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Abstract

In every digraph, the size of a minimum directed cut is equal to the maximum number
of pairwise disjoint dijoins. This is Woodall’s conjecture [Sch03]. Discussion of the con-
jecture stalled for two decades until Cornuéjols and Guenin [CGM00] took up the subject
to study an abstract generalization of the conjecture.

This talk presents Woodall’s conjecture, its capacitated version, Schrijver’s counterex-
ample, Cornuéjols and Guenin’s counterexamples, and some results of Williams [Wil04].

1 Introduction

A digraph is a pair (V,A) where V is a finite set and A is a set of ordered pairs of elements
of V . The elements of V are called vertices and those of A are called arcs. For each arc vw ,
the vertex v is the positive endpoint and w is the negative endpoint of the arc. The sets of
vertices and arcs of a digraph D are denoted by V (D) and A(D) respectively. The transpose,
or directional dual, of a digraph D is the digraph obtained by replacing each arc vw by the
pair wv .

Cuts. An arc vw exits a subset X of V (D) if v ∈ X and w /∈ X . An arc vw enters X if
v /∈ X and w ∈ X . A source is any subset S of V (D) such that no arc enters S . The sources
∅ and V (D) are trivial. A sink is a source in the transpose of D . A source vertex is any
vertex s such that {s} is a source and a sink vertex is a source vertex in the transpose of D .

For any set X of vertices, we denote by ∂X the set of arcs that have one endpoint in X and
the other outside X . A directed cut, or simply cut, is any set of the form ∂S where S is
either nontrivial source or a nontrivial sink. We say that S is a positive margin of the cut
and V (D)∖ S is a negative margin. We also say that ∂S is the cut associated to S . A cut is
minimal if none of its proper subsets is a cut.

A digraph is connected if ∅ is not a cut. In a connected digraph, every cut has a unique
positive margin and a unique negative margin.
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Joins. A dijoin, or simply join, is any set of arcs that intersects every cut, i.e., any subset J
of A(D) such that J ∩ C ̸= ∅ for each cut C . A join is minimal if none of its proper subsets
is a join.

A digraph has a join if and only if ∅ is not a cut. On the other hand, ∅ is a join if and only if
the digraph has no cut.

The following characterization is useful: a set J of arcs is a join if and only if for every pair
(s, t) of vertices there is a path from s to t whose forward-directed arcs1 belong to J . This
characterization can also be formulated as follows: a set J of arcs is a join if and only if the
contraction of all the arcs of J makes the digraph strongly connected.2
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Figure 1: In the digraph on the left, the set of arcs {a, b, d, f, g} is a cut. In the digraph
on the right, the set of arcs {b, f} is a join. (This example has parallel arcs, which is not
in accordance with our definition of a digraph. To conform to the definition, we could
“subdivide” the parallel arcs; but this would make the example too heavy.)

Cuts versus packings of joins. A set P of joins is disjoint if the elements of P are pairwise
disjoint. In other words, P is disjoint if each arc of the digraph belongs to at most one
element of P . A packing of joins is the same as a disjoint set of joins. There is no harm in
assuming that the joins that make up a packing are minimal.
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Figure 2: The colored line indicates a cut of size 3 . The labels 1 , 2 and 3 indicate a packing
of three joins.

There is an obvious relationship between the size of a cut and the size of a packing of joins:

Lemma 1.1 For any packing P of joins and any cut C the inequality |P| ≤ |C| holds.

1 An arc vw of a path is forward-directed if the path traverses the arc from v to w and backward-directed
if the path traverses the arc from w to v .

2 A digraph is strongly connected if for each ordered pair (s, t) of its vertices there is a path from s to t
without backward-directed arcs.
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The following conjecture of Woodall [Woo78a, Woo78b, Sch03] remains open:

Conjecture 1 (Woodall) Every digraph with a cut has a packing P of joins and a cut C
such that |P| = |C| .

This conjecture is dual to the theorem of Lucchesi–Younger [LY78], according to which every
connected digraph has a packing C of cuts and a join J such that |C| = |J | .

Every arc of a digraph belongs to either a cut or a directed circuit,3 but not both. In particular,
C ∩ A(Z) = ∅ for every cut C and every directed circuit Z , where A(Z) is the set of arcs
of Z . It follows from this observation that we can restrict the study of Conjecture 1 to DAGs,
that is, to digraphs that have no directed circuits.

2 Minimum cut and maximum packing of joins

A cut C is minimum if there is no cut C ′ such that |C ′| < |C| . A packing P of joins is
maximum if there is no packing P ′ of joins such that |P ′| > |P| . Woodall’s conjecture leads
us to consider the following pair of optimization problems:

Problem 1 Find a minimum cut of a digraph.

Problem 2 Find a maximum packing of joins of a digraph.

There is a polynomial algorithm for Problem 1 (it is a variant of the Max-flow Min-cut algo-
rithm). No polynomial algorithm is known for Problem 2, but there is no evidence that the
problem is NP-hard.

