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Abstract

We present for the first time a justification on the basis of central limit theorems for the family

of life distributions generated from scale-mixture of normals. This family was proposed by Bal-

akrishnan et al. (2009) and can be used to accommodate unexpected observations for the usual

Birnbaum-Saunders distribution generated from the normalone. The class of scale-mixture of

normals includes normal, slash, Student-t, logistic, double-exponential, exponential power and

many other distributions. We present a model for the crack extensions where the limiting distribu-

tion of total crack extensions is in the class of scale-mixture of normals. Moreover, simple Monte

Carlo simulations are reported in order to illustrate the results.

Key words:Birmbaum-Saunders distribution, central limit theorem, life distribution, scale-mixture

of normals.

1 Introduction

All materials are subject to structural damages when exposed to fluctuating stresses and tensions,

namely, computer devices, mobile phones, airplanes, beam bridges, raceways, human cells and so

forth. Usually, the ultimate failure of the specimen is assumed to be due to the growth of a dominant

crack in the material. The Birnbaum-Saunders distribution(BS distribution for short) has been suc-

cessfully used in life studies and in material-fatigue lifestudies. This distribution was firstly proposed

by Birnbaum and Saunders (1969) and extended versions called scale-mixture Birnbaum-Saunders

(SBS) distribution and generalized Birnbaum-Saunders (GBS) distribution were proposed by Balakr-

ishnan et al. (2009) and Dı́as-Garcia and Leiva-Sánchez (2005), respectively. The SBS distribution

is a special case of the GBS distribution. Theoretical developments, inference and diagnostics meth-

ods, goodness-of-fit tests and random generation algorithms for the GBS distribution are described in

Leiva-Sánchez et al. (2008) and Sanhueza et al. (2008).
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The construction of the standard BS distribution is based onthe central limit theorem (CLT)

for independent and identically distributed (iid) random variables. Desmond (1985) derived the BS

distribution under a biological context, but he also reliedon the standard CLT (the idea presented

here can also be applied in this context). Here, for simplicity, we focus only on the original idea

of Birnbaum and Saunders (1969). Since the derivation of theBS model is the main aspect for this

article, in what follows we shall summarize the steps given in Birnbaum and Saunders (1969).

Suppose that a specific material is subject to fluctuating stresses caused by a cycling stress source.

Birnbaum and Saunders (1969) considered that, in each cycle, the material is subject tom microscopic

incremental cracks related to loading oscillations, sayYi,1, . . . , Yi,m for cyclei. LetXi be the material

crack extension in theith cycle of the stress source, it is assumed thatXi = Yi,1 + . . . + Yi,m, where

Yi,j andYk,l are independent for alli 6= k and also thatE(Xi) = µ and Var(Xi) = σ2 < ∞ for all

i ≥ 1. The total crack extension is defined then byWn =
∑n

i=1Xi, wheren is the number of cycles

required to crack. AsX1, . . . , Xn are iid random variables with finite second moment, by the standard

CLT,
Wn − nµ

σ
√
n

=
Wn

σ
√
n
−

√
nµ

σ

is approximately normally distributed. In Desmond (1985),it is considered dependent crack exten-

sions, but the magnitude of the loadings (“impulses”) are regarded as iid random variables. In the

core of these theories, they made similar assumptions (i.e., the standard CLT holds).

Let C be the number of cycles until failure andω the material critical value for cracking, then we

haveP (C ≤ n) = 1−P (Wn ≤ ω). LetT be the continuous extension of the discrete variableC and

defineα = σ√
µω

andβ = ω
µ
, then, following Birnbaum and Saunders (1969), we obtain that

1

α

(

√

T

β
−

√

β

T

)

d
= N (0, 1), (1)

where “
d
=” means “equally distributed as” andN (0, 1) represents the standard normal distribution.

The distribution ofT is the one that satisfies the relation (1). Naturally, relation (1) must be seen as

an approximation that is reasonably justified through standard CLT.

Balakrishnan et al. (2009) generalized this distribution by relaxing the relation (1) to the scale-

mixture of normals. Below we define a multivariate scale mixture of normals which will be useful in

next section.

