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Abstract. In this paper we consider the utilization of wavelets in conjunc-
tion with state space models. Specifically, the parameters in the system
matrix are expanded in wavelet series and estimated via the Kalman Filter
and the EM algorithm. In particular this approach is used for switching
models. Two applications are given, one to the problem of detecting the
paths of targets using an array of sensors, and the other to a series of daily
spreads between two Brazilian bonds.
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1 Introduction

This work proposes the utilization of wavelets in state space models. Specif-
ically, parameters in the system matrix are expanded in wavelet series and
estimated via the Kalman filter and the EM algorithm. In particular this
approach can be useful in the case of switching models.

State space models are currently a powerfull tool in many areas of statis-
tics, econometrics and finance. They can model a great variety of time series
structures, including missing and uneven observations and allow the use of
the Kalman Filter (KF) to compute the likelihood in a simple way. Also,
non-linear and non-Gaussian models can be entertained. There is a vast
literature on the subject and we refer to Harvey (1990), West & Harrison
(1997), Shumway & Stoffer (2000) and Kitagawa & Gersch (1996) as general
references where further references and discussion can be found.

Wavelets are a contemporary tool, alternative to classical Fourier anal-
ysis. Their advantage is that they are localized in time (or space), being
useful for the analysis of non-stationary processes. Good mathematical in-
troductions to wavelets are Chui (1992) and Meyer (1993). For applications
in statistics see Vidakovic (1999) and Percival & Walden (2000).



The plan of this article is as follows. In section 2 we review state space
models, the EM algorithm and wavelets. In section 3 we consider the case
of models with change in regimes and two applications are given. The gen-
eral situation is discussed in section 4. We conclude the work with some
discussion and comments.

2 Background

In this section we provide some background information on state space mod-
els, on the estimation of parameters and on wavelets. In most of the cases the
estimation methods use maximum likelihood estimators or Bayesian meth-
ods. We do not discuss the latter here and the interested reader is referred
to Harrison & Stevens (1976) and West & Harrison (1997).

2.1 State Space Models
Consider the model defined by the equations

y = Fib+ vy, (1)
0 = Gibr1 + wy, (2)
fort =1,...,T, where y; is an r X 1 vector of observations, F; is an r X p

matrix (called the system matrix), 6; is a p X 1 vector of unknown states
and G; is a p X p transition matrix that describes how the states behave
across time. The observation error v; and the error w; associated with the
state vector are assumed to be independent Gaussian white noises, with zero
means and covariance matrices V; and Wy, respectively. For t = 0 we also
assume that 6y is normal, with mean p and covariance matrix ¥. In this
way, the process y; is completely specified by the so-called characterization
vector ¢ = (Fy, Gt, Vi, W), in the notation of Harrison & Stevens (1976).
This vector may depend on a set of unknowm parameters that will have
to be estimated. For example, an ARMA(p,q) model with time-varying
coefficients can be put in the framework (1)-(2). Other instances of the
models are the structural models of Harvey (1984) and the dynamic linear
models of Harrison & Stevens (1976).

The KF is a recursive procedure used to compute the optimal estimator
of the state vector at any instant of time, having information up to time ¢,
namely Y; = (y1,...,y:). The procedure may be viewed as two-staged where
the first step obtains the best estimate of observation at time ¢ using the



information up to time ¢ — 1 (corresponds to obtaining the best prediction
through the prediction equations) and in the second step, the knowledge
of the new available observation is used to update the prediction obtained
in the previous step (this is done through the updating equations). The
parameters @, u and X are assumed to be known for all ¢. The mean of 6,
obtained by the KF, under normality, is an optimal estimator in the sense
of minimizing the mean square error. If we do not have normality, the
KF provides the optimal linear prediction (Harvey (1990)). Even with the
normality assumption the KF does not provide robust estimates. Meinhold
& Singpurwalla (1989) present a method to robustify the KF.
The following notation will be used, with ¢t > s:

.’L'f = E(9t|y17"'7y8)7 (3)
Pts = Var(9t|y1, s ays)a (4)
Pl 1 = Cov(l,0i1lyr,- .., ys). (5)

Then z! and P} will be the estimators derived from the KF, z] and
PP t < T are the smoothed estimators of minimum mean square error,
based on all observations yi,...,yr, and z] , P}, t > T are the predictors
of 9,5.

