D FV 2D FV

Dynamic: 000000 00000 Logically r

cally rectangular schemes

rbitrary Polygonal grids

Conclusions 00

Finite Volume schemes for global dynamical core development

Cubed sphere and icosahedral grid approaches

Pedro S. Peixoto

Departamento de Matemática Aplicada Instituto de Matemática e Estatística Universidade de São Paulo

> July 2019 CPTEC

Summary

- 4 Logically rectangular schemes
- 5 Arbitrary Polygonal grids

6 Conclusions

1D FV ●000000000	2D FV 0000000000000000	Dynamics 000000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
1D Advection					
Summa	ary				

• Reconstruct-Evolve-Average (REA)

1D FV conservation law

$$\frac{\partial q}{\partial t} + \frac{\partial (uq)}{\partial x} = 0$$

In FV notation:

$$\frac{\partial q}{\partial t} + \frac{\partial f}{\partial x} = 0,$$
 where $f(q(t, x)) = u(t, x)q(t, x)$ (Flux function)

Finite Volume: Integrate over cells!

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{\partial q}{\partial t} \, dx = -\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{\partial (uq)}{\partial x} \, dx$$

$$\frac{d}{dt} \int_{x_{i-1/2}}^{x_{i+1/2}} q(t, x) \, dx = -\underbrace{u(t, x_{i+1/2})q(t, x_{i+1/2})}_{\text{Right Flux } f(q(t, x_{i+1/2}))} + \underbrace{u(t, x_{i-1/2})q(t, x_{i-1/2})}_{\text{Left Flux } f(q(t, x_{i-1/2}))}$$

$$i - \frac{1}{2} \qquad i + \frac{1}{2}$$

$$i - 1 \qquad i = 1$$

LeVeque - FV for Hyperbolic Problems Transgeinstein - Num Sol Hyperbolic PDES

Integrated quantities

Finite Volume (mean quantity):

$$Q_i(t) = rac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(t, x) dx$$

$$\frac{dQ_i(t)}{dt} = \underbrace{-\frac{1}{\Delta x} \delta_x \left(u(t, x_i) q(t, x_i) \right)}_{\text{Mean Fluxes}}, \qquad \delta_x q(x) = q(x + \Delta x/2) - q(x - \Delta x/2),$$

Integrate over time

$$\int_{t_{n}}^{t_{n+1}} \frac{dQ_{i}(t)}{dt} dt = -\frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \delta_{x} \left(u(t, x_{i})q(t, x_{i}) \right) dt$$

$$Q_{i}(t_{n+1}) = Q_{i}(t_{n}) - \frac{1}{\Delta x} \delta_{x} \int_{t_{n}}^{t_{n+1}} u(t, x_{i})q(t, x_{i}) dt$$

$$Q_{i}(t_{n+1}) = Q_{i}(t_{n}) - \frac{1}{\Delta x} \delta_{x} \int_{t_{n}}^{t_{n+1}} f(q(t, x_{i})) dt$$

$$F$$

General FV Scheme

$$Q_i^{n+1} = Q_i^n + F, \qquad F = -\frac{\Delta t}{\Delta x} \frac{1}{\Delta t} \delta_x \int_{t_n}^{t_{n+1}} \underbrace{f(q(t, x_i))}_{u(t, x_i)q(t, x_i)} dt$$

General scheme 3-point scheme:

$$Q_i^{n+1} = Q_i^n + (F_{i-1/2} - F_{i+1/2})$$

Possible numerical fluxes:

$$F_{i-1/2} = \mathcal{F}(Q_{i-1}^n, Q_i^n) \approx \frac{\Delta t}{\Delta x} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f(q(t, x_{i-1/2})) dt$$

$$F_{i+1/2} = \mathcal{F}(Q_i^n, Q_{i+1}^n) \approx \frac{\Delta t}{\Delta x} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f(q(t, x_{i+1/2})) dt$$

$$i - \frac{1}{2} \qquad i + \frac{1}{2}$$

$$i + 1$$

1D FV ○○○○●○○○○○	2D FV 0000000000000000	Dynamics 000000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
Reconstruct-Evolve	-Average (REA)				
Summ	arv				

D.

Reconstruct-Evolve-Average (REA)

Reconstruct-Evolve-Average (REA)

Godunov's Scheme

REA algorithm (reconstruct-evolve-average)

Assume Q is piecewise constant:

- Given initial condition q(t₀, x)
- Integrate over each cell exactly to obtain Q_i(t₀)
- Solve equation (advection) for Δt (but with small Δt, so that advection stays within 1 cell)
- Integrate solution at Δt (exactly) to obtain Q_i(t₀ + Δt)

The exact advection with discontinuity is called the Riemman problem

(Fig from LeVeque's book)

Godunov and upwind

$$rac{\partial q}{\partial t} + u rac{\partial q}{\partial x} = 0, \quad u > 0, \quad q(t_0, x) = q_0(x), \quad q(t, 0) = q(t, 1)$$

- Integrate $q_0(x)$ in each interval to obtain Q_i^0 (constant for each cell)
- Solve the advection problem to obtain \widetilde{Q}^{n+1} .
- The edge point $x_{i-1/2}$ moves to $x_{i-1/2} + u\Delta t$

Integrate advected quantity, which is

$$\begin{aligned} \mathcal{Q}_{i}^{n+1} &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \widetilde{Q}_{i}^{n+1} \\ &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i-1/2}+u\Delta t} \mathcal{Q}_{i-1}^{n} + \frac{1}{\Delta x} \int_{x_{i-1/2}+u\Delta t}^{x_{i-1/2}+\Delta x} \mathcal{Q}_{i}^{n} \\ &= \frac{u\Delta t}{\Delta x} \mathcal{Q}_{i-1}^{n} + \frac{\Delta x - u\Delta t}{\Delta x} \mathcal{Q}_{i}^{n} \end{aligned}$$

And voilà: Upwind!