DEFINITION 1.1. (Eltoft et al., 2006) We say that a random vectorX has an-variate scale mixture

of normals, ifX
d
= µ+ VU , whereµ ∈ R

n is a fixed vector,U has ann-variate normal distribution

with zero mean and variance matrixΣ andV is a univariate positive random variable, independent
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ofU , having distribution functionH. In notation:X ∼ SMNn(µ,Σ, H). Whenµ = 0 andΣ = I,

whereI is the identity matrix, we say thatX follows a standardn-variate scale mixture of normals.

Backing to the life distribution ofT , Balakrishnan et al. (2009) considered the following relation

1

α

(

√

T

β
−

√

β

T

)

d
= SMN1(0, 1, H) (2)

instead of (1). Evidently, relation (2) includes (1) and therefore, the class of distributions ofT that sat-

isfies relation (2) includes the usual BS distribution. Balakrishnan et al. (2009) offered the following

reasons for using their generalization:

“The three main reasons for developing this class of distributions are the following: (i)

the use of the SBS specification to model observable data enables us to make robust

estimation of parameters in a similar way to that of the SMS specification, which is not

possible with the BS distribution or any other well-known compatible model such as the

lognormal distribution, (ii) the theoretical arguments established in the genesis of the

BS distribution can be transferred to the SBS one and thus it is an appropriate model

for describing different phenomena that present accumulation of some type under stress,

and (iii) SBS distributions allow us to efficiently compute the maximum likelihood (ML)

estimates of the model parameters by using the EM-algorithm, which is not possible with

the classical BS distribution; ”(Balakrishnan et al., 2009)

Basically, the robustness justification is given for any other situation when a normal distribution

is extended to the scale-mixture of normals (or to the elliptical class of distributions). In this paper,

we point out a theoretical justification for the use of scale-mixture of normal distributions based on a

CLT. Section 2 presents a general CLT which legitimates relation (2). Section 3 offers some examples

when relation (2) may occur. Results of simple Monte Carlo simulations are reported in Section 4.

Finally, Section 5 concludes the paper.

2 A general central limit theorem

It is well known that normal distributions are attractors inCLTs for sequences of iid random variables

with some finite moments (see, for instance Athreya and Lahiri, 2006). If the iid condition is replaced

by exchangeability for a sequence{Xi}i≥1 with E(X1) = 0 andE(X2
1 ) = 1, the normal distribution

is still the attractor in central limit theorems (CLTs), if and only if Cov(Xi, Xj) = Cov(X2
i , X

2
j ) = 0

for all i 6= j (Bum et al., 1958, pg. 225). Based on these results, sums of random variables with finite
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moments are often claimed to be approximately normally distributed. However it is not always true,

below we present a simple result where asymptotic normalitydoes not hold even for sequences with

finite second moments.

LEMMA 2.1. Let{Xi}i≥1 be a sequence of random variables such that the firstn variables(X1, . . . , Xn) ∼
SMNn(0, I, H). Then,

Zn =
1√
n

n
∑

i=1

Xi
d−→ SMN1(0, 1, H). (3)

Proof. By the stochastic representation, the proof is straightforward. DefineXn = (X1, . . . , Xn)
⊤,

thenXn
d
= VUn, whereUn = (U1, . . . , Un) follows a standardn-variate normal distribution. Then,

for all n ≥ 1,

Zn
d
= V

∑n
i=1 Ui√
n

d
= V Z,

whereZ ∼ N (0, 1). Thus,Zn ∼ SMN1(0, 1, H) for all n ≥ 1.

Non-standard CLTs are well known when the second moment is infinite for the class ofα-stable

distributions (see, for instance, Gnedenko and Kolmogorov, 1954; Meerschaert and Scheffler, 2001).

That is, the sum of a number of random variables with power lawtail distributions decreasing pro-

portional to |x|−α (where0 < α < 2, which implies infinite variance) will converge to a stable

distribution as the number of variables grows. By using thisresult, we can only justify stable distribu-

tions as attractors, but in the context of BS distribution, we must also justify other than normal limit

distributions when the involved random variables have finite variances (e.g., Student distribution with

k > 2 degrees of freedom). Lemma 2.1 shows that scale mixture of normals can also be attractors

in CLTs when the involved random variables have a specific structure of dependence. Under com-

plicated conditions, Jiang and Hahn (2003) generalized Lemma 2.1 when the sequence{Xi}i≥1 is

exchangeable.

