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MSC: Robot Dance is a computational optimization platform developed in response to the COVID-19 outbreak, to
90C15 support the decision-making on public policies at a regional level. The tool is suitable for understanding and
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92€60 tants through a regional network is a concern. Such is the case for the SARS-CoV-2 virus that is highly contagious
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models. Robot Dance anticipates the spread of an epidemic in a complex regional network, helping to identify
fragile links where applying differentiated measures of containment, testing, and vaccination is important. Based
on stochastic optimization, the model determines efficient strategies on the basis of commuting of individuals
and the situation of hospitals in each district. Uncertainty in the capacity of intensive care beds is handled by
a chance-constraint approach. Some functionalities of Robot Dance are illustrated in the state of Sdo Paulo in
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Brazil, using real data for a region with more than forty million inhabitants.

1. Context and motivation

The impact that COVID-19 has had in our lives is no news nowa-
days. Driven by the needs of their population and governments, differ-
ent countries have reacted against the pandemic in different manners.
The diversity observed worldwide in public policies is in stark contrast
with the uniform and massive response that the international scien-
tific community has given without distinction of disciplines or frontiers.
Throughout the globe, researchers swiftly gathered forces to offer clues
and responses to the challenges presented by the pandemic on various
fronts. The state of affairs is no different in Brazil, a country with con-
tinental dimensions and very heterogeneous society. This last feature
poses additional challenges to an already difficult situation, as it puts in
question the effectiveness of uniform policies of quarantine adopted in
many regions to contain the spread of coronavirus.

Robot Dance is an integrated computational optimization platform
developed to assess and estimate the consequences of interventions
taken on a regional level when there is a disease outbreak and the
spread of the disease is affected by the circulation of people living in
the region. A question that all governments face worldwide is how to
mitigate (present and future) pandemic waves while limiting collateral
economic damage. Robot Dance assists the decision-making, providing
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a response that is customized to the specific local needs. By “local” we
mean any territorial division, of political or administrative nature, into
which the area of interest is partitioned (regional health districts, cities,
neighborhoods). Robot Dance considers the region as a network with
nodes through which the disease propagates, following patterns whose
shape and intensity change from night to daytime, particularly during
working hours.

The public health of the region depends on the dynamic evolution of
several elements that are intertwined in non-trivial patterns. For Robot
Dance, these elements are the mobility of inhabitants between the nodes
of the network, the epidemiological situation in each district, and the
hospitals’ capacity in the considered region. Having been designed in
a mathematical optimization framework, Robot Dance searches for an
efficient assignment of resources, taking into account those three as-
pects on a regional level, over a horizon of several months. To guide the
search, the user can choose among different objective functions, that
can aim at maximizing the free circulation, or minimizing the length of
consecutive lockdowns, or other options described in Section 5.1 below.

The state of Sdo Paulo, the most populous and the epicenter of the
COVID-19 outbreak in Brazil Candido et al. (2020b) is a good example of
a complex network where the virus circulates. With a surface compara-
ble to the United Kingdom, and a population similar to the one in Spain,
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Fig. 1. Number of daily trips in a typical pre-pandemic

216 week in Sdo Paulo state, Brazil (February 2020). The
star-shaped lines, in darker colors when the circulation
between nearby cities is higher, reveals each star center
as an important commuting hub for the network; see
also Peixoto et al. (2020).
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Sdo Paulo is responsible for about 33% of Brazil’s GDP. As illustrated by
Fig. 1, many people travel to work, commuting daily from smaller towns
to large urban centers. The figure also reveals several such hubs spread
across the state.

The situation described by Fig. 1 is typical in Brazil and, more gen-
erally, common in regions having a few central points that concentrate
most of the economic infrastructure. To go to work, large portions of
the population are forced to travel long distances every day between
cities (or between nodes in the network). Because of this feature, keep-
ing a global view both in space and time is essential to suitably capture
the disease transmission. Besides, those nodes are highly heterogeneous
(in terms of wealth, of hospital capacity, of business activities), mak-
ing the impact of mobility also noticeable beyond the daily scale. The
phenomenon was indeed observed for COVID-19 in Sao Paulo, with the
well-off population initially carrying the virus from the hubs with inter-
national airports to the rest of the state, progressively more and more
to the inland, following a long-term circulation pattern Candido et al.
(2020a); Carmo et al. (2020).

To obtain a rigorous mathematical model that represents well the
COVID-19 situation, it is crucial to suitably merge epidemiological
knowledge with tools from several areas, including optimization, data
science, visualization, and computational mathematics. Furthermore,
in the considered setting, there is an acute lack of reliable data on
the progress of the pandemic, due to subnotification, asymptomatic
cases, and changes in how cases are reported over time in the official
databases. This handicap is a recurrent difficulty for all the mathemat-
ical developments related to COVID-19. To mitigate the impact of this
issue in the decision process, in addition to intensive backtesting and
cross-validation of the parameters defining the problem, Robot Dance
incorporates uncertainty in the use of intensive care unit (ICU) beds.
The limit in ICU capacity, a constraint in the optimization problem, is
then handled in the form of probabilistic constraints Charnes and Cooper
(1959); Dentcheva (2006); Prékopa (1995). In this manner, even if reli-
able data is scarce, the tool still provides useful insight to compare on a
qualitative level the merits of different strategies of containment.

The platform is very versatile and, given appropriate mobility and
epidemiological input data, can determine different mitigation proto-
cols that make efficient use of the ICU beds. Those features become
particularly useful for a network like the one represented in Fig. 1, hav-
ing a complex heterogeneous topology. In the case studies presented in
Section 5 and thanks to the incorporation of the mobility network in
the epidemiological model, Robot Dance is able to pinpoint critical lo-
cations where targeted policies, of local nature, have the most impact.
For Sdo Paulo state this means that, instead of putting in lockdown the

whole state at once, different degrees of social distancing can be imposed
in different districts, depending on the local situation of the hospitals,
the severity of infections, and the commuting patterns. Another feature
of Robot Dance that is presented in our numerical assessment refers to
transferring patients to neighboring districts when the local system is
close to saturation. Clearly, this is a region-dependent consideration.
When the local ICU capacity is attained, it is natural to use resources
in the proximity, transferring patients to nearby regions. Robot Dance
models this feature by a pool of beds that is shared by several districts.
With this mechanism, nodes with spare capacity can reserve a small
portion of beds to receive patients from areas with poor hospital infras-
tructure. The pooling is illustrated for the state capital, Sdo Paulo city,
and the five suburban districts that compose its metropolitan area. Since
commuting occurs in the whole network, as illustrated in Fig. 1, those
functionalities are obtained considering the twenty-two health districts
that compose Sdo Paulo state.

Before presenting details about Robot Dance’s mathematical formu-
lation, we provide a succinct overview of other mathematical models
developed in response to the COVID-19 pandemic.

Some related works, contribution, and terminology

The literature about computational mathematical models that simu-
late and analyze the impact of COVID-19 outbreak has grown quickly in
the past months. We focus the discussion on some works that describe
the pandemic dynamics by compartmental models, like Susceptible-
Infectious-Removed (SIR) and Susceptible-Exposed-Infectious-Removed
(SEIR) models Brauer (2008). Rather than a thorough review (a
formidable enterprise), we handpick a few works to contextualize Robot
Dance’s features. From this perspective, there are two main categories of
models in the literature, one considering the pandemic dynamics only,
and another group that complements the temporal distribution of the
disease with geographical considerations, like Robot Dance.

