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a b s t r a c t

ExPosition is a new comprehensive R package providing crisp graphics and implementing
multivariate analysis methods based on the singular value decomposition (svd). The
core techniques implemented in ExPosition are: principal components analysis, (metric)
multidimensional scaling, correspondence analysis, and several of their recent extensions
such as barycentric discriminant analyses (e.g., discriminant correspondence analysis),
multi-table analyses (e.g.,multiple factor analysis, Statis, anddistatis), andnon-parametric
resampling techniques (e.g., permutation and bootstrap). Several examples highlight the
major differences between ExPosition and similar packages. Finally, the future directions of
ExPosition are discussed.

© 2013 Elsevier B.V. All rights reserved.

1. An ExPosition

The singular value decomposition (svd; Yanai et al., 2011) is an indispensable statistical technique used inmany domains,
such as neuroimaging (McIntosh and Mišić, 2013), complex systems (Tuncer et al., 2008), text reconstruction (Gomez
and Moens, 2012), sensory analyses (Husson et al., 2007), and genetics (Liang, 2007). The svd is so broadly used because
it is the core of many multivariate statistical techniques (Lebart et al., 1984), including principal components analysis
(pca; Jolliffe, 2002; Abdi and Williams, 2010a), correspondence analysis (ca; Benzécri, 1973; Hill, 1974; Greenacre, 1984),
(metric) multidimensional scaling (mds; Torgerson, 1958; Borg, 2005), and partial least squares (pls; Wold et al., 1984;
Bookstein, 1994). In turn, these methods have many extensions such as multi-table analyses—e.g., multiple factor analysis,
or Statis (Lavit et al., 1994; Abdi et al., 2012c, 2013b; Bécue-Bertaut and Pagès, 2008)—three-way distance analysis –
e.g., distatis (Abdi et al., 2005) – and numerous variants of pls (Esposito Vinzi and Russolillo, 2013; Abdi et al., 2013a) that
span regression (Tenenhaus, 1998; Abdi, 2010), correlation (McIntosh and Lobaugh, 2004; Krishnan et al., 2011), and path-
modeling (Tenenhaus et al., 2005). Finally, more recent extensions include generalized (Takane et al., 2006) and regularized
methods (Le Floch et al., 2012).

R (R Development Core Team, 2010) provides several interfaces to the svd and its derivatives, but many of these tend
to have diverse, and at times idiosyncratic, inputs and outputs and so a more unified package dedicated to the svd could
be useful to the R community. ExPosition – a portmanteau for Exploratory Analysis with the Singular Value DecomPosition –
provides for R a comprehensive set of svd-basedmethods integrated into a common framework by sharing input and output

✩ R code for examples are found in Appendices A and B. Release packages can be found on CRAN at http://cran.r-project.org/web/packages/ExPosition/.
Code from this article as well as release and development versions of the packages can be found at the authors’ code repository:
http://code.google.com/p/exposition-family/.
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structures. This suite of packages comprises:ExPosition for one table analyses (e.g., pca, ca,mds),TExPosition, for two-
table analyses (e.g., barycentric discriminant analyses and pls), and MExPosition formulti-table analyses (e.g.,mfa, Statis,
and distatis). Also included in this suite are InPosition and TInPosition that implement permutation, bootstrap, and
cross-validation procedures.

This paper is outlined as follows: Section 2 presents the singular value decomposition and notations, Section 3 describes
the differences between ExPosition and other packages, Section 4 shows several examples that illustrate features not readily
available in other packages, and finally, Section 5 elaborates on future directions. In addition, Appendices A and B include
the code referenced in this paper. Throughout the paper the suite of packages is referred to as ExPosition or ‘‘the ExPosition
family’’ and ExPosition as the package specific for one table analyses.

2. The singular value decomposition

Matrices are in upper case bold (i.e., X), vectors in lowercase bold (i.e., x), and variables in lowercase italics (i.e., x). The
identity matrix is denoted I. Matrices, vectors, or items labeled with I are associated to rows and matrices, vectors, or items
labeled with J are associated to columns.

The svd generalizes the eigenvalue decomposition (evd) to rectangular tables (Abdi, 2007a; Greenacre, 1984; Lebart et al.,
1984; Yanai et al., 2011; Jolliffe, 2002; Williams et al., 2010). Specifically, the svd decomposes an I by J matrix, X, into three
matrices:

X = P1QT with PTP = QTQ = I (1)

where 1 is the L by L diagonal matrix of the singular values, (where L is the rank of X), and P and Q are (respectively) the
I by L and J by L orthonormal matrices of the left and right singular vectors. In the pca tradition, Q is also called a loading
matrix and a singular value with its corresponding pair of left and right singular vectors define a component.

