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Chapter 1

Introduction

This is an attempt to give a precise statement of the flexible job-shop scheduling
problem(s) vaguely described in the paper On-Demand Digital Print Operations: A
Simulation Based Case Study [ZJL+10, sec.2.3].

Some basic definitions and facts

A topological ordering of a digraph (V,A) is a permutation (v1, . . . , vn) of V such
that (vi, vj) ∈ A only if i < j. A dag is an acyclic digraph, i.e., a digraph without
directed cycles. A digraph has a topological ordering if and only if it is a dag.

A digraph is a tournament if, for each pair (v, w) of distinct vertices, exactly one
of (v, w) and (w, v) is an arc.

A directed path (v1, v2, . . . , vn) in a digraph is hamiltonian if it contains every ver-
tex of the digraph.

Fact: Every acyclic tournament has a (unique) hamitonian path.

A set B of arcs of a digraph is symmetric if, for each (v, w) in B, the arc (w, v) is
also in B. A set Y of arcs is antisymmetric if, for each (v, w) in Y , the arc (w, v) is
not in Y .
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Chapter 2

Schedules of dags

Let (V,A) be a dag. The vertices of the dag (i.e., the elements of V ) are called oper-
ations. Each operation v has a processing time pv. We assume that pv is a nonneg- pv ≥ 0

ative rational number. Each arc (v, w) in A is treated as a precedence constraint:
operation w cannot start before v has been completed.

This chapter defines the concepts of schedule, makespan, tight schedule, and crit-
ical path.

2.1 Schedules and makespan

A schedule for (V,A, p) is a function s from V to the set of nonnegative rational
numbers such that

sv + pv ≤ sw for each (v, w) in A. (2.1)

The number sv is the starting time of v. (A schedule exists since (V,A) is a dag.)
The makespan of a schedule s is the number mks( )

mks(s) := max
v∈V

(sv + pv) .

In order to compute a minimum-makespan schedule, we introduce next a special
kind of schedule.

Tight schedule. The length of a (directed) path (u1, u2, . . . , uk, uk+1) in (V,A) is
the number

p(u1, u2, . . . , uk, uk+1) := pu1 + pu2 + · · ·+ puk
(2.2)

(note that puk+1
is not part of the sum).
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Fact: For any path (u1, u2, . . . , uk, uk+1) in (V,A) and any schedule s,

p(u1, u2, . . . , uk, uk+1) ≤ suk+1
. (2.3)

We can now define a special schedule as follows: For each v in V , let s∗v be the
maximum of p(u1, u2, . . . , uk+1) over all paths (u1, u2, . . . , uk+1) such that uk+1 = v.
The function s∗ so defined is a schedule. We say that this is the tight schedule
for (V,A, p). There is a simple dynamic programming algorithm that computes
the tight schedule.

Not surprisingly, the makespan of the tight schedule s∗ is determined by long
paths: there exists a path (u1, u2, . . . , uk, uk+1) such that

p(u1, u2, . . . , uk, uk+1) + puk+1
= mks(s∗) . (2.4)

We say that this path is critical. It follows from (2.3) and (2.4) that the tight sched-
ule has minimum makespan among all schedules for (V,A, p).

2.2 Schedules in the presence of heads and tails

For each operation v, let rv and qv be nonnegative numbers. We say that rv is the
head time (or release date) and qv is the tail time of v.

An r-schedule for (V,A, p) is a schedule s such that

sv ≥ rv

for each v in V . The q-makespan of an r-schedule s is the number

mksr,q(s) := max
v∈V

(
sv + pv + qv

)
.

Tight schedule. The r-weight of a path (u1, u2, . . . , uk, uk+1) in (V,A, p) is defined
by the recursion

wtr(u1, u2, . . . , uk, uk+1) = max
(
wtr(u1, u2, . . . , uk) + puk

, ruk+1

)
.

(Thus, for example, wtr(u1) = ru1 and wtr(u1, u2) = max(ru1+pu1 , ru2).) It follows
from this definition that

wtr(u1, u2, . . . , uk, uk+1) =
k+1
max
i=1

(
rui

+ pui
+ · · ·+ puk

)
. (2.5)
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Fact: For any path (u1, u2, . . . , uk, uk+1) in (V,A) and any r-schedule s,

wtr(u1, u2, . . . , uk, uk+1) ≤ suk+1
. (2.6)

For each v in V , let s∗v be the maximum of wtr(u1, u2, . . . , uk, uk+1) over all paths
(u1, u2, . . . , uk, uk+1) such that uk+1 = v. The function s∗ so defined is a r-schedule.
We say that this is the tight r-schedule for (V,A, p). There is a simple dynamic
programming algorithm that computes the tight r-schedule.

The q-makespan of the tight r-schedule s∗ is equal to the r-weight of a heavy path:
there is a path (u1, u2, . . . , uk+1) such that

wtr(u1, u2, . . . , uk+1) + puk+1
+ quk+1

= mksr,q(s
∗) .

In view of (2.5), this can be rephrased as follows: there is a path (ui, ui+1, . . . , uk+1)
such that

rui
+ pui

+ · · ·+ puk
+ puk+1

+ quk+1
= mksr,q(s

∗) .

Such a path is said to be critical. In view of (2.6), the tight r-schedule has minimum
q-makespan among all r-schedules for (V,A, p).

2.3 Schedules and lead time

Makespan is not the only parameter to measure the “quality” of a schedule. We
describe next another such parameter.

Suppose we have a dag (V,A) with processing times p and head times r, but with-
out tail times (i.e., q = 0). The maximum lead time of an r-schedule s for (V,A, p)
is the number

mlt(s) := max
v∈V

(sv − rv + pv) .

Similarly, the sum of lead times (also known as the flow time) is the number

slt(s) :=
∑

v∈V (sv − rv + pv) .

How does one find a schedule that minimizes mlt? How does one find a schedule
that minimizes slt? For the second problem, it seems reasonable to put the oper-
ations in increasing order of rv + pv. This solves the problem if rvi−1

+ pvi−1
≤ rvi

for all i (in which case slt(s) = pv1 + · · · + pvn , where n = |V |). It also solves the
problem if ri = 0 for all i (in which case slt(s) = npv1 + (n− 1)pv2 + · · ·+ 1pvn). But
it does not work in general. . .
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Chapter 3

Ordinary job-shop scheduling

We begin with the ordinary job-shop scheduling (JSS) problem, without the “flex-
ible” attribute and without heads and tails.

