Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00

Numerical methods for global dynamical core development

Traditional and modern approaches

Pedro S. Peixoto

Applied Mathematics Department University of Sao Paulo

> July 2019 CPTEC

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO

Summary

- 2 Finite differences
- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

Introduction ●OOOOO	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
History					
Summ	ary				

Introduction 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
History					
Begini	ning				

Lewis Fry Richardson (1922) *Weather Prediction by Numerical Process*

- Primitive equations
- Finite differences (staggered E-grid)
- 4 vertical levels
- Regional: Europe
- 2 years of (hand) calculation
- Problems with initial data

Lynch, P. (1999). Richardson's marvelous forecast. In The life cycles of extratropical cyclones (pp. 61-73). American Meteorological Society, Boston, MA.

1950-1960 - Beginning of regular computer aided forecasting

- Computers, ENIAC
- More/better surveillance data
- Primitive equations
- Finite differences

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Dynamics					
Summ	ary				

Governing equations - Dynamics

Compressible Euler equations for atmosphere (ideal gas) in vector form:

$$\begin{aligned} \frac{D\mathbf{u}}{Dt} &= -2\,\boldsymbol{\Omega} \times \mathbf{u} - \frac{1}{\rho}\nabla\rho + \mathbf{g} + \mathbf{F}_r \text{ (Momentum)} \\ \frac{D\rho}{Dt} &= -\rho\nabla\cdot\mathbf{u} \text{ (Continuity)} \\ c_v \frac{DT}{Dt} &= -\frac{\rho}{\rho}\nabla\cdot\mathbf{u} \text{ (Thermodynamics)} \end{aligned}$$

• $\mathbf{u} = (u, v, w)$: wind velocity

- p: pressure
- ρ: density
- T: temperature
- $D/Dt = \partial/\partial t + \mathbf{u} \cdot \nabla$: Material derivative

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Dynamics					
Gover	nina eau	ations			

- Compressible Euler
 - Hydrostatic vs Non-hydrostatic
 - Shallow atmosphere vs Deep atmosphere
- Primitive equations: hydrostatic and shallow atmosphere
 - Shallow water equations
 - Quasigeostrophic equations
 - Barotropic vorticity equations
 - Passive transport equation

Introduction 000000	Finite differences ●OOOOO	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
1D Transport					
Summ	ary				

Basic	Finite Di	fference			
1D Transport					
Introduction 000000	Finite differences O●○○○○	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO

Example: Transport equation 1D :

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0$$

Finite differences: Change partial derivatives with finite deviations

20

Main concerns: Accuracy and stability.

Introduction 000000	Finite differences ○○●○○○	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Global Models					
Summ	ary				

Introduction 000000 Finite differences

Spectral methods

Finite volume methods

Finite Elements

Conclusions 00

Global Models

Global Latitude and Longitude Models

Latitude and Longitude Grids with Finite Differences

- Traditional Eulerian
 - Stability usually requires $\Delta t \propto \Delta x$
 - Pole requires Δt very small
- Semi-Lagrangian semi-implicit
 - Allows large Δt
 - Solve a very large linear system at each time-step

Introduction

Finite differences

Spectral methods

Finite volume methods

Finite Elements

Conclusions 00

Global Models

EndGame - UK MetOffice

- Even Newer Dynamics for General Atmospheric Modelling of the Environment - Met. Office
- Global latitude longitude grid
- Differences on C-Grid (with some Finite Volume)
- Semi-implicit Semi-Lagrangian
- Two-time level scheme iterations for correction
- Non Hydrostatic / Deep Atmosphere
- Terrain Following (Height based) Vertical Coordinate
- Operational (17 km resolution from 07/2014 - time-step 450 s)

Introduction 000000	Finite differences ○○○○○●	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Global Models					
Proble	ems				

Weather forecasting needs to be done within a short time windows (1 or 2 hours wall clock time)

Massively Distributed Memory Parallel Machines

- Pole communicates with many other computer nodes
- A lot of global communication required for the solution of the global linear system
- Limited scalability on large supercomputers (cannot do the forecast within the time window)

MetOffice Cray XC40 supercomputer with 460,000 compute cores (December 2016)

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Main idea					
Summ	ary				

- 1D Transport
- Global Models

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Main idea					
Spect	tral metho	ods			

Emerged around 1960-1970.

