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Abstract

It is not uncommon with astrophysical and epidemiological data sets that the

variances of the observations are accessible from an analytical treatment of

the data collection process. Moreover, in a regression model, heteroscedastic

measurement errors and equation errors are common situations when modelling

such data. This article deals with the limiting distribution of the maximum

likelihood and method-of-moments estimators for the line parameters of the

regression model. We use the delta method to achieve it, making it possible to

build joint confidence regions and hypothesis testing. This technique produces

closed expressions for the asymptotic covariance matrix of those estimators. In

the moment approach we do not assign any distribution for the unobservable

covariate while with the maximum likelihood approach, we assume a normal

distribution. We also conduct simulation studies of rejections rates for Wald-

type statistics in order to verify the test size and power. Practical applications

are reported for a data set produced by the Chandra observatory and also from

the WHO MONICA Project on cardiovascular disease.
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1. Introduction

Heteroscedastic structural errors-in-variables models have been applied in

astrophysics (Akritas and Bershady, 1996; Kelly, 2007; Kelly et al., 2008), epi-

demiology (Kulathinal et al., 2002; de Castro et al., 2008) and analytical chem-

istry (Cheng and Riu, 2006) to avoid bias in parameter estimation. It is essential

to avoid this type of bias for interpretation of the results and hypothesis testing

(for more details see Fuller, 1987, and references therein). The most commonly

used method in astronomy is, perhaps, the BCES estimator (for bivariate cor-

related errors and intrinsic scatter) proposed by Akritas and Bershady (1996).

The term intrinsic scatter refers to the equation error in astronomy terminology.

They were the first to consider a heteroscedastic structural model without con-

sidering any distribution for the random quantities of the model. The authors

focussed on the method-of-moments and the large sample theory to estimate

the model parameters and their asymptotic covariance matrix. Recently, Ku-

lathinal et al. (2002) studied the same model supposing normal distributions for

the model random quantities and proposed an EM (Expectation and Maximiza-

tion) algorithm to find the maximum likelihood (ML) estimates for the model

parameters in the presence of measurement errors, heteroscedasticity and equa-

tion error (with independent errors). In the same paper, the authors suggested

a way to derive only the asymptotic variance of the slope estimator. The model

considered in Kulathinal et al. (2002), which is assumed throughout this paper,

is given by

Yi = yi + ηyi,

Xi = xi + ηxi,
(1.1)

with yi|xi ind∼ N (β0 + β1xi;σ
2) (where “

ind∼ ” means “independently distributed

as”), i.e., the model (1.1) has an equation error and σ2 is the equation error

variance. This equation error is justified by the influence of other factors than

xi on the variation in yi (Cheng and Riu, 2006). The errors, ηyi and ηxi in (1.1)

2



are independent of xi and yi and are distributed as

 ηyi

ηxi


 ind∼ N2




 0

0


 ;


 τyi 0

0 τxi




 ,

where the variances τyi and τxi are known for all i = 1, . . . , n. Supposing in

addition that xi
iid∼ N (µx, σ

2
x), where “

iid∼” means “independent and identically

distributed as”, we have that the joint distribution of the observed variables can

be expressed as

(
Yi
Xi

)
ind∼ N2



(
β0 + β1µx

µx

)
;


 β2

1σ
2
x + τyi + σ2 β1σ

2
x

β1σ
2
x σ2

x + τxi




 . (1.2)

On one hand, Kulathinal et al. (2002) proposed an EM algorithm to obtain

maximum likelihood estimates for β0, β1, µx, σ
2 and σ2

x. On the other hand, we

can also resort to the method of moments (MM). As can be seen in Section 2,

it is not necessary to assign any distribution for xi in order to obtain the MM

estimators for the location parameters and their limiting covariance matrix. It

is sufficient to assume the existence of some moments for xi to achieve such

results.

The likelihood function associated with (1.2) is very complicated to deal with

in the sense of finding its global maximum. An iterative procedure is needed

(Kulathinal et al., 2002). Problems regarding iterative procedures for obtaining

the ML estimates, mainly for small sample sizes and flat or not concave like-

lihood functions are well known. Sometimes the algorithm does not converge

or a relative maximum is found instead of the global one. Although the ML

estimators have the best asymptotic (large samples) covariance matrix, good al-

ternatives may be found in small sample situations. The moment estimators can

be used as an alternative approach and, in addition, its asymptotic properties

hold in more general cases (when xi has a non-normal distribution). Further-

more, it is possible to compute the moment estimators and their asymptotic

covariance matrix using a simple calculator.

Considering the same model (1.1), Cheng and Riu (2006) derived an approx-

imation for the asymptotic covariance matrix of the moment estimators based
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on estimating equations. Nevertheless, the solutions from the estimating equa-

tions are slightly different from the moment estimators proposed in this paper.

The sample variance is defined with n in its denominator while we consider it to

be n−1. However, the estimators are close for large sample sizes. The observed

Fisher information of the parameters in model (1.2) is computed in de Castro et

al. (2008). These authors also perform hypothesis testing using the likelihood

ratio, score, Wald and C(α) statistics.

As can be seen in the simulation studies of this paper, it is important to

have the limiting covariance matrix to improve the accuracy of the statistical

inferences for the regression parameters. We conduct simulation studies due to

the lack of general theoretical results regarding their performance in small and

moderate sample sizes.

We use the delta method to find the limiting covariance matrix of the ML

and MM estimators. Although Cheng and Riu (2006) gave a general way to

estimate the asymptotic covariance matrix of the MM estimators without spec-

ifying the errors’ distributions, under normality large samples are required to

have reliable hypothesis testing. This is a somewhat expected behavior because

their approach is more general and the normal case is just a particular case.

Hence, when normality is verified for the model errors, we advise to use the lim-

iting covariance matrices for the MM and ML approaches derived in this paper;

in addition they lead to closed form expressions. When it comes to comparing

the rejection rates under the null hypothesis, the MM approach with the limit-

ing covariance matrix seems to be better (for small and moderate sample sizes),

the ML approach appears to be in the middle and Cheng and Riu’s approach

seems to be the one with worst performance. We borrow the data sets analyzed

in Kulathinal et al. (2002) in order to compare the results in our paper with the

others and we also apply the model and methods in two astrophysical data sets

obtained by the Chandra X-ray observatory.

