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History

Beginning

Lewis Fry Richardson (1922) Weather Prediction by Numerical
Process

Primitive equations
Finite differences (staggered E-grid)
4 vertical levels
Regional: Europe
2 years of (hand) calculation
Problems with initial data

Lynch, P. (1999). Richardson’s marvelous forecast. In The life cycles of extratropical cyclones (pp.

61-73). American Meteorological Society, Boston, MA.
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History

Early days

1950-1960 - Beginning of regular computer aided forecasting

Computers, ENIAC
More/better surveillance data
Primitive equations
Finite differences
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Dynamics

Governing equations - Dynamics

Compressible Euler equations for atmosphere (ideal gas) in vector
form:

Du
Dt

= −2Ω× u− 1
ρ
∇p + g + Fr (Momentum)

Dρ
Dt

= −ρ∇ · u (Continuity)

cv
DT
Dt

= −p
ρ
∇ · u (Thermodynamics)

u = (u, v ,w): wind velocity
p: pressure
ρ: density
T : temperature
D/Dt = ∂/∂t + u · ∇: Material derivative
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Dynamics

Governing equations

Compressible Euler
Hydrostatic vs Non-hydrostatic
Shallow atmosphere vs Deep atmosphere

Primitive equations: hydrostatic and shallow atmosphere
Shallow water equations
Quasigeostrophic equations
Barotropic vorticity equations
Passive transport equation
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1D Transport

Basic Finite Difference

Example: Transport equation 1D :

∂q
∂t

+ u
∂q
∂x

= 0

Finite differences: Change partial derivatives with finite deviations

∂q
∂x
≈ qi+1 − qi−1

2∆x

Main concerns: Accuracy and stability.
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Global Models

Global Latitude and Longitude Models

Latitude and Longitude Grids
with Finite Differences

Traditional Eulerian
Stability usually requires ∆t ∝ ∆x
Pole requires ∆t very small

Semi-Lagrangian semi-implicit
Allows large ∆t
Solve a very large linear system at each
time-step
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Global Models

EndGame - UK MetOffice

Even Newer Dynamics for General
Atmospheric Modelling of the
Environment - Met. Office
Global latitude - longitude grid
Differences on C-Grid (with some Finite
Volume)
Semi-implicit Semi-Lagrangian
Two-time level scheme - iterations for
correction
Non Hydrostatic / Deep Atmosphere
Terrain Following (Height based) Vertical
Coordinate
Operational ( 17 km resolution from
07/2014 - time-step 450 s)
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Global Models

Problems...

Weather forecasting needs to be done within a short time windows (1
or 2 hours wall clock time)

Massively Distributed Memory Parallel Machines
Pole communicates with many other computer nodes
A lot of global communication required for the solution of the
global linear system
Limited scalability on large supercomputers (cannot do the
forecast within the time window)

MetOffice Cray XC40 supercomputer with 460,000 compute cores (December 2016)
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Main idea

Spectral methods

Emerged around 1960-1970.
Derivatives are calculated in spectral space
Fourier Transforms

q(x) =
∑

k

q̂k e2πikx

Derivatives (∂q
∂x ):

Given a vector of values of q = [qi ]
Calculate Fast Fourier Transform FFT to obtain q̂ = [q̂k ]
Calculate derivatives (in spectral space, simply multiply by 2πik )
Return to physical space with Inverse FFT

1970s: Viability for Atmosphere shown by Eliasen et al (1970) &
Orszag (1970)
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1D Transport

1D transport

1D transport with constant speed (u) and periodic boundaries:

∂q
∂t

+ u
∂q
∂x

= 0

Substituting the Fourier Series q(t , x) =
∑

k q̂k (t)e2πikx into the
transport equation, results in

∑
k

∂q̂k (t)
∂t

e2πikx + u
∑

k

q̂k (t)
∂e2πikx

∂x
= 0

Using that ∂e2πikx

∂x = 2πike2πikx we have

∑
k

(
∂q̂k (t)
∂t

+ 2πikuq̂k (t)
)

e2πikx = 0
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1D Transport

1D transport

1D transport with constant speed (u):

∂q
∂t

+ u
∂q
∂x

= 0

in spectral space is solved for every k (wavenumer) as

∂q̂k (t)
∂t

+ 2πikuq̂k (t) = 0

No more spatial derivatives - it is an ODE!
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1D Transport