In what follows, we provide (1) simple conditions (which is readily applied to the fatigue-life con-

text) and a new Fourier-analytic demonstration that sums ofsequences of exchangeable random vari-

ables with finite second moments converge to scale-mixture of normals (a generalization of Lemma

2.1, but a specialized version of Jiang and Hahn, 2003); (2) the rate of convergence in this general

CLT when the absolute third moment is finite; (3) a standardized version which converges to the stan-

dard normal distribution. To the best of our knowledge, all these results are new. First, we introduce

some important results and definitions.

A sequence of random variables{Xi}i≥1 defined in a probability space(Ω,F , P ) is said to be

exchangeable if for eachn,

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (Xπ1
≤ xπ1

, . . . , Xπn
≤ xπn

)
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for any permutationπ = (π1, . . . , πn) of {1, . . . , n}. Let G be the tailσ-field of {Xi}i≥1, i.e.,G =
⋂

n≥1 σ〈Xn, Xn+1, . . .〉, whereσ(X) is the smallestσ-field generated byX. An important result

which will be used in the proof of the below theorem is that an exchangeable sequence of random

variables is conditionally iid givenG (de Finetti, 1937; Hewitt and Savage, 1955). Now, we are able

to enunciate the theorem of this section.

THEOREM 2.1. Let {Yi,j, 1 ≤ j ≤ m}i≥1 be an infinity sequence of random vectors such that

Yi,j = µ
m

+ σ
m
ri,j, with E(ri,j) = 0 and E(r2i ) = 1, whereri = m−1

∑m
j=1 ri,j. DefineXi =

∑m
j=1 Yi,j = µ + σri, thenE(Xi) = µ and Var(Xi) = σ2. Consider that{ri}i≥1 is a sequence of

exchangeable and identically distributed random variables and letG be its tailσ-field.

(i) If γ2 = E(r21|G) < ∞ andE(r1|G) = 0 almost surely, then

Zn =
1√
n

n
∑

i=1

Xi − µ

σ

d−→ √
γ2Z. (4)

(ii) In addition to (i), if γ3 = E(|r1|3|G) < ∞ almost surely andκ = E(γ3γ
−3/2
2 ) < ∞, then

sup
x∈R

∣

∣P (Zn < x)− P (
√
γ2Z < x)

∣

∣ ≤ O

(

κ√
n

)

. (5)

(iii) In addition to (ii), if γ4 = E(r41|G) < ∞ almost surely andE(γ2
2) < ∞, then

Zn

sn

d−→ Z, (6)

wheres2n = 1
n

∑n
i=1

(Xi−µ)2

σ2 andZ ∼ N(0, 1).

As the ultimate cracks are often the balanced nonstandardized sums of many unobserved random

events, this theorem provides a partial explanation for theappearance of the scale-mixture of normal

distributions. Equation (5) gives a more quantitative formof the central limit theorem (4) and equation

(6) shows that standardized sums that satisfy the theorem’sconditions are approximately normally

distributed.

Note that, here{Yi,j}1≤j≤m,i≥1 does not need to be an exchangeable sequence of random variables,

provided that{Xi}i≥1 be. Accordingly, we may assume that the events related to thematerial cracks

are exchangeable just in the cycle levels not in the microscopic ones. From a physical point of

view, we highlight that exchangeable assumption for the crack extensions seems to be much more

reasonable than independency.

From now on, we shall consider just the sequence of crack extensions{Xi}i≥1. Since con-

ditionally to G, X1 andX2 are independent, we have that Cov(X1, X2) = E(Cov(X1, X2|G)) +
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Cov(E(X1|G), E(X2|G)) = Cov(E(X1|G), E(X2|G)). In Theorem 2.1, it is required thatE(X1|G) =
µ almost surely, therefore, it is equivalent to require uncorrelated random variables, i.e., Cov(X1, X2) =

0. If E(X1|G) = µ+ σE(r1|G), with E(r1|G) being a non degenerate random variable, then the ran-

dom variablesX1, X2, . . . will be correlated and Theorem 2.1 will not apply.

Depending on the dependence structure of the crack extensions,γ2 is indeed a random variable.

However, on the one hand, if the sequence{Xi}i≥1 is also independent, then the tailσ-fieldG is trivial

(just contains events of probability zero or one). In this context,γ2 = E(r21|G) = E(r21) = 1 and the

standard CLT applies. On the other hand, if{Xi}i≥1 is not an independent sequence of random

variables, the tailσ-field G may not be trivial and thenγ2 is a non degenerate random variable.