Basically, the main goal of this paper is to refine the asymptotic distribution

of the estimation approaches by finding the exact asymptotic covariance matrix

of the estimators. It is important to emphasize that joint confidence regions
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were not studied before for the model considered in Kulathinal et al. (2002).

This paper is organized as follows. In Section 2 we derived the exact ex-

pression for the asymptotic covariance matrix of the MM estimators using the

delta method. We must remark that the computation of this asymptotic covari-

ance matrix does not depend on the distribution of xi. Such limiting covariance

seems not available in the literature. Hence, precise joint hypothesis testing and

joint confidence regions can be defined. In Section 3, a closed form expression is

obtained for the asymptotic covariance matrix of the ML estimators of (β0, β1),

using the delta method and the invariance property of the maximum likelihood

estimators. Results of simulation studies are reported in Section 4. Applica-

tions to the WHO MONICA project and to the Chandra observatory data are

considered in Section 5 and we end the paper with conclusions and remarks in

Section 6.

2. Moments approach

Moment estimators for the heteroscedastic structural linear errors-in-variables

model with equation error are presented in Kulathinal et al. (2002). It is shown

that the estimators have explicit solution and can be easily computed. Cheng

and Riu (2006) proposed a general estimating function that generates the mo-

ment estimators by its minimization and, based onM -estimation theory (Huber,

1964), they suggested an estimate for the asymptotic covariance matrix of those

estimators. Therefore, it is possible to use the estimated covariance matrix de-

rived in their paper for testing hypotheses concerning the vector (β0, β1) using

Wald-type statistics. However, under normality of the errors, the estimated

covariance matrix proposed by Cheng and Riu (2006) seems to be not very ac-

curate, as we can see in our simulation study (Section 4). In this section we

find the asymptotic distribution of the MM estimator of (β0, β1) using the delta

method and considering a normal distribution for the measurement errors. Al-

though we do not assume any distribution for the covariate xi, it is possible

to find the asymptotic covariance matrix of the estimators of the regression

parameters. First of all, to derive the main results of this section, we have
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to define the central moments of the distribution of xi. Let IE(xi) = µx and

IE[(xi − µx)
r] = νr in such a way that |µx|, |νk| < ∞ for all k = 2, 3, 4, that

is, we are supposing that the first four moments of xi do exist. We regard xi,

ηxi and ηyi as mutually not correlated. Thereafter we must assume that the

following assumptions hold:

lim
n→∞

n∑

i=1

τyi
n

= τy∗ , lim
n→∞

n∑

i=1

τxi
n

= τx∗,

lim
n→∞

n∑

i=1

τxiτyi
n

= τxy∗, lim
n→∞

n∑

i=1

τ2yi
n

= τy∗∗ and lim
n→∞

n∑

i=1

τ2xi
n

= τx∗∗.

(2.1)

These conditions are needed to guarantee convergence of the estimators and the

existence of their limiting covariance matrix. To compute the MM estimators

we must define the quantities

Ȳ =
n∑

i=1

Yi
n
, X̄ =

n∑

i=1

Xi

n
, MY =

n∑

i=1

(Yi − Ȳ )2

n− 1
,

MX =

n∑

i=1

(Xi − X̄)2

n− 1
and MXY =

n∑

i=1

(Xi − X̄)Yi
n− 1

.

Thus, it can be shown that Ȳ , X̄ ,MY , MX andMXY converge in probability to

β0+β1µx, µx, β
2
1ν2+σ

2+τy∗, ν2+τx∗ and β1ν2, respectively. The MM estimators

are obtained by equating sample and population moments and solving with

respect to the unknown parameters. As a result, they are given by

β̂0ME
= Ȳ − MXY

MX − τ̄x
X̄, β̂1ME

=
MXY

MX − τ̄x
, µ̂xME

= X̄,

ν̂2ME
=MX − τ̄x and σ̂2

ME
=MY − M2

XY

MX − τ̄x
− τ̄y,

(2.2)

where τ̄x =
∑n

i=1 τxi/n and τ̄y =
∑n

i=1 τyi/n. It is easy to check that the

estimators (2.2) are consistent. There are some restrictions that need to hold;

namely,MX > τ̄x andMY > M2
XY /(MX− τ̄x)+ τ̄y to avoid inadmissible results.

As shown in Cheng and Riu (2006), there is another way to attain the

moment estimators for β0 and β1. They can be viewed as “modified” least

squares estimators, as described in Cheng and Van Ness (1999, Chap. 3), and
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may be obtained by minimizing the function

Q(β) =

n∑

i=1

{(Yi − β0 − β1Xi)
2 − τyi − β2

1τxi},

leading to the following estimating equations:

∂Q(β)

∂β0
=

n∑

i=1

Φ0i(β) = 0,
∂Q(β)

∂β1
=

n∑

i=1

Φ1i(β) = 0, (2.3)

where

Φi(β) =

(
Φ0i(β)

Φ1i(β)

)
=

(
Yi − β0 − β1Xi

(Yi − β0 − β1Xi)Xi + β1τxi

)

with β = (β0, β1)
⊤. Then, solving the equations (2.3) the MM estimators (2.2)

are obtained with a little change. The quantitiesMX ,MY andMXY are divided

by n instead of n− 1 as we have mentioned before.

As the MM estimators (2.2) present explicit solutions, we can use the delta

method (Lehmann and Casella, 1998) for studying their asymptotic proper-

ties. That is, it is possible to show that, under some regularity conditions,

when
√
n(w − δ)

D−→ N (0;Π), then
√
n(g(w) − g(δ))

D−→ N (0;P ), where

“
D−→” means convergence in distribution, g(·) is a continuous function, P =

g′(δ)Πg′(δ)⊤ and g′(δ) = ∂g(δ)
∂δ⊤ 6= 0.