C

$$Q_i^{n+1} = Q_i^n + \frac{u\Delta t}{\Delta x}(Q_{i-1}^n - Q_i^n)$$

Logically rectangular schemes

Arbitrary Polygonal grid

Conclusions 00

Reconstruct-Evolve-Average (REA)

1D FV

Higher order reconstructions

REA algorithm:

- Godunov (1959) upwind Piecewise constant
- van Leer (1979) Piecewise linear (Monotonic Upwind Scheme for Conservation Laws - MUSCL)
- Woodward & Colella (1984) Piecewise Parabolic Method (PPM)

1D FV	2D FV	Dynamics	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions
00000000000000					
Reconstruct-Evolve-	Average (REA)				

- (a) Compute initial mean value (analytically)
- (b) Construct parabolas from mean values
- (c) Advect parabolas with constant velocity
- (d) Integrate advected parabolas
- (e) New mean quantities are obtained

(Carpenter et al (1990), van Leer (1977))

Reconstruct-Evolve-Average (REA)

1D FV

Monotonicity and steepening

Parabolas are adjusted to capture discontinuities and avoid under/overshoots.

1D FV 0000000000	2D FV ●000000000000000000000000000000000000	Dynamics 000000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
Dimension splitting					
Summa	ary				

1D FV 0000000000	2D FV 0●00000000000000000000000000000000000	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions 00
Dimension splitting					
2D adv	vection				

$$\frac{\partial q}{\partial t} + \nabla \cdot (\vec{v}q) = 0$$
$$\vec{v} = (u, v)$$
$$\nabla = (\partial_x, \partial_y)$$

- 2D problems use dimension splitting to 2 \times 1D problems
- FV3 uses PPM method with dimension splitting

1D FV

00 0000000

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions

Dimension splitting

FV on C-grid - Advection

$$\frac{\partial q}{\partial t} + \nabla \cdot (\vec{v}q) = 0$$

$$\begin{aligned} \frac{1}{|V_{ij}|} \int_{V_{ij}} \frac{\partial q}{\partial t} dV &= -\frac{1}{|V_{ij}|} \int_{V_{ij}} \nabla \cdot (\vec{v}q) \\ Q_{ij} &= \frac{1}{|V_{ij}|} \int_{V_{ij}} q \, dV \end{aligned}$$

$$\frac{d Q_{ij}}{dt} = -\frac{1}{|V_{ij}|} \int_{V_{ij}} \nabla \cdot (\vec{v}q) dV$$

(Div Thm)
$$= -\frac{1}{|V_{ij}|} \int_{\partial V_{ij}} q\vec{v} \cdot \vec{n} dV$$

$$= -\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$
$$-\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)$$

W=West, E=East, N=North, S=South

Dimension splitting

FV on C-grid - Dimension Splitting

$$\frac{d Q_{ij}}{dt} = -\underbrace{\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)}_{\text{Mean flux in x direction}} - \underbrace{\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)}_{\text{Mean flux in y direction}}$$
Integrating from t_n to t_{n+1} leads to:

$$Q_{ij}(t_{n+1}) = Q_{ij}(t_n) - \underbrace{\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)}_{\text{Mean flux in x direction over time}} - \underbrace{\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)}_{\text{Mean flux in y direction over time}}$$

FV method with dimension splitting (used in FV3, for example):

$$Q_{ij}^{n+1} = Q_{ij}^n + F + G$$

where

$$F \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$
$$G \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)$$

W=West, E=East, N=North, S=South

2D FV Dyn

amics Logica

ogically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

Dimension splitting

1

FV on C-grid - 1st try - Not FV3!

$$Q_{ij}^{n+1} = Q_{ij}^n + F + G$$

$$F \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$

Midpoint rule integration in space, explicit in time

$$F = -\frac{\Delta t}{\Delta x \Delta y} \left(\Delta y(qu)_{i+1/2,j}^n - \Delta y(qu)_{i-1/2,j}^n \right)$$
$$= -\frac{\Delta t}{\Delta x} \left((qu)_{i+1/2,j}^n - (qu)_{i-1/2,j}^n \right)$$

How to obtain $(qu)_{i\pm 1/2,j}^n$ given values of Q_{ij} and u on C-Grid?

$$(q)_{i+1/2,j}^n \approx \left(Q_{i+1,j}^n + Q_{i,j}^n\right)/2$$

W=West, E=East, N=North, S=South

1D FV

2D FV

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

Dimension splitting

FV on C-grid - 1st try - Not FV3!

Hey! This looks like FD!

