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Motivation 1 - the application perspective

@ Weather forecasts :
3D compressible Euler equations on the sphere
@ Important horizontal terms:
e Linear hyperbolic operator
@ Nonlinear advection
@ Desirable numerical properties:
o Large timestep sizes
e Accurate dispersion relations
@ Today’s state-of-the-art scheme (IFS-ECMWF):
e semi-Lagrangian
e semi-implicit linear operator (Crank-Nicolson)
e spectral (spherical harmonics)

How to improve wave dispersion damped by the Crank-Nicolson
scheme preserving large time steps of the semi-Lagrangian
semi-implicit?
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Motivation 2 - Exponential integration with nonlinear
advection

@ Exponential integrators solve accurately linear problems
o Usually allows very large timesteps

= LU, U(0) = Uy,

at
U(tn+1) = eAtLU(tn)7
@ For nonlinear equations
@ Usually nonlinearity limits timestep sizes

7 = LU+ N(). U0) = L,

tn+1
Ultper) = €MU(1) + e / e~ (s=LN(U(s))ds,
tn

How to treat N if dominated by nonlinear advection, in way to allow
large time step sizes?
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Semi-Lagrangian Exponential Integrator

Main Goal

Build a general semi-Lagranginan exponential class of schemes that
allow:

@ Precise solution of linear oscillations (hyperbolic)
@ Accurate representation of nonlinear advection
considering very large time step sizes
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Exponential integrators

Summary

e Exponential Integrators
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Exponential integrators

Non-linear exponential integration

Basic concept

Y W+ NU) L UO) = U
Linear Discrete  Nonlinear Discrete

If L does not depend on time, then
tn+1
Ultni) = 24U(E) + 5 [ e N(U(s))as.
tn
“variation-of-constants” formula.

Keep in mind that N(U) may include nonlinear advection v - VU
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Exponential integrators

Exponential-Time-Differencing (ETDRK)

Assume precise calculation of the matrix exponential

Moler and Van Loan, (2003) - Nineteen Dubious Ways to Compute the Exponential of a
Matrix, Twenty-Five Years Later

EDT1RK

ds
= TU(ty) + L1 (e — 1) N(U(th)) + O(AD),

Utn1) — eMU(tn)< / L‘d(e_(s_t"“”)ds> N(U(1) + O(A1)
th
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Exponential integrators

Second Order Exponential-Time-Differencing

EDT2RK

UM = po(AL)U™ + Aty (ALL)N(U™),
UM = UMY 4 Atpp(ALL) (N(U?“) - N(U”)) )
k
ok(2) = 27K (e — t_1(2)), :Z%

Limited time step size due to CFL of nonlinear advection.

Cox, S. M., & Matthews, P. C. (2002)
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Semi-Lagrangian integration

Summary

e Semi-Lagrangian integration
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Semi-Lagrangian integration

Oscillatory equations with nonlinear advection

Wivvu=- 1w + Ny

ot ~~

~—————" Linear oscilatory  Nonlinear
Advective nonlinear
DU(t, r(t o o .
DU _ wque, 7)) + Muie, 7(y)

N————
Material derivative

dFd(t) v(t,F(t), U(t, F(1))), F(0) = Fp.

r(t) describes a particle trajectory along the flow.
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Semi-Lagrangian integration

Semi-Lagrangian semi-implicit

Used in IFS-ECMWF model (European Centre for Medium-Range
Weather Forecasts)

Stable Extrapolation Two-Time-Level Scheme (SETTLS) of Hortal
(2002)

urtt —ur A

A = 5 (LU 4+ (LU)T) + N2,

N

where
@ X" is assumed to live in grid points.
@ X, denotes interpolation at departure points.
@ Extrapolation:

fn+1/2 — % ([2Nn _ qu]* 4 Nn) ,

@ SETTLS also proposes an iterative scheme to solve the
trajectory equation to calculate departure points from arrival grid
points (2nd order accurate)
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Semi-Lagrangian exponential

Summary

e Semi-Lagrangian exponential integration



Semi-Lagrangian exponential integration
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Semi-Lagrangian exponential

General formulation

DU(t, F(t . ~ .
DU _ wquge, ) + Muce, 7o)
Material derivative Linear oscilatory Nonlinear
If L commutes in time*
tri1 .
Ultnst, F(thsr)) = € U(ty, F(tn))+€20 / e (5=MLN(U(s, F(s)))ds+E,.
tn

where 7(t) defines a particle trajectory.

