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Figura da capa: The infinite monkey theorem

The infinite monkey theorem states that a monkey hitting keys independently and at
random on a typewriter keyboard for an infinite amount of time will almost surely type
any given text, including the complete works of William Shakespeare.
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Prefacio

An old joke says that “if you copy from
one book that is plagiarism, but if you copy from ten books, that is
scholarship.” From that viewpoint this is a scholarly book. If you bought
all these books you would spend more than a thousand dollars but for a
fraction of that cost you can have this book, the intellectual equivalent
of a ginsu knife.

Richard Durrett, from the preface of his 1996 book.

Partes destas notas foram organizadas ao longo dos anos em que o primeiro
autor ministrou a disciplina Probabilidade Avangada, para alunos de doutorado do
Programa de Pés Graduacao em Estatistica do IME-USP e, o segundo autor, no
Programa de Pés Graduagao em Estatistica do IMECC-UNICAMP. Outros tépicos
foram acrescentados para semindrios realizados com o Grupo de Séries Temporais
do IME-USP.

H& vérios excelentes livros sobre probabilidade em nivel avancado. Alguns,
cléssicos, como Loeve (1963), Chung (1968) e Breiman (1968). Outros, mais con-
temporaneos, como Ash e Doléans-Dade (2000), Billingsley (1995) e Durrett (2019).
Entao, por que mais um livro? Basicamente, porque quase nao ha literautura em
Portugués sobre o assunto e o primeiro autor de hd muito se preocupa com isso.

Os livros citados acima, é claro, diferem entre si sob varios aspectos, mas em
comum trazem parte substancial da teoria da medida, ou na forma de capitulo
ou apéndice. Além disso, alguns deles, apresentam nimeros de pédginas acima de
quinhentas. O presente livro é mais modesto, nesse iltimo sentido, pois um objetivo
foi colocar material que pudesse ser ministrado em dois semestres.

O leitor deste livro deverd ter tido uma disciplina de probabilidade em nivel
de mestrado, como em James (1981) e, idealmente, uma disciplina sobre medida
e integracao, ou uma disciplina avancada de analise real. Anexamos, no final do
livro, um apéndice contendo conceitos basicos dessas disciplinas necessédrios para o
melhor entendimento do texto. Respostas a problemas selecionados também sao
adicionados apds as Referéncias.

vii



viii SUMARIO

Ao prepararmos nossas aulas, nos baseamos em livros existentes sobre o assunto,
citados nas Referéncias, em especial Chung (1968) e Breiman (1968), bem como as
notas de aulas e dos semindrios mencionados acima. Nesse sentido, parafraseando
Durrett, na citagdo acima, afirmamos que nenhum resultado apresentado no texto é
de nossa autoria.

Finalmente, o material incluido e a ordem de apresentagao sao resultados da in-
fluéncia de trés disciplinas cursadas pelo primeiro autor na University of California,
Berkeley, ministradas por Warry Millar, recentemente falecido. Naqueles dias, suas
aulas e os livros de Chung e Breiman foram as referéncias que guiaram os estudan-
tes. Em seu obitudrio (Institute of Mathematical Statistics, April 2025), lemos que
“Warry was outstanding as a lecturer ... and had an almost magical ability to pace
his lectures so that students could take effective notes, while he kept the dialogue
flowing naturally”.

Este livro pode ser usado para um curso de um ou dois semestres, sendo que,
em cada caso, o professor devera escolher os capitulos mais convenientes. Para um
curso semestral recomendamos os capitulos 1, 2, 3, 4, 6, 7 e 8. Para dois cursos
semestrais, recomendamos, no segundo, os capitulos 5, 9, 10, 11 e 12.

Pedro A. Morettin, Sao Paulo,
Christophe F. Gallesco, Campinas,
dezembro de 2025
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Capitulo 1

Preliminares

Neste capitulo, introduzimos espagos de probabilidade e varidveis aleatorias.
Para melhor entendimento dos conceitos e propriedades apresentados, introduzimos
nocoes bésicas sobre medidas, integrais e alguns espagos de fun¢des no Apéndice. As
referéncias pertinentes a esse capitulo sdo Kolmogorov (1933, 1956), Chung (1968,
1974), Breiman (1968, 1992) e Billingsley (1995).

1.1 Fundamentos

As origens da teoria de probabilidades podem ser encontradas em trabalhos de
Fermat, Pascal, DeMoivre, Laplace e outros em meados do século 17. Huygens
escreveu o primeiro livro sobre o asunto em 1657. O interesse na época residia em
jogos de dados, baralhos etc. A primeira versao do teorema de Bayes foi publicada
em 1763.

H& pelo menos quatro abordagens para a definicdo de probabilidade. A pri-
meira, chamada de definicao classica, devida a Laplace (Laplace, 1795), que trata
de espagos amostrais finitos, no qual os eventos elementares tém a mesma probabi-
lidade de ocorrer. A segunda, usa o conceito de frequéncia relativa de ocorréncia
de determinado evento em um grande nimero de repetigdes. Veja von Mises (1931,
1939). A terceira, usa o conceito de probabilidade subjetiva, que Gnedenko (1989)
chama de de uma medida do “grau de certeza”do observador. Referéncias para esse
assunto sao de Finetti (1974) e Jeffreys (1939). Finalmente, a quarta abordagem
refere-se & construcao axiomatica da teoria de probabilidades, devida a Kolmogorov
(1933), cuja tradugao em inglés estd em Kolmogorov (1956).

A construgao axiomatica de Kolmogorov comeca com um conjunto arbitrario
nao vazio 2 e F um conjunto de subconjuntos de §2.

Axioma 1. F é uma &lgebra (veja o Apéndice A.1);

Axioma 2. A cada evento A de F esta associada um nimero real nao negativo,

1



2 CAPITULO 1. PRELIMINARES

P(A), chamado a probabilidade do evento A;
Axioma 3. P(Q2) = 1;

Axioma 4. Se A e B sao eventos disjuntos (ou mutuamente exclusivos), entao

P(AUB) = P(A) + P(B). (1.1)

Desses axiomas podemos deduzir varias propriedades e resultados que podem ser
encontrados em livros como Gnedenko (1989), mas nao serao considerados aqui.

A seguir, considera-se F uma o-algebra sobre € (veja o Apéndice A.1) e adiciona-
se o seguinte axioma:

Axioma 5. Para uma sequéncia decrescente de eventos A, € F, com A, | &,
a seguinte relacao vale
lim P(A,) =0. (1.2)
n—oo
Este axioma é chamado de Axioma da Continuidade. A partir desse axioma
pode-se provar que (Kolmogorov, 1956):

(a) P(U,, An) =, P(Ay), se A,, € F disjuntos;

(b) P(U, An) <3, P(Ay), se Ay € F.

Uma maneira equivalente de formular o conceito de probabilidade, sem recorrer
ao Axioma 5, é a seguinte, usando o conceito de medida (veja o Apéndice A.2):

Definigao 1.1. Dado o espago mensuravel (€2, F), uma probabilidade P sobre este
espaco é uma medida tal que P(2) = 1. A tripla (Q2, F, P) é chamado um espago de
probabilidade e 2 é o espaco amostral. Os elementos de F sao chamados de eventos.

Segue que as relacoes (a) e (b) decorrem naturalmente.

Com esta formulacao, o Axioma 5 pode, na realidade, ser provado. O seguinte
resultado (a prova a seguir é baseada em Chung (1968)) d4 uma condigao necessaria
e suficiente para que uma funcao de conjunto seja uma medida de probabilidade.

Teorema 1.1. Seja P uma funcdo de conjunto ndo negativa, finitamente aditiva
sobre o espagco mensurdavel (Q, F), com P(2) = 1. Entao P é uma medida de
probabilidade se e somente se o Axioma da Continuidade valer.

Prova: (a) Suponha que P seja uma medida de probabilidade, isto é, é enumera-
velmente aditiva. Entao temos que

Morettin-Gallesco - dezembro/2025



1.1. FUNDAMENTOS 3

Ap = [(An — Apy1) U (A1 — Apg2) U-- - JU M2 Ay

Se os A,, sao disjuntos, o ltimo termo é vazio. Logo,

o0
P(An) =Y P(Ag — Aps).
k=n
Como a série Y p2 P(Aj — Agt1) € convergente, temos que limy, oo P(A4,) =0,
logo (1.2) é verdadeira.

(b) Suponha, agora, que (1.2) seja verdadeira e sejam A,,n > 1, disjuntos. Entao,
_ k4 @ e por (1. 1My, 00 _ L) = 0. aditividade finita 1mplica
i Akl 1.2) li P(U, ., Ax) = 0. A aditividade finita impli

que

P(UR21A) = P(Uioy Ak) + P(U1AK) = Y P(AR) + PR, 1 AR),
k=1

e fazendo n — oo, obtemos

PRy Ay) = lim ;me + lim PR, 1 Ak) = ;me. O

Corolario 1.1. Seja A, € F, n > 1. Se A, 1 A, entao lim,, P(A,) = P(A) e se
A, | A, entéo lim, P(A,) = P(A).

Exemplo 1.1. (a) Seja Q = {wi,wy,...}, F = 2% e P definida por P({w;}) =
pi, pi > 0, > ,p; = 1. Entao, (,F,P) é um espaco de probabilidade discreto e
{pi,i > 1} é chamada de func¢dao probabilidade.

(b) Seja Q@ =R, F = Be f > 0 uma fungdo mensurdvel tal que [, f(z)dz = 1.
Para cada A € F, define P(A) = [, f(x)dz (veja o Apéndice A.2 para a defini¢do
da integral). Entao, (2, F, P) é um espaco de probabilidade continuo e f é chamada
de funcdo densidade de probabilidade.

Definicao 1.2. Seja (2, F, P) um espago de probabilidade. Um conjunto A € F
é chamado um congjunto nulo se P(A) = 0. Uma propriedade que vale para todo
w € Q exceto para w em um conjunto nulo é dita valer quase certamente (q.c), quase
em toda parte (q.t.p) ou com probabilidade 1 (c.p 1). O espaco de probabilidade
(Q, F, P) é chamado completo se, sempre que A C B, com B € F tal que P(B) = 0,
entdao A € F.

Teorema 1.2 Se (2, F, P) for um espaco de probabilidade qualquer, entao existe
um espaco de probabilidade (Q, F, P), tal que F C F, P(A) = P(A),se A€ F e
(Q,F, P) é completo.

Morettin-Gallesco - dezembro/2025



4 CAPITULO 1. PRELIMINARES

Prova: Considere F = {AUN: Ac F,N C A, A é conjunto nulo}. Mostre que
F é uma o-algebra. Para cada B = AU N € F defina P(B) = P(A). Mostre que
esta definicdo ndo depende da escolha de A€ F. O

Exemplo 1.2. Seja Q = [0,1], F = B([0,1]) a o-dlgebra dos conjuntos de Borel
em [0,1] e P a medida de Lebesgue. Esta tripla determina um espago de probabi-
lidade nao completo. Completando este espaco obtemos os conjuntos mensurdveis
de Lebesgue.

Teorema 1.3. Seja Fy uma algebra e F a o-algebra gerada por Fy. Sejam Py e Py
duas probabilidades definidas sobre F, tais que P;(A) = P,(A), para todo A € Fy.
Entao, P;(A) = Py(A), para todo A € F.

Prova: Seja C a classe de conjuntos para os quais Pj(A) = P»(A). Entao, C
D Fo, por hipétese. Sejam FE, conjuntos de F e suponha que E, 1T E. Entao,
Py (E) = lim, P (E,) = lim, Py(E,) = P»(E). Ou seja, se E, € C, com E, 1T E,
segue-se que ¥ € C. De modo andlogo, se E, | E, F, € C, entao ¥ € C. Logo C é
uma classe monotonica e portanto C O F (veja o Apéndice A.1). O

Teorema 1.4. Seja Fg uma &dlgebra. Seja P uma funcao de conjuntos nao negativa
sobe Fy, finitamente aditiva, com P()) = 1. Suponha que, se A,, € Fy, com A, | 0,
entao lim, P(A,) = 0. Seja F a o-dlgebra gerada por Fy. Entao, existe uma
probabilidade P" sobre (Q, F), tal que P'(A) = P(A), se A € Fp.

Esta é uma versao do Teorema da Extensao de Carathéodory. Veja Loeve (1963)
para detalhes. Uma consequéncia desse resultado é a seguinte. Seja JFy a dlgebra
sobre R consistindo de reunides finitas de intervalos disjuntos, semi-abertos a es-
querda. Seja F' uma fungao crescente, continua a direita tal que limg,_, F(z) =
1, limy;,_ o F(x) = 0. Defina P como no Exemplo A.1.4. do Apéndice. Entao,
existe uma medida de probabilidade P’ sobre B, a o-4lgebra de Borel sobre R, que
coincide com P sobre Fy. Tal medida é denotada por dF' ou F'(dz). Esse argumento
pode ser estendido para o R™.

1.2 Variavel aleatoria

Iniciamos com a seguinte definicao.

Definicao 1.3. Seja (€2, F) um espaco mensurdvel. Uma varidvel aleatoria (v.a) X
sobre esse espaco é uma funcio definida em Q com valores em R tal que X 1(B) € F,
se B € B. Em outras palavras, X é uma fungdo mensuravel com respeito a F.

Para qualquer funcao X : {2 — R, ndo necessariamente uma v.a, a funcao inversa
X! tem as propriedades:

Morettin-Gallesco - dezembro/2025



1.2. VARIAVEL ALEATORIA 5

X4y = XA
XJ4 = UX (A, (1.3)
1

X N4 = ()X '(Aa)-

(0%
onde « pertence a um conjunto arbitrario de indices. Veja o Problema 2.

Teorema 1.5. X é uma v.a se e somente se {w : X (w) <z} € F, para todo x € R.

Prova: (a) Suponha que X seja uma v.a; entao, {w : X(w) < z} € F, pois
{w: X(w) < 2} = X !((~o00,7]) e esse tltimo conjunto pertence a B, e pela
definicao de v.a, para qualquer conjunto de Borel B, X 1(B) € F.

(b) Suponha, agora, que {w : X (w) < 2} € F, isto é, para todo x, X !((—o0,x]) €
F. Seja C a colecao dos conjuntos B tais que X '(B) € F. Entdo, C contém
conjuntos da forma (—oo,al, por hipétese. C é uma o-dlgebra, pois se B € C,
entdo X 1(B¢) = (X }(B))¢ € F, e se B; € C, para todo j, entio X *(U;B;) =
U;X1(Bj) € F, usando o Lema 1.1. Segue-se que C contem conjuntos da forma
(—00,al, que geram B, logo C D B ( pois B é a menor o-dlgebra contendo conjuntos
da forma (—o0, a]). Isso significa que X ~*(B) € F, para cada B € B, logo X é uma
va. U

Exemplo 1.3. Seja um espago mensuravel (2, F) e A € F. Defina Iy como segue:

() 1, sewe€A,
w) =
A 0, sew ¢ A.

Entao, Iy é uma v.a, chamada a func¢do indicadora de A. Se ci,...,¢y s80
numeros reais e se X : 0 < R é definida por

m

X(w)=> clpw), A€F,
=1

entao dizemos que X é uma varidvel aleatoria simples.
Exemplo 1.4. Seja Q2 = [0,1], F = B([0,1]). Nesse caso, uma v.a sobre (2, F) é,

por defini¢ao, uma func¢do de Borel (uma funcao f definida em Q é uma fungao de
Borel se f~1(B) € B, para todo B € B).

O resultado seguinte é um teorema bem conhecido na Teoria da Medida.

Teorema 1.6. Seja X uma v.a. Entao, X é um limite de v.a’s simples. Se X > 0,
entao X é o limite de uma sequéncia crescente de v.a’s simples.

Morettin-Gallesco - dezembro/2025



6 CAPITULO 1. PRELIMINARES

Definicao 1.4. Se X é uma v.a, entdo F{X} é a menor o-dlgebra sobre 2 com
respeito a qual X é mensuravel.

Proposicao 1.1. F{X} ={A: A= X"Y(B), B € B}.

Prova: Basta usar (1.3). O

Lema 1.1. Se X é uma v.a e f é uma funcao mensurdvel de Borel sobre (R, B),
entao f(X) é uma v.a.

Prova: Basta encarar f(X) como a aplicagdo composta fo X : w — f(X(w)).
Veja o Problema 3. [

Teorema 1.7. Uma v.a'Y é F{X }-mensurdvel se, e somente se, Y for da forma
Y = g(X), sendo g uma fungao de Borel.

Prova: (a) Suponha que Y = g(X). Queremos provar que Y~ }(B) € F{X}, para
todo B € B. Mas isso é verdade pelo Lema 1.1.

(b) Suponha, agora, que Y seja F{X }-mensuravel. E suficiente provar o resultado
para Y > 0.

(i) Primeiramente, o resultado é verdadeiro se Y = I4, A € F{X}. De fato, se
A€ F{X}, entdo A = X !(B), para algum B € B, pela Proposigao 1.1. Assim, se
tomarmos g = Ip, teremos

Y(u) = Ia(u) = Ix-1(p)(u) = Ip(X(u)),

ou seja, Y = g(X).
(ii) A seguir, o resultado é verdadeiro se Y for da forma Y = Y ", ¢;I4,, onde
A; € F{X}. Entao A; = X~ Y(B;), B; € B. Se definirmos g = Yot cilp,, entdo
teremos Y = g(X).
(iii) Finalmente, o caso geral. Existe uma sequéncia de fungoes simples Y;,, que
tende a Y, quando n — oo. Por (ii), ¥, = g,(X), para alguma funcao de Borel g,.
Logo, Y = limy, 00 gn(X). Como g,(X) — Y, segue-se que g, converge na imagem
de X. Defina g como segue:

lim;, 00 gn(u), se o limite existir,

9(u) =

0, caso contrario.
Segue-se que g é uma fungao de Borel e Y = g(X). O

Passemos, agora, a estudar os conceitos de distribuicao e fungao de distribuicao
de uma v.a.

Morettin-Gallesco - dezembro/2025



1.2. VARIAVEL ALEATORIA 7

Definigao 1.5. Seja X uma v.a sobre (2, F, P). A distribui¢cao de X é a medida
de probabilidade Py definida sobre (R, B) de tal sorte que, para B € B, Px(B) =
P{X YB)} = P{X € B} = P{w: X(w) € B}.

Observagao 1. Devemos verificar que Py assim definida é um probabilidade. Cla-
ramente, Px(B) > 0. Se os B, sdo conjuntos disjuntos em B, entio X (B,) sio
disjuntos por (1.3) e

Px(UnBp) = P{X '(UnBn)} = P{Us X (Bn)} =Y _P{X (Bn)} = > _ Px(Bn).

Finalmente, X ~}(R) = €, logo Px(R) = P(Q) = 1.

O espago de probabilidade (R, B, Py ) é chamado o espago de probabilidade indu-
zido pela v.a X. No caso em que a imagem de X é um subconjunto enumeravel de
R, X é chamada de v.a discreta e a sua distribuicao é caracterizada pela funcdo de
probabilidade px (x) := P{X = z}, para x € R. No caso em que existe uma fungao
néo negativa e mensuravel f tal que para todo boreliano A, Px(A) = [, f(z)dz, X
é dita absolutamente continua e f é chamada de funcao densidade de probabilidade
de X.

Observagao 2. A v.a X determina univocamente sua distribuicdo Px, mas duas
v.a’s distintas podem ter a mesma distribui¢ao. Por exemplo, considere Q = [0,1], F =
B([0,1]), e P é a medida de Lebesgue. Considere as v.a’s X e Y definidas sobre esse
espaco de probabilidade por meio de

Xw)=w, Yw =1-w.

Entao, Px = Py = P (use o fato que P é invariante por translagoes).
Definicao 1.6. A funcao de distribuicao Fx de uma v.a X é a fungao definida por
Fx(z) = P{w: X(w) <z} = Px((—o0,z]), para todo real z,

e que escreveremos, simplesmente, P{X < x}.
As seguintes propriedades de F'x sao validas.

Teorema 1.8. Seja Fx a funcao de distribui¢ao (f.d) da v.a X. Entao:

(i) Fx é nao decrescente;
(i) limy oo Fx () =0, limg; o0 Fx(x) =1;

(iii) F'x é continua a direita.
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8 CAPITULO 1. PRELIMINARES

Prova: Veja o Problema 4.

Observacao 3. A funcdo Fx pode ser definida por Fx(z) = P{w : X(w) < z}.
Nesse caso, Fx é continua a esquerda. Veja o Problema 13.

Teorema 1.9. Sejam X eY duas v.a’s. Entao Px = Py se, e somente se, Fx = Fy.

Prova: (a) Suponha Py = Py; entdo, Px(B) = Py(B), para todo B € B. Em
particular, se B = (—o0, z|, obtemos Fx(z) = Fy(z).

(b) Considere a classe C de todos os conjuntos B, tais que Px(B) = Py(B). Essa
classe contem conjuntos da forma B = (—o0,b], porque Fx(z) = Fy(x), para todo
real z. Logo, C contem conjuntos da forma (a, b], do que segue que C contem reunides
finitas de intervalos fechados a direita, disjuntos. Logo, Px e Py coincidem numa
algebra que gera B, portanto Px e Py coincidem sobre B, pelo Teorema 1.3. [

Uma defini¢ao equivalente de f.d é dada a seguir.

Definicao 1.7. Uma funcdo de distribuicdo é qualquer funcao F' nao decrescente,
continua a direita, tal que lim,_, o F(z) =0 e limy_,o, F(z) = 1.

Um problema que se coloca é o seguinte:

Suponha que seja dada uma f.d F. Eziste um espaco de probabilidade (Q, F, P) e
uma v.a sobre esse espaco, tendo F' como sua f.d?

A resposta é afirmativa e uma construgao é a seguinte. Construa (2, F, P) como:

Q=R, F=B, P=dF.
Além disso, defina a v.a X por X (w) = w. Entao, a f.d de X é F. De fato,

Plw: X(w) <z} =Plw:w<z}=F(r)— F(—o0) = F(x).

1.3 Vetor aleatorio

Nessa segao iremos generalizar os conceitos da secao anterior para o caso de
termos mais de uma v.a.

Definigao 1.8. Considere X7, ..., X, v.a’ssobre (2, F, P). Entao X = (X3, Xo, ..., X})
é um vetor aleatorio.

Observe que X :  — R™.

Proposigao 1.2. Se B" é a o-dlgebra de conjuntos de Borel do R", entdao X~ 1(B) €
F, para todo B € B".
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1.3. VETOR ALEATORIO 9

Prova: Para simplificar as notagoes, suponha X = (X7, X3). Considere a classe C
de conjuntos B para os quais X 1(B) € F. Esta classe contem retangulos. De fato,

XY AxB) = {w:X(w)e A Xo(w) e B} =
={w: Xj(w) € A} N{w: Xo(w) € B} = M NN.

Logo, X '(Ax B) = MNN, tal que M € F, N € F, do que segue que
XA x B) € F. Além disso, essa classe C é uma o-dlgebra, e como a classe dos

conjuntos de Borel de B2 é a menor o-dlgebra contendo todos os retangulos, C O B2.
O

Definicao 1.9. Seja X = (X1, Xo,...,X,). Entao, F{Xi1,...,X,} é a menor
o-algebra com respeito a qual todas as v.a’s X;, i = 1,...,n, sio mensuraveis.

Teorema 1.10. Uma v.a Y é F{X;,..., X, }-mensurdvel se, e somente se, Y =
9(X1,...,X,), onde g é uma fungao de Borel de R™ em R.

Prova: Como no Teorema 1.7, observando que, por exemplo, se X e Y sdo v.a’se f
¢ uma fungao de Borel mensuravel de duas varidveis, entao f(X,Y) é uma v.a. O

Definigao 1.10. A distribui¢ao de X é a probabilidade sobre (R™, B") definida por
Px(B)=P{weQ: (Xi(w),...,X,(w) e B}, BeB".

Dois casos particulares importantes de distribuicao de vetores aleatorios sao os
vetores aleatérios discretos e absolutamente continuos. As defini¢cbes sao obtidas
adaptando de maneira natural as definicoes dadas no caso de variaveis aleatérias.
Definicao 1.11. A fung¢do de distribuicao de X é a fungao

Fx(z1,...,2n) = P{lw: Xi(w) < z1,..., Xp(w) < zp}.

Como antes, podemos provar os seguintes resultados.

Teorema 1.11. Se X eY sao dois vetores aleatorios, entao Px = Py se, e somente
se, FX = Fy.

Teorema 1.12. A f.d. Fx de X tem as seguintes propriedades:
(i) Fx é nao decrescente em cada variavel;
(ii) Fx é continua a direita em cada varidvel;
(iii) limg,»—oo Fx(x1,...,2,) = 0 para todo 1 <1i <mn;
)

(iV limxl7__.7xn_)oo FX(xh v 7'rN) = 17
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10 CAPITULO 1. PRELIMINARES

(v) para (ai,...,an), (b1,...,b,) € R™ tais que a; < b; para todo 1 < i < n,
temos que ) sgn(x)Fx(x) > 0, onde a soma é sobre todos os vetores x =
(x1,...,xy,) tais que para todo i, x; € {a;,b;} e sgn(x) é igual a 1 (resp. —1)
se o nimero de coordenadas do tipo a; no vetor x é par (resp. impar).

Como no caso de uma v.a, podemos definir uma f.d multidimensional como sendo
qualquer fungao F satisfazendo (i)-(v) do Teorema 1.12. Note que, ao contrario do
caso unidimensional, para n > 2 as propriedades (i)-(iv) nao sao suficientes para que
uma funcao F' seja uma f.d.

1.4 Processo estocastico

Nesta secao discutiremos um conceito mais geral do que varidvel aleatéria ou
vetor aleatdrio, pois teremos uma funcao, que além de ser indexada por um ele-
mento de €2, também serd indexada por um elemento pertencente a um conjunto 7',
que usualmente serd um conjunto de instantes de tempo, mas nao necessariamente.
Antes de definir o que seja um processo estocéstico (ou fungao aleatéria), alguns
conceitos sao necessarios.

Definicao 1.12. Seja 7" um conjunto arbitrario. Para cada t € T, seja €2, um
conjunto. Entao, [[,cr ¢ é o conjunto de todas as fungoes w : T — (J,ep 4, tal
que w(t) € Q4.

Exemplo 1.5. (a) Se T'= {1,2,...,n}, entdo [[,c; @ = Q1 x Q2 x - -+ X Q.
(b) Se T'={1,2,...}, @ =R, para cada t € T', entdo [[,., € é o conjunto de todas
as sequéncias de niimeros reais.

(c) Se T' = (a,b], Q = R, entdo [[,c+- Q% € o conjunto de todas as funcdes de (a, b]
em R.

Se Q; = Q, para todo t, entdo iremos escrever [ [, = or.

Definigao 1.13. (o-dlgebra produto) Seja T' um conjunto de indices; para cada
t € T, seja (4, F¢) um espago mesuravel. Um retangulo A é qualquer conjunto da
forma A = [[,.r A¢, onde A; = €, para todo ¢, exceto por um nimero finito deles.
A o-dlgebra produto é a menor o-algebra sobre [ [, Qs que contém esses retangulos.

Usaremos a notagao ), F¢ para denotar essa o-algebra produto. Se Q; =R e
Fi: = B, para todo t € T, entao chamamos o espaco resultante de o-algebra de Borel
sobre RT e a denotamos por BT.

Definigao 1.14. Seja (2, F,P) um e.p e T um subconjunto de R. Um processo
estocdstico é uma colecao de v.a’'s X = {Xy, t € T} definidas sobre (92, F, P).
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Dizemos que T é o conjunto paramétrico do processo.
Note que X : @ — R”. Alguns casos especiais sao:

(a) T =1{1,2,...,n}, neste caso X = {Xy, 1 < k < n} é um vetor aleatério de
dimensao n.

(b) T'= N, neste caso X = {X,,, n > 1} é uma sequéncia de varidveis aleatérias.
X é um processo estocdstico com parametro discreto.

(¢) T = [a,b], neste caso X = {X; ,a <t < b} é um processo estocdstico com
parametro continuo.

Dado o processo estocéstico (p.e) X : Q — R”, a questdo que surge é: X ¢é
mensuravel? A resposta é dada pelo

Teorema 1.13. Seja B € BY. Entdo, X ~'(B) € F.

Prova: Similar a da Proposi¢ao 1.2. [

Definicdo 1.15. Defina uma probabilidade Px sobre (RT,B) por Px(B) =
P{X~1(B)}. Px é chamada de distribuiciao de X.

Teorema 1.14. Seja P* uma probabilidade sobre (RT,BT). Entdo, existe um
processo estocastico X = {X;,t € T} tal que P* é a distribuicao de X e esse
processo estd definido sobre (RT, BT, P*).

Prova: Se w € R, defina X;(w) = w(t). Lembremos que w € RY significa que
w:T =R, isto é, w(t) eR. O

Como exemplo, seja T = N; aqui R = R x R x --- é o conjunto de todas as
sequéncias de nimeros reais, isto é, w € RT se w = {1, x2,...}. Entao, X, (w) = x,.

Contudo, usualmente a situacao do Teorema 1.14 ndo aparece. A situagdo comum
¢é a seguinte. Seja dado um conjunto de indices T' C R; para uma sequéncia finita de
elementos distintos t1,...,t, € T, é dada uma probabilidade P, . , sobre (R", B").
Pede-se para construir um processo estocéstico {Xy,t € T}, tal que a distribuicao
de (th,XtQ, e ,th) seja Ptl,m,tn‘

Por exemplo, frequentemente temos a seguinte situagao: Xi, Xs,... sdo v.a’s
independentes, com f.d comum F. A questdo entdo é: Tal sequéncia existe? Ou
seja, existe um e.p (2, F, P), tal que um processo estocastico {X,, n > 1} esteja
definido sobre o mesmo?

Definigao 1.16. Dado um processo estocéastico X = {X;, t € T'}, as probabilidades
Py, ... 1, sao chamadas as distribuicoes finito-dimensionais do processo estocastico X.

Portanto, podemos refrasear o nosso problema da seguinte forma: seja dada uma
colegao de probabilidades, que sdo supostas serem as distribuigoes finito-dimensionais
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de algum processo estocdstico. Podemos construir um processo estocastico com
essas distribuicbes? A resposta é afirmativa, desde que essas probabilidades se-
jam “consistentes”. FKis um exemplo do que entendemos por consisténcia. Se
P{X, € A/ Xy € B,X3 € R} = Pi23(A x B x R), entdao o primeiro membro
dessa igualdade ¢ igual a P{X; € A, Xy € B} = P; 2(A x B).

[C] Condi¢cdes de Consisténcia. Para toda sequéncia finita t1,...,¢, de elemen-
tos distintos de 7', seja P, ... ;, uma probabilidade. A primeira condicdo de con-
sisténcia estabelece que para toda permutagao m = (mw(1),...,7(n)) de {1,...,n} e
A,..., A, €B,

Pt1,...,tn (Al X X ATL) - Ptﬂ.(l),...,tﬂ.(n) (Aw(l) X X Aﬂ'(n))
A segunda condicao é

Pt (A x o x Ap) =Py (A X - X Ay X R).

O Teorema de Consisténcia de Kolmogorov ou Teorema de Extensao de Kolmogo-
rov-Daniell, pode ser enunciado como segue.

Teorema 1.15. Seja T um conjunto de indices. Suponha que para cada sequéncia
finita ty,...,t, de elementos distintos de I' tenhamos uma probabilidade Py, . t, so-

bre (Rit1-tn} Biti-tn})  Suponha que essas probabilidades satisfacam [C]. Entao,
existe uma tnica probabilidade P sobre (RT, BT), tal que P restrita a (R{tl"“’t“}, B{tl’“"t"})
seja Pt1,...,tn .

Para uma prova veja Billingsley (1995).

Corolério 1.2. Sejam X = {X;,t € T} eY = {Y;,t € T} dois processos es-
tocasticos tendo as mesmas distribuicées finito-dimensionais. Entao, X e Y tém
a mesma distribui¢ao. Ou seja, as distribuicoes finito-dimensionais determinam a
distribuicao de um processo.

Uma formulagao alternativa do Teorema 1.15 pode ser dada em termos de f.d’s.
Para cada t1, ..., t, distintos contidos em 7" seja dada uma f.d F}, ;.. Entao, existe
um processo estocastico X = {X;,t € T'} tal que {Xy,..., Xy, } tenha f.d F}, .,
desde que essa seja consistente. Consisténcia, agora, significa:

(a) limg, o0 Fyy,otn (215 -+ #n) = Fiy ot (21,0, Tn),
(b) para toda permutacao m = (w(1),...,7(n)) de {1,...,n},

Ftﬂ.(l),...,tﬂ,(n) (xﬂ-(l), . 71'71.(”)) = Ftl,---atn (il','l, ceey $n).

Teorema 1.16. Seja X = {Xy,t € T'} um processo estocastico e Y uma v.a F{X }-
mensuravel. Suponha que T seja nao enumeravel. Entao, existe uma sequéncia
{tn, n>1} de T, tal que Y seja F{Xy,, Xt,,...}-mensurdvel.
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Prova: (i) Suponha Y = I4, A € F{X}. Considere a classe A de conjuntos A
tais que I4 seja determinada por um nimero enumerdvel de coordenadas. Entao,
A é uma o-élgebra que contem retangulos (porque esses sdo determinados por um
nimero finito de coordenadas). Entao, A D F{X}.

(ii) O resultado é valido se Y = > ¢;14,, A; € F{X}.

(iii) Logo, é valido para todo Y que seja F{X }-mensurével, pois cada tal ¥ é um
limite de fungoes simples. [

Teorema 1.17. Seja X = {X;,t € T'} um processo estocdstico e T' nao enumeravel.
A classe de fungées Y que sao F{X }-mensurdveis é a menor classe I' tal que:

(i) Sety,...,t, pertencem a T e se g é uma fungao de Borel n-dimensional, entao
9( X4y, ..., Xy,) €T

(ii) SeY1,Ys,--- €T eseY =limy, o0 Yy, entao Y € T.

Prova: Veja o Problema 6.

1.5 Esperancga

O conceito de esperanca matematica (ou valor esperado, ou simplesmente espe-
ranga) de uma v.a X é equivalente ao conceito de integral de uma fun¢ao mensuravel
sobre um espaco de probabilidade.

Definigao 1.17. Seja (2, F, P) um e.p e X uma v.a sobre esse espago. A esperanca
de X, quando existe, é definida por

mm:/xwﬂwy
Q
Para cada A € F, definimos

AX@MH@—E@Q)

Como uma integral, a esperanca de uma v.a tem as propriedades familiares de
uma integral (veja o Apéndice A.2), como as que seguem.

(a) E(aX +0bY) = aE(X) + bE(Y), desde que o lado direito tenha sentido (ou
seja, nao pode ser oo — 00 OU —00 + 0);

(b) se X;, >0 e X = lim, X,, q.c, entdo E(X) < liminf, E(X,) (lema de Fatou);
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(c) se X, > 0ese X, T X q.c entao lim, F(X,) = E(X), desde que 400 seja
permitido como um valor de cada lado (teorema da convergéncia monétona);

(d) se X,, — X, em probabilidade ou q.c e | X,,| <Y, para todo n, com E(Y) < oo,
entdo lim, E(X,) = E(X) (teorema da convergéncia dominada).

Teorema 1.18. A seguinte desigualdade € valida:

Y P{X[=n} < B(IX[) <1+ P{X]>n}, (1.4)
n=1 n=1

de modo que E(|X]) < oo se, e somente se, a série em (1.4) convergir.

Prova: A prova segue Chung (1968). Se {A,, n > 1} sao conjuntos disjuntos, entao
temos

R XdP:;/AnXdP.

UnAn

Se tomarmos A,, = {n < |X| <n+ 1}, entéo

PIX) =Y [ IXlap
n=0 n

Também, temos que, se a < X < b sobre A, entao aP(A) < [, XdP < bP(A),
de modo que, para cada conjunto A,
> nP(Ay) S E(IX|) < (n+1)P(An) =1+ ) nP(Ay). (1.5)
n=0 n=0
Resta provar que

> nP(A,) =) P{IX|>n}, (1.6)
n=0 n=1

onde as somas podem ser finitas ou infinitas.
Agora, as somas parciais do lado esquerdo de (1.6) podem ser rearranjadas
(método de Abel) de modo que, para N > 1,

=2

N
> nP(An) = ) n(P{X|>n} - P{X|>n+1})
n=0

n=0

(n—(n—1)P{|X| >n} — NP{|X| > N + 1}

I
E

3
Il
—

P{|X| > n} — NP{|X| > N +1}. (1.7)

I
E

3
Il
—
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Temos que
N -P{X|>N+1} < / | X |dP. (1.8)
{IX[=N+1}

Se E(|X]) < oo, deduzimos que o lado direito de (1.8) tende a zero. Portanto
Yo onP(Ay) = > 02 P{|X| > n}. No caso em que E(|X|) = oo, deduzimos de
(1.5) que >-72 ynP(A,) = oo e portanto usando (1.7) deduzimos que > P{|X| >
n}=o0. O

Existe uma relagao bésica entre a integral abstrata com respeito a P, sobre
conjuntos de F, de um lado, e a integral de Lebesgue-Stieltjes com respeito a Py,
sobre conjuntos de B, induzida pela v.a X, de outro lado.

Teorema 1.19. Seja X sobre (2, F, P), induzindo o e.p (R, B, Px) e seja f uma
fung¢ado mensuravel de Borel. Entao, temos

/ﬂXMMHw=/f@MMw (1.9)
Q R

desde que pelo menos uma das duas integrais exista.

Prova. (a) Seja B € B e tome f = Ig. Entao, o lado esquerdo de (1.9) fica

AgmmmmmmzpueB»

e, o lado direito, Px(B). H4, entdo, igualdade, pela definicao de Px.
(b) Em seguida, (1.9) vale para f simples, ou seja, da forma f = Zj biIp;.

(c) Se f > 0, existe uma sequéncia {f,, n > 1} de fungoes simples, tal que f, 1 f.
Para cada f, temos [ fr(X(w))dP(w) = [i fn(y)dPx(y). Quando n — oo e usando
o teorema da convergéncia mondtona, obtemos que (1.9) é vélida.

(d) No caso geral, tome f = f, — f_. O

Vejamos, agora, algumas desigualdades importantes.
Proposicao 1.3. (desigualdade de Chebyshev) Se ¢ é uma fungéo par, estritamente
crescente e positiva sobre [0,00), e X uma v.a, entao, para cada \ > 0, temos

P{X| = A} <

Prova. Observamos que P{|X| > A} = P{o(|X]|) > ¢(A)}. Depois, observamos
que o(|X|) > (M) 1(x])>p(x)} € tomamos a esperanca dos dois lados. Enfim, como
¢ € par, temos que ¢(|X|) = p(X). O

Morettin-Gallesco - dezembro/2025



16 CAPITULO 1. PRELIMINARES

Exemplos especiais sao:
(a) Se ¢(x) = 22, a desigualdade fica

E(X?)
A2

P{X[ = A} <
(b) Se p(z) = |z[P, 0 < p < oo, entao

P{ix| > A} < ZEX)

\P

(c) Se ¢(x) = exp(t|x|), t > 0, entdo
E(et|X|)
P{X|> A} < —n

Recordemos que L, = L, (€2, F, P) é a colegao de todas as v.a’s X sobre (Q2, F, P)
tais que E(|X|?) < oo (identificamos neste caso varidveis aleatérias iguais q.c, veja
o Apéndice A.3). Lembramos também que a norma L, de X ¢é definida por

1/p

Xl = | [ 1xpar] = e,
Proposigao 1.4. (desigualdade de Holder) Se X € L, eY € Ly, comp>1, ¢>1
e+ 1—1 entao

p g
XY [ < [ XT[p - 1Y ]lg, (1.10)

ou, de modo equivalente,

E(XY|) < [B(X ")V [B(Y|9).

Prova. Veja o Problema 7.

Se Y =1 em (1.10), obtemos E(|X|) < [E(|X|P)]"/?. Se p = 2 em (1.10) temos
a desigualdade de Cauchy-Schwarz.

Proposigao 1.5. (desigualdade de Minkowski) Se X e Y estao em Ly, temos

X+ Yl < [[X]lp + Y],

ou seja,

[E(X +YPIVP < [B(XP)VP + [E(Y )P
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Prova. Veja o Problema 8.

Proposicao 1.6. (desigualdade de Jensen) Seja ¢ uma fungao mensurdvel convexa
e suponha que F(X) e E(¢(X)) existam. Entao,

E(p(X)) = o(E(X)).
Igualdade ocorre se, e somente se, ¢ for linear.

Prova. Dado &, existe uma reta passando por ¢(§), que estd totalmente abaixo da
curva . Tal reta é dada por

y— (&) = Az = &),
para algum \. Entdo, p(z) > Az — &) + ¢(£), para todo z. Segue-se que

E(p(X)) 2 AE(X =€) + ¢(8).

Escolha £ = E(X) e o resultado esperado é obtido. O caso linear segue da prova
anterior e é deixado para o leitor. [

Se ¢(z) = 22, obtemos E(X?) > [E(X)]?. Se p(z) = |z, temos E(|X|P) >
B[P, parap > 1.

1.6 Convergéncia

Nesta secao apresentamos os conceitos dos diversos modos de convergéncia de
sequéncias de v.a’s, que sao idénticos aos conceitos correspondentes sobre sequéncias
de fungbes mensuraveis em um espaco de medida.

Consideremos um e.p (2, F, P) e {X,} uma sequéncia de v.a’s definidas sobre
esse espago.

Definicao 1.18. Dizemos que X,, converge para X quase certamente, se existe um
conjunto nulo N tal que lim, oo Xp(w) = X (w), sempre que w € N°€.

Dizemos, também, que X,, converge para X com probabilidade um e usamos a
notacao X, 5 X,ou X, — Xq.c.

Teorema 1.20. A sequéncia {X,} converge para X q.c. se, e somente se, tiver-
mospara todo € > 0

ILHI P{|X, — X| <e, paratodon >m} =1,

ou

lim P{no2, {|X,—X|<e}}=1. (1.11)

m—r0o0
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A relagao (1.11) é equivalente a

lim P{|X, — X| > ¢, para algum n > m} =0,
m— 00

ou

lim P{UZ,, {|X, — X| > e}} = 0.

Prova. (a) Suponha que X, % X. Param > 1, seja Ay, 0 evento em (1.11), ou
seja, Ay = N2, {| X — X| < e¢}. Entao, {A,,} é uma sequéncia crescente. Para
cada w € N¢ a convergéncia de {X,,(w)} para X (w) implica que, dado £ > 0, existe
um m(w, ) tal que se n > m(w,¢), entao | X, (w) — X(w)| <e.

Logo, cada tal w pertence a algum A,,, e portanto N¢ C Uy®_;A,,. Logo,
P(N¢) < P(UYX_1A;,) = lim,, P(A,,), pois a sequéncia é crescente. Portanto,
lim,, P(A;,) = 1.

(b) Suponha que X, nao convirja para X sobre um conjunto A, com P(A) > 0.
Considere a v.a Z definida por Z(w) = lim, sup | X,,(w) — X(w)|, que pode nao ser
finita. Observe que

o
1

z>01=J{z>-} 1.12
z>0=U{z>, (112)
Para cada w € A, temos que Z(w) > 0 e, portanto, A C {Z > 0}. Segue-se que,
para algum n, um membro da reuniao do lado direito de (1.12) deve ter probabilidade
estritamente positiva, e portanto, para algum & > 0, o conjunto {Z > ¢} tem
probabilidade estritamente positiva. Pela definicao de Z, este ultimo conjunto esta
contido no conjunto A¢, , para todo m, logo P(AS,) > P(Z > ¢), e portanto (1.11)

nao pode ser verdadeira. [

Definimos o limsup,, A,, como o conjunto de todos os elementos de €2 que per-
tencem a um numero infinito de conjuntos A,, e o liminf,, A,, como o conjunto dos
elementos de €2 que pertencem a todos os conjuntos A,, com exce¢dao de um nimero
finito deles (veja o Apéndice A.1). Também dizemos que o evento lim sup,, A,, ocorre
se, e somente se, os eventos A,, ocorrem infinitas vezes (infinitely often) e escrevemos

P(lim sup An) = P(A, iv).

Proposicao 1.7. Para cada A, € F, temos que:

P(lim sup An) = lim P(UyZ,,An),
n m—00

P(limniann) = lim PN, Ay).

m—ro0
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1.6. CONVERGENCIA 19

Prova: Chamemos F,, = U2 A,, para todo m > 1. Entao, F, decresce, quando
m cresce. Pela monotonicidade de P,

P(N®_,Fy) = lim P(F,). O

m— 00

Teorema 1.21. X,, converge para X q.c se, e somente se, para todo € > 0, tivermos
P{X, - X|>eiv}=0.

Prova: Seja A, = N2, {|Xn — X| < e}. Segue-se que

(X — X| > eiv ) =n2, U {|X, — X| > e} = N%_ AC |

De acordo com o Teorema 1.21, X,, - X q.c, se e somente se, para todo € > 0,
tivermos P(AS,) — 0, quando m — oco. Como a sequéncia AS, é decrescente, isso é
equivalente a P{|X,, — X| >¢eiv}=0. O

Um conceito mais fraco do que convergéncia q.c é o de convergéncia em proba-

bilidade.

Defini¢ao 1.19. Dizemos que a sequéncia {X,,} converge para X em probabilidade
se, e somente se, para todo £ > 0, tivermos lim,,_, ., P{|X, — X| > ¢} = 0.

Usaremos a notacao X, 5 X. Note que P{|X,, — X| > €} significa P{w :
| X0 (w) — X (w)| > €}

Teorema 1.22. Se X,, convergir para X q.c., entao X, converge para X em pro-
babilidade.

Prova: Se X, ¥ X, entdo P{U2, (|X, — X| > ¢} — 0, quando m — oco. Mas
isso implica P{|X, — X| > ¢} — 0, quando n — oo, logo X, = x. O

A reciproca do teorema nao vale. O que se verifica é o seguinte resultado.

P . A . .c
Teorema 1.23. Se X,, — X, existe uma subsequéncia {ny}, tal que X, £ X. Ou
seja, convergéncia em probabilidade implica em convergéncia quase certa ao longo
de uma subsequéncia.

Prova: Como X, B x se, e somente se X, — X L 0, podemos supor X = 0.
Entdo, por hipétese, para todo k > 0, P{|X,| > 1/2¥} — 0, quando n — oo.
Segue-se que, para cada k > 0, existe um ny tal que

1
P{| X, | >1/2F} < o

Tendo escolhido tal sequéncia {ny}, seja Ey = {| Xy, | > 1/2%}. Entdo, P{E} i.v} =

0, logo pelo Teorema 1.22, X,,, o, O

il
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20 CAPITULO 1. PRELIMINARES

Um tipo de convergéncia importante em Probabilidade e Estatistica é a con-
vergéncia em média quadrdtica. Essa é um caso particular do seguinte modo de
convergéncia.

Definicao 1.20. A sequéncia {X,,} converge para X em L,, se e somente se,

lim E(|X, — X[?) = 0.

n—o0

L
Usaremos a notacdo X, — X.

Teorema 1.24. Se X,, converge para zero em L,, entao X, converge para zero em
probabilidade. A reciproca é verdadeira desde que | X,| <Y q.c, comY € L,,.

Prova: (a) Se X, Ly 0, entdo E(|X,[?) — 0, quando n — oco. Pela desigualdade
de Chebyshev, com ¢(z) = |z|P, temos
E([Xn[")

A e

Quando n — oo, o lado direito tende a zero, logo X, o,

(b) Suponha |X,,| <Y q.c, com E(|Y|P) < co. Temos que

| Xp|PdP < &P + / YPdP.
{IXn|>e}

B, = |

| X, [PdP + /
{|Xn|<e}

{1 Xn|2e}

Por hipétese, a ultima integral tende a zero (veja o Problema 9). Assim, faca
L
n — 0o e depois € — 0 para obter E(|X,[P) — 0, ou seja, X,, — 0. O

Dizemos que a sequéncia {X,} é uniformemente limitada se, e somente se,
| X| < M q.c, com M constante. Como um corolario do Teorema 1.24, se {X,,} for
uniformemente limitada, convergéncia em probabilidade e convergéncia em L, sao
equivalentes. O resultado geral segue.

Teorema 1.25. X, LIy se, e somente se, E(lf\()%lﬂ) — 0. Além disso, a aplicacao
d(-,-) definida por d(X,Y) = E(%) é uma métrica no espago das v.a’s, desde

que identifiquemos v.a’s que sejam iguais q.c.

Prova: Veja Chung (1974).

Algumas vezes temos que tratar com problemas de convergéncia de v.a’s quando
nenhum limite esteja evidenciado. Se X,, — X,, — 0, quando m,n — oo, segundo
qualquer um dos modos anteriores, entao existe uma v.a. X tal que X,, — X segundo
o mesmo modo. Esse é o critério de Cauchy.
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Problemas

1. Prove completamente o Teorema 1.2.
Prove as relagoes (1.3).
Prove completamente o Lema 1.1.

Prove o Teorema 1.8.

oo N

Dada uma f.d. F(z,y), encontre um vetor aleatério X tendo F' como sua f.d.

[Sugestéo: proceda extamente como no caso de uma v.a.]
Prove o Teorema 1.17.
Prove a Proposicao 1.4.

Prove a Proposicao 1.5.

© »® N &

Se X é uma v.a com F(|X|) < oo, entao 4,, € F, A, | 0 implica que lim,, fAn XdP =
0. '

10. Seja Fy uma &lgebra e F a o-dlgebra gerada por Fy. Seja P uma probabilidade sobre
F. Mostre, diretamente do Teorema da Convergéncia Monotonica, que dado € > 0 e
A € F, existe A € Fy, tal que P(AAA,) < e (AAB significa a diferenga simétrica
entre A e B).

11. Mostre que, para qualquer sequéncia de v.a’s limitadas, existe uma sequéncia de cons-
tantes {b,}, tal que X, /b, converge para zero q.c.

12. Seja F continua, estritamente crescente, lim, oo F(x) = 1, lim,_,_, F(x) = 0, e seja
A a medida de Lebesgue.

(a) Mostre que P(A) = A(F(A)) é uma medida de probabilidade sobre B((0,1));

(b) Mostre que P pode ser obtida via uma construgao similar & construcao do Exem-
plo A.1.4.

13. Mostre que a f.d de uma v.a X como definida no texto é continua a direita, mas como
definida na Observacao 3 é continua a esquerda.

14. Seja X = {X},t € T'} um processo estocdstico, T ndo enumerdvel. Mostre que a classe
de fungbes F{X }-mensurdveis é a menor classe I tal que:

(a) se f for uma funcao de Borel sobre R™, entao f(Xy,,...,Xt, ) € T, paraty,... t, €
T.

b

(b) se Y1,Ys,... estdo em I e se lim, Y,, =Y existir, entao ¥ € T.
15. Apresente uma sequéncia de eventos {A,,n > 1}, de um mesmo e.p, tais que:

(a) 0% P(A,) =00 e P(A,iv) <1;

n=1

(b) P(A,iv)=1e P(A%iv)=0.
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16.

17.

18.

Considere Q = [0,1], F = B([0,1]) e P a medida de Lebesgue. Seja Ag = Q, A; =
Ao N (1/3,2/3)° = [0,1/3] U [2/3,1], A2 = [0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9,1]
(isto é, retiramos a terceira parte central de cada um dos intervalos de A;). Pros-
seguindo desse modo, obteremos uma sequéncia de eventos {A,,n > 1}, monotdnica
nao crescente (A, D A,11), com A, sendo a reunido de 2" intervalos fechados.

O conjunto C' = N2 ; é chamado conjunto de Cantor. Prove que P(C) = 0 (esse é um
exemplo de um conjunto infinito ndo enumerdvel com probabilidade (comprimento)
7€ero).

Se (Q,F, P) for um e.p., A € F, P(A) > 0, defina P(B|A) = P(AN B)/P(A), para
todo B € F. Prove que (Q,F, P(-|4)) é um e.p.
Seja = {(x,y) : 0 < x,y < 1}, F a classe dos conjuntos da forma {(z,y) : = €

AN(0,1],0 <y < 1}, onde A € B, e seja P dada pela medida de Lebesgue nesse
conjunto. Prove que (2, F, P) é um espago de probabilidade.
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Capitulo 2

Independéncia

Neste capitulo estudaremos o importante conceito de independéncia, juntamente
com resultados relacionados: leis zero-um, leis dos grandes ntimeros, séries aleatérias
e aplicagoes. Algumas referéncias para esse capitulo sdo Lamperti (1966), Chung
(1968, 1974), Breiman (1968, 1992) e Billingsley (1995).

2.1 Fatos basicos

Defini¢ao 2.1. (i) Seja (Q,F,P) um e.p e sejam Fq,Fo,...,F, o-dlgebras (ou
algebras) contidas em F. Dizemos que essas o-dlgebras sao independentes se para
quaisquer A; € F1,Ag € Fo,..., A, € Fp, tivermos

P(AlﬂAgﬂ-"mAn) :P(Al)P(Ag)P(An)
(ii) As v.a’a X,..., X, definidas sobre (2, F, P) s@o independentes se

F{X1},..., F{X,} sdo o-dlgebras independentes.

(iii) As o-algebras Fp,Fa, ..., contidas em F, sdo independentes se para cada n,
Fi,...,Fn forem independentes.

(iv) Asv.a’s X1, Xy, ... sobre (2, F, P) sao independentes se para cadan, X1,..., X,
sao independentes.

Lema 2.1 Sejam Fy e Gy dlgebras independentes. Sejam F e G as o-dlgebras geradas
por Fg e Go, respectivamente. Entao, F e G sao independentes.

Prova: Fixemos A € Fy. Se P(A) > 0, defina a probabilidade P4 por

Pa(B) = P(;l(z)B)

P,4 é uma probabilidade sobre Gy, tal que, para todo B € Gy,

23



24 CAPITULO 2. INDEPENDENCIA

Pap) = L5 L = PEEE)  pi),

pois Fp e Gy sao independentes. Logo, Ps(B) = P(B), para todo B € G, pelo
Teorema 1.3. Logo, para cada A € Fy e cada B € G, teremos P(ANB) = P(A)P(B)
(esta dltima igualdade é trivial se P(A) = 0). Para terminar a prova, fixe B € G e
repita o argumento. [J

Definicao 2.2. Os vetores aleatérios X = (X1,...,X,) e Y = (Y1,...,Y},) s@o
independentes se F{X} ¢é independente de F{Y}.

Definigao 2.3. Os processos estocasticos X = {X,,n > 1} e Y ={Y,,n > 1} sdo
independentes se (X1,...,X,) e (Y1,...,Y,) sdo independentes, para todo n.

Proposigao 2.1. As v.a’s X1, Xs,..., X, sao independentes se, e somente se, para
toda colecao de conjuntos de Borel Ay, ..., A, tivermos

P{X1 €A1,...,Xn€An}:P{X1 EAl}P{XnEAn}

Prova: Segue imediatamente da definicao de v.a’s independentes e do fato que todo
conjunto em F{X;} é da forma X; '(B), Be B. O

O mesmo resultado vale para uma sequéncia infinita de v.a’s independentes.
Veja, por exemplo, Breiman (1968).

Definigao 2.4. Sejam Ai,..., A, eventos. Esses eventos sao independentes se as
respectivas o-dlgebras geradas por eles sao independentes.

Teorema 2.1. Sejam X = {X,,n > 1} eY = {Y,,n > 1} dois processos es-
tocdsticos independentes sobre (0, F, P). Entao, toda fun¢ao F{X }-mensurdvel é
independente de toda funcao F{Y }-mensurdvel.

Prova: Como X e Y sao independentes, (X1, ..., X,) é independente de (Y7,...,Y},),
para cada n. Ou seja, F{X1,...,X,} é independente de F{Y1,...,Y,}, pela de-
finigao de vetores independentes. Isso implica que U, F{X1,..., X, } é independente
de U, F{Y1,...,Y,}. De fato, se A € U, F{X1,..., X} e B € UpF{Y1,..., Y0},
entdao A € F{Xi,...,Xy}, para algum n e B € F{Y1,...,Y,,}, para algum m.
Portanto, V,F{Xi,...,X,} é independente de V,F{Y1,...,Y,}, devido & inde-
pendéncia das dlgebras U, F{X1,..., X} e Up F{Y1,..., Y, }.

Seja, agora, Z F{X }-mensurdavel e W F{Y }-mensurdvel. Entao F{Z} C F{X}
e F{W} c F{Y}. Logo, F{Z} e F{W} sao independentes, isto é, Z e W sao
independentes. [
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Alguns casos especiais desse teorema sao:

lim sup,, X, é independente de lim sup,, Y;,;
n n

(a
(b) Se f e g sao fungoes de Borel sobre R", entao f(X,...,X,) é independente de
g(Yl, . ,Yn).

Teorema 2.2. Se Xi,...,X,, sao v.a’s sobre (Q, F,P) e X = (X1,...,X,), entao
X1, ..., X, sao independentes se, e somente se, Fx(x1,...,x,) = Fx,(z1) ... Fx, ()
para todo x1,...,Ty,.

Prova: Para simplificar as notagoes consideramos somente o caso n = 2.
(a) Se X1 e X2 sao independentes, P(X; € A,X» € B) = P(X; € A)P(Xs € B),
logo basta tomar A = (—oo, 1] e B = (—00, x2].

(b) Fixe b, um nimero real, e defina as medidas finitas p1 e pg como segue:

m(A) = P(Xi<b Xs€A),
1a(A) = P(X) < b)P(Xs € A).

Agora, mostremos que 1 e po sao iguais, para todo conjunto de Borel A. Elas sao
iguais sobre conjuntos da forma A = (—o0, ¢, pela definigao de f.d e por hipétese.
Logo, elas s@o iguais também para todos os conjuntos A da forma (¢, d] ou (¢, 00).
Deduzimos que p1 e po sao iguais para conjuntos de uma algebra que gera os con-
juntos de Borel, logo elas concordam sobre todos os conjuntos de Borel. Ou seja,
provamos que: se Fx = Fx, F,, entao para todo real b e todo conjunto de Borel
A, temos P(X; < b, Xy € A) = P(X; < b)P(X2 € A). Queremos provar que
P(X, € B,Xy € A) = P(X; € B)P(X2 € A). Basta fixar A, conjunto de Borel, e
proceder como antes. [

Uma consequéncia desse teorema é o seguinte resultado. Veja, também, Lamperti
(1966) para uma construgao de v.a’s sobre um espaco de probabilidade.

Teorema 2.3. Sejam Fy, F,,... f.d’s. Entao, existe um e.p (2, F,P) e v.a’s
X1, Xo, ... sobre esse espaco, tais que:

(i) As v.a’s X; sao independentes;
(i) Afdde X; 6 Fy, i=1,2,....

Prova: Forme o conjunto consistente de f.d’s Fy(x1),..., Fp(z,) e use o teorema
da extensao de Kolmogorov. [

Teorema 2.4. Sejam Fy, Fi, Fa,...o-dalgebras independentes sobre (2, F, P). Entao,
Fo € independente da o-algebra gerada por Fi,Fa, .. ..

Prova: Considere a algebra F definida como sendo a classe de reunides finitas de
conjuntos disjuntos da forma A; N---N A,, onde A; € F;, i > 1. Essa algebra gera
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a o-algebra F{Fi, Fa,...}, e Fpe F sdo independentes. De fato, se provarmos essa
afirmacao, o teorema fica provado, pois dlgebras independentes geram o-algebras
independentes.

Sejam A e B pertencentes a JFy e f", respectivamente, B = A;N---NA,. Entao,

P(ANB)=P(ANA1N---NAy) = P(A)P(A NN Ap),

pois Fo, F1, Fa, ... Fy sdo independentes, logo P(AN B) = P(A)P(B).

SeBEJ:"eB:DlLJDg, DlmDQZQ, D1:Alﬂ--.ﬂAn,Dnglﬂ--~ﬂCn,
entao

P(ANB) = P(AND,)+ P(AN Dy) = P(A)P(Dy) + P(A)P(Ds)
= P(A)[P(Dy) + P(D2)] = P(A)P(D1U D2) = P(A)P(B). O

Coroldrio 2.1. Sejam X1, Xo, ... v.a’s independentes. Sejam {i1,1i2,...} e {j1,J2,...}
conjuntos disjuntos de inteiros.  Entao, F{X,,Xi,,...} € independente de
F{X;,, Xj,, ...}

Prova: Considere i1; entdo, F{X; } é independente de F{Xj }, F{X},},..., por
hipdtese. Segue-se que F{X;, } é independente de \/,~,; F{X;, } = F{X;,, Xj,,...}.
De modo andlogo, F{X;,} é independente de F{X;,, X,,,...}, logo \/;s; F{Xi,} é
independente de F{X;,, Xj,,...}. O N

Esse coroldrio implica, por exemplo, que F{Xji,...,X,} é independente de
F{Xn+1, Xnto,...}, se X1, Xy, ... sdo independentes. Também, se @1, p2,... sdo
mensuraveis sobre (R™,B"), entao as v.a's 7 = p1(Xy,..., Xn),

Zy = po(Xns1, -+, Xon), Z3 = v3(Xon+1, .-, X3n), . . . s@o independentes.

Teorema 2.5. Sejam X e Y v.a’s independentes. Suponha que ou E(|X]) < oo,
E(]Y|) < co. Entao, E(|XY]) < cc e

E(XY) = E(X)E(Y).

Prova: Pelo teorema de Fubini e a independéncia de X e Y temos
E(XY) = / X(w)Y (w)dP(w)
Q
= / rydFx y(z,y)
RxR

_ /R { /R xdeXm)] dFy (y)

_ / 2dFy (2) / ydFy (y) = E(X)E(Y). O
R R

Morettin-Gallesco - dezembro/2025



2.2. LEIS ZERO-UM 27

Como, se X e Y sao independentes, também o serdo f(X) e g(Y), com f e g
fungoes de Borel, o teorema implica que E[f(X)g(Y)] = E[f(X)][g(Y)]. Também,
o resultado pode ser generalizado para um numero finito X1,..., X, de v.a’s inde-
pendentes.

Definigdo 2.5. Seja X uma v.a tal que E(X?) < co e p = E(X). Entdo a
variancia de X é definida por
Var(X) = E((X — p)?).

Proposition 2.2. (a) Se c constante, Var(cX) = c?Var(X) e Var(X +c) = Var(X).
(b) Var(X) = E(X?) — p?.
(c) Se X eY sao independentes, Var(X +Y) =Var(X)+ Var(Y).

Prova: Veja Problema 1. [

Exemplo 2.1. (Fungbes de Rademacher) Seja Q@ = [0,1), F = BN[0,1) e P a
medida de Lebesgue. Defina a sequéncia {X,,,n > 1} de v.a’s sobre (£, F, P) como
segue:

Ny {b RN/, 02 -,
w) =
" —1, caso contréario.

Entao as v.a’s X,, sdo independentes. Para provar isso, temos que verificar que
P(Xi=e1,.... Xy =e) = P(X1=e1) - P(Xi = ep),
para todas as escolhas ey, ...,ex € {—1,1}.

Exemplo 2.2. Seja 0, F e P como no exemplo anterior. Defina {X,,,n > 1} v.a’s
sobre (2, F, P) por X,(w) = an, se w € Q e w = 0,aja2a3--- (no caso em que w
tem duas expansoes decimais escolhemos a expansao infinita). Entao essas v.a’s sao
independentes. Veja o Problema 2.

2.2 Leis Zero-Um

Nesta se¢ao investigaremos eventos cujas probabilidades sao iguais a zero ou um.

2.2.1 Lema de Borel-Cantelli

Lembremos que, se {E,} sao eventos, entao limsup, E, = N5_, U E, e
escrevemos P(limsup,, E,) = P(E, i.v).