Our formulation of the JSS problem is somewhat unusual, because it has no ex-
plicit concept of a job. But it is simpler and cleaner than the standard formulation.

3.1 A statement of the JSS problem

We are given a dag (V,A). The vertices of the dag (i.e., the elements of V ) areV

called operations. (The weakly connected components of the dag may be called
jobs.) Each arc (v, w) of the dag is a hard precedence constraint.A

For each operation v, there is a rational number pv that represents the processingpv

time of v. We assume that
pv > 0 .

(Forbidding null values simplifies the presentation, since in this case a digraph is
a dag if and only if it has a schedule.)

We are also given a set of machines numbered 1, . . . , m and a function f thatm

f assigns a machine f(v) to each operation v.

For each machine k, let Bk be the set of all ordered pairs of distinct elements ofBk

{v ∈ V : f(v) = k}. Of course Bk is symmetric. LetB

B := B1 ∪ · · · ∪Bm .

Each (v, w) in B is a soft arc or soft precedence constraint or intra-machine prece-
dence constraint, and is designed to prevent two different operations to be pro-
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cessed on the same machine at the same time. The digraph (V,B) is known as
disjunctive graph.

A selection is a subset Y of B such that, for each (v, w) in B, exactly one of (v, w) Y

and (w, v) is in Y . In other words, Y is a selection if

Y and B − Y are both antisymmetric.

A selection Y is good if (V,A∪ Y ) is a dag. Any good selection can be represented
by a topological ordering (v1, . . . , vn) of (V,A): an ordered pair (vi, vj) belongs to
the selection if and only if i < j and f(vi) = f(vj).

The makespan of a good selection Y is the makespan of the tight schedule (see
section 2.1) for (V,A ∪ Y, p). The makespan of Y is denoted by mks(Y ). mks(Y )

JSS PROBLEM (V,A, p, f): Find a good selection Y that has minimum
makespan.

The problem is NP-hard.

3.2 A MILP formulation of the problem

Here is a MILP formulation of the JSS problem. A binary array y indexed by B y

will represent a selection: we shall have yv,w = 1 if and only if (v, w) belongs to
the selection. We also need an upper bound L on the makespan of an optimal L

solution. (This can be the makespan of some good selection or, alternatively, the
sum

∑
v∈V pv.)

The following MILP is equivalent to the JSS problem: find a rational array s and a s

binary array y that minimize an auxiliary rational variable z under the following z

linear constraints:

z ≤ L , (3.1)
sv + pv ≤ z f.e. v in V , (3.2)

sv ≥ 0 f.e. v in V , (3.3)
0 ≤ yv,w ≤ 1 f.e. (v, w) in B, (3.4)

yv,w + yw,v = 1 f.e. (v, w) in B, (3.5)
sv + pv − (1− yv,w)L ≤ sw f.e. (v, w) in B, (3.6)

sv + pv ≤ sw f.e. (v, w) in A, (3.7)

where “f.e.” means “for each”.
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The correspondence between our MILP and the JSS problem is easy to check. Sup-
pose Y is an optimal solution of the JSS problem. Let z := mks(Y ). Let s be the
tight schedule for (V,A ∪ Y, p). For each (v, w) in B, let yv,w = 1 if (v, w) ∈ Y and
yv,w = 0 otherwise. Then (s, y, z) satisfies constraints (3.1) through (3.7).

Now consider the converse. Let (s, y, z) be an optimal solution of the MILP. Let
Y be the set of all pairs (v, w) in B for which yv,w = 1. Constraints (3.4) and (3.5)
make sure that Y is a selection. Since pv > 0, constraints (3.6) and (3.7) make sure
that Y is a good selection (and s is a schedule). The minimality of z implies the
minimality of mks(Y ). Hence, Y is a solution of the JSS problem.

The MILP has 4|B|+ |A|+ 2|V |+ 1 constraints and |B|+ |V |+ 1 variables, of which
only |B| are integer.

3.3 Lower bounds and valid inequalities

A lower bound for the JSS problem (as well as for its MILP) is any number z such
that mks(Y ) ≥ z for any good selection Y . Obtaining good lower bounds is an
important step in many heuristics for the JSS problem

Take the linear relaxation of the MILP (3.1) through (3.7) (i.e., drop the requirement
that y be integral) and let (ṡ, ẏ, ż) be a solution of the resulting linear programming
problem. Of course ż is a lower bound for the MILP. In order to get the tighter
lower bound, we can add new inequalities to the linear programming problem
that are redundant for the MILP but not for its relaxation. This pool of valid in-
equalities can be used in a branch-and-cut process as follows:

1. If ẏ is integral, then stop.
2. If ẏ is not integral, then

2a. find (by exhaustive search) a violated valid inequality;
2b. add the violated inequality to the linear programming program;
2c. let (ṡ, ẏ, ż) be a solution of the new program;
2d. return to step 1.

The lower bound ż will get tighter with each iteration.

In order to formulate the valid inequalities we must introduce two new pieces of
data: the heads and the tails. These are defined as follows.

• For each v, let rv be the length (see section 2.1) of a longest path in (V,A) ter-rv

minating at v. According to (2.3), for any good selection Y and any schedule
s for (V,A ∪ Y, p), we shall have sv ≥ rv for each operation v.
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• For each v, let qv be the greatest sum of the form pu2 +pu2 +· · ·+puk+1
(note that qv

pu1 is not part of the sum) for any path (u1, u2, . . . , uk, uk+1) in (V,A) starting
at v. For any good selection Y and any schedule s for (V,A ∪ Y, p), we shall
have mks(s)− (sv + pv) ≥ qv for each operation v.

Applegate and Cook [AC91, BDP96] experimented with the following valid in-
equalities:

Basic cuts. For any machine k and subset W of {v ∈ V : f(v) = k},∑
w∈W pwsw ≥ (

∑
w∈W pw)(minv∈W rv) + 1

2

∑
(v,w)∈C pvpw , (3.8)

where C is the set of all ordered pairs of distinct elements of W (of course,
C ⊆ Bk). To show that this is a valid inequality, let Y be a good selection
and s a schedule for (V,A ∪ Y, p). Then (W,Y ∩ C) is an acyclic tournament.
It follows that, for each w in W , sw ≥ minv∈W rv +

∑
(v,w)∈Y ∩C pv. (See sec-

tion 2.2.) Multiply each such inequality by pw and add the results together to
obtain (3.8).