Hence, we have, initially, to find the asymptotic distribution of the vec-

tor (Ȳ , X̄,MX ,MXY ) in order to derive the asymptotic covariance matrix of

(β̂0ME
, β̂1ME

). One can check that the asymptotic distribution of (Ȳ , X̄,MX −
τ̄x,MXY ) is such that

√
n




Ȳ − β0 − β1µx

X̄ − µx

MX − τ̄x − ν2

MXY − β1ν2




D−→ N4(0;L), (2.4)

where

L =




β2
1ν2 + σ2 + τy∗ β1ν2 β1ν3 β2

1ν3

· ν2 + τx∗ ν3 β1ν3

· · L33 L34

· · · L44



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with L33 = 2τx∗∗ + 4ν2τx∗ + ν4 − ν22 , L34 = β1ν4 + 2β1ν2τx∗ − β1ν
2
2 and

L44 = β2
1ν4 + β2

1τx∗ν2 + τy∗ν2 + τxy∗ + σ2ν2 + τx∗σ
2 − β2

1ν
2
2 . In order to obtain

the elements of L, one can rewrite the observed variables as

Yi − µy = β1(xi − µx) + ηyi + qi and

Xi − µx = (xi − µx) + ηxi,
(2.5)

where µy = β0 + β1µx and qi
iid∼ N (0, σ2). Thus, as xi, ηyi, qi and ηxi are

mutually uncorrelated, the element Lij can be computed using the equations in

(2.5).

The function g(·) which gives β̂
ME

= (β̂0ME
, β̂1ME

)⊤ from (Ȳ , X̄,MX −
τ̄x,MXY ) can be written as

β̂
ME

= g(Ȳ , X̄,MX − τ̄x,MXY ) =




Ȳ − MXY

MX − τ̄x
X̄

MXY

MX − τ̄x




and, defining w = (w1, w2, w3, w4)
⊤ and δ = (β0 + β1µx, µx, ν2, β1ν2)

⊤, its

derivative is given by

g′(δ) =
∂g(w)

∂w⊤

∣∣∣∣
w=δ

=




1 −β1
β1µx

ν2
−µx

ν2

0 0 −β1
ν2

1

ν2



.

Then, using the delta method we have that
√
n(β̂

ME
− β)

D−→ N2(02;Ψ(θ)),

where θ = (β0, β1, µx, ν2, σ
2)⊤ and

Ψ(θ) = g′(δ)Lg′(δ)⊤ =


 ψ11 ψ12

ψ12 ψ22


 .

After somewhat tedious algebra we arrive at

ψ11 =
ν22(β

2
1τx∗ + σ2 + τy∗) + 2β2

1µ
2
x(τx∗∗ − ν22) + µ2

xπ

ν22
,

ψ12 = −2β2
1µx(τx∗∗ − ν22 ) + µxπ

ν22
and ψ22 =

2β2
1(τx∗∗ − ν22 ) + π

ν22
,
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where π = β2
1ν2τx∗ + σ2ν2 + τxy∗ + σ2τx∗ + ν2τy∗ + 2β2

1ν
2
2 . Note that, these

expressions do not depend on ν3 and ν4, since they cancel out. For this reason,

the asymptotic distribution of β̂
ME

is robust against the distribution of xi. This

asymptotic covariance matrix is still valid when σ2 = 0. If β0 = 0, we can use

the moment estimator for β1 and its respective asymptotic variance to infer

values about β1. Furthermore, if the covariate is not subject to measurement

errors, one can simply take τx∗ = τx∗∗ = τxy∗ = τxi = 0 for all i = 1, . . . , n in

the estimators and in the covariance matrix above.

The matrix Ψ(θ) may be estimated using the MM estimators (2.2). More-

over, τx∗, τy∗, τx∗∗ and τxy∗ must be replaced with τ̄x, τ̄y,
∑n

i=1 τ
2
xi/n and

∑n
i=1 τxiτyi/n, respectively. Therefore, letting Ψ̂(θ̂

ME
) be the estimated asymp-

totic covariance matrix, for testing H0 : Gβ = d we can use the Wald-type

statistic

ξ
ME1

= n
(
Gβ̂

ME
− d

)⊤ [
GΨ̂(θ̂

ME
)G⊤

]−1 (
Gβ̂

ME
− d

)
, (2.6)

which converges in distribution, under H0, to χ
2(s), where s = rank(G).

On the other hand, the Wald-type statistic built using the covariance matrix

that follows from the “adjusted” least squares estimating equations (2.3), see

Cheng and Riu (2006), can be written as

ξ
ME2

= n
(
Gβ̂

ME∗
− d

)⊤ [
GA−1

n BnA
−1
n G⊤

]−1
(
Gβ̂

ME∗
− d

)
, (2.7)

where β̂
ME∗

is the moment estimator for β using Cheng and Riu’s approach,

An =
1

n

n∑

i=1

∂

∂β
Φi(β) =

1

n


 −n −∑n

i=1Xi

−∑n
i=1Xi

∑n
i=1(−X2

i + τxi)




and

Bn =
1

n

n∑

i=1

Φi(β̂ME∗
)Φi(β̂ME∗

)⊤ =
1

n


 b̂00 b̂01

b̂01 b̂11




with b00 =
∑n

i=1(Yi − β0 − β1Xi)
2, b01 =

∑n
i=1(Yi − β0 − β1Xi)[(Yi − β0 −

β1Xi)Xi + β1τxi] and b11 =
∑n

i=1 [(Yi − β0 − β1Xi)Xi + β1τxi]
2. The distribu-

tions of the Wald statistics (2.6) and (2.7) differ for finite samples but, under

normality of the model errors, they are asymptotically equivalent.
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3. Maximum likelihood approach

Under suitable regularity conditions, the ML approach generates efficient

estimators, that is, the asymptotic covariance matrix attains the inverse of the

Fisher information matrix (information matrix in short) and the bias of the ML

estimates converges to zero when the sample size increases. Kulathinal et al.

(2002) presents the EM algorithm to find the maximum likelihood estimators.