Squared singular values, denoted λℓ = δ2
ℓ , are the eigenvalues of both XXT and XTX. Each eigenvalue expresses the

variance of X extracted by the corresponding pair of left and right singular vectors. An eigenvalue divided by the sum of the
eigenvalues gives the proportion of the total variance – denoted τℓ for the ℓth component – explained by this eigenvalue, it
is computed as:

τℓ =
λℓ
λℓ

. (2)

The sets of factor scores for rows (I items) and columns (J items) are computed as (see Eq. (1)):

FI = P1 and FJ = Q1 (3)

for the rows and columns of X, respectively. Rewriting Eqs. (1) and (3) shows that factor scores can also be computed as a
projection of the data matrix on the singular vectors:

FI = P1 = P1QTQ = XQ and FJ = Q1 = Q1PTP = XTP. (4)

Eq. (4) also indicates also how to compute factor scores (and loadings) for supplementary elements (a.k.a., ‘‘out of sample’’;
Gower, 1968, see also Section 4.2). There are also additional indices, derived from factor scores, whose function is to guide
interpretation. These include contributions, squared distances to the origin, and squared cosines.

The contribution of an element to a component quantifies the importance of the element to the component. Contributions
are computed as the ratio of an element’s squared factor score by the component eigenvalues:

cI i,ℓ =
f 2I i,ℓ

λℓ

and cJj,ℓ =

f 2J j,ℓ

λℓ

. (5)

Next the squared distances to the origin are computed as the sum of the squared distances of each element:

dI2i,ℓ =


ℓ

fI2i,ℓ and dJ2j,ℓ =


ℓ

fJ2j,ℓ. (6)

Finally the squared cosines are the angles of elements from the origin, and indicate the quality of representation of a
component to an element:

rI i,ℓ =
fI2i,ℓ
dI2i,ℓ

and rJj,ℓ =
fJ2j,ℓ
dJ2j,ℓ

. (7)

The generalized svd (gsvd) provides a weighted least squares decomposition of X by incorporating constraints, on the
rows and the columns (gsvd; Greenacre, 1984; Abdi and Williams, 2010a,b; Abdi, 2007a). These constraints – expressed by
positive definite matrices – are, here, calledmasses for the rows andweights for the columns. Masses are denoted by an I by
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Table 1
ExPosition output variables, associated to the svd, common to all techniques. This
table uses R’s list notation, which includes a $ preceding a variable name.

SVD matrix or vector Variable name Description

P $pdq$p Left singular vectors
Q $pdq$q Right singular vectors
1 $pdq$Dd Diagonal matrix of singular values
diag {1} $pdq$Dv Vector of singular values
diag {3} $eigs Vector of eigenvalues
τ $t Vector of explained variances
m $M Vector of masses (most techniques)
w $W Vector of weights (most techniques)

Table 2
ExPosition output variables common to all the core*methods.

I rows Item J columns

$fi Factor scores $fj
$di Squared distances $dj
$ri Cosines $rj
$ci Contributions $cj

I (almost always) diagonal matrix denoted M and weights are denoted by a J by J (often diagonal) matrix denoted W. The
gsvd decomposes the matrix X into three matrices (compare with Eq. (1)):

X = P1QT where PTMP = QTWQ = I. (8)

The gsvd generalizes many linear multivariate techniques (given appropriate masses, weights and preprocessing of X)
such as ca and discriminant analysis. Note that with the ‘‘triplet notation’’ – which is a general framework to formalize
multivariate techniques (see, e.g., Caillez and Pagès, 1976; Thioulouse, 2011; Escoufier, 2007) – the gsvd of X under the
constraints of M and W is equivalent to the statistical analysis of the triplet (X,W,M).

3. ExPosition: rationale and features

R hasmany native functions – e.g.,svd(),princomp(), andcmdscale()—and add-on packages—e.g.,vegan (Oksanen
et al., 2013), ca (Nenadic and Greenacre, 2007), FactoMineR (Lê et al., 2008) and ade4 (Dray and Dufour, 2007) – to
perform the svd and the related statistical techniques. The ExPosition family has a number of features not available (or not
easily available) in current R packages: (1) a battery of inference tests (via permutation, bootstrap, and cross-validation) and
(2) several specific svd-basedmethods. Furthermore, ExPosition provides a unified framework for svd-based techniques and
therefore was designed around three main tenets: common notation, core analyses, and modularity. The following sections
compare other R packages to the ExPosition family in order to illustrate ExPosition’s specific features.

3.1. Rationale and design principles

There are three fundamental svdmethods: pca for quantitative data, ca for contingency and categorical data, andmds for
dissimilarity and distance data. Eachmethod has many extensions which typically rely on the same preprocessing pipelines
as their respective core methods. Therefore, ExPosition contains three ‘‘core’’ functions: corePCA, coreCA, coreMDS
that (respectively) perform the baseline aspects (e.g., preprocessing, masses, weights) of each ‘‘core’’ technique. Each core
function is an interface to pickSVD and returns a comprehensive output (see Eqs. (3), (5), (6), and (7)). While corePCA and
coreMDS are fairly straightforward implementations of pca andmds, coreCA provides some important features not easily
found in other packages (e.g., Hellinger, see 3.2.1 for details).

