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Abstract. In this paper we introduce a q-Exponential regression model for fit-
ting data with discrepant observations. Maximum likelihood estimators for the
model parameters and the (observed and expected) Fisher information matrix
are derived. Moreover, we also present sufficient conditions to have consistent
and asymptotically normally distributed estimators. Simulation studies show
that the proposed estimators present good behaviour in the sense of decreas-
ing bias, and symmetric distribution when the sample size increases.
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1. q-Exponential distribution

The q-Exponential distribution emerges from the nonextensive statistical me-
chanics introduced by Tsallis [1]. This theory is a generalization of the classi-
cal Boltzmann-Gibbs (BG) statistical mechanics. The well-known BG entropy is
SBG = −

∫
f(x) ln f(x)dx, where f(x) is a density function (naturally, the entropy

can analogously be defined for the discrete case). Under appropriated constraints,
the normal and the exponential distributions maximize the classical entropy SBG

for distributions with support on (−∞,∞) and (0,∞), respectively. The general-

ization proposed by [1] basically considers the q-entropy Sq =
1−

∫
f(x)qdx
1−q

instead

of SBG. One can readily see that, the classical BG entropy is recovered when
q → 1. For a detailed study of nonextensive statistical mechanics, we refer the
reader to [2] and the references therein. An updated bibliography regarding the
Tsallis’s nonextensive statistical mechanics can be found in the following website
http://tsallis.cat.cbpf.br/biblio.htm.

.
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Under appropriated mean constrains (see Section 3.5 of [2]), the distribution
with support on (0,∞) which maximizes the q-entropy Sq is of the following type

f(y) = κ0(2− q)

(
1− (1− q)κ0y

) 1
1−q

, (1.1)

where 1 < q < 3/2 (constraint to have a support on (0,∞) and finite mean)
and κ0 > 0. There are many reparametrized versions of (1.1) and all of them are
essentially the same distribution. For instance,

f(y) =
1

κ

(
1− (1 − q∗)

κ
y

) q∗

1−q∗

, (1.2)

where q∗ = (2 − q)−1 ∈ (1, 2) and κ = [κ0(2 − q)]−1 > 0. Also, one can take
γ = (q∗ − 1)−1 and σ = [(q∗ − 1)κ]−1, then the following reparametrized density
arises

f(y) =
γ

σ

(
1 +

1

σ
y

)−(γ+1)

, (1.3)

where γ > 1 and σ > 0. We can work with either densities (1.1)–(1.3), since one is
just a reparametrization of the other. The maximum likelihood estimators (MLEs)
for the parameters of (1.3) was computed by [3]. By applying the Jacobian rule,
we can attain the MLEs for the parameters of (1.1) and (1.2).

Applications for the nonextensive theory proposed by Tsallis have arisen
in several fields. For example, applied physics (for modelling: time correlation
function of water hydrogen bonds [4], dissipative optical lattices [5], trapped ion
interacting with a classical buffer gas [6]), astrophysics (interstellar turbulence
[7]), biology (multiple sclerosis magnetic resonance images [8]) and many others
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. More recently, the CMS Collaboration
[20] uses the density (1.1) for fitting the charged hadron transverse-momentum.
As can be seen, applications for the q-Exponential distribution abound in many
fields and, for this reason, a regression model can also be useful for modelling the
average behaviour of a random variable Y .

Suppose that Y follows a q-Exponential distribution, then its mean E(Y ) =∫
yf(y)dy may vary with other variables. In this context we can formulate a re-

gression model for modelling more precisely the mean E(Y ) taking into account
such extra variables. When other variables have influence on the variation of the
response variable Y and they are not considered in the model, the estimation of
the parameters may be very affected since they produce an extra variability in
the response variable that is not predicted by the model. The impact of this extra
variability can be controlled by using a regression model.

With simple computations, we notice that the expectation of Y is E(Y ) =
1

(3−2q)κ0
= 1

2−q∗
κ = 1

γ−1σ. Then, taking other parametrization µ = 1
γ−1σ and

θ = γ − 1 we obtain

f(y) =
θ + 1

θµ

(
1 +

y

θµ

)−(θ+2)

, (1.4)
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where µ > 0 and θ > 0. If Y follows the density given in (1.4), we write in short
that Y ∼ qExp(µ, θ). We will consider that Y ∼ qExp(µ, θ) throughout this paper.

The relationships among the parameters of models (1.1), (1.2) and (1.4) are:

θ =
2− q∗

q∗ − 1
=

3− 2q

q − 1
, µ =

κ

2− q∗
=

1

(3− 2q)κ0
and θµ =

κ

q∗ − 1
=

1

(q − 1)κ0
.