Algorithm

1D transport with constant speed (u):
1 FFT q at initial time to obtain q̂k (t0)

2 Solve ∂q̂k (t)
∂t + 2πikuq̂k (t) = 0 for every k with your favourite

time-stepping scheme to obtain q̂(t) for future times
3 IFFT q̂(t) to obtain q(t)

Very accurate space derivatives!
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1D Transport

Nonlinear example

1D transport with variable speed (v(x)):

∂q
∂t

+ v(x)
∂q
∂x

= 0

How to calculate the transform of v(x)∂q
∂x and make use of derivatives

in spectral space? Transform each one separately and combine?

q(t , x) =
∑

k

q̂k (t)e2πikx

v(x) =
∑

l

v̂le2πilx

v(x)
∂q
∂x

=
∑

k

∑
l

2πik v̂l q̂k (t)e2πilxe2πikx

Using this makes the method computationally intense ...
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1D Transport

Nonlinear - pseudo-spectral

1D transport with variable speed (v(x)):

∂q
∂t

+ v(x)
∂q
∂x

= 0

For each time step:
1 Calculate de FFT of q(t) at current time to obtain q̂(t)
2 Calculate the derivative in spectral space for each mode:

q̂d
k (t) = 2πik q̂k (t)

3 Convert back to physical space and multiply v with qd for each
grid point.

4 Calculate the FFT of vqd to obtain [(̂vqd )k ].
5 Solve for future times

∂q̂k (t)
∂t

+ (v̂qd )k (t) = 0

6 Calculate IFFT of q̂(t + ∆t) to obtain q(t + ∆t).
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Global Models

Spectral methods

What about doing this on the sphere?
Spherical harmonics: Fourier expansion for each latitude circle,
Legendre polinomials on meridians

Υm
n (λ, θ) = e−imλPm

n (sin θ)

Pm
n (µ) =

1√
2

(1− µ2)|m|/2

2nn!

dn+|m|(1− µ2)

dµn+|m| .
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Global Models

Spectral methods

Spherical harmonics with Fast Fourier Transform and “Fast”
Legendre tramsforms
Pseudo-spectral method
Avoids the requirement of special treatment at the poles
Semi-implicit is easier in spectral space
With also Semi-Langrangian : allows large ∆t !
Very accurate!
Used in most operational Weather Forecasting models and in
many Climate models (BAM, IFS, GFS, ...).
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Global Models

IFS Model

Integrated Forecasting System -
ECMWF
Global Spectral Model - Triangular
Truncation
Gaussian Reduced (Linear) Grid
Semi-implicit Semi-Lagrangian
Two-time level scheme
Developed Fast Legendre
Transforms
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Global Models

Problems...

Most of the computational time is spent solving the Spherical
Harmonics transform (Legendre + Fourier).
This part implies in a global communication, which reduces its
scalability
We might not be able to fit the necessary time windows for very
high resolution models.
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1D Transport

Basic Finite Volume

Example: Transport equation 1D :

∂q
∂t

+ u
∂q
∂x

= 0

Finite Volume: Integrate over cells!∫ xi+1/2

xi−1/2

∂q
∂t

dx = −
∫ xi+1/2

xi−1/2

u
∂q
∂x

dx

d
dt

∫ xi+1/2

xi−1/2

q(t , x)dx = −uq(t , xi+1/2)︸ ︷︷ ︸
Right Flux

+ uq(t , xi−1/2)︸ ︷︷ ︸
Left Flux

See LeVeque - FV for Hyperbolic Problems
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1D Transport

Integrated quantities

Finite Volume (mean quantity):

Qi =
1

∆x

∫ xi+1/2

xi−1/2

q(t , x)dx

dQi (t)
dt

= − 1
∆x

δx (uq(t , xi ))︸ ︷︷ ︸
Mean Fluxes

, δxq(x) = q(x +∆x/2)−q(x−∆x/2),

Integrate over time∫ tn+1

tn

dQi (t)
dt

dt = − 1
∆x

∫ tn+1

tn
δx (uq(t , xi )) dt

Qi (tn+1) = Qi (tn)− 1
∆x

δx

∫ tn+1

tn
uq(t , xi )dt︸ ︷︷ ︸

F

How to calculate F? This defines different FV schemes.
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1D Transport