Because all techniques pass through a generalized svd function in ExPosition—i.e., pickSVD—the output from
ExPosition contains a common structure. The returned output is listed in Table 1. When the size of the data is very large (i.e.,
when the analysis can be computationally expensive), pickSVD uses the evd (see Abdi, 2007a, for svd and evd equivalence).
pickSVD decomposes a matrix after it has passed through one of the core* methods. The core* methods in ExPosition
provide more detailed output for the I row items and the J column items (in Table 2).

3.2. Modularity and the feature set

The ExPosition family is partitioned intomultiple packages. These partitions serve two purposes: to identify the packages
suitable for a given analysis and to afford development independence. Each partition serves a specific analytical concept:
ExPosition for one-table analyses, TExPosition for two-table analyses, and MExPosition for multi-table methods.
The inference packages (which include, e.g., permutation and bootstrap) follow the same naming convention: InPosition
and TInPosition.



D. Beaton et al. / Computational Statistics and Data Analysis 72 (2014) 176–189 179

3.2.1. Fixed-effects features
The function coreCA from ExPosition includes several distinct features such as symmetric vs. asymmetric plots

(available in ade4 and ca), eigenvalue corrections for mca (available in ca), and Hellinger analysis (only available through
mds in vegan and ape).

TExPosition includes (barycentric) discriminant analyses and partial least squares methods. The partial least squares
methods are derivatives of Tucker’s inter-battery analysis (Tucker, 1958; Tenenhaus, 1998), also called Bookstein pls, pls-
svd or pls correlation (Krishnan et al., 2011). There are two forms of pls in TExPosition: (1) an approach for quantitative
data (Bookstein, 1994), frequently used in neuroimaging (McIntosh et al., 1996; McIntosh and Lobaugh, 2004) and (2) a
more recently developed approach for categorical data (Beaton et al., 2013). The discriminant methods in TExPosition
are special cases of pls correlation: barycentric discriminant analysis (bada; Abdi et al., 2012a,b; St-Laurent et al., 2011;
Buchsbaumet al., 2012) for quantitative data anddiscriminant correspondence analysis (dica;Williams et al., 2010; Pinkham
et al., 2012; Williams et al., 2012) for categorical or contingency data.

MExPosition is designed around the Statis method. However, there are numerous implementations and extensions
of Statis, such as mfa, anisostatis, covstatis, canostatis, and distatis. As of now, MExPosition is the only package to
provide an easy interface to all of the Statis derivatives (see Abdi et al., 2012c).

3.2.2. prettyGraphs
The prettyGraphs package was designed especially to create ‘‘publication-ready’’ graphics for svd-based techniques.

All ExPosition packages depend on prettyGraphs. prettyGraphs includes standard visualizers (e.g., component maps,
correlation plots) as well as additional visualizers not available in other packages (e.g., contributions to the variance,
bootstrap ratios). Further, prettyGraphs handles aspect ratio problems found in some multivariate analyses (as noted
in Meyners et al., 2013). ExPosition provides interfaces to prettyGraphs (e.g., epGraphs, tepGraphs) to allow users
more control over visual output, without creating each graphic individually. Finally, prettyGraphs can visualize results
from other packages (see Appendix A).

3.2.3. Permutation
Permutation tests in ExPosition are implemented via the ‘‘random-lambda’’ approach (see Rnd-Lambda in Peres-Neto

et al., 2005) because it typically performs well, is conservative, and is computationally inexpensive. All these features are
critical when analyzing ‘‘big data’’ sets such as those found, for example, in neuroimaging or genomics.

For all *InPosition methods, permutation tests evaluate the ‘‘significance’’ of components. However, it should be
noted that other permutation methods (Dray, 2008; Josse and Husson, 2011) may provide better estimates for components
selection. For all ca-based and discriminant methods, ExPosition tests overall (omnibus) inertia (sum of the eigenvalues).
Finally, an R2 test is performed for the discriminant techniques (bada, dica; Williams et al., 2010). Permutation tests similar
to these are available in some svd-based analysis packages, such as ade4, FactoMineR, and permute which can be used
with vegan.

3.2.4. Bootstrap
The bootstrap method of resampling (Efron and Tibshirani, 1993; Chernick, 2008) is used for two inferential statistics:

confidence intervals and bootstrap ratio statistics (a Student’s t-like statistic; McIntosh and Lobaugh, 2004; Hesterberg,
2011). Bootstrap distributions are created by treating each bootstrap sample as supplementary data to the fixed-effects
space.

Bootstrap ratios are performed for all methods to identify the variables that significantly contribute to the variance of a
component. Under standard assumptions, these ratios are distributed as a Student’s t and therefore a ‘‘significant’’ bootstrap
ratiowill need to have amagnitude larger than a critical value (e.g., 1.96 for a largeN corresponds toα = 0.05). Additionally,
for discriminant techniques, confidence (from bootstrap) and tolerance (fixed-effects) intervals are computed for the groups
and displayedwith peeled convex hulls (Greenacre, 2007).When two confidence intervals do not overlap, the corresponding
groups are considered significantly different (Abdi et al., 2009). While some bootstrap methods are available in similar
packages, these particular tests are only available in the ExPosition packages.

