow \lambda[i] \leftarrow 1
08
09
              \Delta[i] \leftarrow \pi_v
10
        for each i in \{2, \ldots, n\} do
              for each j in \{1, \ldots, i-1\} do
11
                    A[i,j] \leftarrow \emptyset
12
                    \operatorname{Key}(i, j) = \infty
13
        for each i in \{2, \ldots, n\} do
14
15
              for each uv in \delta(L_i) do
                    if o[u] = i
16
                          then j \leftarrow o[v]
17
                          else j \leftarrow o[u]
18
                    if \text{Key}(i, j) > \text{ResidualCost}(uv)
19
                          then A[i, j] \leftarrow A[j, i] \leftarrow \{uv\}
20
```

 $\begin{array}{ll} 21 & F \leftarrow \emptyset \\ 22 & H_0[i] \leftarrow \emptyset \\ 23 & \text{for each } i \text{ in } \{1, \dots, n\} \text{ do} \\ 24 & H_1[i] \leftarrow \emptyset \\ 25 & \text{for each } j \text{ in } \{1, \dots, n\} - \{i\} \text{ do} \\ 26 & \text{if } A[i, j] \neq \emptyset \text{ then } H_1[i] \leftarrow H_1[i] \cup \{j\} \end{array}$

The total time spent executing lines 14–20 is $O(m) = O(n^2)$. The total time spent building the heap $H_1[i]$ in lines 20–21 is O(n). The total spent by INICIALIZATION is $O(n^2)$.

ONEITERATION() \triangleright each call takes $O(n \log n)$ time $\varepsilon' \leftarrow \varepsilon'' \leftarrow \infty$ 01for each p in $\{1, \ldots, N\}$ such that $\mu[p] = \lambda[p] = 1$ do 0203if $\varepsilon' > \Delta[p]$ then $\varepsilon' \leftarrow \Delta[p]$ 0405 $p' \leftarrow p$ 06if $H_0[p] \neq \emptyset$ then let q be the first element of $H_0[p]$ 07if $\varepsilon'' > \operatorname{Key}(p,q)$ 08then $\varepsilon'' \leftarrow \operatorname{KEY}(p,q)$ 09 $p'' \leftarrow p$ 10 $q'' \leftarrow q$ 11 12if $H_1[p] \neq \emptyset$ 13then let q be the first element of $H_1[p]$ if $\varepsilon'' > \frac{1}{2} \operatorname{Key}(p,q)$ then $\varepsilon'' \leftarrow \frac{1}{2} \operatorname{Key}(p,q)$ 1415 $p'' \leftarrow \overline{p}$ 16 $q'' \leftarrow q$ 17 $\varepsilon \leftarrow \min(\varepsilon', \varepsilon'')$ 18for each p in $\{1, \ldots, N\}$ such that $\mu[p] = \lambda[p] = 1$ do 1920 $\Delta[p] \leftarrow \Delta[p] - \varepsilon$ for each v in L_p do 21 $d[v] \leftarrow d[v] + \varepsilon$ 2223 \triangleright no need to rebuild heaps H_0 and H_1 if $\varepsilon = \varepsilon'$ 2425then SUBCASE1B(p') \triangleright takes time $O(n \log n)$ else SUBCASE1A(p'', q'') \triangleright takes time $O(n \log n)$ 26

Taken together, all executions of line 22 consume O(n) time. The total spent by ONEITERATION is $O(n \log n)$.

SUBCASE1A(p,q) \triangleright merge L_p and L_q ; takes time $O(n \log n)$ let uv be the unique element of A[p,q]01 $F \leftarrow F \cup \{uv\}$ 0203 $L_{N+1} \leftarrow L_p \cup L_q$ $\mu[p] \leftarrow \mu[q] \leftarrow 0 \quad \rhd L_p \text{ and } L_q \text{ are no longer maximal}$ 0405 $\mu[N+1] \leftarrow 1 \quad \triangleright \text{ now } L_{N+1} \text{ is maximal}$ if $\lambda[q] = 1$ then $mxActive \leftarrow mxActive - 1$ 06 $\Delta[N+1] \leftarrow \Delta[p] + \Delta[q]$ 07 $\lambda[N+1] \leftarrow 1 \quad \rhd \text{ now } L_{N+1} \text{ is active}$ 08for each i in $\{1, \ldots, N\}$ such that $\mu[i] = 1$ do 0910if $\operatorname{Key}(p, i) \leq \operatorname{Key}(q, i)$ then $A[N+1, i] \leftarrow A[i, N+1] \leftarrow A[p, i]$ 11 else $A[N+1, i] \leftarrow A[i, N+1] \leftarrow A[q, i]$ 1213for each h in $\{0, 1\}$ do $H_h[N+1] \leftarrow H_h[p]$ 14 \triangleright time O(1) $H_h[N+1] \leftarrow H_h[N+1] - \{q\} \quad \rhd \text{ time } O(\log n)$ 1516for each i in $H_h[q]$ do 17if $i \notin H_h[N+1]$ 18then $H_h[N+1] \leftarrow H_h[N+1] \cup \{i\} \quad \rhd \text{ time } O(\log n)$ if $i \in H_h[N+1]$ and $\operatorname{Key}(N+1, i) > \operatorname{Key}(q, i)$ 19then DECREASE-KEY $(H_h[N+1], i, \text{KEY}(q, i))$ 20for each i in $\{1, \ldots, N\}$ such that $\mu[i] = 1$ do 21 $H_0[i] \leftarrow H_0[i] - \{q\}$ 22 \triangleright time $O(\log n)$ 23 $H_1[i] \leftarrow H_1[i] - \{p, q\} \quad \rhd \text{ time } O(\log n)$ if $\operatorname{Key}(i, N+1) < \infty$ 24then $H_1[i] \leftarrow H_1[i] \cup \{N+1\} \quad \rhd \text{ time } O(\log n)$ 2526 $N \leftarrow N + 1$ SUBCASE1B(p) \triangleright deactivate L_p $\lambda[p] \leftarrow 0$ 01 $mxActive \leftarrow mxActive - 1$ 02for each *i* in $\{1, ..., N\} - \{p\}$ do 0304if $p \in H_1[i]$ then $H_1[i] \leftarrow H_1[i] - \{p\} \quad \rhd \text{ time } O(\log n)$ 05 $H_0[i] \leftarrow H_0[i] \cup \{p\} \quad \rhd \text{ time } O(\log n)$ 06

PRUNING () $\triangleright O(n^2)$ time 01for $i \leftarrow N$ down to 1 do \triangleright "reverse delete" 02if $\lambda[i] = 0 \quad \triangleright L_i$ is inactive 03then degree $\leftarrow 0$ 04for each uv in F do $\triangleright O(n)$ time if $|\{u, v\} \cap L_i| = 1 \quad \rhd O(1)$ time 05then $degree \leftarrow degree + 1$ 06 \triangleright degreee is the cardinality of $F \cap \delta(L_i)$ 07if degree ≤ 1 08then for each uv in F do 09if $|\{u, v\} \cap L_i| \geq 1$ 10then $F \leftarrow F - \{uv\}$ 11 if $F \neq \emptyset$ 1213then let X be the set of vertices of G[F]14else let x be a vertex that maximizes π_x $X \leftarrow \{x\}$ 1516return (X, F)

References

- P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J. de Pina. Approximation algorithms for the prize-collecting Steiner tree problem. Available at http://www.ime.usp.br/~cris/publ/. Submitted, 2004.
- [2] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory and practice. In *Symposium on Discrete Algorithms*, pages 760–769, 2000.