Transport equation 1D

Qn+1
i = Qn

i + F , F = − 1
∆x

δx

∫ tn+1

tn
uq(t , xi )dt

A first try at calculating F (explicit):

F ≈ F n = −∆t
∆x

δx (uq(tn, xi )) =
∆t
∆x

(
uq(tn, xi−1/2)− uq(tn, xi+1/2)

)
But our prognostic variables are now Qi , so q(tn, xi±1/2) have to be
calculated based on Qi . Example:

Qn+1
i = Qn

i +
∆t
∆x

(
u

Qn
i−1 + Qn

i

2
− u

Qn
i+1 + Qn

i

2

)
Looks like FD...but Q is an integrated quantity!
BTW: This FD scheme is unstable! Try it!
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1D Transport

Transport equation 1D

General form for explicit scheme:

Qn+1
i = Qn

i +
u∆t
∆x

(
Gi−1/2 −Gi+1/2

)
Where G is an interpolation operation

Gi±1/2 ≈ q(tn, xi±1/2)

Important: This general form always gives mass conserving
schemes, as left/right cell fluxes cancel out!!
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1D Transport

Transport equation 1D

An useful scheme: Lax-Friedrichs

Qn+1
i = Qn

i +
u∆t
∆x

(
Gi−1/2 −Gi+1/2

)
Gi−1/2 =

Qn
i−1 + Qn

i

2
− ∆x

2u∆t
(Qn

i −Qn
i−1)

Gi+1/2 =
Qn

i + Qn
i+1

2
− ∆x

2u∆t
(Qn

i+1 −Qn
i )

Qn+1
i =

Qn
i−1 + Qn

i+1

2
+

u∆t
∆x

(
Qn

i−1 −Qn
i+1

2

)
Try it out!
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1D Transport

Transport equation 1D

Another useful scheme (let u > 0): Upwind

Qn+1
i = Qn

i +
u∆t
∆x

(
Gi−1/2 −Gi+1/2

)
Flux coming from the left:

Gi−1/2 = Qn
i−1

Gi+1/2 = Qn
i

Qn+1
i = Qn

i +
u∆t
∆x

(
Qn

i−1 −Qn
i
)

Try it out!
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1D Transport

Task 1

Problem:
∂q
∂t

+ u
∂q
∂x

= 0, x ∈ (0,1), t > 0,

with

u = 1, q(0, x) = q0(x) =

{
1, x ∈ [1/4,2/4]

0, otherwise

and periodic boundary conditions (q(t ,0) = q(t ,1)).
Task:

Look into and implement 3 schemes: the unstable, LF, upwind
Test with different ∆t , ∆x .
Plots with error vs dt and dx.
Exact solution is q(t , x) = q0(x − t)

Remember: Use Qi , average quantities!!!

If you found this easy, try out the spectral scheme for the same problem and compare
results.
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Global Models

Quasi uniform grids

Icosahedral
(triangular /
hexagonal)
Cubed Sphere
Yin-Yang
Grids
Reduced
Gaussian grid
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Global Models

Continuity equation

Horizontal continuity equation (Shallow water model)
∂ h
∂t

+∇ · (h~u) = 0

h is the fluid depth
~u = (u, v) is the fluid horizontal velocity
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Global Models

Divergence theorem

1
|Ω|

∫
Ω

∂ h
∂t

dΩ = − 1
|Ω|

∫
Ω

∇ · (h~u)dΩ

d
dt

(
1
|Ω|

∫
Ω

h dΩ

)
︸ ︷︷ ︸

Hi Mean depth

= − 1
|Ω|

∫
∂Ω

h~u · ~n d∂Ω︸ ︷︷ ︸
Normal fluxes

Mid point rule integration:

d Hi

dt
= − 1
|Ω|
∑

e

he~ue · ~ne le

Interpolations required to obtain he and ~ue depending on the
staggering (A,C,...)
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Global Models

Problems...

Can we get all the nice properties obtained in finite difference
models, or the great accuracy of spectral schemes, and also
scalability?