Thus, on the one hand, if q → 1 (q∗ → 1), then θ → ∞, µ → κ−1
0 , µθ → ∞ and we

will have the exponential distribution, f(y) = κ0 exp(−yκ0). On the other hand,
if q → 3/2 (q∗ → 2), then θ → 0, µ → ∞, θµ → 2κ−1

0 and the following density
emerges f(y) = 2κ0(2 + yκ0)

−2. Note that for this last situation our regression
model are not applied, since

∫∞

0
yf(y) = ∞.

This paper is organized as follows. Section 2 introduces the regression model
connecting the mean of Y , µ, with other variables. Section 2.1 presents the score
functions, the (observed and expected) Fisher information and an iterative pro-
cedure to obtain the ML estimates. Section 2.2 gives some conditions and proofs
for asymptotic normality of the MLEs. Finally, Section 2.3 applies the results of
the paper on the issue of comparing two populations. We end the paper with
conclusions and remarks in Section 3.

2. Regression model

The regression model allows to fit data when the mean varies with covariates. It
is natural to explain the average behaviour of a random quantity (the mean µ)
through other variables. Therefore, let (Y1, x1), . . . , (Yn, xn) be a sample, where n
is the sample size, Yi is a unidimensional response variable (the variable we are
interest to explain) and xi is the vector of non-stochastic covariates that may have
influence on the average behavior of Yi. All vectors in this paper will be column
vectors and to represent a row vector we use the transpose symbol. Therefore, if
x1 = (x11, . . . , x1p)

⊤ is a column vector, x⊤
1 is a row vector.

In this paper we define the following regression model

Yi
ind∼ qExp(µi, θ) (2.1)

for i = 1, . . . , n, where “
ind∼ ” means “independent distributed as”, β is a vector

with dimension p, µi = µi(β, xi) is a positive function with known shape which is
assumed to be three times continuously differentiable with respect to each element
of β. Notice that, when θ > 1 (or equivalently q < 4/3), the mean and variance

of Y exist and are given, respectively, by E(Yi) = µi and Var(Yi) =
(θ+1)µ2

i

θ−1 ,

which means that the regression model defined in (2.1) is heteroscedastic, that is,
the variance varies with i. It is important to observe that when 0 < θ < 1 (or
4/3 < q < 3/2) the mean exist but the variance does not. In this case, discrepant
observations may also be modelling by using the q-Exponential regression model.
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As we will see, regression model (2.1) allows us to model several different
populations with the same θ and it is also possible to test values for linear combi-
nations of β. One immediate generalization of the regression model defined in (2.1)
is to consider other covariates z’s to explain a possible variation of the parameter
θ, thus a natural generalization is to consider a function θi(α, zi) instead of θ for
all i = 1, . . . , n, where α is an unknown vector of parameters to be estimated.
In this note, we will not consider this last generalization. If practical applications
demand this generalization, it may be a subject for further work.

2.1. Maximum likelihood estimators

In this section we compute the score functions (the first derivatives of the log-
likelihood function) and the (observed and expected) Fisher information (the neg-
ative of the second derivatives of the log-likelihood function). The estimates can
be attained by using the iterative Newton-Raphson algorithm.

We start showing below the joint density function of Y1, . . . , Yn based on our
reparametrization (1.4),

f(y1, . . . , yn) =

n∏

i=1

{
θ + 1

θµi

(
1 +

yi
θµi

)−(θ+2)
}
.

The log-likelihood function is then given by

ℓ(β, θ) = n log

(
θ + 1

θ

)
−

n∑

i=1

log(µi)− (θ + 2)

n∑

i=1

log

(
1 +

yi
θµi

)
.

The MLEs are attained by taking the first derivatives of ℓ with respect to the
parameters (i.e., computing the score functions) and set them equal to zero. Hence,
the score functions are given by

Uθ =
∂ℓ

∂θ
=

n∑

i=1

(θ2 + 3θ + 1)yi − µiθ − (θ2 + θ)(yi + θµi) ln
(
1 + yi

θµi

)

(µiθ + yi) (θ + 1) θ
(2.2)

and

Uβk
=

∂ℓ

∂βk

= −
n∑

i=1

µiθ − θyi − yi
µi (µiθ + yi)

∂µi

∂βk

for k = 1, . . . , p. Define Di ≡ Di(β) = ( ∂µi

∂β1
, . . . , ∂µi

∂βp
)⊤, then a matrix version for

Uβ = (Uβ1 , . . . , Uβp
)⊤ is

Uβ =
∂ℓ

∂β
= −

n∑

i=1

µiθ − θyi − yi
µi (µiθ + yi)

Di. (2.3)

Next, we compute the (observed and expected) Fisher information, which depends
on the second derivatives of ℓ, see Appendix A. The observed Fisher information
is

Jθ,β = −
(

∂2ℓ
∂θ2

∂2ℓ
∂β∂θ

⊤

∂2ℓ
∂β∂θ

∂2ℓ
∂β∂β⊤

)
. (2.4)
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The expected Fisher information Kθ,β = E(Jθ,β) is given by

