O teorema de Gallai sobre caminhos disjuntos

Paulo Feofiloff

7 de setembro de 2000

O teorema de Gallai¹ é uma generalização natural do teorema dos emparelhamentos máximos (Teorema 2.2.3 em Diestel²). Ele é a base de uma nova demonstração do teorema de Mader (Teorema 3.4.1 em Diestel) recentemente descoberta por Alex Schrijver (A short proof of Mader's S-paths theorem)³.

Estou tratando do assunto como se ele fosse a seção 2.4 do capítulo 2 do livro de Diestel (se bem que a seção deveria estar entre a 2.2 e a 2.3). A propósito, seria muito conveniente que Diestel substituisse a discussão no final da seção 2.2 (página 38) pelo seguinte corolário do Teorema 2.2.3:

Corollary 2.2.4 Every graph G has a matching M and a disjoint collection \mathcal{Y} of subsets of V(G) such that no edge links two different members of \mathcal{Y} and $|M| = |V(G) \setminus \mathcal{Y}| + \sum_{Y \in \mathcal{Y}} \lfloor \frac{1}{2} |Y| \rfloor$.

2.4 Gallai's theorem

Let A be a set of vertices of a graph G; we shall regard A as fixed throughout this section. An A-path is any path⁴ whose ends are two distinct vertices in A and whose internal vertices are in $V(G) \setminus A$.⁵

disjoint collection

A-path

A collection \mathcal{P} of A-paths is *disjoint* if no vertex of the graph belongs to more than one member of \mathcal{P} . A matching, for example, is essentially the same thing as a disjoint collection of V(G)-paths.

split width of a split

Our problem in this section is the characterization of maximum disjoint collections of A-paths. This will be done in terms of splits⁶. A *split* of G is just a disjoint collection of subsets of V(G). The A-width of a split \mathcal{Y} is the number

$$\operatorname{wd}_A(\mathcal{Y}) := |\overline{\bigcup \mathcal{Y}}| + \sum_{Y \in \mathcal{Y}} \left\lfloor \frac{|Y \cap A|}{2} \right
floor,$$

¹ Tibor Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961), 131–173

² Graph Theory, 2nd. edition, Springer, 1999

³ tomei conhecimento por intermédio de José Coelho de Pina Jr.

⁴ by definition, paths have no repreated vertices

^{5} we could drop the requirement that no internal vertex be in A, but this would have no practical consequence

⁶ this term is not standard

where \overline{U} denotes $V(G) \setminus U$. A split \mathcal{Y} is *strong* if no edge of G links two different—strong split members of \mathcal{Y} .

Lemma 2.4.1 For any disjoint collection \mathcal{P} of A-paths and any strong split \mathcal{Y} ,

$$|\mathcal{P}| \leq \operatorname{wd}_A(\mathcal{Y})$$
.

Proof. Let $X := \overline{\bigcup \mathcal{Y}}$. Each A-path has a vertex in X or at least two vertices (its terminal vertices) in $Y \cap A$ for some Y in \mathcal{Y} . With each P in \mathcal{P} , we may associate (1) a vertex in $V(P) \cap X$ if this set is not empty or (2) a pair of vertices in $A \cap Y$, where Y is the appropriate member of \mathcal{Y} . Each vertex in X will have been associated with at most one member of \mathcal{P} , since \mathcal{P} is disjoint. On the other hand, in each set of the form $Y \cap A$ a disjoint collection of pairs of vertices will have been defined; each of these pairs will have been associated with a different member of \mathcal{P} , since \mathcal{P} is disjoint. The inequality $|\mathcal{P}| \leq \operatorname{wd}_A(\mathcal{Y})$ follows.

The case A = V(G) of the lemma has been studied in section 2.2: it amounts to the inequality $|M| \leq \operatorname{wd}_{V(G)}(\mathcal{Y})$, valid for any matching M and any strong split \mathcal{Y} .

Theorem 2.4.2 (Gallai 1961) There exists a disjoint collection \mathcal{P} of A-paths and a strong split \mathcal{Y} such that

[3.4.1]

E

$$|\mathcal{P}| = \operatorname{wd}_A(\mathcal{Y})$$
.

