Tarefa 06

Exercício A O que acontece se trocarmos a linha 5 do código do algoritmo MINCC-CHVÁTAL por $S' \leftarrow S$?

Exercício B No problema MINCC, considere as instâncias (E, S, c) em que $E = \bigcup S$. Mostre que é possível implementar o algoritmo MINCC-CHVÁTAL de modo que ele consuma O(|E||S|) unidades de tempo.

Exercício C [Aprox 2.5, p.19] Descreva instâncias do problema MINCC que tenham custos unitários e sejam justas para o algoritmo MINCC-CHVÁTAL. Em outras palavras, descreva instâncias (E, S, 1) para as quais o algoritmo MINCC-CHVÁTAL produz uma cobertura de valor arbitrariamente próximo de $H_{|E|}$ · opt(E, S, c).

Exercício D (Veja exercício Aprox 4.4.) Esboce um algoritmo eficiente para a restrição do problema MINCC às instâncias (E, S, 1) em que $|S| \leq 2$.

Exercício opcional 1 Os dois algoritmos abaixo fazem a mesma coisa. Qual a diferença entre os consumos de tempo dos dois? Os algoritmos são polinomiais?

```
Algoritmo SOMA1 (n)

1  s \leftarrow 0

2  para i de 1 até n faça s \leftarrow s + i

3  devolva s

Algoritmo SOMA2 (n)

1  devolva n \cdot (n+1)/2
```

Exercício opcional 2 Uma coleção de conjuntos é **disjunta** se seus elementos são disjuntos dois a dois. No problema $\operatorname{MinCC}(E, \mathbb{S}, 1)$, suponha que \mathcal{D} é uma subcoleção disjunta \mathbb{S} . É verdade que $\operatorname{opt}(E, \mathbb{S}, 1) \geq |\mathcal{D}|$? E se $|S| \leq 2$ para todo S em \mathbb{S} ?

Exercício opcional 3 Considere o problema MINCC(E, S, 1). Uma parte F de E é **independente** se $|S \cap F| \leq 1$ para todo S em S. Mostre que opt $(E, S, 1) \geq |F|$ para qualquer subconjunto independente F de E.

Exercício opcional 4 Mostre que MINCC-CHVÁTAL(E, S, c) é uma H_d -aproximação, sendo d o máximo de |S| para S em S.