Suppose thatG is generated by a random variables, then we can just writeγ2 = E(r21|s).
In actual problems, we hardly know the dependence structureof the random variables, then it

is almost impossible to derive the distribution ofγ2 = E(r21|G). However, statistical tools may be

employed to test possible distributions based on the observed data (see Section 3.4 of Sanhueza et

al., 2008). If, after a statistical analysis, one chooses the functionH for relation (2) and normality is

not tenable (i.e.,γ2 is not constant), then possibly the crack extensionsX1, X2, . . . have some type of

persistent dependence structure. Notice that, they are uncorrelated Cov(Xi, Xk) = 0 with a persistent

dependence structure, since Cov(X2
i , X

2
k) = Cov(E(X2

1 |G), E(X2
2 |G)) = σ4Var(γ2) ≥ 0 for all

i 6= k. In general, Cov(f̃(Xi), g̃(Xj)) = Cov(E(f̃(X1)|G), E(g̃(X2)|G)) for all i 6= j, wheref̃ andg̃

are measurable functions. That is, the dependence structure between two crack extensions are always

the same independently of how distant they are from each other. This means that the incremental

microscopic cracks{Yi,j, 1 ≤ j ≤ m} and{Yk,j, 1 ≤ j ≤ m} for i 6= k are not independent as

assumed by Birnbaum and Saunders (1969). According to Owen (2006), long dependence structures

for the crack extensions are quite realistic assumptions. The source of this long dependence can be

very complex and hard to establish precisely. It can be mixtures from the material type, environment,

temperature, direction of loading, size and distribution of internal defects, surface quality, geometry

and many others.

3 Examples

As aforementioned, in actual problems, we may employ statistical tests to find the functionH in

relation (2), this is equivalent to assign a limiting distribution for the sequence of crack extensions

{Xi}i≥1. In this section we present a simple but illuminating instance of a model for the crack

extensions which allows interpretations regarding their dependence structure. By using this model,

we can predict the value of Cov(X2
1 , X

2
2 ) based only on the chosen limiting distribution. We apply this

model when the limiting distribution is Student, Laplace, contaminated normal and slash distributions.
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EXAMPLE 3.1. (Model for the crack extensions) LetYi,j = µ
m
+ σ̃

m
ri,j, whereri,j = ajBi, in which

a1, . . . , am are (possible dependent) random variables and{Bi}i≥1 is an iid sequence of random vari-

ables independent ofa1, . . . , am with E(B1) = 0 andE(B2
1), E(a2) < ∞, wherea = m−1

∑m
j=1 aj .

The random variablesa1, . . . , am may be interpreted asm random effects related to the material char-

acteristic, while the random variablesB1, B2, . . . are related to the cycles. Assuming that the events

related to the cracks are independent among the cycles, thenindependence of the sequence{Bi}i≥1

is reasonably justified. In this model, the variation of microscopic cracks are driven by multiplicative

effects from two sources: one related to the cycles and otherrelated to the material properties.

Notice that,Xi = µ + σ̃ri for all i ≥ 1, whereri = aBi. On the one hand, asB1, B2, . . . are

iid random variables, by the standard CLT, we haven−1/2
∑n

i=1(Xi − µ)/σ̃
d−→

√

E(B2
1)aZ, i.e.,

it converges to a scale-mixture of normals. On the other hand, by Theorem 2.1,n−1/2
∑n

i=1(Xi −
µ)/σ

d−→ √
γ2Z, whereσ2 = σ̃2E(a2)E(B2

1) and then, by equating the limiting distribution, we

conclude thatγ2 = a2

E(a2)
almost surely.

Observe that, in this simple model,{Xi}i≥1 is a sequence of uncorrelated random variables

Cov(X1, X2) = 0, but with long dependence. After a straightforward calculation we obtain

Cov(X2
i , X

2
j ) = σ4Var(a2)

E(a2)2
> 0

for any i 6= j (i.e., the dependence ofXj andXi does not decrease when|i − j| increases), where

σ2 = σ̃2E(B2
1)E(a2). Based on Example 3.1, we compute the covariance Cov(Xi, Xj) for Student,

Laplace, contaminated normal and slash limiting distributions.

