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O teorema de Gallai' ¢ uma generalizacio natural do teorema dos emparelhamen-
tos maximos (Teorema 2.2.3 em Diestel?). Ele ¢ a base de uma nova demonstracio
do teorema de Mader (Teorema 3.4.1 em Diestel) recentemente descoberta por Alex
Schrijver (A short proof of Mader’s S-paths theorem)3.

Estou tratando do assunto como se ele fosse a se¢ao 2.4 do capitulo 2 do livro de
Diestel (se bem que a se¢do deveria estar entre a 2.2 e a 2.3). A propésito, seria muito
conveniente que Diestel substituisse a discussao no final da se¢ao 2.2 (pagina 38) pelo
seguinte corolério do Teorema 2.2.3:

Corollary 2.2.4 Every graph G has a matching M and a disjoint collection ) of
subsets of V(G) such that no edge links two different members of J and |M| =

IV \UY+ ZyeylslV).

2.4 Gallai’s theorem

Let A be a set of vertices of a graph G; we shall regard A as fixed throughout this
section. An A-path is any path* whose ends are two distinct vertices in A and whose
internal vertices are in V(G) \ A.?

A collection P of A-paths is disjoint if no vertex of the graph belongs to more
than one member of P. A matching, for example, is essentially the same thing as a
disjoint collection of V(G)-paths.

Our problem in this section is the characterization of maximum disjoint collections
of A-paths. This will be done in terms of splits®. A split of G is just a disjoint collection
of subsets of V(G). The A-width of a split ) is the number

wa) = U1+ 3 |54
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! Tibor Gallai, Maximum-minimum Sitze und verallgemeinerte Faktoren von Graphen, Acta
Mathematica Academiae Scientiarum Hungaricae 12 (1961), 131-173

2 Graph Theory, 2nd. edition, Springer, 1999

3 tomei conhecimento por intermédio de José Coelho de Pina Jr.

4 by definition, paths have no repreated vertices

5 we could drop the requirement that no internal vertex be in A, but this would have no practical
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5 this term is not standard
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where U denotes V(G) \ U. A split Y is strong if no edge of G links two different
members of V.

Lemma 2.4.1 For any disjoint collection P of A-paths and any strong split ),
|P| < wda(Y) .

Proof. Let X :=J). Each A-path has a vertex in X or at least two vertices (its
terminal vertices) in Y N A for some Y in Y. With each P in P, we may associate
(1) a vertex in V(P) N X if this set is not empty or (2) a pair of vertices in ANY,
where Y is the appropriate member of ). Each vertex in X will have been associated
with at most one member of P, since P is disjoint. On the other hand, in each set of
the form Y N A a disjoint collection of pairs of vertices will have been defined; each of
these pairs will have been associated with a different member of P, since P is disjoint.
The inequality |P| < wd4(Y) follows. O

The case A = V(@) of the lemma has been studied in section 2.2: it amounts to
the inequality |M| < wdy(gy(Y), valid for any matching M and any strong split V.

Theorem 2.4.2 (Gallai 1961) There exists a disjoint collection P of A-paths and a
strong split Y such that

|P| =wda(Y) -

In other words, the A-width of a minimum-width strong split is equal to the maximum
number of disjoint A-paths. This is a generalization of Theorem 2.2.3. That theorem
asserts there exists a matching M and a strong split ) such that [M| = wdy (g (V).

Proof of Theorem 2.4.2. Let G’ and G” be two mutually disjoint copies of G.
For each vertex v of G, let v' and v"” denote the corresponding vertices in G’ and
G" respectively. Let A’ and A" be the copies of A in G’ and G". Let V := V(G),
V' i= V(G), and V" := V(G").

Let E be the set of all pairs v'v” with v a vertex of G and let C the set of all pairs
of the form v'w" such that vw is an edge of G. Now define

H:=(G'uG@"+E+C)-A".

Note that for each edge vw of G the vertices v', w', v", and w" are pairwise adjacent
in H. If v'w' is an edge of H then so are v'w"” and v"w' (unless w"” € A” or v" € A"),
and if v'w" is an edge of H with v # w then also v'w’ and v"w" are edges of H (unless
" e A").

