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Abstract4

One important tool at our disposal to evaluate the robustness of Global Cir-
culation Models (GCMs) is to understand the horizontal discretization of the
dynamical core under a shallow water approximation. Here, we evaluate the
accuracy and stability of different methods used in, or adequate for, unstruc-
tured ocean models considering shallow water models. Our results show that the
schemes have different accuracy capabilities, with the A- (NICAM) and B-grid
(FeSOM 2.0) schemes providing at least 1st order accuracy in most operators
and time integrated variables, while the two C-grid (ICON and MPAS) schemes
display more difficulty in adequately approximating the horizontal dynamics.
Moreover, the theory of the inertia-gravity wave representation on regular grids
can be extended for our unstructured based schemes, where from least to most
accurate we have: A-, B, and C-grid, respectively. Considering only C-grid
schemes, the MPAS scheme has shown a more accurate representation of inertia-
gravity waves than ICON. In terms of stability, we see that both A- and C-grid
MPAS scheme display the best stability properties, but the A-grid scheme relies
on artificial diffusion, while the C-grid scheme doesn’t. Alongside, the B-grid
and C-grid ICON schemes are within the least stable. Finally, in an effort to
understand the effects of potential instabilities in ICON, we note that the full
3D model without a filtering term does not destabilize as it is integrated in time.
However, spurious oscillations are responsible for decreasing the kinetic energy
of the oceanic currents. Furthermore, an additional decrease of the currents’
turbulent kinetic energy is also observed, creating a spurious mixing, which also
plays a role in the strength decrease of these oceanic currents.
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1. Introduction7

Much of the scientific knowledge of the climate is largely due to the devel-8

opment of Earth System Models (ESMs), i.e. coupled models consisting of the9

atmosphere, ocean, sea ice, and land surface. The ocean, in particular, is a key10
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component of these ESMs and a driver of the climate. Consequently, it is crucial11

to develop and improve such ocean models, with particular attention to global12

models (Randall et al., 2018; Fox-Kemper et al., 2019a).13

These efforts, along with the atmospheric modelling community, allowed14

us to acquire important insights related to these numerical models, such as15

being able to compartmentalize models into what is termed dynamical cores16

along with several physical parametrizations (Thuburn, 2008; Staniforth and17

Thuburn, 2012). Combined, these form the main building blocks of the cur-18

rent operational ESMs. The dynamical core is defined as being responsible for19

solving the governing equations on the resolved scales of our domain (Randall20

et al., 2018; Thuburn, 2008). For climate modelling, it is important that these21

cores are able to mimic important physical properties, such as mass and energy22

conservation, minimal grid imprinting, increased accuracy, and reliable repre-23

sentation of balanced and adjustment flow, which can be achieved by using a24

proper grid geometry and horizontal discretization (Staniforth and Thuburn,25

2012). However, the use of unstructured grids may pose challenges in fulfilling26

these properties.27

Traditional ocean models commonly used Finite Difference or Finite Vol-28

ume discretization on regular structured grids (Fox-Kemper et al., 2019b), e.g.29

NEMO (Gurvan et al., 2022), MOM6 (Adcroft et al., 2019). This approach was30

useful for the limited regional modelling. However, for global models it posed31

some problems. The most critical is the presence of singularity points at the32

poles, which constrained the timestep size for explicit methods, potentially mak-33

ing it unfeasible for use in high resolution models (Sadourny, 1972; Staniforth34

and Thuburn, 2012; Randall et al., 2018). Therefore, in recent years, a lot of35

effort has been put on the development of unstructured global oceanic models.36

Given the success of triangular grids on coastal ocean models, one popular37

approach is the use of triangular icosahedral-based global models, i.e. using38

geodesic triangular grids. However, there are still present issues with triangular39

grids, in particular with the variable positioning considering a C-grid stagger-40

ing. The C-grid staggering (Arakawa and Lamb, 1977) considers the velocity41

decomposed into normal components at the edges of a computational cell. On42

traditional quadrilateral meshes, this staggering was found to more accurately43

represent the inertia-gravity waves (Randall, 1994). On unstructured triangu-44

lar grids, a spurious oscillation is present on the divergence field manifested as45

a chequerboard pattern, and it is present due to the excessive degrees of free-46

dom (DOF) on the vector velocity field (Gassmann, 2011; Le Roux et al., 2005;47

Danilov, 2019; Weller et al., 2012). In theory, these can lead to incorrect results48

if not correctly filtered, or can potentially trigger instabilities.49

This chequerboard pattern issue led modellers to avoid triangular grids. One50

potential solution, which is used by MPAS-O model, is to use the dual grid,51

based on hexagonal-pentagonal cells, formed by connecting the circumcentres52

of the triangles (defining a Voronoi grid dual to the triangulation). By rely-53

ing on the orthogonality properties between the triangular and the dual quasi-54

hexagonal grid, the problem of the spurious divergence modes is avoided. How-55

ever, the noise will appear on the vorticity field, where it is easier to filter (Weller56
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et al., 2012).57

Another potential solution to the chequerboard pattern on triangular grids58

is the use of filters on the divergence field in order to dampen these oscillations.59

However, these can potentially break the conservative properties of the model. A60

solution devised by the ICON-O ocean model community is the implementation61

of mimetic operators that required the preservation of some physical dynamical62

core properties, while, simultaneously, filtering the noise of the divergence field63

(Korn and Danilov, 2017; Korn, 2017; Korn and Linardakis, 2018). However,64

the added triangle distortion of the grid might not completely remove the noise,65

and, thus, the filtering property might be at most approximate.66

In order to avoid the noise on the divergence field of triangular grids at67

all, a possibility is to avoid C-grid staggering. FeSOM 2.0 model, for example,68

uses the (quasi-) B-grid discretization in which the velocity vector field and the69

height field are allocated at the cells centre and vertices, respectively (Danilov70

et al., 2017). Alternatively, the NICAM atmospheric model, uses the A-grid dis-71

cretization, which has all its fields positioned at the vertices of the grid (Tomita72

et al., 2001; Tomita and Satoh, 2004). Nonetheless, there are drawbacks from73

this solution. For example, both staggerings display spurious modes that are74

potentially unstable without treatment (Randall, 1994). The nature of these75

modes differs for each of the grid designs. The A-grid source of numerical noise76

is related to the manifestation of spurious pressure modes, whilst the B-grid77

allows the manifestation of spurious inertial modes due to excessive DOFs of78

the horizontal velocity (Tomita et al., 2001; Danilov et al., 2017).79

Nonetheless, regardless of grid design, other artefacts may also be present.80

One particular spurious oscillation was detected on an energy-enstrophy con-81

serving scheme (EEN) on an atmospheric model, leading to an instability (Hollingsworth82

et al., 1983). This kind of instability is dependent on the fastest internal modes83

of the model, the horizontal velocity and resolution of the model (Bell et al.,84

2017). Due to the presence of distortion on these newer models, instability might85

be more easily triggered (Peixoto et al., 2018). This kind of noise is noticeable86

on atmospheric models, due to the large flow speeds of the atmosphere and the87

near to kilometre grid resolutions used in their simulations (Skamarock et al.,88

2012). Although the ocean dynamics are less energetic than the atmosphere,89

the higher distortion of the grids and the rapid increase of resolution towards90

submesoscale models make the effects of this noise more relevant. In fact, some91

models, such as the NEMO’s EEN ocean model, identified this noise and its92

effects, which have shown significant effects on the model’s mesoscale jets and93

submesoscale phenomena (Ducousso et al., 2017).94

Considering the challenges discussed, this works aims at investigating and95

comparing the accuracy and stability of different horizontal discretizations used96

in global unstructured ocean models. First, in contrast to regular grids, the97

unstructured nature of the mesh may play a role in the computation of the un-98

derlying operators of each scheme’s staggering design. Similarly, regular grids99

have a well-known inertia-gravity wave dispersion, therefore, can we expect a100

similar behaviour for the schemes in unstructured grids. Finally, these unstruc-101

tured grid schemes are prone to instabilities due to their discretization, therefore,102
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their different designs might play a role in their overall stability.103

To address these questions, we chose to evaluate both MPAS-O and ICON-O104

C-grid discretization schemes, due to their robustness and different approaches105

on computing the necessary operators; the FESOM2.0 for the B-grid scheme;106

and the NICAM A-grid scheme, which, to our knowledge, currently is not107

present in ocean models, but could be easily incorporated in existing ones. The108

investigation will be mostly focused on the rotating shallow water system of109

equations, but we will also evaluate some properties of the 3D ICON-O model.110

In section 2, we describe each of the aforementioned schemes. In section 3,111

we evaluate the accuracy and rate of convergence of each of these schemes. In112

section 4, we perform a time integration, in order to evaluate the accuracy of113

the integrated quantities and to observe some important properties of the mod-114

els, such as the representation of inertia-gravity waves and the manifestation of115

near-grid scale oscillations under near realistic conditions. Finally, we evaluate116

the stability of the models under the effects of spurious grid scale oscillations117

and the effects of these oscillations in a 3D realistic oceanic ICON-O model.118

2. Shallow Water models119

In order to investigate these models, we test the schemes under the shallow120

water system of equations (Gill, 1982). This system is as follows:121

∂h

∂t
= −∇ · (uh) (1a)

∂u

∂t
= −u · ∇u−∇Φ− fu⊥ + F

= −∇(Φ + Ek)− ωu⊥ + F
(1b)

where h and u are the height (scalar) and velocity (vector) fields of the system;122

f is the Coriolis parameter; ω = ζ + f is the absolute vorticity; ζ is the relative123

vorticity or curl; Φ = g(b+h) is the geopotential, g is the acceleration of gravity,124

and b is the bathymetry; u⊥ = k̂ × u is the perpendicular vector field u and125

k̂ is the vertical unit vector; and Ek = |u|2/2 is the kinetic energy. The right-126

hand most side of (1b) is known as the vector invariant form of the system of127

equations.128

On this section, we present an introduction to each model and how they129

interpolate their quantities of the shallow water operators. On the next sec-130

tion, Section 3, we describe how each model compute each of the shallow water131

operator.132

2.1. Discrete Framework133

The models were evaluated with the Spherical Centroidal Voronoi Tessella-134

tion (SCVT) optimization (Miura and Kimoto, 2005) between the second (g2)135

and eighth (g8) refinements of the icosahedral grid (Table 1). This optimiza-136

tion has the property of having its vertices coincide with the barycentre of the137
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dual cells, quasi-hexagonal (red lines of Figure 1). This allows for an increase138

of accuracy for operators defined on vertices. This choice was made for sim-139

plicity, but may unfairly benefit both NICAM and MPAS-O model. However,140

ICON-O typically favours Spring Dynamics Optimization (Korn et al., 2022),141

which increase the convergence of some grid properties, such as reduction of142

mesh distortion, convergence of edge midpoints (Miura and Kimoto, 2005).143

Circ. distance (Km) Edge length (Km)
g2 1115 1913
g3 556 960
g4 278 480
g5 139 250
g6 69 120
g7 35 60
g8 17 30

Table 1: Spatial resolution of the SCVT grid, considering the average distance between tri-
angles circumcentre and the average edge length in Km.

