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Abstract 

Mobile geolocation data is a valuable asset in the assessment of movement patterns of a               
population. Once a highly contagious disease takes place in a location the movement patterns              
aid in predicting the potential spatial spreading of the disease, hence mobile data becomes a               
crucial tool to epidemic models. In this work, based on millions of anonymized mobile visits               
data in Brazil, we investigate the most probable spreading patterns of the COVID-19 within              
states of Brazil. The study is intended to help public administrators in action plans and               
resources allocation, whilst studying how mobile geolocation data may be employed as a             
measure of population mobility during an epidemic. The first part of the study focus on the                
states of São Paulo and Rio de Janeiro during the period of March 2020, when the disease                 
first started to spread in these states. Metapopulation models for the disease spread were              
simulated in order to evaluate the risk of infection of each city within the states, by ranking                 
them according to the time the disease will take to infect each city. We observed that,                
although the high risk regions are those closer to the capital cities, where the outbreak has                
started, there are also cities in the countryside with great risk.  

Keywords: covid19, SARS-CoV2, epidemics, pandemic, mobile geolocation data, population dynamics, metapopulation 
models 

1. Introduction 
 
The COVID-19, caused by the coronavirus (SARS-CoV-2), has spread quickly after its first reported cases in                

Wuhan, China, in December 2019, posing a serious threat to health systems and the world economy [9]. Since March 2020,                    
when the disease was classified by WHO as a pandemic [12], countries around the world have followed protocols                  
implemented months before in Asia, enforcing a variety of interventions, from mild to radical ones, based on social                  
distancing, isolation and quarantine, to slow the disease spread, as recommended by WHO [10]. It is a common sense that the                     
pandemic should be fought in two frontiers: by saving lives while avoiding the collapse of health systems, and by protecting                    
the population from the economic impacts of the pandemic, specially its most vulnerable parcel [12]. For either goal to be                    
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achieved, health officials and government authorities should have reliable information about the disease spreading and its                
economic and social impacts, hence, for instance, the modelling of such spreading is not only a scientific achievement, but                   
also a source of crucial strategic information. Indeed, a way of reducing the damages caused by the pandemic is to model how                      
the disease will spread, in order to properly assign the available resources to locations where they will be needed the most.  

Another strategic information governments need to have is about the efficacy of the interventions enforced to slow                 
the disease spread. Initial reports have shown the efficacy of these interventions, but we still lack reliable data, specially in                    
Brazil, and, even when the data is available, we need to sort out misleading information [3]. Among the several challenges to                     
address this pandemic, detecting the spatial spread of the disease within a region is one of the top priorities. An early warning                      
can give time for government authorities to prepare the health system in a location to endure the increase on the number of                      
people in need of medical care. One way to overcome this challenge is to monitor human mobility in order to detect patterns                      
from which to predict future focus of infection, to either asses the efficacy of implemented policies to avoid transmission, or                    
drive policies with the goal of avoiding the transmission to certain locations. This monitoring, specially using mobile phone                  
data, has been noted to be an efficient way to follow public mobility. In recent work, [3] has indicated the efficacy of the                       
intervention in China, correlating mobile data with reported cases. In other report, mobile data has evidenced the effect of                   
Government-enforced measures in São Paulo, Brazil, in reducing social contact [5]. It is worth noting that, for large scale                   
movements, other measures beyond mobile phone data have been successfully used to foresee the spread of the disease in                   
Brazil [4]. 

As mentioned by Brockman [6,8], while the time evolution of the epidemics is frequently modeled in the literature                  
by dynamical differential equations or time series [1,7], the modelling depends most on the scale used. For large scales, such                    
as big countries, continents and the whole world, available airport data is enough to give us reliable predictions. As                   
mentioned, [4] has some interesting results for the dissemination of the COVID-19 in Brazil based on airport network. But                   
once the epidemics reaches a primary local region, it is of relevance to anticipate how the dissemination will take place                    
locally, so local transit and regional road movement play an important role in the modelling, and mobile data provide a                    
reliable characterization of such movements.  