Temporal methods typically rely on the calibration of parameters
of compartmental models to analyze and forecast the behavior of the
virus outbreak, drawing conclusions based on such estimates. For exam-
ple, Aguas et al. (2020) first uses an SEIR compartmental model to esti-
mate the reinfection, transmission, and recovery rates; these parameters
are afterwards plugged into simulations, to determine when herd immu-
nity can be reached. In Chen et al. (2020) the number of asymptomatic
cases is approximated by fitting the time-dependent transmission and
recovery rates for an SIR model. Similarly, the approach Acufia-Zegarra
et al. (2020) fits the time-dependent parameters of an SEIR model to de-
termine the impact of distancing measures and the time horizon required
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for such measures to take effect. Optimal control formulations of SEIR
models are considered in Maurer and do Rosario de Pinho (2016) and
Bonnans and Gianatti (2020), for defining strategies of vaccination and
confinement, respectively. The latter work defines age-dependent con-
trols to show that performing differentiated confinement can help in
minimizing the economic impact of containment measures. Among tem-
poral models, Duque et al. (2020), the closest to Robot Dance, forecasts
the severity of confinement protocols that keep the health system from
collapsing in the short term. Rather than counting lockdown days, Robot
Dance offers the possibility of alternating severe confinement with re-
laxed social distancing. Such a “dance” can be performed differently
for different nodes, for instance keeping open together two nearby dis-
tricts that have complementary economic activities (or one open and
one closed, if better for the business of the region in terms of work pat-
terns).

Spatio-Temporal methods consider the geographical dissemination
of the disease due to human mobility. The typical approach is to dis-
tribute the population in groups, setting a compartmental model in each
group, adapting the model to accommodate mobility between groups.
This is the proposal for the SEIR variant in Wu et al. (2020), one of
the first spatio-temporal models in the context of COVID-19. More so-
phisticated approaches were proposed later on, such as Arenas et al.
(2020) which segregates the population in patches and in age strata
to assess the performance of containment protocols. In Peixoto et al.
(2020), the basis for the illustration in Fig. 1, geolocation mobile phone
data is used to estimate the risk of infection in each city.

Robot Dance is based on a spatio-temporal model that splits the
population into groups (nodes), representing the mobility as links in
the network. The tool can anticipate the geographical evolution of the
disease and evaluate the potential impact of containment and preven-
tion strategies. This is fundamental as a response to studies like Kissler
et al. (2020), foreseeing resurgences in contagion for at least three more
years. Having cast the epidemiological transmission in a complex net-
work, Robot Dance reveals certain epidemiological roads, links that will
dominate the spread of the disease, as well as nodes where the need for
ICU beds will be more acute. In this way, it is possible to forecast the
effect of different containment protocols in a manner that the surges can
be handled by the health system in each district, without collapsing. A
distinctive feature of Robot Dance is the optimization of the protocols
with the possibility of alternating the confinement measures in neigh-
boring nodes. Allowing for contiguous districts to face different restric-
tion levels makes it possible not only to keep some nodes relaxed while
others undergo more severe measures of social distancing, but also to
change the configuration of which districts are open and which ones
are closed along the time horizon. It is this automatic choreography,
alternating a “hammer” of strict confinement with the “dance” of re-
laxation, that gave the name to the tool, inspired from the blog post
Pueyo (2020).

The significance of alternating hammer and dance is undeniable,
as the policy-maker then has a strategy that avoids shutting down the
economic activities in a region, all at once. The joint examination of
city commute, health infrastructure, and specific containment measures
district-wise, gives a global perception of the impact of different actions.
For instance, it is possible to analyze the effect on the whole region of
“surgical” local measures, such as increasing the number of ICU beds in
some key nodes, critical for the network. In the case study in Section
5.3 and Section 5.4, once Robot Dance identifies nearby nodes that are
on some critical epidemiological link, better containment policies are
computed, putting in place a mechanism of cooperation, to share hos-
pital infrastructure.

Having put the contributions of Robot Dance in context, we are now
in a position to give the mathematical formulation of its key ingredients.
The mathematical optimization problem under consideration minimizes
an objective function over a feasible set with constraints describing the
virus transmission, how people commute between cities for work, and
the hospital capacity. The corresponding models are detailed below.
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Fig. 2. Commuting between nodes changes the proportions of susceptible and
exposed individuals.
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2. Basic epidemiological constraints and continuous-time
problem

Recall that nodes in the network correspond to cities, or adminis-
trative health districts, or some subdivision of the area of interest. The
analysis is done for a network with nodes in a set /7, with cardinality |7|.

Along the time horizon defined by given initial and final times T,
and T,, the epidemiological state of the whole region is characterized by
the population compartments of Susceptible, Exposed, Infected, and Re-
covered individuals, considered as percentages of the total population in
each district. The Susceptible individuals represent the people that do not
have immunity to the disease and can get sick. The Exposed group repre-
sents people that were exposed to the pathogen and got infected, but are
in an incubating period and do not transmit the disease yet. The Infected
group represents the population that can actively infect others. Finally,
the Recovered compartment represents those individuals that are not in-
fecting other people anymore. The compartment definitions emphasize
the state of the population groups with respect to the transmission of the
disease and not with respect to their overall health state. In particular,
the Recovered compartment includes, in addition to individuals that are
fully recovered from the disease, sick ones that do not transmit anymore
the virus, and also those who died from COVID-19. The capital letters
8,&,J,R denote the corresponding percentages, noting that each com-
partment is a vector in [0, 1]/]. In a continuous-time formulation, the
regional state at time ¢ is given by the vector function,

x() :=(8,&,9,R)(0) € [0, 11 for 1 € [Ty, T,],

noting that 8 + £ + J + R = 1 for each node and time. When convenient,
an individual component of the state vector is referred to by a sub-index,
putting into brackets its ordinal position. This convention is used in
(1) below, where 8§ and J, the first and third components of the vector
x, are denoted by x[;; and x[3), respectively.

We shall also make use of a binary coefficient function a(r) € {0,1}
distinguishing time passed in the original node (a(r) = 1) from time spent
commuting and working in another node (a(f) = 0). In Robot Dance, no
mobility corresponds to the pandemic evolution only during the night
hours, when individuals remain in their own node (typically during one
third of the day, so a(r) = 1 during 1/3 of the time in our setting). The dis-
tinction is made necessary for the epidemiological model to consider the
commuting to work during the day, with individuals traveling between
nodes, potentially carrying the disease. The mathematical formulation
of how circulation changes the susceptible and exposed compartments
among nodes is given in Section 3, and a graphical illustration can be
found in Fig. 2.

The effective infection rate r(z) € [0, 7] c R/ defines the way the dis-
ease evolves, while T;,. and T;,; are the incubation and infection pe-
riods (the former taken as the lapse between exposure and the time
when starting to actively spread the disease). For each node i €I,
given an initial condition at time T, that is x; = (8¢, &, Iy, Ry) with
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8y + &y + Iy + Ry =1, the pandemic evolution during the night is de-
scribed by a system of ordinary differential equations:

S = -2 0s0r o o= 2208010 - 2—E'0
mf 1 nf inc

N iy Lo i _ L i

Jm = — ENT) Tinfj ) R(t) = Tmf J®).

In this dynamical system, nonlinearity stems from the product 8(#)J (),
quantifying the amount of susceptible population of node i that gets
exposed to infection. Defining the intermediate variables, for each i € I,

Yo =8'®rm = Xf]](I)xf3](l)7 (1)
the relations for susceptible and exposed compartments become,

Qi _ ( ) ii _ ( ) ii 1 i

s = Tmf" 0y () and &'(r) = T —r Oy - Tincg ®) )

(the somewhat redundant notation with a double super-index for the
new variable will be useful in Section 3).