The inequality (3.8) reduces to pvsv+pwsw ≥ (pv+pw) min(rv, rw)+pvpw when
W = {v, w} and C = {(v, w), (w, v)}.

Reverse basic cuts. This is a reverse version of (3.8): for any machine k and subset
W of {v ∈ V : f(v) = k},∑

v∈W pv(z − sv − pv) ≥ (
∑

v∈W pv)(minw∈W qw) + 1
2

∑
(v,w)∈C pvpw , (3.9)

where C is the set of all ordered pairs of distinct elements of W . When W =
{v, w} and C = {(v, w), (w, v)}, the inequality reads as follows: pv(z − sv −
pv) + pw(z − sw − pw) ≥ (pv + pw) min(qv, qw) + pvpw.

Two-job inequalities. For each (v, w) in B,

(pv + rv − rw)sv + (pw + rw − rv)sw ≥ pvpw + rvpw + rwpv . (3.10)

To show that this is a valid inequality, let α and β be nonnegative parameters.
Let Y de any good selection Y and s any schedule for (V,A∪Y, p). If (v, w) ∈
Y then αsv+βsw ≥ αrv+β(rv+pv). If (w, v) ∈ Y then αsw+βsv ≥ αrw+β(rw+
pw). Both inequalities will be simultaneously satisfied if α = pv + rv − rw and
β = pw + rw − rv. Inequality (3.10) follows.

If rv + pv > rw and rw + pw > rv, the inequality (3.10) is stronger than the
inequalities (3.8) and (3.9) for the case W = {v, w} and C = {(v, w), (w, v)}.

Triangle cuts. For any three distinct operations u, v, w, if (u, v), (v, w) and (w, u)
are in B then

yu,v + yv,w + yw,u ≤ 2 .

9



These inequalities are valid because, for any good selection Y , the digraph
(V,A ∪ Y ) is a dag.

Half cuts. For each machine k, subset W of {w ∈ V : f(w) = k}, and operation w
in W ,

sw ≥ minv∈W rv +
∑

(v,w)∈C yv,wpv , (3.11)

where C is the set of all ordered pairs of distinct elements of W . These in-
equalities are called “half cuts” because they are “uselful for pushing the
value of the y’s away from 1/2” [AC91].
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Chapter 4

One-machine scheduling with heads
and tails

The set of instances of the JSS problem for which m = 1 is known as one-machine
subproblem. This subproblem is trivial since all good selections will have the
same makespan, equal to

∑
v∈V pv. The one-machine subproblem becomes non-

trivial, however, if we add head times and tail times (see section 2.2) to its state-
ment.

4.1 One machine, with heads and tails

Suppose each operation v has a head rv and a tail qv (both are nonnegative rational
numbers). Assume that A = ∅ and m = 1, whence B is the set of all ordered pairs
of distinct vertices. A good selection, in this case, is a subset Y of B such that Y
and B − Y are both antisymmetric and the digraph (V, Y ) is a dag. The makespan
of a good selection Y is the q-makespan of the tight r-schedule for (V, Y, p). The
one-machine subproblem asks for a good selection Y that minimizes the makespan
of Y .

This variant of the one-machine subproblem is NP-hard, but Carlier [Car82] has
a very effective branch-and-bound heuristic for it. The branch-and-bound uses
Schrage’s [Sch71] algorithm (see figure 4.1), to produce a good selection Y for
which mks(Y ) is relatively small. Specifically,

mks(Y ) < mks(Y∗) + max
v∈V

pv , (4.1)

where Y∗ is an optimal solution of the problem (and therefore mks(Y ) ≥ mks(Y∗)).
The proof of (4.1) depends on the following inequality: For any nonempty X ⊆ V
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and any good selection Y ,
ϕ(X) ≤ mks(Y ) , (4.2)

where
ϕ(X) := mini∈X ri +

∑
i∈X pi + mini∈X qi .

In particular, max∅⊂X⊆V ϕ(X) ≤ minY mks(Y ) (but the inequality is usually strict).

An extension of inequality (4.2) can be stated as follows: For any X ⊆ V , any
w ∈ V − X , and any good selection Y , if {w} × X ⊆ Y or X × {w} ⊆ Y then
ϕ(X) + pw ≤ mks(Y ). The proof of (4.1) boils down to the following

Lemma (Carlier [Car82]): Let Y be the selection produced by Schrage’s algorithm.
Then either (1) there exists X ⊆ V such that ϕ(X) = mks(Y ) (in which case Y is
optimal) or (2) there exist X ⊆ V and y ∈ V − X such that mks(Y ) < ϕ(X) + py
and, in any optimal selection Y∗, either {y} ×X ⊆ Y∗ or X × {y} ⊆ Y∗.

SCHRAGE (V, p, r, q)

1 Y ← ∅
2 t← 0
3 U ← V
4 while U 6= ∅ do
5 t′ ← minv∈U rv
6 if t < t′ then t← t′

7 U ′ ← {v ∈ U : rv ≤ t}
8 choose v in U ′ that maximizes qv
9 t← t+ pv

10 U ← U − {v}
11 Y ← Y ∪ ({v} × U)
12 return Y

Figure 4.1: Schrage’s algorithm. It receives (V, p, r, q) and returns a good selec-
tion Y such that mks(Y ) < mks(Y∗) + maxv∈V pv, where Y∗ is an optimal solution
of the problem.

Computing the lower bound ϕ. The lower bound maxX ϕ(X) for mks(Y∗) is easy
to compute: algorithm LOWERBOUNDPHI does the job (see figure 4.2). This lower
bound that can be very useful in a branch-and-bound scheduling algorithm.
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LOWERBOUNDPHI (V, p, r, q)

1 l← −∞
2 for each ordered pair (v, w) of elements of V do � also v = w
3 X ← {x ∈ V : rx ≥ rv and qx ≥ qw}
4 if v ∈ X and w ∈ X
5 then s←

∑
x∈X p[x]

6 l← max (l, rv + s+ qw)
7 return l

Figure 4.2: Returns the number l := maxX ϕ(X), where the maximum is taken
over all nonempty subsets X of V and ϕ(X) is minx∈X rx +

∑
x∈X px +minx∈X qx.

