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Beginning

Lewis Fry Richardson (1922) Weather Prediction by Numerical
Process

Primitive equations

Finite differences (staggered E-grid)
4 vertical levels

Regional: Europe

2 years of (hand) calculation
Problems with initial data

Lynch, P. (1999). Richardson’s marvelous forecast. In The life cycles of extratropical cyclones (pp.
61-73). American Meteorological Society, Boston, MA.
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Early days

@ Computers, ENIAC

@ More/better surveillance data
@ Primitive equations

@ Finite differences

ENIAC
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Dynamics

Governing equations - Dynamics

Compressible Euler equations for atmosphere (ideal gas) in vector

form:
Du -2Q xu-— 1VFH— g + F, (Momentum)
Dt P
Dp -
i —pV - u (Continuity)
DT
Cv—r = —BV - u(Thermodynamics)
Dt p

@ u = (u,v,w): wind velocity

@ p: pressure

@ p: density

@ T: temperature

@ D/Dt = 0/0t +u - V: Material derivative
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Dynamics

Governing equations

@ Compressible Euler

e Hydrostatic vs Non-hydrostatic
@ Shallow atmosphere vs Deep atmosphere

@ Primitive equations: hydrostatic and shallow atmosphere
o Shallow water equations
e Quasigeostrophic equations
e Barotropic vorticity equations
e Passive transport equation
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1D Transport

Basic Finite Difference

Example: Transport equation 1D :

Finite differences: Change partial derivatives with finite deviations

99 _ Qiv1 — Qi—1
ox~ 2Ax
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Main concerns: Accuracy and stability.
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Global Models

Global Latitude and Longitude Models

Latitude and Longitude Grids
with Finite Differences

@ Traditional Eulerian
o Stability usually requires At oc Ax
o Pole requires At very small

@ Semi-Lagrangian semi-implicit
o Allows large At

@ Solve a very large linear system at each
time-step
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Global Models

EndGame - UK MetOffice

@ Even Newer Dynamics for General
Atmospheric Modelling of the
Environment - Met. Office

@ Global latitude - longitude grid

@ Differences on C-Grid (with some Finite
Volume)

@ Semi-implicit Semi-Lagrangian

@ Two-time level scheme - iterations for
correction

@ Non Hydrostatic / Deep Atmosphere

@ Terrain Following (Height based) Vertical
Coordinate

@ Operational ( 17 km resolution from
07/2014 - time-step 450 s)
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Global Models

Problems...

Weather forecasting needs to be done within a short time windows (1
or 2 hours wall clock time)

Massively Distributed Memory Parallel Machines
@ Pole communicates with many other computer nodes
@ A lot of global communication required for the solution of the
global linear system
@ Limited scalability on large supercomputers (cannot do the
forecast within the time window)

MetOffice Cray XC40 supercomputer with 460,000 compute cores (December 2016)



Spectral methods
[1e}

Main idea

Summary

e Spectral methods
@ Main idea




Spectral methods
oce

Main idea

Spectral methods

Emerged around 1960-1970.
@ Derivatives are calculated in spectral space
@ Fourier Transforms

Q(X) _ Z ake&rikx
k

e Derivatives (29):
e Given a vector of values of q = [q]
e Calculate Fast Fourier Transform FFT to obtain § = [Q«]
o Calculate derivatives (in spectral space, simply multiply by 2 ik)
@ Return to physical space with Inverse FFT

@ 1970s: Viability for Atmosphere shown by Eliasen et al (1970) &
Orszag (1970)
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1D Transport

1D transport

1D transport with constant speed (u) and periodic boundaries:

Substituting the Fourier Series q(t, x) = >, gk (t)€™* into the
transport equation, results in

aqk g2mikx
2T ¢
k
Using that 2£™ — 2ike?™** we have

Z (8‘75; ) + 2rikudi )> e2mikx _

k

a e27r/kx
=0
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1D Transport

1D transport

1D transport with constant speed (u):

in spectral space is solved for every k (wavenumer) as

08k(t)
ot

+ 2rikudy(t) = 0

No more spatial derivatives - it is an ODE!
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1D Transport

Algorithm

1D transport with constant speed (u):
Q@ FFT gat initial time to obtain gx(t)
@ Solve aqk ) 4 2mikuqk(t) = 0 for every k with your favourite
time- stepplng scheme to obtain g(t) for future times
© IFFT g(t) to obtain q(t)
Very accurate space derivatives!
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1D Transport

Nonlinear example

1D transport with variable speed (v(x)):

How to calculate the transform of v(x)g—j and make use of derivatives
in spectral space? Transform each one separately and combine?