Kθ,β =

n∑

i=1




2 + θ2 + θ

θ2 (θ4 + 7θ3 + 17(θ2 + θ) + 6)

2D⊤
i

(5θ + θ2 + 6) θµi

2Di

(5θ + θ2 + 6) θµi

(θ + 1)DiD
⊤
i

(θ + 3)µ2
i




, (2.5)

see Eqs (A.1), (A.2) and (A.3) of Appendix A. Now, the iterative Newton-Raphson
algorithm can be formulated to find the roots of (2.2) and (2.3)

(
θ̂(v+1)

β̂(v+1)

)
=

(
θ̂(v)

β̂(v)

)
+ J−1

θ̂(v),β̂(v)
U
θ̂(v),β̂(v) , for v = 0, 1, . . . , (2.6)

where the quantities with the upper script “(v)” are estimates computed in the
vth iteration. The observed Fisher information Jθ,β is given in (2.4) and Uθ,β =
(Uθ, U

⊤
β )⊤. The quatities J

θ̂(v),β̂(v) and U
θ̂(v),β̂(v) are Jθ,β and Uθ,β, respectively,

computed at θ = θ̂(v) and β = β̂(v). We can replace the observed Fisher information
with the expected Fisher information Kθ,β, given in (2.5), in the above Newton-
Raphson algorithm. To start with the iterative process we must insert initial values

θ̂(0) and β̂(0). Here, µi may be a complicated function of the parameter vector β
and, then, it is difficult to suggest starting values for β and θ. Also, it is known that
good initial estimates are required for highly nonlinear models, however, there is
no standard procedure for attaining

√
n-consistent initial estimates. In these cases,

the user can define a starting value for β by looking at (x, y)-dispersion graphs
and take θ as a big number. These starting values are obtained by approximating
the q-Exponential distribution to the standard exponential one (i.e., when q → 1).
Other initial values can also be defined, if there exist a function g(·) that linearizes
µi, i.e., g(µi) = β⊤xi, then we can also transform the data g(Yi) and apply the
ordinary least square approach for estimating the vector of parameters β to get
its initial value. If a generic distance between the estimates computed at the vth
and (v − 1)th iterative step is sufficiently small, we stop the iterative procedure.

In the case that the mean function is constant µi(β, xi) = µ, then it is possible
to derive initial values based on the method-of-moments approach. Noting that,
under µi(β, xi) = µ,

E(Y k
i ) =

µkθkΓ(k + 1)Γ(θ + 1− k)

Γ(θ + 1)
,

by the method-of-moments approach, θ̂(0) may be taken as the solution of

mk

mk
1

=
θkΓ(k + 1)Γ(θ + 1− k)

Γ(θ + 1)

for some 0 < k ≤ 1, where mk = n−1
∑

i Y
k
i . Notice that, for all 0 < k ≤

1, the moments above are well defined for all θ > 0. We warn the reader that
these moment estimators may be highly non-robust with significant bias and low
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precision, see for instance [21] for a detailed work on bias and accuracy of moment
estimators. [22] presents a formal theory based on contraction mappings that
guarantees convergence for the iterative process (2.6) when started even at non-
consistent initial values.

In general, the parameter q has an interpretation in statistical mechanics. It
is known as the distortion parameter, since if q 6= 1 the q-entropy is not additive,
see [2] for further details. Therefore, the user might be interested in an estimator
for this distortion parameter. By using the invariance property of the MLEs, the
MLE for q is easily attained through the MLE of θ. Suppose that we have the

MLE for θ, θ̂ say, then the MLE for q is q̂ = θ̂+3

θ̂+2
which implies that q̂ ∈ (1, 3/2)

for all θ̂ ∈ (0,∞).

2.2. Asymptotic normality for the MLEs

The asymptotic normality of the estimators attained equating the score functions
to zero is assured under some regularity conditions. In this section, we establish
some regular conditions on the functions µi for i = 1, . . . , n. Define γ = (θ, β⊤)⊤.

C1 (Identifiability condition) The covariates xi and the functions µi(β, xi) > 0
for i = 1, . . . , n are such that, if γ1 6= γ2 then ℓ(γ1) 6= ℓ(γ2) for γ1, γ2 ∈
(0,∞)× R

p.
C2 (Differentiation condition) The functions µi(β, xi), for i = 1, . . . , n, are three

times continuously differentiable.
C3 (Finite asymptotic Fisher information) The functions µi(β, xi), for i = 1, . . . , n,

are such that the limiting matrices limn→∞ n−1
∑n

i=1
Di

µi
and limn→∞ n−1

∑n
i=1

DiD
⊤

i

µ2
i

exist.
C4 (Finite dimensional condition) The dimension of the vector β does not in-

crease with the sample size.
C5 The following matrix has rank p for all n > p,

Dβ =

(
D1

µ1
, . . . ,

Dn

µn

)⊤

.