Desired:
1 Accurate
2 Stable
3 Conservative (mass, energy, PV, axial-angular momentum)
4 Mimetic Properties (spurious modes)

And also:
Scalable on supercomputers
Arbitrary spherical grids

Is it possible?

Let’s see some models with Finite Volume or Finite Differences on
quasi uniform grids...
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Global Models

ICON

Icosahedral non-hydrostatic
MPI-M and DWD
Triangular C grid
Conservation of mass
Highly scalable
Hierarchically local refinement
Spring dynamics optimization

ICON-IAP (University of Rostock): Uses
Hexagons
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Global Models

NICAM

Nonhydrostatic ICosahedral
Atmospheric Model
RIKEN, JAMSTEC, University of Tokyo
Hexagonal/pentagonal A grid
Spring dynamics
Highly scalable (3.5km, 15s)
Operational
JCP 2008 paper: Global cloud resolving
simulations
https://earthsystemcog.org/
projects/dcmip-2012/nicam

https://earthsystemcog.org/projects/dcmip-2012/nicam
https://earthsystemcog.org/projects/dcmip-2012/nicam
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Global Models

MPAS

Model for Prediction Across Scales
NCAR and Los Alamos Nat Lab
Spherical Centriodal Voronoi
Tesselations (Smooth local refinement )
Voronoi C grid (Hexagonal/Pentagonal)
Fully mimetic
Highly scalable
Non-hydrostatic
MWR 2012 paper: Multiscale
Nonhydrostatic Atmospheric Model
http://mpas-dev.github.io/

http://mpas-dev.github.io/
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Global Models

FV3

Finite Volume Cube (3)
Geophysical Fluid Dynamics
Laboratory-NOAA
Shallow Atmosphere (plans for deep)
Gnomonic Cubed - non orthogonal
Finite Volume
D-grid, with C-grid winds used to
compute fluxes
Vertical mass based Lagrangian
Refinement: stretching and two-way
nested grid
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Global Models

OLAM

Ocean Land Atmosphere Model
University of Miami / Colorado State
University
Non-hydrostatic / Deep Atmosphere
Triangular / Hexagonal grids (possible
refinements)
Vertical Coordinate / Cut Cells
Operational - US Environmental
Protection Agency
Split / Explicit time-stepping
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Global Models

IFS-FV

ECMWF - IFS-FV : Finite Volume schemes from CFD models -
Pantha-Rhei Project
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Global Models

UZIM

Unified Z-grid Icosahedral Model
Colorado State University, Fort Collins
Non-hydrostatic
Heikes and Randall (1995) grid
optimization
Vorticity-Divergence Z-grid (Randall
(1994))
Less computational modes
Multigrid solver
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Global Models

NIM

Non-hydrostatic Icosahedral Model
NOAA/ESRL
GPU and MIC(Intel)
Icosahedral - optimized - hexag/pentag
Unstaggered finite-volume (A-grid)
Local coodinate system - Flow following
Time: RK4
HEVI
Vertical : Height based
Shallow Atmosphere
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FE basics

Finite elements

Traditional Finite element
Spectral Elements
Discontinuous Galerkin
Mixed finite elements

Details not discussed in this course...
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Global Models

Gung Ho project- UK MetOffice

Mixed Finite Elements - Fully mimetic - Cubed Sphere grid
Finite Volumes advection
Challenges: Quadrature - Mass Matrix inversion - Solver - ....
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Global Models

CAM-SE Model

Community Atmosphere Model -
Spectral Element - NCAR
Operational - Hydrostatic - Shallow
Atmosphere
Continuous Galerkin Formulation -
Cubic Polynomials
Gauss-Lobato Quadrature
Runge-Kutta time integration
Hybrid Vertical coordinate (terrain
following)
Hyperviscosity
Highly Scalable parallelism
Hydrostatic
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Global Models

NUMA

NRL (Navy)
Element-based Galerkin methods
(continuous or discontinuous high-order)
Mesoscale (limited-area) or global
model
Grid: Any rectangular based (cubed
sphere)
Multiple methods (modular): IMEX, RK,
...
Highly scalable
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Conclusions

That is all for today

“All models are wrong but some are useful”

— George Box

Thank you!

ppeixoto@usp.br
www.ime.usp.br/~pedrosp

ppeixoto@usp.br
www.ime.usp.br/~pedrosp
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