Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remark: 00000

Semi-Lagrangian Exponential Integration with application to the rotating shallow water equations

Pedro S. Peixoto

University of São Paulo

PDEs - 2019

with M. Schreiber (Technical University of Munich)

Fundings: Shell (ANP) Project Sao Paulo Research Foundation (FAPESP).

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks
•00					00000
Motivations					

Motivation 1 - the application perspective

- Weather forecasts : 3D compressible Euler equations on the sphere
- Important horizontal terms:
 - Linear hyperbolic operator
 - Nonlinear advection
- Desirable numerical properties:
 - Large timestep sizes
 - Accurate dispersion relations
- Today's state-of-the-art scheme (IFS-ECMWF):
 - semi-Lagrangian
 - semi-implicit linear operator (Crank-Nicolson)
 - spectral (spherical harmonics)

Goal1

How to improve wave dispersion damped by the Crank-Nicolson scheme preserving large time steps of the semi-Lagrangian semi-implicit?

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks
000					
Motivations					

Motivation 2 - Exponential integration with nonlinear advection

- Exponential integrators solve accurately linear problems
 - Usually allows very large timesteps

$$\frac{dU}{dt} = LU, \quad U(0) = U_0,$$
$$U(t_{n+1}) = e^{\Delta t L} U(t_n),$$

- For nonlinear equations
 - Usually nonlinearity limits timestep sizes

$$\frac{dU}{dt} = LU + N(U), \quad U(0) = U_0,$$

$$U(t_{n+1}) = e^{\Delta t L} U(t_n) + e^{\Delta t L} \int_{t_n}^{t_{n+1}} e^{-(s-t_n)L} N(U(s)) ds,$$

Goal2

How to treat *N* if dominated by nonlinear advection, in way to allow large time step sizes?

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks
000					
Motivations					

Semi-Lagrangian Exponential Integrator

Main Goal

Build a general semi-Lagranginan exponential class of schemes that allow:

- Precise solution of linear oscillations (hyperbolic)
- Accurate representation of nonlinear advection

considering very large time step sizes

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000		
Exponential integrators							
Sum	mary						

Motivations

- 2 Exponential Integrators
- Semi-Lagrangian integration
- Semi-Lagrangian exponential integration
- 5 Shallow water equations

6 Remarks

Non-	Non-linear exponential integration								
Exponential in	itegrators								
Motivations 000	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000				

Basic concept

$$\frac{dU}{dt} = \underbrace{LU}_{\text{Linear Discrete}} + \underbrace{N(U)}_{\text{Nonlinear Discrete}}, \quad U(0) = U_0$$

If L does not depend on time, then

$$U(t_{n+1}) = e^{\Delta t L} U(t_n) + e^{\Delta t L} \int_{t_n}^{t_{n+1}} e^{-(s-t_n)L} N(U(s)) ds,$$

"variation-of-constants" formula.

Keep in mind that N(U) may include nonlinear advection $\vec{v} \cdot \nabla U$

 Motivations
 Exponential Integrators
 Semi-Lagrangian integration
 Semi-Lagrangian exponential integration
 Shallow water equations
 Remarks

 coo
 coo

Assume precise calculation of the matrix exponential Moler and Van Loan, (2003) - Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later

EDT1RK

$$U(t_{n+1}) = e^{\Delta tL} U(t_n) - \left(\int_{t_n}^{t_{n+1}} L^{-1} \frac{d \left(e^{-(s-t_{n+1})L} \right)}{ds} ds \right) N(U(t_n)) + \mathcal{O}(\Delta t)$$

= $e^{\Delta tL} U(t_n) + L^{-1} \left(e^{\Delta tL} - I \right) N(U(t_n)) + \mathcal{O}(\Delta t),$

Seco	Second Order Exponential-Time-Differencing								
Exponential in	ntegrators								
Motivations 000	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000				