- Derivatives are calculated in spectral space
- Fourier Transforms

$$q(x) = \sum_k \hat{q}_k e^{2\pi i k x}$$

- Derivatives $\left(\frac{\partial q}{\partial x}\right)$:
 - Given a vector of values of $\boldsymbol{q} = [\boldsymbol{q}_i]$
 - Calculate Fast Fourier Transform FFT to obtain $\hat{\boldsymbol{q}} = [\hat{q}_k]$
 - Calculate derivatives (in spectral space, simply multiply by 2πik)
 - Return to physical space with Inverse FFT
- 1970s: Viability for Atmosphere shown by Eliasen et al (1970) & Orszag (1970)

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
1D Transport					
Summ	lary				

- 1D Transport
- Global Models

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
1D Transport					
1D tra	Insport				

1D transport with constant speed (u) and periodic boundaries:

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0$$

Substituting the Fourier Series $q(t, x) = \sum_k \hat{q}_k(t) e^{2\pi i k x}$ into the transport equation, results in

$$\sum_{k} \frac{\partial \hat{q}_{k}(t)}{\partial t} e^{2\pi i k x} + u \sum_{k} \hat{q}_{k}(t) \frac{\partial e^{2\pi i k x}}{\partial x} = 0$$

Using that $\frac{\partial e^{2\pi i kx}}{\partial x} = 2\pi i k e^{2\pi i k x}$ we have

$$\sum_{k} \left(\frac{\partial \hat{q}_{k}(t)}{\partial t} + 2\pi i k u \hat{q}_{k}(t) \right) e^{2\pi i k x} = 0$$

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
1D Transport					
1D tra	Insport				

1D transport with constant speed (u):

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0$$

in spectral space is solved for every k (wavenumer) as

$$rac{\partial \hat{q}_k(t)}{\partial t} + 2\pi i k u \hat{q}_k(t) = 0$$

No more spatial derivatives - it is an ODE!

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
1D Transport					
Algori	thm				

1D transport with constant speed (u):

- FFT **q** at initial time to obtain $\hat{q}_k(t_0)$
- Solve $\frac{\partial \hat{q}_k(t)}{\partial t} + 2\pi i k u \hat{q}_k(t) = 0$ for every *k* with your favourite time-stepping scheme to obtain $\hat{q}(t)$ for future times

IFFT
$$\hat{\boldsymbol{q}}(t)$$
 to obtain $\boldsymbol{q}(t)$

Very accurate space derivatives!

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
1D Transport					
Nonlir	near exar	nple			

1D transport with variable speed (v(x)):

$$\frac{\partial q}{\partial t} + v(x)\frac{\partial q}{\partial x} = 0$$

How to calculate the transform of $v(x)\frac{\partial q}{\partial x}$ and make use of derivatives in spectral space? Transform each one separately and combine?

$$q(t,x) = \sum_{k} \hat{q}_{k}(t) e^{2\pi i k x}$$
$$v(x) = \sum_{l} \hat{v}_{l} e^{2\pi i l x}$$
$$v(x) \frac{\partial q}{\partial x} = \sum_{k} \sum_{l} 2\pi i k \hat{v}_{l} \hat{q}_{k}(t) e^{2\pi i l x} e^{2\pi i k x}$$

Using this makes the method computationally intense ...

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
1D Transport					

Nonlinear - pseudo-spectral

1D transport with variable speed (v(x)):

$$\frac{\partial q}{\partial t} + v(x)\frac{\partial q}{\partial x} = 0$$

For each time step:

- **O** Calculate de FFT of $\boldsymbol{q}(t)$ at current time to obtain $\hat{\boldsymbol{q}}(t)$
- Calculate the derivative in spectral space for each mode: $\hat{q}_k^d(t) = 2\pi i k \hat{q}_k(t)$
- Convert back to physical space and multiply v with q^d for each grid point.
- Solution Calculate the FFT of $v q^d$ to obtain $[(vq^d)_k]$.
- Solve for future times

$$\frac{\partial \hat{q}_k(t)}{\partial t} + (\widehat{vq^d})_k(t) = 0$$

Solution Calculate IFFT of $\hat{\boldsymbol{q}}(t + \Delta t)$ to obtain $\boldsymbol{q}(t + \Delta t)$.

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
Global Models					
Summ	ary				

- 1D Transport
- Global Models

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					
Spect	ral metho	ods			

What about doing this on the sphere?