Teorema 2.6. Seja {Ey,k > 1} uma sequéncia de eventos de F. Os seguintes
resultados sao validos:
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(a) Se > 22, P(Ek) < oo, entao P(Ey i.v) = 0;

(b) Se os E}’s sao independentes e Y r- ; P(Ey) = oo, entdo P(E) i.v) = 1.

Prova: (a) Seja F,, = U2, Ej, entdo F,, | limsup,, E,, quando n — oco. Logo,

P(Ey iv) = P(limsup F,) = lim P(F),).

n—o0

Mas P(F,) <> 72, P(Ex) — 0, quando n — oo, porque essa é a cauda de uma
série convergente e portanto P(Ej i.v) = 0.

(b) 1 — P(F,) < 1— P(UIPE) = P(UZPEL)) = P(MAPES). Usando a inde-
pendéncia dos Fj, temos que 1 — P(F,) < [[\2F P(E{) = [[\*2[1— P(E})]. Mas 1—
x < e " parax > 0,logo 1-P(F,) < [[}77 exp{—P(E})} = exp{— 312" P(Ex)} —
0, quando p — oo. Logo, 1 — P(E} i.v) — 0, pois F,, | limsup,, E,. O

Observagoes: (1) A independéncia é necesséria em (b); de fato, seja A um conjunto,
com 0 < P(A) < 1 e seja Ej, = A, para todo k. Entao, Y P(Ey) = >, P(A) = oo,
mas P(limsup, Ex) = P(A) < 1.

(2) A parte (b) continua vélida se os eventos Ej’s sao independentes dois a dois.
Veja Chung (1968).

Aplicagées: (1) Lembremos que E(|X|) < oo se, e somente se, >~ P(|X| > n) <
oo. Sejam X1, Xo,... v.a’s independentes, com a mesma distribuigao (i.i.d). Entao,

Plw: | Xp(w)| >niv}=0, se E(]X1|) < 0.

(2) Sejam X1, Xs,... v.a’s i.i.d e suponha que (X7 + X2 + ... + X,;)/n convirja
q.c. Entao E(]X;|) < oco. De fato, temos que |X,|/n — 0 q.c, em particular
P(|X,|/n > 11iv) =0, ou seja >, P{|X,|/n > 1} < occou > P{|Xi| >n} <ce
portanto E(]X1]) < oco.

2.2.2 Lei Zero-Um de Kolmogorov

Essa lei depende do conceito de o-dlgebra caudal (tail o-field em inglés) que
passamos a definir.

Definicao 2.6. Sejam {X,,,n > 1} v.a’ssobre (Q, F, P) e seja Fp, = F{ Xy, Xnt1,...}.
Entao, Foo = NS2Fy, é chamada a o-dlgebra caudal e qualquer conjunto A € F, é
chamado evento caudal.

Isso significa que um evento caudal nao depende de qualquer ntmero finito de
coordenadas. Por exemplo, considere um evento A para o qual S,/n = (X1 + ...+
Xn)/n -+ 1/2, quando se lanca uma moeda “honesta”. Ou seja,
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X o+ X
A= {w: @)+ .+ Xn(w) - 1/2}.
n
Esse conjunto tem a propriedade que, se w € A ou néo, isso ndo depende das
primeiras n coordenadas de w, nao importando o quao grande n seja. Ou seja, A é

um evento caudal. Formalmente, como para todo k£ > 1,

A= {w : Xip(w) + n + X (w) . 1/2}’

entdo A € F{ Xk, Xx+1,...}, para todo k > 1, logo A € F.

Teorema 2.7. Sejam {X,,n > 1} v.a’s independentes sobre (2, F, P). Se A € Foo,
entdo P(A) =0 ou P(A) = 1.

Prova: Seja n um inteiro; entdo X, é independente de F{X,,}, m > n, e con-
sequentemente, X,, é independente de F{X,,, X;n+1,...}. Isso implica que X, é
independente de Fo,. Mas n é arbitrario, logo todo X, é independente de F,, ou
seja, F{X1, Xo,...} é independente de F,. Mas Foo C F{X1,X2,...}, logo F é
independente de si mesmo. Tome A € Fu. Entao, P(ANA) = P(A)P(A), ou seja
P(A) = [P(AN))?, isto é, P(A) =00ou P(A)=1. O

Aplicagdes: 1) Sejam {X,,n > 1} independentes, S, = > ; X;. Se A = {w :
Sp(w) converge}, entao P(A) = 0 ou P(A) = 1. Informalmente, se S, converge
ou nao, isso depende somente das somas parciais (X, + Xp41 + ...), isto é, o con-
junto de convergéncia é um conjunto de F{X,, X,4+1...}, ainda um conjunto de
N> F{Xn, Xnt1...}. Portanto, A € Fu, logo P(A) = 0 ou P(A) = 1. Veja
Problema 3.

2) Sejam {X,,,n > 1} independentes e A = {w : Sy, (w)/n converge}. Entao P(A) =0
ou PA) =1.

3) Sejam {X,,,n > 1} independentes. Seja Y qualquer v.a que seja Foo-mensuravel.
Entao, Y é constante q.c.

2.2.3 Lei Zero-Um de Hewitt-Savage

Essa lei vale para conjuntos simétricos, cuja definicao é dada a seguir.

Definigao 2.7. Sejam X1, Xs,... via’se A € F{X1,Xs,...}. Entao A é simétrico
se existe um conjunto de Borel B em R* tal que

A={w: (Xi1(w),X2(w),...) € B} ={w: (X5, (w), X5, (w),...) € B},

onde o é uma permutacao de um nidmero finito de inteiros.
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Exemplo 2.3 (i) Sejam {X,,n > 1} v.a’s. Entao, {w : X, (w) converge} é um
conjunto simétrico. Note que esse conjunto é também um evento caudal.

(ii) Se Sp = X1+ ... + X,, entao {w : S, (w) converge} é um conjunto simétrico.

De fato, tome B € B como segue: B é o conjunto de todas as sequéncias (a1, as, . . .)
tais que aj + ... + a, converge. Entdo A = X (B) é simétrico, onde X =
(X1, Xo,...). Defato, seja 0 uma permutagao de 1,2,..., N e seja X = (Xoyy Xogy-t)s
So, = Xo, + ...+ X,,,, para todo n. Note que S,, = S, para todo n > N. Agora,

XUB) = A = () U {wssuplSiw) - Silw)| < 1/m

m=1k>1

= ﬂ U {w : su113|5j(w) — Sp(w)] < 1/m}, Vno 2 1
m=1k>ng iz

= ) U {w: 518, @) ~ Sow)] < 1/m}
m=1k>N jzk

= ﬂ U {w sup [So, (w) — S (w)| < l/m}
m=1k>1 jzk

= X YB),

ou seja, X 1(B) = X~1(B), portanto A é simétrico.

(iii) Vejamos um exemplo de um evento simétrico que nao seja um evento caudal.
Seja {B,} uma sequéncia de conjuntos de Borel e S,, = X; + ... + X,,. Entao,
A ={w: S,(w) € By, i.v} é simétrico (veja o Problema 8). Mas esse evento nao
necessita ser um evento caudal. Tome X1, Xo,... independentes com X; = 1, com
probabilidade 1/2 e X; = 0, com probabilidade 1/2 e Xo = X3 = ... = 0. Entao,
{S,, = 01i.v} nado é caudal, pois P{S, =0iv} =1/2.

Para provar a lei de Hewitt-Savage, necessitamos dos dois lemas a seguir.

Lema 2.1. Sejam A e B conjuntos de F, para algum e.p (2, F, P). Definad(A, B) =
P(AAB). Entao, d é uma pseudo-métrica sobre F, e se A, — A, B, — B nessa
pseudo-métrica, entao A, N B, - AN B, A, UB, - AUB e A — A°. Também,
se A, — A nessa pseudo-métrica, entao P(A,) — P(A).

Lemma 2.2. Seja Fy uma dlgebra e F a o-dlgebra gerada por Fy. Entao, se A € F,
existe uma sequéncia A, € Fy, tal que A,, — A na pseudo-métrica d.

Veja o Problema 21 deste capitulo e o Problema 10 do Capitulo 1.

Teorema 2.8. (Hewitt and Savage, 1955) Sejam {X;,i > 1} v.a’s independentes
e identicamente distribuidas sobre (Q,F,P). Se A for um conjunto simétrico em
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F{X1,Xs,...}, entao P(A) =0 ou P(A) = 1.

Prova: Suponha A simétrico. Pelo Lema 2.2, existe A, € F{Xi,...,X,} tal
que A, — A, de acordo com d(A,,A) = P(A,AA). Ou seja, P(A,AA) — 0.
Entao, A = {w : (X1(w),X2(w),...) € B}, para algum B € B® e A, = {w :

(X1(w),...,Xn(w)) € By}, para algum B,, € B". Defina uma permutacao o,, como:
- 1 2 o n n+1l n4+2 -+ 2n
M=\ n+1 nt+2 o 2m 1 2 ... n )

Defina M,, = {w : (Xpt1(w),..., Xon(w)) € By}, ou seja M, = g,A,. Entao,
P(M,Aop,A) = P(A,AA), pois (Xi1,...X,) tem a mesma distribuicdo que
(Xn+1,- .., Xon). Segue-se que P(M,AN) = P(A,AN), porque A é simétrico. Te-
mos, entao:

(i) A, — A, ou P(AL,AAN) — 0
(ii) My, — A, pois P(M,AN) = P(A,AA) — 0;
(iii) M, e A, sdo independentes.

De acordo com o Lema 2.1, A, N M,, — AN A, e portanto P(A,, N M,,) — P(A)
ou P(A,)P(M,) — P(ANA), ainda pelo Lema 2.1. Como o lado esquerdo converge
para P(A)P(A), temos P(A) = [P(A)]?, ou seja, P(A) =0 ou P(A)=1. O

2.3 Leis dos grandes nimeros

Sejam X1, Xo,...v.a’s. Uma lei dos grandes nimeros (LGN) é qualquer teorema
relacionado com a convergéncia de

Xi+Xo+...+ Xy, —ay
bn ’
onde {a,}, {b,} sdo sequéncias de constantes, b, T +o0o. Como caso especial temos
(X1+4+...+X,)/n.
Uma LGN é chamada uma lei fraca (LFrGN) se a convergéncia for em probabi-
lidade e lei forte (LFGN) se a convergéncia for q.c.

Teorema 2.9. (Desigualdade de Kolmogorov) Sejam {Xj,k > 1} v.a’s indepen-
dentes, E(X},) = 0, para todo k, Var(Xy) = o7 < 0. Se Sy, = X1 + ...+ Xy, entdo
para todo A > 0,

3

1

P{ } < =302 2.1

max [Sk| > Ap <55 ) 0k (2.1)
k=1

Prova: Seja A = {w : maxj<p<, |Sk| > A} e A = {w 1 |Sk| < A, k<4, |Si| > A}

Entao, os A;’s sao disjuntos e U} ; 4; = A. Temos que
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Var(S,) = B(52) > / 24P =3 / S2dp.
A i=1 /A

M

as,
/ S2dpP = / (S, — S; + S;)%dP > / S2dp + 2/ Si(S,, — S;)dP,
A; A; A; A;

/ Si(Sn — S)dP = / 14,S:(Sn — Si)dP = / [4.S:dP / (S, — Si)dP,
A;

pois 14,S; e S, —S; sao independentes. Este tiltimo termo é nulo pois f(Sn—Si)dP =
0, logo

/ S2dp > / S2dP.
A; A;

Var(S,) > 3 / S2dP > 3 NPP(4),
i=1 7 Ai i=1

pois em A;, |S;| > A. Como Y I, P(A;) = P(A), temos que Var(S,) > A2P(A).
Portanto, Y1 | 02 = Var(S,) > A2P(A), ou P(A) < 35 Y1 02, O

i=1"1% P

Segue-se que

Teorema 2.10. Sejam {Xj,k > 1} independentes e E(Xy) = 0, para todo k.
Suponha que Y32, Var(Xg) = Y 2o, E(X?) < co. Entdo, Y, Xy converge q.c.

Prova: Pela desigualdade de Kolmogorov,

m+n

1
P{w : sup |Smti — Sm| > 6} < Z O']%.
0<i<n € e
=m+1
Entao,
1 <
P{w :sup [Smti — Sm| > 5} < Z T
i>0 S
=m-+1

porque os conjuntos decrescem. Logo, limy, oo P{w : sup;>q [Simti — Sm| > €} =0,
porque temos a cauda da série convergente ), Var(Xy). Isso implica que {S,} é
uma sequéncia de Cauchy, para quase todo w, logo S, converge q.c. [

No Teorema 2.10, dizer que Y _p-; Var(Xy) < oo é equivalente a dizer que »_, X,
converge em Lo, logo o teorema pode ser enunciado como: Se ), X}, converge em
Lo, entao essa soma converge (.c.
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Exemplo 2.4. Como uma aplicagdo do Teorema 2.10, vamos mostrar que a série
Py (%) converge para quase todas as escolhas de +.

Sejam {ry} as fungdes de Rademaker sobre [0, 1) e considere a série Y oo r’“k(t)

Lembremos que essas fungdes sdo independentes. Segue-se que X = ri/k é uma
sequéncia de v.a.’s, de média zero, >, Var(Xy) = Y., k2 < oo. Logo, pelo teorema
anterior, >, r;(t)/k converge q.c, ou seja, converge para quase todo t € [0,1). Mas
ri(t) = £1, e o resultado segue.

Para provarmos uma versao da LFGM necessitamos do resultado seguinte (veja
por exemplo Breiman (1968)).

Lema 2.3. (Lema de Kronecker) Seja {zy, k > 1} uma sequéncia de niimeros reais
tais que ), xp/a) converge, onde {ay,k > 1} é uma sequéncia de nimeros reais
positivos, tais que aj 1T co. Entao, Y ,_; xx/an — 0.

Teorema 2.11. (Uma versao da LFGN) Sejam { X,k > 1} v.a’s independentes,
E(X})) = py, e suponha que > po 02 /k* < co. Entao,

X1—|—X2—|—...—|—Xn_,u1+,u2—|—...—i—,u

“ =0 q.c. (2.2)
n n

Prova: Considere Y, = (Xj — ux)/k; entdao {Yy, k > 1} sao independentes, tém
média zero e >, Var(Yy) = >, 02/k* < co. Pelo Teorema 2.10, >, V) converge
g.c. Pelo Lema de Kronecker, ), kY /n — 0 q.c, isto é,

%((Xl—,ul)—i—(Xg—u2)+...+(Xn—un))—> 0 qc,

ou seja, obtemos (2.2). O
Para provarmos a LFGN de Kolmogorov, precisamos do seguinte resultado.

Lema 2.4. Se X é uma v.a com f.d F, tal que E(|X|) < oo, entao

Zn2/ 2*dF (z) < oo.

Prova: Temos que Y oo 25 [ 22dF(z) = Y00 >, #f{k—1<|x|§k} 22dF ().
Mudemos a ordem de integracao e usemos ) ., 1/ n? < 2/k, n > 1, para obter

= =1
2 2
dF (z / e?dF(z) )  —
=1k /{k 1<|z|<k} Z k—1<|z|<k} ,;ch
< iz/ 22dF(z) < iz/ kla|dF () = 2B(]X]) < o0. O
ik 1<l <iy i ke 1<ial<hy
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Teorema 2.12. (LFGN de Kolmogorov) Sejam {X,,n > 1} v.a’s i.i.d. Se p =
E(X,) e E(|X1]|) < o0, entao (X1 + ...+ Xp)/n— u q.c.

Prova: Defina v.a’s truncadas {Y,,,n > 1} como segue:
Xn, sel|X,| <n,
Y, =
0, se | Xp| > n.

Defina Z,, = X,, — Y,,. Entéao,

n N n n '

Sem perda de generalidade, podemos supor E(X;) = 0, pois se nao, considere
X, — E(X,,), no lugar de X,,. A prova consiste de duas partes:

(a) Mostrar que (Z1 + ...+ Z,)/n — 0 q.c. Para isso, mostramos que P{Z, #
0 i.v} = 0. De fato, P{Z, # 0} = P{|X,| > n}. Mas, usando o fato de que as
variaveis sao i.i.d,

S P(Xa| > 0} = 3 P{IX1] > n} < B(X]) < o,

usando o Teorema 1.18, logo pelo Lema de Borel-Cantelli, o resultado segue.

(b) Mostrar que (Y1 +...+Y,)/n — 0 q.c. Para isso, aplicamos o Teorema 2.11.
Temos que

Z Var(Vy) = E(Y?) =1 [*
3 Yulh) oy~ E :Zkz/ P2dF(z) < oo,
k=1 k=1 k=1 —k

pelo Lema 2.4. Entao, usando o Teorema 2.11, (Y7 +...+Y,)/n—(EY1) + ... +
E(Y,))/n — 0, q.c. Por hipétese, E(X1) = 0, de modo que E(Yy) = ffk xdF(z) —
0, q.c, quando k — oo. Portanto (E(Y7) + ...+ E(Y,))/n — 0, q.c, do que segue o
resultado. [

Teorema 2.13. (Reciprocas a LFGN) Sejam {X,,,n > 1} v.a’s i.i.d.
(a) Se (X1 + ...+ X,)/n converge q.c para um limite finito, entdao E(|X1|) < oo;

(b) Se E(|X1]) = o0, entao limsup,, . [(X1 + ...+ X,)/n| = +o0, q.c.

Prova: (a) Como (X + ...+ X,)/n converge q.c, |X,|/n — 0 q.c, pois X,,/n =
Sp/n — Sp—1/n, e a diferenca converge para zero. Logo, P(|X,|/n > 1 iv} =0
e pelo Lema de Borel-Cantelli, >, P(|X,| > n) < oo e como as v.a.’s sdo i.i.d,
E(]X1]) < 0.
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(b) Se E(|X1|) = oo, entao E(|cX1|) = oo, para todo ¢ > 0. Logo, > P(|X1| > cn) =
00, ou ainda »_ P(|X,| > cn) = oo. Por Borel-Cantelli, P(|X,|/n > ¢ iv) = 1.
Agora, se | Xy, |/n = |S,/n—Sp—1/n| > ci.v, entdo ou |S,/n| > ¢/21.v, ou|S,_1/n| >
¢/2 i.v. Como c ¢ arbitrariamente grande, segue-se que limsup,, |S,/n| = +oco. O

Seja X1, Xo, ... uma sequéncia de v.a’s i.i.d, com f.d comum F', suposta desconhe-
cida. Considere n valores observados de X1, ..., X, e defina a funcdo de distribuicao
empirica (f.d.e) como

nimero dos X;(w),i < n, que sao < A

F,(\w) =

n

Entao temos o seguinte importante resultado.

Teorema 2.14. (Glivenko-Cantelli) Para quase todo w, F,(\,w) converge para
F()\), uniformemente em \.

Prova: (a) Em primeiro lugar, verificamos que para cada A, existe um conjunto

nulo Ay, tal que se w ¢ Ay, entdao F,,(\,w) — F(X).
De fato, defina

1 X <A

Valwy = 4 b 2=

0, seXp(w)>A

Entao, Y1, Ys,...s80 v.a’siid. e Fj(A\,w) = (Y1+...+Y,)/n. Essa v.a converge
para E(Y7), pela LFGN e E(Y7) = P(X,, < \) = F(A).
Deduzimos que existe um conjunto nulo N, tal que se w ¢ N, entao lim,,_,cc F(\, w)
= F()), sempre que A seja um ndmero racional (Seja A1, A2,... uma enumeragao
dos racionais e tome N = U2, Ay, ).

(b) F tem um ntimero enumeravel de descontinuidades. Seja aj,asg,... uma enu-
meracao de tais descontinuidades. Vamos mostrar que para todo ag, Fy(ag,w) —
F,(ax—,w) converge para F(ag,w) — F(ar—,w) q.c. Ou seja, para w ¢ A, , um
conjunto nulo, temos essa convergéncia. De fato, seja

Zu(w) = {1, se Xp(w) = ag,

0, caso contrério.

Entao, usando o mesmo argumento que em (a), obtemos o resultado. Além disso,
existe um conjunto nulo M tal que, se w ¢ M, teremos

lim {F,(\,w) — F,(A—,w)} = F(\,w) — F(A\—,w),

n—oo

sempre que A seja um ponto no qual F' tenha um salto.
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(c) Tome qualquer w ¢ MUN. Para tal w, temos F,(\,w) — F(\,w), para qualquer
A racional, e {F,,(\,w) — F,(A—,w)} = F(\,w) — F(A—,w) para qualquer ponto de
salto A de F'. Isso implica a convergéncia uniforme de F;, para F' para o w escolhido.
U

2.4 Séries aleatorias

Nessa secao provamos o teorema das trés séries de Kolmogorov, que dda uma
condi¢do necessdria e suficiente para que a série ), X}, de v.a’s independentes,
convirja ¢.c. Primeiramente, obtemos uma cota inferior na desigualdade de Kolmo-
gorov.

Proposicao 2.1. Sejam X1, Xs,... v.a’s independentes, E(X}) = 0, para todo k.
Suponha que |Xi| < ¢, Vk > 1. Se Var(X},) = o7, entdo para todo a > 0

(a+c)?
> k1 U/%‘

Prova: Seja A = {maxo<i<p |Sk| > a}, 4; = {w : |Sj(w)| < a, j <1, |Si| > a}.
Entao, os conjuntos A; sao disjuntos e U} ; A; = A. Portanto,

P{ max | S| >a} >1-
0<k<n

n n

E[14S;) =Y B(14,57) + Y E(L4,(Sn — Si)?).

i=1 =1
Agora, E(14,5?) < (a + ¢)?P(4;), pois Si—1 < a, X; < c. Por outro lado,
E(14,(Sn—5Si)?) = P(4)E(Sy, — Si)* < P(4;) Y j_; 02, usando a independéncia de
I4, e (Sn — Si)%. Segue-se que temos

n

E(I45%) < (a4 ¢)*P(A)+ P(A)Y oi = [(a +¢)? + i a,%} P(A4), (2.3)

E(I452) = E(S?) — BE(S214:) > 02 —d*[1 — P(A)], (2.4)

de modo que combinando (2.3) e (2.4) temos

n

[(a+e)®+ of]P(A) 2 ) of —a’[L - P(4)],
k=1

k=1
logo

P(A) > S 02 —a? 1 (a+c)? >1_(a+c)2
T (a+o)?+ Y 0 —a? (a+e)?+>p_jop—a® = i 0}
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O

Provamos antes que, se X1, Xo, ... sao independentes, de média zero, ese ) 0,% <
00, entao Y, X} converge q.c. A reciproca é verdadeira se adicionarmos uma outra
condicao.

Teorema 2.15 Sejam X1, Xo,... independentes, de média zero, |X| < ¢, para
todo k e algum c. Suponha que Y, Xy convirja q.c. Entdo Y., 02 < 0o, onde
of =Var(Xy).

Prova: Suponha que S, = > ;_; X3 converge. Entao sup,>; [Spin — Sn| — 0
q.c, quando N — co. Portanto, limy_, o P{sup,;>; |Sntn — Sn| > €} = 0. Tome N
grande de modo que P{sup,,~; |Sn+n—Sy| > €} < 1/2. Suponha que "3, 07 = <.
Entao, teremos -

1 (e +c)?
*ZP{Sup|Sn+N*SN| >8} 2P{ sup |S7L+N75N| >5} 217]\[_’_7]\4,
2 n>1 M>n>1 N 4108

usando a Proposicao 2.1. Como Zév:]\%rl 013 — 00, quando M — oo, obtemos

1/2 > 1, uma contradi¢do. Logo devemos ter Y 7 a]% <oo. O

Teorema 2.16. (Teorema das trés séries de Kolmogorov) Sejam X1, Xa,... v.a’s
independentes. A série ) X, converge q.c se e somente se para algum c¢ > 0, as
seguintes trés séries convergem:

(D) 22 PUXnl > ¢e}; (id) 32, Var(X5); - (idd) 32, E(X5),
onde Xt = X,,, se | X,| <ceX:=0,sel|X,|>c

Prova: (a) Suponha que as trés séries dadas em (i)-(iii) convergem. Para mostrar
que . X, converge q.c, basta mostrar que ) X converge g.c. pois (i) implica
que X = X,, , com excecao de um numero finito de indices n, pelo Lema de Borel-
Cantelli. Mas, por (ii), temos que Y 2, [X¢ — E(XS)] converge q.c, pelo Teorema
2.10. Também, por (iii) obtemos que ) X} converge q.c.

(b) Suponha, agora, que ) X, converge q.c. Entdo X,, = 0 q.c, o que implica
P{|X,| > civ} =0, para todo ¢ > 0, logo por Borel-Cantelli, >, P(|X,| > ¢) < oo,
e (i) segue. Também segue que ) XS converge q.c, pois as caudas de ambas as
séries sao as mesmas.

Sejam Y7, Ys,... v.a’s independentes tais que, para todo k, Y tenha a mesma
distribuicao que Xj e F{Y1,Ys,...} seja independente de F{Xf, X5, ...}. Entao,
Yoo (X5 —Y,) converge q.c. Os termos dessa soma tém média zero, e sao limitados
em valor absoluto por 2c. Portanto, pelo Teorema 2.15, Y Var(X§ —Y;,) < oo.
Mas Var(X§ —Y,,) = 2Var(X}), portanto >, Var(X}) < oo, provando (ii).

Novamente, usando o Teorema 2.10, segue-se que ) [X; — E(X5)] < 0o e como
>, XS < 00, obtemos que Y, E(Xf) converge q.c, e (iii) fica provada. O

Morettin-Gallesco - dezembro/2025



38 CAPITULO 2. INDEPENDENCIA

Até agora usamos trés métodos importantes:
(i) Truncamento: substituimos X, por XJ;
(ii) Centralizagdo com respeito a médias: substitiuimos Xy por Xy — E(Xy);

(iii) Simetrizacao: substituimos Xy por Xj — Y, onde Y} é independente de X, e
tem a mesma distribuicao que Xj.

Uma outra possibilidade: centrar com respeito a medianas. Lembremos que a
mediana de uma v.a. X é um nimero m tal que P(X >m) >1/2e P(X <m) >
1/2. Usaremos a notacao m(X).

Teorema 2.17 (Desigualdade de Lévy) Sejam Xi, X, ... independentes e S, =
> w1 Xi. Entao,

P{ max [S; —m(S, — 5] > /\} < 2P{|S,] > A}
Prova: (a) Provamos primeiro que P{max; << (Sx —m(Sp,—Sk)) > A} < 2P{S,, >
A}. Chamemos my, ,, = m(S, — Si). Entao, temos:

(1) P{maX1§k§n<Sk - mk,n) > )‘7 Sn > A} < P{Sn > A)?

(it) P{maxi<p<n(Sk — min) > A, Sn < A} = 3021 P(T1 =k, S, < \),

onde 7 € o primeiro inteiro k tal que S — my, > A. Segue-se que a tltima soma
¢ < STV P(T =k, Sy < Sk —min) = Yoy P(T = k)P(Sn — Sk < —mypn) =
Zz;i P(r = k)P(my, < Sp — Sp)), devido a independéncia entre {7 =k} e {5, <
Sk — Mk}

Pela definicdo de mediana, P(mg, < Sp — Sn) < P(Sk — Sp < myp), logo
Sroi P(r o= k)P(miyn < Sp — Sn)) < XR2i P(r = K)P(Sp > Sk — myp) =
S P(T =k, Sp > S —mpn) < S g P(T =k, S, > \) = P(S, > \).

Portanto, P{max(S, — myn) > A, S, < A} < P(S, > A}. Adicione (i) e (ii)
para obter o desejado.

(b) Para o caso geral, na parte (a) substitua X,, por —X,, na prova. Obtenha

P{ max (—Sg + min) > )\} <2P{-S, > \},

1<k<n

portanto

P, ISk menl 2 0 < P g (Simmea) 2 AP g (~Stmea) 2 3}

< 2P{S, > \) + 2P{—S, > \} = 2P{|S,| > A}. O

Esse resultado pode ser usado para provar o teorema a seguir.
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Teorema 2.18. Sejam {X,,n > 1} v.a’s independentes. Entao ), X, converge
em probabilidade se e somente se ), X, converge q.c.

Prova: (<) Trivial

(=) Seja S, = > Xi. Suponha que S, — S em probabilidade. Entao, existe
uma subsequéncia {ny} tal que Sp, = S q.c e Y52 P{|Sn, — Snyyy| > 1/2F} < 0.
Defina

M, = max |Sn — Snk — m(Sn - Snk+1)"

nE<n<ngi1

Entao, pela desigualdade de Lévy,
P(My > 1/2%) <2P{|Sn, — Sn,,,| > 1/2F}.

Logo 3", P(My > 1/2F) < oo, implicando que M}, — 0 q.c. Ou seja, para nj < n <
Nk+1,

1S = 1Sy — Sn) = S| < S = S| + S0 = Sy — M(Sngyy — Sl

e como S — S, — 0, e o segundo termo ¢é menor ou igual a My, que tende a zero
q.c, segue-se que S, — m(S —Sp) = S q.c. Mas S, — S em probabilidade,

Nk+1
portanto m(Sp, ., —Sn) — 0, isto é, S, = S q.c. O

Problemas

1. Prove a Proposicao 2.2.
2. Prove que as v.a’s definidas no Exemplo 2.2 sao independentes.

Prove a Aplicagao 1, logo apds o Teorema 2.6.

- W

Prove formalmente a Aplicacao 1 (b), apdés o Teorema 2.7.
5. Idem, Aplicagao 3.

6. Sejam X1, Xs,... independentes. Prove que se S,,/n converge a um limite finito Y,
entao Y é necessariamente constante.

7. Prove (i) do Exemplo 2.3.
8. Prove que o evento A de (iii) do Exemplo 2.3 é um evento simétrico.
9. Prove que a classe dos eventos simétricos é uma o-algebra.

10. Sejam {X;,i > 1} v.a’s i.i.d. Mostre que P{w : X,,(w) converge} = 0, supondo que a
distribuicao de X; nao esta concentrada num tinico ponto.
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11. Sejam {X;,i > 1} v.a’s i.i.d., com f.d F definida por F(z) =1—e"* = >0, F(z) =
0, z < 0. Prove que:

(a) P{(X,/logn) > 2iv} =0, mas que
(b) P{(X,/logn) > 1iv}=1.

12. Sejam X, Xs,...va’siid., P(X;=1)=p, P(X1=-1)=¢q,p>q, p+q=1. Seja
Sp=X1+...+X,. S, é um passeio aleatério. Entao, prove que P(S,, =01i.v) =0.

13. Prove que P{w : liminf, o > ;_; Xx(w) > —c0} =0 ou 1, onde {X,,,n > 1} é uma
sequéncia de v.a’s independentes, cada uma q.c finita.

14. Seja {X,,n > 1} uma sequéncia de v.a’s i.i.d, com E(X,) =0 e seja {¢,,n > 1} uma
sequéncia limitada de constantes. Prove que Y ;_; cx Xx/n — 0 q.c.

15. A afirmacdo: limsup,, (X1+...+X,,)/n é mensurdvel relativamente & o-dlgebra caudal,
é falsa ou verdadeira? Justifique.

16. Sejam X e Y v.a’s independentes e suponha que F(|X+Y|) < oo. Prove que E(|X|) <
0.

17. Sejam {X,;,i > 1} v.a’s i.id, E(]X1]) < co. Prove que (X7 + ...+ X,,)/n converge
para E(X;) em L;.

18. Sejam {Xj;,7 > 1} v.a’s i.i.d, cada uma N(0,1). Mostre que ) (X, /n®) converge q.c
se a > 1/2 e diverge se a < 1/2.

19. Suponha {X;,i > 1} v.a’s com médias p; e variancias o7, nio necessariamente inde-
pendentes. Suponha X; nao correlacionadas.

(a) Prove que Var(}_; ; X;) = > 1, Var(X;);
(b) Prove que, se Y., 07/n* — 0, para n — oo, entdo (X1 + ...+ X,,)/n — (1 +
.o+ pn)/n — 0, em Ly e em probabilidade.

20. Seja (2, F, P) um e.p. e os eventos A, B de F. Prove que, se P(A) =0 ou 1, entdao A
e B sao independentes.

21. Prove o Lema 2.1.

22. Seja Q = {1,2,3,4,5,6,7,8} e F = 22, Suponha que P({1}) = --- = P({8}) = 1/8.
Sejam Fj e JFy o-algebras sobre  geradas por {1,3,5,7} e {1, 2, 3,4}, respectivamente.
Verifique se F; e F3 sao independentes.

23. Prove que as v.a’s do Exemplo 2.1 sao independentes, mostrando que ambos os lados
da igualdade sdo iguais a 27F.

24. (Doukhan, 2015) (a) Sejam X,Y v.a’s reais e independentes com X simétrica (isso

significa que —X tem a mesma distribuigao de X), E(X?) < coe P(Y = £1) = 1/2.
Considere Z = XY. Prove que Cov(X, Z) = 0 e, além disso, se | X| nao for constante
q.c, entao X, Z nao sao independentes.

(b) Se as v.a’s X e Y tém valores em {0, 1} e satisfazem Cov(X,Y") = 0, prove que X
e Y sao independentes.
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Capitulo 3

Esperanca Condicional

Neste capitulo iremos tratar do importante conceito de esperanca condicional
com respeito a uma o-algebra. Estudaremos as suas propriedades mais importantes
e terminaremos com o conceito de probabilidade condicional regular. As referéncias
principais para este capitulo sao Chung (1968, 1974), Breiman (1968, 1992) e Bil-
lingley (1995).

3.1 Definicoes e fatos basicos

No Problema 17 do Capitulo 1, para A € F, P(A) > 0, definimos a probabi-
lidade condicional P(B|A) = P(AnN B)/P(A), para todo B € F. Segue-se que
(Q,F,P(-]A)) é um e.p. Dessa definigao seguem resultados importantes, como a lei
da probabilidade total, P(BN A) = P(A)P(B|A), e o Teorema de Bayes,

P(B)P(A|B)

P4
que nos diz que a probabilidade a posteriori de B, dado que A ocorreu, é obtida,
essencialmente, pelo produto da probabilidade a priori de B, P(B), pela verossimi-
lhanga P(A|B). Veja os Problemas 21 e 22.

Se X for uma v.a definida neste e.p, com valores {zy, k > 1}, podemos também
definir a probabilidade condicional

P(B|A) =

P (A, X = xk)
P (X = xk)
se P(X = zy) > 0, e definida arbitrariamente como sendo zero, se a probabilidade

do denominador for zero. No caso geral, podemos considerar A € F e B € BB, com

P(X € B) > 0 e definir

PAIX = ay) =

P(A,X € B)

PAIX € B) = 5

41



42 CAPITULO 3. ESPERANCA CONDICIONAL

Se quisermos dar um significado preciso para P(A|X = z) teremos que recorrer
ao conceito de derivada de Radon-Nikodym, o que sera feito a seguir, quando de-
finirmos o conceito mais geral de esperanca condicional. Uma maneira equivalente
é definir a probabilidade condicional de A, dada X (w), como qualquer v.a sobre €2,
F{X }-mensuravel, satisfazendo

P(A, X € B) = / P(A|X)dP, paratodo B € B.
{XeB}
Quaisquer duas versdes de P(A|X) diferem num conjunto de probabilidade nula.
Ver Breiman (1968) para detalhes.
De modo andlogo, podemos considerar a esperanga condicional E(Y|X = x),
dadas duas v.a’s X e Y sobre (2, F, P). Se E(|Y]|) < 0o, entao E(Y|X) é qualquer
funcao F{X }-mensurdvel satisfazendo

/ E(Y|X)dP = / YdP, paratodo A e F{X}.
A A

Ou seja, tanto P(A|X) como E(Y|X) dependem somente de F{X }.

A seguir definimos uma esperanca condicional mais geral, ou seja, a esperanca
condicional de uma v.a com respeito a uma o-algebra.

Definicao 3.1. Seja (2,G, P) um e.p e F uma o-algebra contida em G. Seja X
uma v.a integravel sobre (2, G, P). A esperanga condicional de X com respeito a F,
denotada por E(X|F), é qualquer v.a satisfazendo:

(i) E(X|F) é F-mensuravel;

(ii) Se A é qualquer conjunto em F, entao

/AE(X]}“)dP:/AXdP.

Note que E(X|F) nao é definida univocamente, mas quaisquer duas v.a’s que
satisfazem (i) e (ii) ser@o iguais q.c. Assim, F(X|F) é qualquer uma das classes de
equivaléncia de v.a’s sobre Q) satisfazendo (i) e (ii).

Seja (€2, G) qualquer espago mensuravel, 1 uma medida sobre esse espago e v uma
medida sinalizada sobre o mesmo espaco. Dizemos que v é absolutamente continua
com respeito a u se v(A) = 0 sempre que p(A) = 0, para todo A € G. Escrevemos
v << p. O seguinte resultado é fundamental (veja Halmos (1976)).

Teorema 3.1. (Radon-Nikodym) Seja (€2, G) um espago mensurdvel e y uma medida
finita sobre o mesmo. Suponha v << u. Entao, existe uma fun¢ao G-mensuravel X
tal que, para todo A € G,
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V(A) = /A Xdy.

A v.a X é Unica a menos de conjuntos de medida p-nula; dizemos que X é a
derivada de Radon-Nikodym de v com respeito a p e escrevemos X = Z—Z. Usamos
esse fato para provar o seguinte resultado.

Teorema 3.2. A esperanca condicional como definida acima existe.

Prova: Considere a fun¢ao de conjunto v sobre F definida por

V(A) = / XdP, VA€ F.
A

Esta funcao tem valores finitos e é enumeravelmente aditiva, logo é uma medida
sinalizada. Se P(A) = 0, entao v(A) = 0, logo v << P. Pelo Teorema 3.1, existe
uma fungdo F-mensurdvel Y tal que v(A) = [, YdP. Segue-se que Y satisfaz a
definigao de esperanca condicional, e dv/dP = E(X|F). O

Para a o-algebra F{X } gerada pela v.a X, escrevemos E(Y|X) para E(Y |F{X}).
De modo similar, E(Y|Xy,...,X,) é definida como E(Y|F{X1,...,X,}). Para
A € G, defina P(A|F) = E(IA|F), como sendo a probabilidade condicional de A
com respeito a F. Especificamente, P(A|F) é qualquer uma das classes de equi-
valéncia de v.a’s F-mensuraveis satisfazendo

P(ANB) = / P(A|F)dP, paratodo B € F.
B

Considere X1, Xo,... v.a’s sobre (,G,P) e E(Y|Xy,...,X,). Cada versao da
esperanca condicional de Y, dadas X;,..., X, é F{Xi,..., X, }-mensurdvel. Tome
qualquer uma dessas versoes. Entao existe uma funcdo mensuravel de Borel ¢ :
R™ — R, tal que

EY|X1,...,Xn) =¢(X1,...,Xpn) q.c,

pelo Teorema 1.10. Como consequéncia desse fato, a funcao E(Y|X) (ou
E(Y|X1,...,Xy)), como fungao de w, é constante q.c em cada conjunto sobre o
qual X (w) seja constante (ou sobre o qual (X1,...,X,,) seja constante). Frequen-
temente, usamos a notacdo E(Y|X =) = p(x) ou E(Y|X; = 21,..., X, = x,) =
(1, ).

Exemplo 3.1. (a) Se F = {0,Q}, entdo E(X|F) = E(X).
(b) Se X é F-mensuravel, entao F(X|F) = X.

Exemplo 3.2. (a) Sejam Ay,..., A, eventos disjuntos em G tais que e U;A; = Q e
P(A;) > 0 para todo i € {1,...,n}. Seja F a o-dlgebra gerada pelos {A;}. Entao,
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B(X|F)(w) = 5o

nie{l,... n} (3.1)

De fato, (i) da defini¢ao esta satisfeita, pois (3.1) é constante nos A;. Quanto a
(ii), devemos mostrar que, se A € F, entao [, E(X|F)dP = [, XdP. E suficiente
verificar a igualdade para cada A;, pois F é composta por reunioes dos A;. Entao,
para cada 1,

/AiE(XU:)dP:/Ai [P(‘E\i)/A_XdP} dP:P(lAi)/AidP/AiXdP:/AiXdP_

1

Note que E(X|F) é constante q.c sobre os atomos de F (dada uma o-algebra
F, um atomo de F é qualquer conjunto A € F tal que, se A C A ese A € F, entao
P(A) =0o0u P(A) = P(A)).
(b) Dados os A; de (a), defina Y = > ", Iy, sendo os ¢; distintos. Entao,
E(X|Y)= E(X|F), onde F é a o-algebra gerada pelos A;.

(c) Seja F gerada por um conjunto A, isto é, F = {0,Q, A, A}. Se 0 < P(A) < 1,
entdo para A € G,

P(A|A), sew €A,

PAlF) = {P(A]Ac), sew € A°.

Exemplo 3.3. Seja Q = [-1,1], F = B([-1,1]) e P=(medida de Lebesgue)/2.
Defina uma v.a Y sobre (2, F, P) por Y (w) = w. Entao, Y gera F. Seja X uma v.a
sobre o mesmo e.p, integravel.

(a) E(X|Y)= X, pois X é F-mensuravel e F{Y'} = F.
(b) E(X|Y?) = X, pela mesma razao.
(c) BE(X|Y?) = [X(w) + X(—w)]/2. Note que, agora, a o-algebra gerada por Y?

consiste de todos os conjuntos de Borel M, tais que M = —M. Mostre que (i) e (ii)
da defini¢ao estao satisfeitas.

Exemplo 3.4. Seja Q = R?,G a o-algebra de Borel sobre R?; seja uma funcio
nao negativa, f : R> — R, com Jge f(z,y)dzdy = 1. Defina P sobre (€2,G) por
P(A) = [, fdzdy, para todo A € G. Defina v.a’s X e Y sobre (2,3, P) por:

se w € ]R2,w = (w1,w2), X(w)=wi, Y(w)=wo.

Entao, a f.d conjunta de (X,Y) é dada por
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F(z,y) = Plw: X(w) <z, Y(w) <y} = /_J: /_y fx,y)dxdy.

Seja fi(x) a densidade marginal de X. Entao, afirmamos que uma versao da
E[g(Y)|X], para alguma funcao de Borel g, é dada por

2 s (X y)dy
e —: h(X).

Para justificar tal afirmacao, temos que provar que h(X) é F{X }-mensuravel e
satisfaz a propriedade (ii).

Elg(Y)|X] =

(i) fi(z) ¢ F{X}-mensurdvel, o mesmo valendo para [*_g(y)f(z,y)dy, pelo te-
orema de Fubini. Em seguida, vamos mostrar que P{f1(X) = 0} = 0. Logo, o
quociente h(X) em (3.8) é bem definido q.c. Definindo h(x) = 0 nos pontos tais que
fi(x) =0, obtemos que h é F{X }-mensuravel. Seja A = {x : fi(z) = 0}. Entéo,

P = [ [ fadady = [ filz)da o

(ii) Tome A € F{X}. Devemos provar que

/ g(Y)dP = / h(X)dP.
A A
Mas qualquer tal A é da forma A = A; x R, onde A; € B, logo

/ _oyip= / 1 [ st sdzay = [ K / Wfl(:v)dy>dx

:/Al h(x)fl(x)dx:/Al h(””)(/Rf(x’y)dy)dx:/MR h(@)f (2, y)dedy

_ /A CT

Note que, na primeira e ultima igualdades, usamos os fato que dP = fdzdy.

3.2 Propriedades da esperanca condicional

As propriedades da esperanga condicional sdo de trés tipos: aquelas andlogas
a propriedades das integrais, aquelas denominadas de suavizagdo e uma proprie-
dade relacionada a espagos lineares. Lembramos aqui que todas as igualdades (e
desigualdades) a seguir envolvendo esperancgas condicionais valem q.c.
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[A] Propriedades de Integrais
Seja X,Y v.a’s sobre (12,G, P), integraveis e F C G.
P1l. E(aX + BY |F) = aE(X|F) + BE(Y|F).
Veja o Problema 4.
P2. Se X <Y q.c, entdo E(X|F) < E(Y|F)

De fato, para cada A € F, temos

/AE(X|}')dP:/AXdP§/AYdP:/AE(Y|}")dP

P3. (Teorema da Convergéncia Dominada). Seja {X,} uma sequéncia de v.a’s
integraveis, X, — X q.c. Suponha sup,, | X,,| integravel. Entao,

lim E(X,|F) = E(X|F).

n—o0
(a) Suponha X,, > 0, X,, | 0 q.c. Entao, X; > X3 > --- e por P2,

E(X1|F) > BE(Xo|F) > -, (3.2)

logo E(X,|F) | W > 0. Agora, E(X,) — 0 pelo TCD e E[E(Y|F)] = E(Y), pela
definigao de esperanga condicional, com A = Q. Por (3.2), E(X,,) > E(W), portanto
E(W) = 0. Segue-se que lim,,_,~, E(X,|F) = 0.

(b) Para o caso geral, temos que

[B(XGIF) = B(XIF)| = |E( ~ X)|F)| < B( X~ X| |F) < B(sup| X~ X |F),

e o dltimo termo tende a zero pela parte (a). A primeira desigualdade na expressao
acima, isto é, |E(X|F)| < E(|X||F) pode ser obtida usando —|X| < X < |X].

P4. (Teorema da Convergéncia Monotonica) Suponha que X, > 0, X,, T X, X
integravel. Entao, lim,,_,~ F(X,|F) = E(X|F) q.c.

Chamemos de Z o limite de E(X,|F), que existe q.c, pela propriedade anterior.
Entao, para cada A € F, temos

/ZdP:Iim/E(Xn]}")dP:hm/XndP:/XdP,
A noJA noJA A

sendo que na ultima igualdade usamos o TCM. Segue-se que Z satisfaz a definicao
de esperanca condicional e é F-mensuravel, logo Z = E(X|F).
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P5. (Lema de Fatou). Se X,, > 0 e X,,, liminf, X,, sdo integraveis, entao

E(liminf X,,|F) < liminf E(X,|F).
n n

P6. (Desigualdade de Jensen). Se ¢ é uma fungao convexa sobre R e X e ¢(X) s@o
integraveis, entao
¢ (E(X|F)) < E(p(X)|F).
[B] Propriedades de Suavizagdo
P7. Se X for integravel e F; C JFo, entao
EE(X|F)|F2] = E[E(X[F)|F] = E(X|F1).

E(X|F1) é Fi-mensurdvel e como F; C Fa, é também Fa-mensuravel, logo
E[E(X|F1)|F2] = E(X|F1), pelo Exemplo 3.1 (b). Seja, agora, W = E[E(X|F2)|F1].
Tome A € F1. Devemos mostrar que fA WdP = fA XdP.

Mas [, WdP = [, E(X|F2)dP = [, XdP, pois se A € Fi, entdo A € Fo.

Como casos especiais desse resultado, temos:

(i) E[E(X|F1)] = E(X).
(b) Se F1 = F{Y1}, F2 = F{Ya}, temos

E[E(XY1)[Y1,Y2] = E[E(X|Y1,Y2)[Y1] = E(X1).
P8. Suponha que X e XY sejam integraveis e X seja F-mensuravel. Entao,
E(XY|F)=XE(Y|F). (3.3)
E facil ver que (3.3) vale para X = Ip, B € F. A seguir, é valida para uma
funcao simples e logo se X > 0, F-mensuravel. Para o caso geral, considere X =
Xt —-X".

P9. Seja (22,G, P) um e.p, X uma v.a sobre esse espaco, integravel, e Fi, Fy duas
sub-o-algebras de G. Suponha que F{X} V F; seja independente de F3. Entao,
E(X‘./Tl V .7:2) = E(X’.Fl)

Temos que E(X|F1) é mensurdvel relativamente a F; V Fy. E suficiente mostrar
que se A € F1 V Fa, entao

/ E(X|F1)dP = / XdP. (3.4)
A A

Primeiramente, suponha que A = A1 N Ay, A; € F;, i = 1,2. Entao,
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/ E(X]]:l)dP:/IAlfAZE(X]]:l)dP:/IAQdP/IAlE(X]]ﬂ)dP
A1NAs

— P(Ay) | E(X|F1)dP = P(As) deP—:/ XdP.
Ay Ay A1NAz

a segunda igualdade por independéncia e por definicao de esperanca condicional, a
dltima igualdade novamente usando a independéncia.

Logo, (3.4) vale para esse caso. Também, (3.4) vale se A for uma reunido de
conjuntos disjuntos da forma Ay N As, A; € F;, i = 1,2. Mas a colecao de todos
os conjuntos dessa forma é uma dlgebra, de modo que (3.4) é verdadeira para todos
os conjuntos em uma &lgebra, e a o-dlgebra gerada por essa dlgebra é Fi V Fo.
Concluimos a prova observando que os eventos satisfazendo (3.4) formam uma classe
monotonica. Obtemos finalmente que (3.4) é satisfeita para todo A € F; V Fy (veja
o Apéndice A.1).

Um caso especial importante desse resultado é que, se X e F sao independentes,),
entao

E(X|F) = E(X).
[C] Propriedade de Espagos Lineares

Seja (£2,G, P) um e.p e F C G. Entdo, E(-|F) pode ser considerada como um
operador linear no espago L2(€2,G, P) (veja o Apéndice A.3). Como tal, E(-|F) é
uma projegao ortogonal de L2(€2, G, P) sobre o subespaco La(€2, F, P). Para ver isto,
lembramos que o espago La(€2, G, P) é um espago de Hilbert com norma dada por

1X1l2 = V(X, X) = VE(X]). (3:5)

Dada X uma v.a qualquer sobre Ly(2, G, P), E(X|F) é a funcdo F-mensurdvel
que é a “mais préxima”de X em termos da norma definida em (3.5). De fato, seja
Y uma v.a F-mensuravel. Temos que

1X =Y = E(X - Y]*) = B(IX - E(X|F) + E(X|F) - Y[

= B(IX — E(X|F)?) + B(E(X|F) = Y|*) + 2B[(X — E(X|F))(E(X|F) - Y)].

Chamando o ultimo termo dentro da esperanca de H, temos que E(H) = E[E(H|F)]
=0, pois E(H|F) = 0. Logo, basta tomar Y = E(X|F).
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3.3 Probabilidade condicional regular

Até agora temos definidas a esperanca condicional E(X|F) e a probabilidade con-
dicional P(A|F). Para a esperanca de uma v.a X temos

~ [ X@ire)

Uma questao que surge é: podemos escrever a esperanca condicional de modo
similar, isto é,

B(X|F)(w / X () P(a] F)(w)?
Parte do problema é: serd que P(:|F) é uma probabilidade sobre alguma o-
algebra, para cada w?

Definigao 3.2. Seja (Q2,G, P) ume.p e A, B sub-o-dlgebras de G. Uma probabilidade
condicional reqular sobre A, relativamente a BB, é uma fungao v(-, -) definida em Ax
com valores em R tal que:

(i) Para cada w, v(-,w) é uma medida de probabilidade sobre A;

(ii) Para cada A fixo em A, v(A,-) é uma versao de P(A|B).

Teorema 3.3. Seja (2, G, P) um e.p, A, B sub-o-dlgebras de G. Suponha que exista
uma probabilidade condicional regular v(-, ) sobre A relativamente a B. Entao, se
X é A-mensurdvel, uma versao de E(X|B) é [, X (a)v(da,w), ou seja,

/X v(da,w) = E(X|B)(w) g.c (3.6)

Prova: Considere a classe das fungoes A-mensurdveis para as quais (3.6) vale.

(i) Essa classe contém fungoes indicadoras de conjuntos de A, pois se A € A, temos
E(I4]B) = P(A|B) por definicao, e

/ Iy(a)v(da,w) = / v(da,w) = v(A,w) = P(A|B) q.c

Q A

onde na pentltima igualdade usamos (i) e na dltima usamos (ii) da defini¢ao. Logo,
(3.6) é vélida se X = I, para algum A € A.

(ii) Depois, (3.6) vale se X =) c¢;la,, A; € A, ou seja, se X é uma fungao simples.

(iii) A seguir,(3.6) vale para X > 0, integravel, A-mensuravel. Basta tomar uma
sequéncia X, T X, de funcdes simples e usar o TCM.
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(iv) Portanto, (3.6) vale para qualger X que seja A-mensurdvel, usando X = X+ —
X—. O

Um caso importante na préatica é o caso em que A = F{X} e B= F{Y} onde
X e Y sao dois vetores aleatdrios. Neste caso é possivel mostrar que a probabilidade
condicional sobre A relativamente a B sempre existe (Veja Kallenberg (2002) para
um teorema mais geral). Neste contexto falamos de lei condicional de X dado Y.
Na maioria das vezes, uma construcao explicita da lei condicional nos permite evitar
recorrer ao teorema de existéncia. Em relagao a unicidade, temos que se v e ¥ sao
duas leis condicionais, entao para todo A € F{X},

v(A,w) =1v(Aw), q.c.
Como F{X} é contavelmente gerada, obtemos que q.c,
v(A,w) =1v(Aw), VAe F{X}.
E neste sentido que temos unicidade e claramente por (3.6) ndo podemos esperar
mais do que isto. Por abuso de linguagem, falamos da lei condicional de X dado Y.

Terminamos esta se¢cdo com uns exemplos de leis condicionais.

Exemplo 3.5. Sejam X e Y vetores aleatérios com dimensoes m e n respectiva-
mente.
(a) Supomos que Y é um vetor discreto. Seja g : By, x R™ tal que

P(Xe€eA|Y=y), sePY =y) >0
=0,

_ Yy
9(4,y) = {(510(14), se P(Y =y)

onde xp é um ponto arbitrario de R™. Seja v(A,w) = g(A4,Y(w)). Usando a
propriedade caracteristica da esperanca condicional podemos verificar que v satisfaz
a Definicao 3.2. e portanto v ¢é a lei condicional de X dado Y.

(b) Assumimos agora que o vetor (X,Y’) é absolutamente continuo com densidade
fx,y. A densidade de Y é dada por

fy(y) = - Ixy(z,y)dx.

Note que é possivel que o termo da direita seja igual a 400 num conjunto de medida

de Lebesgue igual a 0. Neste caso, para que fy tenha valores reais, redefinimos fy
igual 0 neste conjunto. Agora, definimos g : B,, x R™ por

9(A,y) = {fyl(y)fA fxy (@ y)dz,  se fy(y) > 0;
RERUAE! o Frls) =0,

Seja v(A,w) := g(A,Y(w)). Como na parte (a), podemos mostrar que v é a lei
condicional de X dado Y.
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Problemas
1. Prove (a) e (b) do Exemplo 3.1.
2. Prove (b) do Exemplo 3.2.
3. Prove (c¢) do Exemplo 3.3.
4. Prove a Propriedade P1.
5. Prove as Propriedades P5 e P6.
6. Seja X integravel, Y limitada. Prove que
E[EX|F)Y]|=E[XE(Y|F)].
7. Prove que se X > 0, entao E(X|F) > 0 q.c.
8. Prove que, se F{X} for independente de F, entdo E(X|F) = E(X) q.c.
9. Prove que Var[E(Y|F)] < Var(Y).

10. Dé um exemplo onde E[E(Y|X1) | Xo] # E[E(Y|X2) | X1].

11. Seja Y uma v.a com f.d F(z) =1—e % se x > 0e F(zx) =0, se x < 0. Calcule:
(a) E(Y|Y Vit); (b) E(Y|Y At), t > 0.

12. Sejam X e Y independentes e B um conjunto de Borel. Prove que P{(X +Y) €
B|X} = Py{B - X} q.c.

13. Sejam Xy, ..., X, independentes e S, = X; + ...+ X,,. Prove que

P{S, € B|S1,...,Su-1} = P{S,, € B|Sn_1}.

14. Seja Q = [—m, ], F ao-dlgebra de Borel e P = (medida de Lebesgue sobre [—m,7])/27.
Calcule E(XY), se X integrével sobre (2, F, P) e Y(w) = sen(nw), n um inteiro po-
sitivo fixo.

15. Sejam X1, Xo,...v.a’siide S, = X1+Xao+...4+X,. Prove que E(X1|Sn, Snt1,-..) =
Sp/n.

16. Se X e Y estdo em Lo, prove que E[E(X|F)Y] = E[XE(Y|F)].

17. Seja Q = [-1,1]?, F = B([-1,1]?), P = (medida de Lebesgue sobre [—1,1]%)/4. Se
w = (w1,ws) € Q, seja X (w) = w1, Y(w) =wsy. Calcule E[X|(X +Y)?].

18. Seja X uma v.a, Fq, Fa duas o-dlgebras. Prove que, se F{X} V F; for independente
de Fa, entdo E(X|Fy V F) = E(X|F1) q.c.

19. Suponha que X seja uma v.a com variancia finita e F uma sub-o-algebra de G. Prove

que
E(X - BE(X|F))* = B(X?) - E(BE(X|F))*.
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20. Defina a varidncia condicional como Var(X|F) = E((X — E(X|F))?|F). Sejam X e
Y duas v.a’s com variancias finitas, F C G, e seja g uma fungdo com valores reais, tal
que E(g(X)?) < co. Prove que

E[(Y — g(X))’] = E[Var(Y|F)] + E[E(Y|F) — g(X)]* = E[Var(Y | F)],
com igualdade se g(X) = E(Y|F).

21. Considere {C1,...,Cy} uma particao de Q (ou seja, uma cole¢do de eventos mutua-
mente exclusivos cuja reunido é ) tal que P(Cy) > 0 para todo k. Prove que, para
todo evento A C Q, P(A) = >_7_, P(A|Ck)P(Ch).

22. Com a mesma particao do problema anterior, prove que, para todo evento A C 2,

_ P(AIC)P(Cy) B
P(Cyl|A) = ST P(AIC))P(C)) k=1,2,...,n.
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Capitulo 4

Martingales

Neste capitulo, vamos nos restringir ao estudo de martingales com tempo dis-
creto. No capitulo seguinte trataremos de processo com tempo continuo e, em
particular, martingales com tempo continuo. Os conceitos de tempo de parada e
integrabilidade uniforme serao estudados antes de definir martingales.

Martingales sao generalizagoes de somas de v.a’s independentes com média zero.
Veja o Exemplo 4.3 (a). Aparentemente, foram definidos pela primeira vez por Ville
(1939), sendo que os resultados mais inovadores aparecem em Doob (1953). A teoria
de martingales tem aplicacOes em diversas areas, em particular em confiabilidade e
finangas. Referéncias importantes sao Neveu (1975) e Williams (1991). Notamos
por fim que na literatura em Portugués, é comum usar também os termos martingal
e martingais.

4.1 Tempos de parada

Seja (2, F,P) um e.p e {Fp,n > 1} uma sequéncia de sub-o-algebras de F.
Dizemos que {F,} é crescente se F,, C Fy+1, para todo n > 1.

Seja X = {X,,,n > 1} um processo estocastico sobre (£, F, P); dizemos que X
¢ adaptado a {F,,n > 1} se X,, é Fp-mensuravel, para cada n > 1.

Na secao 4.3 estaremos interessados na seguinte questao: o que acontece quando
paramos um martingale num instante de tempo aleatério? Para responder a essa
questao, temos que ter uma regra para parar um processo estocastico num dado
instante, de modo que essa regra nao dependa do futuro. Isso nos leva a definigao
de tempo de parada.

Definicao 4.1. Um tempo de parada T (ou v.a opcional) relativo a uma familia
crescente {F,,n > 1}, é uma v.a sobre (Q, F, P) com valores em N = N U {400},
N=1{1,2,3,...}, tal que

{w : 7(w)=n} € F,, paracada neN. (4.1)
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54 CAPITULO 4. MARTINGALES

Quando dizemos que 7 é um tempo de parada para um processo X, isso sig-
nifica que 7 é um tempo de parada relativo a sequéncia crescente de o-algebras
Fn = F{Xy,...,X,}. Intuitivamente, 7 é uma v.a com valores inteiros positivos
(possivelmente co) que fornece uma regra para parar um processo estocastico. A
equagao (4.1) nos diz que a decisao de parar ou nao o processo no instante n depende
somente da informagao disponivel no instante n (ou seja, a histéria do proceso até
e incluindo o instante n). Nenhum conhecimento do futuro é necessario.

Definicao 4.2. Seja X = {X,,,n > 1} um processo estocdstico e T um tempo de
parada para X. Suponha T < 0o q.c, isto é, P{T < oo} = 1. Considere v.a X,
tomando o valor X, (w) sobre o conjunto {w : T7(w) = n}. Ou seja, se T(w) = n,
entao X, (w) = Xp(w). A o-dlgebra gerada por X, X741, ... é chamada o-dlgebra
pos-T, e indicada Fr 4.

Definicao 4.3. Seja {F,,n > 1} uma familia crescente de o-dlgebras e T um tempo
de parada relativo a essa familia. A o-dlgebra pré-t, denotada F._, é a o-algebra
consistindo de todos os conjuntos A de Foo :=\/,,~1 Fn tal que AN{w : 7(w) =n} €
Fn, para todon > 1. -

Segue-se que os eventos de F_ sao aqueles ocorrendo antes do tempo de parada
7, enquanto que os eventos de Fr sao aqueles eventos ocorrendo depois de 7.

Exemplo 4.1. (a) Seja {F,,,n > 1} e defina 7(w) = p, constante, p € N. Entdo, 7
¢ um tempo de parada e Fr_ = Fp.

(b) Seja X um processo estocédstico e B um conjunto de Borel. Defina 7 por:
T(w) = inf{n > 1 : X,(w) € B}, e 7(w) = 00, se o conjunto anterior for vazio.
Segue-se que 7 é o primeiro instante de tempo que X entra em B, e é um tempo
de parada. De fato, {w : 7(w) = n} = {w : Xj(w) ¢ B,j < n,X,(w) € B}, que
pertence a F, = F{X1,..., X, }.

(c) Sejam Y1,Ys,... vaa’s iid, P(Y1 = 1) =p, P(Y1 = —1) = q, p > ¢q. Defina
Xp=1+Y1+Yo+...+Y,esejaT=1inf{n > 1: X, (w) =0}, e 7 = 00, se esse
conjunto for vazio. Entao, 7 é um tempo de parada.

(d) Considere a situagao de (c) mas desta vez X,, = —1+Y;+---+Y,. Sabemos que
com probabilidade 1, X,, atingird o valor zero somente um nimero finito de vezes,
ou seja, P{X,, = 0i.v} = 0. Defina 7 como o dltimo tempo em que X,, = 0. Entao,
T < 00 q.c, estd bem definido, mas nao é um tempo de parada.

4.1.1 Propriedades dos tempos de parada

Algumas propriedades dos tempos de paradas sdo enunciadas a seguir. Algumas
serao demonstradas, as demais ficam como exercicios.
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[1] Para cada n, os seguintes conjuntos estao em F,, onde 7 é um tempo de parada
relativo a {Fp,n > 1}:
{r<n}, {r=n}, {r<n}, {r>n}, {r>n}

De fato, {7 < n} =U}_{r =m} e {r =m} € F,, C Fp, se m < n. O conjunto
{r > n} € F,, tomando o complementar.

[2] Se o e T s@o tempos de parada, entdo o AT e o V T sdo tempos de parada.
De fato, {c AT=n} ={oc=n,7>n}U{oc>n,7r=n}U{oc =n,7=n}.

[3] Seja k € N e 7 um tempo de parada. Entao, 74k é também um tempo de parada
(Note que 7 — k nao necessita ser um tempo de parada).

[4] Sejam 71, T2, ... tempos de parada; entao sup,, 7, é também um tempo de parada.
[5] T é Fr_-mensurdvel.

[6] Seja 7 um tempo de parada finito relativo a X = {X,,,n > 1}. Se X é adaptado
a sequéncia {F,,n > 1}, entdo X, é F,_-mensurdvel.
[7] Sejam 71, T2 tempos de parada, 7 < 7o. Entdo, Fr,_ C Fr,_.

De fato, se B € Fr,_, temos que BN{re <n}=BN{r <n}nN{n <n}ecF,
para todon > 1, ou seja B € F,_.