Proposition 2.1. Under C5, the expected total Fisher information Kθ,β is positive
definite for all n ≥ 1, i.e, w⊤(Kθ,β)w > 0 for all w ∈ R

p+1 and w 6= 0.

Proof. Let 1n be a vector of ones and In be the n× n identity matrix, define

Hθ =




2 + θ2 + θ

θ2 (θ4 + 7θ3 + 17θ2 + 17θ+ 6)

2

(5θ + θ2 + 6) θ

2

(5θ + θ2 + 6) θ

θ + 1

(θ + 3)




and Fβ = diag(1n, Dβ). Then, the expected Fisher information can be shortly
written as

Kθ,β = F⊤
β (Hθ ⊗ In)Fβ (2.7)
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where and “⊗ ” is the kronecker product of matrices. The proof of Proposition 2.1
is given by noting that the diagonal elements of Hθ are positive and that

det(Hθ) =
1

(θ + 2) (5 θ + θ2 + 6) (θ + 1)
> 0,

then the matrix Hθ ⊗ In has full rank and is positive definite. Provided that
rank(Dβ) = p, we have that rank(Fβ) = p + 1 and then Kθ,β is positive definite
for all n ≥ 1. �

Proposition 2.2. Let f(y) be as defined in (1.4). Then, for all µ > 0 and θ >

0, there exist integrable functions gj, j = 1, 2, 3, 4, 5 such that
∣∣∣∂f(y)∂θ

∣∣∣ < g1(y),∣∣∣∂f(y)∂µ

∣∣∣ < g2(y),
∣∣∣∂

2f(y)
∂θ2

∣∣∣ < g3(y),
∣∣∣∂

2f(y)
∂µ∂θ

∣∣∣ < g4(y) and
∣∣∣∂

2f(y)
∂µ2

∣∣∣ < g5(y) where
∫∞

0
g1k(y)dy < ∞ and

∫∞

0
g2j(y)dy < ∞ for k = 1, 2 and j = 1, 2, 3.

Proposition 2.3. Let γ̂ be the MLE of γ = (θ, β⊤)⊤. Under C1–C5, (i) γ̂ is con-
sistent and asymptotically it is the unique maximizer of ℓ(γ) and

(ii)
√
n(γ̂ − γ)

D−→ Np+1(0,K
∗
γ
−1),

where “
D−→ ” means “converges in distribution to”, K∗

γ = limn→∞ K̄γ, K̄γ =

n−1Kγ and Nm(0,Σ) is a m-variate normal distribution with zero mean and co-
variance matrix Σ.

Proof. By the Proposition 2.2 and condition C2, we can use the Fubini’s theorem
to change the order of integrations and we can also change the order of integration
and differentiation. This implies that the expectations of the score functions equal
zero and that the inverse of the Fisher information is the variance of the score
function. Under C3 and C5, the limit of the Fisher information exist and it is
positive definite then, by C1, we have that γ̂ is consistent and, asymptotically,
it is the unique point that maximizes ℓ(γ). The proof for the second part of the
Proposition 2.3 follows by noting that C1–C5 are the required conditions stated
in [23], Ch.9., to have MLEs asymptotically normally distributed. The MLE for
the other reparametrized versions have also asymptotic normal distributions, the
proof follows by using the delta method, see [24]. �

Notice that, the asymptotic distribution of the MLEs does not depend if
the variance of Yi exist for all i = 1, . . . , n or if limn→∞ n−1

∑
i Var(Yi) < ∞.

This happens because the score function and the observed Fisher information are
functions of yki /(θµi+ yi)

j for k = 0, 1, 2 and j = 1, 2 rather than a function of yki .
As yki /(θµi + yi)

j for k = 0, 1, 2 and j = 1, 2 have finite expectations we have to
impose conditions on the limiting average of these expectations (weighed by Di).

We can test the hypothesis H0 : Cγ = d by using the following Wald statistic

ξ = n(Cγ̂ − d)⊤
[
CK̄−1

γ̂ C⊤
]−1

(Cγ̂ − d) (2.8)

which converges in distribution to a chisquare distribution with c = rank(C)
degrees of freedom. The statistic (2.8) can be used to test linear combinations of
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β. It is very useful when several treatments are considered and we want to verify
if all treatment effects (or some of them) are equal to the innocuous one.

We remark that the null hypothesis must not be on the border of the paramet-
ric space. For example, we cannot test if θ = 0 or θ = ∞ (these tests are equivalent
to test if q = 3/2 or q = 1, respectively). The likelihood ratio (LR) statistic can
also be formulated for testing more general hypothesis such as H0 : γ ∈ Γ0. Then,
if Γ0 is a smooth subset of Γ = (0,∞)×R

p and the true parameter γ0 is an interior
point of Γ0, the following LR statistic

LR = 2

(
ℓ(γ̂)− ℓ(γ̂0)

)
. (2.9)

is asymptotically chisquared distributed with c = p + 1 − dim(Γ0) degrees of
freedom, where γ̂0 = argmaxγ∈Γ0 ℓ(γ), this result and others (when Γ0 is a semi-
algebraic set with singularities) can be studied in [25] and the references therein.