3.3. Leave one out

The ExPosition family includes leave-one-out (LOO) cross-validation for classification purposes (Williams et al., 2010).
Each observation is, in turn, (1) left out, (2) predicted from out of sample, and then, (3) assigned to a group. While leave-
one-out is available from MADE4 and FactoMineR, ExPosition uses LOO for classification estimates (i.e., bada, dica).

4. Examples of ExPosition

Several brief examples of ExPosition are presented. Each example highlights (1) the specific features of ExPosition and,
(2) how to interpret the results. Basic set up and code for each analysis are in Appendix B. All examples use an illustrative
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data set built into ExPosition called beer.tasting.noteswhich is an example of one person’s personal tasting notes.
beer.tasting.notes also includes supplementary data (e.g., additionalmeasures, designmatrices).R code and ExPosition
parameters are presented in monotype font.

First are illustrations of pca and bada (sometimes called between class analysis or mean centered plsc; Baty et al., 2006;
Krishnan et al., 2011). However, pca and bada are presented via InPosition and TInPosition, as they provide an
extensive set of inferential tests unavailable elsewhere. Next, is an illustration ofmcawithχ2 vs. Hellinger analysis. Hellinger
is an appropriate choice when χ2 is too sensitive to population size (Rao, 1995b; Escofier, 1978). Finally, the MExPosition
package – which provides an interface to many Statis derivatives (Abdi et al., 2012c) – is illustrated MExPosition with
distatis: a Statis generalization of mds.

4.1. pca inference battery

Pca is available in ExPosition, like in many other packages. However, InPosition provides two types of inferential
analyses. The first are permutation tests (see Section 3.2.3) to determine which, if any, components are significant. The
second are bootstrap ratio tests of the measures. The data to illustrate pca consist of a matrix of tasting notes of 16 flavors
(columns) for 29 craft beers (rows) from the United States. Additionally, there is a design matrix (a.k.a. group coded,
disjunctive coding) to indicate to which style each beer belongs (according to Alström and Alström, 2012).

In all ExPosition methods, data matrices are passed as DATA. Further, a design matrix (either a single vector or a
dummy-coded matrix with the same rows as DATA) is passed as DESIGN and determines the specific colors assigned to
each observation from DATA (i.e., observations from the same groupwill have the same color when plotted). In this analysis,
the data are centered (center = TRUE) but not scaled (scale = FALSE). Bootstrap ratios whose magnitude is larger than
crit.val are considered significant. The default crit.val is equal to 2 (Abdi, 2007b, analogous to a t- or Z-score with
an associated p value approximately equal to 0.05). test.iters permutation and bootstrap samples are computed (in the
same loop for efficiency). See Appendix B for code and additional data details.

4.1.1. Interpretation
Many svd-based techniques are visualized with component maps in which row or column factors scores are used as

coordinates to plot the corresponding items. On these maps, the distances between data points reflects their similarity. The
dimensions can also be interpreted by looking at the itemswith large positive or negative loadings. In addition, permutation
tests provide p values that can be used to identify the reliable dimensions.

Fig. 1(a) shows a component map of the row items (beers) colored by their style (automatically selected via
prettyGraphs). The component labels display the percentage of explained variance and p-values per component.
Components 1 and 2 are significant (from the permutation test) and explain 28.587% (p < 0.001) and 19.845% (p < 0.001) of
the total variance, respectively. Fig. 1(a) suggests that beers with similar brewing styles cluster together. For example, all of
the ‘‘saison–farmhouse’’ are on the right side of Component 1 (in orange). Note that in Fig. 1(a), beers are plottedwith circles
whose size reflect the beer contribution to the variance (i.e., $ci) of the components used to draw the map. In pca, column
items (flavors) are in general plotted separately (by default). Fig. 1(b) indicates what flavors (1) are alike and (2) make these
beers alike. For example, all the beers at the top of Component 2 (e.g., Consecration, La Folie, and Marrón Acidifié) are sour
beers (through barrel aging, wild yeast strains, and/or additional bacteria such as lactobacillus) and this is confirmed by the
position of the column ‘‘sour’’ at the top of Component 2 (cf. Fig. 1(b)). By default, two plots for the variables are included
for a pca: (1) the plot in which the loadings serve as coordinates (Fig. 1(b)) and the size of the dots reflect the contributions
(e.g.,) importance of the variables for the dimensions used, and (2) a plot – called the circle of correlation plot – in which the
correlation between the factor scores and the variables are used as coordinates (Fig. 1(c)). The last plot includes a unit circle
because the sum of these squared correlations cannot exceed 1. The closer a variable is to the circle, the more ‘‘explained’’
by the dimensions the variable is.

