History	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
00000	000000	00000000	00000000000000	000000	00

Current trends for global atmosphere dynamical core development

Traditional and modern approaches

Pedro S. Peixoto

Departamento de Matemática Aplicada Instituto de Matemática e Estatística Universidade de São Paulo

> November 2019 CPTEC

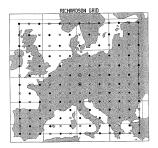
History ●○○○○	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Sumr	nary				

- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

History ○●O○○	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
History					
Begir	ning				

- Lewis Fry Richardson (1922) Weather Prediction by Numerical Process
 - Primitive equations
 - Finite differences (staggered E-grid)
 - Regional: Europe
 - 2 years of (hand) calculation
 - Problems with initial data
 - See Lynch (1999) review Richardson's marvellous forecast



History ○O●○○	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
History					
Early	days				

- 1950-1960 Beginning of regular computer aided forecasting
 - Computers, ENIAC
 - More/better surveillance data
 - Primitive equations
 - Finite differences

History ○○○●○	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Dynamics					

Governing equations - Dynamics

Compressible Euler equations for atmosphere (ideal gas) in vector form:

$$\begin{aligned} \frac{D\mathbf{u}}{Dt} &= -2\,\boldsymbol{\Omega} \times \mathbf{u} - \frac{1}{\rho}\nabla\rho + \mathbf{g} + \mathbf{F}_r \text{ (Momentum)} \\ \frac{D\rho}{Dt} &= -\rho\nabla\cdot\mathbf{u} \text{ (Continuity)} \\ c_v \frac{DT}{Dt} &= -\frac{\rho}{\rho}\nabla\cdot\mathbf{u} \text{ (Thermodynamics)} \end{aligned}$$

• $\mathbf{u} = (u, v, w)$: wind velocity

- p: pressure
- ρ: density
- T: temperature
- $D/Dt = \partial/\partial t + \mathbf{u} \cdot \nabla$: Material derivative

History ○○○O●	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Dynamics					
Gove	rning equa	ations			

• Compressible Euler

- Incompressible
- Hydrostatic vs Non-hydrostatic
- Shallow atmosphere vs Deep atmosphere

• Primitive equations: hydrostatic and shallow atmosphere

- Quasigeostrophic equations
- Shallow water equations
 - Barotropic vorticity equations
- Passive transport equation

History 00000	Finite differences ●○○○○○	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Sumr	mary				

- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite differenc	ces				
Basic	c Finite Dif	ference			

Example: Transport equation 1D :

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = 0$$

Finite differences: Change partial derivatives with finite deviations

$$rac{\partial \phi}{\partial x} pprox rac{\phi_{i+1} - \phi_{i-1}}{\Delta x}$$

$$i-1$$
 i $i+1$

Main concerns: Accuracy and stability.

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite difference	s				
Globa	al				

Latitude and Longitude Grids with Finite Differences

- Traditional Eulerian
 - Stability usually requires $\Delta t \propto \Delta x$
 - Pole requires Δt very small
- Semi-Lagrangian semi-implicit
 - Allows large Δt
 - Solve a very large linear system at each time-step

Finite differences ○OO●OO Spectral methods

Finite volume methods

Finite Elements

Conclusions 00

Finite differences

EndGame - UK MetOffice

- Even Newer Dynamics for General Atmospheric Modelling of the Environment - Met. Office
- Global latitude longitude grid
- Differences on C-Grid (with some Finite Volume)
- Semi-implicit Semi-Lagrangian
- Two-time level scheme iterations for correction
- Non Hydrostatic / Deep Atmosphere
- Terrain Following (Height based) Vertical Coordinate
- Operational (17 km resolution from 07/2014 - time-step 450 s)

History 00000	Finite differences ○○○○●○	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite differences					
Proble	ems				

Weather forecasting needs to be done within a short time windows (1 or 2 hours wall clock time)

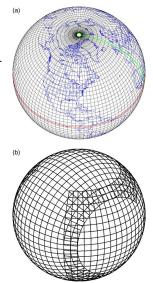
Massively Distributed Memory Parallel Machines

- Pole communicates with many other computer nodes
- A lot of global communication required for the solution of the global linear system
- Limited scalability on large supercomputers (cannot do the forecast within the time window)

History 00000	Finite differences ○○○○○●	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite differences					
GEM					

- Global Environmental Multiscale Model -Environment Canada / CMC
- Staggered finite differences
- Global latitude longitude grid
- Grid Stretching for variable resolution
- Semi-implicit Semi-Lagrangian
- Non Hydrostatic / Shallow Atmosphere
- Terrain Following Vertical Coordinate

• GEM Yin-Yang with 2 way coupling.