• Spherical harmonics: Fourier expansion for each latitude circle, Legendre polinomials on meridians

$$\Upsilon_n^m(\lambda,\theta) = e^{-im\lambda} P_n^m(\sin\theta)$$

$$\mathbf{P}_{n}^{m}(\mu) = \frac{1}{\sqrt{2}} \frac{(1-\mu^{2})^{|m|/2}}{2^{n}n!} \frac{d^{n+|m|}(1-\mu^{2})}{d\mu^{n+|m|}}.$$

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
Global Models					
Spect	ral metho	ods			

- Spherical harmonics with Fast Fourier Transform and "Fast" Legendre transforms
- Pseudo-spectral method
- Avoids the requirement of special treatment at the poles
- Semi-implicit is easier in spectral space
- With also Semi-Langrangian : allows large $\Delta t!$
- Very accurate!
- Used in most operational Weather Forecasting models and in many Climate models (BAM, IFS, GFS, ...).

Introduction 000000	Finite differences	Spectral methods ○○○○○○○○○○○●○	Finite volume methods	Finite Elements	Conclusions 00
Global Models					

IFS Model

- Integrated Forecasting System -ECMWF
- Global Spectral Model Triangular Truncation
- Gaussian Reduced (Linear) Grid
- Semi-implicit Semi-Lagrangian
- Two-time level scheme
- Developed Fast Legendre Transforms

Introduction – A history

- Resolution increases of the deterministic 10-day medium-range Integrated Forecast System (IFS) over ~28 years at ECMWF:
 - 1983: T 63 (~316km)
 - 1987: T 106 (~188km)
 - 1991: T 213 (~95km)
 - ♦ 1998: T_L319 (~63km)
 - ♦ 2000: T_L511 (~39km)
 - ♦ 2006: T_L799 (~25km)
 - ♦ 2010: T_L1279 (~16km)
 - ♦ 2015: TL2047 (~10km) Hydrostatic, parametrized convection
 - 2020-???: (~1-10km) Non-hydrostatic, explicit deep convection, different cloud-microphysics and turbulence parametrization, substantially different dynamics-physics interaction...

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					
Proble	ems				

- Most of the computational time is spent solving the Spherical Harmonics transform (Legendre + Fourier).
- This part implies in a global communication, which reduces its scalability
- We might not be able to fit the necessary time windows for very high resolution models.

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
1D Transport					
Summ	ary				

Global Models

Introduction 000000	Finite differences	Spectral methods	Finite volume methods ○●○○○○○○○○○○○○○○○○○○○	Finite Elements	Conclusions OO
1D Transport					
Rasic	Finite Va	lume			

Example: Transport equation 1D :

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0$$

Finite Volume: Integrate over cells!

See LeVeque - FV for Hyperbolic Problems

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
1D Transport					
	_				

Integrated quantities

Finite Volume (mean quantity):

$$Q_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(t,x) dx$$

Integrate over time

$$\int_{t_n}^{t_{n+1}} \frac{dQ_i(t)}{dt} dt = -\frac{1}{\Delta x} \int_{t_n}^{t_{n+1}} \delta_x \left(uq(t, x_i) \right) dt$$
$$Q_i(t_{n+1}) = Q_i(t_n) \underbrace{-\frac{1}{\Delta x} \delta_x \int_{t_n}^{t_{n+1}} uq(t, x_i) dt}_{F}$$

How to calculate F? This defines different FV schemes.

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
1D Transport					
Trans	port equa	ation 1D			

$$Q_i^{n+1} = Q_i^n + F, \qquad F = -\frac{1}{\Delta x} \delta_x \int_{t_n}^{t_{n+1}} uq(t, x_i) dt$$

A first try at calculating F (explicit):

$$F \approx F^n = -\frac{\Delta t}{\Delta x} \delta_x \left(uq(t_n, x_i) \right) = \frac{\Delta t}{\Delta x} \left(uq(t_n, x_{i-1/2}) - uq(t_n, x_{i+1/2}) \right)$$

But our prognostic variables are now Q_i , so $q(t_n, x_{i\pm 1/2})$ have to be calculated based on Q_i . Example:

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} \left(u \frac{Q_{i-1}^n + Q_i^n}{2} - u \frac{Q_{i+1}^n + Q_i^n}{2} \right)$$

Looks like FD...but *Q* is an integrated quantity! BTW: This FD scheme is unstable! Try it!