In this paper we use the same notation as in Kulathinal et al. (2002). Thus, as

part of their algorithm, they considered the following bivariate normal model

for the unobservable variables (xi, yi):

(
xi
yi

)
iid∼ N2



(
µ1

µ2

)
;


 σ11 ρ

√
σ11σ22

· σ22




 ,

where µ1 = µx, µ2 = β0 + β1µx, σ22 = β2
1σ

2
x + σ2, σ11 = σ2

x and ρ =

β1σ
2
x/

√
σ11σ22. Then, based on the EM algorithm, it is possible to maximize

the log-likelihood of θ∗ = (µ1, µ2, σ11, σ22, ρ)
⊤ associated with the observed

variables (Xi, Yi) and, using the invariance property of the ML estimators, one

can estimate the parameters of interest (β0, β1, µx, σ
2
x, σ

2). Note that, if β0 = 0

the ML estimators of β1, µx, σ
2
x and σ2 can not be found using this tech-

nique. Notice also that, if the estimate of σ22 − σ2
12/σ11 < 0 the estimator for

(β0, β1, µx, σ
2
x, σ

2) attained using the approach in Kulathinal et al. (2002) is not

the ML estimator (σ2 can not take negative values). We recall that it is not the

purpose of this paper to find the ML estimators since they are clearly stated in

Kulathinal et al. (2002) using the EM algorithm.

Let Zi = (Xi, Yi)
⊤ and µ = (µ1, µ2)

⊤, then the log-likelihood of θ∗ associ-

ated with the observed vector Zi is given by

ℓ(θ∗) ∝ −1

2

n∑

i=1

log |Si| −
1

2

n∑

i=1

(Zi − µ)⊤S−1
i (Zi − µ), (3.1)

where

Si =


 σ11 + τxi ρ

√
σ11σ22

· σ22 + τyi


 , i = 1, . . . , n.
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The expected information matrix of (σ11, σ22, ρ) was also derived by Ku-

lathinal et al. (2002), which is given by

I(σ11, σ22, ρ) =
n∑

i=1

JiIiJ
⊤

i

where

Ii =




2− ρ2i
4(1− ρ2i )(σ11 + τxi)2

−ρ2i
4(1− ρ2i )(σ11 + τxi)(σ22 + τyi)

−ρi
2(1− ρ2i )(σ11 + τxi)

· 2− ρ2i
4(1− ρ2i )(σ22 + τyi)2

−ρi
2(1− ρ2i )(σ22 + τyi)

· · 1 + ρ2i
(1− ρ2i )

2



,

Ji =




1 0
ρiτxi

2σ11(σ11 + τxi)

0 1
ρiτyi

2σ22(σ22 + τyi)

0 0
ρi
ρ




and ρi =
ρ
√
σ11σ22√

(σ11 + τxi)(σ22 + τyi)
.

The matrix Ji is derived in Kulathinal et al. (2002) and it is slightly incorrect

in its elements (1, 3) and (2, 3) (de Castro et al., 2008), the correct one being

presented here.

To obtain the asymptotic variance of the ML estimator of β1, Kulathinal et

al. (2002) suggested using the Jacobian of the transformation from (σ11, σ22, ρ)

to β1. In this section, the main result is to find the asymptotic covariance matrix

for the ML estimator of (β0, β1) using the delta method.

Therefore, differentiating twice (3.1) with respect to θ∗, computing its ex-

pectation and noting that

IE

(
∂2ℓ(θ∗)

∂µ∂(σ11, σ22, ρ)

)
= IE

(
∂2ℓ(θ∗)

∂(σ11, σ22, ρ)⊤∂µ⊤

)⊤

= 02×3,

we have the expected information matrix of θ∗ which is given by

In(θ
∗) =

n∑

i=1


 S−1

i 02×3

03×2 JiIiJ
⊤

i


 .

Let µ̂1, µ̂2, σ̂11, σ̂22 and ρ̂ be the ML estimators of µ1, µ2, σ11, σ22 and

ρ, respectively. ML estimators have asymptotically normal distribution (which
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is a property of the ML estimators in the structural version since regularity

conditions are satisfied). Then, by the invariance property (and assuming that

σ̂22 − σ̂2
12/σ̂11 > 0), the ML estimator of (β0, β1), β̂

ML
= (β̂0ML

, β̂1ML
)⊤, is

given by

β̂
ML

= h(θ̂∗) =




µ̂2 − ρ̂

√
σ̂22
σ̂11

µ̂1

ρ̂

√
σ̂22
σ̂11




and differentiating h with respect to each of its elements, we have that

h′(θ∗) =
∂h(x)

∂x⊤

∣∣∣∣
x=θ∗

=




−ρ
√
σ22
σ11

1
ρµ1

√
σ22

2σ
3/2
11

− ρµ1

2
√
σ11σ22

−µ1

√
σ22
σ11

0 0 −ρ
√
σ22

2σ
3/2
11

ρ

2
√
σ11σ22

√
σ22
σ11



.

Hence,
√
n
(
β̂

ML
− β

)
D−→ N2

(
02;h

′(θ∗)Γ−1(θ∗)h′(θ∗)⊤
)

where

Γ(θ∗) = lim
n→∞

1

n
In(θ

∗).

It is very complicated to state conditions for the existence of Γ(θ∗). These

conditions involve functions which depend on the known variances τxi and τyi.

For simplicity we consider that Γ(θ∗) exists (i.e., each element is strictly less

than infinity) and that it is positive definite. Hence, we are able to build a

Wald-type statistic for testing H0 : Gβ = d, which is given by

ξ
ML

= n
(
Gβ̂

ML
− d

)⊤ [
Gh′(θ̂∗)Γ̂−1(θ̂∗)h′(θ̂∗)⊤G⊤

]−1 (
Gβ̂

ML
− d

)
, (3.2)

where Γ̂(θ̂∗) =
1

n
In(θ̂∗).