EXAMPLE 3.2. (Student distribution) Consider Example 3.1 and suppose that a Student distribution

with ν > 4 is the limiting distribution. Then,a−2 d
= χ2(ν)

ν
, E(a2) = ν

ν−2
, Var(a2) = 2ν2

(ν−2)2(ν−4)
and

Cov(X2
i , X

2
j ) =

2σ4

ν − 4
= O(ν−1)

asν → ∞.

EXAMPLE 3.3. (Laplace distribution) Consider Example 3.1 and suppose that a Laplace distribution

is the limiting distribution. Then,a2
d
= Exponential(ν), E(a2) = ν−1, Var(a2) = ν−2 and

Cov(X2
i , X

2
j ) = σ4.

EXAMPLE 3.4. (Contaminated normal distribution) Consider Example 3.1 and suppose that a con-

taminated normal distribution is the limiting distribution. Then,a−2 has discrete distribution, where
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P (a−2 = γ) = ν andP (a−2 = 1) = 1 − ν for γ ∈ (0, 1] and ν ∈ [0, 1]. Notice that,E(a2) =
γ+ν(1−γ)

γ
, Var(a2) = ν(1−γ)2(ν−1)

γ2 and

Cov(X2
i , X

2
j ) =

σ4ν(ν − 1)(1− γ)2

(γ + ν(1− γ))2
= O(ν2)

asν → 0.

EXAMPLE 3.5. (Slash distribution) Consider Example 3.1 and suppose thata slash distribution with

parameterν > 4 is the limiting distribution. Then,a−1 d
= Beta(ν, 1), E(a2) = ν

ν−2
, Var(a2) =

4ν
(ν−4)(ν−2)2

and

Cov(X2
i , X

2
j ) =

4σ4

(ν − 4)ν
= O(ν−2)

asν → ∞.

In summary, we may assume the model proposed in Example 3.1 todescribe the dependence

structure of the crack extensions, therefore, based on the limit distribution one can find an expression

for Cov(X2
i , X

2
j ) for anyi, j.

4 A simple simulation study

The generation of uncorrelated exchangeable random variables is a hard task. In this section, we

consider a multivariate Student distribution, which components are known to be exchangeable and

uncorrelated. Let{Xi}i≥1 be an exchangeable sequence of random variables where the firstn random

variablesX̃n = (X1, X2, . . . , Xn) has standardn-variate Student distribution withν > 2 degrees of

freedom. Its density is

fX̃n
(x) ∝

(

1

1 + 1
ν
x⊤x

)
n+ν

2

.

We know thatX1, X2, . . . , Xn are exchangeable and uncorrelated but not independent random vari-

ables. Here, we will study the limit distributions of the sequences

S1n =

√

ν − 2

ν
Zn and S2n =

Zn

sn
,

whereZn = n−1/2
∑n

i=1Xi ands2n = n−1
∑n

i=1X
2
i . By Bum et al. (1958),S1n cannot converge to

a normal distribution. By Lemma 2.1 and Theorem 2.1, we have thatS1n converges to a univariate

Student distribution withν degrees of freedom andS2n converges to a standard normal distribution.
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Now, assume thatW1, . . . ,Wn are iid random variables having Student-t distribution with ν > 2

degrees of freedom. By the standard CLT

S(I)
n =

√

ν − 2

ν

n
∑

i=1

Wi√
n

converges to the standard normal distribution.

We generate5000 Monte Carlo simulations from multivariate and univariate Student-t withν = 4

degrees of freedom. The sample sizes aren = 100, 500 and1000 and for each simulation we compute

S1n, S2n andS(I)
n . Figure 4 displays normal qqplots of the quantitiesS1n, S2n andS(I)

n , the closer the

points are to the 45% line, the more normally distributed they are. Notice that, as expected,S1n does

not converge to the normal distribution whileS2n andS(I)
n do.

Figure 1: Normal qqplots of the Monte Carlo samples for: (a)S1n andn = 100; (b)S2n andn = 100;

(c) S(I)
n andn = 100; (d) S1n andn = 500; (e)S2n andn = 500; (f) S(I)

n andn = 500; (a)S1n and

n = 1000; (b) S2n andn = 1000; (c) S(I)
n andn = 1000.
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5 Concluding remarks