This is a lower bound on mks(Y∗), where Y∗ is an optimal solution of the problem.
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Chapter 5

Flexible job-shop scheduling

The flexible job-shop scheduling (F-JSS) problem is a generalization of the JSS
problem in which each operation can be processed on any machine of a given
set of machines.

5.1 Statement of F-JSS problem

We are given a dag (V,A). Its vertices are called operations and its arcs are calledV

A hard precedence constraint.

We are also given a set of machines numbered 1, . . . , m and a function F thatm

F associates a nonempty subset F (v) of {1, . . . ,m}with each operation v.

For each operation v and each machine k in F (v), there is a rational number pv,kpv,k

that represents the processing time of operation v on machine k. We assume that

pv,k > 0 ,

since forbidding null processing times simplifies the presentation.

For each machine k, let Vk := {v ∈ V : F (v) 3 k} (this is the set of all operationsVk

that can be processed on machine k) and let Bk be the set of all ordered pairs ofBk

distinct elements of Vk. LetB denote the union of allBk. Of courseB is symmetric.B

Each (v, w) in B is a soft arc or soft precedence constraint.

A machine assignment is a function f that assigns a machine to each operation so
that

f(v) ∈ F (v)

for each v. Given a machine assignment f , let Bf be the set of all ordered pairs ofBf
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distinct vertices to be processed on the same machine:

Bf := {(v, w) ∈ B : f(v) = f(w)} .

For a given machine assignment f , a selection is any subset Y of Bf such that

Y and Bf − Y are both antisymmetric,

i.e., for each (v, w) in Bf , exactly one of (v, w) and (w, v) is in Y .

A selection Y is good if (V,A∪ Y ) is a dag. Any good selection can be represented
by a topological ordering (v1, . . . , vn) of (V,A): an ordered pair (vi, vj) belongs to
the selection if and only if i < j and f(vi) = f(vj).

The makespan of a good selection Y (for a given machine assignment f ) is the
makespan of the tight schedule (see section 2.1) for (V,A∪ Y, p′), where p′v = pv,f(v)
for each v. We denote the makespan of Y by mks(Y ). mks(Y )

F-JSS PROBLEM (V,A, p,m, F ): Find a machine assignment f and a good
selection Y such that mks(Y ) is minimum.

5.2 Our MILP formulation of the F-JSS problem

In order to formulate the F-JSS problem as a MILP, we use a binary array x to x

represent the machine assignments and a binary array y to represent selections. y

The first array will have a component xv,k for each v in V and each k in F (v). The
second will have a component yv,w for each (v, w) in B.

Our MILP needs an upper bound L on the makespan of an optimal solution of L

the F-JSS problem. This can be the makespan of an arbitrary good selection or,
alternatively, a global bound like

∑
v∈V maxk∈F (v) pv,k.

Finally, we shall use an auxiliary array p′ to store the processing times of the oper- p′

ations corresponding to the machine assignment x.

Our MILP can now be formulated as follows: find rational arrays s and p′ and s

binary arrays x and y that minimize an auxiliary rational variable z under the z
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following linear constraints:

sv + p′v ≤ z f.e. v in V , (5.1)
sv ≥ 0 f.e. v in V , (5.2)

0 ≤ xv,k ≤ 1 f.e. v in V and k in F (v), (5.3)∑
k∈F (v) xv,k = 1 f.e. v in V , (5.4)

p′v =
∑

k∈F (v) pv,kxv,k f.e. v in V , (5.5)

0 ≤ yv,w ≤ 1 f.e. (v, w) in B, (5.6)
yv,w + yw,v ≥ xv,k + xw,k − 1 f.e. k in {1, . . . ,m} and (v, w) in Bk, (5.7)
sv + p′v − (1− yv,w)L ≤ sw f.e. (v, w) in B, (5.8)

sv + p′v ≤ sw f.e. (v, w) in A, (5.9)

where the expression “f.e.” means “for each”.

We show next that our MILP is equivalent to the F-JSS problem. Suppose (f, Y )
is an optimal solution of the F-JSS problem. Let p′v := pv,f(v) for each v. Let z :=
mks(Y ). Let s be the tight schedule for (V,A ∪ Y, p′). By definition, mks(Y ) =
mks(s). For each operation v and each k in F (v), let xv,k = 1 if and only if f(v) = k.
Finally, let yv,w = 1 for each (v, w) in Y and yv,w = 0 for each (v, w) in B − Y . Then
the tuple (s, x, p′, y, z) satisfies constraints (5.1) through (5.9).

Now consider the opposite transformation. Let (s, x, p′, y, z) be an optimal solution
of our MILP. For each v, let f(v) be the unique k in F (v) for which xv,k = 1; such k
exists by virtue of constraints (5.3) and (5.4). According to (5.5), p′v = pv,f(v). Let Y
be the set of all pairs (v, w) inB such that yv,w = 1. Constraint (5.7) makes sure that
Y is a selection. Since pv,k > 0 for all (v, k), constraints (5.8) and (5.9) make sure
that the selection Y is good (and s is a schedule for (V,A ∪ Y, p′)). Hence, (f, Y ) is
a solution of the F-JSS problem. Moreover, z = mks(Y ) due to the minimality of z.

Our MILP has 4|V | +
∑

v |F (v)| + 2|B| +
∑m

k=1 |Bk| + |A| constraints and |B| +∑
v |F (v)| + 2|V | + 1 variables, of which only |B| +

∑
v |F (v)| are integer. (Hence,

the number of constraints is bounded by 4n+nγ+2n2 +mn2 + |A| and the number
of variables is bounded by n2 + nγ + 2n + 1, where n is the number of operations
and γ := maxv |F (v)|.)

A good property of our MILP. Consider the linear relaxation of our MILP, i.e.,
drop the requirement that x and y be integer. Let (ṡ, ẋ, ṗ′, ẏ, ż) be an optimal solu-
tion of the resulting LP. By virtue of (5.1), (5.2) and (5.9), ṡ is a schedule for (V,A, ṗ′)
and mks(ṡ) ≤ ż.

Define p′′ by setting p′′v := mink∈F (v) pv,k for each v. Let s′′ be the tight schedule for
(V,A, p′′). Since p′′ ≤ ṗ′ (because ṗ′v is a convex combination of the pv,k), we have
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mks(s′′) ≤ mks(ṡ). Therefore, mks(s′′) is a lower bound on ż. The existence of such
reasonable lower bound on ż is a good property of our MILP, a property that the
ÖÖY MILP to be described in section 5.5 does not have.