In other words, the A-width of a minimum-width strong split is equal to the maximum number of disjoint A-paths. This is a generalization of Theorem 2.2.3. That theorem asserts there exists a matching M and a strong split \mathcal{Y} such that $|M| = \operatorname{wd}_{V(G)}(\mathcal{Y})$.

Proof of Theorem 2.4.2. Let G' and G'' be two mutually disjoint copies of G. For each vertex v of G, let v' and v'' denote the corresponding vertices in G' and G'' respectively. Let A' and A'' be the copies of A in G' and G''. Let V := V(G), A', A'' V' := V(G'), and V'' := V(G'').

Let E be the set of all pairs v'v'' with v a vertex of G and let C the set of all pairs of the form v'w'' such that vw is an edge of G. Now define

$$H := ((G' \cup G'') + E + C) - A''.$$

Note that for each edge vw of G the vertices v', w', v'', and w'' are pairwise adjacent in H. If v'w' is an edge of H then so are v'w'' and v''w' (unless $w'' \in A''$ or $v'' \in A''$), and if v'w'' is an edge of H with $v \neq w$ then also v'w' and v''w'' are edges of H (unless $v'' \in A''$).

Let \mathcal{Y} be a minimum-width strong split of H. Theorem 2.2.3 guarantees that (2.2.3)

$$|M| = \operatorname{wd}_{V(H)}(\mathcal{Y})$$

for some matching M in H. Choose the split \mathcal{Y} , among all those having minimum M, \mathcal{Y}

width, so that $\bigcup \mathcal{Y}$ is maximal. Then, for each v in $V \setminus A$,

vertices
$$v'$$
 and v'' are either both in X or both not in X , (2.1)

where $X := \overline{\bigcup \mathcal{Y}}$. In order to prove this claim, suppose for a while that there exists a vertex v in $V \setminus A$ such that $v' \in X$ but $v'' \notin X$. Then $v'' \in Y$ for some Y in \mathcal{Y} . Now let $\tilde{Y} := Y \cup \{v'\}$ and $\tilde{\mathcal{Y}} := (\mathcal{Y} \setminus \{Y\}) \cup \{\tilde{Y}\}$. Observe that

$$\operatorname{wd}_{V(H)}(\tilde{\mathcal{Y}}) \leq \operatorname{wd}_{V(H)}(\mathcal{Y})$$
.

Hence, the maximality of $\bigcup \mathcal{Y}$ implies that the split $\tilde{\mathcal{Y}}$ is not strong, i.e., H has an edge v'w' with w' in $V' \setminus (X \cup Y)$ or an edge v'w'' with w'' in $V'' \setminus (X \cup Y)$. In the first case, v''w' is an edge of H and it connects Y to some other member of \mathcal{Y} , which is impossible because \mathcal{Y} is strong. In the second case, v''w'' is an edge of H and it connects Y to some other member of \mathcal{Y} , which is again impossible. This contradiction proves claim (2.1) in case $v' \in X$. The proof in case $v'' \in X$ is similar.

Let
$$X' := X \cap V'$$
 and $X'' := X \cap V''$. By virtue of (2.1), $|X' \setminus A'| = |X''|$. Hence $X', X'' \mid X \mid = |X' \cap A'| + 2|X' \setminus A'|$.

For each Y in \mathcal{Y} , let $Y':=Y\cap V'$ and $Y'':=Y\cap V''$. For each v in $V\setminus A$, by virtue of (2.1), either Y contains both v' and v'' or none of these two vertices. Hence, $|Y'\setminus A'|=|Y''|$, and therefore $|Y|=|Y'\cap A'|+2|Y'\setminus A'|$. The collection \mathcal{Y}' of all Y' is a strong split of G' and

$$\operatorname{wd}_{A'}(\mathcal{Y}') = \operatorname{wd}_{V(H)}(\mathcal{Y}) - |V' \setminus A'|.$$