EDT2RK

$$U_1^{n+1} = \varphi_0(\Delta tL)U^n + \Delta t \varphi_1(\Delta tL)N(U^n),$$

$$U^{n+1} = U_1^{n+1} + \Delta t \varphi_2(\Delta tL) \left(N(U_1^{n+1}) - N(U^n)\right),$$

$$\varphi_k(z) = z^{-k}(e^z - t_{k-1}(z)), \quad t_k = \sum_{l=0}^k \frac{z^l}{l!}$$

Limited time step size due to CFL of nonlinear advection. Cox, S. M., & Matthews, P. C. (2002)

Motivations	Exponential Integrators	Semi-Lagrangian integration ●OO	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000			
Semi-Lagrangian integration								
Sum	Summary							

Motivations

- 2 Exponential Integrators
- Semi-Lagrangian integration
- Semi-Lagrangian exponential integration
- 5 Shallow water equations

6 Remarks

Motivations	Exponential Integrators	5

Semi-Lagrangian integration

Gemi-Lagrangian exponential integration

Shallow water equations Remarks

Semi-Lagrangian integration

Oscillatory equations with nonlinear advection

$$\underbrace{\frac{\partial U}{\partial t} + \vec{v} \cdot \nabla U}_{\text{Advective nonlinear}} = \underbrace{LU}_{\text{Linear oscilatory}} + \underbrace{\tilde{N}(U)}_{\text{Nonlinear}}$$
$$\underbrace{\frac{DU(t, \vec{r}(t))}{Dt}}_{\text{Material derivative}} = L(U(t, \vec{r}(t))) + \tilde{N}(U(t, \vec{r}(t)))$$

$$\frac{d\vec{r}(t)}{dt} = \vec{v}(t, \vec{r}(t), U(t, \vec{r}(t))), \quad \vec{r}(0) = \vec{r}_0.$$

 $\vec{r}(t)$ describes a particle trajectory along the flow.

Motivations Exponential Integrators S

Semi-Lagrangian integration

Semi-Lagrangian exponential integration

Shallow water equations Remarks

Semi-Lagrangian integration

Semi-Lagrangian semi-implicit

Used in IFS-ECMWF model (European Centre for Medium-Range Weather Forecasts)

Stable Extrapolation Two-Time-Level Scheme (SETTLS) of Hortal (2002)

$$\frac{U^{n+1}-U_*^n}{\Delta t} = \frac{1}{2} \left((LU)^{n+1} + (LU)_*^n \right) + \tilde{N}^{n+1/2},$$

where

- X^{n+1} is assumed to live in grid points.
- X_{*} denotes interpolation at departure points.
- Extrapolation:

$$\tilde{N}^{n+1/2} = \frac{1}{2} \left(\left[2\tilde{N}^n - \tilde{N}^{n-1} \right]_* + \tilde{N}^n \right),$$

 SETTLS also proposes an iterative scheme to solve the trajectory equation to calculate departure points from arrival grid points (2nd order accurate)

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000			
Semi-Lagrangian exponential								
Sum	Summary							

Motivations

- 2 Exponential Integrators
- 3 Semi-Lagrangian integration
- 4 Semi-Lagrangian exponential integration
- 5 Shallow water equations

6 Remarks

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000				
Semi-Lagran	Semi-Lagrangian exponential								
Gene	General formulation								

If L commutes in time*

$$U(t_{n+1}, \vec{r}(t_{n+1})) = e^{\Delta t L} U(t_n, \vec{r}(t_n)) + e^{\Delta t L} \int_{t_n}^{t_{n+1}} e^{-(s-t_n)L} \tilde{N}(U(s, \vec{r}(s))) ds + E_L.$$

where $\vec{r}(t)$ defines a particle trajectory.

This is the basis for Semi-Lagrangian exponential integrator methods.

*If this is not the case, approximate versions can be built (e.g. constant in within each time-step), so we have the error term E_L .