Plotting items as a function of their contributed variance ($ci or bootstrap ratios) provide immediate visual information
about the importance of items. This feature is available through the prettyPlot function in prettyGraphs package.
Other visualizations for svd-based analyses do not typically provide this feature. In Fig. 1(b) and (c), the flavors (variables)
are colored using their bootstrap ratios (see Table 3). Variables colored in gray do not significantly contribute to either
visualized component (i.e., abs(bootstrap ratio) < crit.val). Variables coloredwith purple significantly contribute to the
horizontal axis (here: Component 1) and variables in green significantly contribute to the vertical axis (here: Component 2).
Variables colored in red significantly contribute to both plotted components. In sum, Component 1 is defined as acidic vs.
sweet (e.g., ‘‘citrus fruit’’ vs. ‘‘dark fruit’’) whereas Component 2 is defined largely by ‘‘sour’’. Some items, such as ‘‘hoppy’’,
contribute significantly to both components. The graphs suggest that beers in the lower right quadrant are characterized by
‘‘hoppy’’ and ‘‘floral’’ characteristics.

4.2. bada inference battery

Bada is illustrated with the same data set as in Section 4.1 because there exist data and design matrices. Because
bada is a discriminant technique, there are more inference tests available than for plain pca. The additional tests include:
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Table 3
Bootstrap ratios for the first two components of the pca. Bold values
indicate bootstrap ratios whosemagnitude exceed 2 (i.e., ‘‘significant’’).

Component 1 Component 2

Alcoholic −0.506 −0.148
Dark fruit −3.902 1.632
Citrus fruit 3.082 1.252
Hoppy 3.357 −2.238
Floral 3.035 −2.282
Spicy 2.345 3.403
Herbal 2.033 −0.541
Malty −3.529 −2.050
Toffee −2.764 −2.379
Burnt −2.255 0.383
Sweet −3.505 −0.614
Sour −0.022 4.241
Bitter 1.495 1.013
Astringent 2.009 2.797
Body −0.496 −1.187
Linger 0.390 −0.060

Fig. 1. (a) Component map with factor scores of beer (rows). (b) Component map with factor scores of flavors (columns). (c) Correlation between flavors
(columns) and components (axes). A principal component analysis component map of the observations (rows) on Components 1 and 2. This map features
20 craft beers across 16 styles. Beers are colored by their respective style. Certain styles – such as saisons, sours, and wilds – have unique and consistent
flavor profiles within their type. Furthermore, particular beer styles are strongly associated to particular flavors. For example, ‘‘Sour’’ is strongly associated
to ‘‘Consecration’’ and ‘‘La Folie’’. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this article.)

(1) classification accuracy, (2) omnibus effect (sum of eigenvalues), (3) bootstrap ratios and confidence intervals for groups,
and finally, (4) a squared coefficient statistic (R2), computed as the between-groups variance

total variance . This coefficient quantifies the quality
of the assignments of the beers to their categories (Williams et al., 2010).

TInPosition uses permutation to generate distributions for (1) components (just as with pca in InPosition),
(2) omnibus inertia (sumof the eigenvalues), and (3) R2. Bootstrap resampling generates distributions to create (1) bootstrap
ratios for the measures (just as with pca in InPosition) and for the groups, and (2) to create confidence intervals around
the groups. Finally, classification accuracies are computed for fixed-effects and for random effects (via leave-one-out).

4.2.1. Interpretation
Because bada is a pca-based technique, the graphical and numerical outputs are essentially the same as those of pcawith,

however, a few important differences. First, bada plots have both active and supplementary elements: the group averages
are active rows (from the decomposed matrix) and the original observations (e.g., the beers) are supplemental rows which
are projected onto the component space.

The graphical output for bada provides tolerance peeled hulls that envelope all or a given proportion of the observations
that belong to a group (Fig. 2(a)). Mean confidence intervals for the groups are also plotted with peeled hulls (see Fig. 2(b)).
When group confidence intervals, on any (significant) components, do not overlap, groups can be considered significantly
different. For example, Fig. 2 shows that ‘‘Sour’’ and ‘‘Misc’’ are significantly different from each group. In contrast ‘‘Pale’’
and ‘‘Saison’’ do not differ from each other. In Fig. 2(a) groups and items are colored based on bootstrap ratios (just as in
pca): gray items do not contribute to either component, purple items contribute to Component 1, green items contribute to
Component 2, and red items contribute to both components (see Table 4 for the bootstrap ratio values).

Furthermore, TInPosition performs three separate tests based on permutation resampling. After 1000 permutations,
R2 (reliability of assignment to groups) and omnibus inertia are significant (R2

= 0.610, p < 0.001,


λℓ = 0.390, p <
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Fig. 2. (a) Componentmapwith factor scores of groups and beers. (b) Componentmapwith confidence intervals around the groups. (c) Component scores
of measures colored by bootstrap ratio tests. A bada illustrates which groups are significantly different and which measures help separate groups. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Bootstrap ratios for the first two components of the bada. Bold values
indicate bootstrap ratios whosemagnitude exceed 2 (i.e., ‘‘significant’’).

