Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems

Martin Schreiber¹, Pedro S Peixoto¹,², Terry Haut³ and Beth Wingate¹

Abstract
This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory partial differential equations, which is a key numerical component for evolving weather, ocean, climate and seismic models. The time parallelization in this solver allows us to significantly exceed the computing resources used by parallelization-in-space methods and results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of achieving Exascale performance for weather prediction is that the strong scaling limit – the parallel performance for a fixed problem size with an increasing number of processors – saturates. A main avenue to circumvent this problem is to introduce new numerical techniques that take advantage of time parallelism. In this paper, we use a time-parallel approximation that retains the frequency information of oscillatory problems. This approximation is based on (a) reformulating the original problem into a large set of independent terms and (b) solving each of these terms independently of each other which can now be accomplished on a large number of high-performance computing resources. Our results are conducted on up to 3586 cores for problem sizes with the parallelization-in-space scalability limited already on a single node. We gain significant reductions in the time-to-solution of $118.3 \times$ for spectral methods and $1503.0 \times$ for finite-difference methods with the parallelization-in-time approach. A developed and calibrated performance model gives the scalability limitations a priori for this new approach and allows us to extrapolate the performance of the method towards large-scale systems. This work has the potential to contribute as a basic building block of parallelization-in-time approaches, with possible major implications in applied areas modelling oscillatory dominated problems.

Keywords
Parallelization in time, oscillatory problem, exponential integrator, rational approximation, scalability limitation

I Introduction
In this paper, we investigate a massively parallel matrix exponential algorithm for simulating stiff oscillatory partial differential equations (PDEs), which arise in applications such as magnetohydrodynamics, plasma physics, weather and climate.

With the current trend of high-performance computing (HPC) towards massive parallelism, existing solvers are facing a strong scalability limitation. Here, a key performance limitation is the saturation of scalability in space and a sequential step-by-step approach in time. Achieving additional parallel speedup on future architectures requires novel mathematical approaches to overcome this scalability limitation. Therefore, our strategy for this paper is to focus on the aspect of developing algorithms to suit the technology’s strengths and limitations, rather than modifying the architecture to fit the algorithm.

In this work, we first discuss HPC and mathematical issues before describing the details of how and when a reduction in wall-clock time is possible. We are primarily concerned with the solution of equations that are stiff due to a separation of time scales in the mathematical description of the physics. This creates fast oscillations in the system of equations that, when numerical
accuracy is required, bind the magnitude of the time step to the spatial resolution which is traditionally solved sequentially in time. Instead of using sequential-in-time solvers, we explore the viability of time-parallelism by investigating the rational approximation of exponential integrators (REXI).

1.1 Challenges in HPC

The trend for performance increase for all silicon-based hardware components changed one decade ago. Due to a breakdown of Dennard’s scaling (Dennard et al., 1974) in about 2005, additional performance by increasing the frequency for single-core Central Processing units (CPUs) was no longer possible. To achieve further scalability according to Moore’s law (Moore, 2006), the only way to gain more performance was an increase in on-chip parallelism. This resulted in a change from single-core to multi-core processors, which are nowadays omnipresent even in mobile devices, and an increase in data processable in one instruction Single instruction, multiple data (SIMD).

The reduction of the time-to-solution is therefore limited by the parallelizable part which itself is limited by the scalability in space with standard time stepping schemes. This is the case since the parallelizable part is reduced and at a certain number of processors, the serial part and communication dominate the computation time. A potential way to tackle these issues is to work in an interdisciplinary way among mathematics and HPC science.

This is also the case for the types of simulations of interest in this paper, like climate and weather prediction, magnetohydrodynamics and fusion processes, where the dominant method of achieving parallel speed-ups has been to use parallelization-in-space by using a domain partitioning technique. This technique is prone to failure for strong scalability in the future Exascale architectures described above due to standard time stepping solvers and their inherent step-by-step application.

1.2 Parallelization-in-time and exponential integrators

Once the strong scaling limitation of domain decomposition methods is reached, new parallelism paradigms need to be explored. One important avenue is the introduction of parallelism in the time dimension. Although this is not a new idea, it has recently gained a lot of attention (see Gander, 2015, for a review). There are several different ways to explore the time dimension parallelism, with some successes in applied problems (e.g. see the work by Berry et al., 2012; Samaddar et al., 2010; Speck et al., 2012).

For highly oscillatory non-linear problems, such as the ones arising in climate and weather models, there is still a lot to be done to show that parallel-in-time methods can be effective. Haut and Wingate (2014) showed a way to obtain an efficient parallel-in-time method for a simplified non-linear oscillatory problem, but this relies on having a time integrator that can permit very long time steps without damping the linear oscillations. The usual implicit time integrators, although they allow long time steps, generally damp linear waves, so the time integration techniques need to be rethought for parallel-in-time strategies. In this direction, the use of exponential integrators seems attractive.

Exponential integrators deal with the time evolution in its exponential form, usually making use of its semi-group properties (Cox and Matthews, 2002; Hochbruck and Ostermann, 2010). Numerically, the problem results in having to calculate the exponential of matrices, which has been studied for many years and there are numerous solution strategies (see Moler and Van Loan, 2003, for a review). The work of Güttel (2013) suggests using rational Krylov spaces to approximate the exponential of skew-Hermitian matrices, which arise in hyperbolic problems. However, adding a new Krylov subspace requires an additional matrix–vector multiplication for each additional subspace, which is inherently serial. Padé approximations (see Moler and Van Loan, 2003, and Higham, 2008) require computing power series with matrix–matrix multiplications, and hence also have this inherently serial part, which gets critical for large matrices. Another method to reduce the $O(n^3)$ complexity in the case of matrix–matrix multiplications for exponential integrators was presented in the work by Bonaventura (2015) and is based on splitting the domain into subproblems. Exponential integrators have also been used in the weather and climate community, with some success (Clancy and Pudykiewicz, 2013; Garcia et al., 2014). Nevertheless, these methods are usually intrinsically serial, and we would like to explore methods that allow an extra degree of time-parallelism embedded in the exponential integrator, as a way to reduce time-to-solution.

Along the lines of building parallel-in-time exponential integrators, Gander and Guettel (2013) proposed a parallel-in-time method for general linear initial-value problems which makes use of polynomial and rational Krylov methods for the exponentiation part. In the present paper, we follow the ideas of Haut et al. (2015), who proposed a rational approximation of the exponential integrator, which we will denote as REXI. The key point is that this rational approximation is massively parallel. The downside is that it is less general, as it is built only for hyperbolic (oscillatory) linear initial-value problems, which fortunately, in this work, is the class of problems we are interested in. As a direct comparison, for Krylov methods, reducing the
approximation error requires computing more Krylov subspaces and hence leads to an increase of the serial parts. In contrast, as we will show, the REXI approach leads to an increase in parallelism, which is the main reason we focus on this approach in this work.

1.3 Overview

For sake of clarity, in Section 2 we review in detail the implementation of the rational function approach to compute REXI for matrix exponentials. We evaluate REXI with various different execution scenarios, different discretization schemes and show its competitiveness. This is done using various benchmark scenarios (described in Section 3) which are representative of the basic building blocks of climate and weather simulations. We present our first results on the numerical accuracy of the method in Section 4. These results are important for understanding the role of the different parameter regimes on the speed and accuracy of the method. For example, one of these parameters represents the new degree of parallelization which we can exploit with REXI to reduce the time-to-solution. The second type of result, presented in Section 5, is an evaluation of REXI using different parallelization aspects (space and/or time). Finally, we gain insight into the behaviour of REXI on large-scale systems using a performance model derived in Section 6. For sake of reproducibility the source code is published as well (Schreiber et al., 2016). An overview of most relevant symbols used in the equations is given in Appendices 1, 2 and 3.

2 Review of the rational approximation of exponential integrator (REXI)

This section is a comprehensive discussion of REXI for linear systems of equations. It provides a fundamental understanding of how the mathematics translates into time-parallel speed-ups and therefore illustrates the method’s strengths and limitations. Even more importantly, the details published in this section are required for any other investigators to repeat and improve on our calculations.

We first review how time parallelism is introduced into what is often an inherently serial problem before we outline the details of the REXI approach (Haut et al., 2015).