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
1D Transport					
Trans	port equa	ation 1D			

General form for explicit scheme:

$$Q_i^{n+1} = Q_i^n + \frac{u\Delta t}{\Delta x} \left(G_{i-1/2} - G_{i+1/2} \right)$$

Where G is an interpolation operation

$$G_{i\pm 1/2}\approx q(t_n,x_{i\pm 1/2})$$

Important: This general form always gives mass conserving schemes, as left/right cell fluxes cancel out!!

Introduction 000000	Finite differences	Spectral methods	Finite volume methods OOOOO●OOOOOOOOOOOOOOOOO	Finite Elements	Conclusions OO
1D Transport					
Trans	port equa	ation 1D			

An useful scheme: Lax-Friedrichs

$$Q_{i}^{n+1} = Q_{i}^{n} + \frac{u\Delta t}{\Delta x} \left(G_{i-1/2} - G_{i+1/2} \right)$$
$$G_{i-1/2} = \frac{Q_{i-1}^{n} + Q_{i}^{n}}{2} - \frac{\Delta x}{2u\Delta t} (Q_{i}^{n} - Q_{i-1}^{n})$$
$$G_{i+1/2} = \frac{Q_{i}^{n} + Q_{i+1}^{n}}{2} - \frac{\Delta x}{2u\Delta t} (Q_{i+1}^{n} - Q_{i}^{n})$$
$$Q_{i}^{n+1} = \frac{Q_{i-1}^{n} + Q_{i+1}^{n}}{2} + \frac{u\Delta t}{\Delta x} \left(\frac{Q_{i-1}^{n} - Q_{i+1}^{n}}{2} \right)$$

Try it out!

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
1D Transport					
Trans	oort equa	ation 1D			

Another useful scheme (let u > 0): Upwind

$$Q_i^{n+1} = Q_i^n + \frac{u\Delta t}{\Delta x} \left(G_{i-1/2} - G_{i+1/2} \right)$$

Flux coming from the left:

$$egin{aligned} G_{i-1/2} &= Q_{i-1}^n \ G_{i+1/2} &= Q_i^n \end{aligned}$$

$$Q_i^{n+1} = Q_i^n + \frac{u\Delta t}{\Delta x} \left(Q_{i-1}^n - Q_i^n \right)$$

Try it out!

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
1D Transport					
Task 1					

Problem:

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0, \quad x \in (0, 1), \ t > 0,$$

with

$$u = 1, \quad q(0, x) = q_0(x) = \begin{cases} 1, & x \in [1/4, 2/4] \\ 0, & ext{otherwise} \end{cases}$$

and periodic boundary conditions (q(t, 0) = q(t, 1)). Task:

- Look into and implement 3 schemes: the unstable, LF, upwind
- Test with different Δt , Δx .
- Plots with error vs dt and dx.
- Exact solution is $q(t, x) = q_0(x t)$

Remember: Use Q_i, average quantities!!!

If you found this easy, try out the spectral scheme for the same problem and compare results.

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Global Models					
Summ	ary				

Introduction

Finite differences

Spectral methods

Finite volume methods

Finite Elements

Conclusions 00

Global Models

Quasi uniform grids

- Icosahedral (triangular / hexagonal)
- Cubed Sphere
- Yin-Yang Grids
- Reduced Gaussian grid

Introduction	Finite differences	Spectral methods	Finite volume methods ○○○○○○○○●○○○○○○○○○○○○	Finite Elements	Conclusions 00
Global Models					

Continuity equation

Horizontal continuity equation (Shallow water model)

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{u}) = 0$$

- h is the fluid depth
- $\vec{u} = (u, v)$ is the fluid horizontal velocity

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
			000000000000000000000000000000000000000		
Global Models					

Divergence theorem

$$\frac{d H_i}{dt} = -\frac{1}{|\Omega|} \sum_e h_e \vec{u}_e \cdot \vec{n}_e \, l_e$$

Interpolations required to obtain h_e and \vec{u}_e depending on the staggering (A,C,...)

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements 000000	Conclusions
Global Models					
Proble	ems				

• Can we get all the nice properties obtained in finite difference models, or the great accuracy of spectral schemes, and also scalability?

Desired:

- Accurate
- Stable
- Conservative (mass, energy, PV, axial-angular momentum)
- Mimetic Properties (spurious modes)

And also:

- Scalable on supercomputers
- Arbitrary spherical grids

Is it possible?

Let's see some models with Finite Volume or Finite Differences on quasi uniform grids...