5.3 Testing our MILP

We applied our MILP (section 5.2) to a number of instances of the F-JSS problem
found in the literature (see figure 5.1). Instances SFJS01 to SFJS10 and MFJS01 to
MFJS10 were kindly provided by Fattahi et al. [FMJ07]. Instances MK01 to MK15
were taken from Mastrolilli [Mas], who got them from Brandimarte [Bra93].

instance n |A| m

SFJS01 4 2 2
SFJS02 4 2 2
SFJS03 6 3 2
SFJS04 6 3 2
SFJS05 6 3 2
SFJS06 9 6 3
SFJS07 9 6 5
SFJS08 9 6 4
SFJS09 9 6 3
SFJS10 12 8 5
MFJS01 15 10 6
MFJS02 15 10 7
MFJS03 18 12 7
MFJS04 21 14 7
MFJS05 21 14 7
MFJS06 24 16 7
MFJS07 32 24 7
MFJS08 36 27 8
MFJS09 44 33 8
MFJS10 48 36 8

instance n |A| m

MK01 55 45 6
MK02 58 48 6
MK03 150 135 8
MK04 90 75 8
MK05 106 91 4
MK06 150 140 15
MK07 100 80 5
MK08 225 205 10
MK09 240 220 10
MK10 240 220 15
MK11 179 149 5
MK12 193 163 10
MK13 231 201 10
MK14 277 247 15
MK15 284 254 15

Figure 5.1: Test instances of the F-JSS problem. The instances on the left are from
Fattahi et al. while those on the right came from Brandimarte. Columns: n is the
number of operations, |A| is the number of hard precedence constraints, and m is
the number of machines.

The result of applying our MILP to the test instances is recorded in figure 5.2.
Figures 5.3 and 5.4 show the evolution of the lower and upper bounds on the
minimum makespan as a branch-and-bound algorithm tries to solve our MILP.
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instance mks time
SFJS01 66 0.0
SFJS02 107 0.0
SFJS03 221 0.0
SFJS04 355 0.0
SFJS05 119 0.0
SFJS06 320 0.0
SFJS07 397 0.0
SFJS08 253 0.0
SFJS09 210 0.0
SFJS10 516 0.0
MFJS01 468 0.3
MFJS02 446 0.5
MFJS03 466 1.4
MFJS04 554 17.
MFJS05 514 3.
MFJS06 634 35.
MFJS07 879 1370.
MFJS08 764 - 884 3600.
MFJS09 818 - 1088 3600.
MFJS10 944 - 1258 3600.

instance mks

MK01 39 - 40
MK02 25 - 29
MK03 92 - 231
MK04 40 - 63
MK05 63 - 190
MK06 37 - 78
MK07 67 - 206
MK08 181 - 542
MK09 146 - 455
MK10 -
MK11 159 - 705
MK12 180 - 540
MK13 -
MK14 232 - 694
MK15 -

Figure 5.2: Solving test instances (see figure 5.1) of the F-JSS problem. Column
mks gives the minimum makespan computed by the CPLEX software [CPL12]
running our MILP. (For the MK instances, only lower and upper bounds on the
minimum — if that much — were found.) For instances SFJS01 to MFJS10, the
time is given in seconds. Instances MK01 to MK15, took 1 hour each. We used an
Intel Xeon server with one 2.83GHz core and 32GB RAM.

5.4 Valid inequalities for our MILP

We record next a few valid inequalities for our MILP, i.e., inequalities that are re-
dundant for the MILP but not for its linear relaxation:

yv,w + yw,v ≤ 1 f.e. (v, w) in B, (5.10)
yu,v + yv,w + yw,u ≤ 2 f.e. (u, v), (v, w), and (w, u) in B, (5.11)
yv,w ≤ 1− xv,k + xw,k f.e. k in {1 . . . ,m} and (v, w) in Bk, (5.12)
yv,w ≤ 1 + xv,k − xw,k f.e. k in {1 . . . ,m} and (v, w) in Bk. (5.13)

Constraints (5.12) and (5.13) make sure that yv,w is 0 whenever one of xv,k and xw,k

is 1 and the other is 0.

In principle, these inequalities could speed up the solution our MILP. But some
experimentation with test data suggests that they do not help.
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Figure 5.3: Trying to solve the MFJS test instances using our MILP (see figure 5.2).
The graphs show the lower and upper bounds on the minimum makespan as
the CPLEX branch-and-bound algorithm progresses towards the solution. (The
graphs can be better seen at www.ime.usp.br/~oshiro/flexjobshop/iranianos/mip/
fattahietal.png.)
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Figure 5.4: Trying to solve the MK test instances using our MILP (see fig-
ure 5.2). The graphs show the lower and upper bounds on the minimum
makespan as the CPLEX branch-and-bound algorithm progresses towards the
solution. (The graphs can be better seen at www.ime.usp.br/~oshiro/flexjobshop/
brandimarte/brandimarte.png.)
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5.5 The ÖÖY MILP for the F-JSS problem

Özgüven–Özbakir–Yavuz [ÖÖrY10], building on the work of Fattahi et al. [FMJ07],
give a different (and less natural) MILP for the F-JSS problem. We state next a
slightly reorganized version of the ÖÖY MILP. We shall use the following vari-
ables:

• A binary array x to represent machine assignments, with one component xv,k x

for each v in V and each k in F (v).
• A rational array t to represent the starting times,with one component tv,k for t

each v in V and each k in F (v).
• A rational array c to represent the completion times, with one component cv,k c

for each v in V and each k in F (v).
• A binary array y to represent a selection, with one component yv,w,k for ewach y

k in {1, . . . ,m} and (v, w) in Bk.

We also need an upper bound L on the makespan of an optimal solution. (This L

can be the makespan of some good selection or the sum
∑

v∈V maxk∈F (v) pv,k, for
example.)