[8] Seja X = {X,,,n > 1} um processo estocdstico e 7 um tempo de parada. Para
qualquer inteiro positivo n e qualquer w € , defina 7 A n(w) = min{7(w),n}.
Definimos, entdo, o processo parado X7 = {X[,n > 1} por X[ (w) = X rn(w)(w)-

Na secao 4.3 veremos que se X é um martingale, entdao X™ = {X 5, } é também
um martingale.

Exemplo 4.2. Sejam X1, Xo,... v.a’sii.d e seja 7 um tempo de parada finito para
X ={X,,n > 1}. Entao, F,_ e Fr; sao independentes e (X1, X2, ...) tem a mesma
distribuicao que (X1, X;42,...) (esse é um caso especial da chamada propriedade
forte de Markov).

De fato, seja A € F,_. E suficiente provar que

P(A, X411 € By, ..., Xr4n € By) = P(N)P(X1 € By,..., X, € By),

onde B; sao conjuntos de Borel.
Temos que

P(A,{T = k},Xk+1 € By,... 7Xk+n S Bn) = P(A, {T = k})P(Xk+1 € By,... ,XkJrn € Bn)
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= P(A,{r = k})P(X1 € By,..., X, € By),

onde notamos que, A N {7 = k} € Fj, a primeira igualdade decorre do fato de Fy
ser independente de { X1, ..., Xk1n} € a tltima igualdade vale pois os X; sdo i.i.d.
Agora, basta somar sobre k para obter o resultado.

4.2 Integrabilidade uniforme

Nesta seccao apresentamos o importante conceito de integrabilidade uniforme
que usaremos no decorrer do capitulo.

Definigao 4.4. Seja I um conjunto de indices. A familia de v.a’s {X;,i € I} é
uniformemente integravel (u.i) se

Sup/ | X;|dP — 0, quando \ — oo. (4.2)
iel J{|X;[>X}

Teorema 4.1. Seja X uma v.a integravel e suponha que |X;| < X, para todoi € I.
Entao, a familia {X;,i € I} é uniformemente integrével

Prova: Temos que [; oy [XildP < [ox, o5y [X[dP < [ 5y [X[dP. Como isso
¢é verdade para todo ¢ € I, temos que

sup/ \Xi]dPS/ | X|dP — 0, X\ — o0,
i€l J{IXi[>A} {IX[>A}

pelo Teorema de Convergencia Dominada. [

Teorema 4.2. A familia {X;,i € I} é u.i se, e somente se:

(a) sup;er E(|Xi]) < oo;

(b) Dado € > 0, existe § = 6(¢) > 0, tal que se P(A) < 6, entao [, |X;|dP < e,
para todo i € 1.

Prova: (=) Suponha que {X;,i € I'} seja u.i. Entao, (a) vale, pois, tomando-se Ag
tao grande tal que f{|Xi|>)\0} | X;|dP < 1, para todo i € I, por i.u, temos que

/ | X;|dP = / | X;|dP +/ dP <1+ Xo.
o {IX:>o} {IXi <20}

Também, seja £ > 0; entao,
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/|Xi]dP:/ |Xl-\dP+/ ]Xi|dP§/ | Xi|dP + AP(A).
A AN{IXi|>A) AN{IX; <A} {1X:>A)

Tome A\ grande de modo que a primeira integral seja menor que €/2, para todo i,
por i.u. Com A assim escolhido (e igual a A1, digamos), tome § = £/(2A1). Entao, se
P(A) < 4, o segundo termo é menor que A\je/(2A1) = /2, portanto [, |X;|dP < e,
e (b) vale.

(<) Pela desigualdade de Chebyshev, temos que

sup; E(|Xi|)
)

onde M < oo, usando (a). Entdo, dado ¢ > 0, f{\Xi\>/\} | X;|dP < e, sempre que
P{|X;| > A\} <é(¢e), por (b), isto é, se A\ > M/5. O

M
<7>
A

P{Xi| > A} < E(1Xi])/A <

Teorema 4.3. Suponha que X, B x. Entao, X, Ix se, e somente se, {X,,n >
1} for u.i.

Prova: (=) Suponha que X, U4 X. Mostraremos que as condigoes (a) e (b) do
Teorema 4.2 valem.

(a) tome N tao grande de modo que E(| X, —X|) < 1, paran > N, pois X,, converge
para X em L;. Entao,

E(|X,]) < E(|X, - X|)+ E(|X|) <1+ E(]X]|), paratodo n> N.
Portanto,

sup (X)) < max{1 + B(X|). E(X]),... B Xx-1)} < ox.

(b) Temos que [, |X,|dP < [,|X,, — X|dP + [, |X|dP. Seja € > 0 e seja N grande
de tal sorte que, para n > N, tenhamos [, |X, — X|dP < /2, por hipétese. Logo,

/|Xn]dP§/ |Xn—X|dP+/ \X|dPga/2+/ |X|dP, n > N.
A A A A

Seja 01 pequeno, tal que se P(A) < 61, entdo [, |X|dP < /2, pois X é integravel.
Seja dy tdo pequeno, de modo que, se P(A) < d92, entao fA\Xn|dP < g, para
n = 1,2,...,N. Segue-se que, para todo n, se P(A) < min{dy,d2}, temos que
[ |XuldP < .
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(<) Suponha que X, BXe {X,,n > 1} seja u.i. Primeiro, X é integréavel, porque
se nj é¢ uma subsequéncia tal que X, 2 x , pelo Lema de Fatou, teremos

E(|X]) < limi%fE(|Xnk|) <sup E(|X,|) < co.

Agora,

/|Xn—X\dP:/ ]Xn—X|dP+/ X, — X|dP
o {IXn—X|>¢} {IXn—X|<e}

g/ |Xn|dP+/ IX|dP + <.
{|Xn—X|>c} {|Xn—X|>c}

Se n — 00, entdo limsup,, [, | X, — X[dP < 04 0+¢, logo E(|X, — X|) = 0. O

Teorema 4.4 Suponha que X, Bx e X,, > 0, paratodon > 1. Entao, {X,,n > 1}
é u.i se, e somente se, lim, E(X,) = E(X) < co.

Prova: (a) Se {X,,,n > 1} é u.i, pelo Teorema 4.3, X,, 2 X, logo E(X,) — E(X)
e X é integravel.

(b) Pelo teorema anterior, X,, é u.i se, e somente se, Xy 5 X. Temos que E(| X, —
X|)=F{2(X-X,)V0— (X —X,)}. Mas {2(X — X,,) VO} — 0 em probabilidade,
logo E{2(X — X,,) V0} — 0, pelo TCD, pois 0 < {2(X — X,,) V0} < 2X. Também,
E(X,, — X) — 0, por hipétese. Segue-se que E(|X,, — X|) - 0e X, éui. O

Teorema 4.5. Seja f : [0,00) — [0,00), tal que limy; o f(x)/z = +o00. Se
sup; E(f(|Xi])) < oo, entao {X;,i € I} é u.i.

Prova: Seja ¢ > 0 e seja M = sup; E(f(|X;i])). Tome z( tal que se x > =,
f(z)/z > M/e, pois f(x)/x — oco. Logo, f(x)e/M > z e portanto para todo i € I,

9 9
XidPS/f XiD)dP < —M = ¢,
J o Xier < 5 [ sxiap < o

sempre que A > xg. U

Como casos especiais importantes do teorema, temos f(z) = zP, para p > 1 e
f(x) =xlog™ .

4.3 Martingales

Como dissemos na introdugao desse capitulo, trataremos aqui o caso de mar-
tingales com tempo discreto. No entanto, daremos a definicao de martingale para
0 caso em que o conjunto paramétrico é um subconjunto dos nimeros reais. Um
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resultado importante que serd provado nessa secao é o Teorema da Amostragem
Opcional.

Definicao 4.5. Seja (2, F, P) um e.p e T um subconjunto de R. Seja {F;,t € T}
uma familia crescente de sub-o-algebras de F, ou seja, Fs C JFi, se s < t. Seja
{Xi,t € T} um processo estocastico adaptado a {F;,t € T}. Um processo X =
{X4, Fi,t € T} é um martingale se:

(a) X é integravel, para cadat € T';

(b) Se s <'t, entao E(X|Fs) = Xs.

Definigao 4.6. Um submartingale tem as mesmas caracteristicas da definicao an-
terior, exceto que (b) é substituida por:

(b') Se s < t, entdo E(X; | Fs) > X,.
Um supermartingale substitui (b) por

(b") Se s < t, entdao E(X; | Fs) < Xs.

Uma interpretacao da definicao em termos de jogos ¢é a seguinte. Se X, representa
a fortuna de um jogador apds o jogo n e F,, representa a sua histéria até (incluindo)
o instante n, entao E(X,11|F,) = X, significa que o ganho esperado do jogador no
instante n + 1, dado todo o conhecimento passado, é igual a sua fortuna presente.
Teremos um jogo justo. Vale uma interpretagao similar para (sub)supermartingale.

Observagoes: (a) Quando dizemos que {X;,t € T} é um martingale, queremos
dizer que as o-algebras da definigao sao Fy = F{X;, s < t}.

(b) Um martingale com parametro discreto ou com tempo discreto é aquele para o
qual T é uma colegao de nimeros inteiros. Usualmente consideramos 7" = {1, 2,3, ...}
oul =Z.

(c) Se {X;,t € T} é um submartingale, entdo {—Xy,t € T'} é um supermartingale.

(d) Se {X;,t € T} e {Yi,t € T} sao martingales, entao nao é necesséario que {X; +
Yi,t € T} seja um martingale. E verdade se X e Y s@o martingales com repeito a
mesma sequéncia de o-algebras.

(e) Para verificar que {X,,F,,n > 1} é um martingale, é suficiente provar que
E(Xn|~/—"n71) =X 1.

(f) Seja {X,,,n > 1} um submartingale. Entao {E(X,),n > 1} é uma sequéncia
crescente.

De fato, F(X,|F,—1) > X,_1, bastando tomar a esperanga de ambos os mem-
bros.
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(g) Se {Xy,n > 1} é um martingale, entdo E(X,) = E(X1), para todo n.

De fato, de E(X,|Fn-1) = X,—1, obtemos E(X,) = E(X,,—1) = ... = E(Xy1),
para todo n.

(h) Se {X,,,n > 1} é um submartingale ou supermartingale, e se E(X,) = E(X)
para todo n, entao, {X,,n > 1} é um martingale.

Exemplo 4.3. (a) Sejam {X,,,n > 1} v.a’s independentes, com média zero. Entao,
Y, = X1+ ...+ X, é um martingale.

De fato, temos que

n+1
E(Yp1|Fn) = EVpa| X1, .., X0) = EQ_ Xl X1, X0)
=1

=Xi+... + Xp+ EXp1| X1, ., Xn)=X14+ ...+ Xp+ E(Xp41) = Yo,

sendo que a pentltima igualdade vale pela independéncia e a iltima porque a média
é zero.

(b) Se {X,,,n > 1} s@o v.a’s independentes, E(X;) = p; > 0, entdo Y, = > " | X; é
um submartingale e Y ;" | (X; — p1;) = Z, é um martingale.

(c) Seja X integravel, {F,,n > 1} uma familia crescente de o-algebras. Entao,
X, = E(X|F,) é um martingale.

De fato,
E(X,|Fn-1) = E[E(X|Fp)|Fo-1] = E(X|Fn-1) = Xn-1,
pelo fato que F,,_1 C F.

Exemplo 4.4. (a) Seja {Y,,} um martingale com tempos {...,—3,—2,—1}. Entao,
Y,, deve ter a forma dada no Exemplo 4.3 (c), isto é, Y_,, = E(Y_1|F_,). Esse é um
exemplo de um martingale reverso.

(b) Sejam {X,,,n > 1} v.a’s i.i.d, integréveis. Defina:
Y. =X,

Yoo = (X1 + X2)/2;

Yo =(X1+...4 X,)/n.
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Entao, {...,Y_9,Y_;} é um martingale com respeito a F{...,Y_9, Y 1} = F_4,
F{...,Y_3,Y_ o} = F_5 etc.

Martingales podem nao ter a forma dada no Exemplo 4.3 (c¢). Veja o Problema
6. Em algumas situagoes, como em econometria, finangas e no estudo de somas
de v.a’s independentes, é mais conveniente considerar incrementos. Uma sequéncia
{Un, Fn,n > 1} é chamada uma diferenca martingale se

E(Up+1|Fn) =0, paratodon > 1.

Diferentemente de martingales, diferencas martingales sao ortogonais. Veja o
Problema 22.

Teorema 4.6. (a) Seja ¢ uma funcao convexa e {X,, F,,n > 1} um martingale.
Suponha que ¢(X,,) seja integravel, para cada n. Entao, {¢(X,,), Fn,n > 1} é um
submartingale.

(b) Suponha ¢ convexa crescente e { Xy, Fpn,n > 1} um submartingale. Se ¢(X,,) é
integravel, entao {¢(Xy), Fn,n > 1} é um submartingale.

Prova: (a) Temos que

E(p(Xnt1|Fn)) = ¢ (BE(Xn41|Fn)) = o(Xn),
onde usamos a desigualdade de Jensen e o fato que X,, é um martingale.

(b) De modo andlogo,

E(p(Xnt1|Fn)) = ¢ (BE(Xnt1]Fn)) > 9(Xn),

novamente usando Jensen, E(X,+1|F,) > X, e ¢ crescente. [

Exemplo 4.5. (a) Se {X,,} é um martingale, entao { X2}, {X,[},{X,, VM, M > 0}
sao submartingales. Também, {|X,,|} é um submartingale, pela parte (a) do teorema
anterior.

(b) Se {X,,} é um submartingale, entao { X, }, {X,VM, M > 0} sao submartingales.
Mas {| X,|} nao necessita ser, pois a fungao |x| ndo é crescente (parte (b) do teorema).

Consideramos, a seguir, o Teorema da Amostragem Opcional (TAO) de Doob.
Veja Doob (1971) e Williams (1991). O teorema diz, sob determinadas suposicoes,
que o valor esperado de um martingale em um tempo de parada é igual ao valor
esperado de seu valor inicial. Como vimos, martingales podem ser usados para
modelar a fortuna de um jogador, participando de um jogo justo.

Ou seja, se { X, } é um martingale, temos que E(X,) = E(X,—1) = ... = E(Xy),
de modo que a fortuna esperada do jogador em qualquer tempo é igual a sua fortuna
esperada inicial.

Morettin-Gallesco - dezembro/2025



62 CAPITULO 4. MARTINGALES

Suponha, agora, que T seja um tempo de parada e Xp é a fortuna do jogador
nesse instante; serd que F(Xr7) = F(X1)? Em geral, a resposta é negativa, como
mostrado em Doyle e Snell (1984). O TAO dé condicoes para que isso seja verdade.

O TAO ¢ importante em muitas aplicagoes, em particular em finangas, no con-
texto do teorema fundamental do aprecamento de ativos. O contetido essencial desse
teorema é que nao se pode ganhar (em média) comprando-se e vendendo-se um ativo
cujo preco ¢ modelado por um martingale.

Teorema 4.7. (Teorema da Amostragem Opcional). Seja {X,,, F,,n > 1} um
(sub)martingale e T} < To < ... tempos de parada finitos relativamente a {F,,n >
1}. Suponha que:

(a) E(|X1,|) < oo, para cada n.

(b) limy_e0 f{Tn>N} |Xn|dP =0, para cada n.

Entao, { X1, X1,,...} é um (sub)martingale relativo a {Fr,, Fr,, ...}

Antes de demonstrar o teorema, vamos fazer uma observacao e apresentar algu-
mas aplicacées do TAO.

Observacdo: H& uma versao “mais simples”’ do TAO, dada em Williams (1991,
Theorem 10.10). Seja X um martingale e 7" um tempo de parada. Suponha que
qualquer uma das seguintes condicoes valha:

(i) Existe um inteiro positivo N tal que T'(w) < N, q.c.

(ii) Existe um real positivo K tal que | X, (w)| < K, q.c, para todo n, e T é finito
q.c.

(iii) E(T) < oo e existe um real positivo K tal que |X,(w) — X,—1(w)| < K, q.c,

para todo n.

Entao Xp é integravel e E(X7) = E(X)).

Aplica¢bes do TAO

[1] Seja M > 0, inteiro, e 7" um tempo de parada tal que T < M q.c. Entao, se
{X,,n > 1} é um (sub)martingale, também o serd { X, X7, X/}

De fato, (b) estd satisfeita e (a) também, pois E(|Xr|) < S0l E(|Xy]) < oo.
Em particular, se {X,} é um martingale, E(X;) = E(Xr) = E(Xp). Se for um
submartingale, substituir os sinais de igualdade por desigualdade.

[2] Se {X,,n > 1} é um (sub)martingale, e T um tempo de parada, finito ou nao,
entdo {Xra1, X7p2,...} é um (sub)martingale.

Morettin-Gallesco - dezembro/2025



4.3. MARTINGALES 63

[3] Sejam T} < T, < ... tempos de parada e My, M, . .. constantes, tais que T; < M;,
para todo i > 1. Se {X,,n > 1} é um (sub)martingale, entao {Xn,Xrp,,...}
também o serd.

[4] Seja {X,,,n > 1} um martingale uniformemente integravel. Sejam T < Tp < ...
tempos de parada finitos. Entao, { X7, X7,,...} é um martingale.

De fato, a condicao (b) do TAO vale, pois X é u.i. Por outro lado, {|X,|}
¢ um submartingale pelo Teorema 4.6, logo para todo k > 1, {Xp ap,n > 1} €
um submartingale e portanto E(| X1, an|) < E(|X,|). Segue-se que E(| X7 anl) <
sup,, E(|X,|) < oo, pois temos i.u. Agora, pela condigao b) do TAO e o fato que T},
é finito q.c, temos pelo TCM que E(| X7, |) = limy, 00 E(| X7, An|). Logo E(|X7,|) <
sup,, E(|Xy]) < .

Prova do TAO: E suficiente provar que, dadas as hipéteses, se S < T sao dois
tempos de parada, entdo E(Xr7|Fs) = Xg, no caso de um martingale e com sinal de
desigualdade >, se submartingale. Ou seja, se A € Fg, provar que [, XpdP = (>
)/, A XsdP. Mas, para provar essa relacao ¢ suficiente provar a igualdade (desigual-
dade se submartingale) mais forte

/ &Mzw/ XedP.
AN{S=j} AN{S=j}

No entanto,

/ XgdP = X;dP = X;dP + / X;dP.
AN{S=j} AN{S=j} AN{S=4,T=j} AN{S=4,T>j}

Como o conjunto AN{S =j4,T > j} € Fj, obtemos que o dltimo termo é

= (g)/ Xj+1dp—|—/ Xj+1dp,
AN{S=j,T=j+1} AN{S=j,T>j+1}

pela definicao de (sub)martingale. Fazendo-se AN{S = j,T > j} = (AN{S =
T=7+1)U(AN{S =4T > j+1}), e assim sucessivamente, obtemos

N
-~ | Xudp+ [ XydP
iz A s=j =k}

{A,5=5T>N}

XrdP +/ XndP.

/{A,S—j, J<T<N} {A,S=j, T>N}

Quando N — oo, o ultimo termo tende a zero, por (b), e pelo TCD a primeira
integral tende a f{A s—jy XrdP. O
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4.4 Convergéncia de martingales

O objetivo dessa secao é provar alguns teoremas sobre convergéncia de
(sub)martingales. Uma desigualdade devida a Doob (veja Doob, 1953) é essencial
nesse contexto.

Seja x1,...,T, uma sequéncia qualquer de numeros reais e suponha a < b.
Defina U, (a,b) como o nimero de vezes que a sequéncia {xp,k < n} vai de um
valor abaixo de a para um valor acima de b, ou seja, o nimero de cruzamentos
ascendentes (upcrossings) de [a,b]. A partir de agora usaremos simplesmente a
palavra cruzamento.

Teorema 4.8. (Upcrossing inequality - Doob) Seja { X1, Xo, ..., X, } um submartin-
gale e Uy (a,b) o nimero de cruzamentos de [a, b] pela sequéncia { X1 (w), ..., Xn(w)}.
Entao,

E(X,—a)t - E(X;—a)" < E(X,—a)" < E(|Xn])+a
b—a - b—a —  b—a

E (Up(a,b)) < (4.3)

Prova: Defina Y, = (Xj —a)t. Segue-se que {Y;,k < n} é um submartingale.
Ainda, o ndmero de cruzamentos de [a,b] por Xi,..., X, é o mesmo nimero de
cruzamentos de [0,b—a] por Y7, ..., Y. Logo, é suficiente calcular U, (0,b— a) para
a sequéncia Y.
Defina a sequéncia de tempos de parada 17 < T» < ... como segue:

T = 1,

T inf{k >1:Y;, =0},

T3 inf{k: k> T5,Y, >b—a}l,

T, = inf{k:k>T3,Y; =0},

Ts = inf{k:k>Ty, Y, >b—a} etc.

Defina T, = n se o conjunto definido for vazio.
Escrevamos:

Yo=Y1=n—-Yn)+ Y —Yn)+...4+(p, —Y1,_,).
Observe, por exemplo, que Y7, — Y7, > b—a e Y7, =Y. Portanto,

Z (YTkJrl - YTk) > (b—a)l,(0,b— a),
k par

e, entao,

Yo -Y12>0-al,(0,b—a)+ Y (Y, —Yn)

k impar

Morettin-Gallesco - dezembro/2025



4.4. CONVERGENCIA DE MARTINGALES 65

do que segue
E(Y,=Y1) > (b-a)EU(0,b—a)+ Y E(Yg,, —Yp),
k impar
e como o tltimo termo é nao negativo (pois temos um submartingale), obtemos

E(X,—a)t —FE(X;—a)*
b—a

> E (Up(a,b)). O

Teorema 4.9. (Teorema de Convergéncia de Submartingales de Doob). Seja
{Xy, Fn,n > 1} um submartingale e suponha que X,, seja Li-limitado (ou seja,
sup, (E|X,|) < o). Entao, {X,,n > 1} converge q.c para um limite X, que é
integravel.

Prova: Sejam a < b nimeros racionais e defina:
My = {w sliminf X, (w) <a<b < limsuan(w)}.
n n

Pela desigualdade de Doob, E(Uy(a,b)) < W < sup,, W < 0.

Seja U(a,b) = lim, o Up(a,b), que é o nimero de cruzamentos da sequéncia
X1,Xs,.... Entao, E(U(a,b)) < oo, de modo que U(a,b) < oo q.c. Segue-se que
P(Mgp) = 0, pois o ntiimero de cruzamentos ¢ finito q.c. Defina M = U, , M, onde
a unido é sobre todos os racionais a < b. Entao, P(M) = 0 e o conjunto no qual
{X,,} converge é M€, logo {X,,} converge q.c.

A integrabilidade de X, segue do lema de Fatou:

E(|X|) = E(liminf | X,,|) < liminf E(|X,|) < sup E(|X,]) < co. O

Observagdo: A condigao sup,, E(|X,|) < oo pode ser substituida pela condigao
sup,, E(X,I) < oo. Isso porque E(|X,|) = 2E(X,[) — E(X,) < 2E(X;}) — E(X31),
pois temos um submartingale e E(X,) é crescente. Portanto, sup, F(|X,|) <
2sup, E(X,;!) + E(|X1]) < oo.

Exemplo 4.6. (a) Todo submartingale negativo converge.
(b) Todo martingale positivo converge.

Teorema 4.10. Seja {X,,, F,,,n > 1} um (sub)martingale. As seguintes afirmagoes
sao equivalentes:

(a) {X,,n > 1} converge em Ly;

(b) {Xn,n > 1} é uniformemente integravel;
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(c) Xy = Xoo q.¢, {Xn, 1 <n < oo} éum (sub)martingale e E(X,,) - E(Xx).

Prova: (b) = (a) De fato, {X,,} u.i implica que {X,} ¢ limitado em L; e pelo
Teorema 4.9, X,, converge q.c, logo converge em L;.

(a) = (c) Se X,, converge em L1, entao {X,} é necessariamente limitada em L1,
portanto X, — X q.c, pelo teorema anterior. Resta provar que {X,}, 1 <n < oo,
é um (sub)martingale, ou seja, E(Xx|F,) = (>)X,,. Mas, se m > ne A € F,,
temos [, XpdP = (=) [, XndP. Se m — oo, como X, = X, em Li, obtemos
[ XoodP = () [, XndP.

(c) = (b) Considere {X,F, 1 < n < oo}; este é um submartingale, pois {X,,} o é.
Desta forma, obtemos que E(X1) > lim,, o, E(X;). Por outro lado, pelo Lema de
Fatou temos que E(X1) < lim, o E(X;"). Obtemos assim que lim, . F(X, ) =
E(X%) < co. Pelo Teorema 4.4, isso implica que {X;F,n > 1} é u.i. Mas, como
X7 — XI q.c, obtemos a mesma convergéncia em L;. Como F(X,) - E(X) e
E(X;") = E(X1), segue-se que E(X, ) — E(X5). Como X, > 0, para todo n,
temos que {X,, } é u.i pelo Teorema 4.4. Finalmente, como {X;'} e {X,, } sdo u.i,
segue-se que {X,,} é ui. O

Teorema 4.11. Suponha que {X,,F,,n > 1} seja um martingale. Entao {X,} é
u.i se, e somente se, existe uma v.a Y, integravel, e X, = E(Y|F,). Além disso, se
Y for mensurdvel relativamente a \/,- | F,, entao X,, =Y q.c.

Prova: (=) Suponha que {X,} seja u.i. Entéo, X,, - Xoc q.ceem L1 e {X,, 1 <
n < oo} é um martingale, pelo resultado anterior. Logo, basta tomar ¥ = X.

(<) Suponha X,, = E(Y|F,), Y integravel. O resultado segue do Problema 13.
Para completar, seja X;, =& X em q.c e L. Mostremos que Y = X, q.c. Sabemos
que E(Y|F,) = X, e E(Xoo|Fn) = Xpn. Seja A € Fy; entdo, [, YdP = [, X,dP e
fA XoodP = fA X,dP, do que decorre que fA YdP = fA XsdP. Portanto, a mesma,
igualdade vale para A € U2 | F;, e essas duas medidas concordam em uma &lgebra
que gera \/20:1 Fn, e portanto Y = X q.c. 0O

Teorema 4.12. Seja {X_,,, F_p,n > 1} um martingale reverso. Entao, esse mar-
tingale converge q.c e em L.

Prova: Temos que X_,, = E(X_1|F_,), por definicdo de martingale, logo se X_,,
convergir, deve fazé-lo em L, pois {X_,} é u.i. Portanto, é suficiente provar que
{X_,} converge q.c. SejalUy,(a,b) o nimero de cruzamentos de [a, b] pelo martingale
{X_n,..., X 2,X_1}. Pelo Teorema 4.8, E(Uy(a,b)) < w, e fazendo n —
0o, obtemos Uy, (a,b) — U(a,b), sendo o limite o nimero de cruzamentos de [a, b]
pelo martingale reverso {X_,}. Pelo TCM, E(U(a,b)) < (E(|X_1|) +a)/(b — a).
Segue-se que {X_,,} converge q.c, usando 0 mesmo argumento usado no caso usual
(Teorema 4.9). O
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Corolério 4.1. (Teorema da Continuidade de Lévy para a Esperanca Condicional)
Suponha que (2, F, P) seja um espago de probabilidade. Entao:

(a) Se F1 C Fa C --- é uma familia crescente de sub-o-dlgebras de F e se X é uma
v.a integravel, entao limy, oo E(X|F,) = E(X|V 51 Fn) q.c e em Ly.

(b) Se F1 D Fa D -+, entao lim,,_,oo E(X|F,) = E(X|Np>1 Fn) q.c e em Ly.

Prova: (a) Como F; C Fo C --- , E(X|F,) é um martingale; é u.i, pelo Problema
13. Logo, lim,, o E(X|F,) existe q.c e em Lj. Vamos provar que esse limite é
Xoo = E(X| \, >, Fn)- E suficiente mostrar que se A € \/, -, Fn, entao S\ XoodP =
fy XdP. Tome um A € F,. Segue-se que [, XpdP = [, XdP, para m > n, pois
temos um martingale. Faca m — oo e obtenha [, XoodP = [, XdP, para todo
A € F,. Portanto, a classe dos conjuntos A para os quais a ultima igualdade vale
contém conjuntos em JF,, para todo n, ou seja, contém conjuntos em U,>1Fy,, donde
também em \/, -, Fp.

(b) Seja X_,, = E(X|F,), Fn D Fny1. Entdo, {X_,} é um martingale reverso,
e pelo teorema anterior, X_,, — X_, q.c e em Li. Resta provar que X_o =
E(X| Np>1 Fn). Mas, se A € Ny>1Fy,, entdo [, X_ndP = [, XdP, porque se
A € Ny>1Fy, entao A € Fp,. Quando m — oo, e como X_,;, = X_ em Ly, temos
Sy X—odP = [, XdP. O

4.5 Aplicagoes dos martingales

Nesta secao apresentaremos algumas aplicagoes dos martingales a andlise se-
quencial (equagao de Wald), a teoria das v.a’s independentes, derivadas, razao de
verossimilhancas e divergéncia de séries.

4.5.1 Igualdade de Wald

Teorema 4.13. (Wald) Sejam {X,,,n > 1} v.a’s i.i.d, integraveis. Seja T um tempo
de parada, E(T) < co. Se Sp, = X1+ ...+ X, entao E(St) = E(X1)E(T).

Prova: (i) Considere, primeiramente, Y;, = |Xi| + ... + |X,|. Entao, Z, =Y, —
nE(|X1]) é um martingale. Logo, Zran = Yran — (T An)E(|X1|) é um martingale e
pelo TAO E(Yran — (T'An)E(|X1|)) = E(Zran) = E(Z1) =0, ou seja, E(Yran) =
E(T An)E(|X1]|). Para n — oo, como E(T) < oo, pelo TCM obtemos E(Yr) =
E(T)E(|X1]) < .

(ii) Caso geral: temos que S, —nE(X7) é um martingale, logo Str, — (T An)E(X1)
também é, pelo TAO. Logo, novamente, E(Sta,) = E(X1)E(T An). Fazendo n —
00, o lado direito da tltima igualdade converge para E(X;)E(T), pelo TCM. Para
o lado esquerdo, note que |S,| < [ Xi|+ ...+ |X,|, portanto |Stan| < [Yran| < Yr.
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Mas Y7 é integravel, pela parte (i), logo podemos fazer n — oo no lado esquerdo
para obter F(St), usando o TCD. [

Exemplo 4.7. (Aplicagoes da igualdade de Wald).

[1] Sejam X1, Xo,... v.a’siid., P(X; =1) = P(X; = —1) = 1/2; sejam a, b inteiros
positivos e S, = X1+...4+X,. Queremos calcular a probabilidade de atingir b antes
de atingir —a.

Sejam T1 = inf{n : S, = —a} e To = inf{n : S, = b}. Defina T = Ty A T5.
Queremos P(T = T»). Suponha, por um momento, que E(7T) < co. Entao, E(Sr) =
E(X1)E(T), pela igualdade de Wald. Como E(X;) = 0, obtemos E(Sy) = 0.

Também, E(S7) = bP(T = Ty) — a[l — P(T = T»)] = 0. Resolva e¢ obtenha
P(T =T,)=a/(a+b).

Vamos mostrar que, de fato, E(T') < co. Seja ¢ = a + b. Encontre d tao grande
de modo que P(|X; + ...+ X4 < ¢) < § < 1. Entao, pela independéncia dos
incrementos temos

P(T>nd) < P{X1+...+Xd| <, [ Xp)a + oo+ Xna| <} <07,
ou seja, y . P(T > nd) < oo, ou E(T') < oco.

[2] Sejam X1, Xo,... v.a’s i.i.d., de média zero e S;, = X7 + ...+ X,,. Seja T o
primeiro instante de tempo em que S, > 0, ou seja, T = inf{n > 1 : S, > 0}.
Entao, E(T) = 4o00. De fato, se E(T) < oo, pela igualdade de Wald devemos ter
E(Sr) = E(T)E(X1) =0, mas E(St) > 0, uma contradi¢cdo. Um argumento similar
nos mostra que o tempo de espera para que S, torne-se negativo pela primeira vez
¢ infinito.

Teorema 4.14. Seja { Xy, Fr, k=1,2,...,n} um submartingale e A\ > 0. Entao,
(a) )\P{maxlgkgn Xk > )\} < f{maxk Xp>\} XndP < E(X;),

(b) AP{minycpen Xi € ~A} € B(Xa) = B(X1) = [ x1cny XndP < B(X;)
E(Xy).

Prova: Defina o tempo de parada limitado T por T" = inf{l < k < n : X >
A} An com a convengao inf{f)} = oco. Seja A = {w : maxj<p<, Xp > A}. Entao,
A=A{T < n}U{T = n, X, > A}, de modo que A € Fp. Segue-se que {Xp, X,,}
é um submartingale e pelo TAO e fA XrdP < fA X,dP, do que decorre AP(A) <
Jy XrdP < [, X,dP. O item (b) é provado de maneira similar observando que —X,,
é um supermartingal. [

Aplica¢des

[1] Sejam {X,,n > 1} v.a’s independentes, média zero e Var(Xy) = o7. Entdo,
Yo, X; =Y, é um martingale e, portanto, (d ., XZ-)2 ¢ um submartingale, e
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portanto

)\QP{ max |[X1+...+ Xg| > A} = )\QP{ max |X; —G—...—I—Xk|2 > )\2}
1<k<n 1<k<n

n
SEXi+...+X)2=) of,
k=1
pelo Teorema 4.14. Vemos, pois, que a a desigualdade de Kolmogorov é um caso
especial do Teorema 4.14.

[2] Seja {X,,,» > 1} um submartingale nao negativo. Entao, para todo n > 1,
B sw x7) <@E(XD). (4.4
1<k<n

para 1/p+1/g=1, p,q > 1.

Para a prova, use a féormula

E(YP) = p/ MNTIP(Y > N)dh, p>1,
0

com Y = supy X, e use o primeiro limite superior para P(sup; X > A) dado no
Teorema 4.14. Como um caso especial temos que, se {X,,} é um martingale, entao
(4.4) é vélida para {|X,|,n > 1}.

4.5.2 Aplicagoes a variaveis independentes

Nesta secao fazemos duas aplicagoes: uma, a LFGN e, outra, a fungoes carac-
teristicas.

[1] LFGN. Sejam {X,,,n > 1} v.a’s i.i.d, integraveis e S,, = X1 + ...+ X,,. Entao,
E(Xi| Sn,Sn+1,...) ¢ um martingale (reverso) e igual a S, /n. Portanto, S, /n
converge q.c e em L.

Prova: Temos que

E(Xl‘Sn,Sn+1,...) = E(X1|Sn,Xn+1,Xn+2,...)
= E(X1|Sy) = E(X3|Sy) = ... = E(Xn|Sy). (4.5)

A segunda igualdade segue pela independéncia. Logo,
E(X1]Sy) + ...+ E(Xy|Sh)  E(Xi+...4+X,|S,) Sn,

E(X1|S,) = = .
(X1[5n) n n n
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Resta verificar a terceira igualdade de (4.5) e as conseguintes. Vamos mostrar
por exemplo que E(X1|S,) = E(X2|S,). Ou seja, verificar que, se A € F{S,},
fA X1dP = fA XodP. Considere A = {w : S,, < A\}. Entao,

/ X1dP = / x1dF(x1) - dF (),

onde F' é a f.d de X1, e

/ XpdP = / 29dF (1) -+ dF (),

portanto igualdade vale para conjuntos da forma acima e em consequéncia para todo
A € F{S,}. Pelo Teorema 4.12, S, /n = E(X1|Sy, Sn+1,...) converge q.c e em Lj.
O

[2] Fungoes caracteristicas. Seja X umav.a. A funcio ¢(\) = E(e*X) é chamada
fungdo caracteristica (f.c) de X. No Capitulo 6 iremos estudar essa funcdo com
detalhes.

Teorema 4.15. Sejam {X,,n > 1} v.a’s independentes. Seja ¢, () a f.c de X,.
Seja on(X) = [1r—q ox(X). Se pn(X) convergir, quando n — oo, para todo \ que
pertence a algum intervalo [a,b], a < b, entao Y .- | X,, converge q.c.

Prova: Seja S, = Y1 | X; e seja Y, = e /o, (N). Segue-se que {Y,,n > 1} é um
martingale limitado, logo converge q.c. Como ¢, (\) converge, para todo A € [a, b],
obtemos que exp{i\S, } converge q.c para todo A € [a, b].

Queremos provar que S,, converge q.c; temos que, para todo A € [a, b], exp{iASy(w)}
converge, para quase todo w.

Fato: para quase todo w, exp{i\Sy,(w)} converge para quase todo (c.r & medida de
Lebesgue) A € [a, b].

Seja hp(A\,w) = exp{iAS,(w)} e h(A\,w) = lim, h,(\,w), sempre que esse li-
mite exista. Temos que h,, é mensurdvel c.r ao espago produto ([a,b], Bjsp), 1) X
(Q,F,P), onde i é a medida de Lebesgue em [a,b]. Chamemos de M = {(\,w) :
hn(A,w) converge}. Entao, Iy é mensurdvel relativamente a o-algebra produto.
Temos que

(ux Pan) = [

Insdp x dP = [/ IM(/\,w)dP} dps.
[avb]XQ [a,b] Q

Para A fixo, [ IydP =1, logo (1 x P)(M) = pla,b]. Mas também temos que

i [ /M Tar(Aw)dp

dP = pla,b],
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e a integral interior é menor ou igual a p[a, b], portanto devemos ter que essa integral
é igual a ula, b], para quase todo w.

Portanto, para quase todo w, Ins(A\,w) = 1, para quase todo \. Agora, seja
[c,d] C [a,b]. Tome qualquer wy tal que lim,, exp{iAS, (wo)} exista, para quase todo
A. Mostremos que, para esse wy escolhido, S, (wp) converge. Pelo TCD,

n n

/ lim exp{iASy, (wo) }dp = lim/ exp{iASy(wo) }dp. (4.6)
le,d] [e,d]

Definimos A,, = f[c 4 €xP{iASn(wo) by Por (4.6), lim, A, existe. Observe
também que se Sy, (wo) # 0,

eidSn(wo) _ eicSn(wo) 2
iS5 (wo) |Sn(wo)
Segue-se que lim, sup Sp(wg) = 400 e lim, inf S, (wy) = —oo ndo sdo possiveis.
Porque, se por exemplo, lim, sup S, (wp) = +oo, entao lim, A, = 0, mas entao
f[c’d} lim,, exp{iASy(wp) }du = 0, para todo c,d, ou seja, lim, exp{iAS,(wo)} = 0,
para quase todo A, uma contradigao, pois |exp{iAS,(wp)}| = 1. Portanto, se

Sp(wo) nao converge, deve oscilar entre dois valores finitos r e s, r < s, ou seja
lim,, inf S, (wp) = r, lim,, sup S, (wg) = s. Mas, se assim for, entdo e*" = "¢, para
quase todo A € [a,b]. Mas, isso é impossivel para dois valores de A cujo quociente é
irracional. Segue-se que Sy (wp) deve convergir. [

4.5.3 Diversas aplicagoes
Derivadas

Seja (2, F,P) um e.p. Para cada n, considere {A,1,...,A,;} como uma
particao de €2, ou seja, UR2 Ay = Q, {Ay, , k > 1} sdo disjuntos e P(Ay, 1) > 0.
Suponha que a particdo (n + 1)-ésima seja um refinamento da n-ésima, ou seja
para todo k > 1, Aj,41 ¢ um subconjunto de A, ;, para algum j.
Seja ¢ uma funcao de conjuntos positiva e aditiva e defina

@(An k)
= TRE A, L.
Xn(w) Phy ) sew € Ap i,

)

Entao {X,,n > 1} é um martingale positivo e, portanto converge q.c.

Exemplo 4.8. Seja 2 = [0,1], F a o-algebra de Borel e P a medida de Lebesgue
sobre [0,1]. Considere F' uma funcao crescente definida sobre [0, 1]. Defina:
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Seja

F(52) - F (5)
TSNy

2n 2n

Xp(w) =

[k k+1)
, se wéE .

on’ gn

Entao, {X,,n > 1} é um martingale positivo, portanto converge q.c. Como F' é
crescente, F’ (w) existe para quase todo w € [0,1]. Assim, obtemos que X,, — F”,
q.c.

Razdes de verossimilhancas

Sejam X1, Xo,..., v.a’s i.i.d, com fungao densidade de probabilidade f(x) e
seja g(z) outra densidade qualquer. Defina

S(X1)f(X2)- f(Xn)”

L 9(X1)g(X2)9(Xn) f(X;) > 0, para todo i, (4.7)
" 0, se f(X;) =0, para algum i. .

Entao, {L,,n > 1} é um martingale positivo e, portanto, converge q.c, quando
n — oo. Na realidade, se P(f(X1) = ¢g(X1)) < 1, L, — 0 q.c. De fato, seja
L = limy_yo0 L. Se L é qualquer v.a tal que L seja independente de L, mas com
a mesma distribuicao de L, L~ L, entao LL ~ L. No entanto, pela lei de Hewitt-
Savage, L é uma constante e LL ~ L vale somente se L = 0 ou L = 1. Essa
constante nao pode ser 1, pois se o quociente em (4.7) for 1, entao []72; gg(’lg =1,
logo ¢g(X1)/f(X1) = 1, q.c, o que contradiz nossa hipdtese. Portanto, L = 0 é o
unico limite possivel.

A relevancia desse fato em Estatistica é a seguinte. Suponha X1, Xs,...1i.d. A
densidade é f ou g, mas nao sabemos qual. Para decidir, calcule (4.7); se o limite
for 0, é f, se o limite for infinito, é g.

Divergéncia de séries

Teorema 4.16. Seja {X,,,n > 1} um martingale tal que E(sup,, | Xp+1—Xy|) < oco.
Sejam Q1 = {w : X,,(w) converge } e
Qg = {w : liminf, X, (w) = —o0, limsup,, X, (w) = +o0}. Entao, 2 = Q U Q.
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Prova: Seja M > 0esejaT =inf{n >1: X,, > M}, e T = oo, se nao existir tal n.
Entao, T' é um tempo de parada e {X7a1, X172, ..} é um martingale, pelo TAO.
Temos, entao,

E(X}

Tan) < EM 4 sup | X1 — X,|] < M + E(sup | X411 — X,]) < o0,
n n

e portanto sup,, E(X;An) < 00, do que segue que {Xpp,} converge q.c.

Note que Xppan(w) = X, (w), para todo n sobre o conjunto {T" = 400}, portanto
Xn(w) converge q.c sobre {T" = +o0o}, ou seja, {X,} converge no conjunto onde
sup,, X, < M, pela definicao de T. Para M — oo, segue-se que {X,} converge
sobre o conjunto onde limsup,, X,, < co. Proceda do mesmo modo para {—X,} e
obtenha que {X,,} converge sobre o conjunto onde liminf, X, > —co. O

Corolério 4.2. Sejam {X,,,n > 1} independentes, média zero, | X,,| < M, para todo
n > 1. Entao, para quase todow € Q, ou y_ X, (w) converge ouliminf, Y ,_; Xi(w) =
—oo e limsup,, Y p_; Xp(w) = +o0.

Problemas

1. Prove que 7, como definido no Exemplo 4.1(c), é um tempo de parada.
. Prove a afirmagao do Exemplo 4.1(d).
. Prove as propriedades [3]-[6] dos tempos de parada.

2
3
4. Prove a observagdo (h) da secao 4.3.
5. Provem o item (b) do Exemplo 4.3.
6

. Sejam {Z,,n > 1} iid, P(Z; = 1) = P(Z; = 0) = 1/2. Defina X,, = 2" [[;_, Z.
Prove que {X,,} é um martingale. Prove que esse martingale ndo tem a forma dada
no Exemplo 4.3 (c).

7. Prove que {Y_,,} do Exemplo 4.4 (b) é um martingale.

8. Prove que, se {X,,n > 1} é um (sub)martingale, e ' um tempo de parada, finito ou
nao, entao {Xra1, X1a2,...} ¢ um (sub)martingale.

9. Prove (a) e (b) do Exemplo 4.5.

10. Seja 2 = {1,2,3,...}, F a classe de todos os subconjuntos de Q, P({k}) = 1/k —
1/(k+ 1), se k € Q. Suponha que {X,,n > 1} seja definido por X,,({k}) = n, se
E>neX,({k})=-1,se k <n.

(a) Prove que {X,} é um martingale e encontre seu limite, quando n — co.
(b) Determine se {X,} é ou ndo u.i.

(c) Calcule P{sup,, |X,| > A} exatamente.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Produza exemplos de: (a) martingales {X,,} e {Y,,} tais que {X,, + ¥,,} nédo seja um
martingale; (b) um submartingale {X,,} tal que {|X,|} ndo seja um submartingale.

(Decomposigao de Submartingales - Doob) (a) Seja {X,,, F,,n > 1} um submartin-
gale. Mostre que X,, = M,, + A,,, univocamente, onde {M,,, F,,,n > 1} dé um mar-
tingale e {A, } tem as propriedades: A; =0, A,, < 4,41 e A, é F,,_1-mensuravel. O
processo {A,} é chamado de compensador.

(b) Suponha que se saiba que todo martingale limitado no sentido de L; converge
g.c. Use esse fato e (a) para provar diretamente que todo submartingale limitado no
sentido L; converge q.c.

[Esse resultado é util em Confiabilidade. Sugestao: A,, = Zz;ll E(Xit1—Xk|Fr), n >
2.] Veja Gut( 2013).

Seja X uma v.a. integrdvel sobre (2, F, P). Mostre que a classe de fungoes {E(X|G)},
onde G varia sobre todas as sub-o-dlgebras de F, é uniformemente integravel.

(a) Seja {X,,F,,n > 1} um martingale e seja V. = {V,,,n > 1} um processo es-
tocdstico tal que |V,| < 1, para todo n e V,, sendo JF,_j-mensurdvel (tome Fy =
{Q,0}). Prove que >_;_, Vidr = Y, é um martingale, onde di = Xy,d, = X, —
Xp_1, k> 1.

(b) Um modo 1itil de olhar um tempo de parada é o seguinte. Seja T um tempo de
parada para um martingale {X,,, F,,,n > 1}. Prove que {Xran,n > 1} tem a forma
dada em (a). Tome Vi, = I{T > k}.

Sejam {Y,,n > 1} independentes, simetricamente distribuidas, mas nao necessaria-
mente integraveis. Seja F,, = F{Y1,...,Y,}. Seja V,, F,_1-mensurdvel. Prove que se
> i Y converge q.c para um limite finito, entao ), V. Yy converge q.c para um limite
finito sobre o conjunto {sup,, |V;,| < co}. Note que ), V3 ¥} néo é uma soma de v.a’s
independentes.

Prove a chamada decomposicao de Riesz para supermartingales: se {X,,, F,n > 1} é
um supermartingale u.i, entdo X,, = M,,+ A, onde {M,,, F,,n > 1} é um martingale
wi. e {4, Fn,n > 1} é um potencial, isto é, um supermartingale néo negativo tal
que lim,, ., E(4,) = 0.

Prove a Decomposigao de martingales de Krichberg: se {X,,,n > 1} é um martingale,
entao X,, = Xy(Ll) — XT(LQ), onde {Xy(bi),n > 1} é, para cada ¢ = 1,2, um martingale nao
negativo.

[Sugestao: considere a decomposigio de Doob do submartingale X7 = M,, + 4, e
coloque XV = M, + E(Aw|Frn).]

Estabeleca a seguinte extensdo do TAO. Seja {X,,n > 1} um martingale u.i e seja
Xoo = lim, X,,. Suponha que S < T sejam tempos de parada e coloque X7 = X,
sobre o conjunto {I' = oo}. Prove que E(Xr|Fs) = Xg. A diferenca para o TAO
provado no texto é que S,T podem ser infinitos.

Seja {X,,,n > 1} um supermartingale nao negativo. Prove que, para qause todo w, se
Xn(w) =0, entdo X,, 11 (w) = 0, para todo k > 0 (Esse resultado nos diz que sempre
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20.
21.
22.

que um supermartingale nao negativo atinge zero, ele permance 14 permanentemente,
o que pode parecer surpreendente).

[Sugestao: considere o tempo de parada T' = inf{n : X, (w) = 0} e use o TAO.]
Prove o Corolério 4.2.
Prove que, de fato, F._ e F,; sado o-algebras.

Se {X,, Fn,n > 1} é um martingale em Lo, com U, 11 = X, 11— X, n > 1, diferengas
martingales, prove que:

(a) E(U,Uy,) = E(U?), se n =m e igual a zero se n # m.

(b) Para m < n, E(UpXy,) = E(Up,E(X,|Fn)) =0.
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Capitulo 5

Processos Estocasticos com
Tempo Continuo

Neste capitulo, faremos uma introducéo aos processos estocasticos com tempo
(parametro) continuo. Em particular, veremos as dificuldades encontradas nesse
caso. Estenderemos o estudo dos martingales com tempo discreto, estudados no
Capitulo 4 para o caso de tempo continuo e daremos uma introducao aos processos
com incrementos independentes. No Capitulo 9 estudaremos com mais detalhes o
movimento browniano, ou processo de Wiener. A secdo 5.1 traz conceitos mais
dificeis e pode ser ignorada numa primeira leitura. Referéncias para esse capitulo
sao Doob (1953), Breiman (1968, 1992) e It6 (2006).

5.1 Separabilidade e mensurabilidade

Iniciamos com a defini¢ao de processo estocastico com parametro continuo.

Definigao 5.1. Seja (2, F,P) um e.p e T um intervalo dos reais. Entao, X =
{X¢,t € T} é um processo estocastico com parametro continuo se cada X; é uma
variavel aleatéria sobre (2, F, P).

Podemos considerar X como uma aplicagao de T' x 2 — R, tal que X : (t,w) —
Xi(w). Frequentemente, escrevemos Xy (w) = X (¢, w).

As fungoes (uma para cada w) definidas por X (-, w) sdo chamadas fung¢ées amos-
trais ou trajetorias de X (ou ainda realizagoes).

Exemplo 5.1. Seja (§2, F, P) um e.p e considere Y uma v.a normal sobre esse e.p.
Defina X;(w) = sen[at + Y (w)]. Entdo, para cada w, uma trajetéria de X serd uma
sendide, como funcao de t real.

Defini¢ao 5.2. Seja (2, F, P) um e.p, X = {Xy,t € T} um processo estocastico.
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(a) Dizemos que quase todas as trajetérias de X sao continuas se existe um con-
junto nulo A tal que, se w ¢ A, entao X (-,w) é continua.

(b) Dizemos que X é continuo em ty q.c, se existe um conjunto nulo Ay tal que
limy_y, Xi(w) = Xy, (w), sempre quew ¢ Ag. X é continuo q.c se X for continuo
gcemcadateT.

(c) X é continuo em probabilidade em tq se limy_,;, X; = X3, limite este em pro-
babilidade. X € continuo em probabilidade se for continuo em probabilidade
em todo pontot € T.

Observamos que (a) = (b) = (c). Claramente, (c) nao necessita implicar (b).

Exemplo 5.2. Vejamos um exemplo de X que satisfaz (b) mas nao (a). Considere
Q2 =10,1], F o-algebra de Borel sobre [0,1] e P a medida de Lebesgue sobre [0, 1].
Considere, também, T' = [0, 1]. Defina X por

0, set<uw,

set>w (5.1)

Entao, X satisfaz (b), mas nao (a).

Vamos discutir algumas dificuldades encontradas no caso de parametro continuo.
Seja {X,,,» > 1} um processo estocastico com parametro discreto. Entao, operagoes
razoaveis com a sequéncia Xi, Xo,..., sempre produz funcgdes mensuraveis como
resultados.

Por exemplo, sup,, X;, é uma v.a (isto é, mensuravel), porque {sup, X,, < A} =
Nn{ X, < A} é mensurdvel.

Do mesmo modo, lim,, X, limsup,, X,,, inf,, X, etc, sdo mensurdveis.

Seja, agora, um processo estocastico { X;, ¢ € T'} com parametro continuo. Entao,
sup;cr Xt ndo necessita ser mesurdvel. De fato, {sup, Xy < A} = Mer{X; < A}, €
este conjunto pode ser nao mensuravel, porque temos uma interseccao nao enu-
meravel. De modo similar, o conjunto {w : X(-,w) é continuo} ou o conjunto
{w: |X(-,w)| permanece limitado} etc nao sdo necessariamente mensuraveis.

Outra observagao: {X;,t € T} é usualmente construido usando-se somente as dis-
tribuigbes finito-dimensionais (lembre-se do Teorema da Extensao de Kolmogorov).
Os conjuntos que temos discutido envolvem todas as distribui¢des ao mesmo tempo.
De fato, dois processos tendo as mesmas distribuigoes finito-dimensionais podem ter
trajetorias radicalmente diferentes.

Exemplo 5.3. Seja 2 = [0,1], F a o-algebra de Borel e P a medida de Lebesgue,
ambas sobre [0, 1]. Defina os processos { X, t € T} e {Y;,t € T} como segue:
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Xt(bd) = 0,

0, t+#w,
Yw) = {1 tiw.

Note que para todo t € [0,1], X; = ¥; q.c, de modo que esses processos tém as
mesmas distribuictes finito-dimensionais. Mas o comportamento das trajetorias é
diferente. Por exemplo, P({w : sup, X;(w) = 1}) = 0, mas P({w : sup, Vi(w) =
1}) = 1. Também, P({w : X(-,w) ¢ continuo}) = 1, ao passo que a probabilidade
do conjunto similar para Y; é zero.

Exemplo 5.4. Considere o mesmo e.p do exemplo anterior e seja A" um conjunto
nao mensuravel de [0,1] e defina A = {(z,y) : z =y e z € A'}. Defina X;(w) =
I4(t,w), que define um p.e {X;,t € T}. Entao, {w :sup, X; = 1} = A', que nao é
mensuravel.

Daremos, a seguir trés definicoes de processo separavel. Por comodidade, os
processos estocdsticos envolvidos nestas definicoes serao considerados com valores
em [—o0, 00].

Defini¢ao 5.4. Seja X = {X;,t € T} um p.e com valores em [—oc0, 0] e A a
classe de todos os conjuntos fechados de [—oc0, 00]. Dizemos que X é separdvel se a
seguinte afirmacao é verdadeira: Eziste um conjunto enumerdvel S de pontos em T
e um conjunto nulo A, tal que se A € A, entdo os conjuntos

A ={w: X (w)€e A, teInS}

Ao ={w: Xi(w)€e A, teINT}

diferem no mdzximo por um subconjunto de A. Aqui, I € qualquer subintervalo aberto

deT.
O conjunto enumeravel envolvido, S, é chamado um separador.

Definicao 5.5. X é separdvel se existe um conjunto nulo A tal que, sempre que
w ¢ A, o fecho do gréfico de X (t,w), para t € S, contém o grafico de X (t,w), para
tefT.

Definicao 5.6. X é separdvel se existe um conjunto nulo A tal que, se w ¢ A,
entao Xy(w) € Nrer X (I N S,w), para todo t, onde I é um intervalo aberto da reta
e X(INS,w):= fecho{ X (s,w) :s € INS}.

Essas trés defini¢oes sao equivalentes (veja o Problema 1).
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Algumas consequéncias: Seja {X;,t € T'} um processo separavel e I qualquer
subintervalo de T

1] supyesng Xe(w) = suppes Xo(w), se w ¢ A.

Note que o membro esquerdo é mensurdvel, pois I N.S é enumeravel. Para a
prova, note que o lado esquerdo é menor ou igual ao segundo, pois estamos tomando
o supremo sobre um conjunto menor. Cada X; é um limite de X, para s € 5, para
todo w ¢ A, logo o segundo membro nao pode ser maior do que o primeiro.

De modo similar, temos que

limsup X¢(w) = limsup X¢(w), w ¢ A.
t—to, t€S t—to

[2] Seja S" um conjunto enumerdvel, S° O S, sendo S um separador. Entdo S é
também um separador.

[3] S é denso em T.

[4] Se {X:,t € T} é separdvel, e se f for continua, entdo Y; = f(X;) é também
separavel.

[5] Seja X um processo tal que quase todas as trajetérias de X sao continuas a
direita. Entao, X é separavel.

Exemplo 5.5. Vejamos um exemplo de um processo nao separdvel. Defina Y;(w)
como no exemplo 5.2. Entao {Y;,t € T} é nao separdvel. Para provar, use a
Definicao 5.5.

Definigao 5.7. Sejam X = {X;,t € T} eY = {Y,,t € T} dois processos es-
tocasticos. Dizemos que X e Y sao equivalentes se, para cada t, X; = Y; q.c.

Para provar o teorema seguinte, necessitamos de dois lemas.

Lema 5.1. Seja Ay o conjunto de todas as reunioes finitas de intervalos abertos
ou fechados de [—o0, 0|, tendo extremos racionais (ou infinitos). Seja A a classe
dos conjuntos que sao interseccoes de conjuntos de Ag. Entdo, A contém todos os
conjuntos fechados de [—o0, 00].

Lema 5.2 Seja {X;,t > T'} um processo estocastico.
(a) Seja A um boreliano de [—o0,00]. Existe uma sequéncia enumeravel (finita ou
infinita) {t1,ts, ...} dependendo de A tal que para todot € T,

P{th ceAn>1,X; ¢A} =0.
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(b) Seja Ay qualquer cole¢ao enumerével de borelianos de [—oco, o]. Seja A a classe
de todos os conjuntos que sao intersec¢oes de conjuntos de Ay. Entao, existe uma
sequéncia enumeravel (finita ou infinita) {t1,te,...} tal que, para todo t € T', existe
um conjunto nulo A; tal que

{Xy, € A k>1,X, ¢ A} C Ay,
para todo A € A.

Teorema 5.1. Seja X = {X;,t € T} um p.e sobre (Q, F, P). Entdo, existe um p.e
X ={X,t € T} tal que X é equivalente a X e X é separavel. Em geral, X tem
valores em [—o0, +00] mesmo que X tenha valores em R.

Prova: Seja Ag a colecao de conjuntos que sao reunides finitas de conjuntos abertos
ou fechados com extremos racionais (ou infinitos). Seja A o conjunto que contém
todas as intersecgoes de conjuntos de Aj.

Pelo Lema 5.1, A contém os conjuntos fechados de [—o0,00|. Também, Ay é
uma colecao enumeravel de conjuntos.

Seja I um subintervalo com extremos racionais ou infinitos de 7. Apliquemos
o Lema 5.2 (b) com Ay e A descritos aqui e T substituido por I N T. Temos,
entao, que para um conjunto enumeravel S; e um conjunto nulo NtI, {Xs; € A,s e
S, X ¢ A} C Ntl. Defina um separador S por S = U;St e defina N; = UINtI e
A(I,w) = {Xs(w) : s € INS}. Finalmente, seja A(t,w) = NrerA(I, w).

Observe que Xy(w) € A(t,w), sew ¢ N;. Também, se w € Ny, A(t,w) é ainda nao
vazio (pois intersecgoes finitas dos A(I,w)’s na definicao de A(t,w) nao sao vazias,
e cada A(I,w) é um conjunto compacto em [—o0, 00|, portanto vale a propriedade
da intersecgao finita).

Assim, A(t,w) é nado vazio, para todo w. Portanto, definamos X como segue:
Xt(w) = Xi(w), se w ¢ Ny, e igual a qualquer ponto em A(t,w), se w € Ny.

Entdo, X;(w) = X;(w) q.c e portanto X é equivalente a X. Também, X é
separavel, pois por construcao

Xt(w) € A(t,w) = Nt A(l,w) = ﬂ[;tgf((lﬂ S,w),

para I com extremos racionais (ou infinitos). Pela definigao 5.6, devemos mos-

trar que Xt(w) S ﬂ[ztdf(([ﬂ S,w), I aberto. Se I for qualquer intervalo aberto
contendo t, segue-se que existe um intervalo aberto racional [ ‘talque I C I e
teI. Mas X(I'NS,w) C X(INS,w), portanto N; pac. abertorerX I N S,w) =
Ny aberto:teIX(I NS w). O

Definicao 5.8. Seja X = {X;,t € T} um p.e sobre (Q,F,P). Seja Br x F a
o-algebra produto sobre T', onde By é a o-dlgebra de Borel sobre T'. Dizemos que o
processo X é mensuravel se a aplicagao X : (t,w) — R for conjuntamente mensuravel
em (t,w).
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Teorema 5.2. Seja X = {X;,t € T'} um processo mensuravel. Entao:
(a) Para todo w, a trajetéria X (-,w) é Borel mensuravel;

(b) Se X, for integravel, para cada t, entao E(X;) é uma fun¢ao Borel mensurdvel
de t.

Prova: (a) Imediata.

(b) Veja o Problema 5. O

Exemplo 5.6. (Um processo mensuravel) Se X tem trajetorias continuas a direita
entdo X é mensurdvel. De fato: para todo n > 1, defina X (t,w) = (k +1)/n, se
{k/n < X(t,w) < (k+1)/n}, k > 0. Entao, esses procesos sao mensuraveis. Pela
continuidade & direita, X (t,w) — X (t,w), para cada (t,w) fixado. Deduzimos
que X é mensuravel como limite simples de processos mensuraveis.

5.2 Martingales com parametro continuo

Nesta secao vamos estender o conceito de (sub/super)martingales para o caso
de um processo com tempo continuo. Em particular, o TAO é estendido para esse
caso.

Definicao 5.9. Seja (2, F, P) um e.p e T um intervalo de R. Para cadat € T, seja
Fi uma o-algebra. Suponha que, parat < s, temos JF; C Fs (crescente). O processo
X = {X;,t € T} é um martingale com parametro continuo se

(a) X; é Fy-mensurdvel e integravel;
(b) se s < t, entao E(X¢|Fs) = X5, q.c.

Submartingales e supermartingales sao definidos de maneira similar ao caso dis-
creto.

Teorema 5.3. Seja X = { Xy, F;,t € T} um submartingale separavel. Entao:
(a) AP{super Xy > A} < supeqp B(X,");

(b) E(U(a,b)) < super E()b(ﬁizﬂl, onde U(a,b)(w) é o nimero de vezes que a tra-

jetoria de X (-,w) vai de abaixo de a para cima de b.
Prova: (a) Seja S = {s1,$2,...} um conjunto separador para X. Suponha s; <

s9 < ---. Entao, {Xs,,..., X5, } ¢ um martingale com parametro discreto, logo pelo
teorema analogo no caso discreto temos

)\P{ sup Xg, > )\} < sup E(X;) <sup BE(X]").
1<k<n k<n teT
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Fazendo n — oo, obtemos AP{sup;>; X, > A} < sup; E(X;"). Mas, entao,
supy, Xs, = sups;er Xt q.c, pois X é separdvel.

(b) Mesmo tipo de prova. Veja o Problema 7. O

Teorema 5.4. Seja X = {X;,t € T'} um submartingale separdavel. Entao:

(a) Quase todas as trajetorias de X sao limitadas sobre subintervalos compactos de
T.

(b) Quase todas as trajetorias de X sao livres de descontinuidades oscilatdrias.

Prova: (a) Seja I = [a,b] um subintervalo compacto de T'. Pelo teorema anterior,

)\P{ sup X; > )\} < sup B(X}) = B(X}") < oo.
tel tel

Para A — oo, obtemos P{sup,c.; X; < oo} = 1, portanto quase todas as tra-
jetdrias sao tais que sup;c; Xy < 0o. Também, temos que

)\P{ inf X; < —)\} < B(X}) - B(X,).
€

Para A — oo, temos P{inf;c; X; > —oo} =1, logo para todo t € I e quase todo
w, Xt(w) > —oo. Segue-se que quase todas as trajetérias sao limitadas.