In the first part of this study we rely on mobile data to assess the movement pattern between cities within the states                      
of São Paulo and Rio de Janeiro in Brazil, before and during the COVID-19 pandemic, in order to identify future focus of                      
infection within the states. We concentrate on these states as they were the first ones in Brazil to have significant number of                      
confirmed cases and local transmission. To model the mobility via mobile data we have established a fruitful collaboration                  
with Brazilian company In Loco (https://inloco.com.br/). In Loco provides software engineering services to mobile phone               
applications and has a database with more than 60 million devices. The anonymized data provided by them contain the                   
physical location where billions of visits to selected apps have occurred. Although no civil information is collected, such as                   
name or social security number, in deference to users’ privacy concerns, In Loco can detect, through anonymous tracking, the                   
most likely devices’ locations across the country and the movement between them. 

In this report, we measure the mobility in each day of March 2020 between the cities within each state, seeking to                     
identify the most common mobility patterns in order to predict possible future focus of infection. We consider the movement                   
on March 2020 as these were the days which followed the first infections in Brazil, when isolation measures were                   
implemented. To predict theses focus, we analyse the raw mobility data and simulate spatial models of disease spread to                   
predict the locations where the disease is more likely to spread first. This study seeks to not only subsidize public discussions                     
about the allocation of resources and enforcement of isolation measures, but also to be the base of a next study, addressing                     
population dynamics together with available public health data, providing risk assessments and forecasts.  

2.  Methods  

2.1 Dataset 

The In Loco company provided anonymized data containing the geolocation of millions of users of their software                 
development kit (SDK), which is present in many popular mobile apps. For this part of the study, we only analyse data                     
referring to the states of São Paulo and Rio de Janeiro, although data of other states are also collected by the company. The                       
available dataset contains, from the 1st to the 30th of March 2019 and March 2020, recordings of pairs of positions, referring                     
to the locations of an initial and a second app use by a same device. Each position is calculated based on the location where                        
an app with In Locos’ system was used and on information collected on the background while the app was not running, which                      
aids in the collection of data when the app is in use, and is measured in geographical coordinates with a precision of 0.01                       
degrees in each coordinate.  

The first position refers to a use in a given day of an app by a device, while the second position refers to where a                         
subsequent use occurred, when this location is different from the first one. Hence, only movements between different                 
locations are represented, since users which used an app multiple times in a day within the same location are not present in                      
the dataset. Furthermore, we excluded all pairs in which the second use occurred more than 24 hours after the first one, so all                       
movements occurred inside the period of a day. Observe that each device may appear more than once if the apps are used                      
multiples times in a same day at different locations, although, by anonymization, we do not know how many times a device                     
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appears, hence cannot follow it for more than two consecutive uses. Therefore, we have two point movement data in                   
space-time of millions of devices in each day, representing a rich sample of daily population dynamics. 

We will focus on mobility data from March 2019, as a reference, and March 2020, as a measure of mobility patterns                     
during the pandemic. For São Paulo we have on average 3.6 million daily position recordings in March 2019 and 4.3 million                     
in March 2020. For Rio de Janeiro we have on average 1 million daily recordings in March 2019 and 0.8 million in March                       
2020. Just as a reference, São Paulo state has a population of approximately 45 million people and Rio de Janeiro state has                      
approximately 6.3 million people. In Table 1 we present descriptive statistics of the daily number of recordings for weekdays                   
and weekends for both years. We note that the daily uses decrease on weekends, what is evidence of less mobility between                     
locations. 

 
 

State Year Day Week Mean SD Min 1st Quart. Median 3rd Quart. Max 

RJ 

2019 
Weekday 1,053,615 259,721 528,805 790,609 1,140,444 1,180,351 1,465,666 

Weekend 938,472 163,672 679,678 811,883 962,988 1,026,558 1,201,777 

2020 
Weekday 870,920 445,958 214,521 509,431 870,189 1,196,752 1,682,386 

Weekend 624,417 425,258 179,309 238,466 442,211 1,023,705 1,332,701 

SP 

2019 
Weekday 3,708,276 850,839 2,221,510 2,790,522 3,927,577 4,169,805 5,011,449 

Weekend 3,256,169 563,222 2,456,231 2,756,478 3,550,141 3,569,211 4,172,801 

2020 
Weekday 4,353,782 1,652,625 1,661,284 2,816,090 4,465,741 5,545,852 7,384,012 

Weekend 3,561,949 1,495,902 1,681,135 2,118,311 3,964,115 4,999,465 5,527,734 

Table 1: Descriptive statistics of the daily number of recordings in March 2019 and 2020 for each state on the weekends and                      
weekdays. SD = Standard Deviation. 