The ÖÖY MILP is as follows: find rational arrays t and c and binary arrays x
and y that minimize an auxiliary rational variable z under the following linear
constraints:

cv,k ≤ z f.e. v in V and k in F (v), (5.14)
tv,k ≥ 0 f.e. v in V and k in F (v), (5.15)
cv,k ≥ 0 f.e. v in V and k in F (v), (5.16)

0 ≤ xv,k ≤ 1 f.e. v in V and k in F (v), (5.17)∑
k∈F (v) xv,k = 1 f.e. v in V , (5.18)

tv,k ≤ xv,kL f.e. v in V and k in F (v), (5.19)
cv,k ≤ xv,kL f.e. v in V and k in F (v), (5.20)

tv,k + pv,k − (1− xv,k)L ≤ cv,k f.e. v in V and k in F (v), (5.21)
0 ≤ yv,w,k ≤ 1 f.e. k in {1, . . . ,m} and (v, w) in Bk, (5.22)

yv,w,k + yw,v,k = 1 f.e. k in {1, . . . ,m} and (v, w) in Bk, (5.23)
cv,k − (1− yv,w,k)L ≤ tw,k f.e. k in {1, . . . ,m} and (v, w) in Bk, (5.24)∑
k∈F (v) cv,k ≤

∑
k∈F (w) tw,k f.e. (v, w) in A, (5.25)

where the expression “f.e.” means “for each”.

We show next that this MILP represents the F-JSS problem. Let (f, Y ) be an optimal
solution of the F-JSS problem. Let z := mks(Y ). Let p′v := pv,f(v) for each v. Let s
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be the tight schedule for (V,A ∪ Y, p′). For each v and each k in F (v), let xv,k = 1
if and only if f(v) = k. For each v and each k in F (v), let tv,k = sv if f(v) = k and
tv,k = 0 otherwise. For each v and each k in F (v), let cv,k = sv + pv,k if f(v) = k and
cv,k = 0 otherwise. Then z, x, t, and c satisfy constraints (5.14) through (5.21) and
well as (5.25). Now define y as follows. For each machine k, let

Ṽk := {v ∈ V : F (v) 3 k ∧ f(v) 6= k}

and choose a subset C of Bk so that the digraph (Ṽk, C) is an acyclic tournament.
In addition, let D be the set of all (v, w) in Bk such that v ∈ Ṽk and f(w) = k. For
each (v, w) in Bk, let yv,w,k = 1 if (v, w) ∈ Y ∪ C ∪D and yv,w,k = 0 otherwise. This
definition of y satisfies constraints (5.22) through (5.24).

Now consider the opposite transformation. Let (z, t, c, x, y) be an optimal solution
of the MILP. We shall derive from it a machine assignment f and a good selec-
tion Y . For each v, let f(v) be the unique k in F (v) for which xv,k = 1; such k
exists by virtue of constraints (5.17) and (5.18). Let p′v := pv,f(v) for each v. For
each k, let Yk be the set of all pairs (v, w) in Bk such that xv,k = 1, xw,k = 1 and
yv,w,k = 1. According to (5.23), Y := Y1∪ · · · ∪Ym is a selection. According to (5.21),
(5.24), and (5.25), Y is a good selection (and s defined by sv = tv,f(v) is a schedule
for (V,A∪Y, p′)). According to (5.19) through (5.20), tv,k = cv,k = 0 unless k = f(v).
Finally, due to the minimality of z, constraints (5.14) through (5.16) make sure that
z = mks(Y ).

The ÖÖY MILP has at most 7
∑

v |F (v)| + |V | + 3
∑m

k=1 |Bk| + |A| constraints and
at most 3

∑
v |F (v)| +

∑m
k=1 |Bk| + 1 variables. (Hence, the number of constraints

is bounded by 7nγ + n + 3mn2 + |A| and the number of variables is bounded by
3nγ +mn2 + 1, where n is the number of operations and γ := maxv |F (v)|.)

Analysis. Consider the linear relaxation of the ÖÖY MILP, i.e., drop the require-
ment that x and y be integer. Now take any instance of the F-JSS problem in which

• pv,k ≤ L/2 for each v and each k a and
• |Vk| ≥ 2 for k = 1, . . . ,m,

where Vk := {v ∈ V : F (v) 3 k}. (We believe many instances of the F-JSS problem
do posess these properties.) Then the linear relaxation of the ÖÖY MILP has a
solution (ż, ṫ, ċ, ẋ, ẏ) with ṫ = 0, ċ = 0, ẋv,k = 1/|Vk|, ẏv,w,k = 1/2, and

ż = 0 .

Hence, the integrality gap of the ÖÖY MILP is unbounded. This seems to be a bad
property of this MILP.

22



5.6 Heuristics for the F-JSS problem

We describe next a few greedy heuristics for the F-JSS problem. Each produces a
permutation (u1, u2, . . . , un) of V and a corresponding sequence (f1, f2, . . . , fn) of n = |V |
machines. The permutation is such that i < j whenever (ui, uj) ∈ A. The sequence
of machines is such that fi ∈ F (ui) for each i. This pair of sequences defines a good
selection: just take the set of all ordered pairs (ui, uj) such that i < j and fi = fj .

In all our heuristics, each iteration starts with sequences (u1, . . . , uq−1) and
(f1, . . . , fq−1) such that no arc in A enters the set U := {u1, . . . , uq−1}. Let U

AU := A ∩ (U × U), and let YU denote the set of all pairs (ui, uj) in U × U such that
i < j and fi = fj . Let s be the tight schedule for (U,AU ∪ YU , p′), where p′ui

:= pui,fi .
Then the completion time of ui will be ci := sui

+ p′ui
and each machine k will c

become available at time avl

avl [k] := max {ci : 1 ≤ i < q and fi = k} .

(Of course avl [k] = 0 when there is no i such that fi = k.) From this information,
the heuristics described below choose, each in its own greedy manner, the next
operation uq and next machine fq.

Heuristic P. The first heuristic (dubbed P, for “past”) chooses uq and fq in a way
that depends only on the past choices (u1, . . . , uq−1) and (f1, . . . , fq−1). (The heuris-
tic could also be be called EST, for “earliest starting time.”) The basic idea is to
choose a pair (uq, fq) whose execution can start the earliest. This rule is, in general,
satisfied by several pairs. Experience shows that an additional tie-breaking rule
can significantly improve the heuristic. In order to describe our tie-breaking rule
we must introduce some notation.

Let p̄ represent be the mean processing time. Hence, for each operation v,

p̄v =
1

|F (v)|
∑

k∈F (v)

pv,k .

