Measurement error models:

jointly works with Prof. Heleno Bolfarine

Alexandre Galvão Patriota

Departamento de Estatística Instituto de Matemática e Estatística Universidade de São Paulo

YoutTube: "A Ciência da Estatística"

Research fields

Master (2005-2006) and Doctoral (2006-2010) degrees:

• Measurement error models under Bolfarine's supervision.

Independent research (after 2010):

- Regression models with general parameterization.
- Foundations of Probability and Statistics.
- Asymptotic theory.

Measurement error models

In this presentation, I discuss 5 works published with Professor Heleno Bolfarine:

- A heteroscedastic structural errors-in-variables model with equation error (2009). Statistical Methodology.
- A heteroscedastic polynomial regression with measurement error in both axes (2008). Sankhya.
- Measurement error models with a general class of error distribution (2010). Statistics.
- A multivariate ultrastructural errors-in-variables model with equation error (2011). JMA.
- Improved maximum likelihood estimators in a heteroskedastic errors-in-variables model (2011). Statistical papers.

Heteroscedastic errors-in-variables: linear model

Heteroscedastic errors-in-variables: linear model

The model was proposed by Kulathinal et al. (2002):

$$y_i = \beta_0 + \beta_1 x_i + q_i$$

$$Y_i = y_i + e_i$$

$$X_i = x_i + u_i$$

The random quantities are distributed as

$$\begin{pmatrix} u_i \\ e_i \\ q_i \\ x_i \end{pmatrix} \stackrel{ind}{\sim} \mathcal{N}_4 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mu_x \end{pmatrix}, \begin{pmatrix} \tau_{ui} & 0 & 0 & 0 \\ 0 & \tau_{e_i} & 0 & 0 \\ 0 & 0 & \sigma^2 & 0 \\ 0 & 0 & 0 & \sigma_x^2 \end{pmatrix} \end{pmatrix},$$

where τ_{ui} and τ_{ei} are known for $i = 1, \ldots, n$.

Results: linear model

This model is applied in

- epidemiology (y=cardiovascular mortality index; x=risk factors index)
- astrophysics (y=density of Black Holes; x=Accretion disk luminosity)

Results:

- we computed the asymptotic variance of the MM and ML estimators.
- we compared Wald test statistics via MC simulations under both approaches.
- **1** we concluded that both methods are robust against the distribution of covariate x_i .

Heteroscedastic errors-in-variables: polynomial model

Heteroscedastic errors-in-variables: polynomial model

The model is given by (Zavala et al., 2007, with no equation error):

$$y_i = \beta_0 + \beta_1 x_i + \ldots + \beta_p x_i^p + q_i$$

 $Y_i = y_i + e_i$
 $X_i = x_i + u_i$

where x_i , i = 1, ..., n, are incidental parameters. The random quantities are distributed as

$$\begin{pmatrix} u_i \\ e_i \\ q_i \end{pmatrix} \stackrel{ind}{\sim} \mathcal{N}_3 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{ui} & 0 & 0 \\ 0 & \tau_{e_i} & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} \end{pmatrix},$$

where τ_{ui} and τ_{ei} are known for $i=1,\ldots,n$.

Results: polynomial model

This model is also applied in

- epidemiology (y=cardiovascular mortality index; x=risk factors index)
- astrophysics (y=density of Black Holes; x=Accretion disk luminosity)

Results:

- we computed the consistent estimators based on the corrected score approach.
- we study Wald test statistics via MC simulations.
- we apply the methods to a epidemiology (Kulathinal) data and astrophysics data (quadratic and cubic regressions).

Errors-in-variables with a general class of error distribution

Errors-in-variables: general class of error distributions

Let $(Y_i, \boldsymbol{W}_i, \boldsymbol{X}_i)$ be observable vector related by

$$\begin{array}{rcl} Y_i & = & \boldsymbol{\beta}^\top \, \boldsymbol{W}_i + \boldsymbol{\gamma}^\top \boldsymbol{x}_i + e_i, \\ \boldsymbol{X}_i | \boldsymbol{x}_i & \stackrel{ind}{\sim} & F_{\boldsymbol{X}_i | \boldsymbol{x}_i} \in \mathcal{C}(\boldsymbol{x}_i, g_1, g_2), \end{array}$$

where x_i , $i=1,\ldots,n$, are incidental parameters and the functions $g_1(.)$ and $g_2(.)$ are known and must satisfy the following two conditions

$$E[g_1(oldsymbol{X}_i)|oldsymbol{x}_i] = oldsymbol{x}_i \ ext{ and } \ E[g_2(oldsymbol{X}_i)|oldsymbol{x}_i] = oldsymbol{x}_ioldsymbol{x}_i^ op$$

Remarks

Application: sleep study, where y = systolic blood pressure; x = apnea-hypopnea index, W = body mass index.

- We use the corrected score method proposed by Nakamura (1990) to conduct inferences about the parameters β , γ and σ^2 .
- It is not necessary to know the shape of $F_{X_i|x_i}$,
- ullet It is only required to know the shape of g_1 and g_2 to employ this methodology.

Next we present same examples of g_1 and g_2 .

12 / 23

Particular cases

Normal distribution

Assume that $X_i|x_i \sim \mathsf{N}(x_i,\phi)$, where $\phi>0$ is known. Then,

- $E(X_i|x_i) = x_i$ and $E(X_i^2|x_i) = \phi + x_i^2$
- $g_1(X_i) = X_i$ and $g_2(X_i) = X_i^2 \phi$.

