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Abstract

We present for the first time a justification on the basis otra¢timit theorems for the family
of life distributions generated from scale-mixture of natsr This family was proposed by Bal-
akrishnan et al. (2009) and can be used to accommodate wtespabservations for the usual
Birnbaum-Saunders distribution generated from the nownal The class of scale-mixture of
normals includes normal, slash, Student-t, logistic, deexponential, exponential power and
many other distributions. We present a model for the cratdéresxons where the limiting distribu-
tion of total crack extensions is in the class of scale-mtof normals. Moreover, simple Monte
Carlo simulations are reported in order to illustrate treilts.

Key words:Birmbaum-Saunders distribution, central limit theoreifie, distribution, scale-mixture
of normals.

1 Introduction

All materials are subject to structural damages when exptsdluctuating stresses and tensions,
namely, computer devices, mobile phones, airplanes, bealgds, raceways, human cells and so
forth. Usually, the ultimate failure of the specimen is assd to be due to the growth of a dominant
crack in the material. The Birnbaum-Saunders distribu¢i®® distribution for short) has been suc-

cessfully used in life studies and in material-fatigue $ifedies. This distribution was firstly proposed

by Birnbaum and Saunders (1969) and extended versionsl calde-mixture Birnbaum-Saunders

(SBS) distribution and generalized Birnbaum-SaundersGistribution were proposed by Balakr-

ishnan et al. (2009) and Dias-Garcia and Leiva-Sancha@5()2 respectively. The SBS distribution

is a special case of the GBS distribution. Theoretical dgw@kents, inference and diagnostics meth-
ods, goodness-of-fit tests and random generation algasitbnthe GBS distribution are described in

Leiva-Sanchez et al. (2008) and Sanhueza et al. (2008).



The construction of the standard BS distribution is basedhencentral limit theorem (CLT)
for independent and identically distributed (iid) randoariables. Desmond (1985) derived the BS
distribution under a biological context, but he also rel@dthe standard CLT (the idea presented
here can also be applied in this context). Here, for simplieve focus only on the original idea
of Birnbaum and Saunders (1969). Since the derivation oBthenodel is the main aspect for this
article, in what follows we shall summarize the steps giveBirnbaum and Saunders (1969).

Suppose that a specific material is subject to fluctuatirgsas caused by a cycling stress source.
Birnbaum and Saunders (1969) considered that, in each, tigelenaterial is subject ta microscopic
incremental cracks related to loading oscillations,8ay. . ., Y; ,, for cyclei. Let X, be the material
crack extension in théh cycle of the stress source, it is assumed fhat= Y;; + ... + Y;,,, where
Y;; andY},, are independent for all # k and also that(X;) = p and ValX;) = ¢* < oo for all
i > 1. The total crack extension is defined theniby = 3" | X;, wheren is the number of cycles
required to crack. AX, ..., X,, are iid random variables with finite second moment, by thedsied
CLT,

Wi — ny W, \/ﬁ/i
ovn - o/n o
is approximately normally distributed. In Desmond (1986js considered dependent crack exten-
sions, but the magnitude of the loadings (“impulses”) agarded as iid random variables. In the
core of these theories, they made similar assumptionstfiestandard CLT holds).

Let C' be the number of cycles until failure andthe material critical value for cracking, then we
haveP(C <n)=1- P(W, <w). LetT be the continuous extension of the discrete variébénd
definea = = andg = % then, following Birnbaum and Saunders (1969), we obtaa th

"
é(\/%— \/?) £ N(0,1), (1)

where “2” means “equally distributed as” antl'(0, 1) represents the standard normal distribution.
The distribution off” is the one that satisfies the relation (1). Naturally, refa{il) must be seen as
an approximation that is reasonably justified through siechLT.

Balakrishnan et al. (2009) generalized this distributigrrdédaxing the relation (1) to the scale-
mixture of normals. Below we define a multivariate scale ometof normals which will be useful in
next section.

DEFINITION 1.1. (Eltoft et al., 2006) We say that a random vecXrhas an-variate scale mixture
of normals, ifX < p+ VU, wherep € R™ is a fixed vectolU has ann-variate normal distribution
with zero mean and variance matX and V' is a univariate positive random variable, independent



of U, having distribution functiori{. In notation: X ~ SMN,,(u, X, H). Whenu = 0andX¥ = I,
wherel is the identity matrix, we say th& follows a standard-variate scale mixture of normals.