2.1 Time-parallelism with REXI in a simplified ordinary differential equation problem

Consider the ordinary differential equation (ODE)

\[
\frac{du}{dt} = \lambda u, \quad u(t_0) = u_0, \quad \lambda \in \mathbb{C} \tag{1}
\]

with the exact solution

\[
u(t) = u_0 e^{\lambda(t-t_0)} \tag{2}\]

One standard way to approximate equation (1) numerically is, for example, using a first-order forward Euler Scheme

\[
\dot{u}(t + \Delta t) = (1 + \lambda \Delta t) \dot{u}(t) \tag{3}
\]

where \(\dot{u}\) denotes a numerical approximation to \(u(t)\).

Assuming integration up until time \(T\), with \(n\) time steps \((\Delta t = (T - t_0)/n)\), we have that the Euler scheme approximates the exact solution with sequential applications of equation (3) resulting in

\[
\dot{u}(T) = \frac{(1 + \lambda \Delta t)^n u_0}{e^{\lambda(T-t_0)}} \tag{4}
\]

where the exponential approximation under the braces is adequate for large values of \(n\), or equivalently, \(\Delta t\) is sufficiently small.

This kind of step-by-step procedure is inherently serial and may have stability constraints (particularly for explicit schemes, such as the one described above). For oscillatory problems (where \(\lambda\) is purely imaginary) we may replace the inherently serial operation of approximating \(e^{\lambda(T-t_0)}\) by a sum of independent rational functions. This transfers the serial nature of the problem to one that has more parallelism. This is accomplished using an approximation of the form

\[
e^{\lambda t} \approx \sum_{k=0}^{N} \beta_k \frac{1}{\alpha_k + \lambda t} \tag{5}
\]

where \(\alpha_k, \beta_k\) are precomputed complex numbers and \(2N+1\) defines the number of terms in the summation to approximate the exponential, which will be discussed in detail in the next subsections.

Each of the terms in the sum can be evaluated independently, and therefore, can be distributed on different processors. One time step of this scheme (of size \(T-t_0\)) would be analogous to \(n\) time steps of size \(\Delta t\) of the forward Euler scheme, but these terms in the sum may be calculated in parallel. We will show that the larger the time step (larger \(T\), the larger the number of terms in the sum needs to be (larger \(N\)), but this can be absorbed in a parallel way. This represents a fundamental transformation from an inherently sequential step-by-step in time process to one that can be parallelized. Rather than taking many small time steps to find the solution at a certain time, one can take fewer, larger, parallel steps to reach the same time.

One issue is that each large time step is potentially more expensive, but highly parallel. This is advantageous if very large time steps are possible or if there is a gain in accuracy that can be absorbed in a parallel way.
The trade-off between the extra expense of computing the rational function and its high degree of parallelization is one of the main topics we address in this paper.

2.2 REXI with hyperbolic systems

We now extend this approach to linear hyperbolic PDE problems of the form

\[U_t = \mathcal{L}U, \quad U(t_0) = U_0 \]

(6)

with \(\mathcal{L} \) being the operator in space, the subscript \(t \) referring to the time derivative \(\frac{\partial}{\partial t} \) and \(U \) being a vector of unknowns.

The solution may be written as

\[U(t) = e^{(t-t_0)\mathcal{L}}U(t_0) \]

(7)

where \(e^{(t-t_0)\mathcal{L}} \) is the semi-group or exponential integrator of the operator \(\mathcal{L} \). The goal of this section is to describe how to compute an approximation of \(U(t) \) of the form

\[e^{(t-t_0)\mathcal{L}}U(t_0) \approx \sum_{n=-N}^{N} \gamma_n((t-t_0)\mathcal{L} + \alpha_n I)^{-1}U(t_0) \]

(8)

where \(\gamma_n \) and \(\alpha_n \) are parameters to be specified and \(I \) is the identity matrix. This will be done using the rational approximation of an exponential integrator (Haut et al., 2015) and we will review the method carefully so that other investigators will be able to understand and reproduce our results.

Since it is the oscillatory nature of the problem that we are investigating, we assume the problem is hyperbolic and thus that the linear operator has only purely imaginary eigenvalues. We begin by describing the approximation of \(e^{ix} \) (see Section 2.3), whose rational approximation for its real part (Re) is

\[\text{Re}(e^{ix}) \approx \sum_{n=-N}^{N} \text{Re} \left(\frac{\beta_n}{ix + \alpha_n} \right) \]

(9)

with complex coefficients \(\alpha_n \) and \(\beta_n \) to be defined and the range of the sum \(n \in \{-N, \ldots, N\} \). Then we will extend these concepts to the general multi-dimensional case \(e^{i\mathcal{L}} \) (see Section 2.4) followed by the usage of symmetry properties which will halve the range of the sum to \(n \in \{0, \ldots, N\} \) (see Section 2.5).

2.3 Rational approximation of \(\text{exp}(ix) \)

The approximation of the \(e^{ix} \) used in this paper relies on the combination of two approximation steps:

1. approximation of \(e^{ix} \) by a linear combination of Gaussian kernels;

2. approximation of Gaussian kernels by a linear combination of rational functions.

2.3.1 Step 1: Approximation of \(\text{exp}(ix) \) by Gaussian kernels. Let

\[\psi_h(x) = (4\pi)^{-\frac{1}{2}} e^{-x^2/(4h^2)} \]

(10)

be the Gaussian function to be used as a basis for our approximation, where \(h \) is a parameter that specifies the width of the main support region of the basis function (a horizontal ‘stretching’ measure, similar to the standard deviation of a non-normalized Gaussian distribution).

Given an arbitrary complex function \(f(x) \), which will be later specialized to \(\text{exp}(ix) \), we use superimposition of translations of the basis functions \(\psi_h(x) \) to build the following approximation

\[f(x) \approx \sum_{m=-M}^{M} b_m \psi_h(x + mh) \]

(11)

where \(M \) controls the interval of approximation (relative to the width of the ‘domain of interest’) and \(h \) defines the sampling rate (relative to the resolution of the ‘domain of interest’). The accuracy of the approximation is highly dependent on proper choices of both \(h \) and \(M \). Since the translated points lay between \(x - Mh \) and \(x + Mh \), this approximation has been shown to be adequate for \(|x| \lesssim Mh \) (Haut et al., 2015).

To compute the coefficients \(b_m \), we rewrite the previous equation in Fourier space with

\[\hat{f}(\xi) \approx \sum_{m=-M}^{M} b_m e^{2\pi imh\xi} \]

\[\hat{\psi}_h(\xi) = \frac{1}{\sqrt{2\pi h}} e^{-\xi^2/(4h^2)} \]

(12)

where the \(\hat{\cdot} \) symbols indicate the Fourier transforms of the respective functions. The \(b_m \) are now the Fourier coefficients of the series for the function \(\frac{f(\xi)}{\phi_\lambda(\xi)} \) and can be calculated as

\[b_m = \hat{f}(\xi) \frac{1}{\hat{\psi}_h(\xi)} \]

(13)

for \(m \) is an integer and \(1/h \) defining the periodicity of the trigonometric basis function. The parameter \(h \) is then chosen to be small enough (see Section 4.1) so that the support of the Fourier transform of \(f \) is mainly localized within \([-1/(2h), 1/(2h)]\), i.e. almost zero outside this interval.

Since we are interested in approximating \(f(x) = e^{ix} \), we can simplify the above equation by using the response in frequency space \(f(\xi) = \delta(\xi - \frac{1}{2}) \), where here \(\delta \) is the Dirac distribution, which leads to
Using the Fourier transform of the Gaussian function, we can finally build a clear expression for the coefficients b_m for $f(x) = e^{ix}$

$$b_m = h e^{-imh} \psi_h \left(\frac{1}{2\pi} \right)^{-1}$$

(14)

As shown in the work by Haut et al. (2015), the approximation given by equation (11) is very accurate for $|x| \lesssim Mh$. The x variable in the $\exp(ix)$ function will play the role of representing different wavenumbers of the linear operator L. Therefore, we expect that M and h can be appropriately chosen to allow an adequate representation of the relevant wavenumbers of the problem.