We could try this out assuming constant (u, v) known on a C-grid on a bi-periodic plane. Will it work? No, it is unstable :-(

1D FV 0000000000	2D FV ○○○○○○●○○○○○○○	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
FV3 advection sche	me				
Summa	ary				

• FV3 advection scheme

DFV 2D FV

Dynamics 0000000000 Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV3 advection scheme

FV on C-grid - FV3 scheme

$$Q^{n+1} = Q^n + F + G$$

where

$$F \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$
$$G \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)$$

Assume (u, v) known, obtain F and G using neighbour values of Q that:

- Conserves mass exactly
- Consistent (preserve constant field)
- Stable

Lin & Rood (1996)

FV 2D FV

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV3 advection scheme

FV3 Advection - Dimension splitting

$$Q^{n+1} = Q^n + F(Q^n, u) + G(Q^n, v)$$

$$F(Q^n, u) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$

$$G(Q^n, v) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)$$

Splitting (1st x then y):

$$Q^{x} = Q^{n} + F(Q^{n}, u)$$
$$Q^{yx} = Q^{x} + G(Q^{x}, v)$$

Splitting (1st y then x):

$$Q^{y} = Q^{n} + G(Q^{n}, v)$$
$$Q^{xy} = Q^{y} + F(Q^{y}, u)$$

• Directional bias avoided with (assuming linearity of *F* and *G* on *Q*)

$$Q^{n+1} = \frac{1}{2}(Q^{xy} + Q^{yx}) = Q^n + F(Q^n, u) + G(Q^n, v) + \frac{1}{2}(G(F(Q^n, u), v) + F(G(Q^n, v), u))$$

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV3 advection scheme

FV3 Advection - Dimension splitting

Splitting without directional bias (omitting u, v):

1

$$Q^{n+1} = Q^n + F(Q^n) + G(Q^n) + \frac{1}{2}(GF(Q^n) + FG(Q^n))$$

If $Q^n = \alpha$ constant, $Q^{n+1} = \alpha$ for non-divergent flows ($\nabla \cdot \vec{v} = 0$). Example:

$$\mathsf{F}(\alpha, u) = -\frac{\alpha \Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} u - \int_{\mathsf{W}} u \right) = \alpha \overline{U}$$

Thus

$$Q^{n+1} = \alpha + \alpha \overline{U} + \alpha \overline{V} + \alpha \overline{UV}$$

with $\overline{U} + \overline{V} = 0$.

Conclusion

This method does not conserve constant quantities on simple flows, with $\alpha \overline{UV}$ error !!!

2D FV

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV3 advection scheme

FV3 Advection - Dimension splitting

Splitting without directional bias (omitting u, v):

$$Q^{n+1} = Q^n + F(Q^n + \frac{1}{2}G(Q^n)) + G(Q^n + \frac{1}{2}F(Q^n))$$

Eliminate the error using inner advective fluxes:

$$Q^{n+1} = Q^n + F(Q^n + \frac{1}{2}g(Q^n)) + G(Q^n + \frac{1}{2}f(Q^n))$$

where

$$f(Q^{n}, u) \approx -\Delta t \overline{u^{*}}^{x} \frac{\partial Q}{\partial x},$$
$$g(Q^{n}, v) \approx -\Delta t \overline{v^{*}}^{y} \frac{\partial Q}{\partial y},$$
$$F(Q^{n}, u) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} \left(\int_{\mathsf{E}} qu - \int_{\mathsf{W}} qu \right)$$
$$G(Q^{n}, v) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} \left(\int_{\mathsf{N}} qv - \int_{\mathsf{S}} qv \right)$$

Lin & Rood (1996)

Logically rectangular schemes

. .

Arbitrary Polygonal grids

Conclusions

FV3 advection scheme

FV3 Advection - 2D Example

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} = 0, \quad u > 0, v > 0 \quad q(t_0, x, y) = q_0(x, y)$$

with doubly periodic boundary conditions.

1D Upwinding with splitting:

$$\begin{aligned} Q_{ij}^{x} &= Q_{ij}^{n} + F(Q^{n}, u), \quad F(Q^{n}, u) = \frac{u\Delta t}{\Delta x}(Q_{i-1,j}^{n} - Q_{ij}^{n}) \\ Q_{ij}^{y} &= Q_{ij}^{n} + G(Q^{n}, v), \quad G(Q^{n}, v) = \frac{v\Delta t}{\Delta y}(Q_{i,j-1}^{n} - Q_{ij}^{n}) \end{aligned}$$

Full scheme:

$$Q^{n+1} = Q^n + F(Q^n + \frac{1}{2}g(Q^n)) + G(Q^n + \frac{1}{2}f(Q^n))$$

where

$$f(Q, u) = -\frac{\Delta t \, u}{\Delta x} \overline{\delta_x Q}^x, \quad g(Q, u) = -\frac{\Delta t \, v}{\Delta y} \overline{\delta_y Q}^y,$$

Logically rectangular schemes

Arbitrary Polygonal grid

Conclusions

FV3 advection scheme

FV3 Advection - 2D Example

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} = 0, \quad u > 0, v > 0 \quad q(t_0, x, y) = q_0(x, y)$$

with doubly periodic boundary conditions.

Full scheme:

$$Q^{n+1} = Q^n + F(Q^n - \frac{1}{2}\frac{\Delta t v}{\Delta y}\overline{\delta_y Q^n}^y) + G(Q^n - \frac{1}{2}\frac{\Delta t u}{\Delta x}\overline{\delta_x Q^n}^x)$$
$$F(Q, u) = \frac{u\Delta t}{\Delta x}(Q_{i-1,j} - Q_{ij}), \qquad G(Q, v) = \frac{v\Delta t}{\Delta y}(Q_{i,j-1} - Q_{ij})$$

Remember that:

$$\delta_x \phi(x) = \phi(x + \Delta x/2) - \phi(x - \Delta x/2)$$
$$\overline{\phi(x)}^x = \frac{1}{2}(\phi(x + \Delta x/2) + \phi(x - \Delta x/2))$$

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV3 advection scheme

FV3 Advection - 2D Example

Advective fluxes:

$$Q^{y} = Q^{n} - \frac{1}{2} \frac{\Delta t v}{\Delta y} \overline{\delta_{y} Q^{n}}^{y}$$
$$Q^{x} = Q^{n} - \frac{1}{2} \frac{\Delta t u}{\Delta x} \overline{\delta_{x} Q^{n}}^{x}$$

Integrated fluxes

$$F^{y} = F(Q^{y}, u) = \frac{u\Delta t}{\Delta x}(Q^{y}_{i-1,j} - Q^{y}_{ij})$$

$$G^{x} = G(Q^{x}, v) = rac{v\Delta t}{\Delta y}(Q^{x}_{i,j-1} - Q^{x}_{ij})$$

Advance in time

$$Q^{n+1} = Q^n + F^y + G^x$$

Implement:

- Linear advection with velocity (u, v) = (1, 1) and bi-periodic boundary conditions on [0, 1] × [0, 1]
- Use dimension splitting with upwinding
- Use as initial condition q₀(x, y) as a square in the middle of the domain with height 1 and width 1/4.
- Experiment different Δt and Δx , Δy .