We do not present here the equations of the usual KF. Details can be
found in Anderson & Moore (1979). In what follows, modified forms of the
KF equations will be employed.

For references on non-linear and non-Gaussian state space models see
Fahrmeir (1992), Carlin, Polson & Stoffer (1992), Carter & Kohn (1994),
Kitagawa & Gersch (1996) and Durbin & Koopman (1996).

2.2 Maximum Likelihood Algorithms

Under the assumption of normality the log-likelihood can be written in the
innovations form as

T T T,
log L = D) log 2m — (1/2) Zlog 1Ci| — (1/2) ZVtFt ez (6)
t=1 t=1

for the observations y1,...,yr . See Brockwell and Davis (1991). In (6) we
implicitly assume that F} is invertible for all ¢ and

Cy = Var(y) = FP/"'F, +V,,



ve = Yt — Uye—1,
Gim1 = E(lYe 1) = Fap .

Briefly, the procedure for obtaining the maximum likelihood estimates
(MLE) is the following;:

Step 1. Specify initial values of ¢, 4 and 3.
Step 2. Apply the KF.

Step 3. Compute (6) and then use the EM algorithm to update ¢; use some
other method to update p and ¥ (see Harvey (1990) and Shumway,
Olsen & Levy (1981) for details).

Step 4. Iterate until convergence.

The form of the EM algorithm to be used here is the one given by
Shumway & Stoffer (1982) and presented in Appendix A.

2.3 Wavelets

We now turn to some ideas on wavelets. The novel idea on wavelets is that
they are localized in time (and space), contrary to properties of trigonometric
functions. This behavior makes them ideal to analyze nonstationary signals.
Fourier bases are localized in frequency but not in time: small changes in
some of the observations may induce substantial changes in almost all the
components of a Fourier expansion, a property that does not carry over to
a more general wavelet expansion.

It is convenient to start with a father wavelet or scaling function ¢, such
that

$(t) = V2D Lpp(2t — k) (7)
k

and usually normalized as [°0 ¢(t)dt = 1. A mother wavelet 1 is then
obtained through

P(t) = V2 hpp(2t — k), (8)
k
where ¢; and hy are related through

h = (=% . (9)



The equations (7) and (8) are called dilation equations. The coefficients
Ly, hy are low-pass and high-pass filters, respectively, which appear in the
so-called quadrature mirror filters, used in fast algorithms to compute the
wavelet transform.

We assume that these functions generate an orthonormal system of
Lo (R), which we call {¢jo 1 (£)}U{415(8)} 5> o,k With ¢y k(t) = 270/ (200t
k), ¥jr(t) = 21/24p(27t — k), for j > jo and jo is the coarsest scale. Some
properties may hold for these wavelets, as the admissibility condition [*_(t)dt =
0, or that the first (r — 1) moments of 1) vanish, for some fixed » > 1. The
degree of smoothness of 1 is then provided by r.

For any f € Lo(R), we may then consider the expansion

o

f&)= Y ardior(t) + > i Bixix(t), (10)

k=—oo j>jo k=—o00

for some some coarsest scale jg, and where the true wavelet coefficients are
given by

oy = /_o:o F@)djor(t)dt, Bjx = /_o:o F&)n()dt, (11)

following the orthonormality.
An estimate will take the form

o0

i = S b+ S Bt (12)

k=—o0 Jj>jo k=—00

where the &y, B;; are estimates of oy, ;i respectively.
Several issues are of interest here:

(i) the choice of the wavelet basis;

(ii) the choice of a thresholding policy;

(iii) the choice of the parameters appearing in the thresholding scheme;
(

iv) the estimation of the scale parameter (noise level).