X) — Z ak(t)eZ'n'ikx
k
_ z \A//ez“”"
Z Z ikt quk 27rI/X 27'rIkX

Using this makes the method computationally intense ...
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1D Transport

Nonlinear - pseudo-spectral

1D transport with variable speed (v(x)):

For each time step:

@ Calculate de FFT of g(t) at current time to obtain q(f)

@ Calculate the derivative in spectral space for each mode:
gd(t) = 2mik gk (t)

© Convert back to physical space and multiply v with g9 for each
grid point.

@ Calculate the FFT of vg? to obtain [(/vq7)k].

@ Solve for future times

2940 | (vgoy(t) = 0

@ Calculate IFFT of g(t + At) to obtain g(t + At).
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Global Models

Spectral methods

What about doing this on the sphere?
@ Spherical harmonics: Fourier expansion for each latitude circle,
Legendre polinomials on meridians

TH(X,0) = e ™ P (sin 6)

1 (1= )2 greim(1 - y2)

m —
Pn (/.L) - E onpl du’““”ﬂ
NI ¥e <
07 o
ot ot X
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Global Models

Spectral methods

@ Spherical harmonics with Fast Fourier Transform and “Fast”
Legendre tramsforms

@ Pseudo-spectral method

@ Avoids the requirement of special treatment at the poles
@ Semi-implicit is easier in spectral space

@ With also Semi-Langrangian : allows large At!

@ Very accurate!

@ Used in most operational Weather Forecasting models and in
many Climate models (BAM, IFS, GFS, ...).
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Global Models

IFS Model

Integrated Forecasting System -
ECMWF

Global Spectral Model - Triangular
Truncation

Gaussian Reduced (Linear) Grid
Semi-implicit Semi-Lagrangian
Two-time level scheme

Developed Fast Legendre
Transforms

Introduction - A history
i of the deterministic 10-day i gt
Integrated Forecast System (IFS) over ~28 years at ECMWF:

¢ 1983: T63 (~316km)
¢ 1987: T 106 (~188km)

¢ 1991: T 213 (~95km)

¢ 1998: T,319 (~63km)

4 2000: T,511 (~39km)

¢ 2006: T,799 (~25km)

¢ 2010: T,1279 (~16km)

. T,2047 (~10km) Hy ic, ized

4 2020-??7?: (~1-10km) N y ic, explicit deep
different cloud-microphysics and ization,
different dy ics-physics i i
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Global Models

Problems...

@ Most of the computational time is spent solving the Spherical
Harmonics transform (Legendre + Fourier).

@ This part implies in a global communication, which reduces its
scalability

@ We might not be able to fit the necessary time windows for very
high resolution models.
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1D Transport

Basic Finite Volume

Example: Transport equation 1D :

Finite Volume: Integrate over cells!

Xit1/2 @q Xi+1/2 aq
| e ugrex

i—1/2 i—1/2

d Xit1/2
g [ attxox = - uat xe) + ualtxve)
Xi—1/2

Right Flux Left Flux

See LeVeque - FV for Hyperbolic Problems
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1D Transport

Integrated quantities

Finite Volume (mean quantity):

1 Xiy1/2
Q,‘ = E /XI’V2 q(t, X)dX
agi(t) 1 ‘ _ iy
g = axoxualtx)),  5xq(x) = g(x+Ax/2)—q(x—Ax/2),

Mean Fluxes

Integrate over time

fni1 dQ,'(l‘) 1 tn+1
A i dt_—MA 5, (ug(t, x))) it

1

tn+1
Qtn1) = Qit) 5 0 / uq(t, x;)at

F
How to calculate F? This defines different FV schemes.
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1D Transport

