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Este documento reproduz, em notacdo compativel com a de Diestel!, uma nova de-
monstracdo do teorema de Mader (Teorema 3.4.1 em Diestel), descoberta por Alex
Schrijver (A short proof of Mader’s S-paths theorem)?. O teorema de Mader é uma
generalizacdo perfeita do teorema de Menger (Teorema 3.3.1), embora Diestel ndo
deixe isso muito claro.

3.4 Mader’s theorem

Let G be a graph and A a disjoint collection of subsets of V(G). We may sometimes
refer to the members of A as terminal sets. An A-path is a path whose endvertices
belong to two distinct members of A and whose internal vertices belong to® [J A.

We wish to characterize maximum disjoint collections of A-paths. This will be
done in terms of splits*, where a split is just a disjoint collection of subsets of V(G).?
For a set U of vertices, the U-capacity of a split ) is the number

capy(¥) = x|+ 3 |12

Yey

where X := JY and 0yY := (YNU)U(N(Y U X)\ X), i.e., 9yY is the set of vertices
in Y that either belong to U or have a neighbour in Y U X.

For a disjoint collection A of subsets of V(G), a split ) is A-separating if every
A-path disjoint from [J) has at least one edge® in some member of ). A split Y
is strong if no edge of G links two different members of Y; every strong split is, of
course, A-separating.

Y Graph Theory, 2nd. edition, Springer, 1999

2 tomei conhecimento por intermédio de José Coelho de Pina Jr., que também me ajudou a
compreender a prova

3 for any set U of vertices, U denotes V(G)\ U

4 this term is not standard

5 you may identify each member of the split with a different color; some vertices may, of course,
remain colorless

5 it is important to require an edge (rather than just two vertices) so that we may test, in
polynomial time, whether a given split is .A-separating
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Lemma 3.4.1 For any disjoint collection P of A-paths, and any A-separating split ),
|P| < capy(Y) , where U :=J A.

Proof. Let X := J)Y. Each A-path has a vertex in X or at least two consecutive
vertices in some member Y of ); in the latter case, it has at least two vertices in dyY .
With each P in P, we may associate (1) a vertex in V(P)N X if this set is not empty
or (2) a pair of vertices in dyY, where Y is an appropriate member of ). Each vertex
in X will have been associated with at most one member of P, since P is disjoint. On
the other hand, in each set of the form OyY a disjoint collection of pairs of vertices
will have been defined; each of these pairs will have been associated with a different
member of P, since P is disjoint. The inequality |P| < capy(Y) follows. ]

Theorem 3.4.2 (Mader 1978) 7 There exists a disjoint collection P of A-paths and
an A-separating split ) such that

|P| = capy(Y) , where U :=J A.

In other words, the capacity of a minimum-capacity A-separating split is equal to the
maximum number of disjoint A-paths.

Let’s examine some special cases of Theorem 3.4.2. Two of these are particularly
important because they are the basis of induction in Schrijver’s proof of the theorem.

e Suppose G has no A-paths (this is the case, for example, if [A| < 1or || G ||=0).
Let ) be the collection of all singleton subsets of V(G) and observe that Y, is
an A-separating split. The capacity of this split is 0. Hence, the assertion of
Theorem 3.4.2 is true in this case.

e Suppose |A| = 2. Let A and B be the two members of A and let X be a
minimum set of vertices separating A from B. By Theorem 3.3.1 (Menger’s
theorem), there are |X| disjoint A—B paths. Now let ) be the collection of all
singleton subsets of X. It is easy to see that the split ) is A-separating and
cap 4up(Y) = |X|. Hence, the assertion of Theorem 3.4.2 is true in this case.

e Suppose every member of A4 has at most one vertex. In this case, Theorem 2.4.2
(Gallai’s theorem) asserts the existence of a disjoint collection P of U-paths and
a strong split ) such that

Pl = UV + Zyeylily nU|]. (3.1)

Since the split is strong, Y N U = JdyY for each Y in ). Hence, the right side
of (3.1) can be written as capy(Y). So, the assertion of Theorem 3.4.2 is true
in this case.

7 This statement of the theorem is somewhat different from that of Theorem 3.4.1 in Diestel
(page 56). To begin with, Diestel considers independent rather than disjoint paths. But the two
forms of the theorem are equivalent.
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e Suppose U = V(QG), i.e., every vertex belongs to some member of A. Let E be
the set of edges of G that have both ends in the same member of A. By the
Theorem 2.2.3 (maximum matching theorem) there exists a matching M and a
strong split ) in G — F such that

[M| =[UY|+ ZyeylzlY] - (3.2)

The matching M is, essentially, a disjoint collection of A-path, since each edge
in M has ends in two different members of A. On the other hand, every edge
of G joining two different members of ) is in F, whence ) is A-separating as a
split in G. Moreover, dyY =Y for each Y in ), whence the right side of (3.2)
is equal to capy()). So, the assertion of Theorem 3.4.2 is true in this case too.