We discuss briefly (i) now. For further details on (ii)-(iv) see Morettin
(1997).

Concerning the choice of the wavelet basis, some possibilities are the
Haar, compactly supported wavelet bases (Daubechies (1992)), complex



wavelets (Morlet, or modulated Gaussian), Mexican hat (second derivative
of Gaussian), Shannon, Meyer, etc.

The form of the signal to be analysed may lead to a particular basis, for
example the Haar which is useful for categorical-type signals. It is based on

o) = 1,0 <t <1 (13)
and 1, 0<t<1/2
_ ) St <
wit) = {—1, 12 <t <1 (14)
and the expansion is then
J 271
ft) = a0 + DD Biwtir(t) (15)
§=0 k=0

In practice the time period of observation will be rescaled to the unit interval.

In this paper we will use the Haar, Morlet and Shannon wavelets. These
are generated in order to get orthonormal systems. The Morlet wavelet has
mother function

¢(t) — eiwte—tZ/Z’
where 1 = v/—1 and w is some fixed frequency. The Shannon wavelet has
mother function

sin(7t/2)
P(t) = a2

Figure 1 shows the plots of these wavelets. Several software packages are
now available for wavelets analysis in statistical problems. We mention the
module S+WAVELETS of SPlus (Bruce & Gao (1996)), WaveLab (Donoho,
Huo, Duncan & Levi-Tsabari (2000)) and Wavethresh (Nason & Silverman
(1994)). We have developed our own programs in S and Fortram 90 to
perform the applications of the paper.

cos(37t/2).

3 Models with Switching

3.1 The model

One way of modeling changes of behavior in time is through the use of
dynamical linear systems in the form of state space models. We will fo-
cus on a proposal by Shumway & Stoffer (1991). These authors consider the
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setup (1)-(2) plus the assumptions made therein. To incorporate a switching
structure in the system matrix F}, it was assumed that there are m possi-
ble configurations, which are the states of an independent non-stationary
process governed by the probabilities

m(t) = P(Fy = M), 0=1,2,....m, t=1,...,T, (16)

independently of Fi,..., F;_1 and past history y1,...,y:_1.
Important piece of information about the current state is given by the
filtered probabilities for the state £,

mo(tt) = P(F, = M{|Yy), (17)

for Ys = (y1,-.-,9s), s=1,...,T.

Shumway & Stoffer (1991) obtain estimates for the state vector and for
the probabilities associated to the form of F}, using the KF and a pseudo-
EM algorithm for the parameter estimation. Kim (1994) extended this idea,
introducing a dependence in the process of change of regime and allowing
for a variation to occur in F} as well as in the transition matrix G;. Another
reference is Hamilton (1989).

Following the approach of Shumway & Stoffer (1991) we propose a model
for the probabilities my(t) using wavelets, which describe the variation of
these probabilities along time. In order to guarantee that the estimated
probabilities lie in (0,1) we use the logistics-type parametrization

exp{re(t)}

me(t) = S exp{ri(t)}’

L=1,...,m, (18)
where

re(t) = Z B, (t)T), £=1,...,m —1, ra(t) =0, (19)

n=1

or, equivalently,

exp{} ", Bg%n(t/T)} L1
Ty (t) = 1+Z?;_11 exp{lziééz)wn (t/T)} ) ) ) s (20)

_ . : , l=m.
L+ exp{ 0, B (t/T)}

Here we have denoted by s the total number of parameters (3, ; associated
to the wavelets 1, 1 (t/T'), according to the notation in section 2.2.



3.2 Estimation of Parameters

The estimation of parameters of the model proceeds as follows.

Stage 1. Estimation of the state vector 6;
In this step an extension of the classical KF, given in Shumway & Stof-
fer (1991), is employed and uses estimates of the filtered probabilities
me(t|t). See Appendix B for details.