The additional variable exposes the portion in the dynamics structure
that is linear on the state. Specifically, introducing the matrix and vector

0 0 0 »
1
R T 0 1] 1
M = ) . and m:= — , 3)
LA o Tt O
1 0
0 0 7 0

inf

the system of ordinary differential equations for the night cycle can be
written as follows:

(1) = Mx (1) + ma(t) F 1)y (1) foriel. 4)

Incidentally, note that, because the columns in the matrix add up to
zero and 8, + &, + Jy + Ry = 1, the components of both x/() and y' ()
lie in the cube [0, 1]/!. Also, thanks to the introduction of the additional
variable (1), the relations in (4) involve, at most, the product of two
variables (r and y). Keeping the model in a quadratic format, similar to
the one in (4), has a tremendous impact on the numerical solution. We
shall come back to this point in Proposition 3.1, after having incorpo-
rated the mobility between nodes in Section 3.

In our optimization model, the natural choice for control variable is
the infection rate in the network, (v(¢), i € I), for which an upper bound
7 € RH! is known. Controlling the infection rate can be seen as a proxy
for various kinds of public intervention, including restricting mobility.
The objective of containment measures such as social distancing and
mask wearing is to eventually reduce the infection rate, see Brauner
et al. (2017) and references therein. Similarly to Ferreira et al. (2021),
we assume known some rule that links #’s levels to non-pharmaceutical
interventions. Such rules, which are region-dependent, convert the out-
put of Robot Dance into intervention suggestions that can be imple-
mented by the policy-maker according to the idiosyncrasies of the region
under consideration.

In order to lay the groundwork for Robot Dance’s optimization
model, suppose for the moment there are no more constraints (this is
not the case for Robot Dance). If ¢ and y denote two functions defin-
ing performance indicators for the state and control, respectively, the
problem to be solved in continuous time is

. Tl
 min_ /1r 0 (exo) +y))di

s.t. (x(@), y(1), r(1)) satisfy (3)-(4) for a.e. r € [T, T} ]
y() satisfies (1) for a.e. t € [Ty, T;]

x(Ty) = xg,r(T) =1y are given initial conditions.

®

This is an optimal control problem with state constraints for which a so-
lution exists, by compactness of the state and control sets. Furthermore,
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since (4) depends linearly on the control, when the function y is linear,
the necessary optimality conditions given by Pontryagin maximum prin-
ciple ensure that any optimal control is a concatenation of bang-bang
and singular arcs Clarke (2013).

The full formulation (13) solved by Robot Dance corresponds to the
discretization of a control problem having a structure similar to (5),
with additional constraints involving only the states or only the control.
The setting still corresponds to a so-called pure control-state constrained
problem, in which the only explicit relation between the state and the
control appears in the dynamical system (combining the night cycle in
(4) with the day dynamics described in Section 3 below).

To solve infinite-dimensional problems like (5) we adopt the ap-
proach called “discretize-and-optimize”. That is, we consider a discrete
approximation and use nonlinear programming methods to solve the
discretized optimal control problem. The configurations of Robot Dance
that promote alternating between periods of open economy with severe
containment have a nonconvex quadratic objective function, for which
the nonlinear programming methods provide only local minima.

Convergence of the solution of the discrete optimization problem to
a reference solution of the continuous formulation depends on certain
conditions related to smoothness, independence, controllability, and co-
ercivity, stated in Dontchev et al. (2000). These conditions hold for
Robot Dance.

Discretization of the differential equations amounts to choosing an
approximation scheme for the left-hand side in (4). In our model, central
finite differences appeared as a good compromise,
NP Xer ™ X
X (1) ~ T

On the right-hand side, the time dependence is a sub-index, because
we are dealing with vectors, no longer with functions. Regarding the
auxiliary variable defined in (1), this means that now one of its sub-
indices refers to the vector component and another one to the time step.

Accordingly, given x', y', v with vectorial time components x!, y*, r/ for

Q)

te7 = {TyTy+1,...,T,}, the discretized system has the form
xiH =x; + 2Mx! +2ma,r;y;’ te7T, iel
il = xi teT, iel ™
Vi 015103 ’ )

for suitable initial conditions x' |, x| with components adding up to 1,
and an initial reproduction rate .

The version of Robot Dance presented here does not consider age
groups. Further compartments, in particular discriminating age groups,
can be treated similarly, expanding the state vector x and its companion
additional variable y into the corresponding new components (keeping
in mind that such extensions will increase the dimension of a problem
which is already very large-scale). We refer to Silva et al. (2021b) and
Silva et al. (2021a) for variants of Robot Dance with age groups that
additionally introduce vaccination and testing as control variables, re-
spectively.

3. Modeling daily commute

As shown by Fig. 2, during the day, transit between nearby nodes
changes the dynamics of the susceptible and exposed compartments. An
|1] x |I| mobility matrix with entries p"/ € [0, 1] represents the percent-
age of inhabitants of node i traveling from node i to node j. Among
several sources of mobility data that became available for COVID-19
research purposes,’ we make use of high resolution smartphone geolo-
cation provided by the Brazilian company InLoco.> The company gath-
ers movement patterns of more than one-fifth of the inhabitants in Sdo
Paulo state, providing a social distance index with the so-called Hexag-
onal Hierarchical Spatial Index level 8 spatial resolution, accounting for

! such as https://www.google.com/covid19/mobility/ and https://covid19.
apple.com/mobility.
2 https://mapabrasileirodacovid.inloco.com.br.
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hexagons of approximately 460 m edge length.® The index is the per-
centage of users that stayed home at a given day divided by the number
of users in the company database for a given area. Also, from Peixoto
et al. (2020) and similarly to Fig. 1, we have InLoco mobility data for
Séo Paulo state with high resolution (approximately 1km?), in the form
of daily origin-destination movement counts.

Diagonal elements in the mobility matrix represent the proportion
of people that did not leave the district. The values p’’ are given by the
social distance index, added to the proportion of people that moved at
least 1km, but stayed in the district. The complement of those values,
considering people who left the district i, is distributed among the off-
diagonal terms p'/, proportionally to the trip count recorded between
nodes i and j.

For the model to take into account mobility, the susceptible and ex-
posed dynamics in (2) must incorporate the impact of commuting. First,
those nodes whose value r(¢) is smaller than the natural reproduction
number of the disease without intervention ré') are under current non-
pharmacological intervention, like social distancing or even lockdown.
It is, then, natural to assume that inbound travel should be discouraged,
say by a factor ¢{'ri(t) € [0, 1]. For example, in the implementation we
used ¢’ =1 /rf), so that inbound travel is decreased proportionally to
the decrease in the natural reproduction number required by r/(¢). Let-
ting N’ stand for the total population of node i, this is reflected by the
entries of the effective mobility matrix and the effective population, defined
by

p¥(0) 1= & F@0p" and N(r) := Z pF(N* foriel, )

kel
respectively. The second modification is related to the intermediate vari-
able defined in (1) to represent the product

817 (0),

the amount of susceptible population of node i that gets exposed to in-
fection. Because commuting modifies the circulation flow, with mobility
the dynamics must now consider the products

P (S () (1),

the amount of susceptible population of node i that gets exposed to in-
fection at other nodes due to commuting there. The products involve
the following effective infection ratio:

V@) := Nj( ) é‘; P I O)N* forjel. ©)

Putting all these ingredients together gives the following ordinary
differential equations for the susceptible and exposed compartments:

§0) = ~Z2r a0 - CZEO 3 o 08 @ro)
inf inf jel
g0 = 22000+ 1D S 0pl 08 0V @)~ 2
m inf jel inc

where the factor a(r) is used to weigh the night cycle (2) with the mo-
bility during day time (in fractions equal to 1/3 and 2/3, for example).
The other equations, defining J/() and R/(r), are as before.