What is still missing:

- MUSCL and PPM (as in FV3)
- Imposition of monotonicity and steepness control.

This is too deep for this course, but now you know the tools and path. Feel feel to try, if you find the initial task easy!

1D FV 0000000000	2D FV 0000000000000000	Dynamics ●OOOOOOOOOO	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
3D equations					
Summa	ary				

3D equations

• Shallow Water Equations

Dvnamics

3D equations

Governing equations - Dynamics

Compressible Euler equations for atmosphere (ideal gas) in vector form:

$$\begin{aligned} \frac{D\mathbf{u}}{Dt} &= -2\,\boldsymbol{\Omega} \times \mathbf{u} - \frac{1}{\rho}\nabla\rho + \mathbf{g} + \mathbf{F}_r \text{ (Momentum)} \\ \frac{D\rho}{Dt} &= -\rho\nabla\cdot\mathbf{u} \text{ (Continuity)} \\ c_v \frac{DT}{Dt} &= -\frac{\rho}{\rho}\nabla\cdot\mathbf{u} \text{ (Thermodynamics)} \end{aligned}$$

• $\mathbf{u} = (u, v, w)$: wind velocity

p: pressure

1

- ρ: density
- T: temperature
- $D/Dt = \partial/\partial t + \mathbf{u} \cdot \nabla$: Material derivative

Governing equations

- Compressible Euler
 - Hydrostatic vs Non-hydrostatic
 - Shallow atmosphere vs Deep atmosphere
- Primitive equations: hydrostatic and shallow atmosphere
 - Shallow water equations
 - Quasigeostrophic equations
 - Barotropic vorticity equations
 - Passive transport equation

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions 00
Shallow Water Equa	ations				
Summa	ary				

• Shallow Water Equations

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
Shallow Water Equa	ations				
Recall					

3D $\vec{v} = (u, v, w)$ $\nabla = (\partial_x, \partial_y, \partial_z)$: Gradient $\nabla \cdot \vec{v} = \partial_x u + \partial_y v + \partial_z w$: Divergence

2D $\vec{v} = (u, v)$ $\nabla = (\partial_x, \partial_y)$: Gradient $\nabla \cdot \vec{v} = \partial_x u + \partial_y v$: Divergence $\vec{k} \times \vec{v}$: Cross product between \vec{k} and \vec{v} (rotate \vec{v} ccw 90 degrees). $\vec{k} \times (u, v) = (-v, u)$

Dynamics 000000000 Shallow Water Equations

<u>3D to 2D dynamics</u>

3D Incompressibility (constant density):

$$abla \cdot ec{m{v}} = m{0}, \quad (
ho =
ho_0)$$

Hydrostatic balance:

$$\frac{\partial p}{\partial z} = -\rho_0 g,$$

Free surface $h_T(x, y, t)$ where $h_T = h_0 + h$, with $h_0(x, y)$ topography, h(x, y, t) fluid depth.

$$\int_{z}^{h_{T}} \frac{\partial p}{\partial z} dz = -\int_{z}^{h_{T}} \rho_{0} g dz$$
$$p(z) = \rho_{0} g(h_{T} - z) + \underbrace{p(h_{T})}_{\text{Constant}}$$

Pressure gradient:

$$abla p =
ho_0 g
abla h_T$$

Horizontal Momentum Equations ($\vec{v} = (u, v)$):

$$\frac{\partial \vec{v}}{\partial t} + \underbrace{(\vec{v} \cdot \nabla)\vec{v}}_{\text{nonlinear advection}} = \underbrace{-f\vec{k} \times \vec{v}}_{\text{Coriolis}} \underbrace{-g\nabla(h+h_0)}_{\text{Pressure}}$$

(f-plane approximation)

3D to 2D dynamics

3D Incompressibility :

$$\nabla \cdot \vec{v} = \partial_x u + \partial_y v + \partial_z w = 0,$$

$$\partial_z w = -\partial_x u - \partial_y v$$

Free surfave must have w velocity:

$$\frac{Dh_T}{Dt} = w(x, y, h_T, t)$$

Topography height must have w₀ velocity:

$$\frac{Dh_0}{Dt} = w(x, y, h_0, t) \Rightarrow w(x, y, h_0, t) = \vec{v} \cdot \nabla h_0$$

Integrate 3D incompressibility:

$$\int_{h_0}^h \partial_z w dz = -\int_{h_0}^h (\partial_x u + \partial_y v) dz$$

$$w_h - w_0 = -(h - h_0)\nabla \cdot \vec{v}$$

2D Continuity equation:

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0$$

Shallow Water Equations - Advective form

$$\vec{v}(x, y, t) = (u(x, y, t), v(x, y, t))$$

 $h(x, y, t) = h_T(x, y, t) - h_0(x, y)$

2D Continuity equation:

2D Horizontal Momentum Equations:

(f-plane approximation)