Figure 1 shows the daily number of recordings in both states in 2019 and 2020. On the one hand, in 2019 we see a                        
steady pattern of the recordings in both states, which approximately repeats itself every week. On the other hand, in 2020,                    
there is a clear decline in the number of recordings starting on the 15th, specially in Rio de Janeiro. This decline coincides                      
with the implementation of stronger isolation measures enforced on the second half of March. Indeed, in Figure 2 we see a                     
great decrease on the number of recordings in the second half of March (starting on the 15th), in both weekends and                     
weekdays, as the boxes, which illustrate the statistics in Table 1, are below the respective boxes in the first half of March. As                       
the control group (March 2019) behaves approximately the same on the first and second half, we have evidences that the                    
isolation measures implemented decreased the number of recordings. Now, since the dataset contains only recordings of                
movement, the number of recordings is, by itself, an intrinsic measure of population isolation/quarantine, hence its decline is                  
an evidence of efficacy of isolation measures, although this efficacy needs to be studied in more detail by using more suitable                     
data. 

  

Figure 1: Total number of recordings for each day of March in São Paulo (SP) and Rio de Janeiro (RJ), in 2019 and 2020. 
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Figure 2: Box-plot of the total number of recordings on the first (from the 1st to the 14th) and second (from the 15th to the                         
30th) half of March, in weekdays and weekends, in 2019 and 2020 for both states. 

Figure 3 shows the number of recordings in each location in a usual day of March. There is a clear pattern on the                       
distribution of these locations, which are concentrated within cities and along roadways, in both states. Furthermore, the                 
majority of uses occured in the surroundings of the states’ capital cities, in their metropolitan region. The pattern of these                    
locations evidences how this data is a good proxy for population mobility, as it is either representing movement within cities                    
or between them, via roadways. This distribution of locations is a good evidence in support of mobile data to assess regional                     
mobility. 

 

Figure 3: Typical distribution of the location of app usage in one day for the states of São Paul (left) and Rio de Janeiro                        
(right) considering a resolution of 0.01 degree on each geographical coordinate. This data refers to March 1st 2020 and the                    
color represents the number of uses, first or subsequent, in each location.  

2.2 Movement dynamics 

In order to study mobility patterns between cities we group the recordings by city, i.e., each position is mapped from                    
geographical position to the city containing it, generating a sample with pairs of initial city and subsequent city, according to                    
the movement given by the geolocation. If the two positions are within the same city, we consider that there has been no                      
movement, as movement here is taken as movement between cities. Proceeding in this manner, we divided São Paulo in 645                    
regions and Rio de Janeiro in 92 regions, given by their cities. Although we chose to divide the states by cities, we could have                        
chosen another division, with more or less resolution, considering for example microregions (formed by cities) or subdistricts                 
(which form cities), in order to study the dynamics in larger or smaller scales. 

From the generated sample of movements between regions, we can compute the proportion of movements from a                 
region A to each region, in a given period of time. In this study, we always consider the period of time to be that of a day.                           
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This proportion of movement from region A to a region B is given simply by the number of recordings which departed from                      
A in the given day and were in B within 24 hours, divided by the total number of recordings which started in A in the given                          
day. This is the proportion of movements starting from A in a day and ending in B within 24 hours. Also, the proportion of                        
no-movement of A in a day is given by the number of recordings which started in A in this day and were still in A in the                           
second use, less than 24 hours later. These proportions are organized in a transition matrix, in which the entry of column A                      
and row B is the proportion of movement from A to B. For each considered day in March 2019 and 2020, we have a                        
transition matrix containing the movement between regions in this day.  