The following diagram summarizes all the state variables and their
transition dependencies.

transition depending on

8- 8 8 a,r, ¢, pY, N, Ty
8§ — & same as above

g g €Ty

[ I, Tont

L[l Ji s g

Ji - Ri T.

inf

3 https://h3geo.org/.
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Since keeping a quadratic format as in (4) is crucial for implementa-
tion, we show below how to extend the device in (1) to suitably represent
the 4th-degree monomials in the summations above.

Proposition 3.1 (Quadratic reformulation). For all i,j € I, the mobility
elements p'/, ¢ € [0, 1] are given parameters, as well as the night and day
cycle weights a(t) € (0,1) fort € T.

The SEIR model with mobility can be reformulated as follows:

§a) = - 22 Ao - SO Y il 02
n inf jeI
i a(r) i (1 = a@) ; IO e
e = T, —r Oy + ——— T ;C’p’u’(t)zf(t) TinCE @®)
Sy _ L o _ L i
I = Tmﬁ Q) Tmfﬂ ®
Rit) = ! Ji(0). (10)

inf
In the dynamics (10) we introduced the additional state variables

kj ik k
Yk o= k ; Dker PYON
(0 :=8'WI*@ = xm(t)xm(t) and zZ7(1) := W (11)
defined for i, j,k € I, as well as the following additional control variable,
defined for j € I:

W) = (FH@®)> (12)

Proof. To prove the claim we shall rewrite the rightmost terms in the
susceptible and exposed compartments as follows

P Op? O8OV (1) = & p7u! (027 (0).

Plugging the expression (8) for the effective mobility in both the numer-
ator and denominator in (9) gives that

N0y =@ Y pN* and ) pbnk@N*
kel kel
=P Y, pIF N

kel

In turn, the corresponding equivalent expression for the probability of
local infections

V() = Z PR NE,

z p keI

kel

Shortening the denominator to D := Y, ; p*'7*(1)N* for the sake of
clarity, the following algebraic manipulations give the stated result:

P op? 8 OV ) = r (0p” 08" Zp"fﬂ"(t)N"
keI

r’(t)[p"(t)— > s sk N*

kel

= PRl 3 P ONF
kel

= &Pl )z ().

O

Notice that in (10) the equality $'(r) + &i(r) + J(r) + Ri(z) = 0 holds
for all i and ¢. This ensures that the sum of these state variables is in-
variant in time (we omit writing the superfluous constraint 8(¢) + £(r) +
J(@) + R(@) = 1).

Accordingly, the optimal control problem with mobility has the fol-
lowing format
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T
 min /T (o) + e
s.t. (x(1), y(1), z(t), r(1), u(t)) satisfy  (10) for a.e. t € [T, T;]
(¥(0), z(¢)) satisfy (11) for a.e. t € [Ty, T;]
u(t) satisfies (12) for a.e. t € [T, T;]

are given initial conditions;

13)

x(Ty) = x¢, r(Ty) = ry

to be compared with (5).

Given an initial state, the discretized epidemiological constraints
(10), derived using central finite differences as in (6)-(7), involves at
most the product of two variables. The same holds for the additional
state variables in (11) and (12). As a result, the feasible set in the opti-
mization problem solved by Robot Dance is nonconvex and quadratic.
This structure is often exploited by modeling languages and optimiza-
tion solvers like JuMP Dunning et al. (2017) and IPOPT Wachter and
Biegler (2005), the packages used by Robot Dance for modeling and
optimization respectively. Keeping the quadratic structure for the opti-
mization problem was crucial for efficiency.

4. Representing hospital capacity

In addition to the epidemiological constraints with mobility, Robot
Dance considers the capacity that hospitals in the network have to attend
to individuals sick with the virus. As mentioned, a critical question is
the quality of the available data, mostly with respect to the number of
infections. In order to somehow mitigate this issue, Robot Dance sets a
probabilistic constraint for the use of ICU beds in each district. Thanks
to the structure of the considered uncertainty, the chance constraint
can be cast into a deterministic equivalent reformulation, see Charnes
and Cooper (1962, 1963). The procedure is explained below. Before, we
note that uncertainty is present in many aspects of the problem, but for
scalability reasons, only the most relevant one, critical for the overall
survival rate, was included in the model.

To define the capacity constraint, let v} be given values for the ICU
bed capacity for the ith district, for each i € I and ¢t € 7. Let icu, denote
the percentage of the infected population that needs intensive care (the
precise definition will be given in (21)). We consider a new variable Vli 5
representing an accumulation of sick individuals, over = days prior to #:

t ji
k CwiT
=1V x. (14)

k=t—1 Ti"f

Vii=

t

The value of 7, usually ranging in [7,10], see de Souza Noronha et al.
(2020), corresponds to the average number of days infected individuals
typically spend in the ICU. On the right-hand side in (14) the new vari-
able is expressed as the inner product of the state variable x with a vector
V/ € RUITI, suitably defined. This writing emphasizes the fact that V;
depends linearly on the state variable of the optimization problem.

With these definitions, a deterministic constraint limiting the ICU
attention would have the expression
icyV/ <ol (15)
In this simple version, icu, is considered constant, say E[icu,], the mean
value over the nodes in the network. To make a more realistic modeling
of this constraint, crucial for the problem under consideration, we rep-
resent the ratio by a stochastic process that we shall approximate by a
time series, Durbin and Koopman (2012).

In order to determine the parameters of the time series, we make an
estimation using historical records of intensive care unit beds and new
infected individuals in the region, see Section 5.2. The data was scaled to
the range [0,1], using the minimum and maximum records, respectively
denoted by icu and icu, so that a time-series model is adjusted for the
values

icu, —icu

R, := ——— for

A:=icu-—icu 16
X icu—icu (16)
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By examining several indicators of model adequacy, the best fit was an
autoregressive model of order p:

P

R, =co+cit+ Y ¢;R,_; + @, where o, ~iid N'(0,2). a7
j=1

In the rightmost expression, the white noise w, is a random variable

that is independent and identically distributed according to a normal

distribution with zero mean and variance given by 03).

The explicit formulation of the probabilistic expression for the con-
straint (15) involves some algebraic manipulations. The result below
writes the recursion as a function of the callibration parameters. The
expression depends on the p starting values, (icu%_ =1, p), a
given data, called the tendency of the series.

Proposition 4.1 [Explicit expression for the time series]. Given the scaled

ratios (16) for t > Ty + 1 and the autoregressive model of order p in (17),
consider the p X p matrix defined by

b1 b B
10 0

A=
0 .. 0
1 0 0

and let a{.‘j denote the entries of A¥, the kth power of the matrix A, for k =
0,....t
The following holds for the time series of the original data:

(i) the expected value is

p t—1
Eficu] : = <1 —Za§j>iﬁ+AZaq‘]cO
k=0

j=1
1—1 P
k .
+A 2 ay, (t = k)e; + z a’ljlcuvo_j.
k=0 Jj=1
(if) icu,(w) = E[icy]+A X} a o, fort>Ty+1.
Proof. We start by writing in vectorial form,
Ro

R_
and the time series is

the tendency is S :

R,
Rt

R,_
=1 fort > 1.