This is the basis for Semi-Lagrangian exponential integrator methods.

*If this is not the case, approximate versions can be built (e.g. constant in within each
time-step), so we have the error term E;.
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Semi-Lagrangian exponential

SL-EXP-SETTLS

The semi-Lagrangian exponential integrator:

tni1 .

U™t = "B U + et / e~ =L N(U(t, F(1))) dt.
tn

Stable Extrapolation Two-Time-Level Semi-Lag (Hortal et al 2002):

untt = glatyn % gLt [2Nn _ eLAthq} " %N”

x indicates calculation at departure points.

Can be simplified to use require only 2 exponentials per timestep.
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Semi-Lagrangian exponential

SL-ETDRK

SL-ETD1RK

UTH! = go(ALL) [U" + Aty (—AL)N(UM)?,

SL-ETD2RK
Upt! = UM + Dt po(AtL) |2 AL)N(UTT) — (v2(ALN(UM)Y]

where
Yo(AtL) = —po(—ALL) + p1(—ALL).

Can be coded to use only 2 exponentials/p evaluations per timestep.
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Semi-Lagrangian exponential

Remarks

Be careful when deriving such schemes!
@ Lack of commutation: e**U” # (eAtU")

@ Avoid application of operators on irregular grids
(departure/midpoints)
(p(ALL)N(U™)).
@ Operators on advected quantities are ok: e*-U”"
@ Simple midpoint rule:

tni1

A= At T(tn+1/2) [W(tn+1/2)]1tx
Ao At [T(tn+1/2)w(tn+1/2)]Jr

)

T(s)w(s)ds =~ {

in

1 interpolation to traj. midpoints
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Shallow water equations

Summary

e Shallow water equations
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Shallow water equations

Shallow Water Equations

Rotation non-linear SWE (f is rotation/Coriolis parameter):

U+ uux+vu, = fv—gny,

Vit+uvx+vy, = —fu-gny,

ne+unx+vn, = —n(ux + Vy) —n(ux + Vy)a
Nonlinear D/ Dt Linear £ Nonlinear N

@ Well established 2D test case for atmospheric dynamical models.

@ Linear waves can be solved very precisely with exponential of
linear terms.

@ Nonlinear advection can have long time steps with
semi-Lagrangian
@ Stability constraints related to nonlinear divergence (N).
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Shallow water equations

Exponential of £

Fourier basis operator symbol:
( 0 f —gik; ) A
LU; = —f 0 —gike | Ug,
—qjiky  —Tjiko 0
Eigen-decomposition:
eﬁ(iE) _ Qe"Qq,
Eigenvalues (A):
wi(k) =0, wy(k) =+i\/f2+giik -k,
 functions:

on(AtL(IK)) = Qpa(AtANQ,

* It is possible to do a similar exponential calculation on the sphere
with Spherical Harmonics!
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Shallow water equations

Methods

@ RK-FDC: Energy conversing finite differences C-grid with
Runge-Kutta

@ SL-SI-SETTLS: Semi-Lagrangian, semi-implicit (Crank-Nicolson)
spectral discretization.

@ SL-EXP-SETTLS: Exponential version of SL-SI-SETTLS

@ ETD2RK: Original ETD2RK scheme, with spectral in space.

@ SL-ETD2RK: Semi-Lagrangian version of ETD2RK

@ REF: Reference solution. 4th order Runge-Kutta forth order in
time, high resolution Eulerian spectral space.



Shallow water equations
0000®00000

Shallow water equations

Unstable jet on the plane

Vorticity REF t=10.0 days dt=000002

Initial conditions (stationary): z: 4e05
uxy) = win@ry/L) =t IReN |....
’E‘ZS
V(Xa y) =0 §20 0e+00%
f y 215
n(x,y) = —5/0 u(x, s)ds. IOW 2¢.05
Small Gaussian perturbation to > -4e-05
destabilize the flow. % 5 10 15 20 25 30 35 40

x (1000 km)
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Shallow water equations

Experiments with N = 0

5 =
At 1 day of integration - dominance of linear waves

4 SL-SI-SETTLS " N v SL-SI-SETTLS
1 SL-ETD2RK » - B SL-ETD2RK
1071+~ sLexpseTTLS # —— SLEXP-SETTLS SLSI-SETTLS
-»-- ETD2RK e 10°{ -=- ETD2RK -
10°
107
s s
510- i 10~
| gro” o
K ) z [—
» .
,/ o
1072 107 e
ETD2RK
107 “ 1074 »
762 16° 162 6