As we lack information about consecutive uses which occurred in a same location, the proportion of no-movement                 
of a region is underestimated, as we consider it as only movement within the city, disregarding devices which have not moved                     
at all within a day, as we do not have this information. This causes the proportion of movement from A to other regions to be                         
overestimated, as we observe proportions as high as 45% of the movements from a region being to out of it, what is an                       
unrealistic estimation of the proportion of people which move to outside of a region. A more realistic number is no more than                      
5%, what we believe would be obtained if we had the number of recordings in which the uses occurred in a same location.                       
This overestimation will be corrected in the models simulating the disease spread, but when analysing raw data we disregard                   
any correction, as we are only interested in determining common movements, and are not interested in how common they are.  

Even though this proportion is not a consistent estimator, in a statistical sense, of the proportion of a population                   
which travels from a region to another within 24 hours, as a same device may be recorded twice in the period of a day, it is a                           
good proxy for the mobility between two regions, as represents in reality a person which traveled from one region to another                     
within 24 hours, or stayed in a same region. As the data is anonymized and each device is followed for only two uses of the                         
app, we do not actually know if the movement is that of a person which is returning to a location or going there the first time,                          
for example. However, this proportion gives a good idea of possible patterns followed by a population in general, as if a                     
pattern is recurrent in the population it may also be in our dataset, although the proportion of movements in the population                     
may be distinct of the one we calculated, i.e., we may be able to identify common patterns of mobility, even though we                      
cannot estimate properly, in a statistical sense, the proportion of the population which leave one region and go to another in                     
the period of a day. 

In order to asses the mobility patterns in weeks following the first cases of COVID-19 in Brazil in March 2020, we                     
always take the mobility in March 2019 as a control group. Indeed, we need a measure of the usual mobility between the                      
regions to compare with the observed mobility to know if it is within the usual pattern. For this purpose, we disregard the first                       
days of March 2019, as the mobility was influenced by a major Brazilian holiday, the carnival week, so we observe the                     
pattern of mobility in March 2019 starting on the 11th. On the one hand, the mobility in March 2020 is measured daily, by the                        
proportion of movement from one region to another, i.e., by the daily transition matrices. On the other hand, the mobility in                     
March 2019 is measured by the mean of these proportions over all considered days of March which fell on a day of the week,                        
i.e., for each day of the week we calculate the mean of the proportions for all considered days of March 2019 which fell on it.                         
Proceeding in this way, we have one transition matrix for each day of March 2020, and seven transition matrices related to                     
the mean pattern of movement of each day of the week in March 2019. Each day of March 2020 is compared with the pattern                        
of the day of the week it fell on. The analysis of this study concentrates on an important feature of the pandemic spread, that                        
is, possible focus of future infections. We now discuss how they can be evaluated from the available mobile data. 

2.3 Possible focus of infection 

The COVID-19 outbreak in the states of São Paulo and Rio de Janeiro has started in their capital city in the end of                       
February 2020, and spread to other cities on the metropolitan region and countryside. However, many regions are yet to suffer                    
from the pandemic, so pointing out possible focus of future infections provides strategic informations to public authorities act                  
on to avoid the spread of the disease. These focus may be identified by studying the pattern of movement from the infected                      
regions (capital cities) to the countryside, by identifying common movement patterns. Observe that the geographical distance                
between cities is not enough to determine these focus, as there are other factors which drive mobility within the states,                    
specially of economic nature, which make movement to more developed cities far away more likely. 

The analysis is focused on the movement patterns starting on the capital cities and is performed with the aid of maps,                     
in which each region is painted according to the proportion of the movements from the capital city which ended in each                     
region. The daily patterns in these movements in March 2020 provide insights about possible paths infected people may have                   
taken, spreading the disease to other regions. Also, we study the most frequent movements from the capitals in the days of                     
March 2020 and March 2019 seeking to find common movements, and any difference in the patterns, from one year to the                     
next.  