Stage 2. Estimation of ﬂr(f),V}, Wi

Here the EM algorithm is used. Compute the log-likelihood of 0y, . . . , O,
Yi,---,Yyr, With (0g|Dg) ~ N(p,2), where Dy is the information set
at time ¢t = 0:

logL = —(1/2)1og|%| - (1/2)(00 — 1) = (60 — 1) — (T/2) log |W|

T
— (1/2) Y°(0: — Gibr1) Wit (01 — G1b—1)
t=1

T m
+ YD I(F = My)log(m(t)) — (T/2)log |Vi| (21)
t=14¢=1
T m
- (1/2)> Y I(F, = My)(y, — Fi0,) V, My — Fi8y),
t=1¢=1

where I(-) is the indicator function. See Appendix C for the details of
steps E and M of the algorithm.

3.3 Applications

Consider first an example of Shumway & Stoffer (1991), where the problem
consists of detecting the paths of targets (6;) using an array of sensors (y;).
It is not known, at a given instant of time, which target was detected by
a given sensor. Here F; will represent the changes in position of a target.
The authors considered m = 10 possible matrices F};, shown in Table 1. For
example, for M; we have

=

|
==
O OO
O OO



Table 1: Possible matrices F;

Matrix | yy, Yo,  Yis

meaning that all three sensors detected target 6y, .

In this situation we take Gy = G, V; =V and Wy; = W as the matrices

1.005 O 0 0.0625 0 0
G = 0 0990 0 , V= 0 0.0625 0 ,
0 0 1.000 0 0 0.0625
0.0025 0 0
W = 0 0.0025 0
0 0 0.0025

Also, let 4 = (5,5,5), and T = 100. As an example, we take Ms, for
1 <t<30and 50 <t <69 and My, for 31 <t <49 and 70 <t < 100. We
present the estimation for four models: The model entertained by Shumway
& Stoffer (1991), which considers the probabilities associated to the matrices
F; as 0.5, and the others which use Haar, Morlet and Shannon wavelets to
model these probabilities. Here we also take s = 3, that is, considered

10



Series 1 Series 2 Series 3

2 3 4 5 6
2 4 6 810

2 3 4 5 6
2 4 6 810

2 3 4 5 6
2 4 6 810

2 3 4 5 6
2 4 6 810

Figure 2: Plots of the series and respective estimates for the several models.
(a) Shumway and Stoffer (b) Haar (c¢) Morlet (d) Shannon

the first three wavelets with scale factors 7 = 1,2 and translation factor
k=1,...,2971. To arrive at the estimates of the probabilities 7,(t) a non-
linear system with s = 3 equations had to be solved.

In Figure 2 we have plots of the series and predictions from the four
models indicated above. Figure 3 plots states and respective estimates. We
can see that the results are quite good. Figure 4 shows the estimates of the
probabilities m(¢) and 7 (¢|t). We see that the Morlet and Shannon wavelet
models captured the differences in M5 and Mg manifested in 75(¢) and 79(?).
Table 2 presents the estimation results obtained.

11



State 1 State 2 State 3
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Figure 3: Plots of the states 6;,,6;, and 6;, and respective estimates for the
several models. (a) Shumway and Stoffer (b) Haar (c¢) Morlet (d) Shannon
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Figure 5: Plot of the daily spread

We consider next an application of the switching model to a series with
autoregressive dynamics, namely the daily spread between Brazilian C-bond
and Par-bond.

Let ¢; be the closing price of the C-bond on day ¢ and p; the correspond-
ing price of the Par-bond. The daily spread is defined to be y; = ¢;/p;.
We have T' = 476 observations from January 21, 1994 and March 13, 1996.
Figure 5 plots the series. Previous analysis of the series suggests that it os-
cillates around a mean level of about 1, 100, displaying autocorrelation in its
dynamics, in the sense that the series drifts around this mean level through
short drifts. Market factors that influence both series cause this behavior.
Basically three regimes are noticed: the first, when the series oscillates at a
level inferior to the global mean level (of short duration); a second regime,
for which the series oscillates around the global mean level (longer duration);
and finally a third regime, when the oscillations are around a level superior
to the global average (short duration).