Backing to the life distribution of’, Balakrishnan et al. (2009) considered the following relat

1 T 15} d
E(\/% — \/;) = SMN,(0,1, H) (2)

instead of (1). Evidently, relation (2) includes (1) andréiere, the class of distributions @fthat sat-
isfies relation (2) includes the usual BS distribution. Rekhnan et al. (2009) offered the following
reasons for using their generalization:

“The three main reasons for developing this class of distitns are the following: (i)
the use of the SBS specification to model observable datdesnab to make robust
estimation of parameters in a similar way to that of the SM&#jation, which is not
possible with the BS distribution or any other well-knowmgatible model such as the
lognormal distribution, (ii) the theoretical argumentst&slished in the genesis of the
BS distribution can be transferred to the SBS one and thusaniappropriate model
for describing different phenomena that present accunanaif some type under stress,
and (iii) SBS distributions allow us to efficiently compute thaximum likelihood (ML)
estimates of the model parameters by using the EM-algorivhich is not possible with
the classical BS distribution; {Balakrishnan et al., 2009)

Basically, the robustness justification is given for anyeotsituation when a normal distribution
is extended to the scale-mixture of normals (or to the étightclass of distributions). In this paper,
we point out a theoretical justification for the use of saal&ture of normal distributions based on a
CLT. Section 2 presents a general CLT which legitimategioaig2). Section 3 offers some examples
when relation (2) may occur. Results of simple Monte Cantoudations are reported in Section 4.
Finally, Section 5 concludes the paper.

2 A general central limit theorem

It is well known that normal distributions are attractor€JnTs for sequences of iid random variables
with some finite moments (see, for instance Athreya and L&106). If the iid condition is replaced
by exchangeability for a sequen€&’; };>; with E(X;) = 0 andE(X?) = 1, the normal distribution
is still the attractor in central limit theorems (CLTs), iichonly if Cou(X;, X;) = Cov(X7, X7) = 0
foralli # 5 (Bum et al., 1958, pg. 225). Based on these results, sumsdbnavariables with finite
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moments are often claimed to be approximately normallyidisted. However it is not always true,
below we present a simple result where asymptotic normdégs not hold even for sequences with
finite second moments.

LEMMA 2.1. Let{X;};>, be asequence of random variables such that thesfivstriables( X, ..., X,,) ~
SMN,(0,I,H).Then,

7, = %;Xi 4y SMN, (0,1, H). (3)
Proof. By the stochastic representation, the proof is straightiod. DefineX,, = (X;,..., X,,)",
thenX,, 4 VU,, whereU,, = (Uy,...,U,) follows a standard-variate normal distribution. Then,
foralln > 1, .
g, Lveimlidyy
vn
whereZ ~ N(0,1). Thus,Z,, ~ SMN,(0,1, H) foralln > 1. W

Non-standard CLTs are well known when the second momentirstenfor the class ofi-stable
distributions (see, for instance, Gnedenko and Kolmogd®$4; Meerschaert and Scheffler, 2001).
That is, the sum of a number of random variables with powerthlndistributions decreasing pro-
portional to|z|~* (where0 < « < 2, which implies infinite variance) will converge to a stable
distribution as the number of variables grows. By usingitbssilt, we can only justify stable distribu-
tions as attractors, but in the context of BS distributios,must also justify other than normal limit
distributions when the involved random variables havedindriances (e.g., Student distribution with
k > 2 degrees of freedom). Lemma 2.1 shows that scale mixturerofiale can also be attractors
in CLTs when the involved random variables have a specificcire of dependence. Under com-
plicated conditions, Jiang and Hahn (2003) generalizedrhard.1 when the sequenée;},~; is
exchangeable.

In what follows, we provide (1) simple conditions (which &adily applied to the fatigue-life con-
text) and a new Fourier-analytic demonstration that sunseqtiences of exchangeable random vari-
ables with finite second moments converge to scale-mixtun@nals (a generalization of Lemma
2.1, but a specialized version of Jiang and Hahn, 2003);h@Yate of convergence in this general
CLT when the absolute third moment is finite; (3) a stand&diizersion which converges to the stan-
dard normal distribution. To the best of our knowledge, ladise results are new. First, we introduce
some important results and definitions.

A sequence of random variablés(;},~, defined in a probability spacé?, F, P) is said to be
exchangeable if for eacin,

PXy<zy,..., X, <z,) =P Xy, <xpyy..., Xy, <p,)
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for any permutationr = (m,...,m,) of {1,...,n}. LetG be the tailo-field of {X;};>1, i.e.,G =
Nyo1 0(Xn, Xnt1, - ..), whereo(X) is the smallest-field generated byX. An important result
which will be used in the proof of the below theorem is that aohangeable sequence of random
variables is conditionally iid giveg (de Finetti, 1937; Hewitt and Savage, 1955). Now, we are able
to enunciate the theorem of this section.