2.3.2 Step 2: Rational approximation of the Gaussian basis functions. The second step is the approximation of the basis function $\psi_h(x)$ itself with a rational approximation. A close-to-optimal rational approximation of $\psi_h(x)$ is given by

$$\psi_h(x) \approx \text{Re} \left(\sum_{j=-L}^{L} \frac{a_j}{x - j + i(\mu + il)} \right)$$

(16)

where μ and a_j are constants given in Table 1 of the work by Haut et al. (2015). The number of coefficients $(2L + 1)$ depends only on the desired accuracy for this approximation. With $L = 11$ an accuracy greater than single precision is already obtained.

2.3.3 Final step: Rational approximation of $\exp(ix)$. Combining approximation (step 2) into approximation (step 1), we have that

$$e^{ix} \approx \sum_{m=-M}^{M} b_m \psi_h(x + mh)$$

$$= \sum_{m=-M}^{M} b_m \sum_{i=-L}^{L} \text{Re} \left(\frac{h a_i}{ix + h(\mu + i(m + l))} \right)$$

Now, defining $n = m + l$, $\alpha_n = h(\mu + in)$

$$b_m = h e^{-i mh} \psi_h \left(\frac{1}{2\pi} \right)^{-1}$$

(14)

Using the Fourier transform of the Gaussian function, we can finally build a clear expression for the coefficients b_m for $f(x) = e^{ix}$

$$b_m = h e^{-i mh} \frac{1}{h e^{-ip^2}} = e^{-i mh} e^{i p^2}$$

(15)

2.4 Rational approximation of the linear operator

To see the relationship between the approximation of e^{ix} and $e^{\tau L}$, with $\tau = (t - t_0)$, remember that the oscillatory problem L has only purely imaginary eigenvalues. Therefore, it maybe decomposed as $\Sigma \Lambda \Sigma^{-1}$, where Λ is a diagonal matrix in complex space containing the purely imaginary eigenvalues of L, and Σ is a unitary matrix related to the eigenvectors.

Consequently

$$e^{\tau L} = \sum_{k=0}^{\infty} \frac{(\tau \Lambda)^k}{k!} = \sum_{k=0}^{\infty} \tau^k \Lambda_k \Sigma^{-1}$$

(20)

where we used

$$e^{\tau \Lambda} = \begin{pmatrix} \cdots & e^{\tau \lambda_n} & \cdots \end{pmatrix}$$

and the fact that the eigenvalues are imaginary (therefore λ_n are real). Since $e^{\tau \Lambda}$ is diagonal, it can be eigenvalue-wise approximated in the same way as the function e^{ix}, with $x = \tau \Lambda_n$.

Table 1. Overview of the different combinations of spatial discretizations, grids, time stepping methods and linear solvers for the REXI terms.

<table>
<thead>
<tr>
<th>ID</th>
<th>Space discretization</th>
<th>Grid</th>
<th>Time integration</th>
<th>Solver for $(L + \alpha I)^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Finite differences</td>
<td>C-grid</td>
<td>RK4</td>
<td>–</td>
</tr>
<tr>
<td>(B)</td>
<td>Finite differences</td>
<td>A-grid</td>
<td>REXI</td>
<td>Finite differences in spectral space</td>
</tr>
<tr>
<td>(C)</td>
<td>Spectral methods</td>
<td>A-grid</td>
<td>RK4</td>
<td>–</td>
</tr>
<tr>
<td>(D)</td>
<td>Spectral methods</td>
<td>A-grid</td>
<td>REXI</td>
<td>Spectral basis functions in spectral space</td>
</tr>
</tbody>
</table>
use the real approximation of \(e^{ix} \) applied to the multi-dimensional linear operator

\[
e^{\tau L} \approx \text{Re} \left(\sum_{n=-N}^{N} \beta_n (\tau L + \alpha_n I)^{-1} \right) \tag{21}
\]

where \(\beta_n \) is given by equation (17) and \(\alpha_n = h(\mu + in) \).

We verify that directly substituting \(\tau L \) as \(ix \) in the rational approximation for the real part of \(\text{exp}(ix) \) and treating it as a matrix operator gives a valid approximation for \(e^{\tau L} \), since

\[
\sum_{n=-N}^{N} \text{Re} (\beta_n (\tau L + \alpha_n I)^{-1}) = \\
= \sum_{n=-N}^{N} \text{Re} \left(\beta_n (\tau \Sigma \Lambda^{-1} + \alpha_n I)^{-1} \right) \\
= \sum_{n=-N}^{N} \text{Re} \left(\beta_n (\tau + \alpha_n I)^{-1} \right) \\
= \sum \left[\sum_{n=-N}^{N} \text{Re} (\beta_n (\tau + \alpha_n I)^{-1}) \right] \Sigma^{-1} \\
\approx \Sigma e^{\tau \Lambda \Sigma^{-1}} = e^{\tau L}
\]

where \(I \) is the identity operator and we used that the expression in brackets is a rational approximation for the real part of the exponential of each eigenvalue, \(e^{\tau \Lambda} \), and therefore an approximation for \(e^{\tau L} \).

2.5 Properties of the method

To obtain an accurate representation of \(e^{\tau L} \), the rational approximation must take into account the spectra of the operator \(L \), as shown in equation (22). If \(\bar{\lambda} = \max_{i} |\lambda_n| \) is the maximum absolute eigenvalue of \(L \), then we need to build the rational approximation in such a way that \(\tau \lambda < hM \). Assuming a fixed value of \(h \), given by the accuracy desired for step 1 of the procedure to build the rational approximation, \(M \) has to be chosen large enough to cover the whole spectra of \(L \). Also, if a larger time step (\(\tau \)) is required, larger \(M \) values are also expected. Analytical expressions relating the error incurring from different choices of \(h \) and \(M \) can be found in the work by Haut et al. (2015). In Section 4, we will numerically explore optimal choices for these parameters.

The coefficients \(\alpha_n \) and \(\beta_n \) are conjugate symmetric (Hermitian) about the central pole, such that \(\alpha_{-n} = \bar{\alpha}_n \), \(\beta_{-n} = \bar{\beta}_n \) and \(\text{Im}(\alpha_0) = \text{Im}(\beta_0) = 0 \). Furthermore, it holds that \((L + \bar{\lambda}I)^{-1} U = (L + \lambda I)^{-1} U \) with the overbar denoting the complex conjugate. This allows us to reduce the computational amount almost by a factor of two giving the real valued solution

\[
e^{\tau L} U(t) \approx \sum_{n=0}^{N} \text{Re} \left(\gamma_n (\tau L + \alpha_n I)^{-1} U(t_0) \right) \tag{23}
\]

With

\[
\gamma_n = \begin{cases}
\beta_0, & n = 0 \\
2\beta_n, & n > 0
\end{cases}
\]

Therefore, the rational approximation requires the solution of \(N + 1 \) linear systems for \(U \) of the form

\[
(L + \tau^{-1} \alpha_n I) U = \tau^{-1} U(t_0) \tag{24}
\]

where the time step is given by \(\tau = (t - t_0) \).

Some care needs to be taken in the choice of the method to be used to solve these systems. Since the rational approximation requires all eigenvalues to be purely imaginary, the numerical scheme should be able to preserve this property. We will discuss stability constraints and strategies to deal with numerical methods that could potentially produce spurious real eigenvalues in the next subsection.

2.6 Stability

We briefly analyze the stability of the time stepping method based on repeated applications of \(R_N(\tau L) = e^{\tau L} \), where the construction of the rational function

\[
R_N(\lambda) = \sum_{k=-N}^{N} \frac{\beta_k}{\lambda + \alpha_k} \tag{25}
\]

is discussed in the previous sections.

We first assume that \(L \) is a matrix with a purely imaginary spectrum. To do so, suppose that

\[
\max_{|\lambda| \leq \|L\|_2} |R_N(\tau \lambda) - e^{\tau \lambda}| \leq \delta \tag{26}
\]

where \(\|L\|_2 \) is the operator 2-norm and \(\delta \) is an error bound that can be as small as required depending on the parameter choices of the rational approximation. It then follows that

\[
\max_{\lambda \leq \|L\|_2} |R_N(\tau \lambda)| = \max_{\lambda \leq \|L\|_2} |e^{\tau \lambda} + (R_N(\tau \lambda) - e^{\tau \lambda})| \leq 1 + \delta \tag{27}
\]

Therefore, repeated applications \(n \) of \(R_N \) are bounded by

\[
\max_{\lambda \leq \|L\|_2} \| (R_N(\tau \lambda))^n \| \leq (1 + \delta)^n \leq e^{\delta n} \tag{28}
\]

Consequently, as long as the number of time steps \(n \) satisfies \(n \leq 1/\delta \), the method is stable (regardless of the size of \(\tau \)).