2.3. Example for two populations

Let Z1, . . . , Zn1 andW1, . . . ,Wn2 be two observed samples taken from two different
populations Z and W , respectively. Assume that Z ∼ qExp(µz , θ) and W ∼
qExp(µw, θ). Therefore, we can define Y1, . . . , Yn, with n = n1+n2, where Yi = Zi

for i = 1, . . . , n1 and Yi = Wi for i = n1 + 1, . . . , n. Let xi be a covariate which
is 0 for i = 1, . . . , n1 and 1 for i = n1 + 1, . . . , n. In this case, the covariate is just
indicating where population the observation come from.

Define µi = exp(β0+β1xi), thus, we have that, exp(β0) = µz for i = 1, . . . , n1

and exp(β0 + β1) = µw for i = n1 + 1, . . . , n. Hence, we can estimate β0, β1 and
θ via our regression model and then return to the original parameters µz, µw and
θ, if necessary. One may be interested in verifying if these two samples come from
the same underlying population. This hypothesis is equivalent to test if β1 = 0 .
The score functions for this model are

Uθ =

n1∑

i=1

(θ2 + 3θ + 1)zi − µzθ − (θ2 + θ)(θµz + zi) ln
(
1 + zi

θµz

)

(µzθ + zi) (θ + 1) θ
+

+

n2∑

i=1

(θ2 + 3θ + 1)wi − µwθ − (θ2 + θ)(θµw + wi) ln
(
1 + wi

θµw

)

(µwθ + wi) (θ + 1) θ
,

Uβ0 = −
n1∑

i=1

µzθ − θzi − zi
µzθ + zi

and Uβ1 = −
n∑

i=n1+1

µwθ − θwi − wi

µwθ + wi

,

where µz = exp(β0) and µw = exp(β0 + β1). We have also that,

Dβ =

(
1n1 0
1n2 1n2

)
and Fβ = diag(1n, Dβ)



A q-Exponential regression model 9

and then the expected Fisher information is

Kθ,β =




(2 + θ2 + θ)n

θ2 (θ4 + 7θ3 + 17θ2 + 17θ + 6)

2n

(5θ + θ2 + 6) θ

2n2

(5θ + θ2 + 6) θ

2n

(5θ + θ2 + 6) θ

(θ + 1)n

(θ + 3)

(θ + 1)n2

(θ + 3)

2n2

(5θ + θ2 + 6) θ

(θ + 1)n2

(θ + 3)

(θ + 1)n2

(θ + 3)




and its inverse is

K−1
θ,β =




(θ + 1)2(θ + 2)2

n
−2(θ + 1)(θ + 2)

nθ
0

−2(θ + 1)(θ + 2)

nθ

n2θ
2(θ + 3) + n1(θ + 2)(2 + θ2 + θ)

nn1θ2(θ + 1)
− θ + 3

n1(θ + 1)

0 − θ + 3

n1(θ + 1)

(θ + 3)n

n2n1(θ + 1)




,

where β = (β0, β1)
⊤. Therefore, the diagonal elements of the inverse of Kθ,β are

the asymptotic variances of the ML estimators θ̂, β̂0 and β̂1 which are given by

σ2
θ̂
=

(θ + 1)
2
(θ + 2)

2

n
, σ2

β̂0
=

n2θ
2(θ + 3) + n1(θ + 2)(2 + θ2 + θ)

nn1θ2(θ + 1)

and

σ2
β̂1

=
(θ + 3)n

n2n1(θ + 1)
.

These variances can be estimated replacing the parameters by their MLEs. For
instance, to test if β1 = 0 we define C = (0, 0, 1), γ = (θ, β0, β1)

⊤ and d = 0, then
we have Cγ = β1. Replacing these quantities in the Wald statistic (2.8), we arrive
at the following statistic

ξ2 =
β̂2
1

σ̂2
β̂1

, (2.10)

which is asymptotically chisquared distributed, where rank of C is 1. One must
compute the p-value, P (χ2(1) > ξ2) = p-value, where χ2(1) is a chisquare distri-
bution with one degree of freedom. If p-value is lesser than α%, we say that β1 6= 0
with level of significance equal to α%.