Figure 1: SCVT primal (black lines) and dual (red lines) g2 grid.

The structure of the grid domain will consist of triangular cells (primal grid)144

K ∈ C with edges e ∈ E . The set of edges of a particular cell K is represented145

by ∂K. The vertices in the endpoint of these edges are represented by ∂e.146

Occasionally, when necessary, the edges may be denoted as e = K|L where it147

is positioned between cells K and L. The dual cells will be denoted by the (̂·)148

symbol. The dual cells and edges, for example, are denoted as K̂ ∈ Ĉ and ê ∈ Ê ,149
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respectively. Furthermore, the centre/midpoint position of the elements will be150

denoted by the boldface, e.g. the cell circumcentre position K, and the length151

or area of the respective elements will be denoted by | · |, e.g. |e|, |K̂| is the152

edge length and dual cell area, respectively.153

We note that the relationship between the primal and dual mesh will differ154

depending on the model discretization definitions. Some models use circumcen-155

tre of the triangle to construct the dual mesh. The resulting relationship will156

be a Delaunay triangulation (for the primal) and a Voronoi diagram (for the157

dual), making their edges orthogonal to each other, which can be exploited by158

these models.159

Additionally, normal (ne) and tangent (te) vectors are positioned at the edge160

e or ê, such that ne× te = e. The former vector is normal to e, while the latter161

is parallel to it. These definitions are summarized in Table 2.162

Symbol Description
C Set of primal cells
E Set of primal edges

K, L primal grid cells
∂K Set of edges of cell K

e = K|L primal edge
ne , te Normal and tangent vectors on edge e
∂e Set of vertices of edge e

Ĉ Set of dual cells

Ê Set of dual edges

K̂, L̂ dual grid cells

∂K̂ Set of edges of cell K̂

ê = K̂|L̂ dual edge
nê , tê Normal and tangent vectors on edge ê
∂ê Set of vertices of edge ê

Table 2: Definitions of the grid structure.

2.2. NICAM (A-grid)163

The NICAM model is a non-hydrostatic atmospheric-only model developed164

at AICS, RIKEN. Its development aimed to develop a high-performance global165

model (Tomita and Satoh, 2004). The model has been shown to produce accu-166

rate results for simulations with a 3.5 km mesh size, and recent developments167

aim to pursue sub-kilometre grid scales (Miyamoto et al., 2013).168

NICAM’s dynamical core’s horizontal component is based on the A-grid169

discretization, in which all variables are located at the grid vertices (Figure170

2). The discretization of this scheme allows only for mass conservation. Other171

quantities, specially related to the velocity equation, can not be conserved. This172

is because this scheme allows for spurious pressure modes, which may destabilize173

the model, thus, requiring filtering.174
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Additionally, small scale oscillations may also be present due to the grid175

imprinting, which may also decrease the model’s stability (Tomita et al., 2001).176

These oscillations, however, can be remedied with a proper grid optimization.177

One important requirement is that the dual cell centre coincide centre of mass178

coincide with the vertex of the grid, guaranteeing consistency of the discretiza-179

tion of the operators.180

Moreover, NICAM’s A-grid discretization compared to the MPAS-O shallow181

water scheme this scheme has been shown to display a higher resilience when182

non-linearities are present, implying that it can better treat some types of in-183

stabilities than other models (Yu et al., 2020). Therefore, despite this scheme184

not have originally been developed for oceanic purposes, It can be suitably im-185

plemented in such applications.186

Figure 2: A-grid cell structure. The blue circles on the vertices are the height scalars points
and the arrows are the components of the velocity vector points.

2.2.1. Interpolating operators187

To compute the operations in the shallow water system, we need that the188

position of these operators coincide with the variables, i.e., at the vertices.189

Therefore, the computation must be performed on the dual cell. To do this, it190

is necessary to interpolate the variables at the dual edge midpoint. We do this191

by first interpolating at the circumcentre of the primal cell:192

h̃K =
1

|K|
∑

v∈∂eK

wvhv, (2a)

193

ũK =
1

|K|
∑
v∈eK

wvuv, (2b)

where wv is the sectional triangular area formed by the circumcentre and the194

opposite vertices of the cell (See Figure 2 of Tomita et al. (2001)). This inter-195

polation, known as the barycentric interpolation, will provide us with a second196
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order accurate interpolation. A second order interpolation to the edge midpoint197

can then be met by averaging neighbouring primal cells:198

h̃ê =
1

2
(hK + hL), (3a)

199

ũê =
1

2
(uK + uL). (3b)

2.3. FESOM (B-grid)200

FESOM 2.0, developed in the Alfred Wegener Institute, contains ocean201

(Danilov et al., 2017) and ice (Danilov et al., 2015, 2023) components only.202

The model is an update from its previous 1.4 model (Wang et al., 2008). The203

new model was developed to provide faster simulations compared to its 1.4 pre-204

decessor (Scholz et al., 2019), which is partly owed to the change from Finite205

Element Methods to Finite Volume discretization (Danilov et al., 2017).206

In addition to its updated components and faster simulations, FESOM 2.0’s207

horizontal discretization of the dynamical core is based on the Arakawa B-grid208

staggering (Arakawa and Lamb, 1977). It is important to note that there is209

no true analogue of the B-grid on triangles (Danilov, 2013), and such a dis-210

cretization has been coined as quasi-B-grid. However, due to the similarities211

in the positioning of the fields in the cell, in this work, we will describe this212

discretization only as B-grid.213

Contrary to the aforementioned A-grid, this discretization is free of pressure214

modes. However, it allows for the presence of spurious inertial modes, due to215

its excessive degrees of freedom (Danilov et al., 2017). Thus, again, requiring216

the use of filters to remove these oscillations.217

In addition to the B-grid discretization, FESOM’s grid design plays a crucial218

role in computing the operators necessary for FESOM’s horizontal discretiza-219

tion. It creates a dual cell by connecting the triangles’ barycentre with its edge220

midpoint, creating a cell with 10 to 12 edges (Figure 3).221

2.3.1. Interpolation operators222

This grid allows computing the operators by only interpolating the height223

field at the edges when needed to compute the gradient at the cells’ barycentre.224

Given an edge e, with vertices K̂, L̂ ∈ ∂e, then the interpolation is defined as:225

h̃e =
1

2
(hK̂ + hL̂), (4)

thus achieving a second order interpolation on the edge.226

FESOM’s horizontal momentum discretization is provided with three al-227

ternative computations of the momentum equations: two in its flux advective228

equation form, one computed at the centre of mass of the triangular cell and the229

other computed at the vertex, and one in a vector-invariant form, which is com-230

puted at the vertices of the grid. The two forms computed at the vertices would231

thus require to be interpolated at the centre of mass of the triangle with (4). It232

is also argued that the use of the flux advective form of the equation provides233
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Figure 3: B-grid cell structure. The blue circles on the vertices are the height scalars points,
and the arrows on the triangle centre are the components of the velocity vector points.

a small internal diffusion on the system (Danilov et al., 2015). However, there234

is a surprising lack of published work comparing these forms, indicating a need235

for a more in-depth research in the future. In this work, in order to ensure a236

fair comparison with the other schemes, we chose to compute this discretization237

using the vector invariant form of the equation.238

2.4. MPAS-O (C-grid)239

MPAS, an ESM from the Climate, Ocean and Sea Ice Modelling (COSIM)240

and National Center for Atmospheric Research (NCAR), comprises atmospheric,241

ocean, and ice components (Ringler et al., 2010; Skamarock et al., 2012; Hoffman242

et al., 2018; Turner et al., 2022). The oceanic component has been shown capable243

of accurately representing geophysical flows on meshes with a large variation of244

resolution (Ringler et al., 2013).245

The horizontal discretization of the dynamical core of MPAS was developed246

for arbitrarily sided C-grid polygons (Thuburn et al., 2009; Ringler et al., 2010).247

It is inspired by the Arakawa and Lamb’s scheme (Arakawa and Lamb, 1981),248

which is capable of providing some conservative properties, such as total en-249

ergy and potential vorticity, while also providing reliable simulations for these250

arbitrary grid structures without a breakdown of the time-integrated solutions,251

which has previously affected schemes using a quasi-hexagonal mesh (Staniforth252

and Thuburn, 2012).253

Although this scheme could potentially be used for any arbitrarily sided254

polygonal mesh, the icosahedral based hexagonal grid was shown to provide the255

most accurate and well-behaved solutions (Weller et al., 2012). For example,256

analysis of this discretization has shown that the scheme can achieve at most257

first order accuracy for most of the operators, but a stagnation or divergent258

accuracy for others (Peixoto, 2016). Despite this, the model’s noise is well259
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controlled, while also maintaining its geostrophic modes with zero-frequency260

(Weller et al., 2012; Peixoto, 2016).261

On this C-grid discretization (Figure 4), the velocity vector field is decom-262

posed on the edges of our primal grid (triangular cells), where these velocities263

are normal to the dual grid (pentagonal or hexagonal cell), while the height field264

is collocated at the vertices of the grid. This minimizes the use of interpolating265

variables on this scheme. The only interpolation used is to calculate the per-266

pendicular velocity and the kinetic energy, which will be better discussed in the267

following sections.268

Figure 4: C-grid cell structure. Red circles on the vertices are the height scalar points, and
the arrow on the edge midpoint is the decomposed velocity vector field.