2.4 A model for the spatial spreading of the disease  

The mains focus of this study is to explore the mobility dynamics within a state in order to give authorities a heads                      
up on the evolution of the disease, so they can be a step ahead and prepare the local health care systems for the upcoming                        
events. Since we do not have reliable data on the recovery time, we decided to use in this first approach an infectious model                       
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suitable for the initial exponential spread of the disease. Once we have more reliable data, we can incorporate other nuances                    
of the disease spread and infection to get more adequate models for the next stages of the spread. So, in order to model the                        
spatial spread of the disease in this early stage, we consider a metapopulation model which relates the evolution of a disease                     
inside a population with two terms, one referring to the spread within the location and another to the spread to and from other                       
locations. The spread within each location is modelled as a SI model, while the spread between locations is based on the                     

mobile data, more specifically on the transition matrices. In the proposed model, the evolution of , the number of                   
infected in region  at time , is modelled as 

 

in which is the transmission rate within each region, is a free parameter used to correct the overestimation or                     

underestimation of movement between the locations, is the population of region and is a measure of the                    
movement from region  to region  at time , calculated from the transition matrices in the following way.  

Let be the entry at row and column of the transition matrix of day , indicating the proportion of registered                       

movements from region to at day , and let , where is the total number of recordings which                     
departed from at day , resulting in the actual number of recorded movements from region to in this day. We take                        

as an estimative of the number of people which moved from region to region at the day. We consider the measure                        
of mobility from  to  as  

 

in which is such that . The scale of that we consider is that of an hour, and is midnight at                        

March 1st 2020. Also, we consider which is approximately , in which is the Basic                 
Reproduction Number estimated by [11] from data about the disease spread in Wuhan, China, and 6 days is the mean                    
incubation time of the disease.  

Although the SI model is not suitable for long forecasts, since it does not take into account the Recovered and                    
Exposed individuals, we wish to explore it to simulate the spread until the end of April 2020. But, as there is no mobility data                        
available beyond March 30th 2020, we will use the mean transition matrices from the corresponding weekday in March 2020                   
when simulating the spread in April. At we start with one single infected case in the state’s capital and zero in the                       
other cities, and simulate how the disease spreads spatially within the states. 

We use the number of recordings from one region to another divided by the population of the departure region as the                     
measure of mobility between regions because the proportion of transitions may overestimate the mobility, as we do not have                   
data about devices which have not moved within a day. When dividing by the population, we may assume that the number of                      
recordings is actually the number of people moving from one region to another. However, this estimator is biased for, on the                     
one hand, each device may be counted more than once, and, on the other hand, there are people moving between regions                     
without using any app. Therefore, we need to correct the estimative, and that is performed by parameter which multiply the                     
proportions. If then we are correcting a possible overestimation of the movement proportions, while if then we                   
are correcting a possible underestimation of the proportions. Hence, we will simulate the model for various values of to                    
attest its robustness. 

The main interest of the simulations is in determining , the least time such that the number of infected in a region                      
attains a threshold , i.e., . From this value, we may rank the regions from the smallest to the greatest times of                       

arrival of the disease, producing evidences about possible focus of future infection. In the simulations we adopt , that                   
is, we assume that the region is at risk when the model predicts at least 1 infected individual in the region. The models are                        
simulated until April 30th 2020. 

3. Results 

3.1 Possible focus of infection 

In Figure 4 we have the proportion of movement from the capital cities at March 1st, 10th, 20th and 30th 2020, and                      
the mean proportions of the respective day of the week at March 2019. We observe that the mobility pattern is similar in both                       
years, although the value of the proportions may differ. As we have seen, the number of recordings decreased in the second                     
half of March 2020 influenced by isolation measures, but according to Figure 4 the movement patterns did not change                   
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significantly. This means that, among people still moving between cities, the pattern is that of before isolation, hence isolation                   
measures seems to have not changed the pattern movement, at least in the city scale, but only the intensity of movement,                     
evidenced by the decrease on the number of recordings. 

 

Figure 4: Proportion of movement from São Paulo capital city to each city within the state at March 1st, 10th, 20th and 30th                       
of 2020 alongside with the mean proportion of movement of the respective weekday in March 2019. 
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Figure 5: Proportion of movement from Rio de Janeiro capital city to each city within the state at March 1st, 10th, 20th and                       
30th of 2020 alongside with the mean proportion of movement of the respective weekday in March 2019.  