It is convenient to adopt a notation for the size of the objects that the two problems deal
with. Given a digraph D , we denote by

ν(D)

the size of a maximum packing of joins of D and we denote by

τ(D)

the size of a minimum cut of D . If D has no cut then τ(D) = ∞ and ν(D) = ∞ (since an
unbounded number of copies of ∅ is a packing of joins). If D has a cut then τ(D) and ν(D)
are finite. If D is disconnected then τ(D) = 0 (since ∅ is a cut) and ν(D) = 0 (since there
are no joins). If D consists of a path with at least one arc then τ(D) = 1 and ν(D) = 1 (since
A(D) is a join).

It follows immediately from Lemma 1.1 that ν(D) ≤ τ(D) for every digraph D . Conjecture 1
can then be formulated as follows:

Conjecture 2 (Woodall) Every digraph D satisfies the equality ν(D) = τ(D) .

We say that a digraph D satisfies Woodall’s conjecture if ν(D) = τ(D) . It τ(D) ≤ 1 then it
is obvious that D satisfies Woodall’s conjecture. It is less obvious that if τ(D) = 2 then D
satisfies the conjecture [Sch03, p.968]. It is also known [FY87, Sch82] that every DAG with a
single source vertex (or a single sink vertex) satisfies the conjecture.

3 A circuit is directed if it has no backward-directed arcs.
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Figure 3: In this digraph, ν = 4 and τ = 4 . Therefore, the digraph satisfies Woodall’s
conjecture. The colors (and the numerical labels) indicate a packing of 4 joins. The digraph
is a DAG. The source vertices are marked by circles and the sink vertices by squares.

3 Linear programs

Let J the set of all the minimal joins of a digraph D = (V,A) and M be the matriz indexed
by J × A whose rows are the characteristic vectors of the elements of J . Consider the
following dual pair of linear programs:

maximize y1 under the constraints y ∈ RJ
+ and yM ≤ 1 , (1)

minimize 1x under the constraints x ∈ RA
+ and Mx ≥ 1 . (2)

(The “1” represents a vector whose elements are all equal to 1 . The vector is indexed by J
or by A , depending on the context.)

c
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a b c d e f g

1 − − − − 1 −
1 − − − − − 1
− 1 − − − 1 −
− 1 − − − − 1
− − 1 1 1 − −
1 − − − 1 − −
− 1 − − 1 − −
− − 1 − − 1 −
− − 1 − − − 1

a b c d e f g

1 1 1 − − − −
1 1 − 1 − 1 1
− − − − 1 1 1

Figure 4: The rows of the first matrix are the characteristic vectors of the minimal joins of
the digraph. The digraph is a DAG and has only one source and only one sink. The rows of
the second matrix are the characteristic vectors of the minimal cuts.

If we replace “y ∈ RJ
+ ” with “y ∈ {0, 1}J ” in the linear program (1) we will have an integer

program that represents Problem 2. Every vector y in this program will represent a packing
of joins and y1 will be the size of the packing. The optimum value of the integer program
will be ν(D) .

If we replace “x ∈ RA
+” with “x ∈ {0, 1}A” in the linear program (2) we will have an integer

program that represents Problem 1. Every x in this program will be the characteristic vector
of a cut (since a cut is the same as a set of arcs that intersects all the joins) and 1x will be the
size of the cut. The optimum value of the integer program will be τ(D) .
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As already noted, Woodall’s conjecture is dual to the Lucchesi–Younger theorem [LY78]. It
follows from that theorem (although this is not obvious) that all vertices of the polyhedron
{x : x ∈ RA

+ and Mx ≥ 1} are integer and therefore every solution of the linear program (2)
belongs to {0, 1}A . It follows that τ(D) = ν∗(D) , where ν∗(D) is the optimum value of the
linear program (1).

4 Max-flow analogy

To some extent, Woodall’s conjecture is similar to the Max-flow Min-cut theorem [Sch03,
chap.10]. This theorem applies to any digraph and any pair (s, t) of its vertices and guar-
antees that the size of a max-flow from s to t is equal to the size of a minimum half-cut
among those separating s from t . Here, a flow is a set of directed paths4 from s to t with no
common arcs; and a half-cut is the set of arcs that exit some set X of vertices that contains s
but does not contain t .

t
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2

Figure 5: A maximum flow (labels 1 and 2) and a minimum semicut (colored line).

The similarity between Woodall’s conjecture and the Max-flow Min-cut theorem is only par-
cial. In the theorem, there are two fixed vertices and the paths are directed. In the conjecture,
there are no fixed vertices, the paths (which represent joins) are not necessarily directed, and
only the forward-directed arcs of the paths are taken into account.

The Max-flow Min-cut theorem admits a generalization in which each arc a has a capacity
(or upper-bound) ua in the set N := {0, 1, 2, 3, . . .}of natural numbers. An arc a cannot be
used more than ua times by the flow and contributes ua to the size of each half-cut that
contains it. It is difficult to imagine that the Max-flow Min-cut theorem could hold without
its capacitated generalization also holding.

The similarity between the Max-flow Min-cut theorem and Woodall’s conjecture suggests
studying the capacitated generalization of the conjecture.

5 Capacitated generalization of Woodall’s conjecture

A capacitated digraph is a pair (D, u) where D is a digraph and u is a vector indexed by
A(D) with values in N ∪ {∞} . This vector assigns a capacity ua to each arc a of D . The arc
a is null if ua = 0 and infinite if ua = ∞ . Assigning capacity ∞ to an arc has the same effect
as contracting the arc and is a convenient way to avoid contraction itself.