Shallow Water Equations

Shallow Water Equations - Vector invariant form

Split nonlinear advection ($\vec{v} = (u, v)$):

$$(ec{v}\cdot
abla)ec{v}=(
abla imesec{v}) imesec{v}+rac{1}{2}
abla\left(ec{v}\cdotec{v}
ight)$$

Relative and absolute vorticities:

$$\zeta = \vec{k} \cdot (\nabla \times \vec{v}), \qquad \eta = \zeta + f$$

Kinetic energy:

$$K = \frac{1}{2} \left(\vec{v} \cdot \vec{v} \right)$$

Bernoulli potential:

$$B=K+g(h+h_0)$$

Vector invariant momentum equations :

$$\frac{\partial \vec{\mathbf{v}}}{\partial t} + \eta \vec{\mathbf{k}} \times \vec{\mathbf{u}} = -\nabla \mathbf{B}$$

Exercise: Use expanded equation to show the equation transformation
Shallow Water Equations

Shallow water equations on the sphere

Vector invariant form:

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0$$

$$rac{\partial ec{m{v}}}{\partial t} + \eta ec{m{k}} imes ec{m{v}} = -
abla m{K} - m{g}
abla (h+h_0)$$

- \vec{v} is the 3D velocity vector tangent to the sphere
- $f = 2\Omega \sin(\theta)$
- ∇ gradient on tangent plane
- \vec{k} unit vector point out of the sphere

Many properties: Conserves mass, energy, enstrophy, Coriolis neutral in energy budget, normal modes - inertia-gravity waves, Rossby waves, etc...

Shallow Water Equations

Shallow water equations with PV

Explicitly include the potential vorticity:

 $q = \eta/h$

into SWE:

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0$$
$$\frac{\partial \vec{v}}{\partial t} + q\vec{k} \times (h\vec{v}) = -\nabla K - g\nabla (h + h_0)$$

PV conservation

bitrary Polygonal grids

FV Continuity equation - C-Grid

Summary

- FV Continuity equation C-Grid
- FV Momentum Equations D-Grid
- FV Full C-Grid

FV 2D FV

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV Continuity equation - C-Grid

Plane vs Quasi uniform grids

Arakawa, A., & Lamb, V. R. (1977)

Dynamics 000000000000 Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV Continuity equation - C-Grid

FV on C-grid - Continuity

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0$$

$$\frac{1}{|V_{ij}|} \int_{V_{ij}} \frac{\partial h}{\partial t} dV = -\frac{1}{|V_{ij}|} \int_{V_{ij}} \nabla \cdot (h\vec{v}) dV$$
$$H_{ij} = \frac{1}{|V_{ij}|} \int_{V_{ij}} h \, dV$$

$$\frac{d H_{ij}}{dt} = -\frac{1}{|V_{ij}|} \int_{V_{ij}} \nabla \cdot (h\vec{v}) dV$$

$$(\text{Div Trm}) = -\frac{1}{|V_{ij}|} \int_{\partial V_{ij}} nv \cdot nav$$
$$= -\frac{1}{\Delta x \Delta y} (\int_{\mathsf{E}} hu - \int_{\mathsf{W}} hu)$$

 $-\frac{1}{\Delta x \Delta y} (\int_{N} hv - \int_{S} hv)$

W=West, E=East, N=North, S=South

V 2D FV

000 0000000

Logically rectangular schemes

Arbitrary Polygonal grid: 000000000000000 Conclusions 00

FV Continuity equation - C-Grid

FV on C-grid - Dimension Splitting

$$\frac{d H_{ij}}{dt} = -\underbrace{\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{E}} hu - \int_{\mathsf{W}} hu \right)}_{\text{Mean flux in x direction}} - \underbrace{\frac{1}{\Delta x \Delta y} \left(\int_{\mathsf{N}} hv - \int_{\mathsf{S}} hv \right)}_{\text{Mean flux in y direction}}$$
Integrating from t_n to t_{n+1} and dividing by Δt , leads to:
$$H_{ij}(t_{n+1}) = H_{ij}(t_n) - \underbrace{\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} hu - \int_{\mathsf{W}} hu \right)}_{\text{Mean flux in x direction over time}} - \underbrace{\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} hv - \int_{\mathsf{S}} hv \right)}_{\text{Mean flux in y direction over time}}$$

FV method with dimension splitting (used in FV3, for example):

$$H_{ij}^{n+1} = H_{ij}^n + F + G$$

where

$$F \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{E}} hu - \int_{\mathsf{W}} hu \right)$$
$$G \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} \left(\int_{\mathsf{N}} hv - \int_{\mathsf{S}} hv \right)$$

W=West, E=East, N=North, S=South

Method

Apply 2D PPM advection method on dimensionally split F and G

Logically rectangular schemes

Arbitrary Polygonal grid

Conclusions 00

FV Continuity equation - C-Grid

FV - FV3 scheme for continuity

Dimension split Fluxes

$$H^{n+1} = H^n + F(H^n + \frac{1}{2}g(H^n)) + G(H^n + \frac{1}{2}f(H^n))$$

where

$$f(H^{n}, u^{*}) \approx -\Delta t \overline{u^{*}}^{X} \frac{\partial H}{\partial x},$$

$$g(H^{n}, v^{*}) \approx -\Delta t \overline{v^{*}}^{Y} \frac{\partial H}{\partial y},$$

$$F(H^{n}, u^{*}) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} \left(\int_{\mathsf{E}} hu - \int_{\mathsf{W}} hu \right)$$

$$G(H^{n}, v^{*}) \approx -\frac{\Delta t}{\Delta x \Delta y} \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} \left(\int_{\mathsf{N}} hv - \int_{\mathsf{S}} hv \right)$$