Take two states for Fy: F; = 1 with probability P;(¢) and F; = 0 with
probability P»(t). The probability Pj(t) will be modelled by a wavelet ex-
pansion with three coefficients, 81, B2 and B3. We use the same wavelets
as before. In order to obtain the mean and standard error of the estimates
we use a bootstrap procedure as developped in Stoffer and Wall (1991). We
refer to this work for details. For each model we simulate 1,000 bootstrap

14



Table 2: Results for the example using the models Shumway & Stoffer
(1991), Haar, Morlet and Shannon wavelets, respectively. (*) Model with
larger log-likelihood.

Parameters | Shumway Haar Morlet Shannon
& Stoffer
Tteration 51 51 51 51
log-likel. -98.4054 | -97.4826 | -88.1812 (*) | -95.4079
G111 1.0035 1.0036 1.0043 1.0046
Goo 0.9376 0.9380 0.9401 0.9398
Gs3 0.8732 0.8729 0.8686 0.8655
\%E 0.0930 0.0927 0.0887 0.0866
Vaa 0.0487 0.0487 0.0473 0.0460
Va3 0.0685 0.0683 0.0662 0.0646
Wiy 0.0164 0.0166 0.0185 0.0198
Wao 0.0184 0.0184 0.0189 0.0194
Wis 0.0387 0.0389 0.0419 0.0440
B - 0.0206 0.6694 1.4428
B2 - 0.0291 0.3199 -0.0876
B3 - 0 0.5935 1.0337

15



replicates. In Figure 6 we have the estimated series, states and probabili-
ties. For the Morlet and Shannon wavelets the probabilities P; (¢) and P(¢)
show a variation across time which mimic changes of the series. The Haar
wavelet estimates both probabilities around 0.5. For all models the filtered
probabilities are equal to 1 for P;(t) and 0 for Py(?).

Figure 7 shows the histograms for the 1,000 bootstrap samples for each
parameter and each model. We see that there was a concentration of sam-
pled values around a single interval for G¢, V; and W;. There was a great
dispersion for the wavelet coefficients, with isolated groups. Further work is
needed here for a more detailed study of the distribution of these estimates.

4 A General Formulation

In order to model change in the system matrix F; we can consider its ex-

pansion in wavelets. Assume F; = [F} u’v)], the model (1)-(2) as described
before and assume further that r =p =1, G, =G, V; =V and Wy = W.
Therefore

Fy =3 viktbin(t/T)- (22)
j k
Replacing as before the indices 7, k by a unique index £ =1, ..., s where
s is the total number of v, ;’s, we are led to solve s equations in the form
S

T T
> [y pe(t/T)] = D_IC(Q_(Rivhi(t/T))4pe(t/T)] = 0, (23)
t=1 t=1

=1

for £ =1,2,...,s, where z] and P are as in (3)-(4) and C; = P/ +z] (z])".
We can write the system as Z4 = U, where the (i, )-th element of Z

is Y7, Cupi(t/T);(t)T), 4,5 = 1,...,8, 4 = (F1,---,7s) and the i-th
element of the vector U is Y-, yuxl 9 (t/T), i =1,...,s.

If the inverse of Z exists then 4 = Z71U.

(i) Estimate of G:

A T T
G=(0_A)'O_ By,
=1 =1

_ pT T T _ pT T T T pT 75
Where At = Pt—l =+ xt—l .’L‘t_l, Bt = Pt,t—l =+ :I,‘t .’L‘t_l, and :I)t 7Pt a.nd Pt,t—l
are obtained using the Kalman smoother.

16
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(ii) Estimate of W:

’ﬂ

(1/T) Y_[C, — 2B,G; + AG2).
t=1

(iii) Estimate of V:

T
= (1/T) Y [(ys — Fraf ) + P F),
t=1

where

Fy =" Yntpu(t/T).
n=1

For this situation the application of the EM algorithm is done in two
stages, through a profile likelihood approach (see Richards (1961), for de-
tails). Here, W is the perturbation parameter to be estimated in the first
stage of the procedure and the remaining parameters are estimated in the
second stage.