The time stepping error grows linearly in the number \(n \) of time steps, so there is a natural accumulation of errors \(O(n \Delta t) \) when more time steps are taken. Therefore, an accuracy degradation is expected if more than \(n = O(1/\Delta t) \) time steps are taken, so the stability
constraint for the scheme is not overly restrictive for reasonably accurate solutions.

As discussed in the work by Haut et al. (2015), it is possible to avoid the above restriction on n – as well as to extend the above analysis to the case where \mathcal{L} is a possibly unbounded operator – by using a rational function filter $S(\lambda)$ such that

$$\max_{\lambda \in \mathbb{R}} |S(\lambda)R_N(\tau\lambda)| \leq 1$$

(29)

Defining $\tilde{R}_N = SR_N$ as the filtered rational approximation, it then follows that

$$\|\tilde{R}_N(\tau \mathcal{L})\|_A \leq \max_{\lambda \leq \|\mathcal{L}\|_A} |\tilde{R}_N(\tau\lambda)| \leq 1$$

(30)

and the time stepping method is unconditionally stable. See the work by Haut et al. (2015) for further details. Importantly, this also allows one to use a rational approximation $\tilde{R}_N(\lambda)$ that only approximates $e^{\lambda t}$ on part of the spectrum of \mathcal{L}.

For numerical solvers of equation (24) that do not preserve purely imaginary eigenvalues, unstable modes can also be treated with the rational filter. The filter may be applied as a rational approximation as well, which contributes to the overall parallelism-in-time. For the discretization methods adopted in this work, it was not necessary to apply any filtering for stability reasons.

3 Benchmark description

The purpose of this section is to examine the feasibility and limitations of gaining more parallelization with REXI for simple, but realistic, problems. We therefore use the linear rotating shallow water equations for our benchmarks because they are widely used in the development of algorithms for weather and climate models. Although full predictive models (e.g. weather and climate ones) are non-linear, the linear part of the systems plays an important role in determining the oscillatory behaviour (and time step limits) of the problem.

3.1 Problem description

We will solve the rotational linear shallow water equations (see also the work by Haut et al., 2015), linearized with respect to a rest state with a mean water depth of $\bar{\eta}$ and defined for perturbations of height η and velocity components (u, v). The linear operator \mathcal{L} may be written as

$$\mathcal{L} = \begin{bmatrix} 0 & -\bar{\eta}\partial_x & -\bar{\eta}\partial_y \\ -g\partial_x & 0 & f \\ -g\partial_y & -f & 0 \end{bmatrix}$$

(31)

which results in a matrix with purely imaginary eigenvalues for the discretization methods used in this work.

A bi-periodic simulation domain is used and we wish to solve

$$U_t = \mathcal{L}U$$

(32)

where

$$U = (\eta, u, v)^T$$

(33)

If not otherwise stated, we set $g = \bar{\eta} = f = 1$ and the domain will be given by the bi-periodic unit square $\Omega = [0, 1]^2$.

For the rational approximation, linear solutions of problems of the form

$$(\mathcal{L} + \alpha I)U = U_0$$

(34)

are obtained in the following way.

First, we note that the momentum equations lead to a problem of the form

$$A_\alpha V = V_0 + g\nabla \eta$$

(35)

with $V = (u, v)$ and analogously $V_0 = (u_0, v_0)$, and

$$A_\alpha = \begin{pmatrix} \alpha & f \\ -f & \alpha \end{pmatrix}$$

(36)

The solution is

$$V = A_\alpha^{-1}(V_0 + g\nabla \eta)$$

(37)

Further reformulations with the assumption of a constant f and using $\kappa = f^2 + \alpha^2$ lead to

$$\Delta \eta - \kappa^2 \eta = r_0$$

(38)

where

$$r_0 = \frac{\kappa}{\alpha} \eta_0 - \bar{\eta} \frac{f}{\alpha} \xi_0 + \bar{\eta} \delta_0$$

(39)

$\delta = u_x + v_y$ is the wind divergence, $\xi = v_x - u_y$ is the wind (relative) vorticity and $\Delta \eta = \eta_{xx} + \eta_{yy}$ is the Laplacian of the fluid depth.

Therefore, to solve the linear problems, given as in equation (34), we first solve the associated Helmholtz problem for η (from equation (38)), and then calculate the velocities directly from equation (37).

3.2 Numerical methods

In this section we discuss the numerical methods used for the studies in this paper. An overview of the methods is presented in Table 1.

3.2.1 Time integration. Two different time integration methods are used in this work:
RK4 refers to a Runge–Kutta fourth-order time stepping method; REXI denotes the time integration with the rational approximations, see Section 2.

The Runge–Kutta schemes are well understood methods for time integration and serve as the baseline for the comparisons with the alternative time stepping methods.

3.2.2 Space discretization. The benchmarks were conducted based on two different (and relevant) discretization strategies in space. The derivatives in the linear operator \(L \) can be based on:

1. finite differences (FD): here, the standard second-order differences are used (e.g. a \([-1,0,1]\) stencil for \(\frac{d}{dx} \));
2. spectral derivatives: the derivatives computed in spectral space. In this case, the variables are transformed to Fourier space, the derivatives are calculated, and the variable is reverted to physical space (e.g. \(\frac{d}{dx} e^{2\pi x} = 2i\pi e^{2\pi x} \)).

We made these choices for the following reasons. First, finite difference schemes are one common way for solving PDE problems in general, and are particularly relevant for weather, climate and ocean models (Madec, 2014; Wood et al., 2014). Second, spectral methods allow high-order accuracy with great efficiency if used with optimized fast Fourier transform (FFT) algorithms and some state-of-the-art weather forecasting systems use spectral methods based on spherical harmonics (Barros et al., 1995; Mozdzynski et al., 2015).

3.2.3 Grid. For the spatial grids we use the following schemes.

1. Collocated A-grid: All variables are placed at the cell center. This method is used for all REXI time stepping methods and for the RK4 time stepping method with spectral spatial discretization.
2. Staggered C-grid: The potential is placed at the cell center and the velocity components at the cell edges. Furthermore, computations are based on the vector invariant formulation. This placement is used for RK4 time stepping methods with finite-differences.

The A/C naming convention follows the Arakawa and Lamb (1977) convention used in ocean and atmospheric models and has been discussed for many years. As an example, Randall (1994) describes how the use of staggered C grids enables better representation of the fast waves existing in shallow water equations and avoiding computational spurious modes. On the other hand, collocated grids (A-grids) allow the use of efficient FFT solvers.

3.2.4 Solver for \((L + \alpha I)^{-1}\). For the REXI time stepping scheme, a linear system solver is required. More precisely, we need to solve a Helmholtz problem, given by equation (38). For this purpose, we implemented two different solvers.

1. Finite differences: Finite difference operators are implemented via a convolution operation of the finite difference stencil in Fourier space which is then solved directly.
2. Spectral basis functions: Spectral derivative operators are computed in Fourier space.

The Helmholtz problem is discretized into an algebraic linear system, which is then solved using a fast Helmholtz solver (direct Fourier solver) using spectral basis functions for spectral methods or convolutions of the stencils for finite differences (see the work by Swarztrauber and Sweet, 1996). Due to its efficiency, we decided to use the fast Helmholtz solver. However,
further investigation on more generic solvers is required and we discuss this in Section 8.

3.3 Initial conditions

We use two different initial conditions for our evaluation of the REXI approach (see Figure 1).

3.3.1 Wave scenario

The wave scenario is initialized with the following values for the perturbation height η and velocity components (u,v)

$$
\eta(x,y) = \sin(2\pi \omega_x x) \cos(2\pi \omega_y y) - \frac{1}{5} \cos(2\pi \omega_x x) \sin(4\pi \omega_y y) \tag{40}
$$

$$
u(x,y) = \cos(4\pi \omega_y y) \cos(2\pi \omega_y y) \tag{41}
$$

$$v(x,y) = \cos(2\pi \omega_x x) \cos(4\pi \omega_y y) \tag{42}
$$

with mean water depth given by $\bar{\eta} = 1$ and $(\omega^x, \omega^y) = (2, 1)$ (see Figure 3).