4 A path is directed if it has no backward-directed arcs.
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The presence of infinite arcs calls for a redefinition of the terms “source” and “cut”. Thus, a
source of a capacitated digraph (D, u) is a source S of D such that ∂S contains no infinite
arcs, and a cut of (D, u) is a cut of D without infinite arcs. In other words, a cut of (D, u) is
a set ∂S such that S is a nontrivial source of (D, u) .

The capacity of a cut C of (D, u) is the number u(C) :=
∑

a∈C ua . A cut C is minimum if
there exists no cut C ′ of (D, u) such that u(C ′) < u(C) .

It is also convenient to redefine the term “join”. Thus, a join of (D, u) is a set of arcs that
intersects all the cuts of (D, u) and does not contain infinite arcs. Of course any join of D
without infinite arcs is also a join of (D, u) .

The concepts of directed path and directed circuit also need to be redefined. We will say that
a path and a circuit are directed in (D, u) if all their backward-directed arcs are infinite. (In
other words, infinite arcs can be traversed in either direction.) Under this redefinition, every
non-infinite arc of (D, u) belongs to either a cut of (D, u) or a directed circuit in (D, u) , but
not both.

In the context of capacitated digraphs, it is natural to use collections of joins in place of the
sets of joins of Section 1. A collection is a “set” that can have multiple copies of the same
element, each copy contributing 1 to the size of the collection. A collection P of joins of
(D, u) is disjoint in (D, u) if

|P(a)| ≤ ua

for each arc a , where P(a) := {J ∈ P : J ∋ a} is the collection of the joins that contain a . In
other words, P is disjoint if each arc a belongs to at most ua elements of P . If a is null then
no element of P contains a .

A packing of joins in (D, u) is a disjoint collection of joins of (D, u) . The following relation
between packings and cuts generalizes Lemma 1.1:

Lemma 5.1 In any capacitated digraph (D, u) , for any packing P of joins and any cut C ,

|P| ≤ u(C).

Furthermore, if |P| = u(C) then |J ∩ C| = 1 for each J in P and |P(a)| = ua for each a
in C .

PROOF: Let P be a packing of joins and C a cut of (D, u) . For each element J of P there
exists an arc a of C such that P(a) ∋ J . Therefore,

|P| ≤
∑

a∈C |P(a)| ≤
∑

a∈C ua = u(C).

Suppose now that |P| = u(C) . Then the first “≤” holds as “=” and therefore |J ∩ C| = 1
for each J in P . The second “≤” also holds as “=”, whence |P(a)| = ua for each a in C .

The definitions of parameters τ and ν needs to be adjusted to take into account the capacities
of the arcs. Thus, we denote by

ν(D, u) and τ(D, u)

the size of a maximum packing of joins of (D, u) and the capacity of a minimum cut of
(D, u) respectively. Lemma 5.1 has the following immediate consequence: every capacitated
digraph (D, u) satisfies the inequality

ν(D, u) ≤ τ(D, u). (3)
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The corresponding generalization of Woodall’s conjecture (Conjecture 2) is known as the
Edmonds–Giles conjecture [EG77]:

Conjecture 3 (Edmonds–Giles) Every capacitated digraph (D, u) satisfies the equality
ν(D, u) = τ(D, u) .

If τ(D, u) = 0 then ν(D, u) = 0 and hence ν(D, u) = τ(D, u) . If τ(D, u) = 1 then ν(D, u) =
τ(D, u) since {a ∈ A(D) : 0 < ua < ∞} is a join. Therefore, the conjecture is correct when
restricted to capacitated digraphs in which τ(D, u) ≤ 1 .

Null arcs. The capacitated generalization of the Max-flow Min-cut theorem (see Section 4)
can be reduced to the original, non-capacitated, version. The reduction consists of removing
the arcs of capacity 0 and replacing each arc of capacity k ≥ 2 with k arcs in parallel. At
first glance, the same construction could reduce the Edmonds–Giles conjecture to Woodall’s
conjecture. Indeed, an arc a of capacity k ≥ 2 can be simulated by k copies of a in par-
allel, but removing an arc of capacity 0 may create new cuts,5 thus changing the instance
of the problem. Therefore, the Edmonds–Giles conjecture is not a special case of Woodall’s
conjecture.

6 Counterexamples

The Edmonds–Giles conjecture is false. The following sections will present several coun-
terexamples. A counterexample is any capacitated digraph (D, u) such that ν(D, u) <
τ(D, u) . All known counterexamples have null arcs and therefore do not affect Woodall’s
conjecture.

We say that a digraph D is good if there is no u such that (D, u) is a counterexample. Con-
jecture 3 could be formulated by saying “every digraph is good”. It is known, for example,
that

1. every DAG with a single source vertex is good;
2. every source-sink connected6 DAG is good.

The proof of 1 is analogous to that of the Max-flow Min-cut theorem mentioned in Section 4.
This proof contains a polynomial algorithm that calculates τ(D, u) . The proof of 2 was
obtained by Schrijver [Sch82] and, independently, by F. and Younger [FY87].