2.5. ICON-O (C-grid)269

The ICON numerical model is a joint project between the German Weather270

Service and the Max Planck Institute for Meteorology and consists of atmo-271

sphere, ocean (including biogeochemistry), land, and ice components (Giorgetta272

et al., 2018; Korn, 2017; Jungclaus et al., 2022). The ICON modelling team was273

not only able to successfully provide an accurate simulation of geophysical flow,274

but also provided evidence that their model is within reach to accurately simu-275

late ocean submesoscale flow (Hohenegger et al., 2023).276

In the particular case of ICON’s oceanic component, i.e. ICON-O, its hor-277

izontal discretization of the dynamical core is based on the mimetic methods278

approach, which is a practical way to discretize PDEs while taking into account279

fundamental properties of these equations (Brezzi et al., 2014). This philosophy,280

in theory, could allow for ICON depending on the truncation time to achieve281

the conservation of total energy, relative and potential vorticity, and potential282

enstrophy to some order of accuracy.283

To accomplish these conservation properties under the mimetic methods,284

ICON-O uses the concept of admissible reconstructions (P, P̂, P̂†) (Korn and285

Linardakis, 2018). These are in charge of connecting variables at different points,286
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acting as interpolation and reduction operations. They, i.e. the admissible287

reconstructions, are required to have some properties, such as providing unique288

and first-order accurate fluxes, having its nullspace coinciding with the space289

of divergence noise, and conserving the aforementioned properties. However, in290

order to achieve these properties, it is required to compute the inverse of the291

resulting mass matrix on the velocity equation for each timestep. To avoid the292

additional computational cost, we, therefore, used the matrix lumping approach,293

i.e. assumed that the inverse of the mass matrix is the identity matrix. It294

was shown that this approach does not significantly impact the simulations of295

the model, nor it does significantly impact the energy conservation (Korn and296

Danilov, 2017; Korn and Linardakis, 2018).297

2.5.1. Interpolating operators298

Operationally, ICON-O model uses the Perot operator. This function recon-299

structs the velocity field components of the edge midpoint to the triangle centre300

(P = P), and subsequently project these reconstructed vectors to their original301

position at the edge midpoint (PTP) (Perot, 2000):302

PuK =
1

K

∑
e∈∂K

|e|uene, (5)

PTue =
1

|ê|
∑
K∈∂ê

de,KuK · ne. (6)

The combination of operators is denoted as M = PTP and is key to compute303

the operators of the shallow water equations. This mapping, M , was found304

to filter the divergence noise of triangles without losing the aforementioned305

physical properties (Korn and Danilov, 2017; Korn, 2017; Korn and Linardakis,306

2018). However, the operator has the potential to smooth high wavenumber307

phenomena (Korn and Danilov, 2017).308

Additionally, there is also a set of operators that reconstructs the vector309

velocity field into the vertices of the grid (P̂ = P̂) and reduce it back into the310

edge midpoints (P̂ † = P̂†). This sequence is defined as:311

P̂ uK̂ =
1

|K̂|

∑
e∈∂K̂

|ê|uee× nê, (7)

P̂ †ue =
1

|ê|
∑
K̂∈∂e

de,K̂uK̂ · ne. (8)

Thus, the sequence M̂ = P̂ †P̂ allows us to compute the Coriolis term of the312

shallow water equations. This dual operator has shown to provide a non-zero313

spurious frequency geostrophic modes, which have been shown to create numer-314

ical waves in the system (Peixoto, 2016), and could potentially be damaging to315

the stability of the scheme (Peixoto et al., 2018). However, due to the filtering316

property of the operator M , these modes could be removed from the simulation317

due to their filtering property on the grid scale.318
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Institution Staggering Components Conservation
NICAM AORI, JAMSTEC, AICS A-grid Atm TE
FESOM AWI B-grid Oc TE
MPAS COSIM, NCAR C-grid Atm/Oc/Ice PV, TE
ICON DWD, Max-Planck C-grid Atm/Oc/Land/Ice KE, TE, PV, Enst

Table 3: Summary of the main models to be compared with their respective components:
Ocean (Oc), Atmosphere (Atm), Ice Dynamics (Ice) or Land; and their conservation prop-
erties: Total energy (TE), Kinetic Energy (KE), Potential vorticity (PV), and Enstrophy
(Enst).

3. Accuracy of the Discrete Operators319

We aim to analyse the truncation errors of each operator from Nonlinear320

Shallow Water Equations (1). To achieve this we evaluate two different test321

cases: The first follows from Heikes and Randall (1995) and Tomita et al. (2001),322

henceforth Test Case 0 or TC0, where for α, β defined as:323

α = sinϕ

β = cos(mϕ) cos4(nθ),

where ϕ and θ are the longitude and latitude, respectively, then u and h are324

defined:325

u = α∇β (9)

h = β. (10)

We consider in our analysis m = n = 1, since it is a smooth particular smooth326

case with both non-zero vector components, which allows us to evaluate the327

accuracy of the operators and compare with the literature.328

A second case is the Nonlinear Geostrophic testcase, henceforth Test case 1329

or TC1, from the toolkit set of Williamson et al. (1992). u and h are defined330

as:331

gh = gb0 − h0 sin
2 θ (11)

u = u0 cos θ, (12)

where gb0 = 2.94×104 m2s−2, h0 = aΩu0+u
2
0/2 m2s−2, u0 = 2πa/(12 days) ms−1,332

g = 9.81 ms−2 is the acceleration of gravity, a = 6.371 × 106 m is the radius,333

and Ω = 2π/86400 s−1 is the angular frequency of earth.334

Additionally, in order to compare our results, we define the errors in our335

domain as ∆f = fr − f refr , where fr and frefr is the computed and reference336

function, respectively, for a mesh element r of the domain. Thus, the maximum337
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and second error norm may be defined as:338

L∞ =
maxr |∆fr|
maxf |f refr |

(13)

L2 =

√
S(∆f2)

S((f ref)2)
(14)

where S(f) =
∑

r∈Ω ∆fAr/
∑

f∈ΩAr, and Ar is the area of the element, e.g.339

Ae for the edge, |K| for triangles, or |K̂| for the dual cell.340

3.1. Divergence341

The divergence operator, part of the mass equation, can be defined from342

the Divergence Theorem. Following it, we can provide a general formula for its343

discretized version as:344

(∇ · u)i ≈ (div u)i =
1

|F |
∑
e∈∂F

|e|u · nene,F , (15)

where F is a cell with barycentre i and edges e ∈ ∂F , ne,F = {1,−1} is a signed345

valued aimed to orient the normal velocity u · ne away from the element F .346

In order to compute the divergence field, we note that both the A-grid and347

B-grid schemes compute divergence field at the dual cells (vertices). For the348

former scheme, we require an interpolation of both the scalar height, (2) and349

(3), and vector velocity fields at the dual edge midpoint, in order to compute350

the divergence at the dual cell, i.e. quasi-hexagonal cell. In the case of the latter351

scheme, we only require the interpolation of the scalar height field at the primal352

edge midpoint (4), in order to compute the same divergence field at the primal353

cell.354

In the case of the C-grid, there is a substantial difference between the compu-355

tation of both schemes. MPAS interpolates the scalar height field at the primal356

edges, similar to B-grid, while ICON uses admissible reconstruction operators357

of the form PThPu to compute the operator.358

These differences on the schemes are reflected in our results (Figure 5.div).359

The A-grid for the TC0 testcase displayed an error convergence with an initial360

rate of second order up to the sixth refinement (g6). On finer grids, for the L∞,361

this scheme has slowed down to first order, while on second order, the scheme362

remained converging up to second order rate. On the TC1, a more consistent363

convergence rate was observed, on the L∞ and L2, the scheme has displayed364

a first and second order convergence rate. On other grids, in particular the365

standard and Spring Dynamics, the A-grid has shown to achieve at least a first366

order convergence rate (Tomita et al., 2001). Although a direct comparison367

cannot be provided, since our testcases differ, the scheme on an SCVT has368

apparently shown to provide a comparable convergence rate to the intended369

optimized grid on either the L∞ or the L2 norm.370

Regarding both C-grid schemes, we observe a similar behaviour in the com-371

puted operator. In particular, neither scheme displays an increase in accuracy372
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of the divergence field on the L∞. For the case of ICON, this result has been373

previously observed in a similar work by Korn and Linardakis (2018). It was374

also shown that the naive approach to calculate the divergence field still re-375

tained a first order increase in accuracy, implying that the main culprit of this376

inability to increase the accuracy likely lies on Perot’s operator itself (Table 4377

of Korn and Linardakis (2018)). The authors have not provided a geometrical378

analysis of their non-uniform grid, but we note that the SCVT grid share some379

similarities with the standard grid, such as the non convergence of the distance380

between the primal and dual edge midpoints, which likely has a deleterious ef-381

fect on the accuracy of the operator. However, on the L2, the scheme was able382

to reach at least a first order convergence rate on both testcases.383

On the case of MPAS, the inability to provide a decrease in error with grid384

has been discussed in Peixoto (2016). It is reasoned that since the computation385

of the divergence is not based on velocities from the Voronoi edge midpoints, the386

discretization is inconsistent, and a first order convergence is not guaranteed.387

In contrast, on the L2, MPAS was able to reach a second order rate up to g4,388

but the speed of convergence slows down to first order on TC0, while on TC1389

the second order rate is maintained throughout grid refinements.390

Finally, B-grid has provided consistent accuracy throughout each testcase.391

We observed a first and second convergence rate for L∞ and L2, respectively,392

for both testcases. A decrease is observed on TC0, however, this decrease is393

likely associated with the error approaching the machine truncation error.394

When comparing the errors of the schemes, we note that both A- and B-395

grid schemes display a decrease in speed of accuracy convergence as the grid396

is refined, with the latter scheme displaying the smallest errors on most of the397

tested cases and error norms. Additionally, despite ICON providing convergence398

on some tests, the scheme displays the largest errors of all tested schemes. It399

is likely that the smaller stencil used in ICON’s divergence computation play a400

role in these larger errors. Another contribution is potentially related to Perot’s401

operator, whose interpolation could act as smoothing the velocity field.402

Overall, we note that the structure of the mesh, regarding cell geometry403

(primal or dual cell) and distortion, plays a contributing factor on approximating404

the divergence field on all schemes. Both C-grid schemes, in particular, seemed405

to be the most vulnerable to the grid. In contrast, B-grid’s consistency in its406

accuracy apparently seems to be the least vulnerable to the increase in the407

distortion of the grid.408

3.2. Gradient409

The gradient operator, from the momentum equation, is a vector field, whose410

vector points itself to the steepest regions of the original field. The schemes411

provide different discretizations for this operator:412

∇h ≈ grad h =

{∑
e∈∂F h|e|ne A- and B-grid,

1
|e|
∑

i∈∂e hne C-grid.
(16)
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A- and B-grid’s schemes provide a complete vector field on our domain by413

computing the average gradient within the centre of the respective cell F . The414