Now, for each operation w, let
LPF (w, p̄) (5.26)

denote the length of a p̄-longest path from w in the dag (V,A), i.e., the largest sum
of the form p̄w + p̄z1 + p̄z2 + · · · + p̄zl where (w, z1, z2, . . . , zl) is a (directed) path
in (V,A). (Note that this definition of length is slightly different from the one is
section 2.1 since the sum includes the term p̄zl .) The tie-breaking rule can now be
stated as follow: If there are several candidate pairs (w, k) for the role of (uq, fq),
choose one that will maximize LPF (w, p̄). The details can be seen in figure 5.5. The
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heuristic takes time in O(n|A|+ n2m).

HEURISTIC-P (n, V,A, F,m, p)

1 for all k in {1, . . . ,m} do avl [k]← 0
2 U ← ∅
3 for q ← 1 to n do
4 for all w in V r U do
5 if (v, w) ∈ A for some v in V r U
6 then rdy [w]←∞
7 else rdy [w]← max {ci : 1 ≤ i < q and (ui, w) ∈ A}
8 earlst ←∞
9 for all w in V r U such that rdy [w] <∞ do

10 for all k in F (w) do
11 t← max(rdy [w], avl [k])
12 if earlst > t or (earlst = t and mxlpf < LPF(w, p̄))
13 then earlst ← t
14 x← w
15 l← k
16 mxlpf ← LPF(w, p̄)
17 uq ← x
18 fq ← l
19 cq ← earlst + px,l
20 avl [l]← cq
21 U ← U ∪ {uq}
22 return (u1, . . . , un) and (f1, . . . , fn)

Figure 5.5: Heuristic P for the F-JSS problem. At the beginning of line 8, rdy [w] is the
ready time for operation w, i.e., the time at which all predecessors of w in the dag (V,A)
are complete. (If rdy [w] = ∞ then w is not yet ready to be processed.) On line 11, t is the
time at which machine k can start processing operation w. At the beginning of line 17,
earlst < ∞ and x and l are well defined, since the digraph (V,A) is a dag and U 6= V . All
the “∞” can be replaced by “

∑
v∈V maxk∈F (v) pv,k”. The makespan of the schedule defined

by the heuristic is simply maxni=1 ci.
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Heuristic F1. Our second heuristic (dubbed F, for “future”) chooses uq and fq
based on the time each machine is expected to spend processing the remaining
operations, i.e., the operations in V r U .

In order to state the heuristic, we need some notation. Given U and a machine k,
let ERT(U, k) be the expected remaining time for machine k, i.e.,

ERT(U, k) :=
∑
w

pw,k

|F (w)|
, (5.27)

where the sum is taken over all w in V r U such that F (w) 3 k. The expected
makespan relative to (u1, . . . , uq−1) and (f1, . . . , fq−1) is then

m
max
k=1

(
avl [k] + ERT(U, k)

)
. (5.28)

Heuristic F1 chooses the next pair (uq, fq) so that the expected makespan after ver-
tex uq is assigned to machine fq (i.e., the expected makespan relative to (u1, . . . , uq)
and (f1, . . . , fq)) is as small as possible. The details are given in figure 5.6. The
heuristic takes time in O(n|A|+ n2m+ nm2).
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HEURISTIC-F1 (n, V,A, F,m, p)

1 for all k in {1, . . . ,m} do avl [k]← 0
2 U ← ∅
3 for q ← 1 to n do
4 for all w in V r U do
5 if (v, w) ∈ A for some v in V r U
6 then rdy [w]←∞
7 else rdy [w]← max {ci : 1 ≤ i < q and (ui, w) ∈ A}
8 minemks ←∞
9 for all w in V r U such that rdy [w] <∞ do

10 for all k in F (w) do
11 emks ← max(rdy [w], avl [k]) + pw,k + ERT(U ∪ {w}, k)
12 for all h in {1, . . . ,m}r {k} do
13 emks ← max

(
emks , avl [h] + ERT(U ∪ {w}, h)

)
14 if minemks > emks
15 then minemks ← emks
16 x← w
17 l← k
18 uq ← x
19 fq ← l
20 cq ← max(rdy [x], avl [l]) + px,l
21 avl [l]← cq
22 U ← U ∪ {uq}
23 return (u1, . . . , un) and (f1, . . . , fn)

Figure 5.6: Heuristic F1 for the F-JSS problem. At the beginning of line 8, rdy [w] is the
ready time for operation w, i.e., the time at which all predecessors of w in the dag (V,A)
are complete. At the beginning of line 14, emks is the expected makespan if w is assigned
to machine k. Lines 14–17 choose the pair (x, l) that minimizes emks . All the “∞” can be
replaced by “

∑
v∈V maxk∈F (v) pv,k”. The makespan of the schedule defined by the heuristic

is simply maxni=1 ci.
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Heuristic PF1. This is an iteration-by-iteration combination of P and F1. See fig-
ure 5.7.

HEURISTIC-PF1 (n, V,A, F,m, p)

1 for all k in {1, . . . ,m} do avl [k]← 0
2 U ← ∅
3 for q ← 1 to n do
4 for all w in V r U do
5 if (v, w) ∈ A for some v in V r U
6 then rdy [w]←∞
7 else rdy [w]← max {ci : 1 ≤ i < q and (ui, w) ∈ A}
8 for all w in V r U such that rdy [w] <∞ do
9 for all k in F (w) do

10 e← max(rdy [w], avl [k]) + pw,k + ERT(U ∪ {w}, k)
11 for all h in {1, . . . ,m}r {k} do
12 e← max

(
e, avl [h] + ERT(U ∪ {w}, h)

)
13 emks [w, k]← e
14 best ←∞
15 for all w in V r U such that rdy [w] <∞ do
16 for all k in F (w) do
17 prdct ← max(rdy [w], avl [k]) · emks [w, k]
18 if best > prdct or (best = prdct but mxlpf < LPF(w, p̄))
19 then best ← prdct
20 mxlpf ← LPF(w, p̄)
21 x← w
22 l← k
23 uq ← x
24 fq ← l
25 cq ← max(rdy [x], avl [l]) + px,l
26 avl [l]← cq
27 U ← U ∪ {uq}
28 return (u1, . . . , un) and (f1, . . . , fn)

Figure 5.7: Heuristic PF1 is a combination of heuristics P and F1. At the beginning of
line 8, rdy [w] is the ready time for operation w, i.e., the time at which all predecessors of w
in the dag (V,A) are complete. After line 13, emks[w, k] is the expected makespan if w is
assigned to machine k. Lines 14–22 choose the pair (x, l) that will play the role of (uq, fq).
All the “∞” can be replaced by “

∑
v∈V maxk∈F (v) pv,k”. The makespan of the schedule

defined by the heuristic is simply maxni=1 ci.
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Heuristic F2. In each iteration, heuristic F2 (a.k.a. “heuristic Cris2”) chooses the
pair (uq, fq) so that avl [fq] is as small as possible and, subject to this condition, so
that the expected makespan after uq is assigned to fq is minimized. The heuristic
is given in figure 5.8. It takes time in O(n|A|+ n2m).