R

t—=p

Extending the intercept, drift and noise with zeros, to vectors in R”:

) € @y

0 0 0
Cy := C = £ 1=

0 0 0

and recalling the definition of the matrix A, we can write the whole
series as a vector: S, = Cy + Ct + AS,_; + ¢,. A recursive application for
t > 1 results in the identity
t—1 t—1 t—1
S, =Y ARG+ Y (- KARC, + A'S, + ) ke, .
k=0 k=0 k=0
In particular, since the extended noise has mean 0, we obtain the expres-
sion for the expected value of the first component of the scaled series,
which is the component of interest in our case:
t—1 t—1 P
E[R,] := Z a’l‘lco + Z a’l‘l(t —k)e, + a’ljR_j, for R, defined in (16).
k=0 k=0 Jj=1
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Scaling back using (16), yields the expression stated in item (i) for the
expected value of the time series. By a similar procedure, the recursion
and the identity in (16) yield the expression for the time series given in
item (ii). [J

Notice that the explicit expression derived for the time series in
Proposition 4.1 needs computing the entries af,‘. of the matrices A*, the
power of A. These calculations can be done efficiently once, before the
optimization process starts. Plugging those explicit relations in the prob-
abilistic formulation of (15), namely in

Plicu(@V; <vf] > 1-p, wherep e (0.1), (18)

yields a linear inequality constraint; see for instance Ackooij et al.
(2010); Prékopa (1995). More precisely, the explicit deterministic equiv-
alent formulation of the chance constraint (18), written as a function of
the state variable x, is

-1
Elicy,]V/'x < v} — F~(1 - p)o,AV/ x at? forielteT, (19)
k=0

where F~ is the inverse cumulative distribution function of the standard
Gaussian distribution.

When compared to the initial deterministic inequality (15), the prob-
abilistic constraint (18) remains linear, with a smaller right-hand side,
confirming the “robustifying” effect of the chance constraint. It should
be noted that the model adopted for uncertainty sets a probability con-
straint for each time step separately. As such, the chance constraints
disregard potential correlations between time steps for the ratio icu. A
joint constraint, in which the probability holds for the whole time hori-
zon, might be preferable, but its deterministic counterpart would make
the feasible set less tractable (with more couplings and, possibly, a conic
structure).

Probabilistic constraints are appealing in real-life problems, because
of their straightforward and natural interpretation. The computational
solution of probabilistically constrained optimization problems, exploit-
ing structural properties in different settings, has been addressed in var-
ious forms in the stochastic programming literature, Adam and Branda
(2016); Klein Haneveld and van der Vlerk (2006). The model (19) is re-
lated to the approach in Ackooij and Sagastizébal (2014). Works based
on sampling average approximations dealt with by integer programming
techniques are Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009).
Augmented Lagrangians that effectively compute p-efficient points were
considered in Dentcheva and Martinez (2012); see also van Ackooij et al.
(2017). For other methodologies and solvers, we refer to Pflug and Pich-
ler (2011) and Branda (2012).

5. Robot Dance in action

Robot Dance is written in Julia Bezanson et al. (2017) using the
JuMP modeling language Dunning et al. (2017). The source code, data,
and scripts used in our experiments are available as open-source code
in https://github.com/pjssilva/Robot-dance. We present two case stud-
ies that show the versatility of the platform for different configurations.
The first experiment illustrates that it is possible to control the disease,
enforcing alternation between loose and strong containment measures
(playing the hammer and the dance from Pueyo (2020)). Such a strat-
egy is meant to alleviate the detrimental effect of long lockdowns (on
both the economy and the population’s psychological mood). The sec-
ond case, dealing with mobility and ICU capacity, highlights the interest
of allowing neighboring regions to share their ICU beds.

Before reporting these results, we provide some details on the com-
putational implementation of the model.

5.1. Objective functions and implementational details

Given initial conditions x, and r,, an upper bound 7 € R/l, and a
time horizon 7 = {T,, ..., T; } typically discretized using daily time steps,
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the mathematical optimization problem solved by Robot Dance has the
form

min D (0e)+ v ()

rel0,7]
teT
s.t. (x,y,z,r,u) satisfy versions of (10)-(12) in discrete time
x satisfies (19)
repP for some polyhedral set P ¢ RIXTi=To),

(20)

The set P is useful to bound some variables as well as to impose temporal
patterns on the control variable. For example, if instead of a “hammer
and dance” alternation of lockdowns and free circulation, the decision-
maker prefers a policy that gradually relaxes the containment measures,
constraints that prevent too abrupt changes in consecutive weeks can be
incorporated in P. Additionally, in our implementation the controls r!
only change every two weeks, in accordance to Sdo Paulo’s public policy
on COVID-19. This is achieved by using in the code the same variable
for fourteen days in a row.

In (20) the objective functions ¢ and y can be chosen by the user
among several possibilities. In our runs, the state is not considered in
the objective function (¢ = 0). As for the terms y, typical measures for
assessing the control performance are often a combination of the follow-
ing functions:

- If ensuring a maximal circulation is a priority then, given weights

Ni
w;, = ——,
' Zjel N/
WMAXCIRC(’.,) = Z w,(F — rﬁ)

iel
keeps the rate as close as possible to the upper bound 7, under-
stood as the one with free circulation under a “new normal”, see
Section 5.2 below.

- Given a minimum achievable reproduction number r, the function

R P P )
iel

follows the sequence of confinement and relaxation induced by the
scalars &', Such weights are chosen by the decision-maker, to pro-
mote a geographical pattern to open (or close) certain areas, accord-
ing to certain demographic and economic criteria.
To prevent lockdowns (severe confinement) from being too long in
a single node, Robot Dance sets
wSHORT (1) 1= Z Slw,(rh - r;_l)z.

iel

To encourage alternation of the confinement levels between specific
nodes,

yATERN ) = =YY N min(8], 8)) min(uw,, w)(r = )%

iel i#jel
This objective function is necessary to enforce controls of bang-bang
type because, with mobility, the SEIR dynamics (10) is no longer
linear on the control (the new control variable u in (12) is quadratic
on r).

In our implementation, the parameters § above were defined as the
ith region population divided by the mean population in all regions, the
same value for all 7.

The details listed below were important for improving the perfor-
mance of the numerical method.

1. The discretized ODE system uses a central difference scheme with
daily time steps. In order to properly take into account the a(f) pa-
rameter function along a full day, we make a weighted sum of the
two terms that define the derivative § in (10), as follows. The weight
of each term corresponds to the portion of the day that is spent in
the considered state. The first term, representing the evolution of the
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disease during the night, is multiplied by 1/3. The weight for the sec-
ond term, representing day activities, is 2/3. The same mechanism
was applied in &'.

2. As already stated, the original nonconvex, non-quadratic model is
recast as a nonconvex quadratic model thanks to a thoughtful ad-
dition of auxiliary dummy variables. The choice is not unique, as it
depends on which sub-expressions are selected to be represented by
intermediate variables. We tried several alternatives, and taking y, z
and u given in Proposition 3.1 proved to have the best numerical per-
formance. This reformulation was the most important modification
made to the original model, in terms of solution speed. Thanks to
the quadratic nature of (10), we were able to instruct JuMP to com-
pute Hessians only once. In turn, JuMP exposed this information
to IPOPT, and the solver could then use the (cheap) second-order
knowledge very efficiently.

3. All the variables in the SEIR model are between 0 and 1 and add up
to one. By this token, the system (10) is well scaled. In the imple-
mentation, a similar scaling was employed for all the variables and
constraints. In particular, the number of ICU beds in Section 4 was
rescaled to represent a percentual value of the overall population.

4. To avoid extra couplings between the variables, the value of Vf, the
number of sick individuals over 7 in (14), was approximated as fol-
lows,

Ji Ji

I/[izziTk t

T

k=t—r *inf T}nf

This approximation is reasonable because the number of sick indi-
viduals should not vary too fast in short time windows. Moreover,
the resulting approximate versions of the deterministic capacity con-
straint (15) and its respective chance-constrained counterpart tend
to be more stringent than the original ones (using (14) can be inter-
preted as requiring a constraint to hold on a rolling mean, while the
implemented version limits each term defining the mean individu-
ally).