Note that, the asymptotic variance of β̂1 is not much affected by the values of
θ, since (θ + 3)/(θ+ 1) ∈ (1, 3) for all θ > 0. That is, the asymptotic behaviour of

the MLE β̂1 is well behaved for any values of θ. Therefore, the hypothesis testing
with respect to β1 is sufficiently reliable (this fact is also verified by simulations in
Section 2.3.1). However, the asymptotic variances σ2

θ̂
and σ2

β̂0
are affected by the

values of θ. On the one hand, the asymptotic standard deviation of
√
n(θ̂−θ) is of
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order θ2, hence, the larger θ the more imprecise is its MLE. For instance, if θ = 100

(q ≈ 1.0098) then the asymptotic standard error of
√
n(θ̂ − θ) is of order around

10 000. On the other hand, the asymptotic standard deviation of
√
n(β̂0 − β0) is

of order θ−2, hence, the smaller θ the more imprecise is its MLE. For instance,

if θ = 0.001 (q ≈ 1.49975) then the asymptotic standard error of
√
n(β̂0 − β0)

is of order around 10 000. To overcome such imprecisions, one must increase the
sample size. At last, if the interest lies in testing β1, our regression model can be
used without any worries about θ. However, if the interest lies in θ and β0, we

suggest using our results with caution, since the estimates θ̂ and β̂0 may be very
unstable. One can use other procedure to consistently estimate θ when θ is near
of the border of the parametric space.

Based on Example 2.3, it is easy to implement the same procedure for k ≥
2 populations. We remark that the covariate xi can be continuous or discrete
quantities.

2.3.1. Small simulation study. In this section we conduct a small simulation study
to verify the results of this paper. We consider the two-populations model as
defined in the previous section and we generate 10 000 Monte Carlo samples to
study the behaviour of the maximum likelihood estimates and the Wald statistic
for moderate sample sizes.

The simulation was done considering the following configuration: n = 20, 30,
50, 150, 500, θ = 9−1, 1, 9, β0 = log(3) and β1 = 0. This parameter values imply
that q = 1.09, 1.33, 1.47 (when θ = 9, 1, 9−1, respectively) and µz = µw = 3. Then,
for each combination (n, θ, β0, β1) we generate N = 10 000 Monte Carlo samples
and for each sample and parameter setting, we compute the MLEs (γ̂1, . . . , γ̂N)
and the p-value associated with the hypothesis H0 : β1 = 0. For each parameter
setup we compute the median of the maximum likelihood estimates. Since for
small samples the distribution of the MLEs may be very asymmetric or bimodal,
the median is a good measure of the location of the true distribution of the ML
estimates. Here, we present the MLE for q instead of θ. We remark that when
θ = 9−1 and θ = 1 the data contains discrepant observations.

The p-value is computed as P (χ2(1) > ξ2j ) = p-valuej , for j = 1, . . . , N ,

where ξ2j is the statistic (2.10) computed for the jth Monte Carlo sample. If the
Wald and LR statistics are chisquared distributed, the distributions of the respec-
tive p-values under the null hypothesis must be close to the uniform distribution
on (0, 1). From the theory, we known that it happens when n → ∞, but for fi-
nite sample sizes, the Wald and LR statistics may behave very different from the
chisquare distribution.

Tables 1 and 2 present the median of the maximum likelihood estimates
for each setup. As can be seen, the median values are closer to the true values.
Moreover, the larger the sample size, the closer to the true values are the median
values. Table 3 depicts the rejection rates under the null hypothesis considering a
nominal level of 5%. As expected, all empirical values are around 5%.
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Table 1. Median of the maximum likelihood estimators based on
a 10 000 Monte Carlo samples when n = 20, 30, 50. The empirial
standard errors are in paranteses.

n
20 30 50

q = 1.47 1.4169 (0.16) 1.4392 (0.12) 1.4532 (0.08)
β0 0.2936 (2.48) 0.4871 (2.34) 0.6684 (2.16)
β1 0.0048 (0.76) -0.0108 (0.62) -0.0030 (0.47)
q = 1.33 1.2320 (0.17) 1.2768 (0.15) 1.3018 (0.12)
β0 0.9987 (1.16) 1.0265 (0.87) 1.0501 (0.60)
β1 -0.0148 (0.65) -0.0096 (0.53) 0.0016 (0.41)
q = 1.09 1.0000 (0.11) 1.0000 (0.10) 1.0191 (0.09)
β0 1.0556 (0.39) 1.0705 (0.29) 1.0830 (0.22)
β1 0.0043 (0.51) 0.0092 (0.41) -0.0013 (0.31)

Table 2. Median of the maximum likelihood estimators based
on a 10 000 Monte Carlo samples when n = 100, 150, 500. The
empirial standard errors are in paranteses.