THEOREM 2.1. Let{Y;;, 1 < j < m};>; be an infinity sequence of random vectors such that
Yij = &+ Zrij with E(r; ;) = 0and E(r) = 1, wherer; = m~' 37" r;;. DefineX; =
> Yij = p+or, thenE(X;) = pand Va(X;) = . Consider that{r;};>, is a sequence of
exchangeable and identically distributed random varialded letG be its tail o-field.

(i) If v9 = E(r?|G) < oo and E(r1|G) = 0 almost surely, then

1 ~Xi—p 4
7, — NG ;1: — = VnZ. (4)
(ii) In addition to (i), if v; = E(|r1[*|G) < co almost surely andt = E(y57, /%) < oo, then
K
PZ,<z)—P 7z < <Ol — . 5
sup |P(Z, < x) = P(y 22 < o) (\/ﬁ) (5)

(iii) In addition to (i), if 74 = E(r{|G) < oo almost surely and?(y3) < oo, then

7
47, (6)

Sn
wheres? = £ 37 | (XJ;Q“)Q andZ ~ N(0,1).

As the ultimate cracks are often the balanced nonstanaaldizms of many unobserved random
events, this theorem provides a partial explanation foaffpgearance of the scale-mixture of normal
distributions. Equation (5) gives a more quantitative fafithe central limit theorem (4) and equation
(6) shows that standardized sums that satisfy the theoresnditions are approximately normally
distributed.

Note that, herdY; ; }1<,<m.i>1 does not need to be an exchangeable sequence of randomesriab
provided that{ X, },~, be. Accordingly, we may assume that the events related tm#terial cracks
are exchangeable just in the cycle levels not in the micqascones. From a physical point of
view, we highlight that exchangeable assumption for thelcextensions seems to be much more
reasonable than independency.

From now on, we shall consider just the sequence of cracknsixtes{X;},~;. Since con-
ditionally to G, X; and X, are independent, we have that Cay, X,) = E(Cov(X, X5|G)) +
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CoV(E(X41|G), E(X3|G)) = Cov(E(X1|G), E(X2|G)). InTheorem 2.1, itis required that X, |G) =

p almost surely, therefore, itis equivalent to require unelated random variables, i.e., Goty, X,) =

0. If E(X1|G) = p+ oE(r1]G), with E(r1|G) being a non degenerate random variable, then the ran-
dom variablesX;, X5, ... will be correlated and Theorem 2.1 will not apply.

Depending on the dependence structure of the crack extensiois indeed a random variable.
However, on the one hand, if the sequefiég};-, is also independent, then the taifield G is trivial
(just contains events of probability zero or one). In thisteat,v, = E(r?|G) = E(r?) = 1 and the
standard CLT applies. On the other hand{ X;},>, is not an independent sequence of random
variables, the taib-field G may not be trivial and then, is a non degenerate random variable.
Suppose thaf is generated by a random variablghen we can just writg, = E(r?|s).

In actual problems, we hardly know the dependence structuitke random variables, then it
is almost impossible to derive the distributionof = E(r?|G). However, statistical tools may be
employed to test possible distributions based on the obdetata (see Section 3.4 of Sanhueza et
al., 2008). If, after a statistical analysis, one chooseduhctionH for relation (2) and normality is
not tenable (i.e» is not constant), then possibly the crack extensiBnsXs, . . . have some type of
persistent dependence structure. Notice that, they aahated CoyX;, X;) = 0 with a persistent
dependence structure, since C&y, X2) = Cov(E(X?|G), E(X3|G)) = o*Var(y,) > 0 for all
i # k. In general, Coyf(X;), 3(X;)) = CouE(f(X1)|9), E(3(X2)|G)) for all i # j, wheref andg
are measurable functions. That is, the dependence steUmttuween two crack extensions are always
the same independently of how distant they are from eachr.offtés means that the incremental
microscopic crackgY; ;, 1 < j < m} and{Y;;, 1 < j < m} fori # k are not independent as
assumed by Birnbaum and Saunders (1969). According to OR@#¥6§, long dependence structures
for the crack extensions are quite realistic assumptiom& sburce of this long dependence can be
very complex and hard to establish precisely. It can be mestfrom the material type, environment,
temperature, direction of loading, size and distributibmeernal defects, surface quality, geometry
and many others.