Transport equation 1D

tn+1
Q=P+ Fenb [ gttt

A first try at calculating F (explicit):

At At
F~F"= —B@ (uq(t, xi)) = Ax (uq(tn, Xi—1/2) — uq(tn, Xit1,2))

But our prognostic variables are now Q;, so q(ty, Xj+1,2) have to be
calculated based on Q;. Example:

QL+ QL+
2 2

At
Q?-H = an + H (U

Looks like FD...but Q is an integrated quantity!
BTW: This FD scheme is unstable! Try it!
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1D Transport

Transport equation 1D

General form for explicit scheme:

UuAt
Qrl=aQn+ Ax (Gi—1/2 — Giy1/2)

Where G is an interpolation operation
Git1/2 = q(tn, Xiz1/2)

Important: This general form always gives mass conserving
schemes, as left/right cell fluxes cancel out!!
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1D Transport

Transport equation 1D

An useful scheme: Lax-Friedrichs

UAt
QM =af + Ax (Gi—1/2 — Giy12)
QL +Q"  Ax
Gi_tjp = — 12 - - 2uAt(Q’n_ 1)
Q'+ Qf Ax
Giy1y2 = — 5 o 2uAt( " — Q)
QL+ Q! ult Q" — Q7
n+1 _ -1 i+1 i—1 i+1
Qr = 2 T Ax ( 2 )

Try it out!
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1D Transport

Transport equation 1D

Another useful scheme (let u > 0): Upwind

UAt
QM =ap+ Ax (Gi—1/2 — Giy1/2)
Flux coming from the left:
Gi12 = QL4
Gip12=Qf
1 UAt
Q= af+ o (Qr - an)

Try it out!
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1D Transport

Problem:

with

u=1 0,x) =
+900,%) = a 0, otherwise

(x) = {1, x € [1/4,2/4]

and periodic boundary conditions (g(t,0) = g(t, 1)).
Task:

@ Look into and implement 3 schemes: the unstable, LF, upwind
@ Test with different At, Ax.
@ Plots with error vs dt and dx.
@ Exact solution is g(t, x) = qo(x — 1)
Remember: Use Q;, average quantities!!!

If you found this easy, try out the spectral scheme for the same problem and compare
results.
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Global Models

Quasi uniform grids

D
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W
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Global Models

Continuity equation

Horizontal continuity equation (Shallow water model)

oh ~

E +V- (hU) =0
@ his the fluid depth
@ U= (u,v) is the fluid horizontal velocity
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Global Models

Divergence theorem

1 oh
— | =dQ = /V (hu)d
Q] Jo Ot \QI
a (1 /th) = — hi - 0 doQ
€| \QI o9
H; Mean depth Normal fluxes

Mid point rule integration:

dH; 1 .
W:_ﬁgheue.ne/e

Interpolations required to obtain h, and u, depending on the
staggering (A,C,...)
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Global Models

Problems...

@ Can we get all the nice properties obtained in finite difference
models, or the great accuracy of spectral schemes, and also
scalability?

Desired:
@ Accurate
© Stable
@ Conservative (mass, energy, PV, axial-angular momentum)
© Mimetic Properties (spurious modes)
And also:
@ Scalable on supercomputers
@ Arbitrary spherical grids
Is it possible?

Let’'s see some models with Finite Volume or Finite Differences on
quasi uniform grids...
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Global Models

ICON

@ Icosahedral non-hydrostatic

@ MPI-M and DWD

@ Triangular C grid

@ Conservation of mass

@ Highly scalable

@ Hierarchically local refinement
@ Spring dynamics optimization

ICON-IAP (University of Rostock): Uses
Hexagons
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Global Models

NICAM

@ Nonhydrostatic ICosahedral
Atmospheric Model

@ RIKEN, JAMSTEC, University of Tokyo

@ Hexagonal/pentagonal A grid

@ Spring dynamics

@ Highly scalable (3.5km, 15s)

@ Operational

@ JCP 2008 paper: Global cloud resolving
simulations

@ https://earthsystemcog.org/
projects/dcmip-2012/nicam


https://earthsystemcog.org/projects/dcmip-2012/nicam
https://earthsystemcog.org/projects/dcmip-2012/nicam
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Global Models