These initial conditions can be represented in spectral (Fourier) space; therefore the errors are very small when the spectral solver is used for the REXI approach. This ensures that we can use this set of initial conditions to understand the accuracy of the rational approximation method.

3.3.2 Gaussian scenario

In this case we use an initial Gaussian function for the fluid height perturbation

$$
\eta(x,y) = e^{-\frac{1}{2}(x^2 + y^2)} \tag{43}
$$

assuming a background constant height of $\bar{\eta}$ and zero-valued velocity fields as initial conditions. This initial condition is not exactly representable in spectral (Fourier) space.

3.4 Error analysis

For the comparisons of the numerical results in Section 4, we use the root mean square (RMS) error norm
\[E_{RMS}(f) = \sqrt{\frac{\sum_{ij} (f_{ij} - \bar{f}_{ij})^2}{N_xN_y}} \] (44)

which is based on the discrete computed solution \(f_{ij} \) for the points given by \((x_i, y_j)\) and on the reference solution calculated at grid points given by \(\bar{f}_{ij} \), with the resolutions in the \(x \) and \(y \) directions given respectively by \(N_x \) and \(N_y \).

For the performance results in Section 5, we use the maximum error norm which is given by

\[E_{\text{max}}(f) = \max_{ij} |f_{ij} - \bar{f}_{ij}| \] (45)

The reference solution is given by a generalized analytical solution of the linear operator (see the work by Embid and Majda, 1996) and we always compute the error with respect to the height (\(\eta \)) field.

4 Numerical evaluation

This paper is based on a new method to accelerate computations. However, the understanding of the relationship between different parameter/method choices is important to ensure accuracy, as well as efficient computations.

A key part is the understanding of how the REXI parameters \(M \) and \(h \) interact with each other and with different methods or model parameters (such as the Coriolis parameter, gravity and mean water depth). In the following sections, we conduct a sequence of parameter studies with successively increasing complexity, with the aim of understanding the accuracy versus workload relationship.

4.1 REXI parameters \((h, M)\)

We start by analysing the REXI parameters, \(h \), \(M \) and \(L \).

In Figure 4 we analyse the dependency between \(M \) and \(h \) for both solvers (finite differences (B) and spectral (D)) investigated with the REXI method. It shows that \(h \) needs to be chosen to be sufficiently small (at least \(h \leq 2 \)) and \(M \) sufficiently large (at least \(M \geq 32 \)). As expected, smaller values of \(h \) require larger values of \(M \) to preserve accuracy, which reveals a triangular region of the most accurate results.

Also as expected, we note that REXI has higher accuracy using a spectral method (lower panel of Figure 4). For the finite-difference method (upper image), we compute the differential operators with finite differences, which results in a lower accuracy of the solution compared to the spectral method.

For efficiency reasons, we are interested in reducing the amount of total workload which is given by \(M \). However, reducing \(M \) requires increasing \(h \) and the area with acceptable errors gives an upper limit of \(h \).

We will adopt a fixed parameter, \(h = 0.2 \), throughout the remainder of this work, which is large enough to reduce the workload, but small enough to produce accurate results given \(M > 32 \).

4.2 Grid resolution \((N)\)

Using standard time stepping methods, an increasing resolution would require additional computations, due to the increase in spatial workload, and also an increase in the number of time steps, due to time step size restrictions (Courant-Friedrichs-Lewy (CFL) condition).

With the REXI approach, an increasing resolution would also require additional computations due to the increase in the spatial workload, but the time step size can be maintained as the same, as long as additional REXI terms \((M)\) are included. We show in Figure 5 the errors for varying resolution for the Gaussian scenario,
which reveal that additional resolution requires a larger frequency spectrum to be represented (larger λ) and therefore larger M. The main advantage of REXI is that the extra workload of having more REXI terms can be done massively in parallel, allowing it to cope with wall-clock time restrictions, whereas in standard time stepping methods the reduced time step size significantly impacts the wall-clock time of the computation.

4.3 Initial condition wave-number (ω)

Next, we analyse a possible dependency of the REXI parameters depending on the initial condition. To do so, we vary the (ω^x, ω^y) parameters in our waves scenario by setting $(\omega^x, \omega^y) = (2\omega, \omega)$. The error plots are given in Figure 6 (top panel) and we indeed see a dependency on the frequency of the initial conditions. As expected, initial conditions containing higher wave numbers require that REXI has more terms (larger M).

4.4 Time step size τ

We investigate the effect of different time step sizes (τ) in M. Error results are shown in Figure 7. Due to the known relation that $\lambda \tau < hM$, for fixed resolution and fixed h, larger time step sizes require more REXI terms (larger M).

4.5 \mathcal{L} stiffness (g, f, η)

For standard explicit time stepping methods, the time step size is limited by the speed of the wave propagation (CFL condition needs to be respected). A faster wave propagation would then force smaller time step sizes for stability reasons. This propagation speed also depends on the oscillatory stiffness of our operator, given by g, f and η.

We test for such a potential dependency by varying one of the parameters f, g or η and keeping the other two values fixed. Error heatmaps, with varying linear operator parameter and REXI parameter M, are given in Figure 8. Here, we can observe again a dependency of the REXI parameter M on the frequencies which describe the stiffness of the system. Additionally, the varying frequency requires increasing M only after a
certain point and we discuss this briefly. We account for this by the other oscillatory parts in the linear operator. These oscillations dominate the error as can be seen by the constant error over a range of the varying parameter for a constant M. After the parameter which we vary reaches a frequency which is similar to the one of the other frequencies in the operator, the varying frequency starts dominating the error, and hence also requires increasing the REXI parameters M.

Next, we have a look at dispersion effects of the REXI approximation. We use a spectral representation and decompose L into a system of independent equations for each spatial frequency. Furthermore, we assume that an accurate solver (up to machine precision e.g. with the fast Helmholtz solver) is used for solving the inverse problem in each REXI term. The linear operator L can be decomposed in spectral space to

$$ e^{it} = \sum e^{i\lambda} S^{-1} $$

with the symbol $\hat{}$ denoting the spectral representation (see also the work by Embid and Majda, 1996). Then, we can directly compute our solution by using

$$ \hat{U}(\tau) = e^{i\hat{\tau}} \hat{U}(0) $$
$$ = \sum e^{i\lambda} S^{-1} \hat{U}(0) $$

and obviously no error is introduced so far. We use REXI to approximate the frequencies given by e^{it}, yielding

$$ \hat{U}_k(\tau) = e^{i\hat{\tau}} \hat{U}_k(0) $$

$$ = \sum_{n=0}^{N} \text{Re} \left(\gamma_n e^{i(\tau \hat{\lambda}_k + \alpha_n t^{-1})} \right) S^{-1} \hat{U}_k(0) $$

with the selected spatial frequencies denoted by $k = (k_1, k_2)$ and time frequencies by α. We focus on the case of $k_1 \neq 0$ and $k_2 \neq 0$, yielding the eigenvalues for the vortical/geostrophic mode $\sigma_0 = 0$ and inertia-gravity (Poincaré) modes $\sigma_{\pm 1} = \pm \sqrt{4\pi^2 (\tilde{\eta} g k_1^2 + \tilde{\eta} g k_2^2) + f^2}$. With the REXI parameter M being related to the fastest waves, we can explain the dependencies of the REXI parameter M on f, $\tilde{\eta}$ and g as follows. The stiffness of the operator is linearly dependent on the Coriolis frequency f, and hence $M \approx f$, and we can observe this linear dependency in the top image in Figure 8. Regarding the dependency on $\tilde{\eta}$ and g, we expect that the REXI parameter is dependent on both coefficients by $M \approx \sqrt{\tilde{\eta} g}$. This behaviour can be also observed in the middle and bottom image in Figure 8 by a steeper slope of the boundary of sufficiently accurate solutions.