7 Schrijver’s counterexample

Schrijver [Sch80] found the first counterexample to Conjecture 3. The counterexample is
represented in Figure 6 and will be denoted by (D1, u1) .

Fact 7.1 ν(D1, u1) = 1 and τ(D1, u1) = 2 .

5 The removal of an arc does not create new cuts if and only if the arc is transitive. An arc vw is transitive
in (D,u) if there is a directed path from v to w in (D − vw, u′) , where u′ is the restriction of u to the set of
arcs of D − vw .

6 A DAG is source-sink connected if each source vertex is connected to each sink vertex by a directed path.
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Figure 6: Schrijver’s counterexample (D1, u1) . The capacity vector u1 has values in {0, 1} .
The null arcs are indicated by dashed lines; the others are indicated by solid lines. The
digraph is a DAG; the source vertices are marked by circles and the sink vertices by squares.

PROOF: The vector u1 is binary, that is, its components are in {0, 1} . It is easy to verify that
τ(D1, u1) = 2 and that one of the two margins of each minimum cut of (D1, u1) has a single
vertex. Let B1 be the set of active arcs, that is, arcs whose capacity is 1 . The subdigraph
induced by B1 consists of three paths, each having length 3 . We say that these are the active
paths of the digraph. We also say that a cut is critical if it intersects each active path only
once. As seen in Figure 7, there are four critical cuts.

Suppose for a moment that ν(D1, u1) ≥ 2 . Then B1 includes two mutually disjoint joins, say
J and K . The arcs of each active path lie alternately in J and K , since each internal vertex
of each active path is a margin of a cut with exactly 2 active arcs. In other words, each active
path exhibits either the pattern (J,K, J) or the pattern (K, J,K) . In the set of three active
paths, these two patterns can be combined in only 4 different ways, as shown in Figure 7.
However, for each of the 4 combinations, either J or K does not intersect one of the critical
cuts. Thus, J ou K is not a join, contrary to what we had supposed. This contradiction
shows that ν(D1, u1) < 2 . Since B1 is a join, we have ν(D1, u1) = 1 .

a b c d e f g h i

J K J J K J J K J
J K J J K J K J K
J K J K J K J K J
J K J K J K K J K

h
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b

c

d

e f

g

Figure 7: Each row of the table shows a possible arrangement of two potential mutually
disjoint joins, J and K , in the capacitated digraph (D1, u1) in Figure 6. In each row of
the table, one of J and K does not intersect one of the four critical cuts indicated in the
drawing. In the first row, for example, J does not intersect the critical cut indicated by the
pink circle.

The Schrijver capacitated digraph has the form of a ring of length 2i , with i = 3 . The
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analogous capacitated digraphs with i = 5, 7, 9, . . . (see Figure 8) are also counterexamples.
The analogous capacitated digraphs with i = 2, 4, 6, 8, . . . are not counterexamples.

Figure 8: The counterexample (D′
1, u

′
1) in the figure is the generalization of (D1, u1) in

Figure 6 based on a ring of length 2× 5 .

7.1 Fractional packing of joins

The following digression is interesting but has no direct bearing on the Edmonds–Giles con-
jecture. The capacitated digraph (D1, u1) in Figure 6 does not have a packing of size 2 , but
it does have a “fractional packing” of size 2 , as we will show.

Let’s say that the joins {a, c, d, f, h} , {d, f, g, i, b} , {g, i, a, c, e} and {b, h, e} are special. As-
sign weight 1

2
to each special join and weight 0 to all other join of D1 . Every arc of capacity 1

in (D1, u1) belongs to exactly two of the special joins, and every arc of capacity 0 belongs to
none of the special joins. Thus, the sum of the weights of all joins that contain a given arc
a is no more than the capacity of a . Therefore, we can say that the weighted collection of
special joins is “disjoint” in (D1, u1) . The size of this weighted collection is the sum of the
weights of all joins, i.e., 1

2
+ 1

2
+ 1

2
+ 1

2
= 2 . Thus, (D1, u1) has a “fractional packing” of size 2 .

This example illustrates a general phenomenon. For any capacitated digraph (D, u) , con-
sider the linear programs

maximize y1 under the constraints y ∈ RJ
+ and yM ≤ u (4)

minimize ux under the constraints x ∈ RA
+ and Mx ≥ 1 (5)

which generalize programs (2) and (1) of Section 3. It can be shown that ν∗(D, u) = τ(D, u) ,
where ν∗(D, u) is the optimum value of program (4) and τ(D, u) is the optimum value of
program (5).

8 Cornuéjols and Guenin’s counterexamples

For two decades, (D1, u1) was the only known counterexample to Conjecture 3. In 2002,
Cornuéjols and his student Guenin [CG02] found two new counterexamples, which we will
denote by (D2, u2) and (D3, u3) . These counterexamples are represented in figures 9 and 10
respectively.
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Figure 9: Two drawings of the counterexample (D2, u2) of Cornuéjols and Guenin. The
capacity vector u2 has values in {0, 1} . The null arcs are indicated by dashed lines; the
others by solid lines. The digraph is a DAG; the source vertices are marked by circles and
the sink vertices by squares.