3 Examples

As aforementioned, in actual problems, we may employ si@distests to find the functiod/ in
relation (2), this is equivalent to assign a limiting distriion for the sequence of crack extensions
{X;}i>1. In this section we present a simple but illuminating instof a model for the crack
extensions which allows interpretations regarding thepahdence structure. By using this model,
we can predict the value of Ca¥?, X7) based only on the chosen limiting distribution. We appls thi
model when the limiting distribution is Student, Laplacentaminated normal and slash distributions.
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ExampLE 3.1. (Model for the crack extensions) L¥t; = £ + Zr; ;, wherer; ; = a;B;, in which

ai,...,an, are (possible dependent) random variables &il} ;- is an iid sequence of random vari-
ables independent af;, . . ., a,,, with £(B,) = 0 and E(B}), E(a®) < oo, wherea = m~" 3", a;.
The random variables,, . . . , a,, may be interpreted as random effects related to the material char-

acteristic, while the random variablds,, B,, . . . are related to the cycles. Assuming that the events
related to the cracks are independent among the cycles,itfiependence of the sequerdg, };>;
is reasonably justified. In this model, the variation of roggopic cracks are driven by multiplicative
effects from two sources: one related to the cycles and o#hated to the material properties.

Notice that,X; = u + or; for all i > 1, wherer; = aB;. On the one hand, aBy, B,, ... are
iid random variables, by the standard CLT, we have/2 3" (X, — p)/6 —% \/E(B%aZ, i.e.,
it converges to a scale-mixture of normals. On the other héaydTheorem 2.1~ /23" (X, —
w/o L V27, wheres® = 6°E(a*) E(B}) and then, by equating the limiting distribution, we
conclude thaty, = #;) almost surely.

Observe that, in this simple mode].X;},>, is a sequence of uncorrelated random variables
Cov(X1, X») = 0, but with long dependence. After a straightforward caléatawe obtain

4 Var(a?)
E(a2)2

Cov(X?, X7) =0 >0

for anyi # j (i.e., the dependence of; and X; does not decrease whén— j| increases), where
o? = 6E(B})E(a*). Based on Example 3.1, we compute the covariance €oWX ) for Student,
Laplace, contaminated normal and slash limiting distrdns.

EXAMPLE 3.2. (Student distribution) Consider Example 3.1 and suppoaedltStudent distribution

with v > 4 is the limiting distribution. Theny—2 < @ E(a*) = -4, Var(a®) = % and

Cov( X2, X2) = 200 _ o)
B v—4

asv — o0.

ExamMpPLE 3.3. (Laplace distribution) Consider Example 3.1 and supposagdH_aplace distribution
is the limiting distribution. Thery? < Exponential(v), E(a®) = v~!, Var(a?) = v~2 and

COV(XZ?,XJZ) = ol

ExXAMPLE 3.4. (Contaminated normal distribution) Consider Example 3ntl suppose that a con-
taminated normal distribution is the limiting distributio Then,a~2 has discrete distribution, where



Pla?=~)=vandP(a?=1)=1-vfory € (0,1 andv € [0,1]. Notice that,E(a?) =
Y+r(1—y) Var(a?) = v(=9?(v=1) and
~ ’ ,YZ

olv(v —1)(1 —v)?
(v +v(1 =)

Cou X7, X?) = =0(")

asv — 0.

ExAamMPLE 3.5. (Slash distribution) Consider Example 3.1 and supposedlsash distribution with
parameters > 4 is the limiting distribution. Theng=' £ Beta(v, 1), E(a?) = -, Var(a®) =
_ 4dv and
(v—4)(v—2)2

40

Cou X2 X2y = "
oMK, X5) (v —4)v

=0 ?)

asv — oQ.

In summary, we may assume the model proposed in Example 3léscribe the dependence
structure of the crack extensions, therefore, based ornntitedlistribution one can find an expression
for Cov(X?, X?) for anyi, .

4 A simple simulation study

The generation of uncorrelated exchangeable random Vesiab a hard task. In this section, we
consider a multivariate Student distribution, which comgats are known to be exchangeable and
uncorrelated. LefX;};>, be an exchangeable sequence of random variables wherestheréindom
variablesX,, = (X1, X, ..., X,) has standard-variate Student distribution with > 2 degrees of
freedom. Its density is

n+v
2

1
fx, () o (m)

We know thatX, Xs, ..., X,, are exchangeable and uncorrelated but not independerdamanali-
ables. Here, we will study the limit distributions of the segces

Zn and Son, = —,

whereZ, = n~/23"" X, ands?2 = n~ 'Y | X2. By Bum et al. (1958)5;,, cannot converge to
a normal distribution. By Lemma 2.1 and Theorem 2.1, we hhaée4,;,, converges to a univariate
Student distribution withy degrees of freedom arfs},, converges to a standard normal distribution.