In Tables 2 and 3 we see the descriptive statistics of the rank of the top 15 cities concentrating the proportion of                      
moviment out of the capitals, calculated for all days of March 2019 and 2020. The rank is the ordering, from lowest to                      
greatest, of the proportion of movement from the capital, so as greater the rank, more movement there was from the capital to                      
the city. We see that the rank does not vary much among the days of March (small standard deviation), and that the rank in                        
2019 is close to the rank in 2020, evidencing again that, even though movement has decreased, the pattern of movement has                     
not changed. These top cities are mainly in the metropolitan region of the capitals, what is an evidence that these may be                      
future focus of infection, what they are, since the disease has spread to the metropolitan region of each state. 
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City Year Mean SD Min 1st Quart. Median 3rd Quart. Max 
Guarulhos 2019 648 - 648 648 648 648 648 
Guarulhos 2020 648 - 648 648 648 648 648 
Osasco 2019 647 - 647 647 647 647 647 
Osasco 2020 647 - 647 647 647 647 647 
Santo André 2020 646 - 646 646 646 646 646 
Santo André 2019 646 0,30 645 646 646 646 646 
Taboão da Serra 2019 645 0,30 645 645 645 645 646 
Taboão da Serra 2020 645 - 645 645 645 645 645 
Diadema 2019 644 - 644 644 644 644 644 
Diadema 2020 644 - 644 644 644 644 644 
S. Bernardo do Campo 2019 643 - 643 643 643 643 643 
S. Bernardo do Campo 2020 643 - 643 643 643 643 643 
São Caetano do Sul 2019 642 0,40 641 642 642 642 642 
Barueri 2020 642 1,53 637 642 642 642 642 
Embu das Artes 2019 641 0,48 640 641 641 641 642 
São Caetano do Sul 2020 641 0,40 639 641 641 641 641 
Embu das Artes 2020 640 0,61 640 640 640 640 642 
Itaquaquecetuba 2019 640 0,65 638 640 640 640 640 
Itaquaquecetuba 2020 639 0,53 639 639 639 639 641 
Ferraz de Vasconselos 2019 639 0,82 636 639 639 639 640 
Mauá 2019 638 0,54 638 638 638 638 640 
Mauá 2020 638 - 638 638 638 638 638 
Barueri 2019 638 1,65 636 637 637 637 642 
Ferraz de Vasconselos 2020 637 0,73 637 637 637 637 640 
Carapicuíba 2020 636 0,25 635 636 636 636 636 
Itapecerica da Serra 2019 636 0,65 634 636 636 636 637 
Carapicuíba 2019 635 0,45 635 635 635 635 637 
Itapecerica da Serra 2020 635 0,27 635 635 635 635 636 
Cotia 2019 634 0,30 634 634 634 634 635 
Cotia 2020 634 0,09 634 634 634 634 635 

Table 2: Descriptive statistics of the rank of the proportion of movement out of São Paulo capital city in the days of March                       
2019 and March 2020. 