Figure 8. Error sensitivity study for REXI parameter M with varying parameters f (Coriolis frequency), g (gravitational constant) and $\tilde{\eta}$ (average height) with resolution 128^2. The varying frequency requires increasing M only after a certain point. This is because the frequencies which are kept constant in the linear operator L are dominating the error.

5 HPC performance evaluation

The current trends in HPC go towards massive parallelism and the parallelization of applications was so far
mainly focusing on a parallelization-in-space. In this work, we consider problem sizes which are assumed to be not scalable at all (see Section 5.2). To overcome such scalability limitations, one solution was presented with REXI (see Section 2). This allows us to run simulations on thousands of cores and this section is on evaluating the potential reduction in wall-clock time.

We conducted all performance benchmarks on the CoolMUC2 cluster which is based on an Intel(R) Xeon(R) CPU E5-2697. Each socket is equipped with 14 physical cores, two sockets are installed on each compute node and hyper-threading is deactivated. All computations were done in the SWEET software which is freely available (Schreiber et al., 2016). The Intel(R) icpc compiler was used for compilation with Intel Message Passing Interface (MPI) for distributed parallelization. For (hybrid MPI + X) threaded parallelization we pinned the threads to the cores with compact affinities. We used the FFTW (Frigo, 1999) as a third party library compiled with the Intel(R) icpc.

All simulations in this section were computed over $\Delta T = 50$ simulation seconds. We used the RK4 time stepping method for the finite-difference and spectral method. Using a CFL = 0.22, this resulted in time step sizes of about 0.0017 s with RK4. A reduction of the CFL would result in decreasing the error in time with order 4, but also an increase in the number of required time steps. These additional time steps would then directly lead to an increase in wall-clock time with traditional time stepping methods.

For the REXI time stepping, the size of each time step is $\Delta t = 5$ simulation seconds, and hence 10 time steps are done in total.

5.1 Determining REXI’s M parameter for performance studies

We first conducted a parameter study with varying M and wave-like initial conditions to ensure that all parallel REXI computations are of sufficient accuracy. Results for spatial approximation with spectral methods and finite-differences are given in Figure 9.

![Figure 9. Maximum error norm computed on surface height for different REXI parameters M. Results are plotted for spectral methods (bottom) and finite-difference (top). The errors are identical for different resolutions since the initial condition can be error-free represented in spectral space.](image)

We first analyse the upper plot, which shows the errors for the finite-difference method. In contrast to the computations in the previous section, these simulations are executed over a relatively long simulation time of 50 s with 10 s per time step. With the finite difference method, a reduction in the error only starts with a resolution $\geq 256 \times 256$. However, for a resolution of 128×128 which is of interest to us, a convergence is reached for $M = 2048$. We link this to the results of the previous section. Figure 4 gives for $h = 0.2$ a lower limit
of $M \geq 256$ poles for a single simulation second and the same simulation parameters. Figure 7 shows that taking time steps which are five times larger also requires increasing M by a factor of five. Hence, $M \geq 5 \cdot 256$ poles are required for a convergence which confirms the REXI results are sufficiently accurate for $M = 2048$.

The lower plot shows the errors for the spectral method. With this method, we can observe that the errors are steadily decreasing with increasing REXI parameter M. Furthermore, by adding more terms in the REXI approximations we can also gain results which are more accurate compared to spectral methods. Here, the spatial errors are obviously not dominating. We account for that by the errors in the RK4 time stepping scheme. Using the REXI approximation allows us to overcome the errors introduced with a RK4 time stepping method and we would like to remind that this reduction is paid for by an increase in the degrees of parallelization via the increasing M.

In contrast, reducing the errors with standard time stepping methods can be accomplished, for example, by decreasing the time step size. However, this would directly lead to an increase in total simulation time, whereas with REXI, this leads to an increase in parallelism.

5.2 Space-parallelization results (non-REXI)

To show that we are tackling a strong scalability problem, we conducted scalability tests with resolutions of 32^2, 64^2 and 128^2.

The results for the finite-difference methods on a (staggered) C-grid are given in the top image in Figure 10. We omitted plotting results for larger resolutions due to caching effects resulting in a non-monotone scalability. Only problem sizes are considered in this work which are not influenced by these caching effects. These are limited in their scalability on a single shared-memory Non-uniform memory access (NUMA) node.

Comparing these results with the ones for spectral methods on an A-grid (bottom image in Figure 10), we can observe that spectral methods are by far more limited in their scalability. This can be explained by the computational complexity of spectral methods. First of all, the operations can be accomplished element-wise in spectral space without requiring (computational more intensive) stencil operations. This allows an efficient implementation with a parallel-for loop and element-wise operations (mainly multiply and add operations). Second, the aforementioned issue also results in a low workload, hence leading to an increase of threading overheads.

For both methods, we can observe a clear scalability limitation even for a single shared-memory node with standard parallelization-in-space methods. In the next sections, we evaluate the REXI method as one of the parallelization-in-time strategies to overcome these scalability limitations.

5.3 Time-parallelization results (REXI)

We first evaluate the time-to-solution with a parallelization in the time dimension only. The simulation time for finite-difference and spectral methods with different REXI parameters is plotted in Figure 11. For an improved comparison with the RK4 time stepping method, we also plotted the time-to-solution. Here, we used the best time-to-solution for the numbers of cores which would typically lead to reduced scalability.

Regarding the REXI method, we can observe a convergence of the time-to-solution plots at a certain number of cores. Using 112 cores, all the maximum amount of workload assigned to each compute core depends on the number of M. With this number of cores and for REXI parameters $M = (128, 256, 512)$, the maximum workload assigned to a compute rank is $(2, 3, 5)$ REXI terms, respectively. Therefore, we also observe different run times for the different REXI terms. However, this changes when increasing the number of cores. For example, if the number of cores exceeds the number of REXI terms (e.g. at 986 cores), the maximum workload on each compute rank is one and all time-to-solution plots are matching.
5.3.1 Finite-difference methods. For the finite-difference methods, we can observe a significantly faster computation time with the REXI approach compared to the RK4 time stepping method. Using only a single core, we get a simulation time of 332.19 s with the RK4 time stepping and 28.71 s with the REXI time stepping method. This results in a performance improvement of \(\frac{11.57}{3} \). Activating the MPI parallelization with REXI, we get a reduction of the time-to-solution of \(\frac{67.4}{3} = 118.3 \times \). These plots still indicate a further reduction in computation time, but we reached the resource manager limits of the compute cluster and we would like to point to Section 6 for a performance model.

5.3.2 Spectral methods. With the spectral method, the REXI approach is not able to be time-to-solution competitive with a single core execution. We account for that by the high spatial accuracy of the spectral method which also requires the REXI method representing more time frequencies accurately in contrast to the finite-difference method. For the domain resolution of 128 \(\times \) 128, we require at least \(M = 16384 \) REXI terms. Here, the REXI method is only competitive using at least four cores for a parallelization-in-time (58.2 s with REXI vs. 67.4 s with RK4 time stepping). However, we can continue to increase the number of cores, since the scalability limitation is given at \(M + L + 1 = 16384 + 11 + 1 = 16396 \) cores. Using 3584 cores, we get a performance improvement of \(\frac{67.4}{118.3} = 118.3 \times \). These plots still indicate a further reduction in computation time, but we reached the resource manager limits of the compute cluster and we would like to point to Section 6 for a performance model.

5.4 Space-time-hybrid-parallelization results (REXI)

In this section, we analyse the combination of the different parallelization concepts presented so far: parallelization-in-space and parallelization-in-time. Figure 12 shows plots for the finite-difference method (top) and spectral methods (bottom) and two different parallelization strategies are used.

1. ‘REXI \(M = \ldots \) time + spacepar’ runs the computations with an OpenMP parallelization-in-space and an MPI parallelization-in-time. Hence, 14 threads are used in this case for a spatial parallelization on each socket and \(\frac{10}{118.3} \) MPI ranks.
2. ‘REXI \(M = \ldots \) timepar’ uses an OpenMP and MPI parallelization exclusively for the parallelization-in-time. Here, the reduce operations are executed first on each rank with a thread parallelization. This is followed by a reduce operation on the REXI terms over all MPI ranks.

Similar to the parallelization-in-time method discussed in Section 5.3, we can observe a limitation in scalability if the number of cores exceeds 1000, independently of the utilized discretization-in-space (finite-difference or spectral).