5. To ensure nonemptiness of the feasible set, an initial “hammer” was
enforced in (20). This action corresponds to an initial short period of
severe confinement that brings the percentage of the infected pop-
ulation down to levels that are acceptable for the hospital capacity,
in all the regions.

In all of our runs, IPOPT proved to be very robust and did not need
any special initial point to start the solving process. This phenomenon
might be explained that the fact that once the control variables are fixed,
the state variables solving the SEIR model define a unique trajectory.

With this setting, the largest nonconvex quadratic optimization in-
stance of (20) dealt with by Robot Dance had 275,033 variables,
274,452 equality, and 7980 inequality constraints. Such problem was
solved in 9min and 34 s of wall time using IPOPT with the MA97 par-
allel linear solver Group (2013) on a desktop computer with an AMD
Ryzen 1700X processor, that has 8 cores running at 3.4 GHz, and 64 GB
of RAM.

5.2. Benchmark information, parameters, and data fitting

The state of Sdo Paulo (SP) is partitioned into 22 health districts,
represented in Robot Dance by a complex network with 22 nodes inter-
twined by the mobility links shown in Fig. 1. For all the experiments the
optimization is performed for the whole SP state, over the period July
1, 2020 - July 28, 2021. In (19), setting p = 0.1 ensures satisfaction of
the ICU capacity constraints on any given day in 90% of the cases.

Following Wu et al. (2020), the incubation and infected times were
set to Ty, = 5.2 and T;; = 2.9, respectively. In (20) the upper bound
on the control, set to 7 = 1.8, represents the virus reproduction number
when there are no stringent restrictions on circulation, but considering
a “new normal” setting. An estimate equal to 2.5, from Liu et al. (2020),
was suitable for the beginning of the pandemic. The smaller value em-
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ployed by Robot Dance is meant to capture the decrease in the repro-
duction rate that was observed as a result of behavioral changes in the
society (stricter hygiene habits, protective measures not associated with
quarantines, like masks, etc). On the other end, we used 0.8 as the lowest
achievable reproduction number under a severe lockdown. This value
is in line with infection rates observed under the most stringent restric-
tions in countries like Germany, Italy, and Spain Hotz et al. (2020). Such
values need to be revised, as new information becomes available; in par-
ticular, the basal reproduction number equal to 2.5 might be updated
to represent the prevalence of more contagious strains of the virus.

The parameters of the time series described in Section 4 were
calibrated from historical records of ICU beds occupancy and new
cases from https://www.seade.gov.br/coronavirus/, discriminating the
metropolitan area and the interior of the state, Hallal et al. (2020). The
ratio was defined taking moving averages as follows:

Moving Average[(ICU beds),]
p, = : @n
Moving Average[z;zt_7 (Corrected new cases)f]

In the denominator, r =7 as suggested by Aziz et al. (2020), using a
proxy of (14) that corrects the available data with a subnotification fac-
tor I' and taking a mean over three days to smooth the intermittency
observed in the records, after a weekend:

¢
(Corrected new cases), := g Z (new cases),. 22)
k=¢-3

It is well known that the official data suffers from severe subnotification
in Brazil Silveira et al. (2020). In order to find a suitable value for the
compensation I', we proceeded as follows. Using public records for the
city of Sao Paulo we defined a trajectory for the R-compartment until
July 29th, 2020. This value was compared with the value estimated
in a serological inquiry made in the whole city.* We observed that to
arrive at the same value, it was necessary to multiply the official data
by I' := 11.6. Such an astonishing factor was confirmed experimentally
in a field research Hallal et al. (2020). We used such correcting factor
in all the calculations, including the estimation of the initial conditions
for the runs. The value of x; = (8, &(, Iy, Ry), was determined running a
variation of Robot Dance to fit the data publicly available for Sao Paulo
state.”

For the calibration, the records prior to T, = July 1, 2020 were con-
sidered, excluding the first days, whose standard deviation exhibits an
unusual cusp. Using a training set with 75% of the remaining data, vari-
ous statistical tests indicated that adjustment with a Box-Jenkins autore-
gressive process was suitable. We estimated models with lag, differenc-
ing and moving average parameters (p,d,q) € {1,4} x {0,1} x {0,1,2}.
The best fit was obtained with a pure autoregressive model of lag 2
(p=2andd=q=0).

The three graphs on the left in Fig. 3 show the data available for
defining the ratio in (21), approximately 100 days since May 19, 2020.
The red lines correspond to the denominator (top), numerator (middle)
and quotient (bottom). Each line is shadowed by its standard deviation.
The blue line in the top represents the true new cases (without the cor-
rection (22) and without accumulation over seven days, scaled using a
factor of 7T, to represent them together with the denominator in (21);
and likewise for the standard deviation). The fact that new cases are
incorporated in the official database by “clumps” is very clear in the
graph, as well as the significant variation this data exhibits from day to
day. Incidentally, the big jump by the end of July was produced by a
change of the testing policy in Sdo Paulo state. Thanks to an increased
investment of the government in testing, all of a sudden numerous new
cases were uncovered in the state. The new numbers were all incorpo-
rated as individuals infected the same day in the database. This change

4 https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/saude/17_9_
2020_PPT_COLETIVAADULTO_FASE%205.pdf.
5 https://raw.githubusercontent.com/seade-R/dados-covid-sp.
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Fig. 3. On the left, moving average and standard deviation of data in (21), defining the denominator (top), numerator (middle), and ratio (bottom). The blue line in
the top plot corresponds to the original data (scaled with a factor 7I'), shadowed by its standard deviation. On the right, trajectories forecasting the use of ICU beds
in Sdo Paulo city, using a time series, as described in Section 4, calibrated with the data on the left. The dotted line represents the ICU capacity and a distancing
protocol suggested by the Robot Dance code. The blue line is the expected value of the ICU demand. It sits comfortably below capacity as it was designed to sustain
the demand up to the 90% quantile, represented by the red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

of paradigm produced an abnormal increase in the record of that day.
The right plot in Fig. 3 shows different trajectories of use of ICU beds in
Sao Paulo city, forecasted from the time series described in Section 4,
with tendency taken from the history of records.

5.3. Alternation of distancing protocols

In the network from Fig. 1 considered by Robot Dance, SP city is the
state capital and has a population of 11.9 million inhabitants. The rest of
the SP metropolitan area, with more than 10 million inhabitants, gath-
ers a considerable number of small and medium-sized cities. Some of
those cities host important factories and financial centers, while others
are essentially dormitory towns. Because of these features, many people
commute daily in the metropolitan SP area, often traveling a long time
every day. In order to best capture the interaction of all the nodes in the
state, Robot Dance considers its whole, with 22 health districts. For the
sake of conciseness, we only report the results for the six districts that
form the metropolitan SP area: SP city and five clusters of cities located
to the east, west, north, southeast, and southwest of the capital, denoted
by E, W, N, SE, and SW, respectively.

To illustrate different choices of the policy-maker, two different con-
figurations were considered, one ensuring maximal circulation and an-
other enforcing alternation of the confinement levels, every two weeks.
The first option can be seen as a policy that favors a gradual relaxation
of confinement measures. The second one, by contrast, switches from
free circulation to lockdowns. This policy might be applicable in popu-
lations willing to endure two weeks of severe confinement, as long as
the confinement is planned in advance (for example for locations where,
after enjoying two weeks of fully open business, shop owners or facto-
ries can organize themselves to replenish stock or to do inventory during
the lockdown periods). The respective objective functions in (20) are

yMAXCIRC  and a weighed sum of all terms described in Section 5.1.