History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Sumr	nary				

- 2 Finite differences
- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral meth	ods				
Spec	tral metho	ds			

Emerged around 1960-1970.

- Derivatives are calculated in spectral space
- Fourier Transforms

$$\phi(\mathbf{x}) = \sum_{k} \hat{\phi}_{k} \mathbf{e}^{2\pi i \mathbf{k} \mathbf{x}}$$

- Derivatives $\left(\frac{\partial \phi}{\partial x}\right)$:
 - Given a vector of values of $\phi = [\phi_i]$
 - Calculate Fast Fourier Transform FFT to obtain $\hat{\phi} = [\hat{\phi}_k]$
 - Calculate derivatives (in spectral space, simply multiply by $2\pi ik$)
 - Return to physical space with Inverse FFT
- 1970s: Viability for Atmosphere shown by Eliasen et al (1970) & Orszag (1970)

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral method	ls				
Exam	ple				

1D transport with constant speed (c) and periodic boundaries:

$$rac{\partial \phi}{\partial t} + c rac{\partial \phi}{\partial x} = 0$$

Substituting the Fourier transform $\phi(t, x) = \sum_k \hat{\phi}_k(t) e^{2\pi i k x}$ into the transport equation, results in

$$\sum_{k} \frac{\partial \hat{\phi}_{k}(t)}{\partial t} e^{2\pi i k x} + c \sum_{k} \hat{\phi}_{k}(t) \frac{\partial e^{2\pi i k x}}{\partial x} = 0$$

Using that $\frac{\partial e^{2\pi i kx}}{\partial x} = 2\pi i k e^{2\pi i k x}$ we have

$$\sum_{k}\left(rac{\partial\hat{\phi}_{k}(t)}{\partial t}+2\pi i k c \hat{\phi}_{k}(t)
ight)e^{2\pi i k x}=0$$

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral metho	ds				
Exam	nple				

1D transport with constant speed (c):

- FFT ϕ at initial time
- Solve $\frac{\partial \hat{\phi}_k(t)}{\partial t} + 2\pi i k c \hat{\phi}_k(t) = 0$ for every *k* with your favourite time-stepping scheme to obtain $\hat{\phi}(t)$ for future times

IFFT
$$\hat{\phi}(t)$$
 to obtain $\phi(t)$

Very accurate!

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral meth	ods				
Spec	tral metho	ds			

What about doing this on the sphere?

• Spherical harmonics: Fourier expansion for each latitude circle, Legendre polinomials on meridians

$$\Upsilon_n^m(\lambda,\theta) = e^{-im\lambda} P_n^m(\sin\theta)$$

$$\mathbf{P}_{n}^{m}(\mu) = \frac{1}{\sqrt{2}} \frac{(1-\mu^{2})^{|m|/2}}{2^{n}n!} \frac{d^{n+|m|}(1-\mu^{2})}{d\mu^{n+|m|}}.$$

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral metho	ds				
Spec	tral metho	ds			

- Spherical harmonics with Fast Fourier Transform and "Fast" Legendre transforms
- Pseudo-spectral method
- Avoids the requirement of special treatment at the poles
- Semi-implicit is easier in spectral space
- With also Semi-Langrangian : allows large $\Delta t!$
- Very accurate!
- Used in most operational Weather Forecasting models and in many Climate models (BAM, IFS, ...).

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Spectral meth	ods				
IFS N	Nodel				

- Integrated Forecasting System -ECMWF
- Global Spectral Model Triangular Truncation
- Gaussian Reduced (Linear) Grid
- Semi-implicit Semi-Lagrangian
- Two-time level scheme
- Transposition Approach for Parallelization
- Developed Fast Legendre Transforms

Introduction – A history

- Resolution increases of the deterministic 10-day medium-range Integrated Forecast System (IFS) over ~28 years at ECMWF:
 - 1983: T 63 (~316km)
 - + 1987: T 106 (~188km)
 - 1991: T 213 (~95km)
 - ♦ 1998: T_L319 (~63km)
 - ♦ 2000: T_L511 (~39km)
 - ♦ 2006: T_L799 (~25km)
 - ♦ 2010: T_L1279 (~16km)
 - ♦ 2015: TL2047 (~10km) Hydrostatic, parametrized convection
 - 2020-???: (~1-10km) Non-hydrostatic, explicit deep convection, different cloud-microphysics and turbulence parametrization, substantially different dynamics-physics interaction...