Figure 10: The counterexample (D3, u3) of Cornuéjols and Guenin. The capacity vector u3
has values in {0, 1} . The null arcs are indicated by dashed lines; the others by solid lines.
The digraph is a DAG.

Fact 8.1 ν(D2, u2) = 1 and τ(D2, u2) = 2 .

Fact 8.2 ν(D3, u3) = 1 and τ(D3, u3) = 2 .

The proofs of Facts 8.1 and 8.2 are similar to the proof of Fact 7.1. Figure 11 shows the critical
cuts used in the proofs. (These are the cuts that intersect each active path only once.)

9 Minimal counterexamples

When looking for counterexamples to the Edmonds–Giles conjecture, we can limit ourselves
to the counterexamples that, in some sense, do not “include” other counterexamples. We say
that such counterexamples are minimal.

We begin by introducing an order relation between capacity vectors. Given two capacity
vectors u and u′ for a digraph, we say that u′ < u if u′

a ≤ ua for every arc a and u′
a < ua
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Figure 11: The first drawing represents the four critical cuts of (D2, u2) . The second draw-
ing marks the vertices on the positive margin of one of the critical cuts of (D3, u3) ; the other
three critical cuts are defined by symmetry.

for some arc a . Clearly the relation is transitive (i.e., if u′′ < u′ and u′ < u then u′′ < u) and
antisymmetric (i.e., if u′ < u then u ̸< u′ ).

We also need some auxiliary notation: for any capacitated digraph (D, u) , we will denote
by I(D, u) and N(D, u) the set of infinite arcs and the set of null arcs of the digraph.

We can now define an inclusion relation. We say that a capacitated digraph (D, u) includes
a capacitated digraph (D′, u′) if either

i. V ′ ⊆ V and A′ ⊂ A or
ii. V ′ = V and A′ = A and I ′ ⊃ I or

iii. V ′ = V and A′ = A and I ′ = I and N ′ ⊃ N or
iv. V ′ = V and A′ = A and I ′ = I and N ′ = N and u′ < u ,

where V ′ , A′ , I ′ and N ′ are abbreviations for V (D′) , A(D′) , I(D′, u′) and N(D′, u′) respec-
tively and the abbreviations V , A , I and N are defined similarly for (D, u) . This inclusion
relation is transitive and antisymmetric. Here are some examples to illustrate the concept:

1. Williams [Wil04] noted that the counterexample (D2, u2) of Cornuéjols–Guenin in-
cludes another counterexample. Let v and w be the vertices 14 and 8 of Figure 9
and let D′

2 be the digraph D2 − vw . Let u′
2 the restriction of u2 to the set A(D′

2) .
Then (D′

2, u
′
2) is included in (D2, u2) . Moreover, (D′

2, u
′
2) is a counterexample, since

ν(D′
2, u

′
2) = ν(D2, u2) < τ(D2, u2) = τ(D′

2, u
′
2) .

2. The counterexample (D′
1, u

′
1) in Figure 8 includes the capacitated digraph (D′′

1 , u
′′
1) in

Figure 12. The latter is a counterexample because it is “equivalente” to the counterex-
ample (D1, u1) in Figure 6.

3. Schrijver’s counterexample (D1, u1) (see Figure 6) includes no other conterexample,
although this is not obvious.

We say that a counterexample (D, u) is minimal if it does not include another counterexam-
ple.

If A(D) = ∅ or A(D) = I(D, u) ∪ N(D, u) then (D, u) is not a counterexample. It follows
from this observation and from the transitivity and antisymmetry of the inclusion relation
that every counterexample includes a minimal counterexample.
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Figure 12: Capacitated digraph (D′′
1 , u

′′
1) . (Compare with (D′

1, u
′
1) in Figure 8.)

The gray bands indicate the infinite arcs. The orientation of these arcs has been
omitted because they can be traversed in any direction.

Every minimal counterexample is, of course, connected. We will examine next some
other properties of minimal counterexamples. The counterexamples (D1, u1) , (D2, u2) , and
(D3, u3) in figures 6, 9, and 10 have these properties, although the latter two are not minimal.

9.1 There are no null transitive arcs

An arc vw is transitive in (D, u) if there exists a directed path from v to w in (D − vw, u′) ,
where u′ is the restriction of u to the set of arcs of D − vw . (According to our definitions,
the path may have backward-directed infinite arcs.)

Proposition 9.1 Minimal counterexamples do not have null transitive arcs.

PROOF: We will show that the removal of a null transitive arc does not create new cuts and
does not change the values of the parameters ν and τ .

Let (D, u) be a capacitated digraph and b be a null transitive arc. Let D′ the digraph D − b
and u′ be the restriction of u to the set of arcs of D − b . Let v be the positive endpoint and
w the negative endpoint of b . Let B the set of arcs of a directed path from v to w in (D′, u′) .