The three Wald-type statistics (2.6), (2.7) and (3.2) have the same asymp-

totic distribution. Hence, confidence regions for β = (β0, β1)
⊤ can be built from

these Wald-type statistics. They are given, respectively, by

n
(
β̂

ME
− β

)⊤

Ψ̂−1(θ̂
ME

)
(
β̂

ME
− β

)
≤ χ2

2,γ , (3.3)
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n
(
β̂

ME
− β

)⊤

AnB
−1
n An

(
β̂

ME
− β

)
≤ χ2

2,γ (3.4)

and

n
(
β̂

ML
− β

)⊤ [
h′(θ̂∗)Γ̂−1(θ̂∗)h′(θ̂∗)⊤

]−1 (
β̂

ML
− β

)
≤ χ2

2,γ , (3.5)

where χ2
2,γ denotes the γ-th quantile of the χ2

2 distribution, 0 < γ < 1. More-

over, ellipses can be plotted from (3.3)-(3.5).

4. Simulation study

In this section simulation studies are conducted for examining the behavior

of the distributions of the Wald-type statistics (2.6), (2.7) and (3.2) for small

and moderate sample sizes. In view of this, we planned Monte Carlo simulations

to evaluate the empirical test sizes and the powers of the statistics at the 5%

nominal level. The simulation setting is as follows:

σ2 = 10,
√
τxi

iid∼ U(0.5, 1.5) and
√
τyi

iid∼ U(0.5, 4), (4.1)

where U(a, b) means uniform distribution on [a, b]. The setting (4.1) was selected

in order to simulate observations similar to the real data sets from the WHO

MONICA project. The empirical test size and the power are computed as

follows. We consider a finite grid in the neighborhood of (β0, β1) = (0, 1);

namely, (−2, 0.4), (0, 0.4), (2, 0.4), (−2, 1), (0, 1), (2, 1), (−2, 1.6), (0, 1.6) and

(2, 1.6). We take the sample sizes n = 40, 80 and 160. The moment estimators

are used as initial values for starting the EM algorithm. The null hypothesis

was H0 : (β0, β1) = (0, 1) in Tables 2–4 and H0 : β1 = 0 in Tables 5–7 (under

the latter hypothesis we consider the following values for β1: −0.50, −0.25,

0.00, 0.25 and 0.50). For each triplet (β0, β1, n) we generate 10 000 Monte

Carlo simulations and utilize the Wald-type statistics (2.6), (2.7) and (3.2) for

testing if there exists evidence against the null hypothesis at the 5% (nominal)

significance level. Under the null hypothesis, we expect to reject only 5% of

the time. The variances τxi and τyi are generated for each sample size but kept

fixed in all Monte Carlo simulations for each sample size.
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We also study the rejection rates by using erroneously a naive model which

does not consider the measurement errors in the covariate. We use the Wald

statistic MM 1 taking τx∗ = τx∗∗ = τxy∗ = τxi = 0 for i = 1, 2, . . . , n and

denote this procedure as the naive approach and the Wald statistic using this

procedure as NA (weighted least squares method). Table 1.a presents the test

sizes of the hypothesis H0 : (β0, β1) = (0, 1) for the normal, half normal and

Student t cases when the sample sizes are 40, 80 and 160 using the NA. Note

that, as expected, the empirical test sizes depicted in Table 1.a are far away

from the expected 5% nominal level. Other parameter settings were taken, but

they have the same behavior (if we maintain the variances of the measurement

errors with the same magnitude as previously defined). However, when we are

testing hypothesis specifying that β1 = 0 (see Table 1.b and Tables 5–7), the

NA produces coherent results (test sizes close to the adopted nominal level).

This happens because, under this hypothesis, there is no covariate effect and,

consequently, there is no measurement error effect associated with the covariate.

Tables 2–4 depict the empirical test sizes (in the middle cells) and powers

(around the middle cells) considering x
iid∼ N (−2, 4), x

iid∼ HN (−2, 4) and x
iid∼

t(−2, 4, 5), respectively, where “ HN (µ, σ2)” means the half normal distribution

with location µ and scale σ2; “ t(µ, σ2, v)” means the Student t distribution

with location µ, scale σ2 and v degrees of freedom. The same distributions

set up was considered in Tables 5–7, but in these tables we maintained fixed

β0 = −2 (other simulations were developed but they had similar results and,

for this reason, we omit them). The perturbation on the distribution of x may

be severe. Firstly it is not perturbed, i.e, a normal distribution is considered.

Next, we consider asymmetric and heavy tailed distributions for it in order to

verify whether the Wald-type statistics are much affected. We denote the Wald-

type statistic (2.6) as MM 1, the Wald-type statistic (2.7) as MM 2 (it uses the

asymptotic covariance matrix derived in Cheng and Riu (2006)) and the Wald-

type statistic (3.2) as ML. Both asymptotic covariance matrices used in MM 1

and ML have been derived in this paper.

Tables 5–7 show the rejection rates for H0 : β1 = 0 considering two sorts of
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heteroscedasticity; namely: (a) when
√
τxi and

√
τyi have uniform distributions

as defined in (4.1), i.e., the variances do not depend on the covariate xi and

(b) when
√
τxi = 0.1|xi| and

√
τyi = 0.1|β0 + β1xi|. In general, in setting

(b) the testing becomes more sensible and rejects more often than when (a) is

considered, i.e., this sort of heteroscedasticity can interfere in the inferences.

As can be seen in all Tables 2–7, the MM 1 and ML’s performances seem not

to be affected by the distribution of x. Additionally, Cheng and Riu’s approach

is the most affected by the perturbations in the distribution of x when the

sample size is small. These results are still valid for other parameter settings.

Moreover, in the majority of cases, ML is the most powerful test, as expected.

The low power presented when xi
iid∼ HN (µ, σ2) in both Tables 3 and 6 might

be explained by the fact that the x-values are generated with measurement error

in a short range, making difficult the identification of the line’s intercept and

slope.

5. Applications

5.1. Epidemiology

Trends in cardiovascular diseases have been monitored by the WHO MON-

ICA (World Health Organization Multinational MONItoring of trends and de-

terminants in CArdiovascular disease) Project which was established in the early

1980s. The main objective of this project is related to changes in known risk

factors (x) with the trends in cardiovascular mortality and coronary heart dis-

ease (y). In this paper, we analyze the same data set analyzed by Kulathinal et

al. (2002) which are trends of the annual change in event rate (cardiovascular

mortality) and trends of the risk scores for women (n=36) and for men (n=38)

in each population. The risk score was defined as a linear combination of smok-

ing status, systolic blood pressure, body mass index and total cholesterol level.