C-grid, on the other hand, computes the gradient with respect to the normal415

vector ne by computing the difference between the values of the cell neighbouring416

the edge e. In that regard, the C-grid computation can be perceived as a gradient417

in the direction of ne.418

In relation to the mesh, the A-grid scheme is computed at the vertices of the419

mesh, while the B-grid is computed at the barycentre of the triangular cells. On420

the other hand, both C-grid schemes are computed on the primal edge midpoint421

of our mesh. However, the MPAS scheme considers the neighbouring vertices422

to compute the gradient, while ICON considers the neighbouring triangles.423

As in the divergence approximation, these differences in computation are as424

well reflected in our results (Figure 5.grad). The A-grid displays for coarser grids425

a fast convergence rate (second order rate), up to g5, for both testcases. For426

finer grids, the L∞ the decrease in error slows down to a first order convergence,427

but with the L2 the convergence rate remains consistent. The analysis made428

by Tomita et al. (2001) have showed that their grid is capable of displaying a429

second order error convergence. We again note that although we cannot directly430

compare our results, due to the differences in testcases used, our results show a431

comparable error convergence with the authors with the SCVT optimized grid.432

Similarly, the B-grid scheme shows a consistent decrease in error on all norms433

and testcases, similar to the divergence operator results. However, it displays434

only a first order convergence rate, in contrast to the second order on the di-435

vergence operator. The computation of the gradient on the B-grid is analogue436

to the divergence computation in ICON, therefore a similar argument follows,437

explaining that the expected convergence rate of such a scheme being a first438

order.439

Comparably, MPAS also displays a consistent convergence rate, but in this440

case this scheme achieves a second order rate on all norms and testcases. Since441

the edge midpoint is situated, by definition, at the midpoint between the neigh-442

bouring vertices, the discretization is analogue to a centred difference scheme443

used in traditional quadrilateral grids. Therefore, we can properly achieve a sec-444

ond order convergence rate. The same argument is provided in Peixoto (2016),445

however the author also argues that when we consider the computation of the446

gradient of the kinetic energy we do not only reach a convergence rate, but our447

error diverges with grid refinement. The author reasons that the error of ki-448

netic energy is of zeroth order (to be discussed further), and, thus, its gradient449

diverges.450

On the other hand, the ICON’s scheme gradient error displays a near second451

order convergence rate for coarser grids on the L∞ norm of the TC0, but this452

error slows down for further refinements. On the TC1 testcase, the rate of453

convergence on L∞ is consistent in first order. However, at the L2 norm, the454

scheme has an accuracy of near second order with magnitude similar to that of455

MPAS.456

Finally, we can then draw a comparison from all schemes. The B-grid has457

displayed the largest errors in magnitude and was the only scheme to achieve458
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a low first order convergence on the L2. The A-grid L∞ displays a similar459

error magnitude and behaviour in convergence with ICON. MPAS has shown460

the lowest errors among all schemes, and, in the L2, displayed a comparable461

magnitude and convergence behaviour with ICON.462

Overall, we again observe an impact of the grid structure on our schemes,463

however, this impact is not as damaging as found in the divergence computation.464

The directional derivative of MPAS makes it easier to achieve a consistent in-465

crease in accuracy, and the mismatch between the edge midpoints, has thwarted466

ICON’s convergence rate. Despite this, the scheme still retained a first order467

convergence rate.468

3.3. Curl469

The curl operator, part of the vector invariant form of the shallow water470

velocity equation, is connected to the Coriolis Term. This term requires a471

careful discretization to allow for Coriolis energy conservation. This operator,472

in its continuous form, is defined from Stokes Theorem. Its Finite Volume473

discretization follows from this theorem and a general formulation for all our474

schemes can be defined as:475

∇× ui ≈ |F |vort ui =
∑
i∈∂F

|e′|ui · te′te,F , (17)

for any F cell with edges e′, tangent vector te′ , and te,F = {1,−1} is a signed476

value guaranteeing that the unit tangent vector is counterclockwise on the cell.477

For each scheme, the both A-grid, and B-grid computes the vorticity field478

on the vertices of the mesh. Since, for the B-grid, the shallow water velocity479

equation requires the points at the barycentre of the triangle cell, we inter-480

polate the vorticity from the vertices to the barycentre. For the both C-grid481

schemes, MPAS computes this operator at the circumcentre of the cell, while482

ICON computes at the vertices, in duality with the divergence operator.483

In this context, similarities are observed with the divergence operator. For484

example, the A-grid convergence rate for both norms and testcases, reach the485

same order as the divergence operator. On the TC0 testcase, however, through-486

out all grid refinements the error retain a first order, unlike the divergence487

operator, which begins with a second order and slows down to a first order.488

Additionally, on the TC1 testcase, we observe that the vorticity error displays489

a second order convergence up to g4 and slows down to first order, unlike the490

divergence operator (Figure 5.Vort).491

Similarly, the B-grid scheme displays the same behaviour as in the divergence492

operator. It displays a first order convergence rate on L∞ and a rate of second493

order for L2 on both testcases.494

In contrast, both C-grid schemes display a different behaviour from the di-495

vergence operator. MPAS shows a consistent first order convergence rate for496

both norms on both testcases. Given that this computation is computed on the497

dual cell centre (red polygon in Figure 4), i.e. pentagon or hexagon, we can498

then achieve a higher accuracy rate of around second order.499
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ICON, on the other hand, displays a zeroth order convergence on L∞ for500

the TC0 testcase. This is likely due to the mismatch of edge midpoints, similar501

to MPAS’s divergence operator. However, on this norm for TC1, the error502

converges on a first order rate. This difference implies that different testcases503

will potentially impact the error. On this particular case, we note that the504

meridional velocity is not present on TC1, which may facilitate the computation505

of the vorticity. This result is also seen on L2, while for TC0, the norm converge506

in first order, for TC1, it converges in second order.507

In comparison, we observe that ICON is the only scheme that has trouble in508

increasing its accuracy when approximating the vorticity operator. In addition,509

both A- and B-grid schemes were the only to display a second order error rate on510

the L2 for both schemes. Although MPAS also has shown an overall convergence,511

in contrast to ICON, it still has shown a larger error for TC0’s L2 norm and512

both norms of TC1.513

Overall, there are similarities on the error behaviour between both vorticity514

and divergence scheme due to its similar concepts underlying the discretization.515

In that regard, we also observe an impact of the grid structure and the testcase516

used on the accuracy of the vorticity approximation.517

3.4. Kinetic Energy518

Similar to the vorticity operator, the kinetic energy is part of the vector519

invariant form of the velocity equation of the shallow water, whose gradient will520

then be computed. The kinetic energy is defined as:521

Ek =
1

2
|u|2.

The computation of this operator on both A- and B-grid schemes is straightfor-522

ward, since the vector velocity field is complete on each vertex and barycentre,523

respectively, of the mesh. However, for the C-grid schemes the vector field is524

decomposed on the edges of the mesh, therefore require a reconstruction in or-525

der to approximate the value of the kinetic energy field. In the particular case526

of MPAS and ICON, it is difficult to provide a general formula, therefore we527

individually define:528

E
(MPAS)
k =

1

2|K̂|

∑
e∈∂K̂

|e||ê|
2

u2e, (18)

E
(ICON)
k =

|Pu|2

2
. (19)

Both schemes provide some form of interpolation of the velocity on the cell529

centre, dual for MPAS, primal for ICON. It is observed on this computation530

that MPAS’s and ICON’s weights are shown to be: |e||ê|/2, and |e|de,K , where531

again de,K is the distance between the edge midpoint e and circumcentre K.532

We note that for equilateral triangles de,K = |ê|/2. Another note is that MPAS533

computes the square of the component of the velocity and then interpolates534
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the resultant on the cell centre, while ICON interpolates the complete vector535

velocity field on the cell centre, and then computes the kinetic energy.536

These difference in computation are reflected on the error of the field (Figure537

5.Ek). On MPAS scheme, we see that for both testcases it does not converge538

on L∞. This result was discussed by Peixoto (2016), as being an inconsistent539

formulation of the kinetic energy on the SCVT. Part of this inconsistency could540

partly be due to the computation of the kinetic energy on a single velocity541

component, as previously mentioned. Despite this, on L2, MPAS display a542

second order convergence on TC0, on coarser grids, but it slows down to first543

order on finer grids. Similarly, on TC1, MPAS displays a first order rate, but544

throughout all grids.545

ICON, in contrast, show a consistent convergence rate on both norms of546

first order on TC0 and second order on TC1. It can also be observed that,547

except for TC0’s L2, ICON’s error is substantially lower than MPAS. ICON’s548

Perot operator interpolation allows for a higher convergence, in comparison549

with MPAS, in part due to the vector velocity field interpolated on the cell550

circumcentre prior to the computation of the kinetic energy.551

Overall, both C-grid computations display very distinct error behaviour. On552

this grid, although on both schemes the kinetic energy formulation allows for553

energy conservation, MPAS is unable to provide a consistent formulation of the554

operator. In contrast, ICON is provided with its consistent through the use of555

its Perot operator.556

3.5. Perpendicular Velocity557

The perpendicular velocity is an important part of the Coriolis Term, which558

is a forcing that takes into account the non-inertial reference frame of the shallow559

water equations. In that case, it is important that the Coriolis term of our560

schemes does not input energy into the system. Similar to the kinetic energy,561

both the A- and B-grid schemes have their vector velocity defined on the same562

points, providing an exact value for the perpendicular velocity. However, since563

C-grid schemes do have their vector velocity decomposed on the edges of the564

grid, an interpolation is necessary.565

This interpolation should be carefully chosen in order to retain the conser-566

vation of energy of the system. Following the argument of Peixoto (2016), a567

reconstruction can be thought as a weighted composition of the neighbouring568

edges of the cell:569

u⊥e =
∑
e′

we,e′ue′ . (20)