Note that a cut of D intersects B if and only it if contains b . Furthermore, every cut of
D contains at most one arc of B . It follows that D and D′ have the same set of sources
and therefore also (D, u) and (D′, u′) have the same set of sources. Furthermore, for each
source F , we have u′(C ′) = u(C) , where C ′ and C are the cuts associated to F in D′ and D
respectively. Therefore,

τ(D′, u′) = τ(D, u). (6)

Let P be a packing of joins of (D, u) and P ′ be a packing of joins of (D′, u′) . Since (D, u) and
(D′, u′) have the same set of sources, every join of (D′, u′) is also a join of (D, u) . Therefore,
P ′ is a packing in (D, u) . Conversely, every join of (D, u) that does not contain b is a join
of (D′, u′) . Since ub = 0 , none of the joins in P contains b , and therefore P is a packing in
(D′, u′) . It follows that

ν(D′, u′) = ν(D, u). (7)
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By virtue of (6) and (7), if (D, u) is a counterexample then (D′, u′) is also a counterexample.
Since V (D′) = V (D) and A(D′) ⊂ A(D) , the counterexample (D, u) is not minimal.

The counterexample (D′′
1 , u

′′
1) in Figure 12 has several null transitive arcs and therefore is not

minimal.

9.2 The capacity vector is critical

An arc is active in a capacitated digraph (D, u) if it is neither null nor infinite. The capacity
vector u is critical if every active arc belongs to a minimum cut.

Proposition 9.2 In every minimal counterexample, the capacity vector is critical.

PROOF: Let (D, u) be a counterexample and suppose that u is not critical. Then some active
arc a does not belong to a minimum cut. Let u′ be the capacity vector defined by

u′
a := ua − 1 and u′

e := ue for each e ̸= a .

Clearly I(D, u′) = I(D, u) and therefore (D, u′) and (D, u) have the same set of cuts. It is
also clear that u′(C) = u(C)− 1 for every cut C that contains a and u′(C) = u(C) for all the
remaining cuts. Since minimum cuts of (D, u) do not contain a , we have

τ(D, u′) = τ(D, u).

Now consider the joins. Let P ′ be a maximum packing of joins of (D, u′) . Since P ′ is also a
packing in (D, u) , we have

ν(D, u′) = |P ′| ≤ ν(D, u).

But ν(D, u) < τ(D, u) , whence ν(D, u′) < τ(D, u′) , and therefore (D, u′) is a counterexam-
ple. As N(D′, u′) ⊇ N(D, u) and u′ < u , the counterexample (D, u) is not minimal.

9.3 All directed circuits are infinite

Assigning ∞ to the the arcs of a directed circuit does not change the set of cuts of the di-
graph.

Proposition 9.3 In a minimal counterexample, the arcs of every directed circuit are infi-
nite.

PROOF: Let (D, u) be a capacitated digraph and O be a directed circuit in (D, u) . (Accord-
ing to our definitions, O may have backward-directed infinite arcs.) Suppose that ua < ∞
for some forward-directed arc a of O . Define a new capacity vector u′ as follows:

u′
a := ∞ and u′

e := ue for each e ̸= a .

Since O is directed in (D, u) , no cut of (D, u) contains arcs of O . Therefore, the set of cuts
of (D, u′) is identical to the set of cuts of (D, u) . Thus,

τ(D, u′) = τ(D, u).
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No minimal join of (D, u) contains a since no cut of (D, u) contains a . Thus, (D, u′) and
(D, u) have the same minimal joins. Therefore, every packing of minimal joins of (D, u) is
also a packing in (D, u′) , and vice versa. It follows that

ν(D, u′) = ν(D, u).

Now suppose that (D, u) is a counterexample. Then ν(D, u) < τ(D, u) and therefore
ν(D, u′) < τ(D, u′) , that is, (D, u′) is a counterexample. Since I(D, u′) ⊃ I(D, u) , and there-
fore the counterexample (D, u) is not minimal.

It follows from this proposition that every minimal counterexample is essentially a DAG.

9.4 All minimum cuts are peripheral

A cut C is peripheral in (D, u) if, for one of the two margins of C , every arc that has both
endpoints on that margin is infinite. For example, C is peripheral if either the positive
margin or the negative margin of C has a single vertex.

Proposition 9.4 In a minimal counterexample, every minimum cut is peripheral.

PROOF: We will show that any capacitated digraph can be divided, along a minimum non-
peripheral cut, into two “independent” capacitated digraphs.

Let C be a minimum cut of a capacitated digraph (D, u) . Let u′ be the capacity vector
defined as follows:

u′
a :=

∞ if a has both the endpoints on the negative margin of C,
ua otherwise.

(Informally, u′ describes the contraction of the negative margin of C to a vertex.) Let u′′ be
the capacity vector defined as follows:

u′′
a :=

∞ if a has both endpoints on the positive margin of C,
ua otherwise.

According to Lemma 9.1 below, if (D, u) is a counterexample then either (D, u′) or (D, u′′)
is a counterexample. Moreover, if C is not peripheral then I(D, u′) ⊃ I(D, u) (since some
non-infinite arc has both endpoints on the negative margin of C ) and, similarly, I(D, u′′) ⊃
I(D, u) . Therefore, if the counterexample (D, u) is minimal, the cut C must be peripheral.

To conclude the proof of the proposition, we must establish the following lemma:

Lemma 9.1 Let C be a minimum cut of a capacitated digraph (D, u) and let u′ and u′′

be the capacity vectors defined at the beginning of the proof of Proposition 9.4. If (D, u′)
and (D, u′′) are not counterexamples then (D, u) is also not a counterexample.