(b) Seja I como na parte (a). Sejam r < s nimeros racionais e Ur(r, s)(w) o nimero
de cruzamentos de [r, s] pela trajetéria X (t,w), a <t < b. Entao, E[Uf(r,s)] < oo,
pelo teorema anterior. Em particular, Ur(r, s)(w) < oo, exceto para w € A, de
probabilidade nula. Seja A = U,<sA, s, 7, s racionais; A é um conjunto nulo. Se
w ¢ A, a trajetéria X(-,w) nao tem descontinuidades oscilatérias sobre I. Pois,
suponha que X (-,w) nao tenha limite & esquerda no ponto u € I. Entao, existem
numeros racionais r < s tais que limsupy,, X > s e liminfy,, Xy < r. Mas, entao,
X, cruza [r, s] um nimero infinito de vezes, e isso é impossivel, se w ¢ A. O

Observacao: A parte (b) significa que, existe um conjunto nulo A tal que, se
w ¢ A, entao a trajetéria X(-,w) tem a seguinte propriedade: se u é um ponto
interior de T', entao lim Xyq, e limy ), X; ambos existem. Deduzimos que trajetérias
de submartingales separdveis somente podem ter descontinuidades com saltos.

A seguir, responderemos as seguintes questoes:
[1] Suponha que X = {X;,a <t < b} seja um submartingale separdvel. Entao
(a) Existe o limyy, X¢? Quando?

(b) Se existir o limite em (a) e o chamarmos X3, quando X = {X;,a <t < b} sera
um submartingale?

[2] Suponha X = {X;,a <t < b} seja um submartingale separavel.
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(c) Existe o limy 4 X;7

(d) Se existir o limite em (c) e o chamamos X,, quando X = {X;,a <t < b} serd
um submartingale?

Teorema 5.5. Seja X = {X,a <t < b} um submartingale separdvel.
(a) Se sup,<;p, E(|X¢|) < oo, entao limsy, Xy existe q.c.

(b) Se X = {X;,a <t < b} for u.i, entao o limite em (a) existe no sentido Ly e
X ={X},a <t < b} é um submartingale, se definirmos X = limyy, X;.

Prova: (a) Suponha ¢,, 1 b, entdo {X;, ,n > 1} é submartingale com parametro dis-
creto, Li-limitado, usando a hipétese de (a). Portanto, lim,,_,~, X}, existe q.c e deno-
tamos por Y este limite. O limite independe (q.c) da sequéncia t,, escolhida; de fato,
suponha que s, T b e tal que lim,, X, = Y’. Considere a sequéncia {s1, 1, s2,t2,...}
e seja {ry,ra,...} essa sequéncia em ordem crescente. Entao, {X,, ,n > 1} é um sub-
martingale Li-limitado e portanto lim,, X, existe q.c, e isso é impossivel, a menos
que Y =Y’ q.c.

(b) E suficiente mostrar que {X;,a < ¢ < b} é um submartingale. Para isso, mos-
tremos que [, X;dP < [, XydP, sempre que A € F;. Sejam t < t, < b, t, T b;
entao, | A XtdP < i) A Xt,dP, pela definicao de submartingale. Para n — oo, por
integrabilidade uniforme, obtemos o desejado, pois X, — X, por definicao. [J

Teorema 5.6. Seja X = {X;,a < t < b} um submartingale separdvel. Entao,
lim ), Xt existe q.c e em Ly. Além disso, {X¢,a < t < b} é um submartingale, se
definirmos X, = lim; , X;.

Prova: Suponha que t, | a, entdo {X;, ,n > 1} é um submartingale reverso e
portanto lim,_,., X;, existe q.c e em L;. Este limite é independente da sequéncia
{t,} escolhida, pelo mesmo argumento feito no teorema anterior. Logo, {X;,a <
t < b} é um submartingale, pelo argumento do teorema anterior. [

Defini¢ao 5.10. Seja T' um intervalo real aberto a direita. Seja {F,t € T} uma
familia crescente de o-algebras e Fiy = NgstFs. Se Fyyp = F, para todo t, a familia
{Fi,t € T} é chamada continua a direita.

Exemplo 5.7. Seja F; a o-dlgebra gerada pelos conjuntos de Borel de [0,%) e [¢,1).
Entao, para cada t, o ponto {t} satisfaz: {t} € Fiy, mas {t} ¢ F;.

Definicao 5.11. Sejam X = {Xy,t € T} e Y = {Y;,t € T'} dois p.e. Dizemos que
Y é uma modificagao cadlag (do francés “continue & droite, limite a gauche”) de X
se Y tem as suas trajetorias continuas a direita, com limites a esquerda e X; = Y;
q.c, para todot € T.

A seguir, apresentamos um resultado que garante a existéncia de modificagoes
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cadlag de um submartingale. Chamaremos uma familia {F;,¢ € T'} de completa se
todos os subconjuntos de conjuntos nulos de F pertencem a JF; para todo t € T.
No teorema a seguir, consideraremos o processo {X;y,t € T} definido por Xy =
limy; Xy se o limite existir e 0 se nao. Pela observacao seguindo o Teorema 5.4,
observe que fora de um conjunto nulo, limy|; Xy existe para todo ¢t € T. Também
observe que por construcao, para todo t € T', X,y é F;y mensuravel.

Teorema 5.7. Seja T um intervalo real aberto a direita. Seja X = {X;,t € T} um
submartingale separavel.

(a) O processo {Xi4+,t € T} é um submartingale relativamente a {F+,t € T} e, é
um martingale se X for um martingale.

(b) Seja {F;,t € T} uma familia completa e continua a direita. Entao {Xy, Fi,t € T'}
tem uma modificagao cadlag que também é um submartingale se, e somente se,
E(X}) é continua a direita como uma fungao de t. Em particular, todo martingale
separdvel relativo a {F;,t € T} tem uma modificacao cadlag que também é um
martingale.

Observagao: A hipétese de separabilidade nao é necessaria no Teorema 5.7. Veja
Le Gall (2013), Théoréme 3.4.

Prova: (a) Devemos provar que se A € Foy e s < t, entdo [, X4 dP < [, X, dP.
Suponha que s, | s, s < s, <tety | t. Entao, como A € Fgy, segue-se que A € F;, ,
para todo n, pois Fsy = NF;,. Portanto, [, X, dP < [, X; dP. Faca n — oo para
obter o resultado. A segunda afirmacdo do enunciado decorre imediatamente da
prova trocando < por =.

(b) Primeiramente, pela observagao seguindo o Teorema 5.4, sabemos que existe um
conjunto nulo N tal que se w ¢ N, as trajetérias X (-,w) tem limites a direita e a
esquerda. Definimos o processo Y = {Y;,t € T} por Vi(w) = Xiq(w) se w ¢ N
e 0 sendo. Note que como {F;} é completa, temos que Y; é F; mensurdvel para
todo t € T e por (a) obtemos que Y é um submartingale (ou um martingale se X
for um martingale). Além disto, por construgao, as trajetérias de Y sdo cadlag.
Agora, devemos mostrar que Y é uma modificacdo de X se e somente se t — F(Xy)
¢é continua a direita. Temos que

Xt < E(X|F) = EV| Fiy) = Y, (5.2)

sendo que a primeira igualdade segue da continuidade a direita de F; e, a segunda,
porque Y; é Fii-mensuravel. Logo, X; <Y;.

Suponha, agora, t, | t. Se A € F, temos [, X;dP < [, X; dP. Faga n — oo
para obter fA X;dP < fA Y;dP. Como X; <Y;, obtemos X; = Y; g.c se e somente
se E(Xt) = E(Xt+) = E(hmsu Xt) = hmsu E(Xt) O
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Passemos, agora, a considerar o Teorema da Amostragem Opcional no caso de
martingales com tempo continuo. Antes, definamos tempo de parada nesse caso.

Definicao 5.12. Seja {F;,t € T'} uma familia crescente de o-algebras. Um tempo de
parada T relativamente a {F;} é uma v.a com valores em [0, 00| tal que {1 <t} € F;
para todot e T.

Definamos Fr = {A € \/,cp Fir :Vt € T, An{7r <t} € F}.
Algumas propriedades:

1] F; é uma o-élgebra.

2] Os conjuntos {7 < t}, {7 = t}, {r <t} todos pertencem a F;.

[1]
2]
[3] Se 7, v s@o tempos de parada, também o serdo T Av e TV V.
[4] Se 11 < 1o, entdao Fr, C Fr,.

[5]

5| 7 é F; - mensuravel.

Proposicao 5.1. Seja X = {X;,t > 0} um p.e com trajetérias continuas a direita
e X é Fy-mensurdavel, com {F;,t > 0} uma familia crescente de o-dlgebras. Seja T
um tempo de parada finito. Entao, X, é F -mensuravel.

Prova: Considere X (t,w) : T x Q@ — R, com T = [0,00). Entéo, a restrigao dessa
aplicac@o a [0, t] x © é mensurével, considerando B; a o-dlgebra de Borel sobre [0, ]
e B, x F; a o-dlgebra sobre [0,t] x Q. A prova é a mesma daquela que mostrou que
um processo continuo a direita é mensuravel.

Considere as aplicagoes

w—=T(w) = (W, 7(w)) = Xr@w) (W)

Para mostrar que X, é F,.-mensurdvel, basta mostrar que, se A for qualquer
conjunto de Borel, {w : X ,)(w) € A} N {r <t} € F. Note que a aplicagdo
h:w— (w,7(w)) é uma aplicacdo mensuravel, por definigdo de tempo de parada e a
aplicac@o ¢ : (t,w) — R, definida por g(t,w) = X¢(w) é mensurdvel, pela observacao
feita no inicio da prova. Como X, (w) = (g o h)(w), obtemos o resultado.  [J.

Vejamos, agora, o teorema da amostragem opcional de Doob para o caso de
submartingales continuos.

Teorema 5.8. (TAO) Seja X = {X;, Fi,t € T} um submartingale com trajetdrias
continuas & direita. Sejam S < R tempos de parada finitos. Entao. se

(a) R <ty q.c, para algum to € T, ou

(b) {Xt,t € T'} é uniformemente integravel,
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teremos que

E(XRg|Fs) > X, (5.3)
ou seja, {Xg, Xr} é um submartingale.

Prova: Suponha T = [a,b] e defina para todo n > 1, S como:

k+1 k k+1
SM(w) = 2%, se 2—n<5’(w)§ 2—; Jk>1
1 1
= — < < —.
oS¢ 0<Sw) < on

Segue-se que S(w) < S (w), para todo w. Considere o submartingale {Xpjon, k>
0} e as o-dlgebras {Fj/on,k > 0}. Entao, S & um tempo de parada para esse
submartingale, porque

pois S é um tempo de parada. Defina R(™ em funcdo de R(w) de modo similar
ao definido para S™. Entdao, R™ > R e R™ é um tempo de parada para o
submartingale { X} /on,k > 0}. Se a suposigao (a) for vélida, entao R™ ¢ S tem
somente um numero finito de valores (no maximo 2"tq valores). Logo, pelo TAO no
caso discreto,

E(Xgm | Fsm) = Xgm- (5.4)

Se (b) valer, (5.4) é também verdadeira, pois o submartingale { X}, jon, k > 0} ¢
u.i. e entao podemos aplicar o0 TAO estendido (veja o Problema 18 do Capitulo 4).

Tome A € Fg. Como S > § A € Fgmy, porque Fs C Fgm. Logo, (5.4)
implica que

/ X podP > / X gy dP. (5.5)
A A

Faca n — oo em (5.5). Como R™ | Re S™ | S, e como {X;} tem todas as
trajetdrias continuas a direita, segue-se que limy, oo Xpm) = Xpg € limy, o0 Xgm) =
Xg, ambos q.c. Esses limites também valem em norma L;. De fato, note que S >
S+ para todo n, logo sob a condigio (a) ou (b), B(Xgm|Fsm+v) > Xgm+1), ou
seja, {Xgm),n > 1} é um submartingale reverso, que converge em L e q.c.

Logo, podemos tomar o limite em (5.5) para obter fA XgdP > fA XgdP, que
vale para todo A € Fg. Ou seja, E(Xg|Fs) > Xg. O
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5.3 Processos com incrementos independentes

Nesta se¢ao estudamos processos importantes, como o Processo de Poisson e o
Movimento Brownianno. O primeiro tem aplicagoes, por exemplo, no modelo de
risco adotado em seguros e, o segundo, em modelos de opgoes financeiras, como a
férmula de Black-Scholes (ver Capitulo 13).

Definicao 5.13. Um p.e X = {Xy,t € T'} tem incrementos independentes se, para
toda sequénciat; < tg < --- <t, deT, tivermos que Xy, — Xy, , Xogs — Xy, ..., Xy, —
X:,_, sao v.a’s independentes.

Exemplo 5.8. Seja ¢ > 0. Construa um p.e com incrementos independentes como
segue:

(a) Xo = 0;
(b) Se s < t, suponha X; — X5 ~ Poi(c(t — s)).

Sabemos a distribuicao de X, — Xy,,..., X, — Xy, ,; suponha que o pro-
cesso tenha incrementos independentes, portanto teremos a distribuicao conjunta
de X,,...,X;,. Finalmente, teremos que verificar sua consisténcia, usando o teo-
rema da extensao de Kolmogorov.

Um p.e separavel com essa distribuicao é chamado um Processo de Poisson com
parametro c. As trajetérias de um processo de Poisson sao fungdes em patamar, nao
decrescentes, constantes, exceto por saltos de tamanho unitario.

Exemplo 5.9. Construa um processo {X;,t > 0} com incrementos independentes
como segue:

(a) Xo = 0;
(b) Se s < t, suponha X; — X; ~ N(0,t—s).

Um p.e. separavel com essa distribui¢ao é chamado Movimento Browniano (MB)
ou processo de Wiener. Pode-se provar que quase todas as trajetérias do MB sao
continuas, mas nao derivdveis q.c. Para detalhes, veja Wiersema (2008), Evans
(2013), Dvoretzky et al. (1950, 1954) e a Segao 9.2.

Defini¢ao 5.14. Um processo X = {X;,t > 0} com incrementos independentes
é estaciondrio se a distribui¢ao de X; — X, somente depender de t — s, t > s (e
escrevemos Xy — Xs ~ X;—s). Também dizemos que o processo tem incrementos
estacionarios.

Os processos de Poisson e MB tém incrementos independentes e estacionarios.

Proposicao 5.2. Se X = {X;,t > 0} é um Movimento Browniano, entao X é um
martingale.
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Prova: Tomemos F; = F{X;,s < t}. Devemos mostrar que E(X{|Fs) = Xs.
Temos

E(Xi|Fs) = E(Xy — Xs + Xs|Fs) = E(Xy — Xg|Fs) + Xs.

Mas, X; — X é independente de X,, — Xo, u < s, logo E(X; — X4|Fs) + Xs =
E(X:—X,)+ Xs = E(X;—s) + Xs = X, pela estacionariedade e o fato que X;_g ~
N(,t—s). 0O

Proposicao 5.3. Seja P = {P,,t > 0} um processo de Poisson com parametro
¢ > 0. Entao, Y; = P, — ¢t é um martingale.

Prova: Tome F; = F{Ps,s < t}. Entdo, E(Y{|Fs) = E(P; — ct|Fs) = E(P, —
Ps|Fs) — ¢t + Ps, e usando o fato que o processo tem incrementos independentes e
estaciondrios, obtemos que E(Y;|Fs) = E(Pi—s) —ct+ Ps = ¢(t — s) —ct + Ps =
P,—cs=Y,., 0O

Observagao: Se X = {X;,t > 0} é um processo com incrementos independentes
e estaciondrios, e se X; é integravel, para cada t, entdao Y; = X; — tE(X1) é um
martingale.

Definicao 5.15. Um processo de Lévy é um processo cadlag com incrementos
independentes e estacionarios e P(Xo = 0) = 1.

Os processos de Lévy tém merecido uma grande atencao recentemente, notada-
mente por suas aplicacbes em finangas.

A seguir, consideramos um resultado que fornece uma propriedade forte de Mar-
kov para processos com incrementos independentes e estacionarios.

Teorema 5.9. (Hunt) Seja X = {X;,t > 0} um p.e com incrementos independen-
tes e estaciondrios e seja F; = F{Xs,s < t}. Suponha que Xo = 0 e que as suas
trajetorias sejam continuas a direita. Seja T um tempo de parada finito. Defina o
processo Y = {Y;,t > 0} por Yy = Xry — Xp. Entao, Y tem incrementos indepen-
dentes e estaciondrios, Y; tem a mesma distribuicao que Xy e Y é independente de
Fr.

Prova: Seja A qualquer conjunto em Fr e t] < to < --- < t,. Devemos mostrar
que

P{A,Y;, € Ay,.... Y, € Ay} = P(A)P{Xy, € Ay,..., Xy, € A},

onde Ai,..., A, sdo conjuntos de Borel arbitrdrios. Vamos considerar somente o
caso n =1 (o caso n > 1 é similar). De modo que temos que provar que P{A,Y; €
A} = P(A)P{X,; € A}.

Ou ainda, temos que provar que
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E(Inf(Y2)) = P(ME(f(X1)), (5.6)

onde f = I4. Para provar (5.6), provamos que essa vale para qualquer funcao
continua, limitada f. Defina

k+1 k k 1
TM(w) = 2%, se o T(w) < + E>1,
1 1
- = <T =
T 0 (w) < on

Segue-se que T é tempo de parada e T(™ | T Agora,

) = f(Xrye = Xr) = lim f(Xpe = Xpe),

pela continuidade & direita de X; e continuidade de f. Agora provamos que

E [Inf(Xpwmy 1y — Xpm)] = P(A)E(f(Xy)).

Pelo limite acima, o teorema seguird desse resultado. Agora,

E[Inf (Xpo e — Xrom)] = Z/ Inf (Xkjonite — Xgjon) dP
k>1 /AT =k/2"}

Z/IAO{T(") koS (Xijanit — Xijon) dP. (5.7)
k>1

Mas A € Fr C Fpm), logo AN{T™ = k/2"} € Fl2n, por definigao de tempo de
parada. Segue-se que AN{T(™ = k/2"} é independente de Xpjanit — Xpjon, devido
a incrementos independentes. Logo (5.7) torna-se

B(f(X) Y. PAN{T = k/2"})) = B(f(X)P(A),

k>1

usando a estacionariedade. [

Veja Morters e Peres (2010), Hunt (1956) e Dynkin (1957) para detalhes sobre
a propriedade forte de Markov.

Problemas

1. Prove que as defini¢oes 5.4, 5.5 e 5.6 sao equivalentes.
2. Prove a afirmagao do Exemplo 5.2.

3. Prove as Consequéncias (2)-(5).
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4. Prove a afirmacao do Exemplo 5.5.

5. Prove (b) do Teorema 5.2.

6. Seja X um processo estocdstico com parametro continuo e seja T um intervalo. Su-
ponha que X seja continuo em probabilidade para cada ¢ € T'. Prove que existe um
p.e X, tal que X seja equivalente a X, separavel e mensuravel.

7. Prove (b) do Teorema 5.3.

8. Prove o conteido da Observacao apés a Proposicao 5.3.

9. Mostre que o processo de Poisson e o Movimento Browniano sao processos de Lévy.

10. Mostre que, se Z ~ N(0,1), entdo para A real, E(e*?) = e*/2.

11. (Movimento Browniano Geométrico). Black and Scholes (1973) e Merton (1973) su-
geriram o Movimento Browniano Geométrico para descrever pregos num mercado
especulativo. Tal processo é dado por

X, = eut+aWt, t>0,
onde W; é o Movimento Browniano. Segue-se que log X; segue um Movimento Brow-
niano, com drift y real e volatilidade o > 0. Use o problema anterior para calcular a
média e funcao de autocovariancia de X;. Mostre que esse processo nao é gaussiano.

12. (Ponte Browniana) Considere o processo estocdstico dado por

X =Wy —tW; 4, 0<t <1,
onde W, é Movimento Browniano no intervalo [0,1]. Segue-se que Xy = X; = 0.
Mostre que X; é um processo gaussiano, com média zero e fungao de autocovariancia
dada por (¢, s) = min{t, s} —ts, t,s € [0,1].
13. Encontre exemplos de:
(a) um processo separavel que ndo seja mensurével;
(b) um processo mensurdvel que nao seja separavel.
14. Prove que, embora tenha trajetérias descontinuas, um processo de Poisson é continuo

em probabilidade.
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Capitulo 6

Convergéencia Fraca

Neste capitulo introduzimos o importante conceito de convergéncia fraca para
uma familia de medidas de probabilidade e, depois, para varidveis aleatérias e pro-
cessos estocasticos. As referéncias basicas aqui sao Billingsley (1999) e Parthasaraty
(2005).

6.1 Introducao

Denotaremos por S um espaco métrico e S a o-dlgebra de conjuntos de Borel
sobre S, que coincide com a o-dlgebra gerada pelos conjuntos abertos de S. Usaremos
a notagao (9,S). Alguns espagos métricos que podemos considerar sao:

(a) (R, B), com métrica d(z,y) = | — y|;
(b) (R¥, B¥), com métrica d(z,y) associada a qualquer norma sobre RF;

(c) (R, B°), sendo R*> o espago de todas as sequéncias (z1,z2,...) de nimeros
reais, e a métrica associada é

dwy) = 3 2oLl

(d) (C([0,1]),C), onde C(]0,1]) é o espago de todas as fungoes continuas sobre [0, 1] e
C é a o-dlgebra de Borel sobre este espaco. Se z = {z(t), t € [0,1]} ey = {y(t), t €
[0,1]}, entao a métrica é definida por

d(z,y) = sup [(t) —y(?)]

Convergéncia em (c) é ponto a ponto e, em (d), uniforme. Chamemos de Cy(S)
o conjuntos de todas as fung¢oes continuas e limitadas sobre S com valores reais.
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94 CAPITULO 6. CONVERGENCIA FRACA

Definicao 6.1. Seja {P,,n > 1} uma familia de medidas de probabilidade sobre
(S,8) e P uma medida sobre (S,S). Dizemos que P, converge fracamente para P
se

lim f / f(z)dP(z (6.1)

n—oo
para toda f € Cy(95).

Usaremos a notacao P, = P. Uma notacao padrao bastante usada é a seguinte:
se P é uma medida de probabilidade, defina P f como o valor esperado de f sob P:

Pf= / F(@)dP ().

Entao, (6.1) pode ser escrita

Pof = Pf, Vf €Gy(S).
Essa notagao compacta enfatiza a interpretacao de P como um funcional linear.

A medida P em (6.1) é necessariamente uma medida de probabilidade. Tome
f=1eobtemos [4dP, = [¢dP, ouseja 1 = P,(S) — P(S), logo P(S) =

Exemplo 6.1. (a) Tome S = R e seja {z,} uma sequéncia de pontos de R. Con-
sidere P, como massa unitaria em x,. Entao, z,, — x se, e somente se, P, = P,
onde P coloca massa unitaria em x.

(b) Seja S = [0, 1] e suponha que P, coloque massa 1/n nos pontos 1/n,2/n,,..., 1.
Entao, P, = P, onde P ¢ a medida de Lebesgue sobre [0, 1].

Teorema 6.1. Sejam P, medidas de probabilidade sobre (S,S). Se fs fdP =
[ fdQ, para toda f € Cy(S), entdo P = Q.

Prova: Seja K um conjunto fechado em S e defina f,,(z) = e "45:*) Entao, como

K é fechado, temos que f,(z) — Ix(x). Também, como fS fdP = fs fd@Q, obtemos
pelo TCD que [, fdP = [, fdQ, logo P(K) = Q(K) se K for fechado. Também,
P = @ sobre todos os conjuntos abertos. Vamos provar que: Para todo ¢ > 0 e todo
conjunto B em &, podemos encontrar um conjunto fechado A e um conjunto aberto
C,talque AC BC Ce P(C—A)<e. Seisso for verdade, o resultado segue, pois
P = (@ para conjuntos abertos e fechados.

Seja H a classe de todos os conjuntos B € S tais que, para todo € > 0, existe
A fechado e C aberto, tais que A C B C C e P(C — A) < e. Essa classe contém
conjuntos fechados. Seja B fechado. Escolha A = B. Defina C5 = {z € S :
d(B,x) < 0}, aberto. Vemos que Cy | B, para ¢ | 0, pois B é fechado. Tome ¢ tao
pequeno de modo que P(Cs — B) < e. Segue-se que A C B C Cs.
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Também ¢é facil ver que H é fechada sob complementacao. Finalmente, é fechada
sob reunites enumeraveis. De fato, sejam By, Bs, ... conjuntos de H e € > 0. Existe
uma familia {A;} de conjuntos fechados, outra {C;} de conjuntos abertos, tais que
A; C B; C Cj, tais que P(C;— A;) < £/2F! para todo i > 1. Defina C = U;C;, A =
vazlAi7 onde N é tao grande que P(U;A; — vazlAi) < €/2; mais ainda, C' é aberto
e A é fechado. Entdo, ACBCCeP(C—-A)<e. O

Corolario 6.1. Se P, = P, e P, = @Q, entao P = Q.

Definigao 6.2. Seja A um conjunto em (S,S). A fronteira de A, denotada 0A, é o
conjunto A— ;1, onde A é o fecho de A e ;1 é o interior de A. Um conjunto A é um
conjunto P-continuo se P(0A) = 0.

Exemplo 6.2 (a) Seja S =R e A = (a,b]. Entao, 0A = {a} U {b}.

(b) Se S =R e A é o conjunto dos racionais, 04 = R.

c)Se S=Re A= (a,b], entdo A é um conjunto P-continuo se P nao coloca massa
sobre {a} U {b}.

O teorema a seguir é chamado “Portmanteau”, pois fornece condigoes teis que
sao equivalentes a definicao de convergéncia fraca.

Teorema 6.2. As seguintes afirmacoes sao equivalentes:

(a) P, = P;
(

b) limsup,, P,(K) < P(K), para todo K fechado;

)
)

(c) liminf, P,(A) > P(A), para todo A aberto;
)

(d) lim,, P,(A) = P(A), para todo conjunto P-continuo A.

Prova: (a) = (b): Suponha que K seja fechado; tome ¢ > 0 e considere A5 =
{zr € § : d(K,z) < ¢}, que é aberto. Tome Jp tdo pequeno de tal sorte que
P(As,) < P(K) +¢, pois A5 | K.

Seja f uma fungao continua que tome o valor 1 sobre K , o valor 0 fora de As,
e 0 < f < 1. Para tanto, defina g(z) =1, paraz <0, g(z) =1—z,se 0 <z <1le
g(x) =0, se x > 1; g assim definida é continua. Agora defina f(x) = g(d(z, K)/do).
Agora,

P, (K) :/depng/sfdpn - /SfdP: " fdPg/AaO 1.dP = P(As,) < P(K)+¢

a penultima igualdade porque f é zero fora de Aj,. Segue-se que limsup,, P,,(K) <
P(K) + ¢, mas ¢ é arbitrario, logo o resultado segue.
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(b) < (c): tome complementos.

(c) = (d): Temos que (c) vale e também (b). Suponha que P(A— ;1) =0, pois A é
um conjunto P-continuo. Entao,

limsup P(A,)(A) < limsup P,(A4) < P(A) = P(A),

n—0o0 n—o0

sendo que a tltima desigualdade vale por (b). De modo andlogo,

o o

lirginf P,(A) > lirginf P,(A) > P(A) = P(A),
usando (c). Logo, lim, o P,(A) = P(A).

(d) = (a): Seja f € Cy(S). Devemos provar que lim,_,o [ fdP, = [ fdP.

Defina Py uma medida na reta por: se B é um conjunto de Borel, Pf(B) = P{x €
S : f(xz) € B}. Note que, como f é limitada, Py é concentrada sobre um intervalo
limitado, [a,b) digamos. Também, existe no méximo um conjunto enumeravel de
pontos na reta, sobre os quais Py coloca massa positiva. Logo, podemos escolher a
e b tais que para todo € > 0, podemos encontrar a =t < ts < ... <ty = b tais que
tis1 —ti <ee Pp{t;} =0. Seja A; ={r €S :ti1 < f(z) <t;} para2 <i < N.
Entao, 0A; C{z: f(z) =t;ou f(z) =t;i_1}.

Portanto, P(0A;) < Pr{t;} + Pr{ti-1} = 0, logo cada A; é um conjunto P-
continuo.

Seja f a funcao

f= Zti—llAi- (6.2)
i=2

Segue-se que f é uma funcao simples e | f — f] < e. Entéao,

‘/fdPn—/fdP)§/|f—fdPn+‘/fdPn—/fdP‘+/!f—f\dP

§25+‘/f‘dPn—/f‘dP’ §25+i|ti||Pn(Ai)—P(Ai)|.
=1

Para n — oo e por (d), P,(A;) — P(A;) — 0, pois A; é um conjunto P-continuo.
Entao,

limsup’/fdPn—/fdP‘ < 2e.

Como ¢ é arbitrario, obtemos o resultado desejado . [
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Exemplo 6.3. (i) Suponha que S = R e que P,, coloque massa unitéria em {1/n} e
P coloque massa unitaria em zero. Entao, P, = P. Considere A = [—1,0]. Entao,
P,(A) =0, mas P(A) = 1. Segue-se que P, = P, mas P,(A) nao converge para
P(A). Isso ocorre porque [—1,0] ndo é um conjunto P-continuo.

(ii) Suponha S = [0,1], P, coloca massa 1/n sobre 1/n,2/n,...,1 e P é medida
de Lebesgue. Entao, P, = P. Considere A = QN [0, 1], onde Q é o conjunto dos
racionais. Entdo, P,(A) = 1, mas P(A) = 0. Aqui temos 0A = [0,1] e P(0A) =
P([0,1)) = 1.

Corolario 6.2. Sejam P,,, P medidas de probabilidade sobre (S, S) e H uma colegao
de subconjuntos de S tal que:
(i) H é fechado sob intersecgoes finitas;
(ii) todo conjunto aberto é uma reuniao enumerdvel de conjuntos de H.
Entao, se P,(A) — P(A), para todo conjunto A € H, segue-se que P,, = P.

Prova: Sejam A, B dois conjuntos em #H. Entao, P,(AU B) = P,(A) + P,(B) —
P,(ANB) — P(AUB), para n — oo, por hipétese. Por indugdo, lim,, P, (UY. | A4;) =
P(UN, A;), para todo N.

Seja B um conjunto aberto. Entao, existem Ay, As, ... € H, tais que B = U2 A;.
Seja ¢ > 0 e tome N tdo grande de modo que P(B) — e < P(UY, A;). Entao,

P(B) —e < P(UN,A) = lim P,(UN A < lim inf P, (U7°A;) = lim inf P, (B).

Como € > 0 é arbitrario, P,, = P, pelo critério (c) do teorema anterior. [
Um caso particular importante

Tomemos S = R e sejam P, e P probabilidades na reta real. Seja D qualquer
conjunto denso de pontos de R. Defina ‘H como a colecao de todos os intervalos da
forma (a,b], com a,b € D. Entao, H satisfaz as condigoes (i) e (ii) do corolario.
Logo, se P,((a,b]) — P((a,b]), para todos os intervalos (a,b] € H, segue-se que
P, = P.

Se S =R e P é uma medida de probabilidade sobre R, lembremos que a f.d para
P é a fungao F(z) = P{(—o0, x|}, para todo = real. Também, F' é ndo decrescente,
continua a direita, F'(—oo0) =0 e F(400) = 1.

Teorema 6.3. Sejam P,, P probabilidades sobre R, com f.d’s F,, F, respectiva-
mente.

(a) Se P, = P, entao lim,,_,~ F,(z) = F(z), para cada ponto x onde F é continua;

(b) se Fy,(z) — F(x), para todo x em um conjunto denso em R, entao P, = P.
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Prova: (a) Se F for continua em z, entdo o conjunto (—oo,z] é P-continuo. Por-
tanto, pela parte (d) do teorema anterior, P,((—oc,z]) — P((—o0,z]), ou seja

(b) Se F,(z) — F(x), para todo = num subconjunto denso de R, entdo F,(b) —
F.(a) — F(b) — F(a), para quaisquer a,b nesse conjunto. Logo, P,((a,b]) —
P((a,b]). Logo, (b) segue pelo caso particular discutido acima. [

6.2 Convergéncia fraca para elementos aleatérios

Lembremos que a distribui¢do de um elemento aleatério X com valores em S é
a probabilidade Px sobre S definida por Px(B) = P{w : X(w) € B}, para B € S.
Continuamos supondo que S é um espaco métrico e S é a sua o-algebra de Borel.

Definicao 6.3. Dizemos que X,, converge para X em distribuicao se Px, = Px,
ou seja, para toda f € Cy(9), E(f(X,)) = E(f(X)).

Com todo rigor, deveriamos escrever E,(f(Xy)) = E(f(X)) pois os elementos
aleatérios X,, (e X) nao precisam ser definidos no mesmo espago de probabilidade.
No entanto, mas para nao sobrecarregar as notacoes nao colocaremos explicitamente
esta dependeéncia.

Vamos usar a notagao X, 2 X ou Xn B P. Podemos dizer também que X,
converge para X em lei e escrevemos L(X,) — L(X).

Definigao 6.4. Sejam X,, X elementos aleatdrios. Dizemos que A é um conjunto
X-continuo se Px(0A) = 0.

Se X estiver definido sobre (2, F, P), entdo A é um conjunto X-continuo se
P{w: X(w) € 0A} =0.

Os dois teoremas a seguir podem se provados de modo analogo ao que foi feito
com os Teoremas 6.2 e 6.3.

Teorema 6.4. As afirmacées seguintes sao equivalentes:
(a) X, 3 X;
(b) limsup,, Px, (A) < Px(A), A fechado;
(c) liminf, Px, (A) > Px(A), A aberto;
(d) lim,, Px, (A) = Px(A), para todo conjunto A X -continuo.

Teorema 6.5. Seja {X,,,n > 1} uma sequéncia de v.a’s com f.d’s F,, e X uma v.a
com f.d F'. Entao, temos:
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(a) Se X, B X, entdo lim, o0 F,(z) = F(z), para todos os pontos de continui-
dade de F’;

(b) Se lim,,_ o Fy(x) = F(x), para x num conjunto denso de R, entao X, B X.

Para ver a necessidade de F' ser uma f.d em (b), basta tomar F,(z) =0, se z < n
e F(z) =1,se xz > n. As {F,} sao f.d’s e F,, converge, para cada x real, e o limite
¢ zero.

Agora, consideremos as seguintes questoes:

[1] Se X,,, X sao v.a’s e X, 2 X, quando h(X5) 3 h(X)?

2] Se P, = P, sabemos que [q f(x)dP,(x) — [q f(x)dP, para toda f € Cy(S).
Para quais outras fungoes f essa implicacao vale?

Certamente, [2] nao vale para qualquer f. Por exemplo, tome S = R, P, colo-
cando massa unitdria em 1/n. Entao, P, = P, onde P coloca massa unitaria no
zero. Tome f(x) = I(g ) (x). Entdo, [¢ fdP, =1e [q fdP =0.

[3] Sejam P,, P medidas de probabilidade sobre (S,S). Seja h uma fungao men-
surdvel de (S,8) em (S, S), outro espaco métrico. Defina Ph~!, uma medida sobre
(S/,S/), por meio de:
PhY(B)=P{h"Y(B)}, BeS.
Suponha que P, = P. Podemos afirmar que P,h~! = Ph~1?

Teorema 6.6. Sejam P, P medidas sobre (S,S) e seja h uma fun¢ao mensurdvel de
(S,8) em (S, S"). Seja Dy, o conjunto dos pontos de S para os quais h é descontinua.
Se P, = P e se P(Dy) =0, entao P,h~' = Ph~ 1.

Prova: Seja K um conjunto fechado em (S, S’). Entéo,

limsup P,h~ ! (K) = limsup Py [~ (K)] < limsup P, [h—l(K)} < P[h—l(K)],
pois P, = P. Como K é fechado h=1(K) C h™'(K) U Dy, e P(Dy) = 0, logo
P[irl(K)] < P(h-V(K)) = Ph-}(K). O
Corolario 6.3. Seja S =R e h: R — R, mensuravel. Suponha P,, = P, que h seja
limitada e P(Dy,) = 0. Entéo, [¢hdP, — [4hdP.

Prova: Como h é limitada, |h(z)] < M, para todo z real, e alguma constante
M > 0. Defina uma funcao continua f por: f(z) =xz,se —M < x < M, f(z) = M,

Morettin-Gallesco - dezembro/2025



100 CAPITULO 6. CONVERGENCIA FRACA

sex > M,e f(zx) = —M, se v < —M. Entdo, pelo teorema anterior, [ fdP,h~! —
[ fdPh1, pois P,h~! = Ph™L. Logo, [ f(h(x))dP,(x) = [ f(h(x))dP(z), e pela
definicdo de f e pelo fato que h é limitada, temos que [ h(z)dP,(z) — [ h(z)dP(z).
U

Corolario 6.4. Sejam X,, X elementos aleatérios e suponha que X, 2 x. Supo-
nha que h: S — S seja mensurdvel e Px(Dy,) = 0. Entao, h(X,,) S h(X).

Prova: Observe que a distribuicao de h(X) é Pxh~! e use o Teorema 6.6. [

Exemplo 6.5. Seja (X,,Y,) uma sequéncia de vetores aleatdrios e suponha que
(X0, Y,) LA (X,Y). Pelo corolério anterior, X, + Y, BX+Y.

Note que, se X,,,Y, sao v.a’s, com X,, convergindo em lei para X e Y,, conver-
gindo em lei para Y, nao é necessariamente verdade que X,, + Y,, convirja em lei
para X +Y.

Teorema 6.7. Sejam X,,, X v.a’s.
(a) Se X, B X, entéo E(]X|) < liminf, E(|X,]).
(b) Se X, B X, ese {X,} for u.i, entao E(X,) — E(X).

Prova: (a) Defina h(z) por h(z) = |z|, se || < a e zero caso contrario. Escolha
a como um ponto de continuidade de F', onde F' ¢é a f.d correspondente a P. Pelo
ultimo corolério, [ hdP, — [ hdP, donde

lim inf £(]X,|) 2/ |z|d P. (6.3)
" |z|<a

Faca a — oo pelos pontos de continuidade de F', portanto o limite do termo da

direita em (6.3) serd E(|X]).

(b) Pelo Coroldrio 6.4, temos que X,& B Xte X, B x-. Portanto, pode-
mos assumir que X > 0 e X,, > 0 para todo n. Novamente, pelo Corolédrio 6.4,
f‘m|<a |z|dP, — f‘m|<a |z|dP, se a é ponto de continuidade de F'. Tome a tao grande,

de modo que f| |z|dP difira de E(X) de menos que € > 0 e tao grande de modo

z|<a
que f\xl <, |z|dPy, difira de E(X,) de menos que ¢, uniformemente em n. Segue-se

que E(X,) —» E(X). O

Teorema 6.8. Se X,,, X sao v.a’s em (Q,F,P) e X, converge em probabilidade
para X, entao X,, converge em lei para X.

Prova: Se f é qualquer funcgao continua e se X,, — X em probabilidade, entao
f(X,) — f(X) em probabilidade. Tome f limitada, pelo TCD E(f(X,)) —
E(f(X)), ou seja X, — X em distribuigdo. O
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Note que, se X,, converge em lei para X e se X for uma constante, entao, X,
converge em probabilidade para X.

6.3 Convergéncia fraca sobre C[0, 1] e R*®

As seguintes questoes sao de interesse:

(1) Sejam X" = (X7,X%,...) e X = (X;,Xs,...) processos estocésticos. Supo-
nha que se saiba que, para cada k, (X7,X7,... ,Xl?) converge fracamente para
(X1, Xo, ..., Xk). E verdade que X" B x?

(2) Sejam X" = {X"(¢),0 <t <1} e X = {X(t),0 <t < 1} dois processos es-
tocasticos. Suponha que, para 0 < t¢; < --- <t < 1, tenhamos (X" (¢t1),..., X" (tx)) z

(X(t1),...,X(tx)). Daqui podemos concluir que X" B x?
Veremos que a primeira questao tem resposta afirmativa, mas a segunda nao.

Teorema 6.9. Sejam X" = (X7, X%,...) e X = (X1, X2, ...) processos estocdsticos.
Se, para cada k, (X7', X3, ..., X}') converge fracamente para (X1, X, ..., X}), entao
X™ converge fracamente para X.

Prova: Um conjunto A é um retangulo k-dimensional semi-aberto se A for da
forma A = {(z1,22,...) ER® 1 a1 <1 < by,...,ar < 2 < bg}. Se desprezarmos
uma cole¢ao enumeravel de a;’s e b;’s, os retangulos remanescentes sao conjuntos de
continuidade para X. Defina uma colecao H de conjuntos em R*° como segue: um
conjunto estd em H se, para algum k, é um retangulo k-dimensional e também um
conjunto X-continuo. Entao, H é fechada sob interseccoes finitas e também todo
conjunto aberto em R* é uma reuniao enumerével de conjuntos de H. O resultado,
entao, segue do Corolario 6.2. [

Uma formulagao diferente desse teorema é a seguinte. Defina, para cada k, a
funcéo 7y, : R™ — R* por meio de
7Tk(£L'1,£U2, .. ) = (xl, e ,xk).

Entao, o teorema nos diz que, se P,, P sao medidas de probabilidade sobre R,
tais que Pnﬂlzl = P7r,;1, para todo k, entdo P, = P. A reciproca também vale.

Exemplo 6.6. Considere C[0,1] e defina elementos X™ de C[0, 1] por meio de:

X" = nt, 0<t<1/n,
= 2—mnt, 1/n<t<2/n,

= 0, outros casos.
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Além disso, suponha X = 0.

Suponha que P, = dx» e P = dx. Entao, as distribuictes finito-dimensionais
convergem fracamente, mas P, nao converge fracamente para P. Uma outra maneira
de ver que P, nao converge fracamente para P é a seguinte. Defina a funcao f
sobre C10, 1], com valores reais, como segue: se x ¢ um elemento de C|0,1], f(z) =
SUpg<s<1 |z(t)|A1l. Entdo, f é continua e limitada, contudo [ fdP, =1e [ fdP =0,
logo P, ndo converge fracamente para P.

No espago C[0, 1], além da convergéncia fraca das distribuigoes finito-dimensionais
é preciso que a sequéncia {P,} seja fechada para ter convergéncia fraca (Veja o
Capitulo 9). Esta condigao é o objeto da préxima segao.

6.4 Teoremas de Helly e Prokhorov

Sabemos que F' é uma f.d sobre R se: (i) F' for continua & direita, crescente; (ii)
F(—o0) = 0, F(oo) = 1. Dizemos que F' é uma f.d imprdpria se F satisfaz (i) e
0 < F(z) < 1, para todo real z. Dizemos que F,, converge para F' se lim,,_,o F,,(z) =
F(z), sempre que x for um ponto de continuidade de F'.

Teorema 6.10. (Teorema da selecao de Helly). Seja {F,,} uma sequéncia de f.d’s
sobre R. Essas podem ser imprdéprias. Entao, existe uma subsequéncia {ny} e uma
f.d F (possivelmente imprépria) tal que F,, (x) converge para F(x), em pontos de
continuidade de F'.

Prova: Seja ry,7r2,... uma enumeracao dos racionais Q, entdo {F,(r1)} é uma
sequéncia limitada, logo existe uma subsequéncia F}j tal que {Fjy(r1),k > 1}
converge. A seguir, existe uma subsequéncia da subsequéncia escolhida, digamos
F 1, tal que {F5 (r2), k > 1} converge. Logo, F ;(r1) e F5 1 (r2) ambas convergem.
Continuando, obtemos

Fi1,Fi19,F13--- convergem em 74

Fr1,Fp9,F53,--- convergem em 71,79

Agora, observe que a sequéncia {F), ,,n > 1} converge para todos os racionais.
Seja F' o limite. A sequéncia {F), ,,,n > 1} corresponde a alguma subsequéncia ny,
da sequéncia original. Logo, limy F},, (x) = F'(z), para todo z racional. Defina

F(x) F(m), se x é racional,
x) = .
limy |, yeq F'(y), sex nao é racional.

Entao, F' é crescente, continua a direita. Resta provar que limy, F,, (x) = F(z), para
todo x no qual F' é continua. Temos:

Morettin-Gallesco - dezembro/2025



6.4. TEOREMAS DE HELLY E PROKHOROV 103

(a) limsup, Fy, () < F(x), para todo z. De fato, tome y > z, y racional, entao
lim supy, Fy,, (x) < limsupy, Fy,, (y) = F(y), pois F,, ¢é crescente. Faca y | z. Pela
continuidade a direita, obtemos o resultado.

(b) liminfy F,,, (x) > F(z—), para todo z.
Tome y < z racional, entdo liminfy, F),, (y) < liminfy F,,, () e F(y) = liminfy F,, (v);
faca y 1 x para obter o resultado.

Se z for um ponto de continuidade de F, entdo F(z) = F(x—), logo por (a) e
(b), limsupy, F, (z) = liminfy F,, (). O

Observe que, mesmo que todas as f.d’s F), sejam préprias, a f.d limite F’ nao é
necessariamente propria.

Definicao 6.4. Uma familia 11 de medidas de probabilidade sobre um espaco
métrico (S,S) é chamada fechada (tight) se, para todo € > 0, existe um conjunto
compacto K, tal que P(K) > 1 — ¢, para toda P € II.

Exemplo 6.7. (a) Seja S = R, II é fechada se, para todo € > 0, existe um
intervalo (a,b) tal que P{(a,b)°} < e, para toda P € II. Em termos de f.d’s,
F(b) — F(a) > 1 — ¢, para toda F cuja P € II.

(b) Considere P, uniformemente distribuida sobre [—n,n]. Entao, Il = {P,,n > 1}
nao ¢ fechada.

(c) Suponha que P, coloque massa unitaria em {n}. Entao, Il = {P,,n > 1} nao é
fechada.

Lema 6.1. Sejam {P,,n > 1} probabilidades sobre R com f.d’s F,,, respectivamente.
Suponha que exista uma f.d F' (possivelmente imprépria), tal que lim, o F,,(z) =
F(z), em pontos de continuidade de F. Se a familia {P,} for fechada, entao F é
uma f.d.

Prova: Tome a e b tais que Fy,(b) — F,(a) > 1 — €, para todo n, o que é possivel,
pois P, ¢é fechada. Suponha, também, que a,b sejam pontos de continuidade de F'.
Como F,(b) — F(b), F,(a) — F(a), segue-se que F(b) — F(a) > 1 — e. Portanto,
F(+00) — F(—o0) =1, logo F é uma f.d prépria. O

Lema 6.2. Seja {P,,n > 1} uma familia de probabilidades sobre (S,S). Suponha
que exista uma probabilidade P tal que, toda subsequéncia P,, possui uma outra
subsequéncia n;c, tal que P+ = P. Entao, P, = P.

k

Prova: Suponha que P, nao convirja fracamente para P. Entao, existe um ¢ > 0,
uma fungao continua e limitada f e uma subsequéncia ny, tais que [ fdP,, < [ fdP—
e (ou [ fdP,, > [ fdP +¢), para todo k. Mas existe uma subsequéncia n;,f dessa
sequéncia tal que Pn; = P, uma contradicao. [
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Teorema 6.11. Seja {P,} uma familia fechada de probabilidades sobre R, com
f.d’s F,. Entao, existe uma f.d F tal que lim, o F,(z) = F(x) em pontos de
continuidade de F se, e somente se, lim,_,~, [ fdP, existe, para toda f continua e
limitada.

Prova: (=) j provada, Teorema 6.3; de fato, provamos que [ fdP, — [ fdF.

(<) Seja P,, qualquer subsequéncia. Vamos provar que existe uma outra sub-
sequéncia P/ e uma medida P, independente dessa subsequéncia, tal que P, = P.
k k

Isso serd suficiente, pelo Lema 6.2.
Sejam F . as f.d’s correspondentes. Pelo Teorema de Helly, existe uma f.d pos-
k
sivelmente imprépria tal que F / (x) — F(z), para pontos de continuidade x. Pelo
k

fato de a familia ser fechada e Lema 6.1, F' é, de fato, uma f.d prépria. Resta
provar que esse limite é independente da subsequéncia envolvida. Seja {F),,} uma
subsequéncia qualquer e suponha que hajam duas f.d’s F' e G tais que:

lim / fdF,, = / fdF, Vf e Cy(R),

lim / fdF,,, = / FdG, Vf € Cy(R).

Como o limite lim, o [ fdF, existe, [ fdF = [ fdG, para todo f € Cy(R),
logo F' = G pelo Teorema 6.1. [

Definicao 6.5. Seja II uma familia de medidas de probabilidade sobre (5,S).
Dizemos que 11 é relativamente compacta se toda sequéncia {P,,,n > 1} de probabi-
lidades de 11 tem uma subsequéncia que converge fracamente para alguma medida
de probabilidade. A medida de probabilidade limite nao necessita estar em II.

O teorema a seguir nao sera provado aqui. Veja Prokhorov (1956), Billingsley
(1999) ou Durrett (1996b). A prova pode ser feita, sucessivamente, para R¥, R®, §
o-compacto (uma reuniao enumeravel de conjuntos compactos) e, finalmente, para
S geral.

Teorema 6.12. (Prokhorov). Seja II uma familia de medidas de probabilidade
sobre o espago métrico (S,S).

(a) Se II for fechada, entao II é relativamente compacta.

(b) Se 11 for relativamente compacta e se S for completo e separdavel, entao II é
fechada.

A parte (b) nos diz, essencialmente, que para espagos “bem comportados”, os
dois conceitos (familia relativamente compacta e fechada) sao equivalentes. Veja o
Problema 13.
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Problemas

1. Sejam X,,, X,Y,, v.a’s, e c uma constante. Prove que:

(i) Se X, z X, Y, — c, em probabilidade, entao X,, +Y,, BXtce XY, B x.

(ii) Nao é verdade, de modo genérico, que se X, BXxe Y, z Y, entdo X, +Y,, z
X+Y.
(iii) Se X, z X, entdo X,, ndo necessita convergir para X em probabilidade (dé um

contra-exemplo). Contudo, X, B x implica X,, — X em probabilidade se X
for uma constante.

2. Sejam P,, P medidas de probabilidade sobre (S,S). Se P,(4) — P(A) para todos os
abertos A, entdo P,(A) — P(A), para todos os conjuntos de Borel (ou seja, todos os
conjuntos de S).

3. Prove que, se F,, F sao f.d’s sobre R, e se F' for continua, entdo sup,cp |Fn(z) —
F(z)| = 0, n — oc.

4. Sejam P, @ probabilidades sobre R*. Defina a convolucio de P e ) como a probabi-
lidade sobre R* dada por P x Q(A) = [, P(A —y)Q(dy), onde A é um boreliano de
RF.

(a) Mostre que se P, = P, Q, = Q, entdo P, xQ, = P x Q.

(b) Se II for uma familia fechada de medidas de probabilidade, entdao IT* = {P x Q :
P eI, Q € I} é fechada.

5. Prove (a)-(c) do Exemplo 6.7.

6. (Métrica de Prokhorov) Se P e @ sdao medidas de probabilidade, defina p(P,Q) =
inf{e >0: Q(A) < P(A°) +¢, e P(A) < Q(A°) +¢,VA € S}. Mostre que p é uma
métrica no espago das medidas de probabilidade sobre (S,S). Aqui, A = {z € S :
d(A,z) < e}, sendo d a métrica sobre S.

7. Seja (S,8) um espago métrico separavel (pode usar R¥). Mostre que P, = P se, e
somente se, p(Py,, P) — 0.

8. (Métrica de Lévy) Sejam F, G f.d’s sobre R. Defina pr (F,G) = inf{e : Vo € R,G(z —
g)—e < F(z) <G(x+¢) +e}

(a) Mostre que py, é uma métrica.
(b) Mostre que F, 2F se, e somente se pr,(F, F) — 0.
9. Sejam {P,,n > 1} medidas de probabilidade sobre R, e seja 7 a projecao de R>

sobre R¥, isto ¢, mp{(71,22,...)} = (z1,...,25). Mostre que, se {P,m ',n > 1} é
uma familia fechada, para cada k, entdao {P,,n > 1} é uma familia fechada.
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10.

11.

12.

13.

Seja h uma fungdo mensurdvel de R em R, tal que |h(z)| — 400, quando |z| — +oo.
Se II for uma familia de medidas de probabilidade e se sup pcyy [ |h|dP < oo, entdo IT é
fechada. Um caso especial é: se {X,,,n > 1} sdo v.a’s tais que sup,,~; E(|X,|°) < oo,
para algum § > 0, entdo {X,,} é fechada. B

Sejam P,, P medidas de probabilidade sobre R, cada uma absolutamente continua
com respeito a medida de Lebesgue e tendo densidades g,, g, respectivamente.

(a) Se gn(z) — g(z) q.c, entdo P, = P.
(b) A reciproca de (a) pode néo ser verdade; dé um exemplo.

(c) Suponha {P,} normais e P, = P. Mostre que, nesse caso, P é também normal e
a reciproca de (a) vale.

(d) Mostre que, se cada P, é normal, entdao {P,,n > 1} é fechada se, e somente se,
médias e variancias sao limitadas.

Prove que a classe dos conjuntos P-continuos (P fixa) é uma dlgebra. Mostre, por
meio de um exemplo, que essa classe nao precisa ser uma o-algebra.

Prove a parte (a) do Teorema de Prokhorov, para S = R¥. Use o Teorema de Helly e
o Teorema 6.11.
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Capitulo 7

Funcoes Caracteristicas

As funcoes caracteristicas constituem uma ferramenta importante em diversas
areas da Teoria de Probabilidade e Estatistica. Por exemplo, sao 1teis na demons-
tracao de teoremas limites centrais, do teorema de Bochner para procesos esta-
ciondrios, no estudo de distribuicoes estaveis etc. Uma referéncia adequada aqui é
Chung (1974).

7.1 Introducao

Nesta secao definimos a fungao caracteristica e apresentamos suas propriedades.
A seguir, apresentamos dois resultados importantes, o teorema da unicidade e o da
continuidade.

Definigao 7.1. Seja P uma medida de probabilidade sobre R¥. A funcao carac-
teristica (f.c) de P é a fungdo ¢ : R¥ — C, definida por

o(t) = /eit'de(x), (7.1)

onde t = (t1,...,tk), X = (x1,...,Tk) et'x:Zletixi.

Se X = (X1,..., X)) é um vetor aleatério, entao a f.c de X é

o(t) = E(eit'x). (7.2)

Algumas propriedades elementares da f.c sdo:
(D) lp®)] <1 =¢(0);  »(t) = p(-t).
(2) (t) é uniformemente continua. Veja o Problema 1.
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(3) Se X é um vetor aleatério com f.c o(t), entdo a f.c de aX + b é e*Pp(at). Em

particular a f.c de —X é ¢(—t) = ¢(t). Logo, se ¢ é uma f.c, também o serd
Pp.

(4) Sejam X e Y vetores aleatérios independentes, com f.¢’s px e ¢y, respectiva-
mente. Seja px4+y a f.c de X 4+Y. Entao,

ox+y(t) = ox(t)py (t). (7.3)

Se essa relacao vale, X e Y nao precisam ser independentes.

Para provar o teorema da unicidade precisamos dos seguintes lemas.

Lema 7.1. (Uma versao do Teorema de Stone-Weierstrass) Seja S um espago de
Hausdorfl compacto e C(S) a &lgebra de todas as fung¢ées sobre S, com valores
complexos e continuas. Seja A uma sub-dlgebra de C(S) tal que:

(a) A separa pontos (se z,y € S, entao existe f € A tal que f(z) # f(y)).
(b) Se f € A, entao f € A.
(c) Para cada ponto = € S, existe f € A, tal que tal que f(x) # 0.

Entao, A é densa em C(S), no sentido que, dadoe > 0 e g € C(9), existe f € A,
tal que sup,eg | f(z) — g(z)| <e.

Para uma prova, veja Simmons (2003).

Lema 7.2. Sejam P e QQ medidas de probabilidade sobre RF tais que [ fdP =
[ fdQ, para toda funcao real f que seja continua e se anule fora de um conjunto
compacto. Entao, P = Q.

Prova: Seja B um conjunto compacto e defina a funcao g por g(t) = 1, para
t <0, g(t) =0parat > 1,eg(t) =1—t para0 <t < 1. Sejaec > 0e
defina f; por f.(x) = g(d(z,B)/e). Como B é fechado, lim. |y f-(z) = Ip(x). Por
hipétese, [ f.dP = [ f.dQ, logo [ dP = [5dQ, pelo TCD. Logo, P(B) = Q(B),
para todos os conjuntos compactos e consequentemente pela continuidade de P e @,
P(F) = Q(F), para todos os conjuntos fechados F. Concluimos que P = Q. O

Teorema 7.1. (Da Unicidade) Sejam P e Q medidas de probabilidade sobre R,
tendo f.c’s ¢ e 1, respectivamente. Se ¢(t) = 1(t), para todo t, entao P = Q.

Prova: Considere S = [-7N,7N]* e seja Ag a classe de todas as fungoes da forma
f(z) = exp{in-x}, onde n = (n1/2N,...,ng/2N),n; = 0,£1,.... Seja A a classe de
todas as combinagoes lineares de fungoes de Ag. Entao, A é uma dlgebra que satisfaz
(a)-(c) do Lema 7.1, logo ¢ densa em C(S). Observe que, como [ e*?dP = [ e*dQ,
para todo t, segue que [ fdP = [ fdQ, para toda f € A.
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Tome f € C(S), sejae > 0etome g € Atal que ||f—g| = sup, |f(z)—g(x)| <e.
Entao,

| [rap~ [ 1aq| < [17-giap+ [15-glda+| [ gap - [ gaq| <2

pois a tltima integral anula-se. Portanto, temos que [ fdP = [ fdQ, para toda
f continua sobre R¥ e que se anula fora de S, e a mesma conclusdao vale para f
nas mesmas condi¢oes que se anula fora de conjuntos compactos. A conclusdo do
teorema segue do Lema 7.2. [

Teorema 7.2. Seja X = (X1,...,X,) um vetor aleatorio, com f.c px. Seja ¢x, a
fcde X;, i =1,...,n. Entao as v.a’s X1,...,X, sao independentes se, e somente

Se7 SOX = H?:l (le

Prova: Vamos dar a prova para o caso n = 2.

(=): trivial

(«=) Suponha ¢(xy) = ¢x - ¢y, isto é, E(ei(tXJFSY)) = E(eitX>E(eiSY>. Entao,

/ ei(tX—i—sY)dP(X,Y) (m,y) — / 6ithPX($) . / eisYdPY(y) =
R2 R R

/ X qPy (2)dPy (y),
RQ

onde a segunda igualdade vale pelo Teorema de Fubini. As medidas dPxy) e
dPxdPy tém a mesma f.c., logo pelo teorema da unicidade, elas sao iguais, e portanto
X e Y sao independentes. [

7.2 Funcoes caracteristicas e distribuicoes normais

Nessa se¢ao provamos alguns resultados envolvendo distribui¢ao normal, univa-
riada e multivariada.

Se X ~ N(u,0?), sua funcio caracteristica ¢ dada por

p(t) = e, (7.4)

Em particular, para uma distribuigdo normal padrao, ¢(t) = e—t/2, Veja o Pro-
blema 3.

Um vetor aleatério X = (X1,..., Xj) tem distribui¢do normal multivariada se
existem v.a’s normais padroes independentes Z1, ..., Z}, e reais y;, a;;, 1 <1i,j <k,
tais que X tem a mesma distruicao que o vetor (u1+2f:1 a1i iy ... ,uk—i-Zf:l axi Z;).
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Se A = (a5, Z = (Z1,...,Z;) e p = (p1,..., k), entdo podemos escrever
X ~ AZ+ p (o sinal ~ significa “tem a mesma distribuigao”).

Alguns fatos bésicos sobre distribuigoes normais sao dados a seguir.

[1] Suponha que X = (X7,..., Xx) tenha distribuicdo normal multivariada. Entao,
Z?Zl a; X; tem distribuicao normal univariada.

Devido & caracterizagao acima de um vetor mutivariado, » ;@; X € uma com-
binacao linear de Z1, ..., Z; e qualquer combinacao linear de v.a’s normais indepen-
dentes é normal. Basta calcular a f.c da combinacdo linear e ver que é dada por
(7.4). O resultado segue do teorema da unicidade.

[2] Seja X = (X7,...,X) um vetor com distribuigdo normal multivariada. Entao,
a f.c de X é dada por

o(t) =exp{ip -t —t-Rt}, (7.5)

onde R = [rj;] é a matriz de covariancias, com 7;; = E[(X; — p;)(X; — pj)]. Note
que R = A? com A dada na definicdo de X acima. Veja o Problema 4.

[3] (Reciproca de [2]) Dada qualquer matriz R simétrica semi-definida positiva e
qualquer vetor p, existe um vetor com distribuicdo normal multivariada com f.c
dada por (7.5).

Basta considerar Z1,..., Zi, independentes, com distribuicao normal padrao e

definir X = vVRZ + L.

[4] Sejam X e Y dois vetores com distribuicdo normal multivariada, com as mesmas
médias e matrizes de covariancias. Entao, X ~ Y.
De fato, X e Y terao a mesma f.c, e o resultado segue do teorema da unicidade.

[5] Suponha X = (Xi,...,X}) com distribuigdo normal multivariada e matriz de
covariancias R. Se todos os elementos de R sdo nulos, exceto aqueles sobre a diagonal
principal, entao X, ..., X} sao independentes.

E suficiente notar que a f.c de X é o produto de termos da forma exp{itjp; —
’I“jjt?/Q} e o resultado segue.

Definigao 7.2.[Convolugao| Consideremos duas medidas de probabilidades P e Q
sobre R¥. Entao, P+ Q é a medida de probabilidade sobre R* definida por

PeQU) = [ PA=1iQw.

Note que, se h for uma funcao integravel, entao

/ h(@)dP * Q(z) = / / Wz + y)dP(2)dQ(y).
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Teorema 7.3. Sejam P e Q medidas de probabilidade sobre R* com f.c’s @1, pa,
respectivamente. Entao temos:

(a) A f.cde PxQ é p1(t)pa(t).

(b) Sejam X e Y dois vetores aleatdrios independentes. Entao, Pxy = Px * Py,
onde Px vy € a distribuicao de X + Y.

Prova: (a) A fcde P*xQ é

[ e = [ [eemapaary) = [exap [vaa) = pit)ea).

a primeira igualdade pela nota anterior e a segunda pelo Teorema de Fubini.

(b) A f.c de Px x Py é px(t)py(t), pela parte (a). A f.c de Pxiy é ox(t)py(t),
provada anteriormente. O resultado segue pelo teorema da unicidade. [

A operagao de convolucao entre duas medidas de probabilidades é uma operagao
de suavizacio, no seguinte sentido: sejam P, (Q probabilidades sobre R”.

(i) Se P for absolutamente continua (com respeito & medida de Lebesgue) e @ for
arbitraria, entao P x () é absolutamente continua.

(ii) Se P for nao atomica, e ) arbitréria, entdo P * () serd nao atémica. Veja o
Problema 6.

7.3 O Teorema da continuidade

O teorema da continuidade para fungoes caracteristicas tem sua origem em tra-
balhos de Lévy (1925), Glivenko (1936) e Cramér (1937). Esse resultado é bdsico
para o estudo do teorema limite central (capitulo seguinte) e, em particular, para
caracterizar distribuigoes infinitamente divisiveis. Para desenvolvimentos recentes,
veja Heyer e Kawakami (2005).

Teorema 7.4. ( Teorema da continuidade, Lévy-Cramér) Sejam P,, probabilidades
sobre RF, com f.c’s ¢y,.

(a) Se P, = P, entao lim,,_, pn(t) = ¢(t), onde ¢ é a f.c de P. A convergéncia
é uniforme sobre conjuntos compactos e {¢,} é uma familia uniformemente equi-
continua.