(23)

In order to ease the interpretation of the results, which vary both
in time and space, the output of Robot Dance optimization process was
organized in a diagram condensing all the information. In the visual-
izations shown on Fig. 4, each row corresponds to one of the six health
districts in the metropolitan SP area, using a color pattern for the sever-

ity of confinement. The consecutive rectangular blocks report the level
(color) and duration (width) of the distancing protocols in the consid-
ered district. The black curve therein displays the dynamics of infected
individuals. On the right of the diagram, a column indicates the high-
est percentage of the population that was sick (computed excluding the
initial “hammer” described in Section 5.1).

On the left visualization in Fig. 4, distancing protocols are progres-
sively relaxed over time in almost all regions. However, four out of six
regions (E, W, N, SW), remain between “severe” and “elevated” con-
tainment over almost six months. Such measures have a very negative
economic impact, mainly on non-essential activities such as bars and
restaurants, and also on the educational and health system. The situa-
tion improves on the right, where the alternation mechanism was put
in place. We note that the city of Sao Paulo is not largely affected when
the intermittent mechanism is turned on. However, now the regions N,
W, and E greatly benefit from the “dance” that switches from two-week
periods with loose protocols (fully open in the case of the SE) followed
by 14 days of more rigid containment. Such a swing clearly mitigates
the economic impact of the pandemic in those regions, as activities can
be planned to happen during the relaxation periods, including replen-
ishing stocks or promoting sales to take advantage of the open business.
Moreover, when comparing the black lines for the SE district in both
graphs, we notice that alternation also relieves the stress on the medical
staff (the health system is less pressured during the red block periods on
the right).

Finally, notice that neither the gradual relaxation nor the alternation
strategies succeeded in improving the situation for the SW district. In
both configurations, that region endures about eight consecutive months
of strict containment. This observation triggered the studies in the next
subsection.

5.4. Identifying critical links and bed sharing

As shown in Fig. 4, even though the E, W, N, and SE benefit from
alternation, the SW district remains under severe measures for an ex-
tended period of time. Such a phenomenon goes somehow against the
expectation and was only detectable after running Robot Dance and an-
alyzing carefully its output.
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Fig. 4. Comparison of two dynamics of distancing protocols in SP metropolitan area. On the left, when ensuring maximal circulation without exceeding the ICU
capacity, the distancing protocols are progressively relaxed, but remain between severe and elevated levels for about six months in four regions (E, W, N, SW). By
contrast, on the right, a protocol of alternation that also respects the ICU capacity has a clear positive effect, most notably in the west suburbs (W), during the months
09 to 12 in 2020. The column on the right of each diagram shows the maximal percentage of sick people attended by the health system, after an initial lockdown
phase used to reduce the number of infected individuals, if their proportion was too high for the hospital capacity in the district. The percentages on the right vertical
axes represent the highest infection ratio estimated in each population after the initial lockdown brings the disease to acceptable levels. Controls r; lie in the interval
[0.8,1.8], that was split into five equally spaced subintervals, each one having one color associated, from red to green. White corresponds to r = 1.8, a fully open
society in a “new normal” setting. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In order to understand the interplay in what appears to be a prob-
lematic link, we report results only for the SW district and SP city. Robot
Dance new runs still consider all the 22 regions in the state with the ob-
jective function in (23) and probability level p = 0.1 in (19). The differ-
ent configurations are obtained by modifying some aspects of mobility
in the link between the SW district and SP city, or of the distribution of
hospital resources in the metropolitan area.

Recall that, to compute the output in Section 5.3, each region is as-
sumed to treat infected cases using only their own hospitals. It appears
that this approach is detrimental for the entire area, because the num-
ber of ICU beds in the SW is very low (less than 90 for 1 million popu-
lation). By “detrimental” we mean that all the six metropolitan districts
are forced into containment measures that could be lighter if patients
could be transferred to SP city.

We now explain the case study. Having identified the SW district as a
critical node thanks to the output in Fig. 4, the decision-maker needs to
evaluate the effect of different manners to address the problematic issue.
To assess if it would be worth to simply forbid all commuting between
SW and SP city, or rather transfer some patients to the state capital, the
following three alternatives were considered by Robot Dance:

1. the original configuration from Fig. 4, ensuring maximal circulation
without exceeding the local ICU capacity in the whole state;

2. the same, but eliminating the link SW-SP city, no commuting is al-
lowed between those two nodes (there is still mobility in the whole
state); and

3. as in the first configuration, but implementing a pool of beds in
which the five districts in the metropolitan area have access to a
small fraction of SP city’s hospital capacity (very large, over 3400
beds).

The output of Robot Dance for SW and SP city for these three runs
is shown on the right of Fig. 5. Therein, the three alternatives are re-
spectively referred to as “with critical link and no ICU sharing” (top),
“without critical link and no ICU sharing” (middle), and “with critical
link and ICU sharing” (bottom). In particular, the top diagram repro-
duces the left one in Fig. 4, extracting the rows for SP city and the SW
district.

In the top right visualization in Fig. 5, the rightmost percentages,
of the population that could be attended at local ICU units, reveal the
very poor hospital capacity in the SW. Even under the most severe mea-
sures, this district could not afford to attend more than 0.17% inhabi-
tants while SP city dealt with a much higher value, 0.47% of its own
population. This feature triggers more than eight months of severe lock-
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down for the SW district, until the end of March 2021, as shown in the
top diagram (otherwise the SW’s health system would collapse). Such
a severe protocol is not realistic from an economic point of view, espe-
cially considering that the nearby SP city, less than 80 km away, fully
opens its activities at the beginning of January 2021. The second al-
ternative, that plainly forbids commuting between the SW and SP city.
reported in the middle graph, confirms the crucial role that the SW re-
gion has in the network. Without the flow of workers circulating in the
SW-SP city link, the latter would be fully open one month earlier, from
December 2020. Moreover, in the configuration, the attention to sick in-
dividuals in SP city improves slightly (increases to 0.55%, from 0.47%
in the top). The SW region can also relax a bit the strength of its con-
tainment from November 2020, facing one and a half months of severe
measures, followed by almost five months of elevated measures before
starting the alternation of hammer (red) and dance (white). The SW ca-
pacity to attend surges in its own hospitals still remains low, 0.19% of
the local population.

Clearly, it is impractical to completely cut the circulation to the cap-
ital for long periods, as advocated by the second alternative. The third
policy, by contrast, is much more effective. The percentages on the bot-
tom right visualization in Fig. 5 speak by themselves: SP city maintains
its high values to respond to hospital surges (0.52%) while in the SW
the percentage jumps from 0.18% to 0.59%.

In order to let the spare capacity in SP city absorb part of the pa-
tients from the suburbs, Robot Dance was run with the constraints
(19) grouped in a single pool of ICU beds for the entire SP metropoli-
tan area. The positive impact of this measure is clear in the visual-
ization “with critical link and ICU sharing” in the bottom right of
Fig. 5. Notice that, while containment measures do not change sub-
stantially in SP city (the three less severe containment measures only
alternate more), for the SW district the situation changes significantly.
Now the duration of containment measures drops to less than half, and
SW is fully open from early January 2021. Moreover, prior to that
date, severe distancing measures alternate with more relaxed proto-
cols, thereby maintaining alive the economic and social activities in the
district.

The fact of sharing ICU beds is beneficial for the whole metropolitan
area, not only the critical SW node. Without bed sharing, the right vi-
sualization in Fig. 4 shows only SP city and SE district fully open from
January 2021 on. With the pool of beds, by contrast, similarly to what
is reported in Fig. 5 bottom right for the SW, all the six districts in the
metropolitan area are fully open from January 2021 (we do not include
the diagram for the whole state, to save space).