Its coefficients were derived from a follow up study using proportional hazards

models which can provide the observed risk score and its variance. For addi-

tional information, see Kulathinal et al. (2002). The observed response variable,
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Y , is the average annual change in event rate (%) and the observed covariate,

X , is the average annual change in the observed risk score (%).

The model without equation error (σ2 = 0) is not adequate for this data

set as shown by de Castro et al. (2008). Figure 2 displays 95% confidence

regions for the three distinct methods (3.3)-(3.5) applied to men and women

data sets. Notice from Table 8 that the standard errors of the estimators (in

parenthesis) for β0 and β1 are always smaller if one uses MM 2 than the other

two approaches (MM 1 and ML). The estimates seem to be close to each other

(including the naive approach) except for σ2, for which the ML estimate (4.89

for men data and 11.08 for women data) is very different from the MM 1 (3.06

for men data and 6.43 for women data). Moreover, from Figure 2, it is clear

that the hypothesis H0 : (β0, β1) = (0, 1) should be rejected for men but not for

women. Data reveal that in the women’s population, annual changes in event

rate and risk score have the same numerical value.

Figure 1 presents the ellipses using (2.6), (2.7), (3.2) and it also presents

ellipses using the naive approach. Figure 2 shows the fitted lines using the MM

1, MM 2, ML and NA approaches. Notice that the naive method produces

attenuated estimates for the model slope.

5.2. Astrophysics

Active Galaxies and quasars emit a considerable fraction of their energy in X-

rays. It is well accepted that the source of the X-ray emission involves accretion

of hot plasma onto a supermassive black hole; however, there is considerable

uncertainty regarding the structure of the accretion flow, and significant effort

has gone into understanding it. In particular, we consider two applications

related to X-ray emissions for using the proposed model and methods derived

in this paper. There are many problems regarding the data collection such as

sample selection and censoring, as discussed in Akritas and Bershady (1996) and

Kelly (2007). The data set analyzed in this paper has no censoring, however, it

is subject to sample selection as related in Kelly et al. (2008). We modeled this

data set disregarding the bias produced by the data collection just to show the
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applicability of our approach. We are engaged in future researches to take into

account these sample peculiarities.

In both data sets, the covariate is the base-10 logarithm of the ratio of

luminosity (intrinsic brightness) at 2500 angstroms (250 nanometers) to the

Eddington luminosity. The Eddington luminosity is a function of black hole

mass. However, the black hole masses are unknown and must be estimated

from the optical emission for each object. Because the estimated black hole

masses are subject to measurement error, the estimated Eddington ratio is as

well. In addition, it is possible to assess the precision related to this measure in

each experimental unit (defining heteroscedastic errors).

The response variable for the first application is the X-ray photon index

(also known as ΓX), where larger values of it mean that more of the X-ray emis-

sion is being emitted at lower energies. The value of ΓX and its uncertainty

are obtained by fitting a model to an empirical spectrum. The fit is done by

maximum-likelihood, and the standard error is essentially obtained by inverting

the information matrix. In astronomy, standard errors are almost never esti-

mated from replications, but instead are derived from an analytical treatment

of the data collection process. The Chandra X-ray observatory collects light

particles (photons) in the X-ray region of the electromagnetic spectrum. When

it detects X-ray photons, it also records the energy of these photons. The result

is a table of the number of X-rays detected as a function of energy; this is called

a spectrum. The data are Poisson distributed, and a theoretical function (e.g., a

power-law) is fitted to this data by maximum-likelihood. The estimate of ΓX is

the best fitting value of the exponent of this power-law, and the standard error

in ΓX is the estimated asymptotic variance, calculated by inverting the infor-

mation matrix. By studying how the X-ray emission depends on this covariate,

one can help to shed light on the nature of the X-ray emitting region.

The response variable for the second application is proportional to the base-

10 logarithm of the ratio of optical/UV flux to X-ray flux (also known as αox).

The variable αox is defined to be the ratio of the luminosity in the optical/UV

band to that in the X-ray band, which is calculated from two separate observa-
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tions – one in the optical/UV and one in the X-ray. A model spectrum is fitted

separately to each band to calculate the luminosities, and measurement errors

are derived from the best fit parameters, similar to the case for ΓX . The opti-

cal/UV and X-ray observations are not simultaneous, and can be separated by

several years. Because these objects (active galaxies, i.e., ’quasars’) are known

to be variable in their brightness, this contributes to the measurement error on

the response (i.e., αox).

Tables 9–10 show the estimates (using the MM 1, MM 2, ML and NA ap-

proaches) and their standard deviations (in parenthesis) for the first and second

applications, respectively. In the first application, all methods agree that the

coefficient of the inclination is not significant and, for both applications, the es-

timation methods are very close to each other except for the NA approach which

produces standard errors much lower than the other approaches. Figure 3 shows

the fitted lines. We can see a very significant difference between the naive ap-

proach and the others. Figure 4 presents the ellipses from these approaches, the

NA produces the smallest confidence region. It can be explained by the simu-

lation results on Table 1.a, the test sizes are greater than the expected nominal

level, which means underestimated standard errors.

6. Conclusions and final remarks

We have presented the asymptotic covariance matrix for the line (under the

maximum likelihood and method of moments approaches) estimators in a het-

eroscedastic structural errors-in-variables model (this model is largely applied in

the astrophysics field) which leads to more accurate confidence regions and the

hypotheses testing is more trustworthy. Furthermore, all methods are robust

against the distribution of the unobservable covariate (although the maximum

likelihood approach depends on that distribution, the simulation studies indicate

that the tests regarding the line regression parameters seem to be not affected

by the distribution of x). The simulation study in Section 4 can be used as

guidance to the practitioner having to select a statistical test. Moreover, it was
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shown that the naive approach (that does not consider errors in the covariate)

may produce results much different from the expected.
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Table 1: Test sizes (%) for the hypotheses (a) H0 : (β0, β1) = (0, 1) and (b) H0 : (β0, β1) =
(0, 0) using a naive procedure, i.e., the Wald statistic (2.6) taking τx∗ = τx∗∗ = τxy∗ = τx = 0.
The expected behavior for all cells is to converge to 5% when the sample size n increases.