PROOF: On the one hand, C is a cut of (D, u′) (since C does not contain infinite arcs) and
u′(C) = u(C) , whence τ(D, u′) ≤ u′(C) = u(C) = τ(D, u) . On the other hand, τ(D, u′) ≥
τ(D, u) since the set of cuts of (D, u′) is part of the set of cuts of (D, u) and the capacity of
a cut of (D, u′) is equal to the capacity of that cut in (D, u) . Hence τ(D, u′) = τ(D, u) and
therefore C is a minimum cut of (D, u′) . An analogous reasoning shows that τ(D, u′′) =
τ(D, u) and C is a minimum cut of (D, u′′) .
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1. Suppose that (D, u′) is not a counterexample, i.e., that ν(D, u′) = τ(D, u′) . Let P ′ be a
maximum packing of joins of (D, u′) . Of course |P ′| = ν(D, u′) = τ(D, u′) . Since τ(D, u′) =
u′(C) , we have |P ′| = u′(C) . Lemma 5.1 (see Section 5) then guarantees that

|P ′(a)| = ua for each a in C and (8)
|J ′ ∩ C| = 1 for each J ′ in P ′. (9)

Now suppose that (D, u′′) is not a counterexample and let P ′′ be a maximum packing of
joins of (D, u′′) . A reasoning similar to the previous paragraph shows that

|P ′′(a)| = ua for each a in C and (10)
|J ′′ ∩ C| = 1 for each J ′′ in P ′′. (11)

2. By virtue of (8) and (9), for each nonnull arc a of C , there are elements J ′
a,1, . . . , J

′
a,ua

of
P ′ such that

J ′
a,i ∩ C = {a} (12)

for i = 1, . . . , ua . By virtue of (10) and (11), there are elements J ′′
a,1, . . . , J

′′
a,ua

of P ′′ such that
J ′′
a,i ∩ C = {a} for i = 1, . . . , ua . Let

Ja,i := J ′
a,i ∪ J ′′

a,i (13)

for each a em C and each i em {1, . . . , ua} . Given any pair (a, i) , let J ′ , J ′′ and J be
abbreviations for J ′

a,i , J ′′
a,i and Ja,i respectively. Our next task is to show that J is a join of

(D, u) . Since J ′ , J ′′ and J have no infinite arcs, we only need to show that J ∩ B ̸= ∅ for
every cut B of (D, u) .

3. Let B be a cut of (D, u) and X be the positive margin of B . Let Y be the positive margin
of C . If X ∩Y = ∅ or X ⊇ Y then B is a cut of (D, u′′) , whence J ′′∩B ̸= ∅ . If X ∪Y = V or
X ⊆ Y then B is a cut of (D, u′) , whence J ′∩B ̸= ∅ . In both cases we have J ∩B ̸= ∅ . In the
other cases, thanks to (9), (11), (12) and (13), Lemma 9.2 below guarantees that J ∩ B ̸= ∅ .
Hence, J is a join of (D, u) .

4. Let P be the collection of all joins Ja,i such hat a is a nonnull arc of C and i belongs to
{1, . . . , ua} . For every arc e of D , if e has positive endpoint on the positive margin of C then

|P(e)| ≤ ue

since P ′ is a packing in (D, u′) and u′
e = ue . Similarly, if e has negative endpoint on the

negative margin of C then |P(e)| ≤ ue . Therefore, P is a packing in (D, u) .

5. It follows from the previous paragraph that ν(D, u) ≥ |P| . But |P| = |P ′| = |P ′′| =
τ(D, u) , and therefore ν(D, u) ≥ τ(D, u) . Hence, (D, u) is not a counterexample.

To conclude the proof of the lemma, we must establish the following consequence of the
modularity of ∂ :

Lemma 9.2 (modularity) Let Y be a nontrivial source of a digraph D . Let J be a set of
arcs that intersects all cuts ∂X of D for which X is a source such that

X ∪ Y = V or X ∩ Y = ∅ or X ⊇ Y or X ⊆ Y .

If |J ∩ ∂Y | = 1 then J is a join of D .
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PROOF: Let X be a nontrivial source of D such that X ∪ Y ̸= V and X ∩ Y ̸= ∅ . To prove
that J is a join of D , it suffices to show that J ∩ ∂X ̸= ∅ .

It is clear that X ∪ Y and X ∩ Y are nontrivial sources of D . Therefore, ∂(X ∪ Y ) and
∂(X ∩ Y ) are cuts of D . Now observe that the union of ∂(X ∪ Y ) with ∂(X ∩ Y ) is equal to
the union of ∂X with ∂Y and that the intersection of ∂(X ∪ Y ) with ∂(X ∩ Y ) is equal to
the intersection of ∂X with ∂Y . Therefore, the sum |∂(X ∪ Y )| + |∂(X ∩ Y )| is equal to the
sum |∂X|+ |∂Y | . Similarly,

|J ∩ ∂(X ∪ Y )|+ |J ∩ ∂(X ∩ Y )| = |J ∩ ∂X|+ |J ∩ ∂Y | . (14)

Since X ∪ Y ⊇ Y and X ∩ Y ⊆ Y , the assumptions of the lemma guarantee that each term
on the left-hand side of (14) is at least 1 . Since the second term on the right-hand side of (14)
is exactly 1 , the first term on the right-hand side must be at least 1 . Therefore, J ∩ ∂X ̸= ∅ ,
as claimed.