History 00000	Finite differences	Spectral methods ○○○○○○●	Finite volume methods	Finite Elements	Conclusions OO
Spectral metho	ds				
Probl	ems				

- Most of the computational time is spent solving the Spherical Harmonics transform (Legendre + Fourier).
- This part implies in a global communication, which reduces its scalability
- We might not be able to fit the necessary time windows for very high resolution models.

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Sumr	nary				

- 2 Finite differences
- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

Finite differences

Spectral methods

Finite volume methods

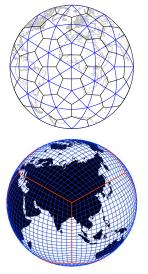
Finite Elements

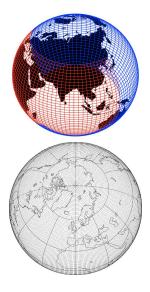
Conclusions

Quasiuniform grids

Search for alternatives - more isotropic grids

- Icosahedral (triangular / hexagonal)
- Cubed Sphere
- Yin-Yang Grids
- Reduced Gaussian grid





Finite differences

Spectral methods

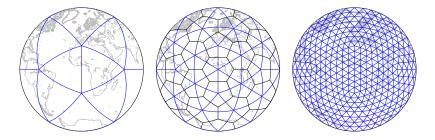
Finite volume methods

Finite Elements

Conclusions 00

Quasiuniform grids

Icosahedral grids



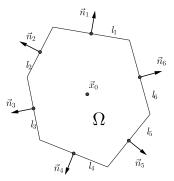
- May be used as triangular or Hexagonal/Pentagonal grid
- May be optimized (Spring Dynamics, Centroidal Voronoi, HR95)
- May be locally refined (Hierarchically or with Centroidal optimizations)
- But are not perfectly isotropic ...

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite Volumes					
Exam	ple				

Horizontal continuity equation (Shallow water model)

 $\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{u}) = 0$

- h is the fluid depth
- $\vec{u} = (u, v)$ is the fluid horizontal velocity

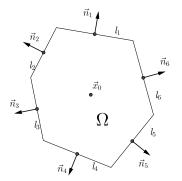


History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite Volumes					

Divergence theorem

$$\nabla \cdot (h\vec{u})|_{\vec{x}_{0}} \approx \frac{1}{|\Omega|} \int_{\Omega} \nabla \cdot (h\vec{u}) \, d\Omega$$

(DivThm) = $\frac{1}{|\Omega|} \int_{\partial\Omega} h\vec{u} \cdot \vec{n} \, d\partial\Omega$
 $\approx \frac{1}{|\Omega|} \sum_{i=1}^{n} h_{i}\vec{u}_{i} \cdot \vec{n}_{i} \, l_{i}.$



$$\frac{\partial h}{\partial t} = -\frac{1}{|\Omega|} \sum_{i=1}^{n} h_{i} \vec{u}_{i} \cdot \vec{n}_{i} I_{i}$$

Interpolations required to obtain h_i and \vec{u}_i depending on the staggering (A,C,...)

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite Volumes					
Proble	ems				

• Can we get all the nice properties obtained in finite difference models and also scalability?

Desired:

- Accurate
- Stable
- Conservative (mass, energy, PV, axial-angular momentum)
- Mimetic Properties (spurious modes)

And also:

- Scalable on supercomputers
- Arbitrary spherical grids

Is it possible?

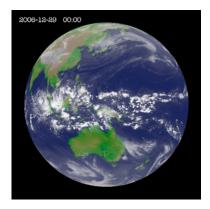
Let's see some models with Finite Volume or Finite Differences on quasi uniform grids...

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Finite Volumes					
ICON					

- Icosahedral non-hydrostatic
- MPI-M and DWD
- Triangular C grid
- Conservation of mass
- Highly scalable
- Hierarchically local refinement
- Spring dynamics optimization
- ICON-IAP (University of Rostock): Uses Hexagons

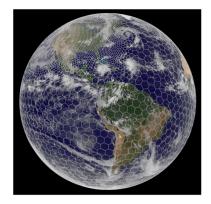
History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Finite Volumes					
NICA	M				

- Nonhydrostatic ICosahedral Atmospheric Model
- RIKEN, JAMSTEC, University of Tokyo
- Hexagonal/pentagonal A grid
- Spring dynamics
- Highly scalable (3.5km, 15s)
- Operational
- JCP 2008 paper: Global cloud resolving simulations
- https://earthsystemcog.org/ projects/dcmip-2012/nicam



History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Finite Volumes					
MPAS	S				

- Model for Prediction Across Scales
- NCAR and Los Alamos Nat Lab
- Spherical Centriodal Voronoi Tesselations (Smooth local refinement)
- Voronoi C grid (Hexagonal/Pentagonal)
- Fully mimetic
- Highly scalable
- Non-hydrostatic
- MWR 2012 paper: Multiscale Nonhydrostatic Atmospheric Model
- http://mpas-dev.github.io/