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000			
Semi-Lagrang	Semi-Lagrangian exponential							
SL-E	SL-EXP-SETTLS							

The semi-Lagrangian exponential integrator:

$$U^{n+1} = e^{L\Delta t} (U)_*^n + e^{L\Delta t} \int_{t_n}^{t_{n+1}} e^{-(s-t_n)L} \tilde{N}(U(t, \vec{r}(t))) dt.$$

Stable Extrapolation Two-Time-Level Semi-Lag (Hortal et al 2002):

$$U^{n+1} = e^{L\Delta t}U_*^n + \frac{\Delta t}{2}e^{L\Delta t}\left[2\tilde{N}^n - e^{L\Delta t}\tilde{N}^{n-1}\right]_* + \frac{\Delta t}{2}\tilde{N}^n$$

* indicates calculation at departure points.

Can be simplified to use require only 2 exponentials per timestep.

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Semi-Lagran	gian exponential				
SL-E	TDRK				

SL-ETD1RK

$$U_1^{n+1} = \varphi_0(\Delta t L) \left[U^n + \Delta t \, \varphi_1(-\Delta t L) N(U^n) \right]_*^n,$$

SL-ETD2RK

$$U_2^{n+1} = U_1^{n+1} + \Delta t \varphi_0(\Delta t L) \left[\psi_2(\Delta t L) \mathcal{N}(U_1^{n+1}) - (\psi_2(\Delta t L) \mathcal{N}(U^n))_*^n \right],$$

where

$$\psi_2(\Delta tL) = -\varphi_2(-\Delta tL) + \varphi_1(-\Delta tL).$$

Can be coded to use only 2 exponentials/ φ evaluations per timestep.

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Semi-Lagrang	gian exponential				
Rem	arks				

Be careful when deriving such schemes!

- Lack of commutation: $e^{\Delta tL}U_*^n \neq (e^{\Delta tL}U^n)_*$
- Avoid application of operators on irregular grids (departure/midpoints) (φ(ΔtL)N(Uⁿ))_{*}
- Operators on advected quantities are ok: e^{∆tL}Uⁿ_{*}
- Simple midpoint rule:

$$\int_{t_n}^{t_{n+1}} T(s)w(s)\,ds \approx \begin{cases} A_1 = & \Delta t \ T(t_{n+1/2}) \left[w(t_{n+1/2})\right]_{\dagger} \times \\ A_2 = & \Delta t \ \left[T(t_{n+1/2})w(t_{n+1/2})\right]_{\dagger} \checkmark \end{cases}$$

† interpolation to traj. midpoints

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	r equations				
Sum	mary				

Motivations

- 2 Exponential Integrators
- 3 Semi-Lagrangian integration
- Semi-Lagrangian exponential integration
- 5 Shallow water equations

6 Remarks

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	equations				
Shall	ow Water	- Equations			

Rotation non-linear SWE (f is rotation/Coriolis parameter):

- Well established 2D test case for atmospheric dynamical models.
- Linear waves can be solved very precisely with exponential of linear terms.
- Nonlinear advection can have long time steps with semi-Lagrangian
- Stability constraints related to nonlinear divergence (\tilde{N}) .

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	requations				
Expc	onential of	\mathcal{L}			

Fourier basis operator symbol:

$$\mathcal{L} U_{ec{k}} = \left(egin{array}{ccc} 0 & f & -gik_1\ -f & 0 & -gik_2\ -ar{\eta}ik_1 & -ar{\eta}ik_2 & 0 \end{array}
ight) \hat{U}_{ec{k}},$$

Eigen-decomposition:

$$e^{\mathcal{L}(i\vec{k})} = Qe^{\Lambda}Q^{-1},$$

Eigenvalues (Λ):

$$\omega_f(\vec{k}) = 0, \quad \omega_g(\vec{k}) = \pm i \sqrt{f^2 + g \,\bar{\eta} \,\vec{k} \cdot \vec{k}},$$

 φ functions:

$$\varphi_n(\Delta t \mathcal{L}(i\vec{k})) = Q\varphi_n(\Delta t \Lambda)Q^{-1},$$

* It is possible to do a *similar* exponential calculation on the sphere with Spherical Harmonics!