(u*, v*) are time averaged normal velocities

PPM or MUSCL for F and G
 Lin & Rood (1996), Putman (2007)

Summary

-V 2D FV

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV Momentum Equations - D-Grid

FV on D-grid - Momentum Equation

$$rac{\partial \vec{v}}{\partial t} + \eta \vec{k} imes \vec{v} = -
abla B, \qquad B = K + g(h + h_0)$$

$$\frac{\partial u}{\partial t} = +\eta v - \partial_x B$$
$$\frac{\partial v}{\partial t} = -\eta u - \partial_y B$$

FV3 uses a D-grid: Prognostic variables are

- H: Cell averaged depth in centre of cell
- (*U*, *V*): Edge integrated winds tangent to cell edges

C-Grid

Advection is done on C-grid. How are (U, V) converted to C-Grid (u^*, v^*) ?

FV 2D FV 00000000 0000000000

0000000000

Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV Momentum Equations - D-Grid

FV on D-grid - Momentum Equation

D-Grid favours calculation of vorticity, but we need C-grid quantities for FV-continuity

 Interpolate tangent winds to normal winds

$$u_c = \overline{u}^{xy}$$
$$v_c = \overline{v}^{xy}$$

- Advance equations in half step (\Delta t/2) to obtain h*, u*, v* time/space averaged diagnostics on C-Grid (Details in next slides)
- Use C-grid quantities to advance full step to t_{n+1}

Arbitrary Polygonal grid

Conclusions 00

FV Momentum Equations - D-Grid

Vorticity on D-Grid

$$\zeta = \vec{k} \cdot (\nabla \times \vec{v}), \qquad \eta = \zeta + f$$

FV vorticity (Div/Vort Theorem)

$$Z = \frac{1}{|V|} \int_{V} \zeta + f \, dS$$

$$= \frac{1}{|V|} \int_{V} \vec{k} \cdot (\nabla \times \vec{v}) + f \, dS$$

$$= \frac{1}{|V|} \int_{\partial V(CCW)} \vec{v} \cdot \vec{t} + \frac{1}{|V|} \int_{V} f$$

$$= \frac{1}{\Delta x \Delta y} \left(\int_{E} v - \int_{W} v - \int_{N} u + \int_{S} u \right) + \vec{f}$$

$$= \frac{1}{\Delta x} \left(V_{E} - V_{W} \right) + \frac{1}{\Delta y} \left(-U_{N} + U_{S} \right) + \vec{f}$$

$$= \frac{1}{\Delta x} \delta_{x}(V) - \frac{1}{\Delta y} \delta_{y}(U) + \vec{f}$$

This is exact for U and V given! (No approximation)

FV Momentum Equations - D-Grid

Half step on D-Grid

All time operators (F, G, f, g) with step of $\Delta t/2$:

- Interpolations:
 - ·c: Average to edges (C-grid)
 - ·a: Average to cell centers (A-grid)
 - ·_b: Average to corners (B-grid)
- Depth at half step (Dimension split fluxes)

$$H^* = H^n + F(H^n + \frac{1}{2}g(H^n, v_a), u_c) + G(H^n + \frac{1}{2}f(H^n, u_a), v_c)$$

Advected vorticity

$$Z_c^{x/2} = Z_c^n + \frac{1}{2}f(Z_c^n, u_b^n), \quad Z_c^{y/2} = Z_c^n + \frac{1}{2}g(Z_c^n, v_b^n)$$

• C-grid winds at half step

$$u^{*} = u_{c}^{n} + \frac{\Delta t}{2} G_{x}(Z_{c}^{x/2}, v^{n}) - \frac{\Delta t}{2} \frac{1}{\Delta x} \delta_{x}(\kappa^{**} + g(H^{*} - H_{0}))$$
$$v^{*} = v_{c}^{n} - \frac{\Delta t}{2} F_{y}(Z_{c}^{y/2}, u^{n}) - \frac{\Delta t}{2} \frac{1}{\Delta y} \delta_{y}(\kappa^{**} + g(H^{*} - H_{0}))$$

Half step on D-Grid

• C-grid winds at half step

$$u^{*} = u_{c}^{n} + \frac{\Delta t}{2} \mathcal{Y}(Z_{c}^{x/2}, v^{n}) - \frac{\Delta t}{2} \frac{1}{\Delta x} \delta_{x}(\kappa^{**} + g(H^{*} + H_{0}))$$
$$v^{*} = v_{c}^{n} - \frac{\Delta t}{2} \mathcal{X}(Z_{c}^{y/2}, u^{n}) - \frac{\Delta t}{2} \frac{1}{\Delta y} \delta_{y}(\kappa^{**} + g(H^{*} + H_{0}))$$

Time averaged fluxes

$$\mathcal{Y}(Q, v) \approx \frac{2}{\Delta t} \int_{t_n}^{t_n + \Delta t/2} v Q, \quad \mathcal{X}(Q, u) \approx \frac{2}{\Delta t} \int_{t_n}^{t_n + \Delta t/2} u Q$$