To illustrate the methodology, we have done a simulation using Haar
wavelets in (22). The estimation depends on the initial values given for W
in stage one. This being the case, we estimated models that assumed four
initial values for W: 0.001, 0.01, 0.1 and 1. We generated T' = 256 values
and fitted models with the largest scale J varying from 2 to 6. We fixed
the following values for the parameters: G = 1,W = 0.16,V = 0.25. We
report in Table 3 and Figure 8 the case with J = 2, that is, using three Haar
wavelets. We see that the results are very reasonable, except for the initial
value W = 1.

5 Comments

In this work we have proposed the use of wavelets to model parameters
present in the system matrix F; of a state space model. In particular we

19



Table 3: Results obtained for the example using models with Haar wavelets,
J = 2, for several initial values of W. (*) is the best model according to
BIC.

W | Iteration | -2logL W A% Gy BIC
0.001 11 276.3841 | 0.1145 | 0.5673 | 0.9974 288.4254
0.01 11 275.9883 | 0.1645 | 0.5589 | 0.9972 288.0296
0.1 11 275.8095 | 0.1976 | 0.5563 | 0.9971 | 287.8507 (*)
1 11 439.0225 | 24.6767 | 0.8286 | 0.9896 451.0637

Series State System Matrix

Figure 8: Plots of the series y;, state 6; and system matrix F; (solid line) and
respective estimates (dashed line) for the four models, using Haar wavelets
with J = 2 and 4 initial values. (a) W = 0.001 (b)) W =0.01 (¢) W =
01 (dW=1

20



have dealt with the case of time series with switching, for which certain prob-
abilities can be expanded in wavelets. Another possibilty is to use wavelets
to model the transition matrix G;. This situation will be considered else-
where. Simulations made suggest that the proposal leads to useful results.
The use of the Kalman filter associated with the EM algorithm has proved
to be a good combination for the purpose of parameter estimation. We have
considered also, through a real example, the problem of obtaining standard
errors for the estimates. This can be done using the bootstrap procedure as
suggested by Stoffer & Wall (1991).

Acknowledgement. We would like to thank a referee for comments that
led to the improvement of the paper.
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Appendix A: The EM Algorithm

The Expectation-Maximization algorithm (or EM algorithm) is a non-linear
optimization algorithm appropriate for applications involving non-observed
components or observations irregularly spaced in time. It is an iterative
procedure for computing the maximum likelihood estimator when a subset
of the total set of data is missing.
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Dempster, Laird & Rubin (1977) demonstrated the applicability of the
EM algorithm and popularized the method in statistics. In the usual formu-
lation of the algorithm, the vector of complete data is made of the observed
series (Y) and of the non-observed process (#). In several applications 6
consists of a “latent” process.

In the state space model, the data ¥1,...,yr form the observed vector
and 61, ...,0p is the non-observed state vector. The application of the EM
algorithm for this model requires the minimum mean square error estimate
of the state vector, based on the set of all observations z;,t = 1,...,7. This
estimate will be denoted by :c , t =1,...,T and its covariance matrix by
Pl t=1,...,T. These are obtalned by the smoothing algorithm, requir-
ing one step forward and another backwards (Kalman filter and smoother,
respectively).

Following Shumway & Stoffer (1982), the EM algorithm for the state
space model can be put as follows:

E STEP : Compute the expectation of the joint log-likelihood of 6y, . . . , 01
and y1,...,yr, given yi, ..., yr, obtaining

E(logL|y17"'7yT) = H(M’E’FaGaV’W)'

M STEP : Maximize H (u, 3, F, G, V, W) with respect to the parameters
¢ = (F,G,V,W). The solutions are

F = DC},
G = BA™,
VvV = _I(C—BA_lB’),

W= Y [ P (uo Pt 4 PR
t=1

where

L (PEy +alal),

B=yT 1(PH +alaly),
C=5L, (PF +sfal"),

D=3 a{y; and
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Pl Pt,Tt,l, Pl zl' are obtained through the Kalman smoother.