These weights should be chosen such that this reconstruction is unique and does570

not provide energy to the system.571

Choosing the edges e′ from cells that share the same edge e we can define572

the perpendicular velocity as:573

u⊥e = ae,F1
u⊥e,F1

+ ae,F2
u⊥e,F2

, (21)
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where ae,Fn are the weights with respect to the cell Fn. This formulation is574

capable of achieving a unique solution on the edge.575

In the case of MPAS’s vector interpolation, we define the weights we,e′ as:576

we,e′ = ce,K
|e′|
|ê|

(
1

2
−

∑
K∈∪∂e

AK̂,K

|K̂|

)
ne′,K̂ ,

where ce,K̂ and ne′,K are sign corrections that guarantee the vector tangent577

vector is anticlockwise on the for the cell K̂ and that the norm vector ne′ point578

outwards of the cell K̂; and AK̂,K is the sectional area of the triangle cell K579

formed by the vertex K̂ and the neighbouring edges of the circumcentre K in580

respect to the vertex. Using these weights on (20), we can compute u⊥e,K . In581

order to provide a unique reconstruction on edge e we let ae,K = ae,L = 1 on582

(21).583

Figure 5: TC0 (first and second row panels) and TC1 (third and fourth row panels) operators
L∞ (first and third panels) and L2 (second and fourth panels) error norms for the A-grid
(black lines), B-grid (red lines), MPAS (blue lines), and ICON (green lines).
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In the case of ICON’s scheme, we use the interpolation P̂TωP̂u. In this case584

P̂ uK̂ = u⊥
K̂
, so the weights are defined as:585

we,e′ = wê,K̂ =
|ê|dê,K̂
|K̂|

,

giving a unique reconstruction on the centre of the dual cell K̂. In order to586

reduce it back to the edge, we do ae,K̂ = de,K̂/|e|. We note that this set of587

operators allows not only the energy conservation, but also potential enstrophy588

(Korn and Danilov, 2017; Korn and Linardakis, 2018). We recall, however, that589

this operator has the potential of producing non-zero frequency geostrophic590

modes (Peixoto, 2016).591

Our results show that MPAS displays a second order convergence rate on592

L∞ up to g6 on TC0, but decrease to a first order for finer grids (Figure 5.u⊥).593

On L2, it shows a second order throughout all refinement. Similarly, on TC1, it594

also shows a second order rate up to g7, but decrease near first order to g8. A595

similar result is obtained for L2. This result is similar to Peixoto (2016) showing596

that MPAS achieves at most a first order convergence rate on the L∞.597

4. Shallow Water Time Integration598

The time integration of the shallow water equations provides us knowledge599

about the behaviour and limitations of the model throughout time. In order600

to gather this understanding, in this section we will put the schemes under601

a battery of tests. For the purpose of these tests, we chose to use a simple602

Runge-Kutta (RK44) operator, with 50 seconds timestep for all schemes and603

grids. Such choices are enough to ensure that the temporal errors are minimal604

and that the dominating error comes from the spatial discretization. We note605

that although both C-grid schemes may not require a stabilization term, since606

their error are expected to be well controlled, both A- and B-grid schemes could607

excite errors that would potentially destabilize the model. It is possible to use608

a harmonic (∇2u) or biharmonic (∇4u) term to provide stability of the scheme.609

In order to be more scale selective and avoid damping physical waves of our610

simulations we chose to use only the biharmonic, and as it was shown by the611

original authors of A- and B-grid schemes (Tomita et al., 2001; Danilov et al.,612

2017) the biharmonic term is enough to provide the necessary stability.613

Therefore, the stabilizing operator can be regarded as a composition of614

Laplace diffusion operators, i.e. ∇4u = ∆∆u. To compute the Laplace diffusion615

operator, both A- and B-grid schemes are equipped with different approaches616

in its computation. For the former scheme, the Laplace operator is defined as:617

∆u = ∇ · ∇u. (22)

Thus, we can approximate the Laplacian operator by ∆u ≈ div grad u, using618

the operators defined in the previous section.619
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A-grid/B-grid (m2s−1)
g2 1022

g3 1020

g4 1019

g5 1018

g6 1017

g7 1016

g8 1015

Table 4: Biharmonic coefficient used for stabilizing the shallow water schemes.

On the other hand, the B-grid scheme, computes the harmonic diffusion for620

a cell K as:621

∆u ≈ 1

|K|
∑
L

|e|
|ê|

(uL − uK), (23)

where L are all the triangles neighbouring the cell K. For the tested schemes,622

we used the biharmonic coefficient defined in Table 4. Our coefficients are623

much higher than found in literature (Tomita et al., 2001; Danilov et al., 2017;624

Majewski et al., 2002; Jablonowski and Williamson, 2011), however both A-625

and B-grid schemes differ in their discretization and the A-grid scheme is found626

susceptible to numerical oscillations depending on the choice of grid (Tomita627

et al., 2001). Therefore, by choosing an intense coefficient, we guarantee that628

numerical waves will not participate in the comparison of our results.629

All schemes will then be evaluated. Firstly, we provide an accuracy analysis630

of the integrated height and vector velocity fields (Section 4.1). Then, we evalu-631

ate the linear mode analysis of our schemes (Section 4.2). Thirdly, we evaluate632

the scheme’s capacity in maintaining its geostrophic balance (Section 4.3). Fi-633

nally, we evaluate the behaviour of each scheme under a barotropic instability,634

which is an initial condition that accentuate the nonlinear terms of our schemes635

(Section 4.4).636

4.1. Time integrated accuracy of variables637

Our results demonstrate that both A- and B-grid schemes exhibit improve-638

ments in accuracy close to second order for both norms of the height field vari-639

able (Figure 6). However, for the vector velocity field, the values differ. For L∞,640

A-grid is shown to converge near second order, while B-grid, which displays a641

near second order convergence for coarser grids (up until g5), only shows a first642

order for the finer grids. Nevertheless, on L2, both schemes are shown to display643

an accuracy increase near second order.644

Regarding both C-grid schemes, both of them face problems on increasing645

their accuracy on L∞. MPAS does not converge on the height scalar field, but646

does display a first order convergence rate on L2. Concerning the vector velocity647

field on L∞, MPAS shows a seconder order rate for coarser grids (up until g6),648

but decrease to first order in finer grids. However, on L2, MPAS displays a sec-649

ond order rate consistently for all refinements. This result was also observed in650
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Figure 6: h and u error after 15 days.

Peixoto (2016), and it is suggested that either the kinetic energy approximation651

or the divergence, might be responsible for reducing the solution’s accuracy.652

In contrast, ICON displays a first order convergence rate on both norms for653

the height scalar field. Nevertheless, the scheme does not seem to convergence654

on the vector velocity field for the L∞ norm. In the case of L2, it displays, for655

coarser grids, a second order accuracy rate, but from g7 to g8 it slows down to a656

first order rate. Similar to MPAS, some operators, face challenges in converging657

the solution. In this scheme, the divergence, vorticity, and the perpendicular658

velocity do not display a convergence of the solution. It is noted that both659

vorticity and perpendicular velocity are critical components of the Coriolis Term660

of (1b), potentially impacting the convergence of the vector velocity field. Korn661

and Linardakis (2018) did not observe the same results. Therefore, it is likely662

that the grid choice is crucial for obtaining convergence on the fields.663

Overall, A- and B-grid display similar errors, specially, in the height field.664

ICON’s scheme have showed the largest errors of the tested schemes, except in665

the height field L∞, where MPAS did not converge. B-grid show the second-666

largest magnitude error, only on the vector velocity field. This is likely due667

to the use of the biharmonic and the notably due to the gradient operator668

that is defined on triangles, unlike both A-grid and MPAS, which shows similar669

magnitudes on L2. On L∞, however, MPAS shows a larger error and lower670

convergence rate, in comparison to the A-grid, likely due to the aforementioned671

challenges.672

4.2. Linear Normal Modes673

The earth’s ocean behaviour is modulated by oscillations that are mostly674

affected by the earth’s rotation. The complete nonlinear equations are difficult675

to analyse to the high degree of interactions between these oscillations. However,676

linear analysis can be done by considering (1) the following approximations:677

h = H∇ · u
u = −∇h− fu⊥,

(24)
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where H is a fixed constant. This system still provides a large set of inertia-678

gravity waves present in either the ocean or atmosphere. In order to calculate the679

normal modes, we follow the methodology of Weller et al. (2012) by considering680

a vector (h,u′)T , where both elements, i.e. h and u, are scalars, so that we681

have (h,u′)T = [h1, h2, · · · , hM , u1, u2, · · · , uN ] forM and N elements of height682

and velocity fields, respectively. In the case of A- and B-grid, the scalar velocity683

is obtained by decomposing them into zonal and meridional velocity scalars,684

whereas for both C-grid schemes these scalar fields are obtained directly from685

the velocity on the edges of the grid.686

We run (24) M +N times for one timestep of ∆t = 10 seconds on a g2 grid,687

with the RK4. The initial conditions used are defined by a unit value on the688

j-th position of (h,u′)T , i.e. for the k-th run the initial condition is defined as689

(h0,u
′
0)

T
k = [δkj ], where δ

k
j is the Kronecker delta. We use as parameters: gH =690

105 m2s−2, f = 1.4584× 10−4 s−1 and the radius of the earth a = 6.371× 106.691

From these runs, we create a matrix A, where each column is the approx-692

imated solution of the initial condition provided. We, then, can calculate the693

eigenvalues λ of the matrix and, consequently, obtain the frequency of the modes694

from λ = αeiω∆t, where ω is the frequency of the normal modes. We, then, order695

our results from lowest to maximum frequency. We will have 486 eigenvalues696

for the A-grid, 642 for both B-grid and MPAS, and 800 for ICON. These values697

correspond to the total degrees of freedom of our system. There are, in the g2698

grid, 162 vertices, 480 edges, and 320 triangles. For the A-grid, since both mass699

and vector fields are defined at the vertices, the total DOFs are three times the700

vertices. In the case of the B-grid, the vector field is defined at the triangles,701

therefore the total DOFs are the vertices plus twice the triangles. For both702

C-grid schemes, the vector velocity field is defined at the edges, however MPAS703

has the mass at the vertices, while ICON has the mass defined at the triangles.704

In that case, MPAS DOFs are the vertex plus edge points and ICON is the705

triangle points plus edge points.706

The normal modes can be seen in Figure 7. A clear difference is observed707

between frequency representation on all grids. The A-grid shows the slowest rep-708

resentation of inertia-gravity waves, with the maximum frequency of 1.6×10−3
709

s−1 s−1 on the 119 index. On the other hand, the B-grid scheme shows higher710

frequencies, with a maximum on the 167 index of around 2.6×10−3 s−1.711

In contrast, a more accurate representation is obtained by both C-grid712

schemes. ICON shows a similar, but slightly higher frequencies, compared to713

the B-grid scheme. However, the highest frequency is obtained on its tail on the714