Timestep size (sec) Timestep size (sec)

SL-ETD2RK is identical to SL-EXP-SETTLS, since no nonlinear divergence.
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Shallow water equations
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Experiments with N = 0

At day 10

20.0
17.5
~15.0
Eias
€10.0
o
=z 75
> 50

Vorticity SL-EXP-SETTLS t=10.0 days dt=0225.0

5 10 15 20 25 30 35 40
X (1000 km)

Vorticity ETD2RK t=10.0 days dt=0225.0

5 10 15 20 25 30 35 40
x (1000 km)

4e-05
2e-05
0e+00%
-2e-05

-4e-05

SL-SI-SETTLS/SL-EXP-SETTLS/SL-ETD2RK identically looking
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Full SWE

Shallow water equations
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At day 1 of integration (dominance of linear waves)

4+ SL-SI-SETTLS
" RK-FDC
10%1 — SLETD2RK
== SLEXP-SETTLS
ETD2RK
10°
g
107!
%
3
=
1072
1072

10?

Timestep size (sec)

10°

RMSError
g

4+ SL-SI-SETTLS
RK-FDC

—e— SL-ETD2RK

-+ SLEXP-SETTLS

SLSISETTLS by

- ETD2RK
RK-FDC SLETD2RK
SLEXP-SETTLS
ETD2RK
102 10°

Timestep size (sec)
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Shallow water equations

Computational cost

SL-SI-SETTLS
101 ETD2RK
+ SL-ETD2RK

< + SL-EXP-SETTLS
b= RK-FDC
D2 1
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Wallclock time (sec)
Errors vs. wallclock time at day 1.
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Shallow water equations

Full SWE - Day 10

Vorticity SL-SI-SETTLS t=10.0 days dt=0900.0 Vorticity SL-ETD2RK t=10.0 days dt=0900.0

20.0 20.0
175
~15.0 -
Eis E
8 10.0 8
8 3
= 7. ey
> 5.0 >

-4e-05

0 5 10 15 20 2 10 15 20 4
X (1000 km) x (1000 km)

Vorticity ETD2RK t=10.0 days dt=0225.0

4e-05
~15.0 2e-05
0e+00%

> 5.0 -2e-05

10 15 20 2

X (1000 km)

10 15 20 2
x (1000 km)

Vorticity field (implicit diffusion on the nonlinear divergence term with
=256 x10m?s~")
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Summary

e Remarks
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Remarks

Main conclusion

@ Semi-Lagrangian coupling with Exponential Integration possible,
but requires a lot of careful design
o Better linear wave dispersion compared to Semi-Implicit
e Stability for large time-steps compared to Classic Exponential
Integration
e Energy from non-linear wave interaction may need to be controlled
(diffusion).
@ Under construction

e Connections with Lagrangian Laplace Transform Scheme

@ Spherical Shallow Water Model with Spherical Harmonics
Exponential

e Higher order semi-Lagrangian exponential (long term)

Semi-Lagrangian Exponential Integration
under 2nd round of review in SIAM Sci. Comp.
www.1ime.usp.br/~pedrosp
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Remarks

SWEET!

SWEET! Shallow Water Equation Environment for Tests, Awesome!

@ Bi-periodic plane and sphere

@ Spectral (Fourier/Spherical Harmonics) and finite-difference
schemes

@ Semi-Lagrangian (SETTLS)

@ PINT: PARAREAL, PFASST

@ Graphical user interface (GPU)

@ Easy-to-code in C++ (HPC hidden)
@ Open and collaborative

Main developer: Martin Schreiber
Developers: Pedro Peixoto, Andreas Schmitt, Francois Hamon

https://schreiberx.github.io/sweetsite/
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Remarks

Thank you! )

pedrosp@ime.usp.br
www.ime.usp.br/~pedrosp
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Remarks

General notation

Continuous initial value problem

d

?Ltj = L(u)+N(u), u(0)=up
Semi-Discrete (continuous in time)

(ZTLtj = LU+ N(U), U(0)= Uy,

Continuous with explicit nonlinear advection (v(u))

Du o0u -
oo T V-Vu=L(Uu)+N(u), u(0)=uo,
Associated Semi-discrete
DU(t, r(t o - . -
EUEAO) _ e 7o) + MU 7)), Ut Tt) = 2,
dr(t)
dt

= V(t,F(t), u(t, F(1))), F(0) =T.