(b) Suponha P, p, como acima. Se:

(1) limy, 00 n(t) = h(t) existir, para todo t, e

(ii) h(t) for continua no zero, entao
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existe uma medida de probabilidade P com P, = P, e h é a f.c de P.
Prova: (a) Para cada t, e®** ¢ uma funcio limitada e continua sobre R¥, logo
como P, = P, [ et *dp, — J e'**dP, para cada t. Para provar a equicontinui-
dade uniforme, lembremos que uma familia de fungoes {f;,7 € I} é uniformemente
equicontinua se para todo £ > 0, existe § > 0 tal que para todo |h| < §, temos

|fi(x + h) — fi(z)| <&, para todo x € RF e i € I. Aqui temos que

< /\eih'X—lydPn—>/\eih'X—ldP,

[ont+h) = u(®)] = | [ (% citxyap,

quando n — oo, uniformemente em t. Como o 1dltimo termo tende a zero quando
h — 0, obtemos a equicontinuidade de {¢, }. Convergéncia uniforme sobre conjuntos
compactos segue da convergéncia ponto a ponto e da equicontinuidade uniforme.

(b) Segue da aplicacao dos dois lemas a seguir.  [J

Lema 7.3. Se lim;,_,o ¢n(t) = h(t) e se {P,} é fechada, entao existe uma medida
de probabilidade P tal que P, = P.

Prova: Se {n;} é qualquer subsequéncia, existe uma subsequéncia de {ny}, {n;c}, e

uma medida de probabilidade P, tal que P = P, pelo Teorema de Prokhorov. O
k

resultado seguird se mostrarmos que P é independente da subsequéncia {ns}. Como

Pn; = P, segue-se da parte (a) do teorema que lim - (t) = p(t) = lim p,(t), pela

hipétese que a sequéncia original de f.c’s converge. Portanto, todas as P’s que

podem ser candidatas como limites tém a mesma f.c, logo P é unica, pelo teorema
da unicidade e P, = P. O

Lema 7.4. Se lim, o ©n(t) = h(t), e h(t) for continua no zero, entao {P,} é
fechada.

Prova: Em primeiro lugar, observamos que

k
Po{(XT, o XP) & [—a,a]*} <) Pu{IX]] > a).
i=1

Portanto é suficiente mostrar o resultado para kK = 1. Temos que

i/_iu — pn()dt = i/_(;u - /emdpn(x)]dt -
_ 2 / / "1 = "dtdP, (z) = 2 / - Siz;m]dPn(w)

1
22/ 1——dan 2Pn Xn>2a.
{|z|>2/a} { |am|} () {1xT| Ja}
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Considere a tao pequeno de modo que a™! ffa[l —h(t)]dt < e, que é possivel pois

h é continua no zero e h(0) = 1. A seguir, tome N tao grande que, se n > N, entao
a! [* [1 = u(t)]dt < 2e (pois ¢, (t) = h(t)). Logo, paran > N, 2e > P, {|X}| >
2/a} e tomando ¢ ainda menor, se necessario, podemos obter PJ{|X{\ > 2/a} < 2,

para j = 1,...,N — 1. Assim, para todo n, com a escolhido dessa forma, temos
2e > P, {|X7| > 2/a}, ou seja {P,} é fechada. [

Coroldrio 7.1. Sejam {X,,n > 1} v.a’s independentes com f.c’s yp,. Seja S
>y Xi. Se S, converge em distribuicao, entao S, converge q.c.

Prova: Provamos, via martingales, que se [[;_; ¢x(t) converge, para todo ¢ num
intervalo, entao S,, converge q.c. Por hipdtese, S,, converge em distribuicao, logo a
f.c de S,,, o produto em questao, converge para todo t. [

7.4 Funcoes caracteristicas sobre R

Nesta se¢ao iremos estudar resultados especificos para f.c’s definidas sobre R,
em particular a importante férmula de inversao.

Teorema 7.5. Seja X uma v.a com f.c ¢.
(a) Se E(|X|*) < oo, entdo a k-ésima derivada p™*)(t) existe, é continua e
o9 () = / (iz)F et dP(z). (7.6)
Também, 9)(0) = (i) B(X*).
(b) Se ©¥)(0) existe e se k é par, entdao E(|X|F) < oc.

Prova: (a) Vamos dar a prova somente para o caso k = 1. Temos

<,0(t + h) _ (,O(t) B / ei(t-‘rh)x _ itz
Y = 5 dP.

O médulo do integrando é limitado por |z|, que é intergrével por hipdtese; faga
h — oo e use o TCD para obter o resultado.

(b) Para k = 2,

QOH(O) — lim @(h) - 290(0) + (P(—h) — lim i /[eihx —24 e—ihx]dp

h—0 h? h—0 h?
1 — coshx
=21 - dP.
e h?

Entao, pelo lema de Fatou,
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1 —coshx 1 — cos hx 1 4
/:L’ dpP /}llli)% 2 dP < }llm%)/ 02 ar 5% (0) < o0

Para o caso geral k par, suponha o teorema véalido para k — 2 e defina H(x) =
[7 . y"2dP(y). A funcdo H é crescente, logo H(x)/H(c0) é uma f.d. Seja 1 a f.c.

dessa f.d. Entao,
_ itz AH () _ itz k-2 AP ()
W)‘/e H(0) ‘/e " H{oo)

Aplique o caso k = 2 a essa f.c. e obtenha

L 2dH@) [ o ppdP(@) 1 kAP (2
o> g2 [t = [t = i [atar.

Observe que o resultado nao é em geral véalido se k for impar.
Exemplo 7.1. ¢(t) = e~ ndo é uma f.c. A segunda derivada de ¢ existe e é igual
a zero para t = 0. Pela parte (b) do teorema, F(X?) < co. Por (a) E(X?) = 0, logo
X =0, mas ¢y nao é a f.c. de X =0.

Corolério 7.2. (Expansao de Taylor). Seja X uma v.a com f.c ¢ e suponha que
E(|X]|™) < co. Entao temos para todo t € R,

o)~ 30 (n)kfﬂ < E(min { e[ ) 20X })

(n+1)! > nl
Prova: Veja o Problema 12.

Teorema 7.6. (Método dos momentos) Sejam {X,} v.a’s com distribui¢oes { P, }.
Suponha E(|X,|F) < oo, para todo k e n. Suponha que:

(a) limy, o0 B(XF) = 1, < o0;

(b) limsup,,_, .. )™\ o,

n

Entao, existe uma medida de probabilidade P e P,, = P.
Prova: Seja {n;} qualquer subsequéncia. Vamos provar que podemos extrair uma
subsequéncia n}c tal que P, = P, e P é uma probabilidade que nao depende das
k

subsequéncias consideradas. Note que sup,, [ 22dP, < oo, por (a). Segue-se que

{P,} é uma familia fechada (veja o Problema 13). Pelo teorema de Prokhorov, existe

uma subsequéncia n;g de ny e uma probabilidade P tal que P, = P. Provemos
k

agora que P independe de {n;}. Para cada j, temos que [2/dP, — [x/dP pois
k

{Xﬂl}n é u.i. Logo, como ijdPn — j, para todo j, segue-se que todos os P
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limites tém os mesmos momentos. Para mostrar que P ¢é tnica, basta mostrar que
é univocamente determinada por seus momentos.
Se ¢ é a f.c de P, usando a expansao de Taylor dado no Corolério 7.2,

ROl W Onr ) _ E(XHA

P+ ) = plt) = ¢ (1) = T - P < P

onde X é uma v.a com lei P. Pela parte (b) e usando a férmula de Stirling, se
|h| < 1/(4)), o lado direito converge para zero, quando k — oco.

Concluimos que ¢ admite uma expansao de Taylor ao redor de qualquer ponto da
reta, ou seja ¢ é analitica em uma vizinhanca da reta, de modo que é univocamente
determinada por sua série de poténcias ao redor do zero. Mas essa é dada por

(it)* E(X*) PR .
Dk ~————, logo P é univocamente determinada por seus momentos.  [J

Provaremos, a seguir, a chamada férmula de inversao para f.c’s. Uma motivagao
para tal féormula é a seguinte. Para dada f, satisfazendo determinadas condigoes, a
transformada de Fourier de f é definida por

o= [ e r@a

—0o0
Sabe-se, também, que sob certas condigbes, temos a transformada inversa de
Fourier

f@) =5 [ i

—00
Se f for uma densidade de probabilidade, com f.d F, a f.c correspondente & F' é
a transformada de Fourier f de f. Entéao,

P~ Fla) = | ' fla)de = / & | eeveiean

—00

O resultado rigoroso é apresentado a seguir.

Teorema 7.7. (Férmula da inversao) Seja F' uma f.d e ¢ a f.c correspondente.
Entao, para a < b, temos

F)+FOb=) Fla)+Fla=) 1 . [° gp(t)Mdt- (7.7)

2 2 T 21 esoo ),

Prova: Os seguintes fatos sdo necessarios:

() f° s22de = m/2
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(i) limg——oop—oo f; Si%dm = T

T, a >0,
(i) [ Smon)gy — Lo, a=0,
-, a <0

(iv) [, Sin(mam) dx é limitada como funcao de c.

A integral em (7.7) é dada por

1 c —ita __ ,—ith 1 c —ita __ ,—ith oo
o [0 g [ [ e =
2

it 2 J_, oo

1 0 c it(z—a) _ it(xz—b)
= — [/ € B € dt
2 J_ oo | J e it

Para obter a ultima igualdade, o teorema de Fubini foi aplicado, pois

dP(x).

it(x—a) _ it(z—b) —ita __ ,—itb b
D ) P <
it it a
Seja
h = /c eit(ar—a) _t eit(aC—b) df — /c Sint(i) . a) g /c Sint(:‘ - b) dt’
e i e e

que é uma funcao limitada de ¢, por (iv) acima. Logo, podemos tomar o limite para
c — 00, sob o sinal da integral, para obter

1 c —ita __ ,—itb 1 00
lim — / o) gt lim hedP.

c—00 2T J_,. it - o oo CO0
(—m) = (—m) =0, z<a,
0—(—m) =m, x = a,
Mas, lime 00 he = ¢ ™ — (—7) = 2, a < x <b, e, portanto, o limite acima
m, x = b,
L0, x>0,
fica

1 oo

— lim h.dP = i / wdF +/ 2ndF +/ wdF
21 ) oo o0 21 | Jz=a} {a<az<b} {z=b}
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Esse resultado fornece um teorema de unicidade para R.

Corolario 7.3. Duas medidas de probabilidade sobre R, tendo a mesma f.c., sao
iguais.

Teorema 7.8. Suponha que [; |p(t)|dt < oo, onde ¢ é a f.c da v.a X. Entao, X
tem uma densidade de probabilidade limitada e continua.

Prova: (a) Seja F' a f.d de X; entdo, F' é continua. De fato, para h > 0,

it

Fx+h)+F(xz+h—) F()+F(z-) 1 /OO et _ gmilzth)t

—0o0

O integrando ¢é limitado por |¢(t)|h. Para h — 0 e pelo TCD, o lado esquerdo
F(zx)+F(z—)  F(z—h)+F(z—h-)
2 2

tende a a zero. Pelo mesmo argumento, tende a zero,

para h — 0. Deduzimos portanto que F' é continua.

(b) Agora, vamos mostrar que F' é derivavel. Usando (a), obtemos para h > 0

F(l’ + h) _ F(l’) B 1 8] e~z _ o—it(x+h)
h ~ o /_ . () ith dt.

O integrando é limitado por |p(t)|; pelo TCD conclua que

 F@+h) —F@) 1 [% _ite
p h _27r/ plt)e™da.

—0o0

Podemos mostrar analogamente que limy,_,q w tem o mesmo limite. Obte-

mos assim que I’ é derivdvel. Pela expressao da derivada obtida acima, vemos que
F’ ¢ limitada e, por uma nova aplicagao do TCD, que F” é continua. [

Corolério 7.4. Se [, [o(t)|dt < oo, entédo F'(z) existe, é limitada e continua, e

/ 1

F (z)= 27T/Rgo(t)eit:""ahf. (7.8)

Aplicagdes

[1] Sabe-se que, se 0 < a < 2, entdo () = e~ " é uma f.c (na realidade, essa é a
f.c de uma distribuicao estavel simétrica, veja o Capitulo 8). Pelo teorema, se X for
simétrica e estavel, entao X tem uma densidade limitada e continua.
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[2] Suponha que P, = P, e P,, P tenham densidades f,, f, respectivamente. Sa-
bemos que nado é necessariamente verdade que f,(z) — f(z) q.c. Contudo, se

Jg lon(t) — @(t)|dt — 0, entéao fr(t) — f(t).

O teorema limite central na sua forma mais simples decorre de uma aplicagao
das f.c’s.
Teorema 7.9. Sejam X, X,,... va’s iid, E(X;) = 0, Var(X;) = 1. Entao,
(X1 + ...+ X,)/vn 2 N(0,1).

Prova: Sejapafcde Xje S, = X;+...+X,. Se ¢, éafcdeS,/\/n, mostremos
que ¥y (t) — e/, Temos que

o-sfe=- [ ()] -

_ poot @ (0) N2 1Nn

=0+ 5 () )]
pela independéncia dos X; e usando expansao de Taylor. Mas, gpl(O) =iE(X;p) =
0, ¢"(0) = 2E(X2) = —1, de modo que 1, (t) = [1 — £2/(2n) + o(1/n)]" — /2,
quando n — oco. O

Problemas

—_

. Prove que ¢(t) é uniformemente continua.

Prove (7.3).

Prove (7.4).

Prove (7.5).

Prove que a f.c da distribui¢io de Cauchy padrao (densidade [r(1 4 22)]~1) é e~ 1.

A S o

Sejam P, (Q probabilidades sobre R*. Prove que: (a) Se P for absolutamente continua,
entdao P * ) é absolutamente continua; (b) Se P for nao atémica, P * @ também nao
0 serd.

7. Prove que, se h for uma funcao integravel, entao

[r@ar«q@ = [ [+ yapea)

8. (a) Se uma familia ® de f.c’s sobre R for equicontinua no zero, entdo a familia corres-
pondente de medidas de probabilidade é fechada.

(b) Seja {Qp} uma familia de f.c’s convergindo uniformemente numa vizinhanga do
zero. Prove que existe uma subsequéncia convergindo para uma f.c.
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9.

10.

11.

12.
13.
14.

15.

16.

Suponha que (X7, ..., X, ) seja norma multivariada. Mostre que E(X,,|X1,...,X,—1) =
22;11 ar Xy, para constantes ay.

[Sugestao: Determine ay por meio de E{(X,, — 22_1 ap X)X} =0.]

Seja {X,,,n > 1} uma sequéncia de v.a’s com f.c’s ,. Suponha que |¢,(t)] — 1, para
todo t, quando n — oo. Mostre que existem constantes a,, tais que X,, — a,, converge
para zero em lei.

[Sugestao: Simetrize e tome a,, = mediana{X,}.]

(a) Sejam X1, Xo,... v.a’s i.i.d, média zero e varidncia 1. Prove que

Z?:l Xi
V2o X7
(b) Supomha X,, ~ binomial(n,p,) e np, — A. Prove que X,, converge em distri-
buicao para Y ~ Poisson()).

B N(0,1).

(c) Para o TLC simples (Teorema 7.9), prove que S, /+/n ndo converge em probabili-
dade, embora convergindo em distribuigao.

(d) Sejam X e Y independentes, cada uma normal com varidncia um. Prove que
X +Y e X — Y sao independentes, usando f.c’s.

Prove o Corolario 7.2.
Prove que a familia {P,} do Teorema 7.6, é fechada.
Prove a seguinte férmula de inversdo (mesmo método de prova do Teorema 7.7):

1 1 ) € el p(—t) — e (1)
—|F F(z—)] == 1 dt.
@+ Pl =5+ lm /5 omit

Seja X uma v.a com f.c . Prove que, se ¢(t) € Lo e se X tem densidade f, entao
f S Lg e

| rwi=g [ e@p

[Sugestao: Considere a f.c de X — X', sendo X' independente de X e com a mesma
distribuicao que X.]

Suponha P probabilidade sobre R com f.c ¢.

(a) Se P for absolutamente continua com respeito a medida de Lebesgue, entao
limyg) 00 () = 0;

(b) Se |¢(t1)| = 1, para algum ¢; # 0, entdo P é concentrada em um conjunto de

pontos da forma x, = a + n(27/t1).

[Sugestao para (a): comece com o caso que a densidade de P é uma funcao simples.
Sugestdo para (b): existe 61, tal que 1 = e~®1p(t;). Entdo, note que 0 = [[1 —
cos(t1z — 01)dP(x) e o integrando é nao negativo.]
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17. (Fungao de concentragao de Lévy) Se P for uma probabilidade sobre R, defina Qp(e) =
sup,er P([z, z + ¢€]). Prove que:

(a) o supremo ¢ atingido, @ p(e) é crescente como funcao de € e lim.4o Qp(e) = 1.

(b) Se P = Py x Py, entao Qp(e) < Qp,(g) A Qp,(e).
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Capitulo 8

Teoremas Limites Centrais

Um teorema limite central (TLC) é qualquer teorema que trata da convergéncia
fraca de somas de v.a’s apropriadamente normalizadas. Os teoremas mais conhecidos
tratam da convergéncia de tais somas de varidveis independentes, satisfazendo certas
condigoes. O caso mais simples, visto no capitulo anterior, trata do caso de v.a’s
i.i.d com varidncia finita. Nessas situagoes, a distribuigdo limite é a normal (ou
gaussiana).

Para v.a’s que tenham alguma forma de dependéncia, podemos ter TLC’s sob
condicoes de independéncia assintética, também chamadas condigoes mizing. Por
exemplo, temos TLC’s para processos estacionarios satisfazendo condigoes mixing.

Ha situagoes em que a distribuicao limite nao é a normal. Por exemplo, veremos
mais adiante, que uma soma normalizada de v.a’s i.i.d converge, em distribuicao,
para uma v.a estavel. Também, o méximo de um ntmero finito de v.a’s i.i.d, apro-
priadamente normalizado, tende para uma distribuicao, chamada distribuicao gene-
ralizada de valores extremos, que pode ser uma de trés tipos: Gumbel, Weibull ou
Fréchet.

A primeira versao de um TLC foi postulada por de Moivre, em 1733, que usou
a distribui¢ao normal como aproximacao da distribuicao de um ntmero de caras,
resultantes de langcamentos de uma moeda. Laplace, em 1812, estendeu o resultado
de de Moivre, ao aproximar a distribuicao binomial pela normal.

O termo “teorema limite central” foi usado pela primeira vez por Polya, em
1920, e ele se referia ao termo “central” como devido & sua importancia em pro-
babilidades. De acordo com L. Le Cam, a escola francesa interpretava o termo no
sentido que “descrevia o comportamento do centro da distribuigcao, em oposicao ao
comportamento das caudas.”

No Capitulo 9 trataremos do teorema de Donsker, que trata do limite de certos
processos empiricos, as vezes denominado de TLC funcional.
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122 CAPITULO 8. TEOREMAS LIMITES CENTRAIS

8.1 Os Teoremas de Lindeberg e Feller

Para provar o Teorema de Lindeberg precisaremos dos seguintes lemas.

Lema 8.1. Seja C a classe das fungoes continuas sobre R tais que lim,_,o f(z) €
lim, o f(z) existem em R. Seja D a classe de todas as fungées tendo derivadas
continuas e limitadas de qualquer ordem. Entao, qualquer fun¢ao em Cy pode ser
uniformemente aproximada por uma fun¢ao de D (isto é, D é densa em Cy na norma
sup).

Prova: Seja f € Cp e para h > 0 defina fi(z) = [ f(t)én(z — t)dt, sendo ¢, a
densidade da N(0,h). Entao, f, tem derlvadas continuas e limitadas de qualquer
ordem. Também,

) — f(@)] < / F(8) — F(@) | — t)dt = / (= x) — f()lon(t)dt

Tome ¢ tao pequeno de modo que |f(t) — f(s)] < €, sempre que |t — s| <
25. Separando a ultima integral acima em uma integral sobre [—d,0] e a outra
sobre o complementar desse intervalo, obtemos que a integral serd menor ou igual a
€+2M[1— ®y(8) + Pp(—0)], onde M é tal que |f(z)| < M, para todo z e ®p, é a f.d
da normal. Para h — 0, 1 — ®,(5) + ®,(—0) — 0, logo sup,, | fr(z) — f(z)| <e. O

Lema 8.2. Sejam P,,, P medidas de probabilidade sobre R e suponha que fR fdP, —
fR fdP, para toda f tendo derivadas limitas e continuas de qualquer ordem. Entao,
P, = P.

Prova: Sejam F,,, I’ as f.d’s correspondentes a P,,, P e seja x um ponto de conti-
nuidade de F. Seja 6 > 0 arbitrério e f uma fungao definida como segue: f(t) = 1,
para t < z, f linear entre x e x +d e f(t) =0, para t > x + §. Seja f. uma fungao
em D, tal que sup, |f-(z) — f(z)| < e. Entao,

lim sup F,(x) < lim sup/fdPn < lim sup/(e + fo)dP,
n n

n

:5+limsup/f€dPn:5+/f€dP§25+/fdP§25+F(x+5).

Para § — 0, limsup,, F,(z) < 2¢ + F(z), e como ¢ > 0 arbitrario, obtemos
lim sup,, Fy,(z) < F(x). Por um argumento similar, obtemos liminf,, F,,(z) > F(z),
para x ponto de continuidade de F'. Basta considerar f como acima, e os pontos
x — 0 e x na sua definicao, no lugar de x e x +9. [

Teorema 8.1. (Lindeberg) Para cada n, sejam Xy 1, ..., Xy, v.a’s independentes,

com média zero, Var(X, ;) = a,%’j. Sejam Sp = Xp1+ ...+ Xk, €82 = Zf" 1 O'QJ

Suponha que
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!
1 /

lim — dP =0, Ve > 0. (8.1)

n—o0 s%jz {\an|>asn} i

Entao, Sy /sy 2 N(0,1).
A equagao (8.1) é chamada condi¢ao de Lindeberg.

Prova: Sejam X, 1,...,X, %, como no teorema e denotemos por N uma v.a com
distribuigao N(0,1). Pelo Lema 8.2, é suficiente provar que

E(f(Sn/sn)) = E(f(N)), para f €D, (8.2)

sendo D a classe definida no Lema 8. 1 A ideia da prova é: suponha que as v.a’s

i fossem normais, cada uma N(0, o2 ). Entao, Sy, /s, seria N(0,1) e (8.2) valeria
nesse caso. Suponha que Y;,1,...,Y, ;. sejam independentes N (0, J?L’i), escolhidas
de tal maneira que X,1,..., X, 1, Yn1,..., Yk, sejam independentes.

Vamos substituir, sucessivamente, em Sy, X, ., Xp k,—1, - POr Yo i, Yo k1,00,
de tal sorte que E(f(S,/sn)) seja substituida por E((f(Yn1+ ...+ Yok,)/sn) =
B(f(N)).

Defina g(t) = sup,eg |f(z + 1) — f(x) — f (x)t — £ (x)t?/2|. Entdo, por Taylor,
l9(8)] < Mytf. Também, g(t)] < Mat2, pois g(t) < sup, | f(z+1) — f(z) - f (@)t +
sup, | f"t2/2|. Segue que g(t) < M(t2 A |t|?). Note que

[fl@+t) = fx+1t2) = f ()t —ta) = f (@)1 = 13)/2] < g(t1) + g(ta).  (8:3)

Defina

ka: Z Xn,j"i‘ Z Yn,j-

1<j<k k<j<kn
Observe que Z,, ., + Xpk, = Sn e Zni+Yn1 ~ N(O, s2).
Considere
kn
or () (Pt ) [ X (Pt ) (P )
Sn Sn P Sn

k k
<N E ’ 7
<3 mg (k) e 3o ().
k=1 k=1
usando (8.3) e os calculos seguintes:

/

E(f (Zng) Xng — Ynp) = Ef (Zup) E(Xp g — Yoi) = 0,
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124 CAPITULO 8. TEOREMAS LIMITES CENTRAIS

usando a independéncia de X, 1, Y, de Z,, 1 e E(X,, ,—Y, 1) = 0. De modo similar,
obtemos E(f" (Z1)(X2, —Y2,)) = 0, notando que E(X2, —Y?2,) = 0.

Para terminar a pr07va, mostraremos que cada uma das somas acima tende a
zero. Para a primeira,

:Z ( > Z/Xnk|<sns} ( )dP+Z/XM|>SnE} (X(:zk) P

X2

kn
nk’ n,k
SMZ/{ 3 dP+MZ/{ 2= dP <
k

| Xn k| <sne} | X k[>sne} S

i Xn,k

2
k=1’ UXnkl>sne} Sn

< Me+ M dP,

para todo € > 0. Tomando n — oo e em seguida ¢ — 0 obtemos que a primeira
soma converge para 0.

Para a segunda soma, escrevendo a integral como a soma de duas integrais, como
no caso anterior, ou seja uma sobre {|Y, x| < es,} e a outra sobre o complementar
desse conjunto, obtemos que

Eg ( ) <eM+ M / kdp.
Z Z |Yn k|>€sn} S
Mas,
k 2 k 3
S [ Ml gp L Oy
k=1 {IYn k‘>55n} Sn € k=1 Sn

pois E(|Y,x?) = Co3,, onde C' é uma constante absoluta. Logo a tltima parcela
da relacao anterior

kn 3 kn 2
C Onk C On,k n,k
— 3 < — max — E 5
s k<kn S 5
© k=1 on £ "og=1 "1
Tk 2
para n — oco. Mas, 82‘ =5 E(X k) e quebrando a integral em duas, uma sobre

{|Xnx| < snd} e outra "sobre 0 complementar, obtemos que

2
In 2 1 2
max —2F < §2 + max — 2 | X k| “dP,
{1 X0 k|>sn0}

E<kn 52 k<kn S

sendo que o segundo termo tende a zero por (8.1). Como § > 0 é arbitrério, o
resultado segue. [
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Exemplo 8.1. [1] Sejam {X,,,n > 1} v.a’s i.i.d, média zero e varidncia comum o?.

Entéo, (X1 + ...+ X,)/(ov/n) 3 N(0,1).
De fato, temos que nesse caso, X, ; = X;, k, = n, 52 = no? e a condigdo de
Lindeberg fica

1
— | X12dP — 0.

0% J{ixil>ovie)
[2] (Teorema de Lyapunov) Com a mesma notacao do Teorema 8.1, suponha que

kn
EE(’Xn,jFM) — 0, para algum ¢ > 0. (8.4)
j=1

1

246
n

Entio, Sn/sn = N(0,1).
Basta observar que

k k
1 n 9 1 n s
S [ xE s Y B(XE) o
n i1 I Xn,j>esn} sn €% i
para cada € > 0, pois | X, ;[°/(e%s9) > 1.

Na condigao de Lindeberg (8.1), substitua X, ; por X, ;/sp = Yy, i =1,..., kp.
Note que ngl Var(Y;, ;) = 1. Obtemos, entao, a seguinte reformulacao do Teorema
8.1. Suponha que

kn
Z/ Y2, dP =0, n — oo. (8.5)
i=1 {IYn,il>¢} ,

Entdo, Y% v,,; 3 N(0,1).
Note que se (8.5) vale, entao

lim max P{|Y,, x| > ¢} — 0, (8.6)

n—00 k<k;,

pois maxy P{|Yy x| > €} < 6% ngl f{IYn,¢|>s} Yn%i dP — 0, por (8.5), sendo que a
desigualdade segue de Chebyshev.

Se as v.a’s Y, 1,Y), 9, ... satisfazem (8.6), elas sdo chamadas:
(i) w.amn (uniformly asymptotically negligible) (Loéve);

(ii) null array (Feller);
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(iii) holouspoudic (Chung).

E natural perguntar se a condicdo (8.1) do teorema de Lindeberg é também
uma condi¢ao necessaria para ter o TLC. A resposta é em geral negativa mas sob a
hipétese adicional (8.6) temos o teorema a seguir.

Teorema 8.2. (Feller) Sejam X,,1,..., Xy, v.a’s independentes, de média zero,
Var(X,;) = o2, com Y 0% = 1. Seja S, = Ef;l Xpni. Suponha que:

n,’

(1) S, 3 N(0,1);

(2) limy_yo0 maxg<g, P{|Xp x| >¢c} =0, Ve >0.

- kn,
Entao, Y ", f{\Xn,k|>8} thde — 0, n— oo.

Prova: A condigao (1) implica que

kn
[T ens(®) =72, (8.7)
k=1

quando n — 00, sendo ¢, 1, a f.c de X, .
Provemos, agora, que (2) implica

lim max |, (t) — 1| = 0, para cadat. (8.8)

n—o0 k<kp

De fato, sendo P, j a lei de X, 1,

onr(t)—1] < / €7 1|dP () = /

- }|em—1|dpn,k(x)+/ " —1|d P, 1. ()
x|>€

{lel<e}

< OP{|Xos| > <} + / t]dPy p(x) < 2P{| X pl > 2} + [t]e.

{lw|<e}
Logo, temos
li t)y—11 <2 1 P{| X k| > tle = |t|e.
imsup max gy 1(t) — 1] < 2 lim max {| Xkl > e} + [tle = [t]e

Tomando € — 0, obtemos (8.8). De (8.8), deduzimos que existe um inteiro N (¢),
tal que para n > N(t), temos supy |¢nx(t) — 1| < 1/2. Logo, podemos escrever,
usando (8.7):

kn,
D log pnk(t) = —2/2, (8.9)
k=1
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na qual os logaritmos sd@o tomados com argumento em (—m, 7], e

108 @ k(1) = [Pnp(t) — 1] + Ml (t) — 1/7, (8.10)

onde M tem valor complexo e é limitada por 2 em valor absoluto. De fato, pela

expansao de Taylor do valor principal de log z, logz = ZZZI (_12171 (z — 1)l, que é
valida para |z — 1| < 1. Logo, como |¢, 1 (t) — 1| < 1/2, obtemos

1
| 1og k() — (Pnx(t —1\<Z | oni(t) = 1" < Jon )—1I2Zg
1>2 1>0

Temos também,

Z\Sonk ) — 17 <maX\80nk —1\Z’<Pnk ) —1]. (8.11)

Mas

t22

leonk —1|<Z/|em’ 1|dP, (z <Z/dpnk ) = 2/2,

pois Z’;Zl JZ’k = 1. Logo, ZZ’;l lonk(t) — 1> — 0, para n — oo, por (8.11) e (8.8).
Usando esse fato, (8.9) e (8.10), obtemos que

kn

> lnp(t) = 1] = —2/2 (8.12)

k=1

quando n — oco. Tome a parte real de (8.12) para obter

kn,
> / [1 — cos(ta)]dP, k(z) — —t7/2.
k=1

Portanto,

2 kn
lim sup ‘t——z [1—cos(tz)]dP,, i (x ‘ = lim sup ‘ [1—cos(tz)|dP, k(x)
n {le|<c} {la|><} ’

2
< hmsup‘ / 2dPn,k(3:)’ < 211msup2/ =] —-dP, i(x
{lz|>e}

Segue que

— > lim sup

— — [1 — cos(tx)]dP,
Z / ) NP (@)
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£2 kn 242
> lim sup 22/ —dPnk( )
" k=1

{jo]<e} 2

Entao,

T dPnk )) > 0.

>hmsup I—Z/

Faca t — oo, para obter Zk’;l f{‘x|<€} 22dP, ;(z) — 1. Conclui-se que a soma

{lz|<e}

kn

Z/ 2%dP, 1 (x) — 0,
=1 7 {lz[>¢}

pois S5m, [42dP, p(x) =1. O

O seguinte teorema foi provado independentemente por Berry (1941) e Esseen
(1942). Veja Feller (1966) para uma prova.

Teorema 8.3. (Berry-Esseen) Sejam {X,,n > 1} v.a’s i.i.d, de média zero e
varidncia o2 e suponha E(|X1]3) < co. Seja F,, a f.d de (X1 + ...+ X,,)/(oy/n)
e ® a f.d de uma normal padrao. Entao,

sup | (¢) — ()| < LD L

z€ER o3

O teorema é caso particular de um resultado mais geral. Seja A, (z) = |F,(x) —
®(z)|. Sob as condigoes do teorema (suponha o = 1), existe uma constante absoluta
Co(9), para ¢ € (0,1], tal que

B(X1**)

sup A, (z) < Co(6) L2, onde L2 = 572

Observe que o teorema anterior € um caso particular para 6 = 1. Varios trabalhos
subsequentes foram provados no sentido de tornar mais preciso o limite superior do
resultado. Veja Korolev e Shevtsova (2010) para uma resenha histérica.

8.2 Distribuicoes infinitamente divisiveis
Vamos considerar os seguintes exemplos:
(a) Sejam {X,,n > 1} v.a’s i.i.d, média zero e variancia 1. Entao,

X“‘ +Xn'D

B NO0,1), fe e ¥
\/ﬁ (0,1), fc. e
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(b) Sejam {X,,n > 1} v.a’s i.i.d, média p. Entao,

Xi+...+X .
S S i G P
n

(¢) Suponha que X,, tenha distribui¢cao binomial, com paradmteros n e p = A\/n,

com A > 0. Entao, sabemos que X, A P()), ou seja, uma Poisson com
parametro A, e f.c eMe=1) Se, para cada n, considerarmos X, 1,..., X,
independentes, cada uma Bernoulli, com p = A/n, entdo X, ~ Xy, 1+...+ X, 5,

e teremos Xy, 1+ ...+ Xpp LA P(X).

Esses exemplos sao instancias da seguinte situagao. Temos um arranjo triangular

X11

onde, para cada n, Xy 1,..., Xy, sdo i.i.d. Seja S, = 1 X, ;. Em cada um dos
exemplos acima, S, converge para alguma v.a. Quais outras varidveis aparecem em
situagoes como essas?

Suponha que 5, B x. Seja ¢ f.c de X. Temos que So, z X, mas Sy, =
(Xgn’l + ...+ X2n,n) + (XZn,nJrl + ...+ X2n,2n) =Y, + YT; As v.a’s {Yn} formam
uma familia fechada, pois

P{|Y,| > K}? < 2[P{Y, > K}* + P{Y, < —K}?|
=2[P{Y, > K,Y, > K} + P{Y,, < —K,Y, < —K}]
< 2P{|S2,| > K}

e como So, converge em lei, a familia é fechada. Portanto, usando o Teorema de
Prokhorov, existe uma subsequéncia {ny} tal que Y,,, converge em lei para Y e YT;k
converge em lei para Y, e pela independéncia Yo, +Y,;k converge em lei para Y +Y,
com Y e Y’ independentes. Como Y, + lebk converge em lei para X, temos que
X~Y+Y.

Seja py a f.c de Y. Segue-se que ¢(t) = [py(t)]*
[0z(t)]*, para alguma v.a Z, e cada k.

De modo similar, ¢(t) =

Definicao 8.1. Uma v.a X diz-se infinitamente divisivel se, para cada n, existe
uma f.c p,, tal que p(t) = [pn(t)]", sendo ¢ a f.c de X.

De modo equivalente, podemos dizer que X ¢é infinitamente divisivel se, para cada
n, existem v.a’s X, 1,..., Xy », que sao i.i.d e tais que X tem a mesma distribuicao
que X, 1+ ...+ X5 5.
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Exemplo 8.2. Sao infinitamente divisiveis as distribuigoes:
(1) Normal

(2) Cauchy

(3) Poisson

(4) exponencial

(5)

5) Gama

Teorema 8.4. X ¢ infinitamente divisivel se, e somente se, X for o limite em
distribuicao de uma soma S, = X, 1+ ...+ X, de v.a’s i.i.d.

Prova: (<) feito acima.
(=) Obvio, pois se X for infinitamente divisivel, entao, para cada n, X ~ X, 1 +
oo+ Xpne O

Teorema 8.5. A classe das distribuicées infinitamente divisiveis é fracamente se-
quencialmente fechada (isto é, se P, = P, e se P, for infinitamente divisivel, entao
P também o serd).

Prova: Para cada n, sejam X,, 1, ..., X, , infinitamente divisiveis, tais que > ; X, ;

tenha P, como sua distribuicao. Como P, = P, Z?:l Xni 3 X, onde X tem dis-
tribuicdo P. Logo, P é infinitamente divisivel, pelo teorema anterior. [

Teorema 8.6. Seja ¢ a f.c de uma distribuicao infinitamente divisivel. Entao,
©(t) # 0, para todo t € R.

Prova: E suficiente mostrar que |@(t)|2 # 0, para todo t. Observe que |p(t)]? ¢ a
f.c de uma distribuigao infinitamente divisivel (i.d). De fato, seja X i.d com f.c ¢ e
X' independente de X e com a mesma distribuicao que X. Entao, X — X "éide
sua f.c é |o(t)[%.

Seja g(t) = |o(t)]? e seja hy(t) a n-ésima raiz real de g(t): hn(t) = [g(t)]"/™
Entao, hy(t) é uma f.c e lim,,_,o h,(t) existe e é igual a zero, se e somente se g(t) = 0
e igual a 1, caso contrario. Também, como ¢ é uma f.c, existe € > 0 tal que g(¢) > 0,
para todo |t| < & (pois g é continua na origem). Segue que lim,,_, h,(t) = 1, para
|t| < e. Se h(t) é o limite, h(t) é continua no zero e portanto é uma f.c. Logo, h é
continua, donde h(t) = 1, para todo t. Logo, g(t) ndo pode ser zero. [

Definicao 8.2. Seja X uma v.a com f.c . Sejam X1, Xo,... v.a’siid, X;~ X, e
seja Xg = 0. Seja N uma v.a independente de X;, para todo i, tendo distribuicao
de Poisson, P(\). DefinaY = ZZ]\L o Xi. Dizemos que Y tem distribui¢ao de Poisson
composta.

A f.cde Y é dada por ¢ (t) = eMNPM~1 Além disso, Y é infinitamente divisivel.
Veja o Problema 2.

Para o resultado a seguir, necessitamos de alguns fatos sobre funcées complexas.
Seja S um espago topoldgico e f : .S — C, continua. Dizemos que f tem logaritmo
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continuo se existir uma funcdo continua g : S — C tal que f = e9. A funcéo g é
Unica sobre cada componente conectado de S, a menos de uma constante da forma
2mim, m € Z. O resultado vale para S =R e f continua, nao nula.

Teorema 8.7. X ¢ infinitamente divisivel se, e somente se, X é o limite em distri-
buicao de uma sequéncia de distribui¢coes de Poisson compostas.

Prova: (<) Segue do Problema 2 e Teorema 8.5.

(=) A fcde X, p(f) , ndo se anula nunca, pois X ¢é infinitamente divisivel. Logo
¢ admite um logaritmo continuo g, ou seja, ¢(t) = e9®. Como ¢(0) = 1 e como
g é Unica a menos de uma constante, 2wim, podemos escolher uma ¢ tinica com
g(0) = 0.

Também sabemos que ¢(t) = [p,(t)]", para cada n, onde ¢, é uma f.c; @,(t)
nunca se anula, logo pelo mesmo argumento, existe um tnico logaritmo continuo g,,
tal que @, (t) = e®) e g,(0) = 0.

Note que €9 é uma n-ésima raiz de ¢, logo pela unicidade do logaritmo continuo,
obtemos g = ng, + 2mim para algum m inteiro. Como g(0) = ¢,(0) = 0, segue-se
que m = 0. Portanto,
nled/™—1] _

lim @Y = lim e
n—od n—oo

ed,

usando e* — 1 ~ z quando z — 0. Mas e"®»=1) & a f.c de uma distribuicdo de
Poisson composta. [

Queremos encontrar a forma geral da f.c de uma distribuicao infinitamente di-
visivel. Sabemos que, se X for infinitamente divisivel e ¢ é a sua f.c, [p,]|" = ¢,
entdo e™en—1) 5 o9 = ©, ou seja, n(p, — 1) — log p. Portanto, podemos escrever

lim | (" — 1) ndF,(x) = log o(t),
n—oo
onde F), é a f.d correspondente a ¢,
Como P{|X, x| > e} — 0, as medidas ndF,(z) colocam mais e mais massa no
zero, quando n — oo. Para estudar o limite acima vamos considerar a seguinte
decomposicao

. it itz \ 1+ 22 ) x

chamando li%nan(x) = dGyp(x), e notando que o termo entre paréntesis na pri-

meira integral é da ordem de t?z2 perto de zero e a segunda integral é aproximada-
mente igual a it [ 2~ 'dG, ().

O resultado a seguir d4 a representacao da f.c de uma distribuigao infinitamente
divisivel.
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Teorema 8.8. (Lévy-Khintchine)
(a) X é infinitamente divisivel, com f.c ¢ se, e somente se p = ¥, onde

[e.e]

ite 4T 1+ 22
(e 1 1+x2)T2 dG(z), (8.13)

wit) =ity + |

—00
onde v é uma constante real e G é uma funcao crescente e de variacao limitada.

(b) A f.c p determina univocamente y e G, isto é, a representacao de Lévy-Khintchine
é unica.

Observagao: O integrando em (8.13) é definido como —#?/2 em = = 0. Se G coloca

massa 0'2 em zero, podemos escrever

o2t? x /. itr \1+2%2 .
t) =ity — —— (Zm—l—7>7dG , 8.14
v =ity =5+ [ (e S )G, (s4)
onde G é uma medida sem massa no zero. Outra maneira de escrever é
) o2t? o itx

onde v é chamada medida de Lévy.
Se X satisfaz (8.13), escreveremos X ~ (v, G).

Prova do Teorema: (a) (=) Seja ¢ a f.c de X, entao p(t) = [pn(t)]”. Também,

p(t) =%, pn(t) = eI e nfpn(t) — 1] — g(t).
Defina

t 1'2

na qual F), é a f.d correspondente a ;.
Antes de prosseguir, vamos considerar os seguintes fatos.

[1] Temos que
2/a
limsupnP,{[—a,a]’} < a/ lg(t)|dt,
n—00 —2/a
sendo P, a distribuicao de probabilidade de Fi,.
De fato, usando a prova do Lema 7.4,

2/a
nPy{[—a,a]} < a/ nlion(t) — 1]dt.

—2/a

Mas n[|¢n(t) — 1|] — g(t), logo pelo TCD,
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2/a 2/a
/ nllion(t) — 1dt — / o

—2/a —2/a |

[2] Existe uma constante A tal que

1
/ *ndF,(z) < A, Vn.
~1

De fato, temos que para todo n,

1 1
1
n[l — R(en(1))] > / [1 — cosz|ndF,(x) > / 2*ndF,(z),
—1 T™J
sendo que na tltima integral usamos que 1 — cosz > x?/m para || < 1. Mas
n[ll — R(pn(1))] = —R(g(1)) > 0, logo existe uma constante A tal que A >
[~ #*ndF,(z), para todo n.

[3] Seja Hy(c0) = [22/(1 + 2*)ndF,(x). Por [1] e [2], {Hn (o), n > 1} é limitada.
Defina G,,(t) = H,(t)/H,(c0), de modo que G, é uma medida de probabilidade.
Além disto, se lim inf,, H,,(c0) > 0, por [1], temos que {G,n > 1} é fechada. Logo,
pelo Teorema de Prokhorov, existe uma subsequéncia {n;} e uma distribuicao de
probabilidade G tal que G,, — G em pontos de continuidade de G. Podemos
também escolher ny tal que Hy, (00) — liminf,, Hy,(c0) = L € (0, 00).

Portanto, temos que

logp(t) = g(t) = lim nfp,(t) — 1] = lim [ [ — 1|ngdF,, (z) =

N —>00 N —>00

L it itr | 1+ 22 )
=t (oo { [ [ -1 75| S asu @] i ).

Como G,, — G e o integrando é continuo e limitado, esse tende para uma
integral com dG,, substituida por dG. Como H,, (c0) — L, uma parte do limite em
questao resulta L{ [[e"® — 1 — 152“;2] 1;3”2 dG(z)}, logo vn, — 7, para algum v € R.
No caso em que liminf,, H,(c0) = 0, consideramos uma subsequéncia {n} tal que
limy, Hy, (00) = 0. Neste caso o primeiro termo no limite acima vai para zero, o

que forga a convergéncia da sequéncia v,, para um valor v € R. Obtemos assim
log p(t) = ity.

(«=) Suponha que X tenha f.c. ¢ = e¥, com (8.13) valida. Mostraremos que X é
i.d. Escreva 1 como um limite de somas da forma

- ita 1+ a?
— itag 1— tag k _ )
Yn gk |:€ 1+ CL% az [G(ak) G(ak—l)]
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Esse é o logaritmo da f.c de uma soma de v.a’s independentes, com distribuigoes
de Poisson compostas. O limite de e¥ é e¥, que é continua no zero, logo e¥ é uma
f.c. Segue que X ¢é i.d., pois é o limite em distribuicao de v.a’s i.d’s (uma soma de
v.a’s independentes e com distribui¢oes de Poisson compostas é i.d.).

(b) (Unicidade) Seja ¢ = €9, onde g tem a forma (8.13). Queremos provar que g
determina v e G univocamente. Defina

t+1
h(t) = / o)z — 2g(t).

-1

Entao, g determina h univocamente. Defina, agora,

Ht) zz/t (1- Si”)HxQdG(x).

2
oo x x

Entao, h(t) = [ e®*dH(z), logo h determina H univocamente (pois h é a trans-
formada de Fourier de H). Mas o integrando em H (t) é positivo, logo H determina
G univocamente. Segue que g determina GG e portanto . [

Exemplo 8.3. (a) Se X ~ N(0,0?), entdo G coloca massa pontual 2 no zero, e
v=0. Se E(X) = u, entdo v = p.

(b) Se X ~ P()), entdao G tem massa pontual de tamanho A\/2 em 1 e v = \/2.

Teorema 8.9. (da continuidade) Seja X,, infinitamente divisivel com parametros

(Yn, Gr) e X com parametros (v,G). Entao, X, B x se, e somente se, v, — 7,
G, — G nos pontos de continuidade de G e para todo € > 0, existe a > 0 tal que
sup,, Gn([—a,a]®) < e.

Prova: (<) Imediata

(=) Se X, B x , entdao ¢, (t) — ¢(t), para todo t; como p,, ¢ nao sdo nunca
nulas, temos que log o, (t) — logp(t). Ou seja ity, + [[ ---]dG, converge para
ity+ [[---]dG. Argumentando como na prova do teorema anterior, mostra-se que a

sequéncia {Gy(c0),n > 1} é limitada e existem uma subsequéncia ny e uma medida
G tal que (G, (2))/(Gp,(0)) = G(x) e Gp, (00) — L. Segue-se que

Gy,

Gnk [} e
ng

—>L/[---]d@, k — oo,

pela definigao de convergéncia fraca, pois o integrando ¢é limitado e continuo. Como,
acrescentando-se itvy,, ao primeiro termo da relacao anterior e ity ao segundo, con-
tinuamos a ter convergéncia, por unicidade devemos ter G = LG’, de modo que
Gp, () — G(z) nos pontos de continuidade de G. De fato, Gy (z) — G(z) e, por-
tanto, v, — 7, pois e — €7 para todot. O
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8.3 Distribuicoes estaveis
Sabemos que, se X1, Xo, ... sdo v.a’s i.i.d, média p e varidncia o2, entdo

Xi+...+ X, —nu D
o\/n
Esse é um teorema limite da seguinte forma: se {X;,i > 1} sdo i.i.d, entdo
D
Xtetdn _ B, 5 X.
Gostarfamos de decobrir todas as leis limites que surgem dessa maneira.

B N(0,1).

Definicao 8.3. Seja X uma v.a e suponha que, para cada n, existam constantes
Qn,bn, tais que a, X +b, ~ X1+...+X,, onde X1, Xo,...sa0ov.a’siid, X; ~ X.
Entao, dizemos que X é uma v.a tendo uma distribuicao estavel.

Como exemplos, temos as distribuigoes normal, Cauchy e de Lévy.

Para provar o resultado seguinte, precisamos do seguinte lema (convergéncia de
tipos). Veja Billingsley (1966). A prova pode ser feita usando f.c’s (veja Loéve,
1978). Uma prova simples aplicando o Teorema de Skorohod é dada por Fazli e
Behboodian (1995).

Lema 8.3. Suponha que Y, Zye anYn + by By, Suponha queY e Y sejam nao
degeneradas e a,, > 0. Entao, a, — a > 0, b, SbeY ~ aY + b, isto €, Y eY sio
do mesmo tipo.

Prova: Veja Billingsley (1995).

Teorema 8.10. (a) Sejam X1, Xo, ... i.i.d e sejam A,, > 0, B,, constantes. Se

Xi+...4+X
Mt p oD
Ap,

onde X nao é degenerada, entao X é estavel.

X,

(b) Se X for estavel, entao X pode ser representada como um limite em distribui¢ao
de somas como em (a).

Prova: (a) Seja V,, = (X1 +...+ X,)/A, — By, entao Y,, converge em distribuicao
para X, o que ocorre também com a sequéncia Y, para k inteiro positivo. Defina:

SW = X 4+...+X,,
SC = X, + ...+ Xon,

S(k) = Xpken+t ...+ Xk
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Considere
— —B,+— B, +... — B, =: i
A + A + + A A +Chk

O lado esquerdo converge em distribuicao para X + ... + X*) com {X j(j )} i.i.d,
com a mesma distribuicao que X. Também, Y}, converge em distribuigao para X,
e portanto Ay Yni/An + Cp i converge em distribui¢do para XD 4 4+ xX® Pelo
lema, Ank/An — Qf, ka — by e XM +...+ X&)~ apX + by.

(b) Se X é estavel, tome Xi,..., X, iid, X; ~ X, de modo que a,X + b, ~

X1+...+ X,. Entao, X ~ % — Z—: (use f.c’s). A parte (b) segue. O

n

Coroldrio 8.1. Os a’s da prova do item (a) do Teorema 8.10 satisfazem a,, =
G, - af para todo k,m > 1.

Prova: Basta notar que

Anmk . Anmk Anm
Ay, B Apm  An ’

e tomar n — oco. O

Teorema 8.11. Seja X estdvel. Entdo, a, = n'/®, onde 0 < a < 2.

Prova: Veja a prova do Teorema 8.12 abaixo.

O ntimero « é chamado o indice de estabilidade ou o expoente e também dizemos
que X é a-estavel.

Teorema 8.12. Seja X a-estdvel. Entao,
(a) Ou X é normal, ou

(b) Para algum o, 0 < o < 2, a f.c de X é da forma ¢(t) = e¥®) | onde

00 . 0 .
_ itx it 1 itz itx 1
viY) = itrtm /0 (=115 prmadatms /_OO (1T ) e
(8.16)
e v, m > 0, mg > 0 sao constantes reais.

Prova: Sabemos que, se X ¢ estavel, X é i.d, de modo que sua f.c é da forma e¥(®,
com

242

. ot it W@
Y(t) =ity 2+/oo (e 1 1+x2>v(dw).

[1] Caso 1: 02 > 0.
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Como X éestével, ap X +br, ~ XD+, +XK®) Logo, tomando a f.c de ambos os
lados, temos k1) (t) = 1 (axt)+ibgt. Seja L(t,x) = [e"® —1—(itz)/(1+x?)](1+22) /2.

Entdo, se x # 0, L(t,7)/t*> — 0, quando t — oo, logo ¥(t) = iyt — o?t2/2 +
[ L(t,2)dG(x) e ¢(t)/t> — —a%/2. Por um lado, ki(t)/t> — —ka?/2, para t — oo,
e por outro (Y(axt) + itby)/t> — —a20?/2, do que decorre aj, = vk, pois o2 > 0.
Temos, entdo, ¥(t) = 1 (Vkt)/k + (ithy)/k. Para k — oo, o lado esquerdo converge,
logo o lado direito também converge e

W) _ YR ey

pois ¥ (t)/t? — —a?/2. Logo, ibyt/k — iyt e Y(t) = iyt — t20%/2, portanto X é
normal.

[2] Caso 2: 02 =0
Lembremos que kv(t) = ibgt + 1 (axt), logo

— ki ite _ T
k(t) = kit + / [e - xQ} kv(dz)
e
; — lagter _ 1 _ lagte
ibpt + p(axt) = ibyt + / [e 1 T x2} v(dz)

iapte
1+(agz)?

e somando e subtraindo ao integrando, obtemos que

ibpt + p(agt) = ibgt + / {eit’” -1- T zjazﬁ] vi(dx) + ity
. it

Pelo teorema da unicidade, kv(dz) = vi(dx) = v(dz/a) e também by, + vy, = k.

Sejam vt (z) = v[z,+), se x > 0 e v (z) = v(—o0,z], se z < 0. Entao,
kvt (x) = v(z/ax), uma férmula similar para v~. Suponha que aj, = k*, A > 0. Seja
z = (k/n)* nessa férmula; obtemos

ot ((fm)) = v+ (1> . (8.17)

nA

Escolhendo k = n, obtemos

nvt (1) =vt (1> : (8.18)

Comparando (8.17) e (8.18) obtemos v ((k/n)*) = v (1)(k/n)~".
Logo, para x num conjunto denso,
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vH(z) = v (1)a (8.19)

Como ~ é decrescente, (8.19) vale para todo x. Isso prova o resultado, desde que
mostremos que 1/\ = « satisfaz 0 < o < 2.

Sabemos que f_ll 2?v(dx) < oo, logo f_ll 2222 1dr < 00, do que segue 2 —
I/JA=1>—-1ledaqui1/A<2eX>0.

Resta provar que ay = k*, A > 0 Para x = 1, kv (1) = v*(1/ay). Quando k
cresce, o lado esquerdo dessa igualdade cresce, logo 1/ay, decresce e portanto ay deve
crescer para —+o00.

Lembremos também que @, = amay,. Fixando k, seja n um inteiro tal que k7 <
n < k9Tt Como a; é crescente, ay; < an < ag+1, ou seja, (ag)! < a, < (a)itL.
Tomando logaritmos, jlogay < loga, < (j + 1)logax, de onde segue

log a < log a, < 7+ 1logay
jlogk — jlogk = j logk’

log an
jlogk

= ), independentemente de k e, portanto, lffgak’“ =\,

Para j — oo, lim;_,
logo a, = k*. O
As integrais do Teorema 8.12 podem ser calculadas explicitamente e temos o

seguinte resultado (para uma prova, veja Breiman (1968)).

Teorema 8.13. Se 0 < a < 2 e se X tem uma distribuicao a-estavel, entao o
logaritmo da f.c de X é dado por:

P(t) =itp — olt|® [1 + ifsinal(t) tan(ga)}, se a # 1. (8.20)

Se a = 1, entao,

0(t) = ity — oft][1 + iﬂsinal(t)% tog([1)]. (8.21)

Em (8.20) e (8.21), u é um parametro de localizagao real, o > 0 é um parametro
de escala , f é um parametro de simetria real, |f| < 1.

Usualmente, usamos a notacao X ~ S(o, 3, 1) para denotar uma v.a com dis-
tribuigao estdvel, com parametros (a, o, 3, i).

Se «a decresce de 2 a 0, as caudas de X tornam-se mais pesadas que a normal.
Sel < a<?2amédiade X é u, mas se 0 < a < 1, a média ¢ infinita. Se § = 0,
X ¢é simétrica, ao passo que se f > 0 (8 < 0), entdo X ¢é assimétrica a direita (a
esquerda).

Proposigao 8.1. Se X ¢é a-estavel, entdao X tem uma funcao densidade de proba-
bilidade limitada e continua.

Prova: De fato, |p(t)| < e ! integréavel. O
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Proposicao 8.2. Suponha X simétrica, a-estavel. Entao, a f.c de X é da forma
p(t) = e,

Prova: Imediata. O

Problemas

1. Para cada n, suponha que X,, 1,..., X, , sejam v.a’s i.i.d e suponha que X, 1 +...+
Xpm 3 X. Entio, limy, e max; <p<p P{|Xnx| >} = 0.
2. Mostre que a f.c de distribui¢do de Poisson composta Y é dada por 9 (t) = eAe®—11,

Mostre que Y é infinitamente divisivel.

3. Prove a Proposicao 8.2.
—-1,.a-1_—=x

4. Suponha que X tenha distribuigao gama, I'(«), com densidade f(z) = [['(«)] tz® te™?,
para x > 0.

(i) Prove que X ¢ infinitamente divisivel.
(ii) Encontre explicitamente a densidade da v.a correspondente a ¢,,, a raiz n-ésima
de ¢: @(t) = [on(t)]™. Aqui, ¢ é a f.c de X.
(iii) Encontre G na representagao canonica de ¢, por meio da obtengao da mesma, e
calculando o limite dado nessa representagao.

5. Se a medida de Lévy v for concentrada sobre um intervalo finito [—a, a], entdo X tem
momentos de qualquer ordem.

6. Prove que qualquer v.a X i.d pode ser escrita como X ~ ¢ X1 + ¢ X5 + ¢3X3, onde
as X; sao independentes, i.d, ¢; sao constantes, possivelmente nulas em alguns casos,
e: (a) X7 é normal; (b) Xo é Poisson composta; (c) X3 tem momentos de todas as
ordens. [Sugestdo: escreva a integral definindo 1(t) como a soma de duas integrais,
sobre |z] < 1e |z| > 1]

7. Suponha que X seja i.d. Prove:

(a) X é simétrica se, e somente se, v for simétrica.

(b) Se X >0, entéo v é concentrada em (0,400) e ¢ tem a forma

vt =i+ [ 16~ 1v(da),

onde 71 é uma constante.

(c) Se [, |z|v(dx) < oo, e se v for concentrada em (0, +00), entdo X > 0. (Note
que (b) e (¢) mostram que, nao é verdade, em geral, que se v for concentrada
em (0,00), entao X > 0.)

8. (a) Mostre que se X ~ N(0,1) , entdo X nao é Poisson composta, mas dé uma
sequéncia explicita de distribuicoes de Poisson compostas convergindo para X.

(b) Mostre que no Teorema de Berry-Esseen, a taxa de convergéncia 1/4/n é a melhor
possivel (Considere o caso Bernoulli).
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9. Considere X, 1,...,X,, v.a’s 1.i.d, cada uma com distribui¢do uniforme em [—n,n]
esejaY, =", Sinal(Xnyi)/XfL)i. Prove que Y,, converge em distribuicdo para uma
v.a estavel com o = 1/2 (Calcule a f.c.)

10. Sejam X7, X5, ... independentes, com:
2 2 1
P(X;=j7) = P(XJ:—J):W,
1
P(X;=j) = P(XJ:_J):E
2 2
P(X;=0) = —-————.
(X5 =0) 12 1252

(a) Prove que a condigao de Lindeberg néo estd satisfeita, mas existe uma constante
absoluta C' tal que

Xi+...+X, p
W _> N(O’ 1).
[Sugestao: use truncamento.

(b) Explique porque (a) nao contradiz o Teorema de Feller.

11. Sejam X, 1,..., X, » 1.i.d e suponha que X, 1 + ...+ X B x. Seja P, a distri-
buicao de X, ;.

(a) X é normal (ou degenerada) se, e somente se, nP,([—a,al®) — 0, para todo
a > 0.

(b) Use (a) para provar o TLC ordindrio.

(¢) Prove que, para quaisquer v.a’s {X,,,n > 1} que sejam i.i.d, teremos que (X; +
...+ X,)/v/n converge em distribuicdo para uma v.a N(0,1) se, e somente se
maxi<<n | Xg|/v/n converge para zero, em probabilidade.

(d) Prove que X, 1 +...+ X, , converge para uma distribui¢do de Poisson (ou uma
v.a degenerada) se, e somente se fioo 22/(1 + 2*)ndP,(z) — 0, para t < 1 e
[ 2% /(1 + 2?)nd P, (x) — 0, para ¢ > 1.

Morettin-Gallesco - dezembro/2025



Capitulo 9

O Principio da Invariancia

Na teoria de somas de varidveis aleatérias independentes, ha resultados que
podem ser provados de acordo com o seguinte esquema: primeiramente, prova-se que
a distribuicao limite nao depende das distribuicoes das varidveis aleatodrias, desde
que certa condicbes sejam validas. A seguir, a distribuicdo limite é calculada para
uma escolha especial de varidveis aleatérias. A essa propriedade foi dado o nome de
principio da invaridncia.

Esse principio foi introduzido por Kolmogorov (1931). Em 1933, Kolmogorov
provou uma versao mais forte que foi usada para obter a distribuicdo limite da
diferenca entre uma f.d empirica e a f.d tedrica correspondente. Para mais detalhes
sobre os trabalhos subsequentes, veja Kruglov (1998).

Neste capitulo apresentaremos o principio da invariancia de Donsker e estudare-
mos com um pouco de mais detalhes o movimento browniano ou processo de Wiener.
A independéncia dos somandos no Teorema de Lindeberg-Feller garante também a
convergéncia fraca de todas as distribuicoes finito-dimensionais de um processo es-
tocastico continuo q.c para aquelas de um processo Gaussiano com incrementos
independentes, ou seja, o movimento browniano. Além disso, essas distribuicoes
convergem fracamente para a medida de Wiener sobre C([0,1]), fato esse também
conhecido como TLC funcional, uma ideia originada em trabalhos de Erdos e Kac
(1946) e Donsker (1951), depois desenvolvidas por Billingsley, Prokhorov, Skorohod
e outros.

O movimento browniano tem aplicagoes relevantes em finangas, como na férmula
de Black-Scholes (veja Capitulo 12), para aprecamento de opgdes e em equagoes
diferenciais estocasticas, particularmente em problemas relacionados a difusées, que
descrevem o comportamento da volatilidade de séries financeiras.
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142 CAPITULO 9. O PRINCIPIO DA INVARIANCIA

9.1 Introducao

Nesta secao desenvolveremos nogoes de convergéncia fraca no espago C([0,1]).
Algumas das definigbes e propriedades a seguir jé foram vistas no Capitulo 6.

Definicao 9.1. C(]0,1]) é o espago de todas as fungoes continuas definidas em [0, 1]
com valores reais. Definimos sobre esse espaco a métrica:

d(z,y) = sup |x(t) —y(t)], =z,ye€C([0,1]). (9-1)

0<t<1

Com esta métrica, o espaco C([0,1]) é um espago métrico completo e separavel.
Observamos também que esta métrica ¢ induzida pela norma infinita em C([0, 1]).

Definigao 9.2. Para x € C([0,1]), definimos o médulo de continuidade

wy(0) = |t§u|26 lz(t) —z(s)], 0< <L (9.2)

Alguns fatos sobre o médulo de continuidade:

[1] wg(d) é uma fungao continua de z, para J fixo.
De fato,

we(0) = |t§u|p<6 lz(t) — z(s)| = |t§u|26 |z(t) — y(t) + y(t) —y(s) +y(s) — z(s)]

< sup [x(t) —y()[+ sup [y(t) —y(s)[+ sup [y(s) —x(s)]
[t—s|<d [t—s|<d [t—s|<d

S 2d(1‘, y) + wy(5)7
logo w4 (6) —wy(9) < 2d(z,y), de modo que |wy(d) —wy(6)| < 2d(x,y), por simetria.

[2] Para x fixo, wy(d) — 0, quando 6 — 0.

De fato, toda fungao continua sobre [0, 1] é uniformemente continua.

Definicao 9.3. Parat) <ty < --- <t, definam 4, :C([0,1]) = R" por

Tty tn (T) = (x(t1), ..., 2(ty)). (9.3)

Dizemos que my, .. 1, ¢ uma projecao.

n

De maneira genérica, denotaremos projecoes por .

Definicao 9.4. Se h é alguma funcao de C([0,1]) em (S,S), mensurdvel, defina
Ph~! por Ph=Y(A) = P{h™Y(A)}, onde A é um subconjunto de S e P é uma medida
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sobre C, os conjuntos de Borel de C([0,1]). Segue-se que Ph™' é uma medida sobre
(S,S) chamada medida imagem de P por h.

Definicao 9.5. Se P é uma medida de probabilidade sobre (C([0,1]),C), entao
{Pr~!: 7 é uma projecao} é a distribuicao finito-dimensional de P.