Let Y be a minimum-width strong split of H. Theorem 2.2.3 guarantees that
|M| = wdy ) (Y)

for some matching M in H. Choose the split )Y, among all those having minimum

strong split

3.4.1]

A’, AII

(2.2.3)



width, so that |JJY is maximal. Then, for each v in V' \ A,
vertices v’ and v" are either both in X or both not in X, (2.1)

where X := Y. In order to prove this claim, suppose for a while that there exists a
vertex v in V'\ A such that v € X but v" ¢ X. Then v" € Y for some Y in ). Now
let V:=YU{v'} and Y := (¥ \ {Y}) U{Y}. Observe that

wdy () (V) < wdy ) (V) -

Hence, the maximality of |J) implies that the split Y is not strong, i.e., H has an
edge v'w’ with w' in V' \ (X UY) or an edge v'w” with w” in V" \ (X UY). In the
first case, v"w' is an edge of H and it connects Y to some other member of ), which
is impossible because ) is strong. In the second case, v"w" is an edge of H and it
connects Y to some other member of Y, which is again impossible. This contradiction
proves claim (2.1) in case v' € X. The proof in case v € X is similar.

Let X' := XNV’ and X" := X NV". By virtue of (2.1), | X'\ 4’| = |X"|. Hence
|X|=1X"NnA"|+2]X"\ 4.

Foreach Y in Y, let Y :=Y NV and Y :=Y NV". For each v in V' \ A, by
virtue of (2.1), either Y contains both v' and v” or none of these two vertices. Hence,
[Y"\ A'| = |Y"], and therefore |Y| = |Y' N A'| +2|Y"\ A'|. The collection )’ of all Y’
is a strong split of G’ and

wd (V') = wdy ) (V) — [V \ 4]

Here is the proof of this equality, with k& denoting the number of Y in Y for which |Y|
is odd, and therefore also the number of Y in )’ for which Y’ N A'| is odd:

Y
wiy ) = IX|- 2+ 3
Yey
= | X'nA|+21X"\ 4| - + > |Y,ﬁAI|+2|YI\AI|
Y’Ey’
! I
= |X’|+|X’\A’— Z'YﬂA +Z|Y’\A’

Y'nA
- |X'|+Z[' Iy
()4 [V 4]

Now we must convert matching M into a large disjoint collection of A’-paths. Let
E' be the set of edges in F incident to V' \ A’; of course E' is a matching in H
with exactly [V’ \ A'| edges. Since |M| = wdy ) (Y) = wda()') + |E'|, the graph
H[E'U M] has at least wd 4 ()') components with more edges in M than in E'. Each
such component is a path whose first and last edges are in M. The ends of such path
must be both in A’; this is only possible if its first and last edges have both ends in
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V' and therefore each of its edges in M has both ends in V' or both in V”. Hence,
each of these paths has the form

! ! no_n ol ! n _n n n !
Up U1 Uy Vg Vg U3 U3 Uy --- Vg1 U Vg Vi1,
where vy and vgy; are in A and vy,...,vg are in V' \ A. Of course
! ! ! ! ! ! !
Vg V1 Vg V3 Uy ... VU Uk)-l—l

is an A’-path in G’. Moreover, such paths are pairwise disjoint. So, we have a disjoint
collection of

wdar (V')

A’-paths in G’. Since G’ is isomorphic to G, our result follows. a

An immediate consequence of Lemma 2.4.1 and Theorem 2.4.2 is the minimax

identity max|P| = minwd4()), where max is taken over all disjoint collections P of
A-paths and min is taken over all strong splits V.

Exercises

1.

Let G’ and G" be two mutually disjoint copies of a graph G. For each vertex v
of G, let v' and v" denote the corresponding vertices in G’ and G" respectively.
Let E denote the set of all pairs of the form v'v"” with v in V(G). Let C denote
the set of all pairs of the form v'w"” such that vw is an edge of G. Finally, let

H:=(G'UG"+E+C.

Describe, in detail, the components of the graph H[MUE], where M is a matching
in H. Now suppose one of the components of H[M U E] is a path of the form

/ no_n ! ! no_no ! ! !/ "
U1 'U1 U2 'U2 'U3 'U3 'U4 'U4 .. 'Uk_l 'Uk 'Uk
and show that v} vh v v} ... vj,_; v} is a path in G.
Describe an algorithm for deciding whether a split ) is strong.

From Lemma 2.4.1, show that |P| < |3|A|] for any disjoint collection P of A-
paths.

Give the terms (P and Y) of Gallai’s theorem in case |A| < 1. Repeat for |A| = 2.
Repeat for |A4| = 3.

Complete the proof of claim (2.1), i.e., show that there is no v in V'\ A4 such that
v' ¢ X but 0" € X.



Show that Theorem 2.4.2 could have been stated as follows: There exists a
disjoint collection P of A-paths and a set X of vertices such that

v(e)na
Pl=[X|+ 3 |
PI=1x1+ 3 [

where the sum is taken over all components C of G — X.