Here is the proof of this equality, with k denoting the number of Y in \mathcal{Y} for which |Y| is odd, and therefore also the number of Y' in \mathcal{Y}' for which $|Y' \cap A'|$ is odd:

$$\begin{aligned}
\operatorname{wd}_{V(H)}(\mathcal{Y}) &= |X| - \frac{k}{2} + \sum_{Y \in \mathcal{Y}} \frac{|Y|}{2} \\
&= |X' \cap A'| + 2|X' \setminus A'| - \frac{k}{2} + \sum_{Y' \in \mathcal{Y}'} \frac{|Y' \cap A'| + 2|Y' \setminus A'|}{2} \\
&= |X'| + |X' \setminus A'| - \frac{k}{2} + \sum_{Y'} \frac{|Y' \cap A'|}{2} + \sum_{Y'} |Y' \setminus A'| \\
&= |X'| + \sum_{Y'} \left\lfloor \frac{|Y' \cap A'|}{2} \right\rfloor + |V' \setminus A'| \\
&= \operatorname{wd}_{A'}(\mathcal{Y}') + |V' \setminus A'| ,
\end{aligned}$$

Now we must convert matching M into a large disjoint collection of A'-paths. Let E' be the set of edges in E incident to $V' \setminus A'$; of course E' is a matching in H with exactly $|V' \setminus A'|$ edges. Since $|M| = \operatorname{wd}_{V(H)}(\mathcal{Y}) = \operatorname{wd}_{A'}(\mathcal{Y}') + |E'|$, the graph $H[E' \cup M]$ has at least $\operatorname{wd}_{A'}(\mathcal{Y}')$ components with more edges in M than in E'. Each such component is a path whose first and last edges are in M. The ends of such path must be both in A'; this is only possible if its first and last edges have both ends in

V' and therefore each of its edges in M has both ends in V' or both in V''. Hence, each of these paths has the form

$$v'_0 \ v'_1 \ v''_1 \ v''_2 \ v'_2 \ v''_3 \ v''_3 \ v''_4 \ \dots \ v''_{k-1} \ v''_k \ v'_k \ v'_{k+1} \ ,$$

where v_0 and v_{k+1} are in A and v_1, \ldots, v_k are in $V \setminus A$. Of course

$$v_0' v_1' v_2' v_3' v_4' \dots v_k' v_{k+1}'$$

is an A'-path in G'. Moreover, such paths are pairwise disjoint. So, we have a disjoint collection of

$$\operatorname{wd}_{A'}(\mathcal{Y}')$$

A'-paths in G'. Since G' is isomorphic to G, our result follows.

An immediate consequence of Lemma 2.4.1 and Theorem 2.4.2 is the minimax identity $\max |\mathcal{P}| = \min \operatorname{wd}_A(\mathcal{Y})$, where \max is taken over all disjoint collections \mathcal{P} of A-paths and \min is taken over all strong splits \mathcal{Y} .

Exercises

1. Let G' and G'' be two mutually disjoint copies of a graph G. For each vertex v of G, let v' and v'' denote the corresponding vertices in G' and G'' respectively. Let E denote the set of all pairs of the form v'v'' with v in V(G). Let C denote the set of all pairs of the form v'w'' such that vw is an edge of G. Finally, let

$$H := (G' \cup G'') + E + C$$
.

Describe, in detail, the components of the graph $H[M \cup E]$, where M is a matching in H. Now suppose one of the components of $H[M \cup E]$ is a path of the form

$$v'_1 v''_1 v''_2 v''_2 v''_3 v''_3 v''_4 v'_4 \dots v'_{k-1} v'_k v''_k$$

and show that $v'_1 \ v'_2 \ v'_3 \ v'_4 \ \dots \ v'_{k-1} \ v'_k$ is a path in G'.

- 2. Describe an algorithm for deciding whether a split \mathcal{Y} is strong.
- 3. From Lemma 2.4.1, show that $|\mathcal{P}| \leq \lfloor \frac{1}{2}|A| \rfloor$ for any disjoint collection \mathcal{P} of A-paths.
- 4. Give the terms $(\mathcal{P} \text{ and } \mathcal{Y})$ of Gallai's theorem in case $|A| \leq 1$. Repeat for |A| = 2. Repeat for |A| = 3.
- 5. Complete the proof of claim (2.1), i.e., show that there is no v in $V \setminus A$ such that $v' \notin X$ but $v'' \in X$.

6. Show that Theorem 2.4.2 could have been stated as follows: There exists a disjoint collection \mathcal{P} of A-paths and a set X of vertices such that

$$|\mathcal{P}| = |X| + \sum_{C} \left\lfloor \frac{|V(C) \cap A|}{2} \right
floor,$$

where the sum is taken over all components C of G-X.