L.G. Nonato, P. Peixoto, T. Pereira et al.

SP

SW

Q
oS
S
as
N

X (i sp

3 S
Al i
XA
(K @ - { Sw
i \*u\\ Jj ~
= o
~7 N
S 5 ¥
pu 9 A0
P N

with critical link and no ICU sharing

EURO Journal on Computational Optimization 10 (2022) 100025

-0.47%

L0.17%

N Q

U v

Q Q!
V' O
0\ ’\:\’\

withoutcritical link and no ICU sharing

.0.55%

0.18%

-0.52%

-0.59%

Q' Q Q
v v v
6»,\ 0o,\ Q'\\

Fig. 5. The left map zooms in those connections between the SP city and the SW district. The link SW-SP city is critical for the network, but forbidding commuting in
the link is not the solution; it is preferable to put in place a mechanism to transfer patients to SP city. This can be seen by comparing the two bottom visualizations.
The middle graph shows that cutting the link circulation has practically no effect on the situation neither in SW nor in SP city. By contrast, the policy reported in the
bottom graph, that keeps the link and implements a pool of ICU beds, improves significantly the overall state for SW without affecting much the situation in SP city.
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Fig. 6. Having access to a pool of beds is beneficial for the whole metropolitan area of Sdo Paulo. For the top and bottom policies in Fig. 5, here represented in the
left and right plots, we report the mean use of ICU beds (dotted line) and its 90% quantile (continuous line). Horizontal lines indicate the maximum capacity in SP
city and suburbs (the other five metropolitan districts together). The possibility to transfer patients from the suburbs to SP city creates a reserve of additional capacity
for the former. This loss does not affect much the capacity of SP city to attend to its own patients. On the right, the reserved beds for the suburbs, representing about
300 additional beds, are plotted in the light shadowed area. The number of transfers, about 100 and reported in the dark area, mostly occurr between November

and December 2021.

Our final Fig. 6 reports on the dynamic use of the pool of beds in the
metropolitan region, separately for SP city (that loses capacity) and the
other five districts together (that gain capacity). The dotted, continuous,
and horizontal lines therein show, respectively, the number of ICU beds
used in average, its 90% quantile corresponding to the chance constraint
(19) with p = 0.1, and the capacity. The difference between the left and
right graphs is on the policies, respectively obtained by Robot Dance
with and without a pool of beds (the top and bottom graphs in Fig. 5).
We see that SP city large availability of ICU beds is never reached. By
contrast, the suburbs are close to saturation, the main culprit being the
critical SW district. Without bed sharing, the suburbs’ left curve remains
stuck against the horizontal line (hospitals functioning at maximum ca-
pacity) for many months.

In Fig. 6, the area shadowed in light red on the right plot represents
the capacity gained by the suburbs (about 300 beds). This additional
reserve of beds is actually employed by the suburbs, particularly the
SW district, at those points where the dotted line (mean use) gets higher
than the horizontal line of local capacity. Those points are represented
by the darker shadowed areas in Fig. 6 (about 100 beds). Note in passing
that the pool induces an effect similar to the alternation mechanism
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discussed in Section 5.3 (this phenomenon is perceptible on the right
plots in Fig. 5, where the lines go up and down, making peaks).

To finish, recall that Robot Dance applies an initial “hammer” to
guarantee nonemptiness of the feasible set in (20). This is noticeable
in the graphs in Fig. 4, where the first red column in all visualizations
is meant to be disregarded. The hammer also materializes in the initial
gully shape of trajectories forecasting the ICU bed use in the right of
Fig. 3, and in the curves in Fig. 6.

6. Final comments

Social distancing measures have proven effective to contain the
spread of COVID-19, but there is no universal recipe that can be ap-
plied throughout the globe. In each country, and for each region in a
country, idiosyncrasies that depend on social and economic factors, in-
dividual to each place, must be taken into account. This issue, partic-
ularly important in Brazil, has increased relevance when the economic
infrastructure is concentrated in a megalopolis, forcing a large portion
of the population to commute daily to work.
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Robot Dance was formulated keeping these important considerations
in mind. Its open-source code has the versatility required to analyze and
compare several configurations without much ado. Thanks to its SEIR
representation with network mobility, Robot Dance is able to consider
explicit interventions in specific nodes. Nodes can be neighborhoods in
a city, or cities in a state, or states in a country. Section 5.4, comparing
the model with and without a mechanism for sharing ICU beds in the SP
metropolitan area, while analyzing the state as a whole, illustrates well
this feature.

The problem solved by Robot Dance takes into account effects that
are not directly observable, or intuitive, at first sight. This is explained
by the mathematical optimization setting, that goes beyond the usual
simulations typical in the epidemiological area. Section 5.4 is also a good
example of this situation: some crossed spatio-temporal effects make
critical the link between the state capital and one much smaller subur-
ban district; but simply eliminating the link, removing the circulation
between the two nodes, does not resolve the issue. A much better policy
is to allow for the transfer of patients. Incidentally, as pointed out by one
reviewer, Robot Dance’s output with bed sharing gives an indication of
the importance of properly sizing hospital capacity in each geographic
region rather than in aggregate.

In Silva et al. (2021b) and Silva et al. (2021a), respectively, Robot
Dance was used to determine how to best deploy vaccination and test-
ing campaigns. Optimization is particularly useful when resources are
scarce, and such is the case in many countries regarding COVID-19,
whether it is due to an insufficient number of vaccines or testing mate-
rial, or to lack of technical staff. Our studies are in agreement with the
proposal in Kissler et al. (2020), that calls for an urgent need of pro-
jecting how the coronavirus will unfold in the coming years, to prevent
recurrent wintertime outbreaks. The computational optimization frame-
work of Robot Dance could help in this respect, as the open-source code
provides an output that is reproducible and public.

Regarding the predictive power of the platform, a word of caution
is in order. The results obtained with a numerical tool like Robot Dance
should not be seen as precise and accurate, they are prone to limita-
tions. First, the quality of the input data impairs the calibration of the
initial conditions of the differential equation and affects the estimation
of the whole epidemic situation. Second, a mathematical model fails to
grasp several complex phenomena in the pandemic evolution. Changes
in society behavior are represented, neither in the reaction to the dis-
ease evolution, nor to lockdowns or measures restricting the free circula-
tion, that alter the mobility patterns of the population. Introducing those
changes involves modelling the basal reproduction number and the mo-
bility matrix varying with time, which in turn means re-calibrating the
involved parameters along the optimization process. Those modifica-
tions require handling uncertainty in a multistage setting, as new data is
revealed. Third, population is not homogeneous, but composed of differ-
ent groups, professions, levels of income, and other characteristics that
are not covered in the current model. Projections computed by Robot
Dance are indicative, rather than assertive. They are approximations of
the future evolution of the pandemic, keeping in mind that the accuracy
decreases as the considered time gets farther in the future.

For all these reasons, Robot Dance needs to be constantly re-run with
new data. This is not a difficult task since, the careful computational
implementation, that exploits the strength of JuMP as modelling lan-
guage and IPOPT as optimization solver, provides results for an area
with over forty million inhabitants, like the state of Sdo Paulo, in less
than ten minutes. In spite of the aforementioned limitations, tools like
Robot Dance support the decision-making of public administrators and
politicians with insight and a better understanding of the effect of dif-
ferent types of interventions on the pandemic.

Finally, to keep the platform aligned with the constant new informa-
tion that is learned about COVID-19, Robot Dance’s short-term projec-
tions should be compared to the actual development of the disease, in-
troducing model enhancements, new parameters, and technologies like
an effective medicine or a vaccine as they become available.
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