 
City Year Mean SD Min 1st Quart. Median 3rd Quart. Max 
Duque de Caxias 2019 94  -  94 94 94 94 94 
Duque de Caxias 2020 94  -  94 94 94 94 94 
Nova Iguaçu 2020 93  -  93 93 93 93 93 
São João de Meriti 2019 93   0,43 92 93 93 93 93 
Nova Iguaçu 2019 92   0,43 92 92 92 92 93 
São João de Meriti 2020 92  -  92 92 92 92 92 
Niterói 2019 91  -  91 91 91 91 91 
Niterói 2020 91  -  91 91 91 91 91 
Belford Roxo 2020 90   0,25 89 90 90 90 90 
Nilópolis 2019 90   0,51 88 90 90 90 90 
Belford Roxo 2019 89   0,52 88 89 89 89 90 
São Gonçalo 2020 89   0,37 88 89 89 89 90 
São Gonçalo 2019 88   0,63 88 88 88 88 90 
Nilópolis 2020 88   0,43 88 88 88 88 90 
Itaguaí 2020 87   0,31 86 87 87 87 87 
Mesquista 2019 87   1,03 83 87 87 87 87 
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Mesquista 2020 86   0,31 86 86 86 86 87 
Itaguaí 2019 86   0,47 85 86 86 86 87 
Queimados 2020 85   0,18 84 85 85 85 85 
Queimados 2019 84   0,97 80 84 84 84 85 
Seropédica 2020 84   0,74 82 84 84 84 85 
Itaboraí 2020 83   0,69 81 83 83 83 84 
Seropédica 2019 82   1,00 80 83 83 83 83 
Magé 2020 82   0,43 82 82 82 82 83 
Magé 2019 82   0,52 80 82 82 82 83 
Maricá 2019 81   1,27 80 81 81 81 86 
Maricá 2020 81   0,25 81 81 81 81 82 
Itaboraí 2019 81   1,50 80 80 80 80 85 
Petrópolis 2020 80   0,35 79 80 80 80 80 
Petrópolis 2019 79   0,40 77 79 79 79 79 

Table 3: Descriptive statistics of the rank of the proportion of movement out of Rio de Janeiro capital city in the days of                       
March 2019 and March 2020.  

3.2 Model for spatial disease spreading 

Figures 6 to 9 display the simulated number of infected individuals across the states of São Paulo and Rio de Janeiro                     
as time evolved for selected values of . We see that the effect of is on the time, in number of days, that the disease takes                           
to attain some location, rather than on the evolution of the spread itself. For , we observe in Figures 6 and 8 that the                        
number of infected individuals spread from the capital cities, to the their metropolitan region and then selected cities on the                    
countryside, which are geographically far from the capital, specially in the state of São Paulo. We see on Figures 7 and 9 that,                       
for different values of , the evolution of the disease is the same, but the cities with focus of infections at the end of the                         
simulation, i.e., April 30th, depend on : as greater the value of , more cities are infected at the end. Also, we can clearly                        
see a non-local diffusion process, as described by [8]. 

In order to evaluate the risk of infection of each city we consider the rank of infection obtained by the simulated                     
models, as follows. For each value of we number the cities by the order of disease arrival. The first city in which it arrives                         
we rank as one, the second as two and so forth. If the disease arrives at more than one city at a same day they receive the                           
same rank, and the next city in which the disease arrives receive the following rank, independently of how many cities got the                      
disease before it. We have then for each value of a rank for each               
city. The risk of infection is then calculated via a cluster analysis, in the following way. 

We apply k-means clustering [13] to divide the cities into three groups (low risk, medium risk and high risk)                   
according to their ranks attributed by the models. We first clustered the cities according to the ranks attributed by the models                     
simulated with the values of lesser than one, and for the values greater or equal to one, separately. As the clusterization by                       
both methods was very similar, as they classified differently only cities in São Paulo and in Rio de Janeiro, we decided                       
to consider the ranks attributed by all values of together to cluster the cities. The risk class of each city in the states of São                          
Paulo and Rio de Janeiro is represented in the maps of Figures 10 and 11, respectively. We see that, besides some cities in the                        
countryside in the state of São Paulo, the high risk locations are indeed in the metropolitan region of the capitals. 

In Figures 12 and 13 we present the rank attributed by the simulated models, and the distance to the capital city, for                      
each city with more than 100,000 inhabitants in São Paulo and more than 75,000 inhabitants in Rio de Janeiro. We observe                     
that the rank does not change significantly with the value of and see that there is a correlation between the rank of the city                         
and the distance from the capital, since as lower the rank is, lower tends to be the distance. These figures show that the model,                        
when used to predict where the disease will arrive first, is robust regarding the values of , as distinct values of generated                       
similar ranks. 
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Figure 6: Simulation results for the number of infected individuals in the state of São Paulo for selected days assuming                     
The maps refer, respectively, to March 1st, 10th, 20th and 30th, and April 10th and 20th. 
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Figure 7: Simulation results at the 10th of April for the number of infected individuals in the state of São Paulo considering                      
different values of s, namely, 0.0001 (top left), 0.001 (top right), 0.1 (mid-left), 1.0 (mid-right), 2.0 (bottom-left) and 3.0                   
(bottom-right). 
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Figure 8: Simulation results for the number of infected individuals in the state of Rio de Janeiro for selected days assuming 
 The maps refer, respectively, to March 1st, 10th, 20th and 30th, and April 10th and 20th. 
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Figure 9: Simulation results at the 10th of April for the number of infected individuals in the state of Rio de Janeiro                      
considering different values of s, namely, 0.0001 (top-left), 0.001 (top-right), 0.1 (mid-left), 1.0 (mid-right), 2.0 (bottom-left)                
and 3.0 (bottom-right). 
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Figure 10: Risk of each city in the state of São Paulo evaluated by k-means clustering of the ranks attributed by the                      
simulated models with distinct values of . 