5.4.1 Finite-difference method. We start by discussing the results based on finite-differences in space for REXI \(M = 2048 \). Using only 14 threads, the parallelization-in-space-and-time (‘REXI \(M = 2048 \) time + spacepar’) results in larger time-to-solution compared to using only a parallelization-in-time (‘REXI \(M = 2048 \) timepar’). Here, the overheads for the parallelization-in-space are larger than the ones for the parallelization-in-time. For an increasing number of cores, this compensates (crossing of lines) after only quadrupling the number of cores.
With a parallelization-in-time computation on 1792 cores, we get a maximum performance improvement of $42.05_{0.05}$ to 56. For 1568 cores, switching from a parallel-in-time to a parallelization-in-space-and-time we get a performance improvement of $20.20_{0.20}$. For 131072 cores, we see a competitive REXI time stepping method for all considered time step sizes.

5.4.2 Spectral methods. We observe that for the spectral method the hybrid parallelization-in-space-and-time is never or only hardly beneficial. Here, a pure parallelization-in-time is clearly the best choice. We account for this in the following way. Comparing the number of REXI terms for the spectral and finite-difference methods, we require significantly more REXI terms for the spectral methods. As a consequence, this also results in compensating the parallelization overheads by the increasing amount of workload per core. The total performance improvement is $2.99_{0.02}$ with a parallelization-in-space-and-time approach and we expect a more significant performance improvement for a hybrid parallelization-in-space-and-time approach with a significantly larger number of computing cores.

5.5 Speedups depending on REXI time step size

In this section we investigate the performance of REXI for varying time step sizes. Obviously, there are overheads included in running a massively parallel REXI approach. These overheads have to be compensated by the size of the time step. To get insight in to the run time behaviour for different time step sizes, we conducted several benchmarks with the time-to-solution shown in Figure 13. The total simulation time was set to 50 s. With Dt the time step size, $50/Dt$ time steps are computed. The topmost green line shows the time-to-solution with a RK4 time stepping method. The dark blue line ($Dt = 0.01, M = 16$) below this one shows an increasing run time for increasing number of cores. This is due to the low number of REXI terms ($M = 16$) which avoids exploiting the additional number of cores since there is not enough workload. Due to parallelization overheads, the run time is getting even longer. We see a competitive REXI time stepping method for all considered time step sizes.
executed in total. We observe a very good scalability for time step sizes of at least five. For smaller time step sizes, the scalability gets successively reduced. For relatively tiny time step sizes of 0.1, the performance peak is reached at 224 cores. After this peak, the time-to-solution increases and therefore the scalability decreases. This is because only $M = 163$ REXI terms are involved in the computation and using more than 224 cores would only result in additional communication overheads and idling MPI ranks.

Regarding the competitiveness of REXI with small time step sizes, we can consider e.g. the results with 14 cores and T^* of about 0.0017 seconds. For this scenario, REXI is competitive for time step sizes about 5.88 times larger. For smaller time step sizes, the scalability get successively reduced. For relative tiny time step sizes of about 5.88 times larger compared to RK4 time stepping methods.

6 HPC performance model

To develop a performance model for REXI, we separate its phases into serial and parallelizable components. A sketch is given in Figure 2. We recall the REXI equation (23) given by

$$e^{(t-t_0)\mathcal{L}} U(t) \approx \sum_{n=0}^{N} \text{Re}\left(\gamma_n (\tau \mathcal{L} + \alpha_n I)^{-1} U(t_0)\right)$$

We assume a constant problem size (resolution) for each problem and denote the number of cores which are used with C. An overview of all involved components in the model is given in Table 2.

6.1 Broadcast s_B

To spread the initial conditions $U(t_0)$, a broadcast is used. Regarding the parallel communication time, we assume a logarithmic run time for such operations and denote this by $s_B \log(C)$.

6.2 Precomputation s_L and solver p_L

On the first glimpse, the reduce operation over the sum seems to be itself a purely parallelizable part. However, we can precompute several components with the reformulation to the Helmholtz problem (equation (38)). We recall this equation here

$$\Delta \eta - \kappa^2 \eta = r_0$$

and can observe that the right-hand side given by r_0 is constant for each term in the REXI sum, and hence can be precomputed. Therefore, such a precomputation belongs to the serial part of our computations and we denote this with s_L. We would like to mention that precomputing these terms results in less scalability, but improved overall performance. Solving the Helmholtz problem itself and computing the velocities with the explicit formulation can then be done in parallel since all terms in the sum are entirely independent of each other. We assume that the number of REXI terms can be evenly spread across the computational resources and denote the time to compute each term by p_L (excluding the precomputable parts). Furthermore, we have to limit the parallelizable part in case there are fewer REXI terms than the number of computation resources available. Let the number of REXI terms be given by

$$W = M + L + 1$$

which represents the independent systems of equations which are to be solved.

A perfect load balancing of a workload W to C would result in a run time of $T \approx W/C$. However, each workload is assumed to be atomic, hence resulting in a run time of $T \approx \left[\frac{W}{\min(C, W)}\right]$. Furthermore, there is a limitation $C \leq W$ on the maximum number of cores which yields $T \approx \left[\frac{W}{\min(C, W)}\right]$.

This finally yields

$$p_w \left[\frac{W}{\min(C, W)}\right]$$

- Table 2: Description of parts in our performance model for the REXI parallelization (see section 6). C denotes the number of cores and $T(C)$ the run time for each specific part determined on the CoolMUC2 cluster. The last column contains the determined model parameters s/p as discussed in Section.

<table>
<thead>
<tr>
<th>Serial/parallel</th>
<th>Description of computation/communication</th>
<th>Run time in model component</th>
<th>Performance model parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>Computation: Preprocessing for solving Helmholtz problems</td>
<td>$T_L(C) = s_L$</td>
<td>$s_L = 0.039167$ s</td>
</tr>
<tr>
<td>Serial</td>
<td>Communication: Broadcast of initial conditions $U(t_0)$</td>
<td>$T_B(C) = s_B\log(C)$</td>
<td>$s_B = 0.004985$ s</td>
</tr>
<tr>
<td>Serial/parallel</td>
<td>Communication: Reduce operation over sum</td>
<td>$T_R(C) = s_R\log(C)$</td>
<td>$s_R = 0.011398$ s</td>
</tr>
<tr>
<td>Parallel</td>
<td>Computation: Solving Helmholtz problem and compute velocities</td>
<td>$T_W(C) = p_W \cdot \left[\frac{W}{\min(C, W)}\right]$</td>
<td>$p_W = 0.036657$ s</td>
</tr>
</tbody>
</table>
for the massively parallel solver part p_L.

6.3 Reduce operation s_R

After all independent terms are solved, a reduce operation over an array of solutions is applied and we assume a run time of $s_R \log(C)$ for the reduce computations and parallel communications.

The overall run time for computing one time step with REXI on C cores, with REXI parameter M, is then given by

$$T(C, M) = s_L + s_R \log(C) + s_B \log(C) + pW \left\lfloor \frac{W}{\min(C, W)} \right\rfloor$$

with $p_L = p_W \cdot W = p_W \cdot (M + L + 1)$ describing the total parallelizable workload for REXI parameter M. The model parameters s_L, s_B, s_R and p_W are to be determined. A hybrid MPI + OpenMP parallelization and parallelization-in-time only with finite-difference discretization-in-space for $M \in \{2048, 4096, 8192\}$ is used. The wall-clock times $T(C)$ for each phase, listed in Table 2, were measured separately. We computed the performance model parameters from Table 2 by inverting the corresponding equations. The parameters which describe all models were then determined with a weighted average. Since the number of cores for the performance studies are not evenly distributed, using a standard average would lead to a bias towards lower number of cores. Therefore, we used a weight $w(C, M)$ for each parameter which is based on the reciprocal of the total run time $T(C, M)$, and hence

$$w(C, M) = \frac{1}{\sum_C T(C, M)}$$

Then, for example, the reduce parameter for all models is computed via

$$p_W = \sum_C p^*_W(C, M) w(C, M)$$

with $p^*_W(C, M)$ the parameter computed for the study on C cores and with REXI parameter M.