9.5 There are no active circuits

An arc is active in (D, u) if it is neither null nor infinite. Williams [Wil04] showed that in a
minimal counterexample the subdigraph induced by the set of active arcs is a forest:

Proposition 9.5 No minimal counterexample has a circuit of active arcs.

PROOF: Let (D, u) be a counterexample and O be a circuit of D whose arcs are active. We
will show that the counterexample is not minimal.

Let e be a minimum capacity arc in O and k := ue . Adjust the notation so that e is forward-
directed in O . Let u′ be the capacity vector defined as follows:

u′
a :=

ua − k if a is a forward-directed arc of O,
ua + k if a is a backward-directed arc of O,
ua otherwise.

It is clear that u′
e = 0 and therefore N(D, u′) ⊃ N(D, u) . Thus, if (D, u′) is a counterexample

then the counterexample (D, u) is not minimal. We turn now to the case in which (D, u′) is
not a counterexample.

The set of cuts of (D, u′) is identical to the set of cuts of (D, u) . It follows that the sets of joins
of (D, u′) and (D, u) are identical. Thus, we can say “cut” and “join” without adding “of
(D, u)” or “of (D, u′)”. Note that every cut contains the same number of backward-directed
and forward-directed arcs of O . Therefore,

u′(C) = u(C) (15)

for every cut C , and so
τ(D, u′) = τ(D, u). (16)

Let P ′ be a maximum packing of joins of (D, u′) . Since (D, u′) is not a counterexample,
|P ′| = τ(D, u′) . Let J0 be an element of P ′ . Lemma 9.3 below shows that u′(C)− |J0 ∩ C| ≥
|P ′| − 1 for every cut C . Therefore,

u′(C)− |J0 ∩ C| ≥ τ(D, u′)− 1
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for every cut C . By virtue of (15) and (16), everything holds with u in place of u′ , that is,

u(C)− |J0 ∩ C| ≥ τ(D, u)− 1 (17)

for every cut C . It is clear that J0 has no null arcs of (D, u′) and therefore no null arcs of
(D, u) .

Now that we have a join J0 that satisfies (17), we can discard u′ and P ′ . Let u′′ be the vector
defined as follows: for each arc a ,

u′′
a :=

ua − 1 if a ∈ J0 and
ua otherwise. (18)

Since J0 has no null arcs, u′′ is a capacity vector. The sets of cuts of (D, u′′) and of (D, u)
are identical and therefore the sets of joins of (D, u′′) and (D, u) are identical. Thus, we can
say “cut” and “join” without adding “of (D, u)” or “of (D, u′′)”. For every cut C , we have
u′′(C) = u(C)− |J0 ∩ C| , whence u′′(C) ≥ τ(D, u)− 1 by virtue of (17). Therefore,

τ(D, u′′) ≥ τ(D, u)− 1.

Let P ′′ be a maximum packing of joins of (D, u′′) . Suppose for a moment that (D, u′′) is
not a counterexample. Then |P ′′| = ν(D, u′′) = τ(D, u′′) . Consider now the collection P :=
P ′′ ∪ {J0} and observe that

|P| = |P ′′|+ 1 = τ(D, u′′) + 1 ≥ τ(D, u)− 1 + 1 = τ(D, u).

Also observe that P is a packing in (D, u) , since |P(a)| = |P ′′(a)| + 1 ≤ u′′
a + 1 = ua for

each a in J0 and |P(a)| = |P ′′(a)| ≤ u′′
a = ua for each a outside J0 . Therefore, ν(D, u) ≥

|P| ≥ τ(D, u) and so (D, u) is not a counterexample. This contradicts the way (D, u) was
chosen at the beginning of the proof. Therefore, contrary to what we had supposed for a
moment, (D, u′′) is a counterexample. Since I(D′′, u′′) = I(D, u) and N(D′′, u′′) ⊇ N(D, u)
and u′′ < u , the counterexample (D, u) is not minimal.

To conclude the proof of the proposition, we must establish the following lemma:

Lemma 9.3 For any packing P of joins of (D, u) , any element J0 of P , and any cut C ,
the inequality u(C)− |J0 ∩ C| ≥ |P| − 1 holds.

PROOF: Let P be a packing of joins of (D, u) . Then |{J ∈ P : J ∋ a}| ≤ ua for each a in C
and therefore

u(C) =
∑

a∈C ua

≥
∑

a∈C |{J ∈ P : J ∋ a}|
=

∑
J∈P |{a ∈ C : a ∈ J}|

=
∑

J∈P |J ∩ C|
= |J0 ∩ C|+

∑
J∈P∖{J0} |J ∩ C| .

Since |J ∩ C| ≥ 1 for each J , we have u(C) ≥ |J0 ∩ C|+|P ∖ {J0}| . Hence, u(C)−|J0 ∩ C| ≥
|P| − 1 .
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