Upwind biased kinetic energy

$$\kappa^{**} = \frac{1}{2}(\mathcal{X}(u_a, u_c) + \mathcal{Y}(v_a, v_c))$$

All operators (F, G, f, g, \mathcal{X} , \mathcal{Y}) with Δt step:

$$H^{n+1} = H^n + F(H^n + \frac{1}{2}g(H^n, \overline{v^*}^y), u^*) + G(H^n + \frac{1}{2}f(H^n, \overline{u^*}^x), v^*)$$

$$U^{n+1} = U^n + \Delta t \mathcal{Y}(Z^x, v^*) - \frac{\Delta t}{\Delta x} \delta_x (\kappa^* + g(\overline{H^{n+1} + H_0}^{xy}))$$
$$V^{n+1} = V^n - \Delta t \mathcal{X}(Z^y, u^*) - \frac{\Delta t}{\Delta y} \delta_y (\kappa^* + g(\overline{H^{n+1} + H_0}^{xy}))$$
$$\kappa^{**} = \frac{1}{2} (\mathcal{X}(\overline{u^*}^y, U^n) + \mathcal{Y}(\overline{v^*}^x, V^n))$$

Details in Lin & Rood (1997)

Dynamics 0000000000 Logically rectangular schemes

Arbitrary Polygonal grid

Conclusions 00

FV Momentum Equations - D-Grid

FV3 horizontal dynamics

Cubed sphere ou Lat-lon grid

Same idea but include coordinate metric terms!

Details on documentation of FV3 and references therein (Lin et al papers)

1D FV 0000000000	2D FV 0000000000000000	Dynamics 000000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
FV Full C-Grid					
Summa	ary				

4 Logically rectangular schemes

- FV Continuity equation C-Grid
- FV Momentum Equations D-Grid
- FV Full C-Grid

FV 2D FV Dynamics Logically rectange

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

FV Full C-Grid

FV on C-grid - Momentum Equation

$$\frac{\partial \vec{v}}{\partial t} + \eta \vec{k} \times \vec{v} = -\nabla B, \qquad B = K + g(h + h_0)$$

$$\frac{\partial u}{\partial t} = +\eta v - \partial_x B$$
$$\frac{\partial v}{\partial t} = -\eta u - \partial_y B$$

Integrate over dual edges E:

$$U=\frac{1}{\Delta x}\int_E u$$

Integrating *u* equation leads to:

$$\frac{d U}{dt} = \frac{1}{\Delta x} \int_{E} qhv - \frac{1}{\Delta x} \int_{E} \partial_{x} B$$

This is the circulation approach, but a flux approach exists too.

000000000

Logically rectangular schemes

Arbitrary Polygonal gr

Conclusions

FV Full C-Grid

FV on C-grid - The dual grid

The dual grid is formed by cells around corners of primal cells. **It forms a D-grid!**

$$\zeta = \vec{k} \cdot (\nabla \times \vec{v}), \qquad \eta = \zeta + f$$

FV vorticity (Div/Vort Theorem)

$$Z = \frac{1}{|V^*|} \int_{V^*} \zeta + f \, dS$$

$$= \frac{1}{|V^*|} \int_{V^*} \vec{k} \cdot (\nabla \times \vec{v}) + f \, dS$$

$$= \frac{1}{|V|} \int_{\partial V^*(CCW)} \vec{v} \cdot \vec{t} + \frac{1}{|V^*|} \int_{V^*} f$$

$$= \frac{1}{\Delta x \Delta y} \left(\int_{E^*} v - \int_{W^*} v - \int_{N^*} u + \int_{S^*} u \right) + \vec{f}$$

$$= \frac{1}{\Delta x} (V_E - V_W) + \frac{1}{\Delta y} (-U_N + U_S) + \vec{f}$$

$$= \frac{1}{\Delta x} \delta_x(V) - \frac{1}{\Delta y} \delta_y(U) + \vec{f}$$

Logically rectangular schemes

FV Full C-Grid

FV on C-grid - Gradient

∇B

2D FV Dynamics

Logically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

> u q u

> q u

q

FV Full C-Grid

FV on C-grid - Momentum Equation

$$rac{\partial \, ec{m{v}}}{\partial t} + \eta ec{m{k}} imes ec{m{v}} = -
abla m{B}, \qquad m{B} = m{K} + m{g}(m{h} + m{h}_0)$$

Prognostic Variables:

$$H = \frac{1}{\Delta x \Delta y} \int_{\text{Primal Cell}} h$$

$$U = \frac{1}{\Delta x} \int_{x-edge} u, \quad V = \frac{1}{\Delta y} \int_{y-edge} v$$

Diagostics:

$$\eta \approx \frac{1}{\Delta x} \delta_x(V) - \frac{1}{\Delta y} \delta_y(U) + \vec{f}'$$
$$\vec{k} \times (U, V) = (-V, U)$$
$$\nabla B = (\frac{1}{\Delta x} \delta_x B, \frac{1}{\Delta y} \delta_y B)$$
$$K = \frac{1}{2} \left(\overline{U^2}^x + \overline{V^2}^y \right)$$

Sadourny's energy conserving scheme

$$rac{\partial \, ec{v}}{\partial t} + qec{\kappa} imes (hec{v}) = -
abla B, \qquad B = \kappa + g(h+h_0)$$

Integrated discrete equations

Diagostics:

$$\eta pprox rac{1}{\Delta x} \delta_x(V) - rac{1}{\Delta y} \delta_y(U) + ar{f}$$
 $q = \eta/\overline{H}^{xy}$
 $B = K + g(H + H_0)$
 $K = rac{1}{2} \left(\overline{U^2}^x + \overline{V^2}^y
ight)$

1D FV 0000000000	2D FV 0000000000000000	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions OO
FV Full C-Grid					
Task of	the day				

Implement FV-C-grid Sadourny's energy conserving scheme!

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions 00
Quasi uniform grids					
Summa	ary				

Dynamics 0000000000 ogically rectangular schemes

Arbitrary Polygonal grids

Conclusions 00

Quasi uniform grids

Icosahedral grids

- May be used as triangular or Hexagonal/Pentagonal grid
- May be optimized (Spring Dynamics, Centroidal Voronoi, HR95)
- May be locally refined (Hierarchically or with Centroidal optimizations)
- But are not perfectly isotropic ...