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow wate	r equations				
Meth	nods				

- RK-FDC: Energy conversing finite differences C-grid with Runge-Kutta
- SL-SI-SETTLS: Semi-Lagrangian, semi-implicit (Crank-Nicolson) spectral discretization.
- SL-EXP-SETTLS: Exponential version of SL-SI-SETTLS
- ETD2RK: Original ETD2RK scheme, with spectral in space.
- SL-ETD2RK: Semi-Lagrangian version of ETD2RK
- REF: Reference solution. 4th order Runge-Kutta forth order in time, high resolution Eulerian spectral space.

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	equations				

Unstable jet on the plane

Initial conditions (stationary):

$$u(x, y) = u_0 \left(\sin(2\pi y/L_y) \right)^{81}$$

$$v(x, y) = 0$$

$$\eta(x, y) = -\frac{f}{g} \int_0^y u(x, s) ds.$$

Small Gaussian perturbation to destabilize the flow.

At 1 day of integration - dominance of linear waves

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	equations	~			

Experiments with N = 0

At day 10

SL-SI-SETTLS/SL-EXP-SETTLS/SL-ETD2RK identically looking

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	r equations				
Full S	SWE				

At day 1 of integration (dominance of linear waves)

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	requations				
~					

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000
Shallow water	equations				

Full SWE - Day 10

Vorticity field (implicit diffusion on the nonlinear divergence term with $\mu=$ 25.6 \times 10^6 $m^2 s^{-1})$

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks ●0000
Remarks					
Sum	mary				

Motivations

- 2 Exponential Integrators
- 3 Semi-Lagrangian integration
- Semi-Lagrangian exponential integration
- 5 Shallow water equations

6 Remarks

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks O●000			
Remarks								
Main conclusion								

- Semi-Lagrangian coupling with Exponential Integration possible, but requires a lot of careful design
 - Better linear wave dispersion compared to Semi-Implicit
 - Stability for large time-steps compared to Classic Exponential Integration
 - Energy from non-linear wave interaction may need to be controlled (diffusion).
- Under construction
 - Connections with Lagrangian Laplace Transform Scheme
 - Spherical Shallow Water Model with Spherical Harmonics Exponential
 - Higher order semi-Lagrangian exponential (long term)

Preprint

Semi-Lagrangian Exponential Integration under 2nd round of review in SIAM Sci. Comp. www.ime.usp.br/~pedrosp

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 00000		
Remarks							
SWEET!							

SWEET! Shallow Water Equation Environment for Tests, Awesome!

- Bi-periodic plane and sphere
- Spectral (Fourier/Spherical Harmonics) and finite-difference schemes
- Semi-Lagrangian (SETTLS)
- PINT: PARAREAL, PFASST
- Graphical user interface (GPU)
- Easy-to-code in C++ (HPC hidden)
- Open and collaborative

Main developer: Martin Schreiber

Developers: Pedro Peixoto, Andreas Schmitt, Francois Hamon

https://schreiberx.github.io/sweetsite/

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 000●0
Remarks					

Thank you!

pedrosp@ime.usp.br
www.ime.usp.br/~pedrosp

Motivations	Exponential Integrators	Semi-Lagrangian integration	Semi-Lagrangian exponential integration	Shallow water equations	Remarks 0000●			
Remarks								
General notation								

Continuous initial value problem

$$\frac{du}{dt} = \mathcal{L}(u) + \mathcal{N}(u), \quad u(0) = u_0$$

Semi-Discrete (continuous in time)

$$\frac{dU}{dt} = LU + N(U), \quad U(0) = U_0,$$

Continuous with explicit nonlinear advection $(\vec{v}(u))$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + \vec{v} \cdot \nabla u = \mathcal{L}(u) + \tilde{\mathcal{N}}(u), \quad u(0) = u_0,$$

Associated Semi-discrete

$$\frac{DU(t, \vec{r}(t))}{Dt} = L(U(t, \vec{r}(t))) + \tilde{N}(U(t, \vec{r}(t))), \quad U(t_0, \vec{r}(t_0)) = U^0,$$

$$\frac{dr(t)}{dt} = \vec{v}(t, \vec{r}(t), u(t, \vec{r}(t))), \quad \vec{r}(0) = \vec{r}_0$$