Now, assume thdt/;, ..., W, are iid random variables having Student-t distributiorbwwit> 2
degrees of freedom. By the standard CLT

converges to the standard normal distribution.

We generaté000 Monte Carlo simulations from multivariate and univariatadgnt-t withy = 4
degrees of freedom. The sample sizesare 100, 500 and1000 and for each simulation we compute
S1ny Son ands. Figure 4 displays normal qgplots of the quantitigs, S, andS.”, the closer the
points are to the 45% line, the more normally distributed we. Notice that, as expectetl,, does
not converge to the normal distribution whig, andst” do.
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Figure 1: Normal qgplots of the Monte Carlo samples for:g)andn = 100; (b) Sy, andn = 100;
() S andn = 100; (d) Sy, andn = 500; (€) Sa, andn = 500; (f) S andn = 500; (a) S, and
n = 1000; (b) Sa, andn = 1000; (c) SS” andn = 1000.



5 Concludingremarks

In this note, we presented a justification for the use of soal¢ure of normals as underlying dis-
tributions for generating families of life distribution¥Vhen there exists a persevering dependence
structure for the crack extensions, then the usual Birnb&aomders distribution generated from the
normal one may not be tenable. Instead, life distributicersegated from scale-mixture of normals
must be adopted with justification on the basis of centraitltheorems for exchangeable random
variables with persistent dependence structure. Moredvtre variation source of microscopical
cracks is defined as multiplicative effects from a sourcateel to the material and another related
to the stress cycles, we can also interpret the generalimatd®im-Saunders distribution within a
physical perspective.
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A Proof of Theorem 2.1

Without lost of generality, take = 0 ando = 1. From Taylor’s expansion, we have

t2
exp(itX;) =1+ itX, — §X12 + o(|t]2X7})

and )
t
exp(itXy) =1 +itX; — §X12 + O(Jt)*| X1 ).
Taking conditional expectations,jf < oo we obtain

t2
E(espitX)]6) = 1 - S + olft70)

By de Finnetti's Theorem, given the taitfield G, X, ..., X,, are iid random variables, then

E(exp(itZ,)|G) = [E(exp(itX,/v/n)|G)]" = [1 - %72 i 0(%”)} ”

and therefore )
. t
E(exp(itZ,)|G) — exp ( — 572)
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almost surely. Notice that, for artyc R, we have

£.(t) = Elexp(itZy,)) = E(E(exp(itZ,)|G)) — E(exp ( - %2))_

This implies thatZ,, N V27, whereZ ~ N (0,1) andvy, = E(X}|G). This proves (4).
In order to prove (5), we consider that < oo. Then,

t2
E(exp(itX1)|G) = 1 = 572 + O(Jtf*ys)

and
. t? It|3
E(exp(itZ,)|G) = exp < - +0 (%%) )

By Taylor’s expansion we arrive at

o= £ (- 52) (0 +o(v)))

t 3
6(0) = €0+ B(0( Yoo/ ) ),
whereé(t) = E(exp(ity22)).
By Lemma 11.4.2 of Athreya and Lahiri (2006), we have, for saranstant’y € (0, o), that
1™ &u(t) —&(t 24C
sup | P(Z, < x) — P(y/712Z < x)| §—/ Mdt+ 2 (7)

rzeR ™ J_n |t‘ ™

Then,

Notice that

" 1 2 2
3 12 exp(—t27s/2)dt < V3o Ans exp [ — n ).
T ), 2m \ 3/ Yo 2

Then, plugging this result into (7), by Fubini's Theorem, mave that

ilég ‘P(Zn <z)—P(\/7Z < SL’)‘ < O(%)u

wherex = E(7372_3/2).

If v4 < oo, by Chebychev’s inequality, we have that

El(sy, —2)°]

P(s2 = 7ol > ) < SR

)
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where

(52 ~ 12 = B( El(s2 ~ 101 ) = B(B(s4]0) - 2B (216) +93 ).

with E(s|G) = 530 Z?ZlE(XZ?X]?}g) %(n74+n n—1)y )andE (s2]G) = 2. Then,

B2 —7a)?] = 20 L

and, asF(13) < oo,
lim P(|s2 —7a| > €) — 0.
n—oo

We conclude that? -+ ~,. By Slutsky’s device, we have thge %y Z, whereZ ~ N(0,1).
Hence, (6) is demonstrated.
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