Distribution of x
Normal Half normal Student t

n = 40 12.34 18.06 10.07
(a) n = 80 17.06 25.92 10.99

n = 160 24.38 44.31 18.62
n = 40 7.00 6.88 7.10

(b) n = 80 6.03 5.85 5.85
n = 160 5.30 5.19 5.47
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Table 2: Rejection rates (%) for the hypothesis H0 : (β0, β1) = (0, 1) (at a 5% nominal level)

using the Wald statistics (2.6), (2.7) and (3.2) for n = 40, n = 80, n = 160 and x
iid∼ N (−2, 4).

It is expected to be 5% in the middle cells.

MM 1 MM 2 ML

β0 β1 β1 β1
n = 40 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4

-2 51.02 79.58 98.00 54.75 81.62 98.09 55.11 83.26 98.73
0 34.54 6.77 29.11 38.20 9.39 33.69 36.83 7.93 33.84
2 98.46 80.16 45.84 98.69 82.57 50.32 98.92 84.10 51.20

n = 80 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 78.22 97.75 99.99 79.10 97.82 100 81.98 98.55 100
0 55.86 5.73 50.08 57.41 6.93 52.89 59.30 6.22 55.38
2 99.99 98.00 74.76 99.99 98.17 76.21 100 98.80 78.59

n = 160 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 97.22 99.98 100 97.27 99.99 100 98.33 100 100
0 83.83 5.09 80.19 84.03 5.57 81.06 87.00 5.46 84.57
2 100 99.97 96.20 100 99.98 96.28 100 99.97 97.41

Table 3: Rejection rates (%) for the hypothesis H0 : (β0, β1) = (0, 1) (at a 5% nominal
level) using the Wald statistics (2.6), (2.7) and (3.2) for n = 40, n = 80, n = 160 and

x
iid∼ HN (−2, 4). It is expected to be 5% in the middle cells.

MM 1 MM 2 ML

β0 β1 β1 β1
n = 40 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4

-2 74.44 78.62 83.61 77.09 80.88 85.57 78.72 82.94 88.74
0 9.94 4.69 4.78 13.12 6.93 7.80 11.28 5.97 7.92
2 86.68 77.81 70.02 88.19 80.28 73.06 90.04 82.61 76.29

n = 80 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 97.11 9.801 99.22 97.29 98.20 99.28 98.00 98.75 99.48
0 14.24 4.83 7.90 15.58 6.17 11.03 15.02 5.64 12.35
2 99.54 98.17 96.09 99.60 98.31 96.44 99.81 98.85 97.55

n = 160 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 99.92 99.99 100 99.92 99.99 100 99.97 99.99 100
0 19.89 4.89 13.21 20.63 5.43 15.52 21.49 5.44 17.81
2 100 99.97 99.95 100 99.97 99.95 100 99.99 99.98
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Table 4: Rejection rates (%) for the hypothesis H0 : (β0, β1) = (0, 1) (at a 5% nominal level)

using the Wald statistics (2.6), (2.7) and (3.2) for n = 40, n = 80, n = 160 and x
iid∼ t(−2, 4, 5).

It is expected to be 5% in the middle cells.

MM 1 MM 2 ML

β0 β1 β1 β1
n = 40 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4

-2 56.60 78.70 97.79 60.87 81.08 98.28 60.81 82.75 98.77
0 40.85 6.95 36.26 45.99 10.24 43.03 44.17 7.76 41.56
2 98.71 77.86 51.65 98.79 80.71 57.02 99.17 81.98 57.38

n = 80 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 86.29 97.94 100 87.00 98.24 100 88.37 98.55 100
0 68.98 5.70 64.48 70.73 7.32 67.29 72.36 6.06 69.16
2 99.99 98.15 83.61 99.99 98.31 84.73 100 98.61 86.25

n = 160 0.6 1 1.4 0.6 1 1.4 0.6 1 1.4
-2 99.01 100 100 99.02 99.99 100 99.31 99.99 100
0 92.92 5.31 91.62 93.02 6.17 91.85 94.47 5.06 93.97
2 100 99.98 98.49 100 99.98 98.51 100 99.99 99.07
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Table 5: Rejection rates (%) of the hypothesis H0 : β1 = 0 (at a 5% nominal level) for

n = 40, n = 80, n = 160 and x
iid∼ N (−2, 4): (a)

√
τx and

√
τy uniform and (b)

√
τx = 0.1|x|,√

τy = 0.1|β0 + β1x|.

MM 1 MM 2 ML NA

β1 (a) (b) (a) (b) (a) (b) (a) (b)
n = 40

−0.5 46.70 51.55 48.48 53.90 49.57 51.62 46.83 52.13
−0.25 18.03 18.23 19.63 20.94 19.03 18.29 18.10 18.47

0.0 6.75 6.35 7.87 8.46 7.03 6.63 6.80 6.58
0.25 17.54 18.75 18.73 21.40 18.81 18.96 17.61 19.14
0.5 46.57 50.28 48.09 53.13 49.67 50.75 46.79 50.89

n = 80
−0.5 64.43 78.21 65.09 78.40 68.07 77.37 64.64 78.43

−0.25 22.48 28.57 23.60 30.71 24.43 28.28 22.63 28.77
0.0 5.54 5.65 6.33 6.86 5.78 5.60 5.61 5.78
0.25 22.53 28.80 23.59 30.55 24.30 28.27 22.68 29.02
0.5 64.93 78.01 65.98 78.20 68.97 77.37 65.18 78.25

n = 160
−0.5 80.01 95.17 80.35 94.89 82.56 94.45 80.01 95.21

−0.25 29.18 44.73 30.22 45.59 31.22 43.42 29.19 44.95
0.0 5.34 5.26 5.83 6.00 5.65 5.20 5.35 5.32
0.25 29.29 45.14 30.06 46.08 31.39 43.99 29.30 45.31
0.5 79.23 94.65 79.67 94.43 82.13 94.07 79.25 94.71
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Table 6: Rejection rates (%) of the hypothesis H0 : β1 = 0 (at a 5% nominal level) for n = 40,

n = 80, n = 160 and x
iid∼ HN (−2, 4): (a)

√
τx and

√
τy uniform and (b)

√
τx = 0.1|x|,√

τy = 0.1|β0 + β1x|.