Teorema 9.1. Seja F, a menor o-algebra tornando cada m mensuravel. Entao:

(a) C = Fr;

(b) Se P,Q sao duas medidas de probabilidade sobre C([0,1]), C e se Pr~—! =
Qn !, para todas as projecées m, entdo P = Q.

(c) Se P é uma probabilidade sobre C([0,1]), entdao P é fechada, ou seja, para
todo € > 0, existe um compacto K tal que P(K) > 1 —e.

Prova: (a) Como cada m; é continua, e C contém os conjuntos abertos, segue-se que
Fr C C. Para provar que C C F,, basta provar que F, contém conjuntos abertos.
Como C([0, 1]) é separdvel, todo conjunto aberto é uma reuniao enumeravel de bolas
fechadas. Logo, ¢é suficiente provar que F, contém bolas fechadas. Tome zg, € > 0
e seja B:(xp) uma bola fechada com centro em zg, de raio €. Temos que

Bo(zg) = {x : d(z,m9) < e} = { :Os<1i<p1 |z(t) — zo(t)| < 5}

= {x: sup |z(r) — xo(r)] < 5} = ﬂ {z :|z(r) — zo(r)| < e}.

r€(0,1]NQ r€[0,1]NQ

Mas, {z : |z(r) — xo(r)| <et ={r: —e+zo(r) < z2(r) < e+ xo(r)} =
7 Y [—e + xo(r), e + 20(r)]}, que pertence a Fr, pela sua defini¢io.

(b) Suponha Qr~! = Pr~!, para toda 7. Seja Fy,. 1, {7rt17 L, (A) s A€ BR™)}
Seja F = Utr,eotnFtr,tn- ENtao, F é uma élgebra.

De Qn~ ! = Pr—! temos que Q(B) = P(B), para todo B € F,ecomo F C Fre
gera Fr, temos que Q(B) = P(B), para todo B € F,, do que decorre que Q(B) =
P(B), para todo B € C.

(c) Seja (S, S) um espaco métrico completo e separavel. Mostramos que se P é uma
probabilidade sobre (S, S), entao P é fechada. Para todon > 1, sejam Bl/n7 Bf/n, .
bolas abertas de raios 1/n que cobrem S. Seja € > 0. Tome um inteiro k, tal que

P(U; Ukn B{/n) > 1—¢/2""L. Defina K =N, Uk” B{/n

hmltado o fecho desse conjunto é compacto e P(K) >1—¢. O

Como N, U k”B{/ é totalmente

Sabemos que:
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144 CAPITULO 9. O PRINCIPIO DA INVARIANCIA

(a) Se P,, P sdao medidas de probabilidade sobre C([0,1]), entdo P,7~! = Pr~1,
desde que P, = P;

(b) Se P, P sdo medidas de probabilidade sobre C([0,1]), e se P,m~! = Pr~! para
todas as projegoes 7w, nao é necessariamente verdade que P, = P.

Mas, o resultado seguinte é vélido.

Teorema 9.2. Sejam P,, P medidas de probabilidade sobre C([0,1]), e P,n~1 =
Pr~! para todas as projecées . Suponha, também, que a familia {P,,n > 1} seja
fechada. Entao, P, = P.

Prova: Como {P,} é fechada, existe uma subsequéncia n; e uma probabilidade @
tal que P, = @, pelo teorema de Prokhorov. A probabilidade () poderia depender
de ng. Contudo, nao depende. Porque a convergéncia para () implica que Pnkw_l =
Qn~!, para toda m, e por hipétese P,r—! = Pr !, do que segue Pr—! = Qn~ !,
para toda w. Logo, @Q = P, isto é, @ é independente da sequéncia ng. Logo, P, = P,
pelo Lema 6.2. O

Lema 9.1. (Arzela-Ascoli) K € C tem um fecho compacto se, e somente se,
supex |2(0)] < M < oo e lims_ygsup,c g wy(d) = 0 (equicontinuidade).

Teorema 9.3. A sequéncia de medidas de probabilidade {P,,n > 1} é fechada se,
e somente se, o seguinte vale:

(a) Para todo A > 0, existe A tal que P,{x : |x(0)| > A} < A, para todo n;

(b) Para todo € > 0, A > 0, existe §, 0 < § < 1 e um inteiro ng, tal que P,{x :
wy(0) > e} <A, para todo n > ny.

Prova: (=) Sejam A > 0 e K um conjunto compacto, tal que P,(K) > 1— A, para
todo n. Como K é compacto, pelo Lema 9.1, sup,cx |£(0)| < M, para algum M.
Entao,

K Cc{z:|z(0)| <M} (9.4)
Também, lims_,o sup,c g wy(d) = 0, logo

K C{z:wy(9) <e}, (9.5)

para 0 suficientemente pequeno. Logo, por (9.4)

P {z :|x(0) > M} < P,(K°} <A, paratodon
e por (9.5),

Po{x :wy(0) > e} < P,(K°) <A, para todon.
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(<) Podemos supor na condigao (b) que ng = 1. Pela condigao (a), se A > 0 é
escolhido, podemos encontrar M tal que P,(A) > 1— A/2, onde A = {z : |z(0)] <
M}. Se A e k inteiros sdo dados, podemos encontrar &y, tal que Py, (Ag) > 1—A/2k+1
com Ay = {r : w,(d;) < 1/2%}, usando (b). Defina K = AN (Ng>14x). Entdo, K
tem fecho compacto, pelo Lema 9.1 e P,,(K) > 1 — A, de modo que a familia {P,}
¢é fechada. [

Teorema 9.4. Suponha que as seguintes afirmacoes sejam validas:
(a) Para todo A > 0, existe A tal que P,{x : |x(0)| > A} < A, para todo n;
(b) Para todo e > 0, A > 0, existe 0, 0 < d < 1 e um inteiro ng, tal que
1
—~ sup Pn{x sup |z(s) — z(t)| > 6} <A,
0 tef0,1-6] t<s<t+6
para todo n > ng.
Entao, {P,,,n > 1} é fechada.

Prova: Vamos mostrar que (b) implica (b) do Teorema 9.3. Fixemos ¢, que pertence
a algum intervalo da forma [id, (i + 1)d]. Se s > t, entao s € [id, (i + 2)d], logo

{:B:t<ssl<11;)+5:n(s)—:n(t)| >e} c {x:t<§51<1£)+6|z(5)—x(i5)|—|—|$(t)—x(i5)| >5}

C {af 22 sup  |x(s) —x(id)| > E}. (9.6)
i6<s< (i+2)3

Entao,

Pz :wy(0) >¢e} = Pn{:n :osup |x(s) — x(t)| > 6}

[t—s|<d

= Py sup x(s) —z(t)] > ¢

; { [t—s| <6, i6§t§(i+1)6| (s) (t)] }
L1/4] 1

< P,z sup  |x(s) —x(id)| > /2 < —(20)A =2A
izg { iégsg(i+2)5‘ ( ) ( )| / } 5( )

onde na segunda desigualdade usamos (9.6) e na ultima a hipétese (b). O
Seja (2, F, P) um espagco de probabilidade e X : Q — C([0,1]). Logo, para cada

w € Q, X(w) é uma fungao continua. Seja X;(w) o valor dessa funcao em cada ponto
t. Suponha que X seja mensuravel.

Proposicao 9.1. Se X = {X;,0 <t < 1}, entao X é um processo estocastico com
trajetorias continuas.
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Prova: Claramente, X tem trajetérias continuas. Resta provar que cada X; é uma
v.a. Mas X; = m 0 X, logo se A € B(R), entao X;'(A) = X' on;}(A). Mas
B = n;Y(A) € C, pois m; é continua e X~ Y(B) € F, pois X é mensurdvel, como
uma aplicagao de Q em C([0,1]). O

A distribuicao de X é a medida de probabilidade sobre C([0,1]), Px, definida
por Px(A) = P{w: X(w) € A} para todo A € C.

Dada qualquer medida de probabilidade P’ definida sobre C([0, 1]), existe um
processo estocéstico tendo trajetérias continuas e P’ como sua distribuicao. De fato,
tome Q = C([0,1]), F =C e P = P'. Defina X por X(w) = w (note que pontos de
Q sao identificados com pontos da trajetéria).

Reciprocamente, dado qualquer p.e X = {X;,0 < ¢t < 1}, com trajetdrias
continuas, existe uma probabilidade P sobre C([0,1]), que é a distribuicao de X.

Os dois teoremas precedentes podem ser reescritos em termos de processos es-
tocasticos.

Definicao 9.6. A medida de Wiener W é uma medida de probabilidade sobre
C([0,1]) tal que, se X = {X;,0 <t < 1} for um processo estocastico com trajetorias
continuas tendo W como sua distribuicao, entao:

(1) Xo =0, q.c.
(2) Para cadat, X; ~ N(0,t).

(3) Se 0 < tl < t2 < s < Ty < 1, entao th,Xt2 —th,...,th _th—l sao
independentes.

Consequéncias:

[1] Se X = {X;,0 <t < 1} é como descrito na definigdo anterior, entao se s < t,
teremos que Xy — Xg ~ N(0,t — s).

De fato, Xy = X5+ X; — X e como X e X; — X sado independentes e se p(u) é a

uQ
f.c de X; — X, teremos e—tu?/2 = cp(u)e*S"2/2, do que decorre que p(u) = e~z (t=9),

2] Suponha que X satisfaga a defini¢ao anterior. Sejam t; < t2 < ... < t, e o vetor
aleatério (Xy,,..., Xy, ), com f.c I'(s1,...,s,). Entdo,

I'(s1,...,8,) =FE [ei81th+...+isnth:|

= Eexp {z [5n(Xt, — Xto_1) + (04 $n—1) (Xty — Xtno) + oo+ (514 ...+ 50) Xy, | }
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2 2 2
S Sp + Sn—1 S1+...+s
= exp ;(tntnl)(n;)(tnlth)( 9 n) tl

A 1ltima igualdade segue da normalidade de X.

Definigao 9.7. O processo X = {X;,0 <t < 1} com trajetdrias continuas, tendo
como distribuicao a medida W da definicao anterior, é chamado Movimento Brow-
niano (MB) ou processo de Wiener.

Teorema 9.4. (Donsker) Sejam Y1,Ys,... v.a’s i.i.d, com média zero e variancia
o%. Seja S, =Y, + ... +Y,. Defina uma familia de processos estocasticos X, =

{X,(t),0 <t <1} como segue:

Stne)  nt — [nt]
= Y .
U\/ﬁ + O'\/ﬁ LntJ+17 <9 7)

onde |a| representa o maior inteiro menor ou igual a a. Entao, a sequéncia {X,,,n >
1} converge fracamente em C(]0, 1]) para um MB.

Xa(t)

Prova: A prova tem duas partes:
(a) Para t; < ta < --- < t}, mostramos que

D
(Xn(t1)7 ctt ?Xn(tk)) — /’I’tl,...,tka

onde p, ..+, € a medida correspondente a f.c I'(s1, ..., si).
(b) Depois mostramos que a familia {X,,,n > 1} é fechada (tight).

Segue-se que X, converge em distribuicao para X, onde X satisfaz as proprieda-
des (1)-(3) da defini¢ao 9.6. De fato, seja n’ qualquer subsequéncia de inteiros e P, a
distribuigao de X,,. Por (b), existe uma outra subsequéncia n” e uma probabilidade
@ sobre C([0,1]) tal que P,» = @ (por Prokhorov). A medida @ nao depende da
subsequéncia, pois por (a), cada distribuigdo limite ) tem a mesma distribuicao
finito-dimensional. Como isso vale para cada subsequéncia n’, segue que P, = Q e
Q=W.

Prova de (a). Sejam t1, ..., t; dados; devemos mostrar que E(expi{s1 X, (t1)+...+
sk Xn(tr)}) converge para I'(sq,...,s;). Mas

E(expi{s1 Xn(t1) + ...+ s Xn(tp)}) =
E(expi{sk[Xn(tr)—Xn(te—1)]+[sk+5k—1][Xn(te—1)—Xn(te—2)]+- . -A[s1+. . 4] Xn(t1)}).

Note que, para cada t,

S|t
ovn

< Nt = |nt|

Y, .
< = Y nt)+1]

X0
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Quando n — oo, o lado direito da desigualdade tende a zero em probabilidade,
pela desigualdade de Chebyshev. Portanto, é suficiente provar que

E(expi{sk(SLka _SLntk,lj)/O’\/ﬁ"i_- (st .+Sk)SLnt1J/U\/ﬁ}) — D(s1,...,sK).

Mas (S|pt,| = Sint_,))/ov/n converge em distribuicio para uma N (0, —tx_1),
pelo TLC e essas parcelas sao independentes, logo o limite é exp{—s? (t; —tx—1)/2 —
e — (81 + ... +Sk)2t1/2} = F(Sl,...,8k>.

Prova de (b). Temos que provar que a familia X, = {X,,(¢),0 < ¢t < 1} é fechada. E

suficiente provar que:

(i) para todo A > 0 e todo € > 0, existe §, 0 < 0 < 1 e um inteiro ng, tal que

1
fP{w :osup | Xn(s) — Xp(t)] > 5} <A, n>ng, Vi
0 1<s<t+6

(ii) Para todo A > 0, existe A > 0, tal que P{w : |X,,(0)] > A} <A, Vn.

A condigao (ii) é trivial, pois X,,(0) = 0, logo basta provar (i).

Fixemos t e tome inteiros j, k tais que k/n <t < (k+1)/ne(j—1)/n<t+d <
j/n. Entao, j/n—k/n <46+ 2/n.

A desigualdade de Lévy (Teorema 2.17), com varidveis i.i.d, média zero e variancia
comum o2, pode ser re-escrita como

|Sk| {!Sn! }
Pl osup 2> boop >A-1%, 9.8
{1<k1<)n0'\/ﬁ_ - oyn ©-8)

usando |m(X) — E(X)| < /Var(X). Agora fixe ¢ > 0 e § < £2/16. Para n
suficientemente grande, temos que

%P{w: sup |3%(@'_)QK®’25}

t<s<t+6
1 |53 e 1
< -Piw: su > -
K { 0§i§[r€5+2] o/ |nd+2| 2\/5}

<

SN

S| nst2)] e 1 2 1S |nst2)l e 1
plomtel St - g l<cZpd tlmorrll = - L
{0 né +2] 26 ~ 0 o/|nd +2] ~ 46

Pelo TLC, obtemos se Z ~ N(0,1),
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o/ |nd + 2] 4./5 d 4/5

pois P(|Z| > a) < E(|Z]?)/a®. Dado € > 0, dado A > 0, podemos tomar § tio
pequeno de modo que este ultimo termo seja menor do que A. [

Sin 3y43
- 2P{m+zﬂ Ll }JP{‘Z‘ L2 L) 2BIZDL

Corolario 9.1. Seja h uma fun¢ao mensuravel, h : C([0,1]) LA (S,S), um espago
métrico. Suponha que Dj, conjunto das desontinuidades de h, tenha medida de
Wiener zero. Entao, h(Xy,) Lt h(X), onde X é um MB.

9.2 Movimento browniano

Definimos, na secao anterior, o MB X = {X(¢)}, para t € [0,1]. Queremos
estender esse processo para o conjunto paramétrico [0, 00).

Sejam X!, X2 ... MBs independentes, com espaco paramétrico [0, 1]. Defina o
processo X (t) como:

Xt = X'(t), 0<t<1
= XY+ X%t-1), 1<t<2,

= X'+ X))+ 4+ X"+ X"t —n), n<t<n+1

Entao, X = {X(¢),0 <t < oo} tem a propriedade desejada. X é chamado de
MB sobre [0, 00) ou simplesmente de MB. Nessa segao, trataremos de tal processo.
Usaremos as notacgoes X (t) ou X;.

Teorema 9.5. (a) Se F; = F{Xs,s < t}, entao X é um martingale relativamente
a {.Ft, t> 0}
(b) E(XsX;) = min{s, t}.

Prova: (a) Para s < t, temos que E(X;|Fs) = E(X; — Xs|Fs) + Xs = E(X: — X5) +
X, =04+ X = X,, usando o fato de X ter incrementos independentes e média zero.
(b) Se s < t, B(X:X;) = BE[Xs(X; — X,)| + E(X2) = B(X; — X )BE(Xs) +s=5=
min{s,t}. O

O seguinte teorema pode ser provado usando resultados anteriores.

Teorema 9.6. Seja I’ um tempo de parada finito. Defina Yy = X7, — Xr. Entéo,
{Y;,t > 0} é um MB, independente de Fr (propriedade Forte de Markov).
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Teorema 9.7. (Principio da reflexdo). Seja T' um tempo de parada finito. Defina
{U,t > 0} por:

U, = Xy, set<T;
= 2Xp—X;, set>T.

Entao, {U;,t > 0} é um MB.

Prova: E suficiente provar as seguintes propriedades. (a) U; tem trajetdrias continuas
(por construcao); (b) as distribuicoes finito-dimensionais de U; sdo as mesmas que
aquelas de X;.

De fato, (a) é imediata. Para (b), consideramos em primeiro lugar o caso n = 1.
Seja T" um tempo de parada com um numero enumeravel de valores. Provaremos
(b) para esse caso primeiramente. Temos que

BleUt) = E{eiSUtI{TSt}} + E{eiSUtI{T>t}}

_ E{eiS(QXT_Xt)I{TSt}} + E{eiSXtI{T>t}}'

Agora,
E{*CX X py= Y B {eis(QXai_Xt)f{T:ai}},
i>1,a;<t
onde a1, aso, ... sao os valores de T'. Por sua vez, o ultimo termo é igual a

3 E{eis[x%—(xt_xai)}I{T:ai}}: 3 E{eisX%I{T:ai}}E{e_is(xt_xai)},

i>1,a;<t i>1,a;<t

por independéncia. Como X; é simétrico (normal), X,, — X tem a mesma distri-
buicao que X; — X,,, portanto da tultima igualdade obtemos

Z E{eiSXtI{T:ai}} = E{eiSXtI{TSt}}J
i>1,a;<t

logo
B{e"V} = B{e* Iipen)} + B{eN Trsn ) = B{Y),

Caso de T arbitrario. Construa uma sequéncia 7, de tempos de parada, com um
nimero enumerdvel de valores, tais que T, | T. Por exemplo, defina T,, = k/2", se
(k—1)/2" <T < k/2™.
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Seja U{* o processo obtido usando 7}, no lugar de T'. Entao, Uj* — Uy, quando
n — oo, pois U; tem trajetérias continuas. Pelo TCD, E{e®Vi'} — E{e?Vt}, do que
segue E{e?Vt} = E{e?Xt} e portanto U; ~ N(0,t), para cada t.

Agora, observe que se t; < t, temos que E{e1Untis2lUty} — pleisi Xy Fis2Xey
veja o Problema 5. De modo similar, a mesma relacao vale para ti,...,t,, de
modo que (Xi,,...,X;,) tem a mesma distribuigao que (Uy,,...,Us,), para quais-
quer ti,...,ty,, isto é, U; e X; tém as mesmas distribuigoes finito-dimensionais. [

Teorema 9.8. Seja {Xy,t > 0} um MB e A\, R reais positivos. Entao,

P{ s X, > /\} — 2P{Xp > AL
Prova: Seja T definido por T'=inf{t < R: X; = A\} e T = R+ 1, se esse conjunto
for vazio. Entao, T é um tempo de parada para {X;} e P{maxo<;<r Xy > \} =
P{T < R}.

Defina {U;} por Uy = Xy, se t <T e Uy = 2Xp — Xy, se t > T. Seja Ty = inf{t :
U, = A} eigual a R+ 1, se o conjunto for vazio. Entao,

P{T <R ,Xp<Ay=P{T) <R Ug >\ =P{T <R, Xr>\}

pois U ~ X. Agora,
P{max X; >} =P{T <R} =
0<t<R

P{T<R Xp>A +P{T <R Xp<A\}=

P{Xp> A+ P{T <R, Xp> A} = P{Xp > \} + P{Xp > A},
pois {T' < R} D {Xgr > A}. Como X é normal, obtemos o resultado. [
Aplicagoes

[1] Seja X = {X;,t > 0} um MB. Entao, quase todas as trajetérias de X sdo nao
limitadas.

De fato pelo teorema anterior, P(maxo<i<p Xt > A) = 2P(X—\/% > ﬁ) =2P(Z >

A/VR), onde Z ~ N(0,1). Para R — 0o, o tltimo termo tende a 2(1/2) = 1.

[2] Seja Ty, = inf{t > 0 : X; = a}, sendo X um MB e a > 0. Pela Aplicacao [1],
T, < oo g.c. Entao,

2 2
<t) = > a) = >a) = 2y,
P(T,<t) P(Orgsa%(t Xs>a)=2P(X; > a) \/ﬁ/a e dx

A densidade é f(t) = \/%t*3/2e*“2/2t, para t > 0. Veja o Problema 3.
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Teorema 9.9. (Lei do Logaritmo Iterado) Seja X = {X;,t > 0} um MB. Entao,

P{limsupL = 1} =1,

t—oo /2tloglogt

Xi
P{l' i fiz—l} =1.
oo V2tloglogt

Prova: Basta provar a parte do limite superior.

(a) Provamos, primeiramente, que

. Xt
lim sup

——F <1, q.c.
t—oo V2tloglogt — d

Seja ¢ > 1. E suficiente provar que limsup,_, ., X;/cv/2tloglogt < 1, q.c. Tome
t, = o", para o > 1 a ser escolhido depois. Seja M, = maxo<i<¢, X;. Como
P(M, > \) =2P(X;, > \), obtemos

2 o
P{M 2 v/} = 2P(X, 2 v/} = —= / v 2q
T Jx

o Ze ———e
T2 ) T v= 2T T

Escolha z = z,, = (¢/\/%5)\/2tn—11oglogt,—1. Entao,

2 1 2
> < - /2
P{M, > x,tp} < \/ﬂxne
\/a (logtn_l)ftﬁ/a < \/a (log a)*(:?/a(n _ 1)702/04'

< Y
— /mloglogt,_1 — mlog(n —1)

Como ¢ > 1, escolha « tal que 1 < a < ¢2, de modo que

ZP{Mn > ¢v/2t,_1 loglog tn_l} < KZ(n _ 1)702/04 < 0.

Logo, por Borel-Cantelli, se t,—1 <t < t,,

X(t) £ M, < ¢\/2t,_1loglogt, | < c\/2t log logt,
sendo que a segunda desigualdade vale para todos exceto um numero finito de n.

Ou seja,

Xy
P{ lim su 7<c}:1, Ve > 1.
00 P V2tloglogt —
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(b) Basta provar que, se ¢ < 1, entao
Xt
P{ lim su 7>c}:1.
oo P 2tloglogt —
Coloquemos z,, = ¢/v/2loglogt,, com ¢ < 1, arbitrério, e seja ¥, := Xy, — X3, |,

n > 1, que sdo independentes. Agora, para n suficientemente grande temos

1

o0
P{Y, > xp\/tn —tn_1} = E e_yg/zdy
X

n

1 1 2 "2
> —— e @/2 > [\ /Arlogn|  (nlog o)~ (€),
N > [¢'\/4mlogn] ™ (nlog a)

logo

n_(c/)2 B

ZP{Yn>xm/tn—tn,1}zczm 0,

do que seque, por Borel-Cantelli, que {Y,, > ¢v/2loglogty\/ty, — tn—1} ocorre i.v,

ou ainda {Y;, > ¢/\/(a — 1)/ay/2t, loglog t, } ocorre i.v. Portanto,
—1 2
Xe, > Y, — | X, | > (c’ @ - ) v/ 2t, loglog t,

a o

ocorre 1.v, pois por (a),

P{th_l < 2\/215”,1 loglogt,_1 para todos exceto um ntumero finito de n} =1.

Ou seja, como t, 1 = a" ! =t,/a,

2
P{th1 < T\/Qtn loglog t,,, para todos exceto un nimero finito de n} =1.
«

Escolha ¢ < . Para « suficientemente grande, temos também que

c<dv(a—1)/a—2/Va,

logo
P{Xt" > cy/2t, loglogt, i.v} = 1.

Como ¢ < 1, arbitrério, ¢ pode ser escolhido menor do que 1 arbitrariamente,
pertode 1. O
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Nota: Na prova foi usado o fato que [°° e 2qu > (1/z)e~"/2, para x suficiente-
mente grande. Para provar esta desigualdade, basta integrar por partes.

Teorema 9.10. Suponha X MB e sejaY; = t- X(1/t). Entao, Y = {Y;,t > 0} é
também MB.

Prova: Primeiramente, Y tem trajetorias continuas, exceto possivelmente em ¢ = 0.
De fato, Y é continuo em ¢t = 0:

limY; = lim¢X(1/t) = lim X(1/t)
t—0 t—0 t—0 \/(g/t) loglogt—!
O primeiro termo afetado pelo limite é limitado, pela lei do logaritmo iterado, e o
segundo termo do produto tende a zero, parat — 0. Também, as distribuicoes finito-
dimensionais de Y s@o normais. Seja s < t. Entao, F(X;X;) = s and E(YsY;) =
stE[X(1/s)X(1/t)]st(1/t) = s, logo X e Y tém a mesma funcao de covariancia, logo
tém as mesmas distribuigoes finito-dimensionais. [

V(2/t)loglogt—1 - t.

Corolério 9.2. (Lei Local do Logaritmo Iterado) Suponha tq fixado. Entao,

X (¢ h) — X (¢t
im su (to + 1) (o)

1
h—0 \/2hloglog h—1

=1, q.c

X(to+h) — X(to)

im inf = -1, q.c.

1
h—0 \/2hloglog h—1
Prova: E suficiente provar o caso tg = 0. Temos que

~1
P < lim sup X () =1, =P limsup hX(h™) =1, =
h—0 v/ 2hloglog h—1 h—0 v/ 2hloglog h—1

-1
P < lim sup X)) =1;=1,
h—0 /2h~1loglog h—1

pela lei ordinaria do logaritmo iterado. [

Aplicagoes
[1] lim sup;_,q % = +o0 e liminf; g % = —00.

Basta escrever X (t)/t como

X(t) X(t) V/2tloglogt—!

t V/2tloglogt—1 t
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O primeiro termo do produto é limitado, pelo Corolario 9.2 e o segundo termo
do produto tende para +oo, quando t — 0.

[2] Quando t — 0, X; cruza o eixo das abscissas infinitas vezes.

Segue de [1], ou X (t)/y/2tloglogt=! deve mudar de sinal infinitas vezes, mas

como as trajetérias sao continuas, deve cruzar o eixo x infinitas vezes.
Teorema 9.11. O MB tem quase todas as trajetorias de variagao nao limitada.
Necessitamos do seguinte lema.

Lema 9.2. Sejam 3+, %,..., 2 pontos de [0,1] e seja S, = Zi; | X (k/2") —

X((k—1)/2™)|?. Entao, S, — 1 q.c, quando n — oc.

Prova: De fato, temos que
2TL
Sp—1=" {|X(k27") = X((k—1)27")]> = 27"},
k=1
logo

P(|S,—1>¢) <

2nvM(X(r”)?) _ Var(Z?)
2 - omg2

onde Z ~ N(0,1). Segue-se que

Y P{S, 1| >¢} < §Z2_”<oo.

n>1 n>1
Por Borel-Cantelli, S, =+ 1 q.c. O

Prova do Teorema: Mostramos que quase todas as trajetérias sobre [0,1] sao de
variagdo nao limitada. Suponha que existe um conjunto 2 tal que P(€2) > 0, e tal
que para todo w € () temos

2n
Z X (k27" w) — X((k—1)27"w)| < M(w) < 0o, paratodo n.
k=1

Entao,
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2”
STIX (k2 w) = X (k- D27 w)P < max [X(k27w) — X((k - 1)27",w)|
k=1 - -
2TL
< ST IX (K27 w) = X((k - 1)27" )]
k=1
<M X(k27" —X((k—1)27" .
< M) max |[X(k27"w) = X((k= 127", )]
Logo,

S X (k27 w) — X((k—1)27", w)[?
maxi<g<on |X(k2_n7w) _ X((l{} _ 1)2_n7w)| < M(w)

Mas para n — 0o, o numerador tende a 1 q.c e o denominador tende a zero, pois
o MB tem trajetorias continuas. Isso é uma contradicao. [

Teorema 9.12. Seja X um MB sobre [0,1]. Entao, AM{t € [0,1] : X;(w) =0} =0,
para quase todo w, sendo A a medida de Lesbegue no intervalo [0, 1].

Prova: Seja I{o) o indicador do {0}. Entao, 0 = fol [fo I10y (X¢)dP]dt, pois a integral
interna reduz-se a P{w : X¢(w) = 0} = 0, dado que X; é normal, para cada t. Agora,
X (t,w) é mensurdvel, como uma aplicacao de [0,1] x  — R (veja o Capitulo 5).
Logo, Io1(X(t,w)) é mensurdvel em (t,w) como uma aplicagao entre os mesmo
conjuntos anteriores. Segue-se, portanto, por Fubini, que 0 = [, [fol Ity (X¢)dt]dP.
Logo, para quase todo w, fol Ioy (X (t,w))dt = 0, ou ainda, A{t € [0,1] : X(t,w) =
0} =0, para quase todo w. [

9.3 Aplicagoes do Teorema de Donsker

Nesta secao estudamos algumas aplicagoes do Teorema de Donsker, a saber, a
estatistica de Kolmogorov-Smirnov, a lei do arco seno e uma lei do logaritmo iterado
derivada do Teorema de Skorohod.

[1] Estatistica de Kolmogorov-Smirnov

Sejam Y7,Ys,... v.a’s ii.d, com f.d comum F, suposta continua e seja Fy,(x)
a f.d. empirica, baseada em uma amostra de F' de tamanho n. O Teorema de
Glivenko-Cantelli nos diz que

sup |Fp(z) — F(x)] = 0, n — oo.
z€eR

Seja
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D,, = v/nsup |F,(z) — F(x)|. (9.9)
z€R
Um intervalo I = [a,b] é chamado intervalo de constincia para F' se P{Y; €

[a,b]} = 0 e nenhum intervalo contendo este intervalo tem essa propriedade.
Seja B a reuniao de todos os intervalos de constancia para F. Entao, D, =
Vnsup,cpe | Fp(x) — F(z)|, g.c. Seja Uy = F(Yy). Entao Uy é uniforme em [0, 1].
Vamos usar os seguintes lemas.

Lema 9.3. A distribuicao de D,, nao depende de F.

Prova: Temos que

Dy = Vi sup |Fo(z) — F(x)| = Vit sup [Gul(F(x)) — F(z)],
reB° reB°
onde G, é a fungdo de distribui¢ao empirica de Uy, ...,U,. Agora observe que o
ultimo termo ¢é igual a \/nsupg.,1 |Gn(x)— |, porque quando z varia em B¢, F(x)
varia em (0, 1) e isso envolve somente a distribui¢do uniforme. [

Lema 9.4. Sejam &1,&o, ... v.a’sii.d exponencias com média 1l e Ry = E1+...+&.
Sejam Uy ), - - -, Ugn ) as estatisticas de ordem de n v.a’s com distribui¢ao uniforme
no intervalo [0,1], Uy, ...,U,. Entao:

(a) A distribuicao conjunta de (U(y ), - .-, Upyn)) tem densidade f(y1,...,yn) = n!,
se 0 <y; <yo <---<yp <1 e0senao;

(b) (Rl/Rn+1,...,Rn/Rn+1) ~ (U(l,n)v"’vU(n,n))'

Prova. Veja o Problema 8.

Teorema 9.13. D, 3V, onde Y = supg<i<1 | W (t) —tW(1)], sendo W (t) um MB.

O processo B(t) = W(t) — tW(1) é chamado ponte browniana. Vemos que
B(0) = B(1) = 0. A distribuigao de Y é dada por

oo
P(Y <2)=1+2) (-DFe? x>0,
k=1

Prova: Temos que Yy < x se, e somente se, F(Y;) < F(z), se x € B¢. Para provar
essa afirmacao, a parte = ¢é ébvia, pois F' é crescente. Para a parte <=, suponha que
F seja estritamente crescente & direita de z; se Y; > x, entdo, F(Y;) > F(x), uma
contradicao. Suponha, agora, que F' nao seja estritamente crescente a direita de x.
Como z € B¢ e supondo Yy > z, entdao F(Y;) > F(x) e portanto F(Y;) = F(z).
Logo, Y}, estd no intervalo de constancia [z, zg] e portanto P(z < Yj < zo) = 0.

Morettin-Gallesco - dezembro/2025



158 CAPITULO 9. O PRINCIPIO DA INVARIANCIA

Pelo Lema 9.3, para provar o teorema, basta provar o caso em que Yi,Ys,...
sao uniformes em [0,1]. Note que G,(z) é constante sobre os intervalos I, =
(U(k,n)s Utkt1,n)] € cresce em saltos de 1/n. Logo,

Dy = nsup { sup |G (@) — |} =

k<n ™ x€l}
\/ﬁSUP{ sup |Gn(Uk,n)) — 56\} =
k<n * z€lj

.o}
— —x|¢.
n
Temos que, ou o tltimo termo é igual a [k/n—U(;, | ou éigual a [k/n—U(gq1,n)| =
(b + 1)/n — U | + M/, com [M] < 1.
Portanto, para provar que D, converge em distribuicao para Y, é suficiente
provar que /1 supy<,, |k/n — Uy, n)| converge em distribuicdo para supg<;<1 |B(1)].
Usando o Lema 9.4, devemos mostrar que v/nsupy<,, |k/n — Ri/Rn+1| converge
em distribuicdo para o que se deseja. Mas essa quantidade é igual a

Vnsup { sup

k<n *x€lj

n Rk—k‘ kRnH—n
su —_ .

p
Rn+1 k<n \/ﬁ n \/ﬁ

Note que n/Rp41 — 1, pois R, = > & e Ry/n — E(&) = 1. Como
Ent1/v/n — 0 em probabilidade, é suficiente provar que supy<,, |(Rr — k)/v/n —
(k/n)(Rn+1 —n)/v/n| converge em distribuicao. Seja Sy = Ry — k e seja

_ Sy i — [nd]
- n Vn
Pelo teorema de Donsker, X (™ (t) converge em distribuicdo para W(t). Seja
h : C([0,1]) — R definida por h(x) = supg<i< |2(t) — tx(1)]. Segue-se que h é
continua, logo h(X (™(t)) converge em distribuicao para h(W (t)). Por outro lado,

XM ()

(€1 — 1] -

- — = sup |XY(t) —tX(1
o Y Sup, [ XH(2) ()]

pois, note que o supremo é determinado pelos vértices da linha poligonal. [

[2] Lei do Arco seno

Seja € C([0,1]) e defina uma fungao h : C([0,1]) — R como segue, sendo A a
medida de Lebesgue:

h(z) = Mt € 0,1] : 2(t) > 0}

Entao, temos:
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(a) h é uma fungao mensurdvel de C([0,1]) em R.

(b) Seja Dy, o conjunto dos pontos de descontinuidade de h. Entao,
Dy ={x € C(]0,1]) : M{t € [0,1] : z(t) = 0} > 0}.

(¢) W(Dy) = 0.

(d) Sejam Y;,i > 1 v.a’s i.i.d, média zero e variancia 0. Defina X™(¢) como usual-
mente foi feito antes. Entao, h(X™) — h(W). Seja S, = Y1 + ...+ Y. Denotemos
por #5,, o nimero de indices k < n tais que Sy > 0. Seja R,, = #5,,/n a propor¢ao
das vezes que Sy > 0. Entao, h(X"™) — R,, converge para 0 em probabilidade quando
n — 00.

(e) Logo,
P(R, <z)— Plw: Mt € [0,1]: W(t) >0} <a} = P(h(W)<z)  (9.10)

quando n — oco. Teriamos, entao, a distribuicao limite de R,,, desde que pudéssemos
calcular (9.10).

(f) Para calcular (9.10), consideremos um caso especial,ou seja, tomemos os Y; tais
que P(Y7 = 1) = P(Y; = —1) = 1/2. Para esse caso, sabemos que (veja Feller,
1968) P(R, < z) — 2 arcsin /z, logo

Ph(W) <z] = %arcsin V.

[3] Lei do Logaritmo Iterado: Teorema de Skorokhod

A seguinte versao do teorema de Skorokhod nao sera provada. Veja Billingsley
(1999).

Teorema 9.14. (Skorokhod). Sejam X;,i > 1 v.a’s i.i.d, média zero e variancia
o2 e seja S, = >oi1 X;. Entéo, existe um espago de probabilidade sobre o qual
podemos definir:

(i) v.a’s i.i.d, ndo negativas T;,i > 1, com E(T}) = o?;

(ii)) um MB W = {W(t)),t > 0} tal que
(S1,52,...) ~ (W(T),W(T1 + T3),...).
As v.a’s Ty, Th + To, ... podem ser vistas como tempos de parada para W.

Teorema 9.15. (Lei do Logaritmo Iterado) Sejam X;,i > 1, ii.d, média zero,
variancia 1 e S, = > | X;. Entao,
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S,
P{ lim sup ————— = 1} =1, q.c
n—00 v2nloglogn
e
P{ lim infL = —1} =1 q.c.
n—oo  4/2nloglogn
Prova: Sejam W e T1,75,... como no Teorema de Skorokhod. Para provar o

teorema é suficiente provar que:
. W(Ti+..+T»)
1) lim SUPp— o0 V2nloglogn

2) W(T1+...+TL” )*W(t)
V2tloglogt

=1, g.c. Para provar isso, devemos provar

— 0, q.c.

Pela lei do logaritmo iterado para MB, temos que limsup;_, . % =1,e

W(T1+..4+T4))
V2tloglogt

—y2tloglogt 1 ¢ 5 0. Provemos 2).
2(t] loglog|t]

Como T1,Ty, ... sao iid e E(T1) =1, a LFGN nos da (T1 + ...+ T}y))/t = 1,
q.c, quando t — co. Seja € > 0. Para cada w, existe um nimero 7(w) tal que t > 7

se 2) vale, entao lim sup = 1, q.c. Portanto, o resultado segue pois

implica

1 T1+...+
<
14~ t

T[t] <1l+e¢,

ou

t
— <N +...+Tp<(1 t
T3> 1+ + [t]_( + e)t,

portanto para tal ¢ temos

W(Ty + ...+ Tpyy) — W(t)| < sup W (s) — W(t)].
t(1+e)"1<s<t(1+e)

Seja tp = (1 + ¢)*. Entdo, se t <t < tj41, entdo

W(Ti+...+Ty) =W < sup  [W(s) - W(t)

tp—1<8<tr+2

<2 sup W (s) = W(tg—1)|

tp—1<8<tpy2

=: 2M;.
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W (Ty+.. ATy ) —W (1)

Para mostrar que Dy — 0, onde Dy = /2tloglogt, é suficiente
provar que, para A > 0 arbitrario, limsupy, My/D;, < A, para D; < D;. Para
tanto, usamos Borel-Cantelli. Note que

P{M;, >z} = P{ sup  [W(s)—W (tp_1)| > x} - 2P{\W(tk+2)—W(tH)\ > x}
tp—1<8<tp+t2
Note, também, que

thoo —tho1 = 1+ ) [(1+e)? — (1 +e)7 Y =t
com 6 := (1+¢)? — (1 +&)7! =2¢ + 2. Vamos considerar

M, W (tkt2) — Wtk-1)
Pq—> \/26} _4P{ > 2+/loglogt
{Dtk V2 — th—1 508tk

4 / e 2g < 2 —evioglogtyrz _ 4 1
\/ﬂ 2v/loglog t, m \/7 k2[log( )]
para k suficientemente grande.
Segue que

ZP{Dtk>\F}<oo

ou seja My/Dy, < /2§ para todo k suficientemente grande. Como 6 pode ser
feito arbitrariamente pequeno, tomando-se € arbitrariamente pequeno, obtemos o
resultado. [

Problemas

1. Prove que uma projegao m; é uma funcgéo continua definida sobre C([0, 1]).
2. Prove o Teorema 9.6.

3. Prove que T, da Aplicagdo [2] seguindo o Teorema 9.8 tem uma distribuigdo estével,
com {ndice a = 1/2. Esta distribuigao é chamada lei de Lévy.

4. Prove (9.8).

5. Na prova do Teorema 9.7, prove a afirmagdo: set; < tz, temos que E{e?1Ven Tis2Ut} —
E{eisl Xty tis2 X, }

6. Prove o afirmado na Nota depois da prova do Teorema 9.9.

7. Usando o Teorema 9.4 (Donsker) e Coroldrio 9.1, prove que

2
P{ max et /2dt
k<n U\f \/277
onde S,, = 2?21 Y;, e Y1,Ys, ... sd0 v.a’s i.i.d, com medla zero e variancia 2.
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162 CAPITULO 9. O PRINCIPIO DA INVARIANCIA
8. (Teorema de Donsker no caso Lindeberg) Sejam Y, 1,Y,2,...,Y, s, v.a’s indepen-
dentes, de média zero, variancia o7, ; € Spi = 35—y Yo j, s5; = > ;-1 05 ;- Seja Xy, 0
processo estocdstico com trajetdrias continuas, definido por X,, = {X,,(¢),0 <t <1},
2
; s
Xn(t) = Sn717 se t= 271,1 )
Sn,i S kn
e linear entre os valores. Suponha que os Y’s satisfagam as condigbes do Teorema de
Lindeberg. Prove o Teorema de Donsker nesse caso.
9. Seja W a medida de Wiener. Encontre:
(a) W{z € C([0,1]) : supg<pc o 2(t) < 1}
(b) W{z € C(]0,1]) : 0 < z(¢t) < 1, para todo t}.
10. (a) Seja T um tempo de parada, com E(T) < oco. Se X for um MB, prove que

E(Xrt) =0 (Use o TAO).

(b) Usando (a), prove que se b > 0, entdo o tempo esperado para que o MB atinja b
é infinito (mesmo que o MB atingird b com probabilidade 1).
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Capitulo 10

Cadeias de Markov

Neste capitulo estudaremos os conceitos e propriedades principais sobre cadeias
de Markov discretas. As referéncias que serao usadas sao Chung (1967), Freedman
(1983) e Norris (1997).

10.1 A propriedade de Markov

Definicao 10.1. Seja X = {X,,,n > 0} um p.e com parametro discreto e F, =
F{X1,...,X,}. Dizemos que X é um processo de Markov se, para todo conjunto
de Borel B e todo n, temos

P{X,1 € B|F,} = P{X,,41 € B|X,,}. (10.1)
A equagao (10.1) é chamada Propriedade de Markov.
Note que X é um p.e de Markov se, e somente se,
E{f(Xn+1)|Fn}t = E{f(Xn+1)|Xn},
para toda funcao f de Borel limitada.
Exemplo 10.1. Sao exemplos triviais de processos de Markov:
(1) Uma sequéncia {X,,n > 1} de v.a’s independentes.
(2) Uma sequéncia {X,,,n > 1} de v.a’s tais que X,, = Y1+...+Y,,sendo Y;,i > 1
independentes.
As duas proposigoes a seguir dao critérios para se saber se X é um p.e de Markov.

Proposicao 10.1. Seja .7-",,1 = F{Xn+1, Xnt2,...}. X é um processo de Markov se,
e somente se, para todo M € F,, tivermos P(M|F,) = P(M|Xp).
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164 CAPITULO 10. CADEIAS DE MARKOV

Prova: (<) trivial

(=) Sabemos que, para toda funcao de Borel f, limitada,

E{f(Xn+1)|]:} = E{f(Xn+1)|Xn} (10'2)

Considere f : R? — R, Borel, limitada. Vamos provar a relacio correspondente a
(10.2), para f(X,+1, Xp42). Para isso, considere primeiramente f(z,y) = g(z)h(y),
sendo f e g funcdes borelianas limitadas. Temos que

E{f(Xnt1, Xni2)|Fu} = E{g(Xni1))M(Xns2)| Fn} = E{g(Xn1) E[M(Xny2)| Fria]| Fn},

pois Fpt1 O Fp. Por (10.2), o dltimo termo da igualdade acima é igual a

E{g(Xn11) E[(M( Xni2)[Frr]| Xn} = E{g(Xn11) E[(M( X 42)[ Xn41][ Xn} =
= E{Q(Xn-&-l)E[h(Xn-i-?)’Xn-i-l? XHHXN} = E{E[Q(Xn+1)h(Xn+2)|Xn+1y Xn”Xn} =

E{Q(Xn+1)h(Xn+2)‘Xn}a
pois F{X,, Xy+1} D F{X,}. Portanto,

E{f(Xn+1a Xn+2)‘]:n} = E{f(XnJrla Xn+2)|Xn}a (10-3)

para f da forma acima. Por um argumento de classe monotonica (10.3) vale para
qualquer f boreliana, limitada de R? em R. De modo similar, podemos provar que

E{f<Xn+1u Xn+27 cee 7Xn+k)“7n} = E{f(Xn—i—lu Xn+27 v 7Xn+k)‘Xn}a

para toda funcdo de Borel limitada f : RF — R.

Em particular, se A € F{X,11,..., X1k}, entdo P{A|F,} = P{A|X,}, to-
mando f = I4. Como ]:,/l = F{Xnt+1, Xnt2, ...} = V2 F{Xnt1,. .., Xpyk}, temos
o resultado por um argumento de classe monotonica. [

Proposicao 10.2. X é um processo de Markov se, e somente se, sempre que M &€ .7-";
e N € F,, tivermos P{M N N}|X,} = P{M|X,} P{N|X,}.

Prova: Serd suficiente provar que a proposicao é equivalente a Proposicao 10.1.

(a) Suponha que

P(M|F,) = P(M|X,), M€ F,. (10.4)
Mostremos que P(MN|X,) = P(M|X,)P(N|X,), para N € F,,. Temos que

P(M|Xn)P(N|Xp) = E(In|Xn) E(In|Xn) =

E(INE(Iyn|X0)|Xn) = EUINE(In|Fn) | Xn),
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10.2. CADEIAS DE MARKOV 165

pois E(Iy|Xy) é F{X,}-mensuravel e por (10.4). O ultimo termo é igual a
E(E(InIn|Fa)|X0) = E(INTn| X)) = P(M N N|X,.),
pois Iy é F,,-mensuravel.
(b) Suponha, agora, que
P(MNN|X,)=P(M|X,)P(N|X,). (10.5)

Mostremos que (10.4) vale. Tome qualquer conjunto N € F,, e considere
/ P(M|Xy)dP = E(INE(In|Xyn)) = E(E(IN|Xn)E(In|Xn)) =
N

— E(P(N|X,)P(M|X,)) = E(P(M N N|X,)) = P(M N N),

usando (10.5). Considere, agora,

/ P(M|F,)dP = / E(Iy|F)dP = / [wdP = P(M A N)
N N N

pela definicao de esperanca condicional, dado que N € F,,. Portanto, para qualquer
conjunto N € F,, temos

/ P(M|X,)dP = / P(M|F,)dP,
N N
o que implica que P(M|F,) = P(M|X,). O

Esta proposi¢ao nos diz que, dado o presente, o passado e o futuro sdo indepen-
dentes.

Corolario 10.1 Se Xy, X1,...,X, é um processo de Markov, também o serd X,,

Xnt,..., Xo.

10.2 Cadeias de Markov

Definigao 10.2. Seja X = {X,,,n > 1} um processo de Markov. Seja I o conjunto
de todos os possiveis valores de X,, o chamado espaco de estados de X. Suponha
que I seja enumerdvel. Nesse caso, chamamos X de Cadeia de Markov (CM).

No caso de uma CM, a propriedade de Markov fica
P{Xn+1 = Zbn—&-1|‘X'O =10, X1 =11,...,Xp = ln} = P{Xn—i-l = in+1|X = in}y
ou, alternativamente para todo k > 1e 0 <ng <mni--- <ng,

P{M|Xp, = i0,..., Xn, = ix} = P{M|X,, =i}, se M€ F, .
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Por exemplo,
P{Xg = a,X5 == b’XQ == C,Xg = d} = P{Xg == a,X5 = b|X3 = d}

Nao é verdade, em geral, que se M € .7:7;, entao

P{M|X1 € Ay,..., X, € Ay} = P{M|X,, € Ay},

contudo é verdade que, se N € F,,, entao
P{M|N, X,, =i} = P{M|X,, = i}.

Definicao 10.3. Seja X = {X,,,n > 0} uma CM. Seja p;, := P{Xo = k}. Entao,
{pr,k € I} é chamada a distribui¢ao inicial de X. Se P{Xy = k} = 1, para algum
k € I, dizemos que X comeca em k.

Definicao 10.4. A probabilidade de transicao do estado i para o estado j no tempo
n é dada por P{X,+1 = j|X, = i}. A seguir, sempre consideraremos cadeias de
Markov homogéneas, isto é, cadeias para as quais essa probabilidade nao depende
de n e a denotaremos por p;;. A matriz [Pij](i,j)e 12, € chamada matriz de transicao.

Uma matriz [a;j]; j)erz € uma matriz estocdsticase a;; > 0 e 3 ;cya;; = 1. Uma
matriz subestocdstica satisfaz a;; > 0 e Zjel a;;j < 1.5e C = AB, e A e B sao
estocéasticas, C' também é.

Suponha que queiramos calcular P{Xy = i, ..., X, = i, }. Temos
P{Xo=1i0,...,Xn =in} = P{X,, = in|Xo=1d0,..., Xpn—1 =ipn-1}

XP{X() =19,... 7Xn—1 = in—l}
= P{Xn = Z‘n‘)(n—l = Z‘n—l}—P{){—n—l = Z‘n—1|—X*O = iOv v 7Xn—2 = Z.71—2}
xP{Xo =g, ..., Xn—2 =in2},

e prosseguindo, obtemos no final
P{Xo=1i0,...,Xn = in} = DigPigir Piriz = Pin_1in-

Teorema 10.1. Seja I um conjunto enumeravel e {p;,i € I} uma distribui¢ao de
probabilidade sobre I. Seja [ﬁij](i,j)e 12, uma matriz estocdstica. Entao, existe uma
CM X = {X,,,n > 0} tendo {p;} como distribuicao inicial e [p;;](; j)er> como matriz
de transicao.

Prova: Seja Q = I*°, ou seja 2 é o conjunto de todas as sequéncias w = (ig, i1, - .),
com ix € I. Tome F como a o-dlgebra produto sobre €.
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Um cilindro baseado nas coordenadas 0, 1, ..., k é um conjunto da forma {w € Q :
wo = g, w1 = i1,...,wk = ig}. Seja Fy a o-dlgebra em ) gerada por tais cilindros.
Defina Py, sobre (2, Fj) por: se Ay = {w € Q: wy =1ip, w1 = i1,...,wk = ik}, entado

Pk?(Ak) = ﬁiop\ioil te 'ﬁikflik'

Entao, as Py sao consistentes, isto é, Py restrita a (2, Fy) é Px. Logo, pelo
teorema de Kolmogorov, existe uma probabilidade P sobre (2, F) tal que P restrita
a (Q, Fr) é Pg.

Assim, nosso espago de probabilidades basico é composto por: = I, P a

probabilidade gerada por Kolmogorov de acordo com o exposto acima, F é a o-
algebra produto.

Defina X = {X,,,n > 0} como segue: se w = (wp,wr,...), entdo X,(w) = wy.
Segue que X é Markov, com as distribuigoes corretas. De fato:

(a) E imediato que X tem a distribuicao inicial correta.
(b) X tem as probabilidades de transi¢ao corretas:

P{X, =i, Xp1 = j} _

Sty P41 =, X = 1, X1 = i1, Xo = io}
Sioi PIXn =1, Xp1 = in1,..., X0 = io}

Zﬁ’ioﬁioil o 'ﬁ’infliﬁij = Pii
Zﬁioﬁioil o 'ﬁin—li Y

(c) X é Markov:

P{Xpi1=j|Xo=1i0,..., Xn-1=in_1,Xp =i} =

P{XO = 7;07 v ,anl = Z'nfla Xn = i» Xn+1 = ]} _ ﬁioﬁioil . 'ﬁ’in_ﬂﬁi]’
P{Xy =ig,..., Xp =1} DioPigiy - - - Din_1i

=pij = P{ X1 =j| X, =i}, O

Definicao 10.5. As probabilidades de transicao em n passos do estado i para o
estado j sao definidas por:
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py = 1, sei=j,
= 0, se 17&]7
W _
P;; = DPij,
1
P = S ey (10.6)
kel

Por exemplo,

P{Xn+2 = ]‘Xn - Z} = ZP{Xn—i-? =7, Xn+1 = S‘Xn = Z}
sel

= P{Xn2 = j|Xn1 = 5, Xp = i} P{Xpp1 = 5| X, = i}

sel
= § DisPsj = pzj )
sel

onde usamos a propriedade de Markov na primeira probabilidade da soma, despre-
zando X = i. Usando (10.6) repetidamente, encontramos

m+n)
szk pka .
kel

Esta é chamada equagao de Chapman-Kolmogorov.
Sejam P := [p;;] e P := [pgl)] para todo n > 0. Entao, de (10.6) obtemos que

P(™) = P" para todo n e finalmente,

p(ntm) _ pntm _ prnpm _ pn)p(m)

Exemplo 10.2. Vamos considerar alguns exemplos de CMs.

(a) Uma CM com probabilidades de transicao p;; diz-se espacialmente homogénea se
pi;j ¢ uma funcao de j—i somente. Por exemplo, considere {Y;, ¢ > 1}, uma sequéncia
de v.a’s discretas, i.i.d, e suponha que Yj seja independente de {Yj,k > 1}. Defina
X=Yy+Y1+...4Y,. Entao, X tem incrementos independentes e é espacialmente
homogénea.

Uma reciproca parcial desse resultado ¢é a seguinte. Seja X uma CM com espaco
de estados I e suponha que p;; seja uma funcao de j — i e que I seja um grupo
aditivo. Entao, X tem incrementos independentes. Ou seja, se Yy = X, Y1 =
X1—Xo,..., Y =X, — X1, entdo Yy, ..., Y, sdo independentes e {Yj, k > 1} sdo
i.i.d.
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De fato, observe que ), ; piitk = Zje]pi,j = 1. Seja qi; = pii+k, de modo que
> qr = 1. Entao,
P{Yy =io, Y1 =i1,..., Y, = in} =

P{XO :io,Xl :il—l-i(),XQ :i()—f-il—i-ig,...,Xn :i0+...+in} =
= Dig " Pig,io+i1 * " " Pio+...+in—1,00+...+in — Pio * Qi1 " Qiz """ Gip

Somando, obtemos que para j > 1, P{Y; = i;} = ¢;, e finalmente

P{Yy =ig,...,Yy =in} = P{Yy =i} P{Y1 = i1} ... P{Y, = i, }.

Como um outro exemplo, se I ¢ um conjunto de inteiros positivos e se p;; depende
de j — ¢ somente, entao X tem incrementos independentes.

(b) Passeio aleatdorio comegando em ig. Nesse caso, I é o conjunto dos inteiros, a
distribuicdo inicial é dada por P(Xy = ip) = 1 e a matriz de transigdo é definida
por:

bii+1 = D,
Pii-1 = ¢=1-p,
Dij 0, caso contrario.

Pelo exemplo (a), essa CM tem incrementos independentes. De fato, se Y7,Ys,. ..
sao i.i.d, cada uma com distribuicao P(Y; = 1) = p, P(Y1 = —1) = 1 — p, entéo
Xpn=tg0+Y1+...4Y,.

(c) Considere, agora, o passeio aleatério com absor¢ao no zero, comegando em ig.
Aqui, I é o conjunto dos inteiros nao negativos, p; i1 =p, ¢ >0, p;j;—1 =1—p, i >
0, e poo = 1.

(d) Passeio aleatorio com reflexdo no zero. Aqui, piit1 =p, 1 >0, pii—1 =q, i >
0, po,o = ¢, Po,1 = p-

10.3 Propriedade forte de Markov

Seja X = {X,,,n > 0} uma CM sobre (2, F, P) e F,, = F{Xo,...,Xn}. SejaT um
tempo de parada para {F,}, possivelmente infinito. Lembremos que {T'=n} € F,
e defina Fp como a classe dos conjuntos A € Fa tais que AN{T =n} € F,, sendo
que A e Fa sao tais que A = {w : T'(w) < oo} (A € F) e Fa é a restricao de F a
A, ouscja, Fa ={ANA:Ae F}.

Defina Pa sobre (2, Fa) como segue, supondo P(A) > 0. Se A € Fa, entdo

PA(A) = %. Entao, (A, Fa, Pa) é um espago de probabilidade.

Morettin-Gallesco - dezembro/2025



170 CAPITULO 10. CADEIAS DE MARKOV

Defina Y = {Y,,,n > 0} por Y, (w) = Xpin(w), se T < co. Ou seja, Y, (w) =
Xiyn(w), se T(w) = k. Entdo, Y é um processo estocdstico sobre (A, Fa, Pa),
chamado o processo pos-T'.

Teorema 10.2 (Propriedade forte de Markov) Seja X = {X,,,n > 0} uma CM, T
um tempo de parada e Y o processo pos-T. Entao, Y é uma CM sobre (A, Fa, Pa)
tendo distribui¢ao inicial

PA{Yy =k} = P(lA) > P{X,=kT=n} (10.7)
n>0

Além disso, se A € Fr, teremos
PA{A Yy =ig,..., Y, =in} = PA{A, Yo =0} P{X1 =41,..., Xy, = in|Xo =i0}-

(10.8)
De modo equivalente,

Pa{Yi=i1,.... Yy =in|A, Yo =io} = P{X1 = i1,..., Xp = in| X0 = i0}-

Em particular, Y tem as mesmas probabilidades de transicao que X.

Prova: Primeiramente, se (10.8) vale, entdo Y é um processo de Markov sobre
(A, Fa,Pa) (é ébvio que Y tem distribuigao inicial dada por (10.7)). De fato, se
tomarmos A = A em (10.8),

PA{% :7;07---7Yn :ln}
Pa{Yy =ig,..., Y1 = i1}

PA{Y = Zn’YO = 7;07 e 7Yn—1 = in—l} =

. P{Xi=i1,..., Xn = in Xo = i0}
P{Xl = il, .. .,Xn,1 = in,1’X0 = io}
. P{Xo=io, X1 =i1,..., X = in}
P{Xo =10, X1 =11,...,Xpn1=lin_1}
= P{X,, = in|Xn-1=tn-1,...,Xo =10} = P{X;, = in|Xpn-1 =in-1}
- P{Xl - Zn’XO == in—l} - PA{Yl - Zn|}/0 - in—l}-
Resta verificar (10.8). Tome A € Fr. Temos

Pa{AYy =ig,.... Yo =in} =Y Pa{A Yy =rig,...,Yn =in, T =k}
k>0

1
=— N P{AT =k, X, =i0,..., Xpin = in}
P(8) 2

1 . . . .
= @ZP{XR+1 2217...,Xk+n:zn’Xk :ZO7A7T:k}P{AaT:k,Xk:Z0}7
k>0

Morettin-Gallesco - dezembro/2025



10.3. PROPRIEDADE FORTE DE MARKOV 171

sendo que a segunda igualdade decorre da definicdo de Y,,. Como A € Fr, temos
que AN{T = k} € F, logo a tultima soma ¢ igual a

> P{Xpp1 =ity Xpan = in| Xpp = 0} P{A, T = k, X, = ip}
k>0

=P{Xy=i1,...,Xn = in|Xo =0} Y P{A,T =k, X} = o}
k>0

= P{X1 =1i1,...,Xp = in|Xo = i)} P(A)Pa{A, Yy = ip}. O

Algumas extensoes

[1] Suponha que T seja um tempo de parada tal que Pa{Yy =io} = 1. Seja A € Fr
e B e F{Yy,Y1,Ys,...}. Entao, PA(AN B) = PA(A)Pa(B).
De fato, seja A € Fp. Entao,

PA{A, Yy =1ip,..., Y, =in} = PA{A, Yo =00} P{X1 =i1,..., Xp = in]| Xo =0},

por (10.8). Temos que PA{A,Y) = ip} = Pa(A), usando Pa(Yy = ip) = 1, logo a
ultima probabilidade é igual a

PA{YO =10,...,Yn = Zn}
Pa{Yy =io}

PA(A)PALY: =iy, ...,Y, = in|Yo = io} = Pa(A)

pois a distribuicao condicional de Y é igual a dsitribuicao condicional de X. Segue
que PA(AN B) = PA(A)PaA(B), onde B = {Yy = ig,..., Y, = in}, portanto essa
igualdade vale para todo B € F{Y;,i > 0}.

[2] Suponha que T' e Y satisfacam as hipdteses de [1]. Suponha, ainda, que P(T <
o0) = 1. Entdo, PA = P (pois P(A) = 1). Logo, se A e B sao como em [1],
P(AnB)=P(A)P(B).

Isso significa, claro, que A e B sao independentes, isto €, passado e futuro sao
independentes nesse caso.

[3] Sejam T < Tp < --- < T tempos de parada para X. Seja A, = {T,, < co}.
Entao, A1 D Ay D --- D Ap.

Suponha que Pa, {X7, = k;} = 1, para cada i e que T; < T;4; sobre A;. Sejam
Aj, Ao, ..., Any1 conjuntos tais que:
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A1 S ./."Tl,
Ay € f{XTl,XT1+1,...}ﬂfT2,
Az € ./T{XT2,XT2+1,...}ﬂfT3,

e assim por diante, até
AN+1 S F{XTNaXTN—&-h .. }

Entao,
N+1 N

P( O Ai) = P(Ans1) [ Pas(As).

De fato, temos que

N+1 N+1 N+1
PAI( ﬂ Az) :PA1<A10( m Al>) :PAl(Al)PAl( ﬂ Al)
=1 =2 =2
P(Ag) N+1
= Pp, (A1) Pa, (A2) 575 Py (A3) Pag Ai) =...
A 1)4°A 2 P(Al) A 3)4°A (Q )
= Pp, (A1) Pa,(A2) -+ PAN_l(AN—l)ImPAN(AN)PAN(ANH)-

[4] Suponha que os T;’s sao como em [3], mas também que 7; < oo q.c., para
1 <i<N. Seos A; sao como em [3], temos

N+1 N+1

p( O Ai> - 1:[ P(A).

Exemplo 10.3. Suponha que X = {X,,n > 0} seja um passeio aleatério usual,
comecando no zero. Seja 171 = inf{n > 0: X,, = 0}, T3 o préximo tempo depois de
T; tal que X,, = 0, e assim por diante. P{T} < oo} =1 e portanto P{T; < co} = 1.
Também, X7, = 0, para todo i. Sejam: M; o maximo de X no intervalo [0,71), M2 o
maximo de X em [T7,T5) etc. Entao, pelo visto acima, M7, Ma, ... sdo independentes
(e identicamente distribuidas).
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10.4 Classificacao de estados

Definicao 10.6. Seja I o espaco dos estados da CM X e P = [p;;] a sua matriz de
transi¢ao. Dizemos que i atinge j (i — j) se pl(;) > 0, para algum n > 0. Dizemos
que i e j comunicam (i <> j) sei — j ej—i. P (oua CM X) é dita iredutivel se
todos os estados de I comumicam entre si.

Defina a classe C; como o conjunto de todos os estados j que se comunicam com
i; C; é chamada de classe comunicante.

Um estado i é essencial se ele se comunica com todo estado j que é atingido por

ele. Caso contrario, o estado é nao essencial.

Exemplo 10.4. (a) No passeio aleatério simples, todo estado é essencial.

(b) No passeio aleatério com o zero sendo estado absorvente, o estado 0 é essencial,
todos os demais sao nao essenciais.

Fatos sobre Classes Comunicantes

[1] Para todo i € I, i <> 1.

[2] Sei — jej— k,entdo i — k.

Prova: use Chapman-Kolmogorov (veja o Problema 4).
[3] Se i <> j, entao C; = Cj.

Prova: Suponha k € C;. Por hipétese, i <+ j e i — k (pois k € C;). Portanto,
j— 11—k, logo j — k, por [2]. Também, k — ¢ — j, logo k — j , de onde C; C Cj.
De modo similar, C; C C.