The times-to-solution are plotted for the measured timings and the timings of our model in top image in Figure 14. We can observe a very good match of our model with the real measured timings. This model also allows us to gain an insight into the behaviour of the time-to-solution over a variety of REXI parameter M and a significantly increased number of cores. Such studies are given in the bottom image of Figure 14. First, we can observe a very good scalability in the case of very large REXI M. Second, we see a scalability limitation given at the lowest extrema. This lowest extrema also always matches the hard scalability limitation of REXI given by $C \geq M + L + 1$. At this extremum, adding more cores would not result in a reduction of the time-to-solution. We can also study the behaviour of a large-scale system with this model in Figure 14 and the scalability limitations are clearly observable by the local extrema. Furthermore, these plots indicate a very good scalability on already existing systems with 100k cores. We can also see that communication required for the broadcast/reduce operation is still not the limiting part for 100k cores.

7 Summary and discussion

The parallel scalability of standard time stepping methods for oscillatory problems is limited due to the inherently sequential nature of the time stepping algorithm. This is particularly severe in the strong scaling limit,
where parallelization-in-space only does not lead to further reductions in the run time. In this paper, we overcame this issue by developing an inherently parallel time stepping mechanism which is based on a rational approximation of an exponential integrator (REXI). Each of these problems can then be solved independently on a parallel machine. Introducing this additional level of parallelism allows the system to be solved on massively parallel machines.

Two new parameters, h and M, were introduced with REXI. These are related to the accuracy and the novel degree of time parallelism of the approach respectively. We first conducted several numerical studies about h and M and their relation to several simulation parameters such as the resolution, waves in the initial condition, linear stiffness, etc. These results allow us to improve the understanding of this new parallelization and we would like to briefly review one of the results. An increase of the stiffness of the simulation would traditionally lead to an increase in the number of time steps, and hence an increase in wall-clock time. In contrast, the REXI approach results in additional parallelism, and hence has the potential to overcome the strong scalability limitations by allowing us to use more computing resources.

To show the feasibility of this concept on HPC systems, a variety of parallel performance benchmarks for representative simulations were conducted. For the parallel-in-time comparisons, the results clearly show a significant reduction in the time-to-solution of $118.3 \times$ for spectral methods and $1503.0 \times$ for finite-difference methods. For the spectral methods, we were also able to gain results of higher accuracy with a time-to-solution reduced by one order of magnitude. Since the degree of parallelism is also based on the time step size, we conducted time-to-solution studies with robust performance improvements for varying time step sizes compared to non-parallel-in-time studies.

With this new degree of parallelization, a model was developed to improve the understanding of performance limiting factors. This performance model shows a close match with the measured data. Furthermore, we can foresee a potential scalability also on 100k core systems for the considered problems with an oscillatory stiffness which would be otherwise strong scaling limited by their low resolution of 128×128 on a single compute node.

8 Outlook and future work

In our work we exploited the regular grid structure and used a fast Helmholtz solver for efficiency reasons. However, this solver is not always applicable, for example, when unstructured grids are adopted. The strategy presented in this paper is general enough so that any preferred solution method for the linear solver could be adopted. In case of locally refined grids, preconditioned multigrid solvers (geometric or algebraic) are an interesting possibility. Multigrid solvers have low memory requirements, but may require several iterations if high accuracy is needed. Direct solvers, such as those suggested in Martinsson (2013), may require more data storage. Overall, the matter of which solver is to be used in the linear spatial problem still requires further investigation, as it depends greatly on the specific discrete domain to the used.

The extension of the method to non-linear hyperbolic equations is not necessarily straightforward. We are investigating two strategies. One is to apply REXI as part of asymptotic parallel-in-time (aPinT) (Haut and Wingate, 2014), which is a combination of the Parareal (Lions et al., 2001) scheme which assembles a coarse propagator, which could be based on REXI for the linear parts, and an averaging over the non-linearities, which allows greater effectiveness of the parallel-in-time method. The second strategy is a semi-Lagrangian method which treats advective non-linear parts in a Lagrangian sense.

We see parallelization-in-time, and methods such as REXI, as new ways to exploit modern architectures. For example, with the increasing sizes of vector registers, getting a vectorization in space is more and more challenging. With parallel-in-time approaches, each vector element can be used to run computations for each independently treated problem in time, hence resulting in a vectorization in the time domain rather than in space as it is usually the case.

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de). We also acknowledge use of Hartree Centre resources in this work on which the early evaluation of the parallelization concepts were done. We like to thank Eike Mueller, Daniel Ruprecht and the two anonymous reviewers for their valuable feedback.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the São Paulo Research Foundation, FAPESP (Grant number 2014/10750-0) and the Brazilian National Council for Scientific and Technological Development (CNPq) (Grant number 441328/2014-8).
Note
1 Here, we interpret Moore’s law via performance scaling.

References

Author biographies

Martin Schreiber is a proleptic lecturer at the University of Exeter (UoE) with the focus on high-performance and scientific computing. He received his doctoral degree (rer.-nat.) from the Technical University of Munich (TUM), Germany. After a short
postdoctoral phase at TUM he joined UoE. He is researching and publishing in a variety of areas such as interactive computer graphics, run time steering of simulations, dynamic adaptive mesh refinement, dynamic resource management, algorithms for large scale applications, hardware/software co-design, hardware-aware optimizations of algorithms and parallel-in-time methods with the focus on climate and weather.

Pedro S Peixoto is an assistant professor (tenured) at the Applied Mathematics Department of the University of São Paulo, Brazil, since 2014. He obtained M.S. (2009) and PhD (2013) degrees in Applied Mathematics from the University of São Paulo, with part of the PhD developed at the Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK (2012). He recently took a one year sabbatical as honorary research fellow at the University of Exeter, UK (2015). His main research interests are focused on computational geophysical fluid dynamics, particularly on mathematical methods for the next generation numerical weather and climate forecast systems.

Terry Haut is a staff member at Lawrence Livermore National Laboratory, specializing in multiscale numerical methods for partial differential equations. He was formerly a staff member at Los Alamos National Laboratory, and worked on numerical methods for climate modelling, thermal radiative transfer, additive manufacturing, and quantum chemistry. He did his graduate work at the University of Colorado, Boulder, in the Applied Mathematics department.

Beth Wingate is a professor of Mathematics at the University of Exeter in the United Kingdom. Previous to this she spent many years at the Los Alamos National Laboratory in the United States. Her principle scientific interest is in the role of oscillations in fluid dynamics and mathematics, in particular the dynamics of the Arctic Ocean.

Appendix 1

Symbols for mathematical formulation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(t)$</td>
<td>Solution at time t</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>Linear operator acting on U</td>
</tr>
<tr>
<td>I</td>
<td>Identity matrix</td>
</tr>
</tbody>
</table>

Appendix 2

Symbols for shallow water equations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Perturbation of surface height</td>
</tr>
<tr>
<td>$\bar{\eta}$</td>
<td>Mean surface height constant</td>
</tr>
<tr>
<td>f</td>
<td>Coriolis frequency</td>
</tr>
<tr>
<td>g</td>
<td>Gravity acceleration constant</td>
</tr>
<tr>
<td>(u, v)</td>
<td>Velocity components</td>
</tr>
<tr>
<td>δ</td>
<td>Divergence</td>
</tr>
<tr>
<td>ζ</td>
<td>Vorticity</td>
</tr>
</tbody>
</table>

Appendix 3

Abbreviations for REXI

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Specifies the sampling density in the approximation of $\exp(i\chi)$ with a Gaussian basis function</td>
</tr>
<tr>
<td>L</td>
<td>Number of rational terms to approximate Gaussian basis function</td>
</tr>
<tr>
<td>M</td>
<td>Number of Gaussian basis functions used in the approximation of $\exp(i\chi)$</td>
</tr>
<tr>
<td>$N_x \times N_y$</td>
<td>Spatial resolution of simulation domain</td>
</tr>
<tr>
<td>τ, dt</td>
<td>Time step size for REXI</td>
</tr>
<tr>
<td>DT</td>
<td>Overall simulation time</td>
</tr>
<tr>
<td>(ω^x, ω^y)</td>
<td>Parameters related to the wave-numbers of the initial conditions</td>
</tr>
</tbody>
</table>