 

Figure 11: Risk of each city in the state of Rio de Janeiro evaluated by k-means clustering of the ranks attributed                     
by the simulated models with distinct values of . 

xxxx-xxxx/xx/xxxxxx15© xxxx 
 

https://www.codecogs.com/eqnedit.php?latex=s#0
https://www.codecogs.com/eqnedit.php?latex=s#0


USP Report for COVID-19 pandemic 

 

 

Figure 12: Rank of infection and distance to capital city for each city with more than 100,000 inhabitants in the state of São                       
Paulo. The points refer to ranks estimated for different values of , the triangles to the distance to the capital city and the                       
line is a smooth approximation of the distance triangles. The colors refer to the risk evaluated by k-means clustering of the                     
ranks attributed by the simulated models. 

 

Figure 13: Rank of infection and distance to capital city for each city with more than 75,000 inhabitants in the state of Rio de                        
Janeiro. The points refer to ranks estimated for different values of , the triangles to the distance to the capital city and the                       
line is a smooth approximation of the distance triangles. The colors refer to the risk evaluated by k-means clustering of the                     
ranks attributed by the simulated models. 
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4. Discussion 

In this work, we used anonymized mobile phone data to detect population movement between cities. This framework                 
is very useful for a variety of applications. Here we focused in establishing a risk map for the evolution of the COVID-19                      
within the states of São Paulo and Rio de Janeiro, and noted that the high risk regions are mainly in the metropolitan region of                        
the states’ capital cities, although there are some high risk cities in the countryside, specially in São Paulo. This was done by                      
coupling the predicted mobility patterns with a standard SI model via a metapopulation model. 

The SI model is not suited for predicting the incidence of the infection for long periods of time, but it is an adequate                       
linear approximation for the early exponential spread. The model chosen was adequate to be used with the available disease                   
information, namely, the Basic Reproduction Number R0 estimated from the initial spread in China. We also introduced , a                   
free parameter, used to correct the overestimation or underestimation of movement between the locations. As expected,                
parameter is related to the intensity of mobility, which in turn implies a greater or smaller time of infection for each city.                       
This is an indicative that the decrease in mobility, enforced by isolation and quarantine measures, may slow the spread of the                     
disease. Also, we proposed a risk index, based on ranks of the estimated time for an infected individual to be identified in a                       
specific city. The risk index was shown to be robust and consistent with the spreading patterns, independent of the mobility                    
intensity parameter s. 

The next steps of this work are two-fold. Initially, we will extend the analysis to other states of the country and relate                      
the infection risk to geolocated health and economic variables, to help in the planning of local financial and hospital resources                    
allocation, and of economic loss mitigation strategies. Additionally, we will also address later phases of the disease,                 
considering a more complex model, such as an SEIR (Susceptible - Exposed - Infectious - Recovered) coupled with mobility,                   
allowing long term projections and better development of control measures. 

Code and Data Availability 

All methods discussed in this work are available in python or R program codes under open-source license, available at                   
https://github.com/pedrospeixoto/mdyn . The mobile geolocation data is proprietary of the In Loco company, therefore not               
publicly available. However, additional details about the results, figures and tables as presented in this work may be obtained                   
upon request. Supporting information is provided at www.ime.usp.br/~pedrosp/covid-19 . 
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