n
50 150 500

q = 1.47 1.4650 (0.05) 1.4677 (0.04) 1.4719 (0.02)
β0 0.8840 (1.90) 0.9288 (1.72) 1.0464 (1.20)
β1 -0.0041 (0.33) -0.0037 (0.27) 0.0049 (0.15)
q = 1.33 1.3191 (0.08) 1.3234 (0.06) 1.3309 (0.03)
β0 1.0786 (0.33) 1.0824 (0.25) 1.0930 (0.13)
β1 -0.0023 (0.28) -0.0019 (0.23) 0.0020 (0.13)
q = 1.09 1.0605 (0.07) 1.0699 (0.06) 1.0858 (0.04)
β0 1.0860 (0.16) 1.0924 (0.13) 1.0969 (0.07)
β1 0.0058 (0.22) 0.0000 (0.18) 0.0004 (0.10)

Figures 1–2, 3–4 and 5–4 present the histogram for q̂, β̂0 and β̂1, respec-
tively. In each Figure there are nine graphs considering different values for (n, q).
As can be seen, when n increases all estimates seem to converge to symmetric
distributions.

Figures 1 and 2 show that the MLE of q = θ+3
θ+2 has a bad performance

when q = 1.09 or 1.47 and the sample size is small (n = 20, 30) and moderate
(n = 50, 100, 150), i.e., the distributions of the estimates are not symmetric and
unimodal. But, when q = 1.33, the MLE q̂ is symmetric and well behaved even
for small values of n. In Figures 3 and 4 we can see that for small values of q
(or large values of θ), the MLE for β0 is symmetric around log(3) for all sample
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Table 3. Rejection rates (at 1%, 5% and 10% of nominal levels)
under the null hypothesis β1 = 0 for the Wald statistic.

Sample size
20 30 50 100 150 500

1%
q = 1.09 0.97 0.95 0.84 0.93 0.83 1.01
q = 1.33 0.96 0.93 0.93 0.89 1.10 0.92
q = 1.47 0.95 0.82 0.85 0.87 1.00 0.97
5%
q = 1.09 4.36 4.45 4.56 4.76 4.96 5.19
q = 1.33 4.27 4.63 4.74 4.53 5.12 5.20
q = 1.47 4.64 4.74 4.64 4.58 4.71 4.74
10%
q = 1.09 8.70 9.28 9.42 9.61 9.59 10.47
q = 1.33 8.99 9.18 9.29 9.35 10.28 10.22
q = 1.47 9.37 9.69 9.60 9.49 9.72 9.75

Table 4. Rejection rates (at 1%, 5% and 10% of nominal levels)
under the null hypothesis β1 = 0 for the LR statistic.

Sample size
20 30 50 100 150 500

1%
q = 1.09 1.69 1.64 1.88 2.27 2.18 2.03
q = 1.33 1.12 0.95 1.01 0.88 1.11 0.95
q = 1.47 0.97 0.84 0.82 0.89 1.05 0.93
5%
q = 1.09 4.69 4.85 5.27 5.48 5.64 5.75
q = 1.33 4.40 4.73 4.78 4.57 5.18 5.23
q = 1.47 4.82 4.80 4.78 4.61 4.68 4.83
10%
q = 1.09 9.18 9.54 9.73 10.14 9.98 10.62
q = 1.33 9.25 9.45 9.38 9.39 10.30 10.29
q = 1.47 9.39 9.91 9.70 9.51 9.75 9.74

sizes. However, when q increases the performance of β̂0 becomes problematic (its
distribution is bimodal for small values of n). Finally, Figures 5 and 6 show that
the MLE for β1 is always symmetric around zero for all chosen values of q and n.
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3. Conclusions and Remarks

In this paper we proposed a q-Exponential regression model. Some sufficient condi-
tions to have normality for the proposed estimators are established. We specialized
our regression model to the issue of modelling two populations and we also pre-
sented a test to verify if the data came from the same population. The simulation
studies showed that the proposed estimators present good behaviour in the sense
of decreasing bias, and symmetric distribution when n increases. The rejection
rates (at 1%, 5% and 10% of nominal levels) of the Wald and LR statistics under
the null hypothesis (β1 = 0) are all close to the adopted nominal levels.

The regression model introduced here can be generalized in some aspects. For
instance, a new model must be studied if the covariates are subject to measurement
errors or if the responses have a particular structure of dependence (longitudinal
studies). Also, to overcome the problem in the estimation of the parameter θ (or
q), one can propose a bayesian methodology.

When q = 1, the q-Exponential distribution becomes the usual exponential
one which is a particular case of the generalized linear models. Hence, the regression
model for q = 1 was intensively studied in the statistical literature, see for instance
the two classical references [27] and [28]. When q → 3/2, the density that emerges
is f(y) = 2κ0(2 + yκ0)

−2, for this case yf(y) is not integrable.