In this note, we presented a justification for the use of scale-mixture of normals as underlying dis-

tributions for generating families of life distributions.When there exists a persevering dependence

structure for the crack extensions, then the usual Birnbaum-Saunders distribution generated from the

normal one may not be tenable. Instead, life distributions generated from scale-mixture of normals

must be adopted with justification on the basis of central limit theorems for exchangeable random

variables with persistent dependence structure. Moreover, if the variation source of microscopical

cracks is defined as multiplicative effects from a source related to the material and another related

to the stress cycles, we can also interpret the generalized Birnbaum-Saunders distribution within a

physical perspective.
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A Proof of Theorem 2.1

Without lost of generality, takeµ = 0 andσ = 1. From Taylor’s expansion, we have

exp(itX1) = 1 + itX1 −
t2

2
X2

1 + o(|t|2X2
1 )

and

exp(itX1) = 1 + itX1 −
t2

2
X2

1 +O(|t|3|X1|3).

Taking conditional expectations, ifγ2 < ∞ we obtain

E(exp(itX1)|G) = 1− t2

2
γ2 + o(|t|2γ2).

By de Finnetti’s Theorem, given the tailσ-field G, X1, . . . , Xn are iid random variables, then

E(exp(itZn)|G) =
[

E(exp(itX1/
√
n)|G)

]n
=

[

1− t2

2n
γ2 + o

( |t|2
n

γ2

)]n

and therefore

E(exp(itZn)|G) → exp

(

− t2

2
γ2

)
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almost surely. Notice that, for anyt ∈ R, we have

ξn(t) = E(exp(itZn)) = E(E(exp(itZn)|G)) → E

(

exp

(

− t2

2
γ2

))

.

This implies thatZn
d−→ √

γ2Z, whereZ ∼ N (0, 1) andγ2 = E(X2
1 |G). This proves (4).

In order to prove (5), we consider thatγ3 < ∞. Then,

E(exp(itX1)|G) = 1− t2

2
γ2 +O(|t|3γ3)

and

E(exp(itZn)|G) = exp

(

− t2

2
γ2 +O

( |t|3√
n
γ3

))

.

By Taylor’s expansion we arrive at

ξn(t) = E

(

exp

(

− t2

2
γ2

)(

1 +O

( |t|3√
n
γ3

)))

.

Then,

ξn(t) = ξ(t) + E

(

O

( |t|3√
n
γ3 exp(−t2γ2/2)

))

,

whereξ(t) = E(exp(itγ2Z)).

By Lemma 11.4.2 of Athreya and Lahiri (2006), we have, for some constantC0 ∈ (0,∞), that

sup
x∈R

∣

∣P (Zn < x)− P (
√
γ2Z < x)

∣

∣ ≤ 1

π

∫ n

−n

|ξn(t)− ξ(t)|
|t| dt+

24C0

πn
. (7)

Notice that

γ3
π

∫ n

−n

t2 exp(−t2γ2/2)dt ≤
√

1

2π

(

γ3

γ
3/2
2

− 2nγ3
γ2

exp

(

− n2

2
γ2

))

.

Then, plugging this result into (7), by Fubini’s Theorem, wehave that

sup
x∈R

∣

∣P (Zn < x)− P (
√
γ2Z < x)

∣

∣ ≤ O

(

κ√
n

)

,

whereκ = E(γ3γ
−3/2
2 ).

If γ4 < ∞, by Chebychev’s inequality, we have that

P (|s2n − γ2| > ǫ) <
E[(s2n − γ2)

2]

ǫ2
,
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where

E[(s2n − γ2)
2] = E

(

E[(s2n − γ2)
2
∣

∣G]
)

= E

(

E(s4n
∣

∣G)− 2γ2E(s2n
∣

∣G) + γ2
2

)

,

with E(s4n
∣

∣G) = 1
n2

∑n
i=1

∑n
j=1E(X2

i X
2
j

∣

∣G) = 1
n2

(

nγ4 + n(n− 1)γ2
2

)

andE(s2n
∣

∣G) = γ2. Then,

E[(s2n − γ2)
2] =

E(γ4)

n
− 1

n
E(γ2

2)

and, asE(γ2
2) < ∞,

lim
n→∞

P (|s2n − γ2| > ǫ) → 0.

We conclude thats2n
P−→ γ2. By Slutsky’s device, we have thatZn

sn

d−→ Z, whereZ ∼ N (0, 1).

Hence, (6) is demonstrated.
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De Finetti, B. (1937). La Prévision, ses lois logiques, sessources subjectives.Ann. Inst. H. Poincaŕe, 7, 1–68.
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