HEURISTIC-F2 (n, V,A, F,m, p)

1 for all k in {1, . . . ,m} do avl [k]← 0
2 U ← ∅
3 for q ← 1 to n do
4 for all w in V r U do
5 if (v, w) ∈ A for some v in V r U
6 then rdy [w]←∞
7 else rdy [w]← max {ci : 1 ≤ i < q and (ui, w) ∈ A}
8 minavl ←∞
9 for k ← 1 to m do

10 if minavl > avl [k]
11 then if F (w) 3 k and rdy [w] <∞ for some w in V r U
12 then minavl ← avl [k]
13 l← k
14 minemks ←∞
15 for all w in V r U such that rdy [w] <∞ and F (w) 3 l do
16 emks ← max(rdy [w], avl [l]) + pw,l + ERT(U ∪ {w}, l)
17 for all h in {1, . . . ,m}r {l} do
18 emks ← max

(
emks , avl [h] + ERT(U ∪ {w}, h)

)
19 if minemks > emks
20 then minemks ← emks
21 x← w
22 uq ← x
23 fq ← l
24 cq ← max(rdy [x], avl [l]) + px,l
25 avl [l]← cq
26 U ← U ∪ {uq}
27 return (u1, . . . , un) and (f1, . . . , fn)

Figure 5.8: Heuristic F2 (a.k.a. Cris2) for the F-JSS problem. At the beginning of line 8,
rdy [w] is the ready time for operation w, i.e., the time at which all predecessors of w in
the dag (V,A) are complete. Lines 8–13 choose the machine l that will play the role of fq.
At the beginning of line 19, emks is the expected makespan if w is assigned to machine l.
Lines 14–21 choose operation x that will minimize emks . All the “∞” can be replaced by
“
∑

v∈V maxk∈F (v) pv,k”. The makespan of the schedule defined by the heuristic is simply
maxni=1 ci.
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Heuristic F3. The next heuristic is a simplified version of F2 that produces sur-
prisingly good results on our tests. The expected total time (ett) on machine k
relative to (u1, . . . , uq−1) and (f1, . . . , fq−1) is

avl [k] + ERT(U, k) . (5.29)

In each iteration, heuristic F3 chooses the pair (uq, fq) so that avl [fq] is as small
as possible and, subject to this condition, so that the ett on machine fq relative to
(u1, . . . , uq) and (f1, . . . , fq) will be as small as possible. The heuristic is given in
figure 5.9. It takes time in O(m+ n2 + n|A|).
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HEURISTIC-F3 (n, V,A, F,m, p)

1 for all k in {1, . . . ,m} do avl [k]← 0
2 U ← ∅
3 for q ← 1 to n do
4 for all w in V r U do
5 if (v, w) ∈ A for some v in V r U
6 then rdy [w]←∞
7 else rdy [w]← max {ci : 1 ≤ i < q and (ui, w) ∈ A}
8 minavl ←∞
9 for k ← 1 to m do

10 if minavl > avl [k]
11 then if F (w) 3 k and rdy [w] <∞ for some w in V r U
12 then minavl ← avl [k]
13 l← k
14 minett ←∞
15 for all w in V r U such that rdy [w] <∞ and F (w) 3 l do
16 ett ← max(rdy [w], avl [l]) + pw,l + ERT(U ∪ {w}, l)
17 if minett > ett
18 then minett ← ett
19 x← w
20 uq ← x
21 fq ← l
22 cq ← max(rdy [x], avl [l]) + px,l
23 avl [l]← cq
24 U ← U ∪ {uq}
25 return (u1, . . . , un) and (f1, . . . , fn)

Figure 5.9: Heuristic F3 for the F-JSS problem. At the beginning of line 8, rdy [w] is
the ready time for operation w, i.e., the time at which all predecessors of w in the dag
(V,A) are complete. Lines 8–13 choose the machine l that will play the role of fq. At
the beginning of line 17, ett is the expected total time for machine l assuming that w is
assigned to machine l. Lines 14–19 choose operation x that minimizes ett . All the “∞”
can be replaced by “

∑
v∈V maxk∈F (v) pv,k”. The makespan of the schedule defined by the

heuristic is simply maxni=1 ci.

30



Test results. Heuristics P and F1 were applied to the set of test instances men-
tioned in figure 5.1. The results are summarized in figure 5.10.

instance P F1 PF1 F2 F3
SFJS01 66 86 66 86 86
SFJS02 107 128 107 107 107
SFJS03 255 236 255 314 304
SFJS04 367 409 409 417 409
SFJS05 143 144 145 144 144
SFJS06 360 357 360 390 330
SFJS07 407 507 397 397 457
SFJS08 273 296 273 273 340
SFJS09 230 247 230 215 220
SFJS10 608 914 617 724 693
MFJS01 526 639 522 832 576
MFJS02 540 636 570 790 587
MFJS03 655 719 632 740 614
MFJS04 690 847 768 827 684
MFJS05 690 708 733 778 644
MFJS06 838 953 821 1239 1063
MFJS07 1130 1531 1064 1773 1241
MFJS08 1129 1248 1137 1447 1371
MFJS09 1343 1508 1339 1824 1525
MFJS10 1559 1845 1500 1970 1642
MK01 49 69 47 76 48
MK02 41 44 46 48 35
MK03 204 287 204 398 235
MK04 73 103 69 119 100
MK05 186 232 182 246 218
MK06 98 151 99 168 91
MK07 214 207 193 239 200
MK08 523 795 523 716 602
MK09 336 544 329 552 405
MK10 274 455 254 488 285
MK11 698 752 641 858 700
MK12 566 744 550 599 571
MK13 500 741 470 771 486
MK14 719 1349 694 920 777
MK15 443 611 394 798 512

Figure 5.10: Applying heuristics P, F1, PF1, F2, and F3 to the test instances men-
tioned in figure 5.1. The table records the makespan of the schedules computed by
the various heuristics. Somewhat surprisingly, F3 is often better than F1 and F2.
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