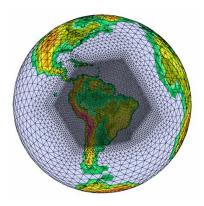


History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
Finite Volumes					
FV3					

- Finite Volume Cube (3)
- Geophysical Fluid Dynamics Laboratory-NOAA
- Shallow Atmosphere (plans for deep)
- Gnomonic Cubed non orthogonal
- Finite Volume
- D-grid, with C-grid winds used to compute fluxes
- Vertical mass based Lagrangian
- Refinement: stretching and two-way nested grid

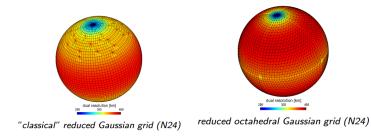
History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Finite Volumes					
	Л				

- Ocean Land Atmosphere Model
- University of Miami / Colorado State University
- Non-hydrostatic / Deep Atmosphere
- Triangular / Hexagonal grids (possible refinements)
- Vertical Coordinate / Cut Cells
- Operational US Environmental Protection Agency
- Split / Explicit time-stepping



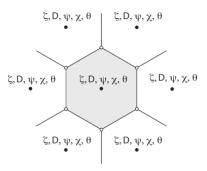
History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite Volumes					
IFS-F	V				

Finite Volume schemes from Computational Fluid Dynamics models.



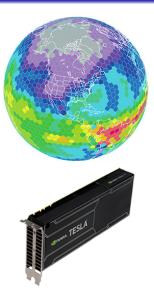
History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Finite Volumes					
UZIM					

- Unified Z-grid Icosahedral Model
- Colorado State University, Fort Collins
- Non-hydrostatic
- Heikes and Randall (1995) grid optimization
- Vorticity-Divergence Z-grid (Randall (1994))
- Less computational modes
- Multigrid solver



History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions 00
Finite Volumes					
NIM					

- Non-hydrostatic Icosahedral Model
- NOAA/ESRL
- GPU and MIC(Intel)
- Icosahedral optimized hexag/pentag
- Unstaggered finite-volume (A-grid)
- Local coodinate system Flow following
- Time: RK4
- HEVI
- Vertical : Height based
- Shallow Atmosphere



History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Sumr	mary				

- 2 Finite differences
- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements
- 6 Conclusions

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					
Finite	e elements				

- Traditional Finite element
- Spectral Elements
- Discontinuous Galerkin
- Mixed finite elements

(More complicated to give simple examples...)

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions OO
Summary					

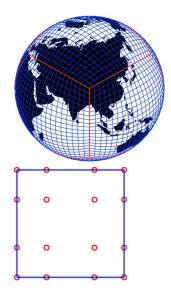
Gung Ho project- UK MetOffice

- Mixed Finite Elements Fully mimetic Cubed Sphere grid
- Finite Volumes advection
- Challenges: Quadrature Mass Matrix inversion Solver

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions
Summary					

CAM-SE Model

- Community Atmosphere Model -Spectral Element - NCAR
- Operational Hydrostatic Shallow Atmosphere
- Continuous Galerkin Formulation -Cubic Polynomials
- Gauss-Lobato Quadrature
- Runge-Kutta time integration
- Hybrid Vertical coordinate (terrain following)
- Hyperviscosity
- Highly Scalable parallelism
- Hydrostatic
- Developing non-hydrostatic



History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements 0000€0	Conclusions 00
Summary					
NUM	A				

- NRL (Navy)
- Element-based Galerkin methods (continuous or discontinuous high-order)
- Mesoscale (limited-area) or global model
- Grid: Any rectangular based (cubed sphere)
- Multiple methods (modular): IMEX, RK,

• • •

Highly scalable

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements 00000●	Conclusions OO				
Summary									
Other models									

- DYNAMICO: France LMD-Z part of IPSL-CM Earth System Model - Mimetic Finite Volume (still hydrostatic - going non-hydrostatic) - Focused in Climate.
- KIAPS: Korea Spectral Element
- Apologies for those that I forgot...

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions ●O			
Conclusions								
Summary								

- 2 Finite differences
- 3 Spectral methods
- 4 Finite volume methods
- 5 Finite Elements

6 Conclusions

History 00000	Finite differences	Spectral methods	Finite volume methods	Finite Elements	Conclusions O				
Conclusions									
Conclusion									

"All models are wrong but some are useful"

- George Box

Thank you! Questions?