MM 1 MM 2 ML NA

β1 (a) (b) (a) (b) (a) (b) (a) (b)
n = 40

−0.5 8.47 31.47 11.00 39.31 9.61 28.32 11.49 31.73
−0.25 5.21 12.85 7.19 19.44 6.07 12.36 7.29 13.01

0.0 4.33 6.23 6.53 11.46 5.25 6.35 6.41 6.35
0.25 5.32 12.52 7.47 19.13 6.41 11.99 7.58 12.63
0.5 8.96 31.49 11.81 39.27 9.46 28.37 11.88 31.79

n = 80
−0.5 14.31 44.03 17.11 45.75 18.53 42.68 17.10 44.13

−0.25 6.28 15.51 8.22 17.43 8.32 15.38 7.85 15.57
0.0 4.17 5.47 5.28 6.91 5.30 5.73 5.15 5.49
0.25 6.71 15.47 8.38 17.11 8.54 15.31 8.32 15.51
0.5 13.55 43.39 16.39 45.19 17.85 42.29 16.03 43.45

n = 160
−0.5 22.41 64.93 23.74 65.42 26.37 63.59 24.21 64.99

−0.25 8.63 21.35 9.69 22.89 10.23 20.97 9.77 21.37
0.0 4.25 5.37 5.15 6.04 4.77 5.49 4.89 5.39
0.25 8.87 22.84 9.81 23.76 10.11 22.03 9.91 22.87
0.5 22.46 64.89 23.96 65.71 26.39 63.69 24.46 64.91
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Table 7: Rejection rates (%) of the hypothesis H0 : β1 = 0 (at a 5% nominal level) for n = 40,

n = 80, n = 160 and x
iid∼ t(−2, 4, 5): (a)

√
τx and

√
τy uniform and (b)

√
τx = 0.1|x|,√

τy = 0.1|β0 + β1x|.

MM 1 MM 2 ML NA

β1 (a) (b) (a) (b) (a) (b) (a) (b)
n = 40

−0.5 41.30 87.87 45.49 89.09 45.14 81.58 41.69 88.11
−0.25 15.00 36.93 18.52 45.35 16.53 32.15 15.27 37.46

0.0 5.85 6.52 8.43 12.33 6.62 6.55 6.01 6.68
0.25 14.81 36.87 18.68 45.67 16.79 32.17 15.03 37.28
0.5 41.91 88.00 46.78 89.15 46.07 81.62 42.28 88.27

n = 80
−0.5 65.98 90.33 68.90 90.16 70.88 88.47 66.39 90.43

−0.25 22.21 37.72 25.33 40.46 24.43 35.87 22.55 37.95
0.0 4.97 5.32 6.76 7.01 5.12 5.31 5.12 5.37
0.25 22.05 37.91 25.19 40.77 24.49 36.25 22.33 38.11
0.5 66.14 90.01 68.79 89.61 71.01 88.47 66.51 90.18

n = 160
−0.5 97.70 98.32 97.69 98.15 98.63 97.19 97.73 98.34

−0.25 49.59 55.67 52.83 56.65 54.62 50.23 49.71 55.90
0.0 4.59 5.69 5.65 6.75 4.54 5.55 4.41 5.75
0.25 50.47 55.64 53.45 57.03 55.44 51.19 50.53 55.82
0.5 97.59 98.36 97.91 98.14 98.68 97.19 97.61 98.41

Table 8: Estimates of regression parameters (standard errors in parentheses) for the WHO
MONICA Project data sets.

β0 β1 µx σ2
x σ2

Men
MM 1 −1.84 (0.50) 0.35 (0.22) −1.08 4.50 3.06
MM 2 −1.84 (0.44) 0.35 (0.22) −1.08 4.37 2.87

ML −2.08 (0.53) 0.47 (0.23) −1.09 4.32 4.89
NA −1.88 (0.49) 0.31 (0.20) −1.08 5.00 3.12

Women
MM 1 −0.33 (1.04) 0.58 (0.38) −2.02 3.93 6.43
MM 2 −0.33 (0.90) 0.58 (0.33) −2.02 3.80 5.94

ML 0.03 (1.11) 0.68 (0.41) −2.07 3.62 11.08
NA −0.47 (0.97) 0.51 (0.33) −2.02 4.47 6.59
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Table 9: Estimates of regression parameters (standard errors in parentheses) for the first
application of the Chandra observatory.

β0 β1 µx σ2
x σ2

MM 1 1.46 (0.41) −0.50 (0.32) −1.27 0.07 0.13
MM 2 1.46 (0.42) −0.51 (0.34) −1.27 0.07 0.13
ML 1.73 (0.37) −0.23 (0.28) −1.30 0.06 0.09
NA 1.86 (0.15) −0.19 (0.11) −1.27 0.19 0.14

Table 10: Estimates of regression parameters (standard errors in parentheses) for second
application of the Chandra observatory.

β0 β1 µx σ2
x σ2

MM 1 2.22 (0.20) 0.56 (0.16) −1.27 0.07 0.002
MM 2 2.22 (0.22) 0.57 (0.17) −1.27 0.07 0.002
ML 2.27 (0.22) 0.59 (0.17) −1.29 0.07 0.002
NA 1.78 (0.04) 0.21 (0.03) −1.27 0.19 0.020
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Figure 1: Change in event rate versus change in risk score and regression lines for the WHO
MONICA Project data sets: (a) men and (b) women.
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Figure 2: 95% confidence regions for (β0, β1) using the WHO MONICA Project data sets.
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Figure 3: Scatter plots for the Chandra data: (a) first application and (b) second application
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Figure 4: 95% confidence regions for (β0, β1) using the Chandra data sets.

29