[4] Suponha que C; seja uma classe comunicante. Se j € C; é essencial, entao todos
os estados de C; s@o essenciais (veja o Problema 5).

Defini¢ao 10.7. Seja j um estado para o qual {n > 1 :pg-?) > 0} # (0. O periodo
de j é o maximo divisor comum de {n > 1: pg-?) > 0}. Caso o periodo de j é igual
a 1, o estado j é dito aperiodico.

[5] Seja C; uma classe comunicante tal que |C;| > 2. Entao, todos os estados de C;
tém o mesmo periodo.

Prova: Em primeiro lugar, observe que como |C;| > 2, para todo j € C; o conjunto

{n>1 :pg?) > 0} # 0. Agora, sejam d; e d; os periodos de i e j, respectivamente.

Seja ng > 1 tal que pl(»?o) > 0. Como i < j, existem m e n tais que pl(;-n) >
0e pg-?) > 0. Portanto, p§?+n+n°) > pg?)pgb 0) pgn) > 0, de modo que d; divide

(2no) - p(no) (no)

n + ng +m. Mas também, p,; i D > 0, logo pelo mesmo argumento,

Morettin-Gallesco - dezembro/2025



174 CAPITULO 10. CADEIAS DE MARKOV

p(”+2”°+m) > pg?)pffno)pgj m 0, de modo que d; divide n + 2ng + m. Segue que d;

d1v1de n+2ng +m — (n+ ng + m), ou seja, d; divide ng. Conclui-se que d; divide
tudo que d; divide. Similarmente, d; divide tudo que d; divide, logo d; = d;. [

Exemplo 10.5. (a) Passeio aleatdrio simples: hd uma classe comunicante, a saber,
a classe de todos os inteiros. O periodo é dois.

(b) Seja X uma CM com p; 12 = 1/2, pj;i—2 = 1/2. Aqui, o espaco dos estados
é o conjuntos dos inteiros. Entao, ha duas classes comunicantes: Cj, a classe dos
inteiros pares e C1, a classe dos inteiros impares, ambas com periodo 2.

Definicao 10.8. Seja ¢ um estado com periodo d > 1. Para todo r > 0, seja

={jeC;: pfndﬂ) > 0, para algumn > 0}.

Essas classes sao chamadas subclasses movendo-se ciclicamente. Observe que C; +d —
T
C7 para todo 7.

[6] As classes C7, r € {0,1,...,d — 1}, formam uma partigao de C;.

Prova: Em primeiro lugar, observe que como C; é uma classe comunicante, C’O
C’d L= ;. Agora, seja j € cin C’” com 0 < r <7’ <d. Temos que existem
(nd-‘rr) >0e p(md—i—r)

)

> (0. Por outro lado, como j € C;

(nd+n'+r) (md+n +7r’)
it

n > 0em > 0 tais que p,

existe n’ > 1 tal que p(u )

ji >0ep > 0.
Logo d divide md +n/ +7 — (nd +n' +7) = (m —n)d+1 —re portanto d divide

r’ —r o que é impossivel. Portanto, C7 N Cf’ =0. O

> 0. Deduzimos que p;

[7] pgz) > 0 somente se j € CT e k € C] ™™ para algum r.

Prova: Suponha que p(.z) > 0 com j € C] para algum r € {0,...,d —1}. Por

(md+7") (md+r+n)

definicao de C] existe m tal que Dij > 0. Deduzimos que p;; > 0, logo

kecCi™. O

[8] Se j,k € CT, entao pg.zd) > 0 para todo n suficientemente grande.

Prova: E uma consequéncia do seguinte resultado classico da arithmética: Seja
S C N estédvel por adigdo com maior divisor comum M. Entao para todo n grande o
suficiente nM € S. Aplicamos este resultado ao conjunto {n > 1: p(@ > 0}. Agora,

(53
escolhe m1 e mo tais que pé?’l) >0e pgcnﬂ > 0. Obtemos

+nd+ d

para n grande o suficiente. Como, por [7], m; + me é um multiplo de d, provamos
o resultado. [
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Exemplo 10.6. Considere o passeio aleatério ordinario: C{ contém todos os inteiros
pares, C& todos os inteiros impares, Cg todos os inteiros pares etc. Depois C’? contém
todos os inteiros fmpares, C} todos os inteiros pares, etc.

10.5 Recorréncia

Chamemos de fz-(f) a probabilidade de alcancar o estado j pela primeira vez em
n > 1 passos, dado que o processo comegou no estado %, ou seja

I =P{X1# 4, Xo # oo, Xno1 # 4, Xn = ] | Xo =i}
Seja, também, fl-*j = Zn21 i(jn) a probabilidade de que X, atinja j, comecando
em 4. Denote por T; = inf{n > 0: X,, = j}. Entao,

) = P{Ty = n|Xo =i}, ff=P{T; < ool Xo = i}.

1,

Denotemos por U;; o nimero esperado de visitas ao estado j, comecando em 7

(se i = j, contamos o estado inicial).

Lembrando que pl(-;)) =1l,sej=1e pg.)) =0, se j # i, entao U;; = Enzopgl)- De

fato, se chamarmos u; = ), - I1;3(Xy) o niimero de vezes que X, = j, teremos

Uij = BE(uj| Xo = i) = ZE(I{j}(Xn)\Xo =)
n>0

=Y P{X,=jlXo=i} =Y p.

n>0 n>0

Definicao 10.9. Um estado i é chamado recorrente se P{X,, =i, i.v|Xo=1i} =1
e é chamado transitério se P{X,, =i, i.v|Xyo =i} =0.

Mostraremos que essas sao as duas unicas possibilidades.
Teorema 10.3. (a) Suponha P{T; < c|Xy =i} = 1. Entao, o estado i é recorrente.
(b) Nesse caso, Enzopg?) = 00.

Prova: (a) Sejam:

TV = inf{n > 0: X, =i},

T? =inf{n > TV : X, =i},

)

e assim por diante. Entao, pela propriedade forte de Markov, os T; sao i.i.d, finitos.
Logo,
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P{X, =i, iv|Xg=1i} = P{T" < 00, T/? < 00,...|Xo =i} =

lim P{TW < oo,..., T\ < 0o} = lim P™{T} < co|Xo =i} = 1,
n—oo

n—oo

usando a hipdtese (a).

(b) Temos que a soma Y pE?) nos da o numero esperado de vezes que visitamos o
estado 4, comecando em %, logo sz(‘?) = E{_ I{#(Xn)|Xo = i} = oo, dado que a
soma afetada pelo valor esperado é +o0o0 q.c. [

Teorema 10.4. (a) Suponha que P{T; < oo|Xy = i} < 1. Entao, o estado i é
transitorio.
(b) Nesse caso, anopg?) =[1-f]! < oo

v

Prova: (a) Defina Ti(l),TZ@)7 ... como na prova do teorema anterior. Note que

Ti(l) = +oo é possivel. Seja A, = {T1 < oo,...,T;—1 < oo}, n > 2. Temos que
P{X, =i, iv|Xg =i} = P{T" < 00, T}? < 00,...|Xo = i}

= lim P{T" < 00,..., T < o0|Xo =i}

n—o0

= Tim Pa, (1" < 00) -+ Pay (TP < o) P(T{Y < o)

n—00

= lim (P{T" < 00| Xy = i})" =0,

n—oo
usando a propriedade forte de Markov.

(b) Temos

Z pl(ln ) = E;(ntmero de visitas ao estado 1)

n>0
= Z kP{houve exatamente k visitas | Xo =14}
=Y kP{TY <oo, j <k -1, T = ool Xo = i}
= > RP{TY = ool Xo = iH(P{T < 0| Xg = i})H!

=[1-fil Zk(f;)kfl

k>1

= 1/(1 - f3)-
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N ., (n) . .
ote que 7 é recorrente se, e somente se, »_ p,;;’ = 00, quUe por sua vez é equi-

valente a P{T; < oo|Xp = i} = 1. Também, i é transitério se, e somente se
> >0 p(-n) < 00, que é equivalente a P{T; < co| Xy =1} < 1.

1)
Teorema 10.5. Suponha que C seja uma classe comunicante e que j € C seja
recorrente. Entéo, todos os estados de C' sdo recorrentes.

Prova: Suponha que j seja recorrente, entao j € essencial. Segue que todo estado em
(n) (m) (k)

C é essencial. Portanto, se ¢ é algum estado de C, entao Py > 0, Py > 0, p;; > 0,
de onde p§?+k+m) > g;l)py;)pﬁn) > (0. Considere
(n) (ntk+m) _ (n) (m) (k) _
DILAED I =Py Py )Py = +oo,

n>0 k>0 k>0

pois j é recorrente. Logo i é recorrente. [

Teorema 10.6. Suponha que X seja uma CM, com espago de estados I finito.
Entao:

(a) o estado i é recorrente se, e somente se, i for essencial;

(b) existe pelo menos um estado essencial.

Note que é sempre verdade que, se i for recorrente, entdo ¢ é essencial. A parte
(b) do teorema nao vale se I for infinito. Veja o Problema 6.

Prova: (a) Pela observagao anterior, é suficiente provar a parte (<). Suponha que
i seja essencial. Como I é finito, existe um estado j tal que P{X, = j, i.v |Xo =
i} > 0. Seja T; = inf{n > 0 : X,, = j}. Entao, 0 < P{X,, = j, iv |[Xo =i} =
P{TJ < OO,XTJ. = 7, XTj+n =7, iv |X0 = Z} = P{XTj-i-n =7, iv ’XT]. = ],T] <
v, Xo = i}P{T; < oo|Xg = i} = P{X, = j, iv |[Xo = j}P{T} < oo|Xo = i},
pela propriedade forte de Markov. Segue-se que P{X,, = j, i.v |Xo = j} > 0, logo
P{X, = j, i.v |Xo = j} = 1. Portanto, j é recorrente. Como i se comunica com j
deduzimos que 7 é recorrente.

(b) Imediata. O
Seja C' uma classe comunicante. Entao, nds mostramos que ou todos os estados

sao recorrentes, ou todos sao transitorios. Se todos os estados forem recorrentes,
dizemos que C é uma classe recorrente senao C' é uma classe transitoria.

10.6 Recorréncia positiva

Comegamos com os conceitos de estado recorrente positivo e de classe recorrente
positiva. Nesta segao usamos a notacao P;{-} = P{-| Xo =i} parai € [ e E; é a
esperanca correspondente.
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Defini¢ao 10.10. Um estado recorrente j é recorrente positivo se Ej(T;) < oo e é
recorrente nulo se E;(T;) = co. Uma classe recorrente é chamada recorrente positiva
(resp. nula) se todos os seus estados sao recorrentes positivos (resp. nulos).

Teorema 10.7. Seja i recorrente positivo e j <> i, entao E;(T}) < oo.

Prova: Sejam T\ = inf{n > 0: X, = i}, T® = inf{n > TV : X,, = i} e T
definido similarmente para todo n > 3. Defina Uy, Us, ... como segue: U = 1 se X,
esta no estado j para algum n tal que Tl-(l) + ...+ Ti(k) <n< Ti(l) +...+ Ti(kﬂ) e
Ui, = 0 caso contrario. Pela propriedade forte de Markov, Uy, Us, ... sao i.i.d. Seja
S =inf{n : U, = 1}; temos que E;(S) < oo, pois

P{S=k}=P{U =0,...,Us_, =0,U, = 1} = P{U; = 0}* ' P{U; = 1}

e P{U; = 1} > 0. Como Tj < Ti(l) + Ti(2) + ...+ Ti(s), temos que E;(T;) <
E(TY + ...+ T9)) = B{(T)Ei(S) < o0, pela identidade de Wald. [

1

Teorema 10.8. Seja C' uma classe recorrente. Entao ou todos os seus estados sao
recorrentes positivos ou todos sao recorrentes nulos.

Prova: Suponha que i seja recorrente positivo e j <> ¢ com ¢ # j. Seja p :=
P{T; < T;}. Como i e j comunicam temos que p > 0. Logo, pela propriedade forte
de Markov notamos que

Ei(T:) > Ei(Tilir,<1y) = pE;(Th)

e portanto deduzimos que F;(7T;) < co. Agora observe que pela propriedade forte
de Markov
E;(T;) < E;(Ti) + Ei(T;).

Usando o Teorema 10.7, deduzimos que E;(Tj) < co. [

Exemplo 10.7. (a) Os estados de um passeio aleatério padrao, com p; j+1 = pii—1 =
1/2 séo todos recorrentes nulos.

(b) Seja X uma CM com conjunto de estados I finito. Se o estado j for recorrente,
entao j é recorrente positivo. De fato, seja C' a classe recorrente contendo j. Temos
que » ico pg.?) = 1 para todo n > 0. Supomos que C tem periodo d. Para n — oo,

pelo Corolédrio 10.2 a seguir, como essa soma € uma soma finita, existe um estado
ie0<r <d, tais que limp§?d+r) = d/E;(T;) > 0, logo E;(T;) < oo, ou seja, i ¢
recorrente positivo. Mas como 7 e j estao na mesma classe, j é recorrente positivo.

10.7 Medidas estacionarias

Lembremos que um processo X = {X;,t € T'} é estritamente estacionério se, para
todo h e todo conjunto t; < ty < --- < tp, temos que (X¢,, Xt,,...,Xy,) tem a
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mesma distribuicao que (X, +n, Xigths-- -, Xt,+n) ( sempre que ¢; € T, para todo 4
et;+h €T, para todo i).

Como consequéncia temos que, se X for uma CM homogénea, com distribuicao
inicial « e distribuicao de X, {p,gn), k € I}, entao X é estritamente estaciondria se,
e somente se, o = p,(:), para todo k e todo n.

Definigao 10.11. Seja P = [p;;] a matriz de transi¢ao para a CM X = {X,,,n > 0},
com espaco de estados I. Uma medida estacionaria y sobre I é uma medida nao
trivial satisfazendo

= Zuipij, para todo j € I.
i€l
Em termos de matriz P as equagbes acima pode ser reescritas uP = u. Outros
nomes sao medida reqular ou medida invariante. Por medida nao trivial entendemos
uma medida diferente de p =0 e pu = co.

Teorema 10.9. (a) Suponha que p seja uma medida de probabilidade estaciondria
sobre I. Se X for uma CM com distribuicao inicial u, entao X é estritamente
estacionaria.

(b) Suponha que X seja uma CM estritamente estaciondria. Entao, a distribui¢ao
inicial de X é uma medida de probabilidade estacionaria.

Prova: (a) puj = ), tipij, pois p é estacionaria. Se X é qualquer CM, plgn) =

> aipgg) => ,uipl(z), pois «; = p; por hipdtese. Agora,

Hj = Z HiPij = Z(Z [kPki)Dij = Z e Zp/ﬂ-pij
‘ k k i

%

=S ) == el
k k

(n)

logo pjn = pj = aj, ou seja X, ~ Xp.

(b) Para toda CM temos p,(cl) = Zj a;pjk. Como X ¢é estritamente estacionaria,

ap = p,(gl), para todo k. Logo ap = Zj a;pjk, de modo que a é uma medida

estaciondria. O

Teorema 10.10. Seja X uma CM irredutivel entao os itens a seguir sao equivalen-
tes:

(a) X é recorrente positiva;

(b) P tem uma probabilidade invariante 7.
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Em ambos os casos, a probabilidade invariante 7 € tnica e
1

= para todoi € I.

Prova: Provaremos primeiro que (b) = (a). Para isto, vamos comegar descartando
0 caso transitorio. Suponha que X seja transitoria. Neste caso pelo Teorema 10.4,
temos que para todo i € I, lim, . pg?)

temos

= 0. Por outro lado, como 7 é invariante

Z ﬂipg?) = m;, para todo n.
el
Pelo TCD obtemos que 7; = 0, para todo i € I. Como ), ;7 = 1, temos uma
contradicao. Portanto, X nao pode ser transitéria.
Vamos considerar agora que X é recorrente. Fixe um elemento ¢ € I e considere

a medida
Ti—1

Z 1{an}] , Vjel.

n=0
Observe que v;(i) = 1 e pela irredutibilidade de X, v;(j) > 0 para todo j € I.
Podemos ver também que v; é invariante para P, de fato temos

T;
Z 1{an}]
n=1
T;
=SB | 1{Xn_1k,an}]

kel n=1

= Z Z E; [1{n§Ti,Xn,1=k}1{Xn=j}]

kel n=1

- Z Z Ei [Lner; x,_1=k}] Pkj

kel n=1
T;
> 1{Xn-1—k}] Pk;j

- Z E;
n=1

kel

= Z vi(K)prj-

kel

vi(j) = E;

vi(j) = B

Agora suponha que p é uma medida invariante para P (lembramos que por
defini¢do p é nao trivial). Mostraremos a seguir que u é proporcional & medida v;.
Podemos provar por inducao que para todo p > 0,

pA(Ti—1)
wG) = B | S L] - (10.9)

n=0
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Basta considerar o caso i # j. Para p = 0, a desigualdade (10.9) é trivial. Agora
vamos supor que (10.9) vale para p e vamos mostrar que ainda vale para p + 1. De

fato, temos que
= u(k)pr;
kel

pA(T;—1)

,LL(i)ZEi Z Lix,=k} | Pkj

kel n=0

p
= pu(7) Z Z Ei [14X, =k, n<Ty—1}) Pkj

kel n=0

p
= pu(7) Z Z E; [1{Xn:k, nSTi—l}l{Xn+1:j}]

kel n=0
[pA(Ti—1)

= :U(Z)EZ Z 1{Xn+1:j}
n=0

[(p+1)A(T3-1)

= p(i)E; Yo lxe=s

n=0

Tomando p — 400 em (10.9) obtemos
Ti—1

Z 1{Xn—]}] ( )Vz(])

n=0

u(j) = p(i)E;

A medida v; é invariante e temos que p(j) > p(i)v;(j) para todo j € I. Assim para
todon > 1,

Z):ZN( pkz _Z,U i)vi(k pkz —:UJ( vi(i) = p(i).
kel kel
Deduzimos que a ultima desigualdade é na verdade uma igualdade, o que significa
que p(k) = p(i)vi(k) para todo k tal que pg;) > 0. A irredutibilidade de X garante
que, para todo k € I, podemos encontrar um inteiro n tal que pgl) > 0. Concluimos
que pu = pu(i)y;, isto é, u é proporcional a v; (como p é nao trivial, necessariamente
u(i) € (0,00)).

Finalmente, aplicando o resultado acima a 7, obtemos que 1 = 7(I) = w(i)v;(I) =
7(4)E;(T;). Deduzimos que (i) = 1/E;(T;) e portanto E;(Tj) < oo para algum j.
Assim, por irredutibilidade, X é recorrente positiva.

Falta provar que (a) = (b). Supomos agora que X seja recorrente positiva e
definimos a medida pu tal que

1
wu(y) = v;(j) para todo j € I.
i(17)

E:
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Neste caso, i é uma probabilidade invariante para P. [

10.8 Limite de P"

Nesta secao, estudaremos o comportamento limite de pgy) quando n — oo. Como o
seguinte exemplo mostra, o limite nem sempre existe. Considere a cadeia de Markov

com dois estados e matriz de transicao

0 1
P= ( : O) |
Entdo P? = I, portanto P?" = I e P2"*! = P para todo n. Logo, p
todo 1, 5.

Como veremos, o comportamento da cadeia acima é atrelado a nogao de perio-
dicidade. A seguir apresentamos o principal resultado desta segao.

(n

) g
ij diverge para

Teorema 10.11. Seja P = [p;;] irredutivel e aperiédica com probabilidade esta-
ciondria 7. Suponha que {X,,n > 0} seja uma cadeia de Markov com lei inicial
arbitraria p e matriz de transicao P. Entao,

lim P(X, =j) — m;, para todo j.

n—oo

Em particular,

lim p@)

Jim p;;7 — m;, para todo 1, j.

Prova. Seja {Y;,,n > 0} uma CM com lei inicial 7, matriz de transicdo P e
independente de {X,,,n > 0}. Fixe um estado de referéncia a € I e defina

T=inf{n>1:X, =Y, =a}.

1) Mostramos que P{T < oo} = 1. O processo W,, = (X,,,Y;) é uma CM em I x I
com probabilidades de transicao

P(i,k)(,0) = PijPkl
e distribuicao inicial
Pik) = HiT-
Como PP ¢é aperiddica, para todos os estados 4, j, k,l temos que

Py = Pig P >0
para todo n suficientemente grande. Deduzimos que P .= [ﬁ(i,k) (N)] & irredutivel.

Além disso, P tem uma distribuicdo invariante dada por

T(ik) = TiTk,
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assim, pelo Teorema 10.10, P é recorrente positiva. Mas T é o primeiro tempo de
passagem de W, para (a,a) entdao P{T < oo} = 1.

2) Defina

Xn, sen<T,
T =
Y,, sen>T.

Mostramos a seguir que {Z,,n > 0} é uma CM com lei inicial x4 e matriz de transigao
P. A propriedade forte de Markov aplica-se a {W,,n > 0} no tempo 7', entao
(X74n, Yr4n)n>0 € ume CM com lei inicial (a, a), matriz de transi¢ao Pe indepen-
dente de
(X0, Y0), (X1, Y1),..., (X7, Y7).

Por simetria, podemos substituir o processo (X7, Y740 )n>0 POr (Yrin, X14n)n>0
que também é uma CM com lei inicial §(a,a), matriz de transigdo Pe permanece
independente de (Xo,Yp), ..., (X, Yr). Agora seja

g Yo, sen<T,
" Xn, sen>T.

Obtemos que W), = (Z,, Z),) é uma CM com mesma lei que W,,. Assim, deduzimos
que {Z,,n > 0} é uma CM com lei inicial e matriz de transi¢ao P.

3) Temos
P{Zy=j} = P{Xy = jn < T} 4 P{¥, = jin > T},

assim

|P{Xn:j}_77j‘:|P{Zn:j}_P{Yn:j}|
< P{T > n}

e P{T >n} — 0 quandon — oco. [0

Vamos ver agora o que da errado na prova acima quando P nao é aperiédica.
Considere a cadeia de dois estados do inicio desta secao que tem (1/2,1/2) como sua
unica distribuicao invariante. Comegamos {X,,,n > 0} de 0 e {Y,,,n > 0} com igual
probabilidades de 0 ou 1. Se Yy = 1, devido a periodicidade, {X,} e {Y,,} nunca se
encontrarao, e a prova falha. Consideramos agora os casos que foram excluidos no
dltimo teorema.

Teorema 10.12. Seja P irredutivel de periodo d > 1 e sejam C°,Ct, ... C% 1 as
classes ciclicas. Seja {X,,n > 0} uma CM de com lei inicial 1 e matriz de transigao
IP. Suponha que ) ;.o s = 1. Entao parar € {0,1,...,d -1} e j € C" temos

d
Ei(Ty)

hm P{Xnd+7- = j} =
n—oo
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Em particular, parai € C° e j € C", temos

lim (nd+r) _ L
n—oo Ej (T‘])

Prova. A prova sera feita em trés passos.

1) Reduzimos o problema ao caso aperiédico. Seja v = uP", entdo temos

Z V; = 1

1€CT”
pelo fato [7] da Segao 10.4. Seja Y,, = X,44+r, entao {Y,,n > 0} é uma CM com
lei inicial v e matriz de transicio P?. Pelo fato [8] da Segao 10.4, P ¢ irredutivel e
aperiédica em C". Para j € C" o tempo de retorno esperado de {Y,,} a j é E;(T;)/d.
Portanto se o teorema vale no caso aperiédico, entao

P{Xpg1r =7t =P{Yn =34} — quando n — oo,

d
Ej(T})
e logo o teorema vale no caso periddico.

2) Assume que [P é aperiddica. Se P é recorrente positiva entao 1/E;(7};) = m;, onde
m é a unica probabilidade invariante, portanto o resultado segue do Teorema 10.11.
Senao F;(Tj) = oo e temos que mostrar que

P{X,=j}—0 quando n — oo.

Se P ¢ transitoria o enunciado acima é imediato. Desta forma, s6 temos que consi-
derar o caso recorrente nulo.

3) Suponha que P seja aperiddica e recorrente nula. Entao
(o]
Y Pi{Ty > k} = E; (Ty) = oo.
k=0

Dado € > 0 escolhe K tal que

=

Pj{Tj > k‘} > g
0

B
Il

Entao paran > K — 1, temos

n
1> Z P{Xy=jeXn#jparam=k+1,...,n}
k=n—K+1
n
= Y P =P T > k)
k=n—K+1
K—1

=Y P{Xu =3} P{T; >k}
k=0
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portanto devemos ter P{X,,_x = j} < &/2 para algum k € {0,1,..., K — 1}.

Agora, seja {Y,,n > 0} uma CM com lei inicial A e matriz de transicao P, onde
A serd escolhido depois. Seja W, = (X,,Y,,). Usando um argumento similar a 1)
na prova do Teorema 10.11, a aperiodicidade de {X,,} garante a irredutibilidade de
{Whn,n > 0}. Se {W,,} é transitéria, tomando A = u, obtemos

P{X, =5} =P{W,=(j,7)} =0,
quando n — oo. Suponha agora que {W,,} seja recorrente. Entao, usando a notacao

da prova do Teorema 10.11, temos P{T < oo} = 1 e um argumento similar ao
argumento 3) da prova mostra que

|P{X, =j}—P{Y,=3j}—0, quandon — oo.
Tome A\ = pP* para k € {1,...,K — 1}, de tal maneira que P{Y, =j} =
P{X,+r = j}. Podemos encontrar N tal que paran > Neke {1,..., K — 1},
: . £
[P{Xn =} = P{Xpx = J} < 5

Mas para todo n, podemos encontrar k € {0,1,..., K—1}talque P{X,, . x = j} <
/2. Logo, paran > N
P{X,=j}<e.

Como € > 0 é arbitrario, mostramos que P {X,, = j} — 0 quando n — oo. O

Corolario 10.2. Seja X uma CM e j € I.
Se j é transitério ou recorrente nulo, entao para todo i € I
: (n) _
Jim plj = 0.
Se j € recorrente positivo com periodo d > 1, entdo para todo ¢ € I e todo r €
{0,...,d—1},

* 0 nd+r
onde f5(r) =3 2, z(j .

Prova. Considere o caso j transitério. Se ¢ = j o resultado segue do Teorema 10.4,
parte (b). Se i # j, pela propriedade forte de Markov temos que
Ul'j < PZ{TJ < OO}Ujj < 0.
Mas U;; = anopg), logo pz(;t) — 0, quando n — 0.
Agora consideramos o caso j recorrente. Observe que o caso i = j é uma con-
sequéncia do Teorema 10.12. O caso i # j se trata com a relagdo elementar

() _ N p(m), (n-m)
Py =2 1Py
m=1

usando o TCD. O
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10.9 o-algebras caudais

Seja X = {X,,,n > 0} um processo estocdstico, com espago de estados I e seja I,
munido com a o-algebra produto.

Definigao 10.12. A o-dlgebra caudal de X é a o-dlgebra Fo, definida por Fuo =
ﬂnzof;m onde .7:7; = F{Xn, Xnt1,- .-}

Defina & = {&,,n > 0} por meio de &,(w) = wy, com w = (wo,wi,...) € I®. A
o-algebra caudal de £ é a o-dlgebra sobre I°° gerada da mesma maneira, e denotada
por H.

A o-dlgebra invariante T é a o-algebra formada pelos conjuntos mensuraveis
B € I tal que se w = (wp, w1, ...), entdo w € B se e somente se (wy,ws,...) € B.
A o-dlgebra invariante de X é a o-dlgebra sobre (€2, F, P) consistindo de conjuntos
da forma X~1(B),B € .

Definicao 10.13. Defina uma aplicacao T : I — I como segue: se w =
(wo,w1,-..), entao T(w) = (w1,w2,...). Dizemos que T' é uma translagao. Defina
T = T(T"), com T™(w) = (Wn, Wnt1,---)-

Segue-se que B € T se, e somente se, T~'B = B, ou seja, conjuntos de Z sao
invariantes com respeito a translagoes.

Definicao 10.14. A o-dlgebra permutavel G é a o-dlgebra sobre I*° definida como
segue: B € G significa (wg, w1, ...) € B se, e somente se (wr,,Wn,,-..) € B, onde 7 é
uma permutacao finita de {0,1,2,...}. A o-dlgebra permutavel de X é aquela que
contém X1 (B),B €G.

Observagoes: (a) T' é mensuravel, quando I°° é munido da o-algebra produto.

(b)ZCcHCG.

(c) Sejam [ =Z e B ={w :w; =1, i.v}. Entao B € 7.

(d) Sejam [ =Z e B ={w : we; =0, i.v}. Entao, B € H, mas B ¢ 7.

(e) Sejam I ={-1,1} e B={w:wo+...4w, =0, i.v}. Entao, B € G, mas B ¢ H.
Veja o Problema 8.

Teorema 10.13. Seja X uma CM e i um estado recorrente. Se A for um conjunto
de H, entao P;(A) =0 ou P;(A) = 1.

Prova: Seja B o subconjunto de I consistindo de todos os pontos w tais que
wo = i € w, = i para infinitas coordenadas. Entao, P;(B) = 1, pois i é recorrente.
Portanto, P;(A) = P;(AN B), de modo que temos que calcular P;(A N B). Sejam

Ty = inf{n > 0: X,, =i},
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T, = lIlf{’fL >T: X, = i},

e assim por diante. Sejam

Z1 = (X(), Xl, ... 7XT1—1)7

ZZ - (XTlaXT1+17 LR 7XT2*].)7

etc. Pela propriedade forte de Markov, as Z; sao i.i.d.

Sejam fg, 51, - - - sequéncias de comprimentos finitos, cada uma comecando com
i (todas as coordenadas sao pontos de I), contendo somente um i. Existe uma
correspondéncia entre esses objetos e pontos de B. Se w € B, seja Sw representando
w vista como uma sequéncia de sequéncias (finitas) como descrito acima. Entao,

P(ANB) = P{(Xo,X1,...,Xn,...) € AN B}
= P{(Z1,2,...) € B(AN B)}.

Seja m uma permutagao finita dos inteiros nao negativos, isto é, m permuta
somente um numero finito de inteiros. Sabemos que

(Z1,Z5,...) € B(ANB) & (Xo,X1,...) € ANB. (10.10)
Também,

(Znyy Zryy-..) EB(ANB) <

alguma permutacao finita de (Xo, X1,...) pertence a AN B.
(10.11)

Mas (10.10) é equivalente a (10.11), pois AN B € H. Portanto, (Z1,Z2,...) €
B(AN B) se, e somente se, (Zx,, Zr,,-..) € B(AN B). Pela lei 0-1 de Hewitt-Savage
aplicada a (Z1, Za,...) temos que P{(Z1,Z2,...) € (AN B)} = 0 ou 1, ou seja,
P(ANB)=0oul. O

Corolario 10.3. Se A € G, entao P;(A) =0 ou P;(A) = 1.

Prova: Mesma prova, pois a hipdtese de que A € H entra somente em (10.10) e
(10.11). O

Teorema 10.14. Seja X uma CM com todos os seus estados recorrentes. Sejam
{I;n,m € MY} aparticao de I pelas subclasses movendo-se ciclicamente. Entao temos
que

(a) Todo conjunto A € H difere por um conjunto de probabilidade nula de uma
reunidao de conjuntos da forma {w : wp € I}, m € M.
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(b) Reciprocamente, todo conjunto {w : wg € I,} difere de um conjunto de H por
um conjunto de probabilidade nula.

Prova: (a) Primeiramente, se i e j estdo na mesma classe I,,,, entao P;(A) = P;(A),

se A € H. De fato, se i,j € I,,, existem k e n tais que pgg) >0e p%) > 0.
Suponha P;(A) > 0 (ou seja, P;(A) = 1). Mostremos que P;(A) > 0. Temos que

1= P(A) = " Pi(AIX, = k) + [1— p7)P(A|X, # k).

Como consequéncia da propriedade de Markov, temos P;(A|X,, = k) = Pj(A|X,, =
k) > 0. Como
Pi(A) = i Pi(A1X0 = k) + (L= 1P (A1 X0 # B),
J J
vemos que Pj(A) > 0.

Para terminar a prova, sejam My = {m € M : i € I, = P(A) = 0}, M; =
{meM:ie€l, = P(A) =1}. Seja de P, a lei da cadeia X (sobre I*°), onde «
¢ a distribuigao inicial. Entao, Py(A,& € I,) = 0, se m € My e Po(A, & € Iy) =
P,(& € I,), se m € M. Segue-se que, a um conjunto de probabilidade nula, A é a
reuniao de conjuntos da forma {w : §(w) € I, }, com m € M;.

(b) Reciproca: suponha que se i € I, entdao i tem periodo d. O conjunto {w :
&o(w) € I, } difere por um conjunto de probabilidade nula do conjunto

{w : &na(w) € Iy, para uma infinidade de valores de n}. O

Exemplo 10.8 Seja X um passeio aleatério, com p; ;41 = p, pii—1=¢, p+qg=1e
sejam Iy, I1 as classes movendo-se ciclicamente. Suponha que a distribuigmao inicial
seja P(Xp=0) =1/3, P(Xp=1) =2/3. Pelo Teorema 10.14, todo conjunto na o-
algebra caudal tem probabilidade 0,1/3,2/3 ou 1. Cada evento caudal difere por um
conjunto de medida nula de um desses eventos: 0, {w: wy = 1}, {w:wy =0}, Q.

Teorema 10.15. Seja X uma CM com todos os seus estados recorrentes. Seja
{I.,c € C} o conjunto das classes recorrentes de X. Entao temos que

(a) Todo conjunto A € Z difere de um conjunto de probabilidade nula, de uma
reuniao de conjuntos da forma {w : wgy € I.}, c € C.

(b) Todo conjunto {w : wy € I.} difere de um conjunto de probabilidade nula de um
conjunto de Z.

Prova: (a) Seja A € Z, entao A € H. Logo, A = Upem{w : wo € In}, q.c,
sendo M, definido na prova anterior. Afirmamos que A = U.en{w : wy € I.}, onde
N ={ce(C: 1. D I, para algum m € M;}. Claramente A C Ugeny{w : wy € I.},
g.c. Basta provar a inclusao em sentido contrario. Suponha que w € {w : wy €
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I} N A, para algum m € M, logo w € A. Mas, se w = (wp,w1,...) € A, entao
(w1, wa,...) € A. Portanto, como wgy € Iy, w1 € I,41 ete. Portanto, A deve conter
q.c a classe recorrente contendo I,,.

(b) Reciproca: O conjunto {w : wy € I.} difere por um conjunto de probabilidade
nula do conjunto

{w: &, (w) € I, para uma infinidade de valores de n}. O

Teorema 10.16. (Blackwell) Seja X uma CM com espacgo de estados I e seja
A € I. Entéo, existe um conjunto A C I tal que A difere de um conjunto de
probabilidade nula de cada um dos conjuntos: {w : w, € A, ivl, {w: wy €
A para todo n, com exce¢ao de um numero finito deles}. Aqui nao supomos que
todos os estados de X sejam recorrentes.

Prova: Temos que

P{(Xo,Xl,...) GA‘X():Z'(),...,XTL:’L'”} =

P{(XrnJrl,XnJrQ, .. ) S A|X0 =190,...,Xp = in},

pois A € Z. Pela propriedade de Markov, o ultimo termo é igual a
P{(Xn+1,Xn+2, .. ) S A’Xn = ’Ln} = P{(Xl,XQ, .. ) S A‘X() = Zn},

usando o fato que a CM X é homogénea. Portanto, existe uma funcao boreliana h
tal que P{(Xo, X1,...) € A|Xo,..., Xn} = h(X,).

Agora, P{(XQ, X1,.. ) S A’Xo, ey Xn} = E(IX—1(A)|X0, e ,Xn) é um mar-
tingale, que converge q.c para E(Iy-1(4)|Xo, X1,...), quando n — co. Mas A €
X~YT) c F{Xo, X1,...}, portanto

P{X'(A)|Xo,..., Xn} = Ix-1(a), q.C.

Segue que h(X,) — I X~-1(4); 4-¢. Como podemos re-escrever o precedente em termos
de &, temos que
h(&n) — Ia, Px-q.c. (10.12)

Seja a qualquer nimero tal que 0 < a < 1 e defina A = {i € I : h(i) > a} e seja
N o conjunto nulo envolvido em (10.12). Suponha que w € A—N. Entao, h[&,(w)] —
Ix(w) =1,dondew € {w : & (w) € A, para todos os n exceto um nimero finito deles}.
Suponha que w ¢ A, w ¢ N, entao h[n(w)] — Ia(w) = 0, logo w € {w : {u(w) €
Ajivie. O
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Problemas
1. Prove o Corolario 10.1.
2. Prove a afirmagao contida no Exemplo 10.3.
3. O passeio aleatério do Exemplo 10.4 (b) tem incrementos independentes?
4. Prove o fato [2]
5. Prove o fato [4].
6. Mostre, por meio de um exemplo, que se I for infinito, a parte (b) do Teorema 10.6
nao vale.
[Sugestao: considere a CM com I o conjunto dos inteiros positivos e p; ;+1 = 1.]
7. Prove a afirmagdo do Exemplo 10.8.
8. Prove as afirmagoes (a)-(e) das Observagoes feitas apds a Definigdo 10.14.
9. Suponha que {X,,n > 0} seja uma CM. Prove que lim, . E{E(f(X0)|Xn)|Xo}
existe, onde f é uma funcao boreliana limitada.

10. Suponha que {X,,n > 0} seja uma CM e f uma fungao boreliana. Mostre, por meio
de um exemplo, que {f(X,),n > 0} ndo é, necessariamente, um processo de Markov.
Prove que f(X,) é um processo de Markov se f for 1-1.

11. Seja X uma CM com I C R. Suponha que Xy =0, {X,+1 — X, n > 0} sejam i.i.d.
(a) Prove que ou todos os estados s@o recorrentes ou nenhum o é.

(b) Se todos os estados forem recorrentes, entdo I é um grupo aditivo e todos os
pontos de I sdo da forma {nd,n € Z}, com d > 0 e Z é o conjunto dos inteiros.

12. Seja X um processo estocéstico, com espaco de estados I enumeravel e suponha que
exista uma fungao ¢ tal que, para cada n,

P{XnJrl - j|Xn = Z.vanl - inflv cee aXO = ZO} = 90(273)
Prove que X é uma CM homogénea.

13. Sabemos que se X, X1,... é um processo de Markov, entao X,,, X,,_1,...,X; tem a
propriedade de Markov. Verifique isso diretamente para o caso de uma CM e encontre
as probabilidades de transicao. Suponha I enumeravel e que a CM é homogénea.

14. Suponha que P,, denote a distribuicdo de Poisson com parametro m. Escolha um
inteiro ny de acordo com a distribuigao P;; depois escolha um segundo inteiro ny de
acordo com a distribui¢@o P, , e assim por diante. Prove que esse processo de Markov
atinge o estado 0 (e permanece 14).

15. Seja [pi;] uma matriz de transigao e I o espaco dos estados. Uma medida p sobre I é:

(i) invariante a diretita (ID) se >, pi;u(j) = p(i);
(ii) super-invariante a direita (SID) se 3, piju(j) < p(j);
(ii) invariante & esquerda (IE) se >, u(i)pi; = p(j);

Morettin-Gallesco - dezembro/2025



10.9.

o-ALGEBRAS CAUDAIS 191

16.

(iv) super-invariante a esquerda (SIE) se >, u(i)pi; < p(j)-

(a) Suponha que todos os estados sejam transitérios. Prove que existem sempre
(muitas) medidas SID n&o-constantes.
(n)

[Sugestao: fixe jo, tente pu(i) = Y7 p; . - Lembre-se que Zpgl) < 00,

(b) Suponha que todos os estados comunicam-se e sao recorrentes. Prove que todas
as medidas SID nao negativas sao constantes.

[Sugestao: Seja p uma medida SID, ndo negativa; seja X, a CM comegando em 4,
Mostre que pu(X,,) é um super-martingale nao negativo. Conclua usando seu conheci-
mento da algebra caudal.]

(¢) Suponha que que todos os estados sejam comunicantes e que exista uma medida
IE finita. Prove que a a CM é recorrente positiva.

Suponha que todos os estados sejam comunicantes e recorrentes positivos. Suponha
que a distribuigao inicial seja a distribuicao estacionaria. Prove que a cadeia reversa
tem transigoes estaciondrias e é recorrente.
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Capitulo 11

Teoria Ergddica

Neste capitulo trataremos dos aspectos principais da teoria ergddica, como
transformagoes invariantes (ou que preservam a medida), recorréncia e os teoremas
ergddicos pontual e médio. As referéncias principais que serao usadas sao Billingsley
(1978), Halmos (2006) e Garsia (1970).

11.1 Transformacoes invariantes

Definicao 11.1. Seja (2, F, P) um espaco de medida (P nao precisa ser uma
medida de probabilidade, ou mesmo finita em vdrias situacgées). Seja T : Q — Q

uma fun¢do mensuravel sobre (), isto 6, T~Y(B) € F se B € F. Dizemos que T
preserva a medida P se P(T~'(A)) = P(A), para todo A € F.

Exemplo 11.1. (i) Seja Q = {a1,as9,...,a,}, F a classe de todos os subconjuntos
de Q. Defina T por Tay = agt1, se k < n e Ta, = a; (permutacao ciclica). Entéo,
T preserva P se, e somente se, P({a;}) nado depende de 1.

De modo geral, se T' for qualquer permutagao de €2, T' pode ser expandida como
um produto de ciclos disjuntos C1,...,Cy. Nesse caso, T preserva P se, e somente
se, dentro de cada ciclo, P associa pesos iguais a cada ponto.

(ii) Suponha © = R, F = B e P a medida de Lebesgue na reta. Defina T por
Tx = x + a, sendo ¢ um ntmero real fixo. Entao, T preserva P.

(iii) Seja © o circulo unitario no plano complexo, F a o-élgebra de Borel sobre Q) e
P a medida de Lebesgue sobre Q dividida por 2w. Defina T por Te = ell0+a) o
fixo. Entao, T' é uma rotacao e preserva P.

(iv) Seja 2 = [0,1), P a medida de Lebesgue sobre €2, e F = B([0,1]). Suponha
Tw = 2w (mod 1)( ou seja, Tw =2wse w < 1/2eTw=2w—1,s¢ 1/2 <w < 1).
Entao, T preserva P. T é chamada transformacdo diddica. Em outras palavras, se
w € e tem a expansao diddica w = 0,wiws - -+, entdo Tw = 0, wows - - - .
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Definigao 11.2. Seja ) = R, ou seja, o conjunto de todas as sequéncias (wg, w1, ws, - - -

de nimeros reais, e F a o-algebra produto sobre §2, ou seja, B>°. Seja P uma proba-
bilidade sobre (£, F). A medida P diz-se estacionaria se, para todo B € F, tivermos
P{w : (wo,w1, ) € B} = P{w : (wi,w2,---) € B}. A translacao unilateral T é a
aplicacao T : Q — § definida por T (wo, w1, ) = (w1,wa, ).

Exemplo 11.2. (a) Considere T' e P como na defini¢gao 11.2. Entdo, T preserva P
se, e somente se, P é estaciondria. Veja o Problema 2.

(b) Sao exemplos de medidas estacionarias sobre (R>°, B>):

(i) Seja X = {X,,,n > 0} um processo estritamente estaciondrio definido sobre
(Q,F,P). Seja Px a probabilidade definida sobre (R*, 5°°) definida por: se
B € B*®, entao Px(B) = P{w : (Xo(w), X1(w),...) € B}. Segue-se que Px
¢é a distribuicao de X. Entao, Px é estaciondaria e a translagao 1" sobre R*>
preserva Px.

Logo, comecando com qualquer processo estocastico estritamente estacionario,
podemos construir uma transformagcao invariante.

Reciprocamente, dada qualquer transformacao T que preserva a medida, po-
demos construir um processo estritamente estaciondrio como segue: consi-
dere T sobre (2, F,P) e seja X uma v.a. sobre esse espago. O processo
Y = {Y,,n > 0} definido por Y, (w) = X(T™(w)) é estritamente estaciondrio.
Veja Breiman (1968). T° ¢é definida como a identidade.

(2) Seja X = {X,,n > 0} uma cadeia de Markov com pelo menos uma classe
recorrente positiva. Seja m uma medida estacionaria. Considere a distribuigao
7w como distribuicao inicial de X. Entao X é estritamente estacionario.

Definigao 11.3. Seja (2, F, P) um espago de probabilidade, e sejaT preservando P.
O conjunto A € F é invariante se A = T~ A, isto é, z € A se, e somente se, Tx € A.
Dizemos que A é quase-invariante se A e T~'A diferem q.c. Uma v.a X sobre
(Q,F, P) é invariante se, e somente se, X (w) = X(Tw) e é quase-invariante se, e
somente se, X (w) = X(Tw) q.c.

z . . . 4 z
Teorema 11.1. (a) Se T é a classe dos conjuntos invariantes e T é a classe dos
conjuntos quase-invariantes, entao ambas sao o-algebras.

(b) Qualquer conjunto quase-invariante difere de um conjunto invariante somente
por um conjunto nulo.

(¢) Uma v.a X é invariante se, e somente se X é T-mensuravel.

Prova: (a) Imediata.
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(b) Seja A quase-invariante e Ay = limsup,,_,., T~ "(A). Entao, A; ¢ invariante e
difere de A por um conjunto nulo.

() ) {w: X(w) <z}={w: X(Tw) <z} =T Hw: X(w) < z}.

(<) Suponha que A € T e seja X = 4. Entdo, X(Tw) = [4(Tw) = Ip-1(4)(w) =
I4(w), donde o resultado é verdadeiro se X é uma funcao indicadora em Z. Segue
que o resultado é verdadeiro para toda v.a Z-mensuravel, por um argumento padrao.

O

Definicao 11.4. Uma transformacao T que preserva uma medida P é ergddica se
para qualquer conjunto invariante A tivermos P(A) =0 ou P(A°) =0. Se P é uma
medida de probabilidade, entdao T é ergddica se todo conjunto invariante A for tal
que P(A) =0 ou P(A) =1.

Exemplo 11.3. Seja X uma CM com pelo menos uma classe recorrente positiva.
Seja m uma medida estacionaria concentrada em uma dessas classes. A existéncia de
tal medida é garantida pela Secao 10.7 do Capitulo 10. Seja P, a distribuicao esta-
ciondria induzida sobre I°° dando a X a distribuicao inicial . Seja T a translagao
sobre I (I é o espago de estados de X). Entao, T' preserva a medida P, e é
ergodica.

Definigao 11.5. Seja T' uma transformacao que preserva a medida, definida sobre
(Q, F,P), um espaco de probabilidade. Dizemos que T é mixing se, para todo
A, B € F, tivermos

lim P(ANT™"B) = P(A)P(B).

n—oo

Essa é uma forma de independéncia assintética. Para uma motivagao intuitiva dessa
nocao, veja Halmos (2006).

Exemplo 11.4. Seja P; como no exemplo anterior. Suponha, ainda, que a classe
recorrente positiva mencionada 14 tenha somente uma subclasse movendo-se ciclica-
mente. Entao, a translagdo T sobre I*° é mixing (veja o Corolario 11.1 a seguir).
Isso segue do fato que a o-dlgebra caudal H aqui é trivial (veja a se¢ao 10.9 do
Capitulo 10).

Teorema 11.2. Suponha que T seja mixing. Entao, T é ergédica (a reciproca nao
vale).

Prova: Seja B invariante. Devemos provar que P(B) = 0 ou P(B) = 1. Como
T-"(B) = B, para todo n, temos P(ANB) = P(ANT"B) — P(A)P(B). Como
isso vale para qualquer A, tome A = B. [

Teorema 11.3. Seja T' uma transformacao que preserva a medida sobre (2, F, P).
Seja Fy uma algebra gerando F. Se a condicao de mixing vale para todo A, B € Fy,
entao a condicao vale para A, B € F.
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Prova: Sejam A e B conjuntos em F. Tome Ag, By em F tais que P(AAAg) — 0,
P(BABy) — 0 quando k — oo (possivel pelo Problema 16 do Capitulo 1). Agora,

P{ANT"B)A(A, N T "By)}
< P(AAAy) + P[T™"(BABy)] = P(AAAR) + P(BABy),

que tende a zero, quando k — oo. Portanto, P(Ay N T "By) — P(ANT"B),
uniformemente em n, logo

lim P(ANT™B) = lim lim P(A,NT "By) =

n—o00 n—o00 k—00
lim lim P(Ay NT "By) = lim P(Ay)P(B;) = P(A)P(B),
k—o00 n—00 k—o0

na qual a mudancga dos limites é justificada pela convergéncia uniforme. [J

Exemplo 11.5. Continuagao do Exemplo 11.1.

(a) Se T for uma permutacao ciclica, T é ergddica se, e somente se, T' tem um sé
ciclo. No caso em que P é uma probabilidade, T nunca é mixing.

(b) Seja 2 =R, Tx = x + a. Entéo T nao é ergddica pois UsZ_ . (na, (n+1/2)a) é
um conjunto invariante nao trivial.
(¢) Se T for uma rotacio, Te? = e'%+®) entdo T é ergédica se, e somente se a for

irracional. T nao é mixing nunca. Veja o Problema 11. Veja, também, Breiman
(1968) e Billingsley (1978).

(d) Seja T' uma transformagao diddica. Entao, T é ergddica e mixing. Veja Billings-
ley (1978) para detalhes.

(e) Seja 2 = Z, F a classe de todos os subconjuntos de Q2 e P a medida de contagem
(P(A) dé o numero de elementos de A). Seja T tal que Tw = w + 1. Entao, T é
ergodica.

Definigao 11.6. Considere Q = R (ou I*° como em CM), F a o-dlgebra produto,
P uma medida de probabilidade estaciondria sobre (2, F) e T a translacao (unilate-
ral). Sejam &1,&,, ... as fungées coordenadas e H a o-algebra caudal dos &;. Dizemos
que T é uma translacao de Kolmogorov se H for trivial e que T’ é uma translacdo de
Markov se &, forma uma CM.

Teorema 11.4. Toda translacao de Kolmogorov é mixing.

Prova: Seja A € H e seja B um cilindro. Entéo,

|[P(ANT™"B) — P(A)P(B)| = |E(Ialp-np) — P(A)P(B)| =
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‘/T_nB I4dP — P(A)P(B)) = ‘/T_HB E(I4|F,)dP — P(A)P(B)|,

onde ]-",/L = F{&,&n+1,- ..} € usamos a definigdo da esperanga condicional ao obter
a tltima igualdade (T~"B € F,,).

Como T preserva a medida, o tiltimo termo é iguala | [, 5 [E(I4|F,)—P(A))dP| <
Jo |E(I4|F,)—P(A)|dP. Mas E(I4|F,)—P(A) é um martingale, que converge para
E[I4|H]—P(A). Mas H é trivial, por hipétese, logo, de fato, o martingale em questao
converge para P(A) — P(A) = 0. Segue pelo TCD que P(ANT~"B) — P(A)P(B),
se B for um cilindro. Pelo teorema anterior, a convergéncia vale para todo B. [

Corolario 11.1. A translacao de Markov do Exemplo 11.4 é mixing.

Existem translacoes que sao mixing, mas nao de Kolmogorov.

O teorema a seguir mostra que, a fim de responder a muitas questoes da te-
oria ergddica, podemos restringir atencao, sem perda de generalidade, somente a
translacoes.

Teorema 11.5. Seja Ty uma transformacao que preserva a medida, sobre o espaco
de probabilidade (Q,Fo, Py). Seja @ = QF, o conjunto de todas as sequéncias
(wo,w1,-..), com wy, € Qy, F a o-algebra produto e P a probabilidade sobre (2, F)
dada por:

P(B) = Py{z € Qo : (x, Tox, Tgx,...) € B}, BEF.
Seja T a translagao sobre (), F, P). Entao:
(a) T preserva P;
(b) Ty € ergédica (mixing) < T é ergédica (mixing);
(c) P{w € Q:wy = T¥wy, para todo k > 1} = 1.

Prova: Veja o Problema 10.

11.2 Recorréncia

Seja (€2, F, P) um espago de probabilidade e T uma transformagao mensurével,
T:0Q— Q. Tomemos A € F e w € Q. Considere a sequéncia w, Tw, T?w, - -- . Duas
questoes basicas dessa se¢do: essa sequéncia entra no conjunto A7 Entra infinitas
vezes?

Definicdo 11.7. (a) Dizemos que T é recorrente se definindo A") = {w € A :
T"w € A, para algum n > 1}, entdo P(A — A")) =0, para todo A € F.
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(b) Dizemos que T é infinitamente recorrente se AV = {w € A: T"w € A iv},
entao P(A — AW) = 0, para todo A € F.

(c) B € F diz-se wandering se B,T"'B,T~2B,--- sao disjuntos.
(d) T é conservativa se todos os conjuntos wandering tém medida P zero.
(e) T é incompressivel se T~*(A) C A implica P(A —T~1(A)) = 0.
Teorema 11.6. As seguintes afirmacoes sao equivalentes:

(1) T é incompressivel;

(2) T é conservativa;

(3) T é recorrente;

(4) T é infinitamente recorrente.

Prova: (1) = (2) Suponha que A seja wandering e seja B = U2 (T "A. Entao,
T~1(B) = U ,T~"A é um subconjunto de B, logo por (1) P(B—T"'B) = 0. Mas
B —T7'B = A, pois os T~"A sdo disjuntos, portanto P(A) = 0.

(2) = (3) Seja A e F,C=A—A". Entao, T7"C ={w : T"we A- A"} ={w:
Trw € Amas TFw ¢ Ak > n}. Logo, os T~"C sdo disjuntos, logo C' é wandering e
portanto P(C) = 0.

(3) = (1) Seja T7'A C A. Entdo, T2A =T YT 'A) c T-'A C A e, portanto,
T "A C T7'A, para n > 1. Segue que T71A = UX T A, mas A — T4 =
A—-Uy T "A=A— A", e este conjunto tem probabilidade zero.

(4) = (3) Imediato.

(1) = (4). Seja A € Fe B=UX T "A. Entao, T"!B C B, donde P(B—-T"'B) =
0. Similarmente, 7-**+Y B ¢ T-*B, implicando que P(T~*B—T-+1UB) = 0. Mas
T*B—T-"t)B = U, T ™A — UpZ i1 T A, que € igual ao conjunto dos w tais
que T"w entra em A pela ltima vez em n = k. Como A— A = ANUR {w : T"w €
A pela tltiva vez em n = k}, temos que P(A—A?) < >, P{T=*B-T-(++1UB} = 0.
O

Corolério 11.2. (Poincaré) Seja T uma transformagao que preserva a medida sobre
um e.p (2, F, P). Entao, T é infinitamente recorrente.

Prova: Seja A wandering. Como ) P(A) =) P(IT™™A) = P(UT7"A) < 1,
segue-se que P(A) = 0. Logo, T é conservativa, e portanto infinitamente recorrente.
O

Observagao: Seja X qualquer processo estocastico que seja estritamente esta-
cionario. Seja T' a translacdo associada. Entao, T é infinitamente recorrente, pois
preserva a medida. Em termos do processo X temos: se X for um p.e estritamente
estaciondrio e se B for um conjunto de Borel, entao
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P{Xo€ BeX, € Biv}=P{X, € B}. (11.1)

Observe que ja tinhamos notado isso como verdade para CM estritamente esta-
ciodria. Ou, se P{Xy € B} > 0, entao (11.1) reduz-se a

P{X,eBiv|Xye B} =1,
para qualquer p.e estritamente estaciondrio.

Teorema 11.7. (Kac, 1947) Seja T' uma transformacao que preserva a medida sobre
ume.p (Q,F,P). SejaAdAc FeAy={wecA:T'w¢ A, 1<n<k-1, eTrw € A}.
Seja ra(w) = k se w € Ay (ra é o tempo de recorréncia, e r4(w) < oo q.c, pelo
Teorema de Poincaré). Entao:

/A ra(w)dP(w) = P{U T-"A)}. (11.2)

Note que A é o conjunto no qual o primeiro retorno a A ocorre no tempo
k. Note, também, que a probabilidade do lado direito de (11.2) é a probabilidade
de que T"w esteja em A para algum n > 0. Veja abaixo exemplos para algumas
interpretagoes do teorema.

Prova: Plw € A:ra(w) =k +1} =P{lwe A:Trw¢ A1 <n <k THlowe A}
Se B, = (T~*A)¢,C,, = T~ A, entdo

PlweA:rpg(w)=k+1}=P{ConB1N---NBrNClki}
=P{ConBiN---NBy}—P{CoNBiN---NBjp1}
= P{B N---NBy}—P{ByNB N---N By}
—P{B1N---NBpy1}+P{BoNB1N---NBgy1}

:P{Boﬂ"'ﬂBk_l}—2P{B(]m"-ﬂBk}—i-P{Boﬂ-"mBk_H},

pois T preserva P. Logo, podemos escrever
Plwe A:rg(w) =k+ 1} = by — 2bgs1 + bgao, k>1,

usando uma notacao 6bvia. Definindo by = 1, isso vale para todo k > 0. Agora,

/ radP = Z(k + 1)(bg — 2bg41 + br42)
A k>0
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n—1
= lim D (ke +1)(b — 2bp41 + brg)
k=0

= lim [by — (n + 1)by, + nbp41].

n—oo

O limite deve existir (em R, ), pois temos a n-ésima soma parcial de uma série
nao negativa, logo

/ radP =1— lim [n(b, — bpt1) + byl
A

n—oo

Mas b, —bp4+1 = P(BoN---NBy_1)—P(BoN---NBy,) = P(ByN---NBp,_1NCy) > 0.
Como ByN---NBp_1 NCy, n > 1, sdo disjuntos, Y, (bn — bpt1) < 00. Como o
limy, o0 [n(by, — bpy1) + by existe e b, | P(NgBg), 0 limy,_0o n(by, — bpt1) existe.
Portanto, se a, = b, — bpt1, entdo a, > 0, > ap, < o0 e lim,_ o na, existe.
Finalmente, temos que na, — 0, pois se nao, na, > €, para todo n suficientemente
grande, e entdo Y a, > > 1/n, contradizendo o fato que > a, < 0o. Segue que

/ radP =1— lim by, =1— P(N°By) = P(UC2,T"4). O
A

n—o0

Exemplo 11.6. Suponha que T seja também ergddica e que P(A) > 0. Seja
E =UX, T "A. Se Tw € E, entao Tw pertence a algum T~ "A, de modo que
we T~ A logo w € E. Ou seja, T-'E c E. Como T é incompressivel,
P(E—-T7'E) = 0, logo T"'E = E q.c. Segue-se que E é quase invariante e
portanto [, ra(w)dP(w) = 1 (P(E) > P(A) > 0, ou seja, P(E) = 1, pois E ¢é

invariante). De outro modo,

1 1
P(A)/ATA(w)dP(w) = A

Ou seja, dado que o ponto inicial estd em A, a amplitude média de tempo para
retornar a A é 1/P(A).

Exemplo 11.7. Seja X = {X,,,n > 0} um p.e estritamente estaciondrio e S =
inf{n > 1: X, € A}. Pela observagao acima, P{S < oo|Xo € A} =1, se P{Xy €
A} > 0.

Suponha que X seja ergédico (isto é, a translacao associada é ergddica). Entao,

1

E{S|X0 € A} = m

Um caso especial é: se X é uma CM com distribui¢ao inicial concentrada numa
classe recorrente positiva unica, entdo, E;S = 1/m;, um resultado j& conhecido.
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Teorema 11.8. Seja X = {X,,,n > 0} estritamente estacionario e ergédico (ou seja,
a o-dlgebra invariante é trivial). Sejam Ty, T, ... tempos de retornos sucessivos ao
conjunto A. Entao, o processo {Tj+1 — T,k > 0} (com Ty = 0) é estritamente
estaciondrio e ergddico, sob P{-| Xy € A}.

Prova: Omitida. Veja Breiman (1968).

Caso especial: Tome X como uma CM com um estado i recorrente. Sejam {7}, k >
1} tempos de sucessivos retornos ao estado i, comegando em i. Entao, 71,75 —
T1,T5 —T5, ... sdo i.i.d, e portanto formam um processo estritamente estacionario e
ergodico.

11.3 Teoremas ergodicos

Nesta se¢ao trataremos do teorema ergédico médio e do teorema ergddico pontual
e a forma de Hopf de ambos. Depois veremos algumas reciprocas desses teoremas.

Seja (2, F, P) um e.p e, para p > 1, considere o espaco L, := L,(2, F, P) (veja o
Apéndice A.3). A seguir apresentamos dois exemplos cldssicos de operadores lineares
sobre L.

Exemplo 11.8. (a) Seja Fo C F e T'f = E(f|Fo).

(b) Seja S uma transformagao que preserva a medida sobre (€2, F, P) e defina T por
Tf(w) = f(Sw). E facil ver que T ¢ linear. Mostre que || f|, = || Tf||,-

Os dois operadores do Exemplo 11.8 sdo contragoes positivas. Note que, se T' é
uma contragao, || 1" f|, < || f||, para todo n > 1.

Vamos, agora, enunciar os dois teoremas principais dessa secao.

Teorema 11.9. (Teorema Ergédico Médio - TEM) Seja T' um operador linear sobre
L,, p>1, sendo (2, F, P) um e.p. Suponha que T seja uma contragao positiva tal
que T1=1 e seja f € L,. Entao,

_fATf . 4T

Ralf) o

converge em norma L, para um limite, denotado por P f.

Teorema 11.10. (Teorema Ergédico Pontual - TEP) Seja T' como no Teorema
11.9. Entao,

c

R.(f) %5 PF.

Antes de provar os teoremas, vamos considerar alguns exemplos.
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Exemplo 11.9. (1) Seja X = {X,,,» > 0} um processo estritamente estacionario.
Seja S a translacao sobre (R*°, B>, Px), sendo Px a distribuicao de X. Entao, S
preserva Py, de modo que S é uma transformacao que preserva a medida sobre esse
espago. Defina um operador T por T'f = f(Sw). Entao, T é um operador linear
positivo (isometria), 71 = 1.

Seja & a projecao de w = (wp,w1,...) sobre a primeira coordenada. Observe
que Xo(w), X1(w),...) ~ (£(w),&(Sw),...). Logo, para provar que (Xo+ X1 +...+
X,,)/(n+1) converge, é suficiente provar que (&(w)+E&(Sw)+...+£(S™ (w))/(n+1)
converge. Mas o ultimo é igual a (6 +T&+ ... +T"¢)/(n+1).

Suponha, agora, que Xg seja integravel. Entao £ é integravel, logo pelos teoremas
ergddicos, ({+TE+...+T"€)/(n+ 1) converge q.c e em Lj.

Ou seja, se X = {X,,,n > 0} é um processo estritamente estaciondrio, e se Xy
for integravel, entao (Xo + ...+ X,,)/(n + 1) converge q.c e em L;.

Como caso especial, se Xg, X1,... s@o v.a’s i.i.d, integraveis, entao (Xo + ...+
X,)/(n+1) converge q.c e em Lj. Temos, pois, uma outra prova da LEGN. Prova-
remos, também, que o limite acima é E(Xy|Z), onde Z é a o-dlgebra invariante para
X.

(2) Seja I um conjunto enumeravel e P = [p;;]; ; uma matriz de transicdo. Tome
Q = I, F como a g-algebra de todos os subconjuntos de €2 e P qualquer probabilidade
sobre I que coloca massa positiva em cada ponto de I. Defina um operador T por
meio de

i) = pif(j)
Jjel
Esse operador satisfaz todas as hipdteses do teorema ergddico. Escolhamos f
como segue: f = Iy, ou seja, o indicador do estado jo. Notemos que

i)=Y piif(J) = Pijos
J
T2f(i) = me Tf prpmo pl]o’

e de modo similar, 7" f(i) = pg%). Logo, pelo teorema ergddico, (f +Tf + ...+
T"f)/(n+ 1) converge. Ou seja, isso implica que (pij, + pgg +...+ pglo))/(n +1)
converge.