MPAS

@ Model for Prediction Across Scales
@ NCAR and Los Alamos Nat Lab

Spherical Centriodal Voronoi
Tesselations (Smooth local refinement )

Voronoi C grid (Hexagonal/Pentagonal)
Fully mimetic

Highly scalable

Non-hydrostatic

MWR 2012 paper: Multiscale
Nonhydrostatic Atmospheric Model

http://mpas—dev.github.io/


http://mpas-dev.github.io/
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Global Models

FV3

@ Finite Volume Cube (®)

@ Geophysical Fluid Dynamics
Laboratory-NOAA

@ Shallow Atmosphere (plans for deep)
@ Gnomonic Cubed - non orthogonal
@ Finite Volume

@ D-grid, with C-grid winds used to
compute fluxes

@ Vertical mass based Lagrangian

@ Refinement: stretching and two-way
nested grid
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Global Models

OLAM

@ Ocean Land Atmosphere Model

@ University of Miami / Colorado State
University

@ Non-hydrostatic / Deep Atmosphere

@ Triangular / Hexagonal grids (possible
refinements)

@ Vertical Coordinate / Cut Cells

@ Operational - US Environmental
Protection Agency

@ Split / Explicit time-stepping
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Global Models

IFS-FV

ECMWF - IFS-FV : Finite Volume schemes from CFD models -
Pantha-Rhei Project

dual resolution [km]
dual resolution [km] 2 £ 550
B 25 50

"Classical” reduced Gaussian grid (N24) ~ reduced octahedral Gaussian grid (N24)
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Global Models

UZIM

@ Unified Z-grid Icosahedral Model

@ Colorado State University, Fort Collins

@ Non-hydrostatic

@ Heikes and Randall (1995) grid
optimization

@ Vorticity-Divergence Z-grid (Randall
(1994))

@ Less computational modes
@ Multigrid solver
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NIM

@ Non-hydrostatic Icosahedral Model

o NOAA/ESRL

@ GPU and MIC(Intel)

@ Icosahedral - optimized - hexag/pentag
@ Unstaggered finite-volume (A-grid)

@ Local coodinate system - Flow following
@ Time: RK4

e HEVI

@ Vertical : Height based

@ Shallow Atmosphere
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FE basics

Finite elements

@ Traditional Finite element
@ Spectral Elements

@ Discontinuous Galerkin
@ Mixed finite elements

Details not discussed in this course...
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Global Models

Gung Ho project- UK MetOffice

GungHo!

Met Office

Globally

Uniform
Next
Generation
Highly

NATURAL .
Optimized ENVIRONMENT Science & Technology
RESEARCH COUNCIL '@ Facilities Council

© Grown copyright Met Office

@ Mixed Finite Elements - Fully mimetic - Cubed Sphere grid
@ Finite Volumes advection

@ Challenges: Quadrature - Mass Matrix inversion - Solver - ....



Finite Elements
[e]e] le)

Global Models

CAM-SE Model

@ Community Atmosphere Model -
Spectral Element - NCAR

@ Operational - Hydrostatic - Shallow
Atmosphere

@ Continuous Galerkin Formulation -
Cubic Polynomials SES

@ Gauss-Lobato Quadrature
@ Runge-Kutta time integration

@ Hybrid Vertical coordinate (terrain
following) b © o

@ Hyperviscosity
@ Highly Scalable parallelism
@ Hydrostatic
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Global Models

NUMA

@ NRL (Navy)

@ Element-based Galerkin methods )
(continuous or discontinuous high-order)

@ Mesoscale (limited-area) or global
model

@ Grid: Any rectangular based (cubed
sphere)
@ Multiple methods (modular): IMEX, RK,
Non-hydrostatic Unified Model

f the At h
@ Highly scalable of the Atmosphere



Conclusions
[ 1e}

Conclusions

Summary

e Conclusions
@ Conclusions



Conclusions
oe

Conclusions

That is all for today

“All models are wrong but some are useful”

— George Box

Thank you!

ppeixotolusp.br
www.ime.usp.br/~pedrosp


ppeixoto@usp.br
www.ime.usp.br/~pedrosp
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