Under the Bayesian viewpoint, the EM algorithm is an iterative method
to compute the mode of the posterior probability distribution. Let ¢* be the
mode (in the iteration 7) of the observed posterior distribution p(¢|Y"). Let
p(¢|Y,0) the complete posterior and p(#|¢®,Y) the conditional predictive
distribution of the latent process 6, conditional to the mode at iteration
and to the data. The step E consists in computing

Q. ¢') = Alog[p<w|x0)]p<9\¢i,Y) db;

that is, the expectation of a log[p (¢ |Y, )] relative to p(6|¢',Y).

In the M step the function @) is maximized with respect to ¢ to obtain
(pH—l_

Appendix B: Estimation of the Non-Observed State
Vector 6;

We will utilize the KF equations and smoother that yield least squares esti-
mators. These equations consider a weighted combination of the m possible
realizations of F; and are an extension of the classical equations of the KF.
The derivation of the equations can be found in Shumway & Stoffer (1991)
and uses estimators for the filtered probabilities 7;(¢|¢) given by the model.

Consider the conditional probability m(t|t) given by Bayes theorem
(posterior probability):

Wﬁ(t‘t):P(Ft:MZ|Y;f)a with Y%:{ylaayt}a

mo(t) fo(t|t — 1)
mymi(t) fi(t |t — 1)

where f,(t|t — 1) is the conditional density of y; given F; = M, and the
past. For the case of the multivariate normal it is assumed that

me(t|t) =

fo(t|t —1) ~ N(Mgzi™ " Sy = MyP/7 M)+ V),

where
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(i) 2! = B(6 | Yi-1) and
(ii) P! = cov(6; | Y;_1), obtained by the KF.

The following equations are obtained by the KF and smoother:

z ' = B0y | Yi1) = Gyai_y, (23)

P!™' = Var(0, | Y;_1) = G, P~} G, + W,

m
= B0, | Y1) = ai "+ ) mlt | t) Koy, — Myay™")
=1

and

m
= Var(6; | V) Z (t|t)(I — Ky My)PF Y,

where Yt = {y1, Y2, Y1}, Ko = PFTVM,(MyP{~ M, + V)~ is the filter
gain, 9 = y and P§ = 3.

Smoothing equations: for t =7,7 —-1,...,1:

oy =z 1+ T (o] -2
and
pr | =P+ T (P I — P 1)Jt 1
where

Ji-1 = P7} Gy (P,

P, o= Pl Jy o+ Jia (PL 1 -Gy P gy
and

Py =0 m(T | T)(I — Kpg My)Gy Pl

I = identity matrix.
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Appendix C: Estimation of parameters related to
the wavelets ,Br(f), the covariance matrix of errors,
Vi, W; and transition matrix G;

Use the EM algorithm. Initially, compute the joint complete log-likelihood
of By,...,0r, y1,..., yr with (6y | Dy) ~ N(u,X) and Dy the information
set at t = 0:

logL = —(1/2)10g|53|—(1/2)(90—M)'Zfl(%—u)—(T/2)10g|Wt|

—(1/2) Z — Gy ) W0, — Gi6;_1)
t=1

T m
+3 N I(F, = M) log(m(t)) — (T/2) log | Vi
t=1¢=

T m
—(1/2) Y I(F = M) (y: — F10,)'V; (s — Fib)
t=14¢=1

—

where I(F; = Mp) is an indicator function.

Since log L depends of the series 6;,t = 1,...,T which are non-observed,
we apply the EM algorithm conditional on y1,...,yr.

E STEP:

Let H = E(log L|y1,-..,yr), that is, the conditional expectation of the
function log L and let E(I(F; = My) |Yr) = me(t|T).