It is noteworthy that, the distribution with support on R that maximizes the
q-entropy is

f(y) = Kq

(
1− α(1 − q)(y − µ)2

) 1
1−q

, (3.1)

where Kq is a normalizing constant, 1 ≤ q < 3 and E(Y ) = µ is the location

parameter usually takes equal to zero. We remark that, taking v = 3−q
q−1 and σ2 =

1
α(3−q) the density (3.1) becomes the well-known Student-t distribution

f(y) = Kv

(
1 +

(y − µ)2

vσ2

)−
v+1
2

,

where Kv is a normalizing constant. The above distribution lies in the elliptical
class of distributions that has been extensively studied in the statistical literature.
In fact, some important references for elliptical regression models in the multivari-
ate context (that are sufficient general to hold many practical applications) are [29],
[30], [31], [32], [33], [34], [35], [36], [37] and more recently [38, 39]. For this reason,
this paper did not consider the distribution (3.1). One can use those very general
results already derived in the statistical literature for modelling E(Yi) = µi(β, xi)
and return to the main parametrization taking q = v+3

v+1 and α = v+1
2σ2v

.
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Appendix A. Second derivatives of the log-likelihood function

The second derivatives are given by

∂2ℓ

∂θ2
=

n∑

i=1

−yi
2 + µi

2θ2 + 2µi
2θ3 − 2θµiyi − 4 θ2µiyi − θyi

2 − 4 θ3µiyi + θ3yi
2

(µiθ + yi)
2
(θ + 1)

2
θ2

,

∂2ℓ

∂β∂θ
= −

n∑

i=1

(2µi − yi) yi

µi (µiθ + yi)
2Di and

∂2ℓ

∂β∂β⊤
=

n∑

i=1

w1iDiD
⊤
i −

n∑

i=1

w2iVi

where Vi = ∂Di/∂β
⊤,

w1i =
1

µ2
i

+
θ + 2

µ2
i

(
y2i

(θµi + yi)
2 − 2

yi
θµi + yi

)
and w2i =

µiθ − θyi − yi
µi (µiθ + yi)

.

In order to find the expected Fisher information, we now must take the
following expectations.

E

(
yi

θµi + yi

)
=

1

θ + 2
, E

(
yi

(θµi + yi)2

)
=

θ + 1

(θ + 2)(θ + 3)θµi

(A.1)

and

E

(
y2i

(θµi + yi)2

)
=

2

(θ + 2)(θ + 3)
. (A.2)

Hence,

E(w1i) = − θ + 1

(θ + 3)µ2
i

and E(w2i) = 0. (A.3)
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Figure 1. Histogram of the 10 000 ML estimates q̂. (a) n = 20
and q = 1.09, (b) n = 20 and q = 1.33, (c) n = 20 and q = 1.47,
(d) n = 30 and q = 1.09, (e) n = 30 and q = 1.33, (f) n = 30 and
q = 1.47, (g) n = 50 and q = 1.09, (h) n = 50 and q = 1.33, (i)
n = 50 and q = 1.47.
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Figure 2. Histogram of the 10 000 ML estimates q̂. (a) n = 100
and q = 1.09, (b) n = 100 and q = 1.33, (c) n = 100 and q = 1.47,
(d) n = 150 and q = 1.09, (e) n = 150 and q = 1.33, (f) n = 150
and q = 1.47, (g) n = 500 and q = 1.09, (h) n = 500 and q = 1.33,
(i) n = 500 and q = 1.47.
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Figure 3. Histogram of the 10 000 ML estimates β̂0. (a) n = 20
and q = 1.09, (b) n = 20 and q = 1.33, (c) n = 20 and q = 1.47,
(d) n = 30 and q = 1.09, (e) n = 30 and q = 1.33, (f) n = 30 and
q = 1.47, (g) n = 50 and q = 1.09, (h) n = 50 and q = 1.33, (i)
n = 50 and q = 1.47.
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Figure 4. Histogram of the 10 000 ML estimates β̂0. (a) n = 100
and q = 1.09, (b) n = 100 and q = 1.33, (c) n = 100 and q = 1.47,
(d) n = 150 and q = 1.09, (e) n = 150 and q = 1.33, (f) n = 150
and q = 1.47, (g) n = 500 and q = 1.09, (h) n = 500 and q = 1.33,
(i) n = 500 and q = 1.47.
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Figure 5. Histogram of the 10 000 ML estimates β̂1. (a) n = 20
and q = 1.09, (b) n = 20 and q = 1.33, (c) n = 20 and q = 1.47,
(d) n = 30 and q = 1.09, (e) n = 30 and q = 1.33, (f) n = 30 and
q = 1.47, (g) n = 50 and q = 1.09, (h) n = 50 and q = 1.33, (i)
n = 50 and q = 1.47.
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Figure 6. Histogram of the 10 000 ML estimates β̂1. (a) n = 100
and q = 1.09, (b) n = 100 and q = 1.33, (c) n = 100 and q = 1.47,
(d) n = 150 and q = 1.09, (e) n = 150 and q = 1.33, (f) n = 150
and q = 1.47, (g) n = 500 and q = 1.09, (h) n = 500 and q = 1.33,
(i) n = 500 and q = 1.47.