This structure is the same as the one attained from: $X_i = x_i + u_i$, where $u_i \sim N(0, \phi)$.

Notice that any distribution $F_{X_i|x_i}$ that yields the same g_1 and g_2 as above is such that $F_{X_i|x_i} \in \mathcal{C}(x_i, g_1, g_2)$.

Poisson distribution

Assume that $X_i|x_i \sim \mathsf{Poisson}(x_i)$. Then,

- $E(X_i|x_i) = x_i$ and $E(X_i^2 X_i|x_i) = x_i^2$ $Var(X_i|x_i) = x_i$
- $g_1(X_i) = X_i$ and $g_2(X_i) = X_i^2 X_i$.

Notice that any distribution $F_{X_i|x_i}$ such that

$$E(X_i|x_i) = Var(X_i|x_i) = x_i$$

produces the same g_1 and g_2 as above is such that $F_{X_i|x_i} \in \mathcal{C}(x_i, g_1, g_2)$.

Multiplicative normal model or Gamma distribution

Assume $X_i|x_i \sim \mathcal{N}(x_i, x_i^2 \phi)$, with $\phi > 0$ known, then

- $E(X_i|x_i) = x_i$ and $E(X_i^2|x_i) = (\phi + 1)x_i^2$
- $g_1(X_i) = X_i$ and $g_2(X_i) = X_i^2/(\phi + 1)$.

It is the multiplicative model: $X_i = x_i u_i$, where $u_i \sim N(1, \phi)$.

Notice that $X_i|x_i\sim {\sf Gamma}(x_i,\phi)$, where $E(X_i|x_i)=x_i$ and $Var(X_i|x_i)=x_i^2\phi$ also yields the same functions above. This gamma distribution is a reparameterization of the usual version.

That is, $\mathcal{N}(x_i, x_i^2 \phi)$, $\mathsf{Gamma}(x_i, \phi) \in \mathcal{C}(x_i, g_1, g_2)$

A multivariate ultrastructural errors-in-variables

A multivariate ultrastructural errors-in-variables

Let $(\boldsymbol{Y}_i, \boldsymbol{X}_i)$ random vectors related by

$$egin{array}{lll} m{y}_i &=& m{a} + m{B} m{x}_i + m{q}_i, \ m{Y}_i &=& m{y}_i + m{e}_i, \ m{X}_i &=& m{x}_i + m{u}_i, \end{array}$$

The errors q_i , e_i and u_i are simetrically distributed around zero.

$$egin{pmatrix} egin{pmatrix} oldsymbol{x}_i \ oldsymbol{q}_i \ oldsymbol{e}_i \ oldsymbol{u}_i \end{pmatrix} \sim egin{pmatrix} oldsymbol{\xi}_i \ oldsymbol{0} \ oldsymbol{0} \ oldsymbol{0} \end{pmatrix}, egin{pmatrix} egin{pmatrix$$

where ξ_i , i = 1, ..., n, are incidental parameters.

Some theoretical results

We consider that Σ_e and Σ_u are known matrices.

Results:

- $oldsymbol{0}$ we established some regular conditions to attain consistent estimators for a and B.
- ② we computed the asymptotic normality of the proposed estimators of a and B.
- we specialized the results to the eliptical class of distributions and univariate regressions
- we showed that previous results (Cheng and Van Ness, 1991, Arellano-Valle et al, 1996) are particular instances of ours.

Improved maximum likelihood estimators

The model is given by

$$egin{aligned} oldsymbol{y}_i &= oldsymbol{eta}_0 + oldsymbol{eta}_1 oldsymbol{x}_i + oldsymbol{q}_i \ oldsymbol{Y}_i &= oldsymbol{y}_i + oldsymbol{\eta}_{oldsymbol{y}_i} \ oldsymbol{X}_i &= oldsymbol{x}_i + oldsymbol{\eta}_{oldsymbol{x}_i} \end{aligned}$$

where the errors are normally distributed as

$$egin{pmatrix} egin{pmatrix} oldsymbol{\eta_{y_i}} \ oldsymbol{\eta_{x_i}} \end{pmatrix} \overset{ind}{\sim} \mathcal{N}_{v+m} \begin{bmatrix} egin{pmatrix} 0 \ 0 \end{bmatrix}, egin{pmatrix} oldsymbol{ au_{y_i}} & 0 \ 0 & oldsymbol{ au_{x_i}} \end{pmatrix} \end{bmatrix},$$

The variances matrices τ_{x_i} and τ_{x_i} are assumed to be known.

Results:

- We computed the second order biases of the MLE,
- We proposed bias-corrected estimators ,
- We conducted MC simulations to verify if the corrected estimators have smaller biases.

References:

- Patriota, AG; BOLFARINE, H. A heteroscedastic polynomial regression with measurement error in both axes. Sankhya. Series B, 70, 267-282, 2008.
- Patriota, AG; BOLFARINE, H.; de Castro, M. A heteroscedastic structural errors-in-variables model with equation error. Statistical Methodology, 6, 408–423, 2009.
- Patriota, AG; BOLFARINE, H. Measurement error models with a general class of error distribution. Statistics, 44, 119–127, 2010.
- Patriota, AG; Lemonte, AJ; BOLFARINE, H. Improved maximum likelihood estimators in a heteroskedastic errors-in-variables model. Statistical Papers, 52, 455–467, 2011.
- Patriota, AG; **BOLFARINE**, H; Arellano-Valle, RB. A multivariate ultrastructural errors-in-variables model with equation error. Journal of Multivariate Analysis, 102, 386–392, 2011.

Thank You