Component 1 Component 2

(a) Flavors

Alcoholic −0.189 0.847
Dark fruit 6.789 0.007
Citrus fruit −2.093 −2.374
Hoppy −5.172 0.150
Floral −3.323 −0.055
Spicy 0.382 −2.999
Herbal −1.391 −0.506
Malty 2.944 5.103
Toffee 2.617 2.423
Burnt 2.122 0.220
Sweet 1.818 1.836
Sour 5.019 −7.641
Bitter −0.621 −1.131
Astringent −0.963 −2.203
Body −0.570 1.700
Linger −0.173 −0.386

(b) Groups

PALE −6.968 0.565
SOUR 4.734 −5.199
SAISON −8.905 −3.138
MISC 1.498 4.152

0.001). These tests indicate that the assignment of individuals to groups (R2) and the overall structure of the data (


λℓ) are
not due to chance (i.e., ‘‘are significant’’). Additionally, Components 1 and 2 are significant, (56.457%, p < 0.001; 36.391%,
p < 0.001, respectively) whereas Component 3 does not reach significance (7.151%, p = 0.073). Inference results are
found in the $Inference.Data list in output from TInPosition. Finally, TInPosition provides output for leave one
out estimates of classification. Classification accuracy for the fixed effects model is 82%, whereas the random effect model
(assessed from the leave-one-out procedure) accuracy is 62% (Table 5).

4.3. Hellinger vs. χ2

There are three substantial differences between the ca and mca implementations of ExPosition versus those in other
packages as ExPosition is currently the only package to offer together: (1) symmetric vs. asymmetric plots (available in
ade4 and ca), (2) eigenvalue corrections and adjustments (for mca only; available in ca), and (3) χ2 vs. Hellinger distance
(only available through mds in vegan and ape).

Because asymmetric factor scores (Abdi and Williams, 2010b; Greenacre, 2007; Escofier, 1978) and eigenvalue
corrections (Benzécri, 1979; Greenacre, 2007) are well known amongst ca users, mca is illustrated with the lesser known
feature: χ2 distance (the standard) vs. Hellinger distance (Rao, 1995a,b; Escofier, 1978; Cuadras et al., 2006). The Hellinger
distance was developed as an alternative for the standard χ2 distance for ca-based methods to palliate ca’s insensitivity to
small marginal frequencies (Escofier, 1978; Rao, 1995b). Mca (χ2 vs. Hellinger) is illustrated with the data used in the pca



D. Beaton et al. / Computational Statistics and Data Analysis 72 (2014) 176–189 183

Table 5
Classification and classification accuracy with (a) fixed and (b) random effects.

PALE SOUR SAISON MISC

(a) Fixed (82%)

PALE 8 0 0 1
SOUR 0 5 0 0
SAISON 1 1 5 2
MISC 0 0 0 6

(b) LOO-CV (62%)

PALE 4 0 2 1
SOUR 0 5 0 0
SAISON 4 1 3 2
MISC 1 0 0 6

and bada examples. Data were recoded to be categorical (‘‘LOW’’, ‘‘MidLOW’’, ‘‘MidHIGH’’, or ‘‘HIGH’’) within each column.
See Appendix B for details.

4.3.1. Interpretation
Fig. 3(a) and (b) show the χ2 mca analysis. Components 1 and 2 are largely driven by Astringent.LOW and Toffee.HIGH

which occur only once, and 2 twice, respectively. The data illustrate the relevance of the choice of the Hellinger distance
rather than the standard χ2:mca based on the χ2 distance is very sensitive to outliers (Fig. 3(b)) whereas the analysis with
the Hellinger distance is not (Fig. 3(d)). With the Hellinger distance analysis, Chocolate.Bock and Chocolate.Stout are no
longer outliers (Fig. 3(c)) and share qualities that make them similar to other beers (Three.Philosophers). In both analyses,
beers are grouped together in a meaningful fashion. For example, the Saisons are found in the lower right quadrants; malty
and sweet beers are on the left side of the component map (Fig. 3(a) vs. (c)).

4.4. DiSTATIS

MExPosition is a package designed for multi-table analyses based on multiple factor analysis and Statis.
MExPosition uniquely provides direct interfaces (i.e., functions) to many related techniques and specific derivatives of
Statis (e.g., mfa, covstatis, anisostatis, and distatis). While some packages may include Statis (e.g., ade4), mfa (e.g.,
FactoMineR), or distatis (i.e., DistatisR), no other package offers as many derivatives as MExPosition.

Prior analyses (particularly, pca andmca) indicate that, sometimes, beers of different styles cluster together. For example:
Pliny the Elder (Imperial IPA) and Trade Winds (Tripel) or Endeavour (Imperial IPA) and Sisyphus (Barleywine). These
relationships bring up a question: are there aspects of flavor that are not based entirely on style (e.g., particular malts and
hops), such as (1) in-house yeast strains and (2) water source? In this analysis, physical distances (in meters) between
breweries are used as proxies of water source, yeast strains, and other geographically-sensitive factors. The rjson package
(Couture-Beil, 2013) was used to retrieve distances between cities via Google Maps API (Google, Inc., 2013). A distance
matrix was derived from beer.tasting.notes with the dist function. There are now two distance matrices that can
be analyzed in two different ways: (1) separately withmds or (2) together with distatis. Fig. 4(a) shows themds analysis of
flavors. This map is interpreted with the same rules as pca (Fig. 1). Fig. 4(b) shows themds analysis of the physical distance
between breweries. Either mds alone provides partial information with respect to beer style or flavor perception.

distatis can analyze both distance matrices simultaneously. Fig. 5(a) shows that distatis reveals some very interesting
characteristics of the beers. First, saisons and sours, by comparison to the original analyses, are largely unaffected by physical
distance. These styles appear to maintain their flavor properties regardless of location. Second, the remaining beers, across
styles, are not as separable as saisons or sours. This suggests that some (standard) beer styles in fact are sensitive to regional
factors (e.g.,water source).