Proof of Theorem 3.4.2. Let k be the minimum of capy()) over all A-separating
splits ). We must prove the existence of k disjoint A-paths in G.

The proof is by induction. In order to describe the parameters of the induction, we
need some new terminology. A wertez-pair is an element vw (not necessarily an edge)
of [V(G)]?. A vertex-pair vw is internal if v and w belong to the same member of A
and external if at least one of v and w is in U. The number of internal vertex-pairs
will be denoted by a(A), while the number of external vertex-pairs will be denoted
by B(A).

The induction is on a(A) + B(A)+ || G ||. If a(A) = 0 then every member of A
has at most one vertex and the theorem is true for the reasons discussed above. If
B(A) = 0 then U = V(G) or |G| < 1 and the theorem is true again for the reasons
discussed above. If there are no .A-paths, in particular if | G |= 0, the assertion of
the theorem is true once more for the reasons discussed above. This takes care of the
basis of the induction.

If some edge e has both ends in some member of A, we may assume, as induction
hypothesis, the existence in G — e of a disjoint collection P of A-paths and an A-
separating split ) such that |P| = capy(Y). Every member of P is, of course, an
A-path in G. Moreover, the split ) is A-separating in G, whence cap;(Y) > k. So,
G has k disjoint A-paths in this case.

We assume in what follows that no edge has both ends in the same member of A,
i.e., every member of A is a stable set. We also assume that «(A) and B(.A) are not
null and that there exists at least one A-path.

1. Since a(A) > 1, some member A of A has at least two vertices. Let a be one
of these vertices and let

A" = (A\{4}) U {4\ {a},{a}}.

Since a(A") < «(A) while S(A") = B(A), we may assume, as induction hypothesis,
the existence of a disjoint collection P of A’-paths and an A’-separating split ) such
that |P| = capy()) (note that A’ = U). Since every A-path is also an A’-path, the
split Y is A-separating and therefore capy () > k. If every path in P is an A-path,
we reached our goal and the proof is finished.

(2.2.3)
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2. Now suppose some member P, of P is not an A-path. Then a is an end of P,,
the other end being in A\ {a}. Since A is a stable set, P, has an internal vertex,
say v; of course v is not in U. Let

B = (A\{A}) U {AU{v}}.

Since A has at least two members (because there exists at least one A-path), a(B) +
B(B) < a(A)+5(A). We may assume therefore, as induction hypothesis, the existence
of a disjoint collection Q of B-paths and a B-separating split Z such that |Q| =
capy (Z), where W = |JB = U U {v}. We may, of course, choose Q so that

the set of edges used by Q but not by P is minimal. (3.3)

Since Ow Z D Oy Z for each Z in Z, we must have capy,(Z) > capy(Z). On the other
hand, the split Z is A-separating, since every A-path includes an B-path; therefore
capy (Z2) > k. The proof is finished if every element of Q is an A-path. The proof is
also finished if |Q| > k, since at most one of the elements of Q is not an A-path.

3. Suppose now that |Q| = k and some member of Q is not an .A-path. Of course
v is one of the endvertices of this path, which we call ),. Since v is not an endvertex
of an element of P and |P| > k = |Q|, there exists a path P in P one of whose
endvertices, say b, is not on any path in @. Of course P is an A-path unless P = P,.
If P intersects no path in @ (whence, in particular, P # P,) then (Q\ {Q.}) U {P}
is a collection of the desired kind and the proof terminates.

4. Now suppose some vertex = of P belongs to some path in Q. Choose z as
close as possible to b and let ) be the path in Q that uses z. Let ¢1 and g2 be the
endvertices of Q). Let B be the member of B that contains b. We prove first that

P="r,. (3.4)

The proof is by contradiction. Suppose, for a while, that P # P,, whence P has no
internal vertices in W. Let p be the endvertex of P distinct from b. Adjust notation
so that g1 ¢ B. Then the endvertices of the path @' := ¢:QzPb are in two different
members of B. Moreover, Q' is disjoint from every member of Q \ {Q}, due to our
choice of z. Since the collection (Q \ {Q}) U {Q'} must be consistent with (3.3), it
must be the case that (i) @' has an internal vertex in W or (%) every edge of Qg
is used by P. The first alternative is only possible if £ = g9 and therefore z = p.
The second is only possible if every edge of £Qg- is in Pp, whence ¢ is in zPp, and
therefore go = p. So, in any case,