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics 000000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions
2D FV					
Summa	ary				

Continuity equation

Horizontal continuity equation (Shallow water model)

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{u}) = 0$$

- h is the fluid depth
- $\vec{u} = (u, v)$ is the fluid horizontal velocity

Divergence theorem

$$\nabla \cdot (h\vec{u})|_{\vec{x}_0} \approx \frac{1}{|\Omega|} \int_{\Omega} \nabla \cdot (h\vec{u}) \, d\Omega$$

(DivThm) = $\frac{1}{|\Omega|} \int_{\partial\Omega} h\vec{u} \cdot \vec{n} \, d\partial\Omega$
 $\approx \frac{1}{|\Omega|} \sum_{i=1}^{n} h_i \vec{u}_i \cdot \vec{n}_i \, I_i.$

$$\frac{\partial h}{\partial t} = -\frac{1}{|\Omega|} \sum_{i=1}^{n} h_{i} \vec{u}_{i} \cdot \vec{n}_{i} I_{i}$$

Interpolations required to obtain h_i and \vec{u}_i depending on the staggering (A,C,...)

• Can we get all the nice properties obtained in finite difference models and also scalability?

Desired:

- Accurate
- Stable
- Conservative (mass, energy, PV, axial-angular momentum)
- Mimetic Properties (spurious modes)

And also:

- Scalable on supercomputers
- Arbitrary spherical grids

Is it possible?

Shallow Water Model

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{u}) = 0,$$
$$\frac{\partial \vec{u}}{\partial t} + qh\vec{u}^{\perp} = -g\nabla(h + h_0) - \nabla K,$$
Discrete model

$$\begin{array}{rcl} \displaystyle \frac{\partial \, h_i}{\partial t} & = & - D_i, \\ \displaystyle \frac{\partial \, u_e}{\partial t} & = & - Q_e^{\perp} - G_e, \end{array}$$

•
$$h_i = \frac{1}{|\Omega|} \int_{\Omega} h$$

• $u_e = \frac{1}{|e|} \int_{\text{tr-edge}} \vec{v} \cdot \vec{n}_e$

- D_i discrete version of $\nabla \cdot (h\vec{u})$
- G_e discrete version of $\nabla(g(h+b)+K)$
- Q_e^{\perp} discrete version of $qh\vec{u}^{\perp}$

See TRSK Thuburn et al (2009) Ringler et al (2010) Used in MPAS

Arbitrary Polygonal grids 2D FV **Discrete operators** Divergence Theorem: \vec{n}_3 Ω $D_i = rac{1}{A_i} \sum h_e u_e n_{ei} l_e,$ Divergence Theorem" for Vorticity: $\zeta_{v} = \frac{1}{A_{v}} \sum u_{e} t_{ev} d_{e},$ + Midpoint of Voronoi cell edges Potential Vorticity: Interpolate h to triangle centers \vec{n} Kinetic Energy - Energy conserving x_{e} (TRSK) - in general inconsistent: x_v $K_i = \frac{1}{4A_i} \sum I_e \, d_e \, u_e^2$

Arbitrary Polygonal grids 00000000000000 2D FV **Discrete operators** \vec{n}_{1} \vec{n}_6 \vec{x}_0 \vec{n}_3 Ω Perpendicular term (TRSK): \vec{n}_{4} $\label{eq:Qell} \mathcal{Q}_{e}^{\perp} = \sum_{\scriptscriptstyle \gamma'} \textit{w}_{ee'} \textit{h}_{e'} \textit{u}_{e'} \textit{q}_{ee'},$ + Midpoint of Voronoi cell edges $w_{ee'} = c_{ee'} \frac{l_{e'}}{d_e} \left(\frac{1}{2} - \sum_{i} \frac{A_{iv}}{Ai} \right) n_{e'i},$

Gradient - Fund Thm of Calculus

$$G_e = (B_i - B_j)/d_e$$

 \vec{t}_e \vec{n}_e

FV 2D FV 00000000 000000

2D FV

00000000 00

ogically rectangular schemes

Arbitrary Polygonal grids

Conclusions

Accuracy Summary

	Order of Accuracy			
Operator \Method	TRSK SCVT	TRSK HR95	MODF HR95	
Divergence	0	1	1	
Vorticity	1	1	1	
Kinetic energy	0	1	2*	
Gradient	-1	0	1	
Perp	1	0	1	
Overall	0*	0	1	

See Peixoto (2016)

Properties of TRSK

- Mass conservation
- Accurate representation of geostrophic balance (C stag)
- Curl-free pressure gradient
- Energy conservation of pressure terms
- Energy conserving Coriolis term
- Conservation of total energy
- Steady geostrophic modes (f-sphere)
- Compatible discretization of PV
- Local operators
- Arbitrary orthogonal grids

Issue: Very low order (Inconsistent)

Obs: On rectangular grids, this reproduces a scheme similar to Sadourny's (1975) energy conserving scheme! (2nd order accurate)

Barotropicaly Unstable Jet - with perturbation - PV

Play with iModel! https://github.com/pedrospeixoto/iModel

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions ●O
Conclusions					
Summa	ary				

1D FV 0000000000	2D FV 000000000000000000000000000000000000	Dynamics 00000000000	Logically rectangular schemes	Arbitrary Polygonal grids	Conclusions O
Conclusions					
Conclusion					

"All models are wrong but some are useful"

- George Box

Thank you!

```
ppeixoto@usp.br
www.ime.usp.br/~pedrosp
```