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					
ICON					

- Icosahedral non-hydrostatic
- MPI-M and DWD
- Triangular C grid
- Conservation of mass
- Highly scalable
- Hierarchically local refinement
- Spring dynamics optimization
- ICON-IAP (University of Rostock): Uses Hexagons

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions	
Global Models						
NICAM						

- Nonhydrostatic ICosahedral Atmospheric Model
- RIKEN, JAMSTEC, University of Tokyo
- Hexagonal/pentagonal A grid
- Spring dynamics
- Highly scalable (3.5km, 15s)
- Operational
- JCP 2008 paper: Global cloud resolving simulations
- https://earthsystemcog.org/ projects/dcmip-2012/nicam

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					

- Model for Prediction Across Scales
- NCAR and Los Alamos Nat Lab
- Spherical Centriodal Voronoi Tesselations (Smooth local refinement)
- Voronoi C grid (Hexagonal/Pentagonal)
- Fully mimetic

IVITAC

- Highly scalable
- Non-hydrostatic
- MWR 2012 paper: Multiscale Nonhydrostatic Atmospheric Model
- http://mpas-dev.github.io/

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					
FV/3					

- Finite Volume Cube (³)
- Geophysical Fluid Dynamics Laboratory-NOAA
- Shallow Atmosphere (plans for deep)
- Gnomonic Cubed non orthogonal
- Finite Volume
- D-grid, with C-grid winds used to compute fluxes
- Vertical mass based Lagrangian
- Refinement: stretching and two-way nested grid

OLAM

- Ocean Land Atmosphere Model
- University of Miami / Colorado State University
- Non-hydrostatic / Deep Atmosphere
- Triangular / Hexagonal grids (possible refinements)
- Vertical Coordinate / Cut Cells
- Operational US Environmental Protection Agency
- Split / Explicit time-stepping

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
Global Models					
IFS-F\	/				

ECMWF - IFS-FV : Finite Volume schemes from CFD models - Pantha-Rhei Project

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Global Models					
UZIM					

- Unified Z-grid Icosahedral Model
- Colorado State University, Fort Collins
- Non-hydrostatic
- Heikes and Randall (1995) grid optimization
- Vorticity-Divergence Z-grid (Randall (1994))
- Less computational modes
- Multigrid solver

Global Models			
Introduction	Finite differences	Spectral methods	

inite volume methods

Finite Elements

Conclusions 00

NIM

- Non-hydrostatic Icosahedral Model
- NOAA/ESRL
- GPU and MIC(Intel)
- Icosahedral optimized hexag/pentag
- Unstaggered finite-volume (A-grid)
- Local coodinate system Flow following
- Time: RK4
- HEVI
- Vertical : Height based
- Shallow Atmosphere

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements ●00000	Conclusions	
FE basics						
Summary						

Global Models

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements O●○○○○	Conclusions OO		
FE basics							
Finite elements							

- Traditional Finite element
- Spectral Elements
- Discontinuous Galerkin
- Mixed finite elements

Details not discussed in this course...

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements ○○●○○○	Conclusions OO	
Global Models						
Summary						

Introduction

Finite differences

Spectral methods

Finite volume methods

Finite Elements ○○○●○○ Conclusions 00

Global Models

Gung Ho project- UK MetOffice

- Mixed Finite Elements Fully mimetic Cubed Sphere grid
- Finite Volumes advection
- Challenges: Quadrature Mass Matrix inversion Solver

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements
				000000

CAM-SE Model

- Community Atmosphere Model -Spectral Element - NCAR
- Operational Hydrostatic Shallow Atmosphere
- Continuous Galerkin Formulation -Cubic Polynomials
- Gauss-Lobato Quadrature
- Runge-Kutta time integration
- Hybrid Vertical coordinate (terrain following)
- Hyperviscosity
- Highly Scalable parallelism
- Hydrostatic

Conclusions

Introduction	Finite differences	Spectral methods	Finite volume methods	Finite Elements ○○○○○●	Conclusions 00
Global Models					

NRL (Navy)

NUMA

- Element-based Galerkin methods (continuous or discontinuous high-order)
- Mesoscale (limited-area) or global model
- Grid: Any rectangular based (cubed sphere)
- Multiple methods (modular): IMEX, RK,

• • •

Highly scalable

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions •O	
Conclusions						
Summary						

Introduction 000000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions O
Conclusions					
That is all for today					

"All models are wrong but some are useful"

- George Box

Thank you!

```
ppeixoto@usp.br
www.ime.usp.br/~pedrosp
```