Q9 =p-

But then ¢ ¢ B and so the same argument we have just used to prove that go = p,
with the réles of ¢q; and ¢y interchanged, will show that ¢1 = p. So, our assumption
that P # P, implies q; = g9, which is impossible. This contradiction proves our
claim (3.4). We prove next that

Q=Qy. (35)
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Since P = P,, we have B = AU {v} and z is a vertex of vP,b. Adjust notation so
that g1 ¢ B. Then the endvertices of Q' := ¢1QzP,b are in two different members of
B. Moreover, @' is disjoint from every member of Q \ {Q}, due to our choice of z.
Since the collection (Q \ {@Q}) U {@'} must be consistent with (3.3), it must be the
case that (7) Q' has an internal vertex in W or (i) every edge of zQgs is used by P.
The first alternative is only possible if £ = g» and therefore x = v, since vFP,b has no
internal vertices in W. The second is only possible if every edge of Qg is in zP,v,
whence ¢ is in xP,v, and therefore g9 = v. So, in any case,

g2 ="v.

Hence, @Q = Q,, proving the claim (3.5). Now consider the A-path

P :=bP,zQ.q -

It is disjoint from every member of Q \ {Q}. Since every member of Q \ {Q} is also

an A-path, the collection (Q \ {Q}) U{P'} has k members. O
Exercises
1. Let G be a K% with vertices vy,...,v6. Let A, A’, A" be the pairs {v1,v2},

{vs,v4}, and {vs,ve} respectively. Let M be the matching {vivo,v3v4,v506}.
Find the terms of Theorem 3.4.2 for the graph G — M and the terminal sets
A AAT

Show that Theorem 3.4.1 in Diestel (page 56) and Theorem 3.4.2 are equivalent.
Describe an algorithm for deciding whether a split ) is A-separating.

Replace “A-separating” by “strong” in the statement of Lemma 3.4.1. The claim
remains valid?

Start the proof of Theorem 3.4.2 by defining k£ as the width of a minimum-width
strong split (the width of a split ) is the number | X| + >y ¢y |5|Y NU||, where
X =UYand U =JA). Where and why does the proof break down?

Suppose every member of A is a singleton and )Y is a minimum-capacity .A-
separating split. Can you extract from ) a minimum-width strong split (as in
Theorem 2.4.2)7

Suppose A = {4, B} and Y is an A-separating split that minimizes cap 4,5(Y).
Can you extract from ) a set of minimum cardinality that separates A from B
in the manner of Menger’s theorem?

Let’s say that an A-separator is a pair X, F where X is a set of vertices, F'
is a set of edges, and every A-path has a vertex in X or an edge in F'. Show



10.

11.

that Theorem 3.4.2 could have been stated as follows: There exists a disjoint
collection P of A-path and an A-separator X, F' such that

oCNA
Pl = 1x1+ 3 [ 24
(&

where the sum is taken over all components C of (G — X)[F] and 9C is the set
of vertices in C that belong to |J.A or have a neighbour in (G — X) — C.

Generalize Theorem 3.4.2 to remove the requirement that .4 be disjoint.

[Disconnecting sets of vertices| A disconnecting set is a set of vertices that meets
every A-path. Show that there exists a disconnecting set with no more than 2k
vertices, where k is the maximum number of disjoint .A-paths. Give an example
in which no set with fewer than 2k vertices is disconnecting.

[Edge-disjoint version of Mader’s theorem| For a subset A of V(G), an A-path is
any path whose ends are two distinct vertices in A. We wish to find a maximum
collection of edge-disjoint A-paths.

An edge-split is an assignment of colors to the edges of the graph in which
each edge receives at most one color. An edge-split is separating if every A-path
has a colorless edge or two consecutive edges of the same color. The capacity of an
edge-split is the number | X|+3,(|0Z;|/2], where X is the set of colorless edges
and 0Z; is the set of edges of color ¢ that are incident to a vertex in A or have
a vertex in common with an edge of a different color. Show that the cardinality
of a maximum collection of edge-disjoint A-paths is equal to the capacity of a
minimum-capacity separating split.

(Challenge: Find a simpler definition of separating split for which the mini-
max holds.)

A disconnecting set is a set of edges that meets every A-path. Show that
there exists a disconnecting set with at most 2k edges, where k is the size of a
maximum collection of edge-disjoint A-paths.