5. Conclusions

This paper introduced a suite of svd-based analysis packages for R, called ExPosition, that offers a simple and unified
approach to svd analyses through a set of core functions.While ExPosition offers a number of features unavailable elsewhere,
there are still several future directions for the ExPosition family. First, because very large data sets are nowmore routine, an
obvious step forward is to include faster decompositions. For example, a faster analysis could be achieved via an R interface
tomore efficientC libraries (Eddelbuettel and Sanderson, in press). Next,MExPositionwill include decompositions of each
table based on ‘‘mixed-’’data types (as in Lê et al., 2008; Bécue-Bertaut and Pagès, 2008). That is, if a user provides several
contingency tables (ca), a nominal table (mca), and several scaled tables (pca), MExPositionwill correctly normalize and
decompose each table. Massive studies, such as ADNI (http://www.adni-info.org), collect a wide array of mixed data, and as
such, methods like mixed data Statis will become critically important. Additionally, TExPosition will include all partial

http://www.adni-info.org
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Fig. 3. (a) (top left) and (b) (top right) illustrate factor maps inmcawith χ2 distance factor scores. (c) (bottom left) and (d) (bottom right) illustrate factor
maps in mca with Hellinger distance factor scores.

Fig. 4. (a) (left) shows a mds analysis of the ratings for each beer. (b) (right) shows a mds analysis of the physical distances between the brewery.
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Fig. 5. (a) (left) shows the compromise analysis between ‘‘flavor’’ and physical distances for our beer data set. (b) (right) is the same data, but each beer
is labeled by their city of origin.

least squares correlation (plsc) techniques (see, e.g., the plsc software [for neuroimaging] available only forMatlab1). Further,
all available ExPosition methods will include multi-block projection (Williams et al., 2010; Abdi et al., 2012a,b). Finally,
InPosition will (1) extend to MExPosition (i.e., MInPosition), (2) include more inferential methods, such as split-
half resampling (which provides estimates for prediction and reliability; Strother et al., 2002) and, (3) various permutation
approaches (Peres-Neto et al., 2005). To note, there exist recent approaches that aremore accurate for svd-based techniques
(Dray, 2008; Josse and Husson, 2011).

To conclude, ExPosition offers a very wide array of features for analyses: it is easily extendable through the core functions
(see Appendix A) and implements many descriptive methods (e.g., pca, ca, mds), their derivatives (e.g., bada, Statis, and
distatis), extensive visualizers, and inferential tests (via permutation, bootstrap, and cross-validation). Currently, no other
package for R offers such a comprehensive approach for svd-based techniques.
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Appendices

These appendices includes code either (1) to illustrate a feature or (2) required to run the examples.

Appendix A. Illustrations

This section provides illustrations of code to exhibit particular features of ExPosition.

A.1. Pls correlation methods

To illustrate the usefulness of modularity, an analysis core, and common notation, we present the code required to
perform a plsc (Tucker, 1958; McIntosh et al., 1996; Krishnan et al., 2011). In this example, we center and scale (sum of
squares equal to 1) two data sets X and Y.

X <- expo.scale(beer.tasting.notes$sup.data[,1:2],scale="SS1",center=TRUE)
Y <- expo.scale(beer.tasting.notes$data,scale="SS1",center=TRUE)

Next, we call corePCA() instead of a plain svd. We do this because corePCA provides a comprehensive set out of output
that we would otherwise need to compute if we called just svd().

pls.out <- corePCA(t(X) %*% Y)

1 By McIntosh, Chau, Lobaugh, and Chen available at http://www.rotman-baycrest.on.ca/index.php?section=84.

http://www.rotman-baycrest.on.ca/index.php?section%3D84
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Finally, we compute the latent variables (i.e., the rows of the data are projected as supplementary elements):

Lx <- supplementalProjection(X,pls.out$fi,Dv=pls.out$pdq$Dv)
Ly <- supplementalProjection(Y,pls.out$fj,Dv=pls.out$pdq$Dv)

A.2. prettyGraphs beyond ExPosition

prettyGraphs is a package designed to create high-quality graphics for the ExPosition family. However,
prettyGraphs can be used to visualize other data or results from other packages. The following code illustrates how
to use prettyPlot from the prettyGraphs package to plots results obtained from analyses performed with the ade4
and FactoMineR packages:

#for ade4
data(deug)
deug.dudi <- dudi.pca(deug$tab, center = deug$cent,
scale = FALSE, scan = FALSE)
inertia <- inertia.dudi(deug.dudi,row.inertia = T)$row.abs
prettyPlot(deug.dudi$li,
contributionCircles=TRUE,
contributions=inertia)

# for FactoMineR
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13,graph=FALSE)
prettyPlot(res.pca$ind$coord,
contributionCircles=TRUE,
contributions=res.pca$ind$contrib)

Appendix B. Required code

Here, we illustrate how to use a number of features across ExPosition. We use the same data set – built into ExPosition
– across all examples. The data consist of 16 flavor notes (columns) collected on 29 craft beers (rows) brewed in the United
States. Included is a designmatrix (same constraints as the data), which is group coded (a.k.a. disjunctive coding). The design
matrix reflects a particular style per beer (styles according to Alström and Alström, 2012).