635 index of around 4.2×10−3 s−1. Conversely, MPAS displays a more accurate715

representation of the modal frequency with a maximum on index 320 of around716

4.2 ×10−3 s−1.717

Overall, our results show similar results with the traditional quadrilateral718

grids (Arakawa and Lamb, 1977; Randall, 1994). It is known that on these719

grids, the C-grid schemes represent modes more accurately than the either A- or720

B-grid schemes, but also B-grid display a higher frequency, and a more accurate721

representation of inertia-gravity waves, than the A-grid schemes. We highlight722
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Figure 7: Linear normal modes of the considering the linear shallow water equations (24) on
the f -sphere.

that the expected decrease in inertia-gravity representation from the traditional723

grids is not observed in our results, since we reordered our modes from least to724

highest frequency. Consequently, higher modes (higher wavenumbers) of both725

A- and B-grid schemes are not accurately displayed in our results. Despite726

this, our results demonstrate that the maximum represented frequency of both727

schemes are indeed lower than that of the C-grid schemes, following the theory.728

Regarding both C-grid schemes, our results for MPAS agree with the other729

authors (Weller et al., 2012; Thuburn et al., 2009; Peixoto, 2016). In addition,730

we note that ICON’s has a less accurate representation of the normal modes in731

comparison with on MPAS either on the quasi-hexagonal grid or its implemen-732

tation on triangles (Thuburn et al., 2009). This result in ICON has already been733

observed (Korn and Danilov, 2017), and it is argued that the filtering property734

of the divergence on the mass equation might not only remove the intended735

noise of the triangular mesh, but also some of the higher frequency physical736

oscillations.737

4.3. Localized Balanced Flow738

An important testcase is to evaluate the model’s capability of maintaining739

its geostrophically balanced state. Our TC1 testcase (Section 4.1), allowed740

us to test whether the models are capable of maintaining their state under741

small wavenumbers. However, a harder evaluation is to test whether the model742

have the ability to maintain its state under high wavenumber oscillations. For743

this reason, we used the testcase developed in Peixoto (2016). This test is744

particularly important for two main reasons: one of them is that the Perot’s745

operator might not have steady geostrophic modes which may have consequences746

for the ICON model, the second reason is that both A- and B-grid are unable to747
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maintain their geostrophic balanced state. We evaluate, without the stabilizing748

term, how all models behave under this testcase.749

On that account, we define the testcase as follows:750

h = h0(2− sinn θ)

uϕ =
−F +

√
F 2 + 4C

2
,

(25)

where h0 is a constant, such that gh0 = 105m2s−2, and n = 2k + 2 for any751

positive k. In our particular case, k = 160. We also define F and C as:752

F = af0
cos θ

sin θ

C = g0n sin
n−2(θ) cos2(θ).

We will also consider the f-sphere with f0 = 1.4584×10−4 s−1. Finally, the grid753

is rotated so that the nucleus of the depression is centred at 1◦E, 3◦N.754

The parameters used in this testcase will have a timestepping scheme and755

timestepping value as defined in section 4. We will also use a g6 refinement,756

where there are abrupt changes on the height field in a very restrict number of757

cells.758

Our results displayed in Figure 8 show that both A- and B-grid, without759

the stabilizing term, are not capable of maintaining the geostrophic balance.760

For the A-grid, the numerical artefacts, emanated primarily from the pentagons761

of the grid, destabilize the scheme leading to an exponential growth blowing762

up the model around the 40 hours integration. In contrast, in the case of the763

B-grid scheme, there was not detected the presence of fast spurious numerical764

oscillations. However, the detected numerical dispersion waves were capable of765

breaking the down the depression up until the 24 hours after the start of the766

simulation.767

Conversely, both C-grid schemes maintain the depression throughout the 5-768

day period of integration. However, in ICON’s case there is a small presence of769

a noise on the system, but it does not seem to be enough to impact the overall770

solution.771

Overall, the solution of A- and B-grid are impacted from their numerical772

oscillations. Although in the work of Yu et al. (2020) the A-grid is capable of773

integrating for a long time, the small wavelength oscillations in this testcase,774

generated mostly on the pentagons of the mesh, destabilize the integration,775

blowing up the solution. In contrast, both C-grid schemes solutions do not776

display damaging oscillations on the solution. MPAS’s scheme and Perot’s op-777

erator on the dual grid for this testcase has been observed by Peixoto (2016)778

and observed the scheme accurately maintain their geostrophic state. We show779

are able to show that on the primal grid, ICON, with the use of Perot’s for-780

mulation, is also able to represent the geostrophic balance state on small scale781

flows, despite the issues on accuracy of its operators on the SCVT (Section 3782

and 4.1).783
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Figure 8: Height field of the different schemes for the localized balanced flow testcase without
using biharmonic for both A- and B-grid schemes. Using a grid refinement g6 and a timestep
of 50s.

4.4. Barotropic Instability784

Previous testcases aimed in studying the fluid flow under highly controlled785

experiments, in order to evaluate their accuracies, linear normal modes, and786

balanced state flow. However, the highly energetic and chaotic nature of the787

ocean require a more realistic testcase, such a fluid flow instability.788

u =

{
umax

en
exp

[
1

(ϕ−ϕ0)(ϕ−ϕ1)

]
ϕ0 < ϕ < ϕ1

0 (ϕ− ϕ0)(ϕ− ϕ1) > 0

gh(ϕ) = gh0 −
∫ ϕ

−π/2

au(ϕ′)

[
f +

tan(ϕ′)

a
u(ϕ′)

]
dϕ′.

(26)

where umax = 80ms−1, ϕ0 = π/7, ϕ0 = π/2 − ϕ0, en = exp[−4/(ϕ1 − ϕ0)
2].789

These initial conditions are under geostrophic balance, but with high potential790

for fluid instability. In order to trigger it, we add a perturbation to the height791

field:792

h′(θ, ϕ) = hmaxe
−(θ/α)2e−[(ϕ2−ϕ)/β]2 cosϕ, (27)

where ϕ2 = π/4, α = 1/3, β = 1/15, and hmax = 120 m. All schemes are tested793

on a g7 refinement with a timestep of 50 seconds under a RK4 timestepping794

scheme. In order to avoid the instability, we use a hyperviscosity coefficient of795

5 × 1015 and 2 × 1015, for both A- and B-grid, respectively. These choices of796

coefficients are in agreement with Tomita and Satoh (2004). We also found that797

smaller values of these coefficients of each scheme would lead to instability for798

the A-grid and the appearance of near grid scale oscillations in the B-grid.799
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The potential vorticity, on the sixth day of integration (Figure 9), display the800

behaviour of the growth of the instability on all the evaluated schemes. Between801

these schemes, it is observed a clear difference in the representation of the smaller802

scale features of the instability. Both A-grid and B-grid schemes displays no803

small scale oscillations present within the vorticity field. Additionally, it is804

evident that both schemes display slightly coarser features in representing the805

state of the fields.806

Similarly, in both C-grid schemes, we observe more small scale features in807

this system, helping could potentially aid in the growth of the instability even if808

no perturbation was added. However, it is evident that in these schemes, near-809

grid scale oscillations play a role in the physical solutions of the integration.810

Comparing both C-grid schemes, both schemes seem equally contaminated by811

numerical noise, however, the small scale oscillations in MPAS display a higher812

wavenumber than the ICON scheme. MPAS’s noise in the vorticity was dis-813

cussed and argued that the chequerboard noise of the vorticity is the main814

culprit in the manifestation of this contamination in our physical simulations815

(Peixoto, 2016). Likewise, we also know that the Perot’s operator on the dual816

grid is capable of manifesting numerical noises on the solutions. Since ICON’s817

divergence operator has the potential to remove small scale oscillations, but818

the scheme does manifest spurious waves, which was also observed in Korn and819

Linardakis (2018), therefore, the Perot’s dual operator is potentially the main820

responsible for this manifestation.821

Overall, all schemes suffer from the grid scale computational modes. There822

is, however, the stabilization term for both A- and B-grid schemes, such that823

the schemes remain stable throughout the integration. Despite both C-grid824

schemes remaining stable throughout the integration, the solutions are contam-825

inated with noise, that will inevitably require a smoothing term, such as the826

biharmonic, in order to remove these high wavenumber waves. Additionally, It827

is observed that the waves from the A-grid to the C-grid schemes, an apparent828

increase in the effective resolution of the computation, agreeing with the previ-829

ous results in Section 4.2. Following this result, we analyse the kinetic spectrum830

of these schemes.831

4.4.1. Kinetic Energy Spectrum832

The global kinetic energy spectrum, is a useful tool in evaluating the energy833

cascade of the fluid. On different scales of the ocean’s motion, we observe a834

power law of k−3 for larger scales or k−5/3 for smaller scales (Wang et al., 2019).835

For the 2D case, the former is related to the turbulence of the flow, whereas the836

latter is related to the reverse energy cascade turbulence. These spectral fluxes837

provide useful insight into the performance of the models in transferring energy838

motion between different scales.839

Therefore, we define the Kinetic Energy Spectrum as follows:840

(EK)n =
a2

4n(n+ 1)

[
|ζ0n|2 + |δ0n|2 + 2

M∑
m=1

(
|ζmn |2 + |δmn |2

)]
, (28)
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where ζmn , δmn are the spectral coefficient of the vorticity and divergence. These841

coefficients are defined as:842

ψm
n =

∫ 1

−1

1

2π
F(ψ(ϕ, θ), ϕ)Pm

n (θ)dθ, (29)

where ψ is the variable to be transformed, F(ψ(ϕ, θ), ϕ) is the Fourier Transform843

on this variable, and Pm
n (θ) is the normalized associate Legendre polynomial.844

To evaluate these equations, we use the nearest neighbour to interpolate the845

original unstructured grid into a quadrilateral grid of 10 km resolution on the846

equator with the nearest neighbour method.847

The energy spectrum of the schemes is shown on Figure 10. From the test-848

case, a small decrease of the spectrum from the wavenumber 1 to 4, and sub-849

sequently an increase, reaching a maximum at the wavenumber 6. Afterwards850

there is a constant decrease of the spectrum with a slope near k−3 for all grids.851