Then

2)log |3| — (1/2)tr[S~H(PT + (2f — p)(ad — )]
2) log |Wy| — (1/2)tr[W; *(C — BG, — GiB' + G4 AG,)]

H = —(1
—(T

~2

+ iw (] T) log(me(t)) — (T'/2) log |V

14=1

MH

-
Il

T m
—(1/2)trD YV et T) ((ye — Mea ) (e — Mezl) + MoPFM,)],
t=14¢=1
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where A = Y0 (PEy + «f yxl’y), B = Liy(Ply +afzly), C =
ST (PF + zl'2]") and I, Pl', and Pt’t_l are obtained by the Kalman
smoother.

Shumway & Stoffer (1991) use what they call “pseudo-EM” due to the
replacement of my(t|T") by m¢(t|t). The backwards recursion of the filtered
probabilities involves an integration of mixtures of normals and this may
be difficult. The authors still suggest the utilization of Monte Carlo inte-
gration techniques as the Gibbs sampler, though they use the mentioned
approximation.

M STEP:

Maximize H with respect to Gy, V3, W; and ﬂ,@ which is equivalent to

solving the following equations, for t = 1,...,T":
OH OH OH o
— = — =0, ——==0 and =0
aG; oW, v, T g0

(i) Estimate of Gy:

G, = BA™".

(ii) Estimate of W:

= (1)T)(C — BG, - G,B' + G,AG,).

(iii) Estimate of V;:

T m
= (1/T) ZZW tt)[( Mg:z;tT)(yt—Mgth)l—{—MgﬂTMé].
t=1/¢=1

(iv) Estimation of ﬂ,(f):
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To Maximize H with respect my(t), consider

exp(Yn—1 60 9u(t / T))

) S T (e Oty T
and
T (t) = 1 m—1 : 6) '
+ 2%y exp(X—1 B Pn(t/ T))
Then

m—1 s
log(me(t) [Z B O ( t/T)] —log(1+ Y exp{_ By (t/T))},

n=1 =1 n=1

£=1,...,m—1and

m—1 s
log(mm(t)) = —log ll + Z exp(z ﬁn(i)z/)n(t/T))] .

=1 n=1

The partial derivative of H with respect to ,Bg), for=1,...,m—1and
r=1,...,s, is given by

where

t=1¢=1 t=1 Le=1 n=1
m—1 s m
log(1+ > exp( O (t/T)) Z t|t]
=1 n:l =1
and
9 -1
DS il |9 og(malt)) = malt | £t/ T) (1+ S exp(3 O t/T)))
oBr” =1 = n=1
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xexp(3 BaOult ) ) (t ] T).

n=1

It is necessary to solve a non-linear system with (m — 1)s equations for

£=1,....m—1landr=1,...,s, where
~ (£
m; (t/T)
’B(Z) /62 ’ Xt _ ¢2( /T) :
A ¥s(t/T)

zT: (exp(X{6 ) (¢ / T)

==~ —m(t| ) (¢ /T)| = 0.
=1+ X7 exp(X]A0) ot [ £ (t/ T)

In order to solve this system we have to use a numerical procedure.
Special Case: m =2, £ = 1.

B _exp(Xn_q1 Batn(t/T))
m(t) =7lt) = exp(Z;ilzl Buta(t/T))’

m(t) = 1-m(t)
exp(Shy Butha(t/T))
1+ eXP(ZiL:l /8n¢n(t / T))
1

1+ eXP( :z:l ﬂn"/’n(t/T)) ’

m(t)fi(t]t—1)
m(t)(fr(t]|t —1) = fa(t|t = 1)) + fa(t|t = 1)’

m(t]t) = n(t|t) =

and

(1 —w(@))f2(t]t —1)
@)1t —1) = faot[t — 1)) + fa(t|t — 1)

7T2(t|t):7r
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The system to be solved is:

T
Z [eXP Zn 1 ﬁn@bn(t/T))"pT(t/T) (t | t)djr(t/T) =0,

1+ eXP(En 1 ann(t/T))

r=1,...,s.

Considering X; as before and 8 = (81, fa, ..., Bs) , we have

T T
> (ERE") = Srtione,
X t

t=1 t=1

T eprt ¢s(t/T)> B T
t—21< 1+ exp(X}P) - ;W(”tﬁﬁs(t/T).
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