B.1. pca inference battery

The following code runs the example described in Section 4.1. InPosition is introduced with a simple and familiar
example: pca. In order to perform pca with InPosition, we use the function epPCA.inference.battery(),
which calls epPCA() in ExPosition. For this example, we will use the parameters DATA, DESIGN, scale,
make_design_nominal and test.iters. Data are initialized as such:

these.rows <- which(rowSums(beer.tasting.notes$region.design[,-5])==1)
BEER <- beer.tasting.notes$data[these.rows,]
STYLES<-beer.tasting.notes$style.design[these.rows,]

Pcawith inference test battery:

beer.taste.res.style <-
epPCA.inference.battery(DATA = BEER,
scale = FALSE,
DESIGN = STYLES,
make_design_nominal = FALSE,
test.iters = 1000)

Fixed effects and plotting data are found in beer.taste.res.style$Fixed.Data, and inference results are found in
beer.taste.res.style$Inference.Data.
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B.2. bada inference battery

The following code runs the example in Section 4.2. With bada, we aimed to investigate the properties of beers classified
as ‘‘pale’’, ‘‘saison’’, ‘‘sour’’, and ‘‘miscellaneous’’. We use bada to reveal differences (and similarities) between these beer
categories. Data are initialized as:

these.rows <- which(rowSums(beer.tasting.notes$region.design[,-5])==1)
BEER <- beer.tasting.notes$data[these.rows,]
DESIGN <- beer.tasting.notes$pale.sour.style[these.rows,]

and analysis is performed as:

beer.bada <- tepBADA.inference.battery(DATA = BEER,
scale = FALSE,
DESIGN = DESIGN,
make_design_nominal = FALSE,
test.iters = 1000)

B.3. Hellinger vs. χ2

The following code runs the example in Section 4.3. In this example, we still use the same beer data as in the pca and
bada examples, but we have transformed the data into categorical data. In fact, the data are inherently ordinal and data
may be better analyzed withmca. For this example, we recoded each column into 4 bins and perform χ2 mca andmcawith
Hellinger:

these.rows <- which(rowSums(beer.tasting.notes$region.design[,-5])==1)
BEER <- beer.tasting.notes$data[these.rows,]
STYLES<-beer.tasting.notes$style.design[these.rows,]
BEER.recode <-
apply(BEER,2,cut,breaks=4,labels=c(‘‘LOW’’,‘‘MidLOW’’,‘‘MidHIGH’’,‘‘HIGH’’))
rownames(BEER.recode) <- rownames(BEER)

Then perform χ2 mca:

mca.res <- epMCA(DATA = BEER.recode,
make_data_nominal = TRUE,
DESIGN = STYLES,
make_design_nominal = FALSE,
correction = NULL)

And finally perform Hellinger mca:

hellinger.res <- epMCA(DATA = BEER.recode,
make_data_nominal = TRUE,
DESIGN = STYLES,
make_design_nominal = FALSE,
hellinger = TRUE,
symmetric = FALSE,
correction = NULL)

B.4. DiSTATIS

The following code runs the example in Section 4.4. distatis is a generalization of mds to multiple distance tables. The
aim of this analysis is to find if flavor perception is driven by factors beyond style, such as yeast, water source, or ‘‘le terroir’’
(geophysical factors). Data are set up as:

these.rows <- which(rowSums(beer.tasting.notes$region.design[,-5])==1)
BEER <- beer.tasting.notes$data[these.rows,]
STYLES<-beer.tasting.notes$style.design[these.rows,]
BEER.DIST <- dist(BEER,upper=TRUE,diag=TRUE)
phys.dist <- beer.tasting.notes$physical.distances

Then we compute two separate mds analyses. One for perceived flavors:

flav<-epMDS(DATA=BEER.DIST,
DESIGN=STYLES,
make_design_nominal =FALSE)
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And the next based on physical distance between breweries:

phys.dist <- beer.tasting.notes$physical.distances
phys<-epMDS(DATA=phys.dist,
DESIGN=STYLES,
make_design_nominal =FALSE)

To combine the two matrices in a single analysis, we use distatis

table <- c(rep("flavors",ncol(BEER.DIST)),rep("meters",ncol(phys.dist)))
flavor.phys.dist <- cbind(BEER.DIST,phys.dist)
demo.distatis <- mpDISTATIS(flavor.phys.dist,
DESIGN=STYLES,
make_design_nominal =FALSE,
sorting=’No’,
normalization=’MFA’,
table=table)

distatis produces a compromise between perceived taste and physical distance between each beer.
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