At approximately wavenumber 80, the A-grid scheme has a considerable loss852

of its power, decreasing more rapidly. Similarly, at wavenumber 90 the B-grid853

scheme also displays this rapidly loss of energy. With slight higher wavenumber,854

both A- and B-grid slows its slope until the last evaluated wavenumber.855

Comparably, both C-grid schemes extend the physical slope of k−3 up to856

the wavenumber 300. At this wavenumber, ICON display a similar loss of857

kinetic energy, whereas MPAS maintain a similar slope up to the end of the858

evaluated wavenumbers. We again remark that our approach for ICON-O was859

to perform the mass lumping approach, which may have some impact on the860

effective resolution.861

In summary, we have shown that for smaller wavenumbers there is a good862

agreement between the models. Additionally, we also have shown that even for863

the nonlinear time integration of the shallow water system of equations, the864

schemes behave similar to the linear normal mode analysis, with A-grid having865

the coarsest effective resolution, and MPAS, on the other extreme, having the866

highest effective resolution. Additionally, the presence of a slow-down of the loss867

of the power or even an increase of the spectrum on the highest wavenumbers868

is likely related to the impact of the interpolation to cause this increase, as it869

was previously reported in other works (Wang et al., 2019; Ŕıpodas et al., 2009;870

Juricke et al., 2023).871
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Figure 9: Potential Vorticity of all schemes on the 6th day of integration for the barotropic
instability testcase with perturbation using a g7 refinement grid and a respective biharmonic
for A- and B-grid schemes, following Table 4.
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Figure 10: Kinetic energy spectra for the Barotropic instability testcase for all schemes as in
Figure 9.
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4.5. Models Stability872

Our previous results were able to show elementary characteristics of each873

of the shallow water schemes. Some of our results required the inclusion of a874

stabilizing term for both A- and B- grid schemes, in order to remove damaging875

numerical oscillations that participated in the dynamics. Although the same876

term was not used in the C-grid scheme in our simulations, it is desired to877

include some sort of filtering, as the simulations may contain numerical waves878

that could either damage the solution or cause a potential blow up of the model.879

One particular cause of numerical dispersion is associated with 3D energy-880

enstrophy conserving models, regardless of the staggering used. The imbal-881

ance between the Coriolis and kinetic energy term generates numerical noise,882

causing near grid-scale oscillations and decreasing the kinetic energy of jets883

(Hollingsworth et al., 1983). This instability, known as Hollingsworth Insta-884

bility, also manifests as a destabilized inertia-gravity wave, leading to a blow885

up of the solution depending on the models’ resolution and distortion of the886

mesh (Bell et al., 2017; Peixoto et al., 2018). Recent ocean models, such as887

NEMO’s model, have shown susceptibility to these oscillations, producing spu-888

rious energy transfer to the internal gravity-waves and dissipation, resulting in889

corruption of mesoscale currents and submesoscale structures (Ducousso et al.,890

2017).891

Although this instability is 3D in nature, it is possible to mimic it, by consid-892

ering the ocean model as a layered model, where the vertical flow is associated893

with one of the thin layers of the ocean (Bell et al., 2017). This can be done894

by assuming the ocean model is hydrostatic and under a Bousinesq approxima-895

tion (assumptions made by all ocean models evaluated in this work). In that896

case, one of the layers, henceforth equivalent depth H, if unstable, will display897

a strong noise on the horizontal velocity, and, thus, can be analysed with the898

shallow water equations.899

4.5.1. 2D stability Analysis900

In order to examine the instability, we analyse the models under a nonlinear901

geostrophic testcase, similar to TC1. In this testcase, however, we consider the902

bathymetry as driving the geostrophic balance. The mass height field will be903

constant and small to mimic the equivalent depth of the internal modes of the904

3D model, as done by Bell et al. (2017), and Peixoto et al. (2018). Furthermore,905

we apply a linear analysis using the power method (Peixoto et al., 2018):906

x(k+1) = αk+1r
(k+1) + x, (30)

where α(k+1) = ϵ/|r(k+1)|, ϵ = 10−5 is a small constant, x is the model state907

under geostrophic balance, r(k+1) = x∗ − x is the perturbation, x∗ = G(xk) +908

F, G(xk) is the model evolution operator, and F = x − G(x) is a constant909

forcing. The methods converge, when αk →k α is found for large enough k.910

The eigenvalue is then obtained as λ = 1/α. From there we can compute the E-911

folding timescale from the growth rate ν = log λ/∆t, where ∆t is the timestep.912

We will use, a timestep of 200 seconds.913
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Ranging from an equivalent depth from 10−3 to 100 m we observe a sub-914

stantial difference between the stability of the evaluated schemes (Figure 11).915

B-grid and ICON show similar e-folding time at around 0.1 and 0.2 days from916

the shallowest depth up to 1 m. Larger thickness display a stabilization of both917

schemes. B-grid, in this case, display a faster stabilization than ICON, whose918

e-folding time remain below 1 day for the 200 m, whilst B-grid show over 2 days919

e-folding time for the same thickness.920

Figure 11: E-folding time for the different evaluated schemes, considering a time-step of 200
s in a geostrophic test case where the balanced state is given by the bathymetry, while the
height is given by the equivalent depth and constant.

The similarities of both schemes for lower equivalent depths is potentially921

due to the use of triangular cells on some of their operators. However, the922

difference between the schemes for larger depths is likely associated with the923

error created by the reconstruction of the velocity vector field for both Coriolis924

and Kinetic energy terms in ICON, amplifying the imbalance of the discretiza-925

tion. Additionally, in different grids, ICON is found to be more stable (Korn926

and Linardakis, 2018), implying that our choice of grid might be a source of a927

higher instability.928

On the other hand, both MPAS and A-grid display overall a more stable929

scheme. MPAS displayed a 0.6 day e-folding time for the shallowest depths, but930

showed an increase, reaching around 40 days. Similarly, A-grid displays an even931

larger stability of around 0.2 day for the shallowest depth. However, contrary932

to the other schemes, the stability of the A-grid decrease with the increase of933

the equivalent depth. A-grid’s stability loss with depth might be potentially934

due to different causes of instability being dominant for the equivalent depths,935

i.e. for shallower depths, the cause of the instability is likely the Hollingsworth936

Instability, while for deeper depths, the instability is caused by the excitation937

of spurious pressure modes.938
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4.5.2. Biharmonic939

In order to evaluate the biharmonic effect on the stability of the models, we940

perform the same analysis for different viscosity coefficients, using an equivalent941

depth of 1 metre, and a timestep of 200 seconds. For A- and B-grid schemes,942

we use (22) and (23), respectively. On C-grid, we use the formulation:943

∆u = ∇∇ · u−∇×∇× u ≈ grad div u− grad Tvort u,

where grad T is the transpose gradient operator defined on the dual grid.944

Our analysis, shown on Figure 12, indicates that all schemes were found to945

be stable for a viscosity coefficient no more than 1015 m4s−1. Individually, B-946

grid and ICON does not display difference in stability for a coefficient up to 1013947

m4s−1. However, increasing the coefficient, shows that the B-grid has, not only948

a faster stabilization than ICON, but has the fastest of all evaluated schemes,949

reaching an e-folding time of over 10 days for a coefficient of 1 × 1014 m4s−1.950

ICON, in contrast, shows the slowest stabilization, reaching an e-folding time951

of 1.1 days for a coefficient of 4× 1014 m4s−1.952

Figure 12: E-folding time by viscosity coefficient for each scheme, using a g6 grid refinement
with a timestep of 200 s and a 1 m equivalent depth.

Similarly, both A-grid and MPAS schemes display an unchanged e-folding953

time of up to 1013 m4s−1 and 1014 m4s−1, respectively. Additionally, A-grid is954

shown to stabilize faster than MPAS, reaching an e-folding time of over 20 days955

for a coefficient of 3 × 1014 m4s−1, while MPAS reaches 10 days for the same956

coefficient.957

Overall, we see that despite B-grid showing a lower stability than all schemes,958

it has the potential to faster achieve stability. Conversely, although ICON ob-959

tains a similar stability as the B-grid, it requires a more intense coefficient,960

in order to stabilize the scheme. The similar behaviour happens with A-grid961
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and MPAS, with MPAS requiring a more intense coefficient for stabilization.962

This implies that this difficulty is on the C-grid discretization itself, and it is963

likely associated with either the vector reconstruction of the Coriolis term or964

the Kinetic Energy discretization.965

5. ICON-O Model966

Given the importance of the biharmonic term in order to stabilize the scheme967

or, at least, remove spurious computational waves in the system, we, then, aim968

to bridge the gap between the shallow water model and ICON’s operational969

model. We will first acknowledge that our analysis in this section will be lim-970

ited to ICON-O, and will not give light to other models mentioned in this work.971

However, providing results with ICON-O will be an important step towards un-972

derstanding the effects of numerical oscillations on research/operational models.973

Additionally, our simulations presented in this section were not fine-tuned, i.e.974

the physical parameters and coefficients were not thoroughly calibrated, and,975

therefore, these simulations may not necessarily represent reality accurately.976

However, our discussions in this section will be focused on the analysis of the977

differences between simulations with and without the biharmonic filter, so the978

lack of calibration will not impact the overall analyses of the results.979

The Ocean General Circulation Model ICON-O, developed at the Max-980

Planck Institute for Meteorology, is the oceanic component of the ICON Earth981

System Model. It uses horizontal discretization described in the earlier sections.982

Vertically, it extends the triangular cells into prisms, for the use of its z coordi-983

nate levels. Additionally, In its 3D formulation, ICON-O uses the hydrostatic984

and Bousinesq approximations to solve its state vector {u, h, T, S}, where T985

and S are temperature and salinity, respectively. These tracers are also im-986

bued with dissipative and subgrid-scale operators, such as isoneutral diffusion987

and the mesoscale eddy advection Gent-Mcwilliams Korn (2018). The full 3D988

spatial discretization will be omitted in this section, but the reader can refer to989

equation (32) of Korn (2017).990

For its time integration, ICON-O is discretized using an Adams-Bashforth991

2-step predictor-corrector scheme (equation 33, 34, and 35 of (Korn, 2017)).992

This timestepping scheme does not conserve neither energy nor enstrophy, and993

it provides an inherent diffusion (Korn and Linardakis, 2018).994

Our 3D simulations were performed using a Spring Dynamics optimized grid995

with a radial local refinement with the finest resolution, around 14 Km edge996

length, located near South Africa, and the coarsest resolution, around 80 Km997

edge length, on the antipode of the earth, i.e. North Pacific (Figure 13 upper998

panel). These locally refined mesh created enumerated distortion spots around999

the refined region (Figure 13 lower panel).1000

The model was initialized under rest with 128 layers with climatological1001

temperature and salinity from the Polar Science Center Hydrographic Clima-1002

tology (Steele et al., 2001) and was forced with the German-OMIP climatological1003

forcing, which is derived from the ECMWF reanalysis 15 years dataset. This1004

climatological forcing is daily with a resolution of 1 degree. An initial thirty1005
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Figure 13: The upper panel is the cell area of the spherical grid used in the simulations. The
lower panel is the respective cell distortion of the mesh.

years spin up was performed under these conditions utilizing a biharmonic coef-1006

ficient of 2× 10−1A
3/2
e , where Ae = |e||ê|/2. In addition, we added a Turbulent1007

Kinetic Energy (TKE) closure scheme, for the vertical diffusivity of traces and1008

velocities.1009

Following the spin up, we, subsequently, ran 2 simulations by 10 years each.1010

One simulated with the same parameters as the spin up, which we will coin as1011

our reference simulation. The other was simulated without the aforementioned1012

biharmonic filter, which we will coin as NB run.1013

The simulation without the filter show a clear decrease in the strength of the1014

currents on the ocean system (Figure 14, e.g. Gulf Stream (A), North Equato-1015

rial (B), Kuroshio (C), Malvinas currents (D), and Agulhas (E)). Other regions1016

were found to slightly increase in kinetic energy, in particular, the neighbour-1017

hood around the Agulhas Current, near the Antarctic Circumpolar Current, the1018

Equatorial Currents of the Atlantic Ocean and both Northern and Southern of1019

the Pacific Ocean, and the Brazil-Malvinas Confluence. The integrated kinetic1020

energy averaged over these years show that surface kinetic energy loss of around1021

4.7 ×1013 km2m2s−2 of its 20 ×1013 km2m2s−2. Additionally, it is observed,1022

in particular on regions of coarser resolution, such as the Kuroshio Current and1023

Gulf Stream, the presence of a numerical oscillation emanating from the main1024

currents.1025

At the equatorial pacific currents, in our experiments, we observe that the1026
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Figure 14: Kinetic Energy difference between a reference simulation and simulation without

the use of biharmonic, i.e. E
(ref)
k − E

(no bih)
k .
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Figure 15: Cross-section of the 130◦W longitude of the reference (A) and the without bihar-
monic (B) simulation and a vertical profile of the zonal velocity of both simulation over the
0◦ Latitude (C).

NB simulation show a wider jet with a weaker and deeper core intensity (Figure1027

15). Moreover, the NB simulation show that the northern and souther branches1028

of the Equatorial Current decrease in their intensity, and a flow intensity up from1029

the EUC, which likely occurs due to the deepening of the EUC. In relation to the1030

turbulent energy, the NB simulation shows an increase of EKE at the interface1031

between the slow westward surface flow and the EUC, while decreasing its EKE1032

at the northernmost edge of the North Equatorial Current. Ducousso et al.1033

(2017) in their work on NEMO also observed a deformation of the equatorial1034

undercurrent, however, in their experiments, the current was shown to narrow1035

vertically, and they overall detected a decrease in the EKE field. According1036

to the authors, this effects occur because the region is highly dependent of1037

the baroclinic instability. According to the authors, this system of currents is1038

highly subject to baroclinic instabilities, generating waves and eddies which are1039

the main contributors of the current. The decrease in intensity of the currents1040

could be explained to the decrease in baroclinic instabilities. Similarly, the1041

increase in EKE detected in NB are potentially explained by either a shear1042

between both EUC and the newly generated surface flow and/or by a spurious1043

mixing caused by the emission of numerical oscillation which draws energy from1044

the currents to provide mixing between the both layers.1045

A similar EKE effect is detected on other oceanic regions. Most notably at1046

the Agulhas Current Retroflection, where it meets with the colder water of the1047

South Atlantic Current and Antarctic Circumpolar Current (Figure 16). The1048

retroflection region EKE is known to be modulated by the baroclinic instability1049
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Figure 16: Eddy Kinetic Energy (A) and difference between simulations of EKE (B) of the
Agulhas Current System.

of the Agulhas current (Zhu et al., 2018).1050

Additionally, at the Agulhas Current itself, where there is less intensity in1051

the EKE, the NB simulation shows a slight increase of this field. Observing the1052

cross-section P1, we note a clear decrease in intensity of jets core (Figure 17.C)1053

at the surface, while a weak normal flow is generated at the higher depths.1054

Additionally, it is observed that the NB simulation generate small scale flow1055

spanning near the whole water column, manifesting from the Agulhas Current1056

and propagating tangent of the cross-section (Figure 17.B). It is likely that these1057

oscillations are responsible for the increase in EKE of the field at the core of1058

the current and, consequently, the decrease of the intensity of jet, which may1059

overall impact on the Agulhas Current Retroflection intensity.1060
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Figure 17: P1 Cross-section between the Observational data (A), Reference simulation (B),
and No Biharmonic Simulation (C), and the vertical profile of the normal velocity in the 42
km distance (D).

6. Conclusions1061

In this work, we provided a thorough comparison analysis between different1062

shallow water staggering schemes used in unstructured ocean models and their1063

capability in maintaining a stable integration. Alongside, we also investigated1064

ICON’s susceptibility to such numerical instabilities in realistic 3D settings.1065

The shallow water analyses have shown that all models haves advantages and1066

disadvantages. The NICAM horizontal discretization, from Tomita et al. (2001),1067

is simple to discretize, due to its collocated approach, provides accurate repre-1068

sentation of the operators, and presents reasonably stable integrations for com-1069

plex experiments, for chosen grid optimizations, such as the SCVT. However,1070

similar to the traditional discretization of A-grids on regular grids (Arakawa and1071

Lamb, 1977; Randall, 1994), it displays a low effective resolution, difficulty in1072

maintaining the geostrophic balance, and it is susceptible to the manifestation1073

of numerical oscillations caused by the grid discretization.1074

Similarly, the FeSOM 2.0 horizontal discretization, from Danilov et al. (2017),1075

also provides a quite simple discretization, accurate approximations of the oper-1076

ators, and a higher effective resolution compared to the A-grid. However, it also1077

has a low effective resolution, and it displays some difficulty in maintaining the1078

geostrophic balance. Additionally, despite not suffering from pressure modes,1079

the B-grid scheme is found to be the least stable scheme, but as shown here1080

and discussed by Danilov (2013), It can be easily fixed by a low coefficient of1081

biharmonic.1082

Finally, both C-grid schemes, MPAS-O, from (Skamarock et al., 2012), and1083
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ICON-O, from Korn (2017), have the most complex discretizations between the1084

evaluated schemes. Some operators do not accurately approximate the operators1085

of the Shallow Water system. The difficulty for MPAS-O to show convergence1086

in the error was also discussed by Peixoto (2016). Similarly, ICON-O also1087

displays some difficulty in converging some of the operators of the shallow water1088

equations. The lack of convergence of the divergence operator, for example,1089

was also shown in Korn and Linardakis (2018) for their defined Rossby Grid.1090

Therefore, for both schemes, it is argued that the issue lies in the use of the1091

grid. Therefore, a proper choice of grid optimization should also be taken into1092

consideration when using or using these schemes. Additionally, the difference in1093

apparent effective resolution is observed for both grids, with MPAS-O having a1094

higher resolution. This may be explained by the use of the grid optimization, the1095

mass lumping approach or the Perot operator in ICON-O. Finally, a dissimilarity1096

between both schemes is seen in their stability. MPAS is shown to have a high1097

stability, as it was discussed in (Peixoto et al., 2018), but ICON, similar to the1098

B-grid, is shown to have a low stability and requires a larger viscosity than1099

B-grid to stabilize the scheme. The grid use and the mass lumping may again1100

be responsible for this difference. Despite this, a comparison between the use of1101

difference computation of each operation is welcome to analyse how ICON-O’s1102

stability is impact, e.g. a comparison between the naive and Perot’s computation1103

of the divergence, kinetic energy, and perpendicular velocity.1104

Remarkably, in the 3D ICON-O simulation using a grid with Spring Dynam-1105

ics optimization, the model was found to be stable throughout the simulated1106

years, despite the lack of biharmonic filter. However, near grid oscillations were1107

apparent in the grid and a contribution of these oscillations of the dynamics of1108

the model was apparent. As it was also diagnosed by Ducousso et al. (2017)1109

for the NEMO model, these oscillations seemed to give rise to spurious mixing1110

of the system and also decreases the energy of the ocean’s currents. Regions1111

where its strength is derived from baroclinic instability seems more affected by1112

these small scale oscillations. Yet, it is clear the need for further research in1113

this topic. Though the model is stable, it can be affected by these oscillations1114

if the coefficient is not properly adjusted. Moreover, an excess of the viscosity1115

may also decrease the effective resolution of the model, which also is not ideal.1116

In conclusion, we stress that further research is necessary in order to shed1117

more light into these schemes. We note that all schemes under the shallow water1118

tests have shown to be robust and provide reliable results for their respective1119

purpose. However, testing these schemes under different grids or with more1120

realistic settings might provide greater insights into the performance of the1121

models. Additionally, it seems evident that despite a model being stable without1122

filters, the numerical oscillations in the model may interact with the physical1123

waves, leading to errors or to misinterpretation of the results. It is, therefore,1124

crucial for further investigation on this topic in order to properly make use of1125

filters to avoid these oscillations, but also minimize the damping of physical1126

waves.1127
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C., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mo-1197
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Wang, Q., Danilov, S., Schröter, J., 2008. Finite element ocean circulation1328

model based on triangular prismatic elements, with application in studying1329

the effect of topography representation. Journal of Geophysical Research:1330

Oceans 113.1331

Weller, H., Thuburn, J., Cotter, C.J., 2012. Computational modes and grid1332

imprinting on five quasi-uniform spherical C grids. Monthly Weather Review1333

140, 2734 – 2755.1334

Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992.1335

A standard test set for numerical approximations to the shallow water equa-1336

tions in spherical geometry. Journal of Computational Physics 102, 211–224.1337

Yu, Y.G., Wang, N., Middlecoff, J., Peixoto, P.S., Govett, M.W., 2020. Com-1338

paring numerical accuracy of icosahedral a-grid and c-grid schemes in solving1339

the shallow-water model. Monthly Weather Review 148, 4009 – 4033.1340

Zhu, Y., Qiu, B., Lin, X., Wang, F., 2018. Interannual eddy kinetic energy1341

modulations in the agulhas return current. Journal of Geophysical Research:1342

Oceans 123, 6449–6462.1343

46