Antes de provar o TEM, vamos prova-lo para o caso de T em Lo.

Teorema 11.11. (TEM para o caso L) Seja T' uma contracao linear positiva em
Ls.
(a) Se f € Lg, entao R, (f) converge em norma Ly para um limite, denotado Pf.
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N

(b) O operador P definido em (a) ¢ linear, positivo e uma contracao, com TP = P
e P2=P.

Prova: (a) Mostraremos que R, (f) é uma sequéncia de Cauchy em Ls. Defina

UN = inf Hrof—i—...—i—rNTNng,
S ri=1,r;>0
e defina p = inf; p. Vamos provar, primeiramnete, que ||[R,(f)|l2 — p-
Tome g = rof +mTf + ... +ryTVf, tal que ||g|l2 < p + €. Temos que

g+ Tg+...+T"g
- n+1

Rn(9)

Cr(f+ T 4 T )+ (T4 TV
- n+1

Portanto,

_f+Tf+...+T”fH
2

1Bal9) ~ Bulf)l> = || Rao) il

i+n n
2N || f]l2

1 N . .
- n—i—lH;m<§T] _;)T]>fH2 = n+1"

pois [|T* fll2 < [| ]2
Segue que

< Bu(f)ll2 < [|1Ra(f) = Ru(9)ll2 + [1Rn(9)2

2N fll2 2N f1I2

Como N é fixo para ¢ escolhido, faca n — oo para obter

+u+e.

po< im [|Ra(f)]2 < pte,

Isso prova a afirmacao feita acima.
Para provar a parte (a) do teorema, observe que pela igualdade do paralelograma

1R () = Rin( DB + 1R (f) + Ren(FIIF = 21 R (I3 + 2l Bon ()13,

e portanto,

[1Rn(f) = R ()13 < 2 (IIRn(£)N13 — #%) + 2 (| R (£)]3 — 1), (11.3)
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pois, por defini¢ao de p

H Rn(f) + Rm(f)
2

Usando (11.3) e o fato que lim, o ||Rn(f)||]2 = p, provamos que a sequéncia
{R,(f),n > 1} é de Cauchy e portanto converge para algum elemento de Lo.

> .
|2

(b) P é uma contragao linear positiva, pois R, é, para cada n. Provaremos somente
que TP = P, ou seja, para cada f € Lo, mostramos que Pf = T(Pf) Agora,
R,(f) = Pf,em Ly e TR, (f) = (Tf +T>f + ...+ T"" f)/(n + 1) converge para
Pf, pois f/n — 0. Contudo, TR,(f) — T(pf), pois

IT(Rof) = T(Pf)ll2 = |T(Ruf = Pf)ll2 < [|Raf = Pfll2,

dado que T é uma contragao, e o tltimo termo tende a zero, pela parte (a). Segue
que TR, (f) = Pf e TR,(f) — T(Pf),logo TP =P. O

Teorema 11.12. (TEM para o caso L) Seja T uma contragao linear positiva em
L satisfazendo

se|f| < C, entao |Tf| <C. (11.4)

Entao, R, (f) converge em norma L para pf, sempre que f € Lq. P 6 a extensdo
a Ly do operador obtido no Teorema 11.11.

Para provarmos esse teorema, precisamos do seguinte

Lema 11.1. Suponha que T seja uma contragao em L, satisfazendo (11.4). Entao,
T é uma contracao em Lo.

Prova: Seja g € Ly. Mostremos, inicialmente, que se ¢ for uma constante, (T'g —
¢)+ <T(g — ¢)+. Defina g. como segue:

g9, 9l <e
gc = ¢, g >
—c, g< —c.

Seja h. = g — g.. Note que h. < (g — ¢)4+. Temos, entao,

Tg=Tg.+Th.<c+T(g—c)y,
usando (11.4). Logo Tg — ¢ < T(g — ¢)+, de modo que (T'g —¢)+ <T(g —¢)+.
Usando esse resultado, temos que
E((Tg—c)4+) < E(T(9—c)+) < E((9 —¢)+),

pois T' é uma contracao. Integrando a desigualdade em c, temos que
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/ E(Tg—c)yde < / E(g — ¢)4dec.
0 0

Pelo teorema de Fubini, o lado direito fica

o 1
// (g—c)+dch:// (g—c)dchz/deP.
aJo 0 J{0<e<q) 2 Jo

Por sua vez, novamente usando Fubini, o lado esquerdo fica

/ / (Tg — ¢)ydedP = / / (Tg — c)dedP = 1/(Tg)QdP.
QJo Q J{0<e<Tg} 2Ja

Portanto,
[ xopar < [ gar,
Q Q

ou seja, || Tgll2 < |lgll2, g € L2, logo T' é uma contragao em Ly. [

Prova do Teorema 11.12: Seja e > 0 e tome f. € Lo tal que || f — fz]1 <&, o que
é possivel pois Ly é denso em Lq. Entao,

||Rn(f) _Rm(f)Hl < HRn(f) _Rn(fa)Hl + HRn(fa) _Rm(fe)||1+ HRm(fa) _Rm(f)Hl

= HRn(f - fa)Hl + HRn(fs) - Rm(fa)Hl + HRm<f - fe)Hl
< 2||f - fz—:”l =+ ||Rn(fe) - Rm(fs)Hl < 2,

fazendo n,m — oo e usando o Teorema 11.11. (a). Observe que R,, visto como
um operador, é uma contragdo em L1, pois T também o é. Como ¢ é arbitrario,
{Rn(f)} é uma sequéncia de Cauchy em L1, logo converge em norma L; a um limite,
P f, digamos. Como P tem as mesmas propriedades dadas no Teorema 11.11. (b),
temos em particular que TP = P e P é a tnica extensao a L; do operador obtido
no Teorema 11.11. [

Corolério 11.1 Seja (2, F, P) um e.p e S uma transformacgao que preserva a me-
dida. Seja T o operador usual associado a S: se f € L1, Tf(w) = f(Sw). Entao,

[+ f(Sw)+ ...+ f(S"w)) Ly,
n+1
onde T é a o-dlgebra invariante para S.

E(f|1),

Prova: Sabemos que

fHfSw)+...+ f(S"w) f+Tf+...+T"f
n+1 N n+1

— P,
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a convergéncia sendo em L1, logo para todo conjunto A € F, teremos

/Af+TfT::1.+Tnf _>/Apf'

Seja A € Z. Entao,

Jrmi=[sso=[ 1=+
/Afz/Aﬁf- (11.5)

Também, sabemos que T(Pf) = P(f), o que significa f’f(Sw) = Pf(w), ou

seja, P f €é uma funcao invariante. Por um resultado anterior, Pf é Z-mensurével.
Usando este fato e (11.5), temos que Pf = E(f|Z). O

Logo temos

Coroldrio 11.2. Suponha que {X,,,n > 0} seja um processo estritamente esta-
cionéario. Se Xy ¢é integravel, entao

Xo|Z
onde T é a o-algebra invariante de {X,,,n > 0}.

Prova: Use o coroldrio anterior com a translagao S apropriada. [

Teorema 11.13. (Teorema ergddico maximal de Hopf) Seja T' uma contragao linear
positiva em L. Entéo, se f € Ly, fEn fdP >0, onde E, = {maxo<i<, Ri(f) > 0}.

Prova: Seguimos Garsia (1970) para a prova do teorema. Primeiramente, notemos
que se fi,..., fn € L1, entao

max T <T( max )
1<k<n Jr= 1§k§nfk

De fato, para todo 1 < k < n, fi, < maxj<p<p fi, logo T fi, < T(maxi<p<n fk),
pois T é positiva. Logo, maxj<k<n (T fr) < T'(max;<k<n fr). Observe também que

Tf+...+T" ) > LT
ft max (Tf+.. + T f) 2 max (f+...+Tf)+,

sobre o conjunto E,. Usando esses fatos, obtemos

dpP > TR dP — TFf+...+TF1A) . dp
Enf > Enorgggn(fﬂL +T%f)+ Enlgllggn( f+...+ )+

Morettin-Gallesco - dezembro/2025



11.3. TEOREMAS ERGODICOS 207

> max(f+...+ka)+dP—/ T(max (f +...+TFf),)dP.
En

= Jg, 0<k<n 0<k<n

Seja ¢ = maxg<g<n(f +Tf + ...+ TFf),. Temos, entio,

/ (¢ —T)dP = /{@0}(@0 —Typ)dP > /Q(so —Typ)dP.

n

De fato,

— Tp)dP = — T)dP — T)dP
/Q (p—=Typ) /{@0}(@ p)dP + /{wzo}(so ®)

= / (p—Tp)dP — / TdP.
{¥>0} {p=0}

Como ¢ >0, Tp > 0 (T é positiva), o tltimo termo da igualdade acima é negativo.
Logo,

fdP > /(cp —Ty)dP >0,
En Q
pois T' é uma contracao, ou seja [, Tp < [¢. O

Corolario 11.3. Seja T uma contracao linear positiva e suponha que T1 = 1. Se
R.,(f)=(f+Tf+...4+T"f)/(n+1), teremos que

APS max Rip(f) > A S/ fdP.

Prova: Observe que

{w:orélka;cn(quTer...+ka) >0} = {w:oréll%ank(f) >0}.

Também note que, como T'1 = 1, teremos

Rn(f = A) = Ru(f) = A, (11.6)

se A for uma constante. Logo, chamando

Fo={ max ((f =N +...+T5f = 1) >0},

0<k<n

teremos pelo teorema anterior

Og/(f—/\)dP:/ (f — A)dP
n {maxg<p<n Rr(f—2)>0}
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= / f—N)dP,
{maxo<p<n Ri(f)>X}
por (11.6). Ou seja, temos
OS/ fdP —AP{ max Ry(f)>\¢. O
{maxo<p<n Ri(f)>A} { 0<k<n }

Observagao: Seja {X,,n > 1} um submartingale. Sabemos que

)\P{ max Xj > )\} S/ XndP.
1<k<n maxi<p<n Xkp>A

Essa é uma desigualdade do mesmo tipo daquela do corolario.
Teorema 11.14. Sejam X > 0, Y > 0 varidveis aleatérias. Suponha que AP{Y >
A} < f{Y>)\} XdP. Se p > 1, entao,
» \?
E(YP) < <1> E(XP).
p—

Prova: Basta considerar o caso X € L,. Para comecar, supomos também que
Y € LP. Entao,

AP{Y > \} < / XdP,
{Y>A}

multiplicando por \?~2,
NTIPLY > A} < a2 / XdPp,

{Y>\}

e integrando em A\ obtemos

/ NLP{Y > Al < / AH( / XdP)d)\.
0 0 {Y>A}

Usando Fubini, o lado direito fica
1
/ X( / )J"Qd)\)dP <— [ xyrlqp
{0<A<Y} p—1

1 1/p (p—1)/p
() ()
p_

por Hélder. Por outro lado, o lado esquerdo é igual a

/ ( / )\p‘ldA)dP _1 / YPAP.
{0<A<Y} p
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Logo,

1 1/p (»-1)/p
YPdP < — (/ X”dP) </ Yde> ,
p
/Yde < ( ) /Xde

SeY ¢ L,, substitua Y por ¥;,ond Y, =Y,seY <reY, =r,se Y >r. Logo,
como Y, satisfaz as mesmas desigualdades do que Y, obtemos

do que segue

E(Y?) < (pfl)pE(Xp).

Basta fazer r — co. [
Aplicacao: Seja {X,,n > 1} um martingale, que seja limitado em L,, p > 1, isto

é, sup,, E(| X, |P) < co. Sabemos que vale a desigualdade da observacao feita acima,
logo pelo teorema, se p > 1,

p
E( sup |Xk]p> < (p) E(|X,P).
1<k<n p—1
Para n — oo, obtemos
p \?
B(swlx ) < (527) sw B < o0
n>1 p—1) n>1
Segue que o martingale {X,,} converge em norma L,, (e também q.c), pois | X,|P <

sup,, | Xn|P, que é integravel, logo {|X,|P} é uniformemente integravel.

Corolario 11.4. Seja T uma contragao linear positiva em L1, com T1 =1 e seja
R*(f) = sup,>o |[Rn(f)|. Entéo, sep > 1,

P
B () < @) < (2 ) B
Prova: Sabemos que para A > 0,

AP{ e Rull) > 3 < f1dP.

maxg<p<n Ri([f])>A

logo pelo teorema anterior

5 (s mul1?) < (S2) B,

0<k<n
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Logo, para n — oo e pelo TCM,

P
* p
sy < (-2) B, o
Teorema 11.15. (TEP - forma de Hopf) Seja T' uma contracgao linear positiva em
Ly, com T1 = 1. Entao, R,(f) — Pf q.c, onde Pf é definida pelo TEM.

Prova: Suponha, inicialmente, que f € Ly e sejam g(f) := limsup,,_, o Rn(f), h(f) :=
liminf, o Ry (f). Entao, usando TP = P, é facil verificar que para todo k > 0

SHTf+ ... +TFf 5\ .
o (P b ) =t -

ST 4. +TFf o\ .
h( Py —Pf>_h(f)—Pf.

Considere

-y ()
2

2
Tf+...+T% R
< 4E f+Tf+...+T"f _pf
k+1
pelo Corolério 11.4, com p = 2. Isso é verdade para todo k. Para k& — oo, o lado
direito da ultima desigualdade converge para zero, pelo TEM, logo ¢(f) = Pf, q.c,
isto é, limsup,, R,,(f) = Pf q.c. Uma prova similar resulta em liminf,, R,(f) = Pf

q.c. Logo, R, (f) converge para Pf q.c.
Para o caso geral, suponha f € L;. Sejae > 0 e tome f. € Ly tal que || f— fe|1 <

g2. Considere

T+ +TFF
R< k+1 _Pf>

f+Tf+...+T1"f (f_fa)+"'+Tn(f_f£)_p(f_fe)

_pf—
n+1 !/ n+1
5 Je+. ... +T"f:
—-pP .
fet n+1

Entao,

f+Tf+...+T1T"f
n+1

—Pf‘:

lim sup
n

(f—f)+-+T"(f—f) 5
n+1 _P(f_fs)

lim sup ’
n
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<R (f—fo)+P(f = f]),

pelo caso L. Segue que

f+Tf+...+T"f
n—+1

p{n}lnsup —Pf‘ 5 e} < P{R(f — )+ P(f — L)) > <}

< P{R*(f — f:) > ¢/2} + P{P(If — f-]) > ¢/2}

2 2 4
<2 [1f - faap+ 2BP(5 - 1)

usando o Corolério 11.3 e a desigualdade de Markov. Finalmente, o iltimo termo é

2 2 2 2
< 7Hf - feHl + *Hf - fa”l < *52 + *52 < 457
3 15 g 15

Portanto,

. f+Tf+...+1"f
lim sup

—Pf|l=0, qc. O
5 I f , q.c

Corolério 11.5. (Versao final do TEM) Seja f € Ly, p 2 1 e T uma contragao
linear positiva em L1, com T1 = 1. Entao, R,(f) — Pf em norma L,.

Prova: Sabemos que o coroldrio vale para p = 1. Se f € L,, p > 1, entao f € Ly,
pois (2, F, P) é um e.p. Pelo TEP, R,(f) — Pf q.c. Contudo, pelo Corolério 11.4,
temos que E(sup,, |R,(f)[?) < oo, logo a familia {|R,,(f)|P,n > 1} é uniformemente
integravel. Portanto, R,(f) — Pf em L, 0O

11.4 Reciprocas dos teoremas ergodicos

Sabemos que, se T for uma transformagao que preserva a medida sobre um e.p
(Q,F,P) eseT for ergbdica, entao se f € Ly, teremos

T AL .
IR ++ 1 17 9€ constante. (11.7)
n

Teorema 11.16. (Reciproca) Suponha que T' seja uma transformacao preservando
a medida e, para toda f € Ly, tenhamos (11.7). Entao, T' é ergddica.

Prova: Seja A€ T e f =14. Sabemos que

T . F+T"f q.
f+Tf+. . +T"f ac

. B(fID).
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Nesse caso, E(f|Z) = I4. Por hipdtese, todos os limites sao constantes q.c, portanto
I4 é constante q.c, logo P(A) =0 ou P(A) =1, ou seja S é ergddica. [

Teorema 11.17. Seja (Q,F,P) um e.p e T uma transformagao que preserva a
medida e ergédica. Suponha que f > 0 elimy, oo (f+Tf+...+T"f)/(n+1) exista
e seja finito q.c. Entao f é integravel.

Prova: Se lim, o0 (f +Tf 4 ... +T"f)/(n + 1) converge q.c para f, entdo

Tf+T2f+ ...+ T f
n+1

~Tf=],
de modo que o limite f é invariante. Como T é ergddica, f é constante, digamos

f: d. Defina f. = f,se f <re f,=r,se f>r. Entao, f € L1 e portanto

fr+Tf+...+T"f, N
n+1

(fr|T) = E(fr),

pois T é ergbdica. Além disso, como f,. < f, Tf. < Tf, etc, de modo que

T+ T T+ TS
lim < lim =
n n+1 n n+1

d,

ou seja, E(f,) <d < oo. Mas f, T f, logo E(f) = lime E(fr) < d, pelo TCM, ou
seja E(f) <oco. O

Observagao: Lembremos a LFGN: se X;,¢ > 1 sao i.id, se E(X;) existe, entao
(X1 + ...+ X,)/n converge q.c. Também provamos que, se X;,i > 1 sdo i.i.d e se
(X1 4+ ...+ X,)/n converge para um limite finito, entao E(X) existe.

Problemas

1. Prove que a aplicacao T da definigao 11.2 é mensuravel.
2. Prove a afirmagéo do Exemplo 11.2 (a).

3. Seja 2 o conjunto de todas as sequéncias da forma (- - - ,w_1,wq, w1, - ), com w; real, e
F amenor o-dlgebra contendo todos os conjuntos da forma {w : (wk, Wgt1,- -« s Wktn—1) €
B,}, onde B,, é um conjunto de Borel do espago Euclidiano n-dimensional, k =
0,£1,42,.... Uma translagao bilateral T' é definida por T(--- ,w_1,wp,w;s, ) =
(- ,wo, w1, ), ou seja, se &1,&,... sdo as fungdes coordenadas, temos & (Tw) =
€k+1(w). Mostre que T preserva a medida se, e somente se P é estaciondria. A
definigdo de estaciondria aqui é analoga a dada no texto, exceto que agora temos
sequéncia bilateral.

4. Prove a afirmagio do Exemplo 11.5 (a).

5. Encontre uma translagdo T' que seja ergdédica mas nao de Kolmogorov (de fato, T
pode ser escolhida como uma translagao de Markov).
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7

10

11.

12.

13.

. Mostre que, se Tx = x+ 1, sobre a reta real, entao qualquer intervalo de comprimento
menor do que um é um conjunto wandering nao trivial.

. Para o Exemplo 11.8 (b), prove que T ¢ linear, que T' transforma fun¢bes de L, em
fungées de L, e portanto || f||, = || T f]l,-

. Sejam (Q,F,P;) e (2, F, P>) dois e.p com P; # P5 e S uma transformagao ergédica
sobre (0, F, P1) e (2, F, P2). Mostre que P; L Ps.

. Prove o Teorema 11.5.

. Mostre que as transformacoes a seguir sao mensuraveis e preservam a medida. Depois,
decida se sao ergédicas ou mixing.

(a) Q é o circulo unitdrio no plano complexo, F é a o-dlgebra de Borel no circulo e P
é dada pela medida de Lebesgue no circulo dividida por 2. Seja Te'? = 0+«
irracional. O que acontece se « for racional?

(b) @ = [0,1], P é a medida de Lesbesgue, F a o-dlgebra de Borel e Tw = 2w (mod1).
O que acontece se Tw = kw (mod1l), k inteiro, k > 27

Provamos que, se S é ergddica, e se f > 0, >_p_, f(S*w)/n converge q.c para um
limite finito, entdo f € L;. Mostre que isso pode nao ser verdade se: (a) f > 0 néo
valer; ou (b) se S nao for ergddica.

Sejam X = {X,,n > 0} e Y = {Y,,,n > 0} dois processos estacionérios, ergédicos.
Lance uma moeda independentemente de X e Y. Se ocorrer cara, observe o processo
X e se ocorrer coroa, observe o processo Y.

(a) O processo resultante é estritamente estaciondrio?

(b) O processo resultante é ergddico?

Seja X = {X,,,n > 0} um processo tal que (X1,...,X,) seja normal, para cada n,
E(Xz) = 07 COV(XivXj) = R(’Lv])

(a) Prove que X ¢ estacionario se e somente se R(i,j) depende somente de |i — j|;

(b) Suponha que R(i,j) = r(|i — j|). Prove que lim, r(n) = 0 implica que X seja
ergodico.
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Capitulo 12

Introducao ao Calculo
Estocastico

O objetivo deste capitulo é apresentar uma construgao da integral estocastica
de Tto,

T
1(f)(w) = /0 £ (@, AW (w, 1),

na qual W é o Movimento Browniano (MB) e f é uma fungao satisfazendo certos
critérios. Como as trajetérias de W nao tem variagdo finita em intervalos compac-
tos, nao é possivel usar a integral de Riemann-Stieltjes para integrar com respeito
ao MB. Em vez disto vamos usar técnicas de extensao de isometrias em espagos de
Hilbert para definir a integral estocastica. Veremos em seguida a férmua de It6, o
equivalente do teorema fundamental do cdlculo para o calculo estocastico. Final-
mente, provaremos a férmula de Girsanov e daremos alguns exemplos de aplicagao
deste resultado. Indicamos como referéncias para este capitulo os livros de Comets
e Meyre (2015) e Le Gall (2016).

12.1 Integral estocastica

Nesta secao, vamos definir a integral estocdstica em varias etapas, comegando com
a definicao da integral para a classe das fungoes em escada até chegar na classe de
funcdes HI® (veja a Definicio 12.5).

Iniciamos com o calculo da variagao quadratica do MB W nos intervalos da forma

[0,T]. Esta propriedade serd fundamental na construcao da integral estocéstica.

Proposicao 12.1 (Variagao quadratica do MB). Seja T >0, tg =0<1t; < -+ <
tn, =T uma particao do intervalo [0,T] e 6 = max;{t; — t;—1}. Temos que
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Prova: Lembramos para comegar que se X ~ N(0,02), E(X?) = 02, Var(X?) =
204, Aplicando estes resultados aos termos da soma

V= Z(W(tz) — W(ti1))%
i—1

obtemos
n

E(V)=T, Var(V)=2) (i —t;-1)* < 2T5.
i=1
Deduzimos que ||V —T||2 = Var(V) — 0, quando § - 0. O

Seja (2, F, P) um e.p e {F;,t > 0} uma sequéncia nao decrescente de o-dlgebras
tais que F; C F para todo t > 0. A sequéncia {F;,t > 0} é também chamada de
filtragao sobre (2, F, P).

Definicao 12.1. Um MB W definido sobre (0, F, P) é um {F;}-MB se ele é adap-
tado a {F;,t > 0} e se W(t) — W(s) € independente de Fs, para todo s > 0 e
t>s.

Neste capitulo sempre iremos supor que a filtracdo {F3,t > 0} é completa, i.e,
Fo contém todos os conjuntos nulos de F.

Definigao 12.2. Uma funcdo ¢ : Ry x Q@ — R € progressivamente mensurdvel se
para todo t € Ry, a aplicacdo (w,t) — f(w,t) de [0,t] x Q@ — R € B[0,t] @ F;-
mensurdvel.

Proposicao 12.2. Uma funcao ¢ de Ry x Q@ — R adaptada e continua € progres-
siwwamente mensurdvel.

Prova: Para todo n > 1, definimos

(k+1)T

T
bu(5,w) = G(KT/n,w), para "= <5 <
n n

E f4cil ver que ¢, é progressivamente mensuravel, e, por continuidade, ¢, converge
para ¢ em todo ponto (s,w) € [0,7] x Q quando n — oo. Isto mostra que ¢ é
progressiamente mensuravel. [

Definicao 12.3. Denotamos por Ha(Ry) (resp. H2([0,T]), T > 0), o espago das
funcgoes ¢ progressivamente mensurdveis tais que

E(/R ¢2(t,w)dt> < oo (resp. E< (;SQ(t,w)dt) < 00).

(0,7]

Também introduzimos Hy = (\p- o H2([0,T7).
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Identificando duas fungoes iguais fora de um conjunto de P ® A -medida nula,
obtemos que Hy(Ry) (resp. Ha(]0,71])) é um espagos de Hilbert com norma

9] o (Y ) = E(/]R q§2(t,w)dt)
+

(vesp. 19l 0.1)) = B Sy 9*(t,0)dt)).
Integral de fungoes em escada

Uma funcdo em escada é uma funcao real da forma

n—1

P(t,w) = Z Xi(w)l(tz‘,tiﬂ] (t)

k=0

com 0=ty <t <ty <--<tyelX; € Lo F, P). Uma fungao deste tipo é
progressivamente mensuravel. Observamos que as fungoes em escada pertencem a
Hy(R.) pois

n—1
E( 5 ¢(t)2dt) - ;E(Xf)(tiﬂ — ) < oo

Para estas fungoes, definimos a integral de It6 com respeito a um {F;}-MB W por

n—1

/R b AW =37 Xi(w) (W (tis1,w) — W(ti,w).
+ 1=0

A aplicagao ¢ — fR+ ¢ dW é linear sobre o espago vetorial £ das fungoes em escada
e tem valores em Lo(2, F, P) pois

2(( /R oaw)’] = Zl E(X2E(W (ti1) - W(t)]* | F))
+ =0

+2 Z BE(X; X;[W (tip1) = W) E(W (tj1) = W(t5)] | F;))

0<i<j<n

_ E(/R+ o(t)dt) = 91131z, )

Integral de fungoes em H>(R,)

O espago vetorial £ das funcoes em escadas é denso em Hy(Ry) (veja Problema
1). Pelo teorema de extensao de isometrias (veja o Apéndice A.3), ¢ € & —
fR+ ¢ dW € Lo(Q2, F, P), pode ser estendida de maneira tnica a aderéncia de &,
ou seja Hy(R4).
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Definicao 12.4. A waridvel aleatdria I]R+ ¢ dW € Lo(Q, F, P) é chamada integral
estocdstica de ¢.

Como consequéncia imediata da propriedade de isometria temos o

Teorema 12.1. Para ¢ e i) € Ha(Ry) temos que

E(/R ¢dW) —0, E[( A ¢dW)2] :E(/R ¢>2dt),

+

E[(/R+¢dW)(/R+¢dW)] :E</R+¢1/Jdt).

Integral de funcoes em Hy

Vamos, agora, estender a integral estocastica ao espaco Hs. Quando ¢ € Ho,
definimos para todo t > 0,

t
/ ¢ AW :/ 10,9 dW.
0 Ry

A integral acima estd bem definida para todo ¢ > 0, pois podemos observar que
1(9,4¢ € progressivamente mensurdvel (como produto de fungdes progressivamente
mensurdveis) e pertence a Ho(Ry). Definimos fst ¢ dW = fR+ 1(50¢ dW e deduzi-
mos imediatamente a relagao de Chasles

/thde:/OS(deJr/:d)dW

por linearidade. A proxima proposi¢do mostra que a integral estocdstica é uma
funcao continua do seu limite superior.

Proposicao 12.3. A aplicagdo de Ry — Lo, t — fg¢ dW é continua em todo
ponto tg > 0 e ela possui uma versao continua sobre R .

Prova: A continuidade em Lo é uma consequéncia imediata da propriedade de
isometria. Vamos mostrar que existe uma versao continua desta aplicacao. Podemos
usar a sequéncia (II,,),, do Problema 1. Neste caso , M,,(t) := fot P,¢ dW é continua
para quase todo w. Como a filtracdo {F;,t > 0} contém os conjuntos nulos de
F, podemos modificar M,, para que todas as suas trajetérias sejam continuas para
todo n. A desigualdade de Doob aplicada a martingale continua M, — M,, (veja a
Proposigao 12.4 abaixo) com T' < oo d4, para todo & > 0,

-2 2
P mae [Ma(0) = Mn(0)] > ) < €721 Pad — Prod By oy
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Assim, em probabilidade, a sequéncia (M), é de Cauchy no espago das fungoes
continuas sobre [0, 7] com a norma da convergéncia uniforme. Podemos portanto
encontrar uma subsequéncia (My, ), tal que, quase certamente, esta subsequéncia
converge uniformemente sobre os compactos de Ry. O limite My, pode ser tomado
contlnuo como limite (quase certamente) uniforme de funcgoes continuas. Como
M, (t) — fo ¢ dW em Lo, temos que My fo ¢ dW q.c., para todo t > 0, e
portanto My, é uma versao continua da mtegral estocastica. [

Proposicao 12.4. Para ¢ € Hy, o processo estocdstico M (t fo ¢ dW €
martingale de quadrado integravel tal que

—/Ot¢>2ds

Observagao: o processo { fg $?ds,t > 0}, é tradicionalmente chamado de “col-
chete”do martingale M e é denotado por (M).

€ um martingale.

Prova: Em primeiro lugar, vamos mostrar que M é um martingale com respeito a
filtragao {Fi,t > 0}. Se ¢ € &, obtemos para s =ty < t; < - - <t, =1,

B([oawiz)= 2 X (t31) = W) | )

zs
,_.o

E(X;E(W (tit1) = W(t)] | Fi) | Fs)

s
Il
S

O resultado geral para ¢ € Hs é obtido por continuidade da esperanga condicional
em L2 ea densidade de £ em Hy([0,T]) para todo T' > 0. A seguir, mostramos que
fo 5)2ds é um martingale. Como E(M ()% — M(s)? | Fs) = E((M(t) —

( ))2 | Fs), é suﬁc1ente verificar que

/¢dW2|f /¢ du\f) (12.1)
Mas esta ultima igualdade é facilmente obtida por um argumento similar a aquele
usado para provar que M é um martingale (veja Problema 2). O
Localizacao

Para certas aplicacGes o espaco Ho nao ¢ suficiente, assim é necessério estender
a integral estocédstica a um espago maior.
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Definigao 12.5. Denotamos por H%OC o conjunto das funcdes progressivamente men-
surdveis ¢ : Ry x Q — R tais que, para todo T > 0,

P(/T¢(t,w)2dt < oo) =1
0

Observamos que Hy C HY°. Se ¢ é progressivamente mensurdvel, o tempo
aleatério

Tp = inf {t >0: /thﬁ(s)zds > n} € [0, 00]

é um tempo de parada da filtracio {F;,t > 0}. Além disto se ¢ € HXC, a sequéncia
7, diverge q.c. para 0o e 1jg.,1¢ € Ha para todo n. Isto sugere a seguinte extensao
da integral estocastica ao espaco H%OC.

loc

Definigao 12.6. A integral estocdstica para ¢ € H,
limite quase certo

¢ definida para todo t > 0 pelo

t t
/ ¢ dW = lim / 1jo.r,1¢ AW.
O n—oo 0

A integral estocastica em H° ndo é, em geral, um martingale mas somente uma
versao mais fraca, chamada martingale local (veja o Problema 3).

Definicao 12.7 (Martingale local). Um processo estocdstico X = {X(t),t > 0},
adaptado a uma filtragao {Fy,t > 0}, é um martingale local, se existe uma sequéncia
de tempos de parada T,, tal que limy,_,o 7, = 00, ¢.c., € tal que {X(t A 7,),t > 0}
seja um martingale para todo n.

Para concluir, podemos observar que a integral estocéstica em H%OC permanece,
quase certamente, com trajetorias continuas. Com respeito a propriedade de isome-
tria, ela é substituida pela desigualdade trivial

E((/Ot¢dW)2> < E(/thbzds).
12.2 Férmula de Ito

A férmula de It6 é, para o cédlculo estocdstico, o andlogo do Teorema Fundamen-
tal do Célculo (TFC). Em primeiro lugar veremos que o TFC ¢é falso no contexto
do céclulo estocastico. Comecamos considerando f,g € C', o espaco das funcdes
continuamente diferenciaveis. Temos que o TFC implica que

g(f(t))Zg(f(O))+/O g’(f(S))f’(S)ds=9(f(0))+/0 g (f(s))df(s).  (12.2)
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Vamos verificar se esta férmula ainda vale no contexto do calculo estocastico.
Para isto, tomamos g(z) = 2. Com 0 =tg < --- < t,, = t, temos que

W2(t) = zn: W2(t;) — W2(t;_1)
=1
= 226 W(ti-1)(W(t:) — W(ti-1)) + En:(W(ti) - W(ti—1))*.
i=1 i=1

. t
Quando n — oo, 0 primeiro termo converge para 2 fo WdW e o segundo para a
variagado quadratica t do movimento browniano. Portanto obtemos,

t
W(t)? = 2/ WdWw +t.
0

Isto mostra que a férmula (12.2) nao se aplica neste caso.

Comecamos para enunciar a féormula de Itd no caso mais simples a seguir. Seja
C? o espaco das funcdes duas vezes continuamente diferencidveis e C’b2 o espago das
funcoes f € C? tais que f, f’ e f” sdo limitadas.

Proposicao 12.5. Para f € Cf, temos q.c,

V) = sovo) + [ roaw 3 [ pravas, 2s)

para todo t > 0.

Prova: Aplicando a féormula de Taylor de ordem dois, obtemos que

FW () = FWV(0)) + D IFW(t:)) = fF(W (ti-1))]
=1

= FW(0)) + > f'(W(tim))[W (t:) = W(ti-1)]
i=1

n

SIS eI ) - WP

=1

onde 0; = 6;(w) € (ti—1,t;). O segundo termo do membro da direita converge,
quando n — oo, para a integral estocéstica fot f/(W)dW. Vamos mostar que o

terceiro termo converge para % fg f"(W)ds. Para isto, denotemos por

A, = Zl FIW(0:)[W () — W (ti—1)]?,
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By =Y f'(W(ti))W(t) = W(tio)]?
=1

Cp = Z F W (ti—)) [t — tial.

Quando n — oo, C), — fot f"(W)ds q.c. e em L;. Vamos mostrar que A, converge
em L para o mesmo limite. Pela desigualdade triangular temos,

E(’An - Cn|) < E(|An - Bn’) + E(‘Bn - Cn’)

Pela desigualdade de Cauchy-Schwarz, obtemos

B(|An = Bul) < B( sup " (W(ti2) = " (W(0)] x S_IW(t0) = Wt
< |Blswp £ (W (t0)) = £/ (W (0:)P)

« E((Z[W(ti) _ W(ti_l)]2)2>]

que tende a 0, quando n — oo, usando o TCD e a Proposicao 12.1. Por outro lado,

1/2

E(’Bn - Cn’2) =EB

’ W () (W (k) — W (tioa)]? = (6 — t¢_1))‘2]
=1
< SB[ W))W (L) = Wt = (6~ ti1) ]
=1

< sup(f)? x D2 B[ () = Wt = (6 — i)

i=1

= sup(f”)2 X Qi(ti — ti_l)Q,

i=1

que tende a 0, o que implica que E(|B,, — Cy|) — 0, quando n — oco. Assim, para
todo t > 0, a igualdade (12.3) ocorre em L; e portanto q.c. Usando a continuidade
das trajetorias, podemos inverter as expressoes “para todo t > 0” e “q.c.” na frase
anterior. [J

Exemplo 12.1. Considere a integral estocastica

/0 " sen(WW) dw,
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Usando a Proposicao 12.5, podemos obter uma expressao para a integral acima que
nao involve nenhuma integral estocédstica. Para isto, basta aplicar a proposi¢ao com
f(z) = —cosz. Usando que W (0) = 0, obtemos que

t t
/ sen(W) dW =1 — cos(W(t)) — / cos(W (s)) ds.
0 0

Notagao diferencial: Tradicionalmente (12.3) é escrita sob a “forma diferencial”
mais compacta a seguir:

A () = V)W + o f (W),

embora apenas a forma integral (12.3) tem um sentido mateméatico rigoroso.
Todo processo estocdstico da forma

t t
X(t):X(0)+/0 ¢dW+/0 b ds,

com ¢, € Hy e X(0) € Lo(S2, Fo, P) é chamado de processo de Ité e denotaremos
por
dX = ¢dW + ds

a sua forma diferencial. Os mesmos argumentos que na prova da proposicao anterior
podem ser usados para provar que os processos de It6 satisfazem: para f € C2,

FOE0) = X O) + [ s aw+ [ w5 [ pas

ou seja, em notacao diferencial,

A (X) = £/(X)AX + " (X)d(X),

(X)(t) := /0 P3ds.

Exemplo 12.2. Considere o processo dado por X (t) = exp{W(t)}, para todo t > 0.
Usando a Proposicao 12.5 com f(z) = e* obtemos que

dX = XdW + gdt.

Assim, X é um processo de Itd pois X € Hs.

Para terminar este paragrafo, enunciamos uma generalizagao da férmula de 1t6
anterior para os espagos HX¢, HI°¢ e C? (veja Karatzas and Schreve (1988)). Intro-
duzimos em primeiro lugar o espago H1°¢ das fungdes f : Ry x Q — R progressiva-
mente mensurdveis tais que fOT |f(t,w)|dt seja finito q.c. para todo T' > 0.
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Teorema 12.2. Se X (t) = X(0) + f(fgb dw + fgzﬁ ds é um processo de Ité com
o€ H%OC, P e Hioc e f € C?, entdo, q.c., para todo t > 0,

£ = X+ [ s aw+ [ 0w s+ g [ s

12.3 Transformacgao de Girsanov

Seja (2, F, P) um e.p com uma filtragao completa {F;,t > 0}, em que estéd definido
um {F;}-MB W.

A densidade gaussiana g(x) = (27) exp —{z?/2} possui a propriedade g(x —
a) = g(x)e=9*/2 para todo a € R. Assim, se V é uma varidvel aleatoria com lei
normal padrao, temos para toda f mensurdvel e limitada

~1/2

E(f(V +a)) = E(f(V) exp {aV — a2/2}>.
Isto significa que a lei de V' + a é a mesma que a lei de V sob a nova probabilidade
dQ(w) = exp {aV (w) — a®/2}dP(w). Esta férmula foi generalizada para o MB por

Cameron e Martin em 1944, e de novo estendida em 1960 por Girsanov.
Sejam ¢ € H%OC e para todo t > 0,

Vy(t) == exp { /thb AW — ;/Ot ¢2ds}.

Teorema 12.3 (Férmula de Girsanov). Suponha que
E(Vy(t)) =1, para todot > 0.
Entao existe uma tnica probabilidade Q sobre Foo := \/t20 Fz, definida por
Q(A) = E(Vy(t)1a), A€ F, t > 0.

Além disto, o processo estocdstico W definido por

W) = W) — /0 6 ds

é um {Fi}-MB sob Q.

No resto desta secao daremos uma prova da férmula de Girsanov. Comegamos
com a prova do seguinte
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Lema 12.1. Seja ¢ € HY® com walores complexos, se existe uma constante finita
C tal que a condicao

t
[ lotopas < c. g
0
entdo Vy(t) € Ly e E(Vy(t)) = 1.
Prova: Comegamos com a prova do resultado no caso ¢ real. A provar sera feito em

duas etapas. Na primeira etapa, consideramos que ¢ é limitada no intervalo [0, ¢],
ou seja existe K tal que supycjo4 [¢(s)| < K. Aplicando a férmula de It6 obtemos

t
Vy(t) =1+ /0 OV, dW. (12.4)

Vamos mostrar que ¢V, € Ha([0,t]) para obter que a integral estocéstica V() acima
¢ um martingal e que portanto E(Vg(t)) = 1. Para isto, usando a desigualdade
(a+b)? < 2a% 4 2b%, temos que

V() < 2(1+ [/Ou &V, dW]Q),

para todo u < t. Usando o Problema 5, obtemos que Vy4(s) € L e é limitado em
Ly para s € [0,t]. Deduzimos que ¢V, € Ha([0,t]) e, finalmente, E(V,(t)) = 1. Na
segunda etapa, consideramos ¢ real sem a hipétese de limitagao. Neste caso, usamos
o truncamento ¢p, := ¢1_, ) para n > 1. Obtemos

t t
B(Vo, (7)< (E[exp {4 [ 6 aw —s [ o2as}]
0 0
t 1/2
x E | exp 6/ ¢2ds
oo {s | dhas}])
<1 x exp{3CY,

usando a desigualdade de Cauchy-Schwarz e a primeira etapa. Além disto,

em probabilidade pois fg d2du — fot ¢%du pelo TCM e fot ¢n, dW converge em Lo
para f(f ¢ dW. Usando o Problema 6 item (ii), obtemos que

E(V(t) = lim E(Vy, (1)) = 1.

Consideramos, para terminar, um integrando com valores complexos ¢ = p + i6.
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Temos que
£ = el o { [ ovioaw = [T ias}]

< E[Vp(t)2 X exp{% /Dt 92ds}}
< E(V,(t)?) x exp{C},

usando a versio real do lema provada acima. Da mesma forma, temos que
[ Bavionias < espicy [ Blor
<exp{0}/ BBV, (1)? | F)lo(s)2)ds
— exp{C} / E(V,(t)216(s) 2)ds

= exp{C}E(V, / 0(s)ds)
< Cexp{C}E(V,(t)?) < o0.

Deduzimos que o integrando da equagao (12.4) pertence a Hs([0,t]) e portanto que
E(Vy(t)=1. O

Prova do Teorema 12.3:

Em primeiro lugar, a férmula Q;(A) = E(Vy(t)14) para A € F; e t > 0, define
uma familia de probabilidades consistente (veja o Problema 7). Pelo teorema de
extensao de Kolmogorov, existe uma tinica probabilidade @ sobre F, cuja restrigao
a F; seja ;. Vamos mostrar que W é um movimento browniano sob @, ou seja
para todo 0 <t <--- <t, =t

< exp{ zi: }) = exp{ Z wjug(t; Aty) } (12.5)

jk:l

para todo uq, ..., up.

Inicialmente, provaremos (12.5) sob a condigao fot ¢*ds < C, q.c. A funcio
P(s,w) = ¢(s,w)+i " ujlp,)(s) com valores complexos é tal que f(f [y|2ds < C'
para uma constante finita C’. Usando o Lema 12.1, obtemos que E(Vy(t)) = 1.
Assim, expandindo 12 temos

( exp{ Zu] }) exp {% Zp: ujug(t; A tk)} =1 (12.6)

J,k=1
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o que prova (12.5).

No caso geral, usamos um argumento de localizagao com os tempos de parada
Tp, = inf{t > 0: fg ¢?ds > n}. As fungoes ¢n(s,w) = ¢(s,w)l,,(s) verificam:

. fg ¢2ds < n e pelo Lema 12.1, E(V,, (t)) = 1;

o q.C., [ dn dW — [ ¢ dW e [ 2ds — [) $*ds.

Assim, pelo Problema 6, item (i), obtemos que

E¢n(t) — V¢(t) em Ll. (12.7)

Como (12.6) vale para ¢, temos para todo n > 1,

E(V%(t) exp {izp:uj (W(tj) _ /Otj gbnds) }) = exp{ — % zp: ujug(t; A tk)}
j=1

jk=1

(12.8)
Agora, usando a decomposicao
Vo (1) exp { S, (wit,) - /O ’ uds) b~ Vo(t)esxp {i 3 uWi(t;)}
j=1 j=1
= (Wl = Vepesp (i3 s (W) - | 6uas)}
a0 (00 {3 (W) [ uts) } -0 (i3}
=1 j=1

concluimos por (12.7) e pelo TCD que
i
Vs, (t) exp {z Z u;j (W(tj) - /0 <Z>nds> } —
j=1
p —_
V¢(t) exp {Z Z UjW(tj)}
j=1

em L1, o que implica a convergéncia das esperancas e portanto, por (12.8) o resultado
desejado. [

A seguir, daremos algumas aplicagdes cldssicas da férmula de Girsanov.
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Continuidade absoluta de funcionais aditivos do MB

Seja f : [0,7] — R uma fungao de quadrado integréavel e d(t) := fg f(s)ds, t <T.
Consideramos a lei v de W + d no intervalo [0, T, isto é, a probabilidade no espaco
C([0,T)) definida por,

v(A)=P(W+de A), Aboreliano de C([0,77).

Denotaremos a seguir por p a lei do MB W sobre C([0,7]). A proposi¢ao a seguir
mostra que v e u sao equivalentes.

Proposicao 12.6. A lei v é absolutamente continua com respeito a | e a sua
derivada de Radon-Nikodym é dada por

Ve e { [ s0ae -3 [ i)
—(x) = exp x(t) — - .
dp 0 2 Jo
Observagao: A primeira integral aparecendo na exponencial é simplesmente a in-
tegral estocdstica com respeito ao MB sobre C([0,T7).

Prova: Seja () a probabilidade definida por d@Q = Z(T)dP, com

Z(T):exp{/OdeW—;/OTdet}.

Pela férmula de Girsanov, sob @, W — d é um MB, isto implique que Q(W € ) =
P(W +d € -). Assim, obtemos para todo boreliano A de C([0,T1]),

T T
1
~ [r@en{ [ sodw -5 [ el O
0 0

Exemplo 12.3. Sejam a € R e X(t) = W(t) + at para t € Ry. X é um MB
com drift linear. Aplicando a Proposi¢gdo 12.6 com f = a, obtemos que, para todo
T € Ry, a lei de X no intervalo [0,7] é absolutamente continua com respeito a lei
de W no mesmo intervalo com densidade dada por

12

exp {,LLW(T) - ?T}
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Formula de Black-Scholes

A férmula de Black-Scholes é uma famosa férmula em finangas que permite
calcular o preco tedrico de uma opcao europeia. Consideramos, a seguir, que temos
um mercado com dois tipos de ativos financeiros. Um ativo sem risco com taxa de
juros r. Matematicamente, temos que o preco ao longo do tempo deste ativo sem
risco S satisfaz a equacao diferencial a seguir

ds = rSdt, (12.9)

ou seja
S(t) = S(0) exp {rt}.

Além disto, temos um ativo com risco R, com tendéncia (drift) u e volatilidade o.
Isto significa que R é um processo de Itd6 que pode ser representado em notagao
diferencial por

dR = R(udt + odW).

Consideramos aqui a filtracdo canénica (completa) {F;,t > 0} do MB W. Usando
a férmula de It6, podemos verificar que

2

R(t) = R(0) exp {aW(t) + (u - %)t} (12.10)

A seguir consideramos um produto finaceiro comum chamado opcdo de compra eu-
ropeia. Esta opcao permite comprar o ativo com risco em algum momento posterior
T a um preco K. Portanto, o detentor da opg¢ao aposta que, no momento 7', o ativo
valerd mais do que K. Nesse caso, o detentor pode comprar o ativo pelo preco K
e vende-lo imediatamente para obter um lucro R(7) — K. Se o ativo estd com um
preco inferior a K, o detentor da opgao tem a possibilidade de nao exercer a sua
opgao de compra. Assim, temos que o preco V(7T') da opgao no tempo 7" é dado por
U(T) = (Ry — K)5.

A questao central aqui é determinar o prego de venda da opgao para cadat < T.
No desenvolvimento a seguir, vamos supor a auséncia de arbitragem, ou seja, em
nenhum momento é possivel comprar o ativo com risco e vendo-lo em seguida a um
preco mais alto. Assim, supomos que existe um preco justo para a opcio europeia.

Para responder & questao central, consideramos uma carteira da forma

dV = adR + BdS,

na qual « e 8 sao dois processos estocasticos em Hz([0,T7]), representando, respec-
tivamente, a quantitidade de acdes e titulos da carteira. Este tipo de carteira é
chamado de auto-financiadora. Isto significa que somente é possivel comprar agoes
e titulos com o dinheiro disponivel na carteira. Para calular o preco da opcao, su-
pomos que exista uma carteira deste tipo que replica o preco da opcao, ou seja, tal
que V(T) = ¥(T).
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Lema 12.2. O prego ¥(t) da op¢ao europeia no tempo t € igual a V (t).

Prova: Como V(T') = U(T') por hipétese, investindo V() no tempo ¢ na carteira
podemos obter o mesmo lucro da opgao. Assim, se vendessemos a opgao a um valor
x > V(t) no tempo ¢, ninguém a compraria pois seria possivel investir a (menor)
quantidade V() na carteira e obter o mesmo lucro da op¢ao no tempo 7. Por outro
lado, se z < V/(t) no tempo ¢, todo mundo compraria a opgao, pois seria possivel
obter o mesmo lucro ¥(7') com um menor investimento. [

Com o lema acima, a questao central se reduz agora ao célculo de V(¢) para
t < T. Pela formula de It6, temos
dle "V (t)) = —re "V (t)dt + e " dV
= e "(—rV(t)dt + a(t)dR + B(t)dS)
= e "(—r(a(t)R(t) + B(t)S(t))dt + a(t)R(t)(udt + odW) + B(t)dS
= a(t)S(t)e " (—rdt + pdt + cdW) + e " B(t)(—rP(t)dt + dS).

Por (12.9), o segundo termo é nulo e obtemos

d(e ™V (t)) = oa(t)S(t)e ™ (?dt + dw).

Devido & presenga do termo em “dt”, o processo e "'V (t), nao é um martingale
(se p # r). No entanto, usando a férmula de Girsanov, sob a nova probabilidade
dQ = M(T)dP, sendo

M(T) = exp {%W(t} - (7"2_0?275}

obtemos que e "'V (¢) é um martingale com respeito a filtragao {F;,t > 0}. Em
particular, temos que
V(t) =e"e "V (1)
=" EgleTV(T) | F) = "D EQ((R(T) — K) 4 | F). (12.11)

Agora, usando (12.10) obtemos

o2
R(t) = R(0) exp (JW(t) + (p— ?)t)
= R(0) exp (UW(t) +(r— ”;)t).

Podemos agora usar esta ultima expressao em (12.11) para calcular V() para
t < T. Em seguida, apresentamos somente a expressao de V' (0) deixando ao leitor o
célculo de V' (t) (veja Problema 8).
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Teorema 12.4 (Férmula de Black-Scholes para t = 0). O prego da op¢ao europeia
no tempo t =0 € dado por

W(0) = R(0)®(dy) — Ke "Td(dy),

na qual
dy = —IH(K/R(O()T)\;T(T TERT - VT,

e ® € funcdo de distribuicdo acumulada da lei normal padrdo.

Prova: Como Fy é trivial, temos que
V(0) = e "M EQ[(R(T) — K)+]
= ¢ T (EQ[R(T)1(r(r)> k)] — KEQ[L{n(r)>K)])- (12.12)

Como W (t) + £==t é um MB sob Q, W(T') tem mesma lei que VTN, em que N é
uma v.a. com lei normal padrao. Assim, a lei de R(T") é a mesma que
2
R(0) exp (m/fN t(r— %)T) = R(0)e™NH, (12.13)

em que vy =0VT e d = (r—c%/2)T. Assim, temos que

Eqlirry>ky] = Q(R(T) > K)
P(R(0)e™ % > K)

_ (N an/R 0)) 5)
:P<N — In( K/R( ))+6>
= ®(dy).

De maneira analoga obtemos

EQIR(T) 1 pir)> k3] = RO)E(N 1 o) ntos icy)
(O)E(eﬂNHl{Nng})
d2
(0)"
=/
(0)e™+7*/ 2<I><d2 +7)
(0)e"T'®(dy).

2
ev:vx/2dl,

:U:U:U:U

Colocando as duas tltimas expressoes em (12.12), obtemos o resultado desejado.
O
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232 CAPITULO 12. INTRODUCAO AO CALCULO ESTOCASTICO
Problemas
1. Para todo n > 1, considere o operador linear I, sobre H?(R,) definido para P-
q.t. w e Qetodot >0 por
n? i/n
ftw) =n Y ([ fww)du)Logm, goaym @),
i—1 (i—1)/n
Mostrar que I, f € € e que IL,, f — f em H?(R,). Concluir que £ é denso em H?(R)
e em H?([0,T]) par todo T > 0.
2. Provar (12.1).
3. Dar um exemplo de um martingale local que nao é um martingale.
4. Seja W um {F;}-MB. Usando a férmula de Itd, verificar se os processos a seguir sao
martingales.
(i) X(t) = W(t)%
(i) X (t) = £2W(t) — 2 [7 sW (s)ds.
5. (Lema de Gronwall) Seja f uma funcdo nao negativa localmente integravel definida
sobre R tal que
t
ft) <a-+ b/ f(s)ds, t>0, (12.14)
0
com a, b constantes nao negativas. Mostrar que
£(t) < aexp{bt).
6. Seja (X,)n>1 uma sequéncia de varidveis aleatérias e X uma varidvel aleatéria defi-
nidas no mesmo espaco de probabilidade. Mostrar as seguintes implicagoes
(i) Se X,, >0, B(X,) = E(X) < oo e X, = X q.c. entdo X,, — X em L',
(ii) Se sup,, E(X?2) < 0 e X,, — X em probabilidade entao X,, —+ X em L'.
7. Mostrar que a familia {Q,t > 0} é consistente.
8. (Férmula de Black-Scholes) Seja A = (r — u)/o e Y(t) = W(t) — At. Usando a

decomposigao Y (T') = (Y(T) — Y (t)) + Y (¢), calcular V(¢) para todo ¢t € [0,T].
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Apeéendice
Alguns conceitos matematicos

A.1 Medida

Seja 2 um conjunto nao vazio e {A,,n > 1} uma sequéncia de subconjuntos de
Q. Dizemos que esta sequéncia é crescente se A, C An+1, para todon > 1 e que ela
é decrescente se A, 11 C Ay, para todo n > 1. Dizemos que A4, T A se a sequéncia
é crescente e A = U,A,. Analogamente, A, | A se a sequéncia é decrescente e
A = NpA,. Definimos o limsup,, A, como o conjunto de todos os elementos de
Q) que pertencem a um ntumero infinito de conjuntos A,, e o liminf, A, como o
conjunto dos elementos de 2 que pertencem a todos os conjuntos A, com excecao
de um nimero finito deles. Obviamente, liminf, A, C limsup,, A, e vale a seguinte
proposicao.

Proposicao A.1.1 Temos as seguintes propriedades
(i) limsup, Ap = ooy Un, An;
(i) liminf, A, = U>S_, N>, An;
(iii) (limsup,, AS)¢ = liminf,, A,.
A seguir, denotemos por @ o conjunto vazio.
Definicao A.1.1. Uma classe F de subconjuntos de 2 é uma dlgebra se:
(i) Q pertence a F;
(ii) se A € F, entao A€ € F;
(iii) se A,B € F, entao AUB € F.
Como consequéncias temos:
(a) @ € F;

233



234 APENDICE

(b) uma algebra é fechada sob reunioes finitas;

(¢) uma algebra é fechada sob intersecgoes finitas;

(d) uma &lgebra é fechada sob todas as operagoes finitas com conjuntos.
Exemplo A.1.1. Sdo exemplos de algebras:

(i) Dado qualquer © dado, seja F = 29 o conjunto de todos os subconjuntos de
Q.

(ii) Seja 2 =R e F a classe contendo todas as reunioes finitas disjuntas de inter-
valos da forma (a,b], (—o0,a] ou (b, +o0), a,b € R.

(iii) Seja Q@ =RP, p > 1, e F a classe contendo todas as reunides finitas disjuntas
dos retangulos [[%_, I;, onde para todo i, ; é um intervalo da forma descrita
em (ii).

Definicao A.1.2. Uma classe F de subconjuntos de €2 é uma o-dlgebra se:

(i) Q pertence a F;
(ii) se A € F, entao A° € F;

(iii) se A, € F, n>1, entéo | Joo, A, € F.

Como consequéncias da definicdo acima temos:
(a) @ € F;
(b) (iii) e (a) implicam que se A, € F, n=1,...,p, entao U’ _, A,, € F;
(
(d) a reuniao em (iii) pode ser substituida por intersecgao;

uma o-algebra é fechada sob todas as operacées enumeraveis de conjuntos;

)
)
¢) uma o-algebra é uma algebra fechada sob reunides enumeraveis;
)
e)
)

(
(f) uma o-algebra é uma algebra.

Exemplo A.1.2. Sao exemplos de o-algebras:

(i) Para qualquer Q dado, Fy = {@,Q} é uma o-dlgebra; é a menor o-algebra de
subconjuntos de €2, chamada o-dlgebra trivial,

(ii) Para qualquer  dado, o conjunto 2 é uma o-algebra; é a maior o-algebra de
subconjuntos de §. Para qualquer o-algebra F sobre Q, teremos Fp C F C 2%
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(iii) A menor o-dlgebra contendo uma classe A de subconjuntos de 2 é chamada a
o-dlgebra gerada por A, e a denotamos por F = F[A];

(iv) Seja © = RP, p > 1, e consideremos a o-algebra gerada pelos retangulos
p-dimensionais da forma [[?_; (a;,b;], a;,b; € R. Esta o-dlgebra é chamada
o-dlgebra de Borel e é denotada por BP. Esta também é a o-dlgebra gerada
pela classe dos conjuntos abertos de RP; B!, ou simplesmente B, é a o-dlgebra
de Borel de R.

A intersecgao de uma familia arbitraria de o-algebras {F,,« € '}, onde I" é um
conjunto de indices, é uma o-algebra denotada por (), cp Fa ou A cp Fa. Contudo,
Uaer Fa nao precisa ser uma o-algebra em geral. Pelo item (iii) do Exemplo A.1.2,
existe uma o-algebra minimal contendo todas elas, denotada \/ ¢ Fa-

A seguir, apresentamos outros sistemas de conjuntos importantes.

Sistema-7 e sistema de Dynkin. Dizemos que F é um sistema-m se A, B € F,
entdo AN B € F. Dizemos que F é uma sistema de Dynkin se:

(i) Q e F;
(ii) A, Be F,BC A,entao A— B=ANB° e F;
(iii) Se A, € Fe A, C Apy1 para todo n > 1, entdo U2 A, € F.

Um sistema de Dynkin é também chamado sistema-A. Temos as seguintes propri-
edades:

(a) Dada qualquer cole¢do de conjuntos, existe um sistema de Dynkin minimal
contendo esses conjuntos, a saber, a intersecgao de todos os sistemas de Dynkin
contendo a cole¢cao. Esse sistema de Dynkin minimal é dito ser gerado pela
colecao de conjuntos.

(b) Toda o-algebra é um sistema de Dynkin;

(c) Um sistema de Dynkin é uma o-algebra se, e somente se, é um sistema-.

Classes monotonicas. Uma colegao de conjuntos C é uma classe monotonica se:
(i) E,TE, E,eC = EeC;
(ii) B, E, E,e€C = EecC.

Alguns fatos sobre classes monotdnicas sao:

(a) Dada qualquer colegdo de conjuntos, existe uma classe monotonica minimal
contendo esses conjuntos, a saber, a interseccao de todas as classes monotonicas
contendo a colecao. Essa classe monotonica minimal é dita ser gerada pela
colecao de conjuntos.
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(b) Uma algebra é uma o-algebra se e somente for uma classe monotonica.

(c) Seja Fp uma élgebra e F a o-algebra gerada por Fy. Seja C a classe monotonica
gerada por Fy. Entao C = F.

Para mais detalhes, veja Chung (1974).

Para introduzir o conceito de medida consideremos um exemplo. Seja  ar-
bitrario e F = 2. Seja n uma funcio definida em F com valores em [0, o0, ou seja,
uma funcao de conjunto, tal que n(A) seja o nimero de elementos de A € F, se A
for finito e n(A) = oo se A for infinito. Entao n tem as propriedades:

(i) n(2) =0
(ii) Se A,Be€ F, AnNB = &, entao n(AU B) = n(A4) + n(B);
(iii) Se A; € F, i > 1, disjuntos, entao n({J;2; Ai) = > iy n(A4;).

Observe que a propriedade (iii) implica a propridade (ii). A fungao n é uma medida

sobre F. Precisamente, temos a seguinte defini¢ao no caso em que F é somente uma
algebra.

Definicao A.1.3. Seja F uma algebra de subconjuntos de 2. Uma fungao de
conjuntos p : F — [0, 00] é uma medida sobre F se:

(i) u(@)=0;

(ii) Sejam A; € F, ¢ > 1, disjuntos e a reuniao deles pertence a F, entao

p(UiZy Ai) = 2272 p(As).

Uma medida p é finita se u(2) < co. No caso em que p(§2) = 1, p é chamadada
de medida de probabilidade ou simplesmente de probabilidade. Uma medida u é o-
finita se existir uma sequéncia de conjuntos {A,,n > 1} de F com Q = {J,, A e
w(Ayn) < oo, para todo n > 1. Sempre podemos tomar a sequéncia {A4,,n > 1}
como constituida de conjuntos disjuntos. Uma propriedade é verdadeira em p-quase
todo ponto (p-q.t.p) se existe um conjunto mensurdvel A com pu(A°) = 0 tal que a
propriedade vala para todo x € A.

Da definicdo de uma medida seguem as seguintes propriedades elementares:
(a) Se A,Be F, AC B, entao pu(A) < p(B);
(b) Se A,Be F, AC B, u(A) < oo, entao u(B — A) = u(B) — u(A).

Exemplo A.1.3. Seja (2 = R e F a classe de todas as reunioes finitas e disjuntas
de intervalos do tipo (a,b], (=00, a] ou (b,4+00), a,b € R. Defina A : F — [0, 00| tal
que:
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(i) A((a,b]) =b—a,a<b;
(ii) A(I) = oo, se I for um intervalo nao limitado;

(iii) Seja A € F; entao, A = |J_; I, onde os I, sdo disjuntos e do tipo acima
descrito. Coloque A\(A) = > M(I;).
Entao, A é uma medida sobre F.

Exemplo A.1.4. De maneira geral, dada uma funcao F' uma funcao crescente,
continua a direita tal que lim, oo F'(z) = 1, lim,—,_o F(x) = 0, defina uma funcao
de conjunto pp sobre a dlgebra F da seguinte maneira:

ur((a,b]) = F(b)—F(a), a <b,
pr((—oc,a]) = Fl(a),
pr((b,+o0)) = 1—=F(b),
pr(R) = 1.

Se A e F,entao A= U I, e defina pup(A) =" pp(Ly). Temos que pp é uma
medida de probabilidade sobre F.

Consideremos, agora, uma medida sobre uma o-algebra.

Definigao A.1.4. Por um espago mensurdvel entendemos o par (2, F), consistindo
de um conjunto 2 e de uma o-algebra F de subconjuntos de 2. Um subconjunto A
de Q é chamado mensurdvel (com respeito a F) se A € F.

Definigao A.1.5. Por uma medida p sobre um espago mensuravel (£2, F) entende-
mos uma fungao de conjunto com valores em [0, co] definida sobre todos os conjuntos
de F e satisfazendo:

(i) u(@)=0;

(i) w(Us2q Ei) = D> o2 1(E;), para toda sequéncia {E;,7 > 1} de conjuntos men-
suraveis e disjuntos.

Um espaco de medida (2, F,pu) é um espaco mensuravel (€2, F) munido de uma
medida p definida sobre F.

Exemplo A.1.5. A medida A do Exemplo A.1.3 pode ser estendida a o-dlgebra
B. Esta extensao é chamada de medida de Lebesgue sobre R. A prova deste fato
nao é simples e pode ser encontrada em Billingsley (1995). Este é um exemplo
de medida o-finita (basta tomar A, = (n,n+ 1],n = 0,£1,...). A restricdo da
medida de Lebesgue aos borelianos do intervalo [—1,1] é um exemplo de medida
finita. De maneira analoga, as medidas de probabilidade do Exemplo A.1.4. podem
ser estendidas & B. Enfim, seja  um conjunto nio enumeravel e F = 2. Seja 1 a
medida definida por u({z}) = 1, para todo z € Q. Entao, u nao é o-finita.
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A.2 Integral com respeito a uma medida

A nocao de integral estende as nogoes de comprimento, drea e volume e 0s
trabalhos mais importantes remontam a Borel, 1898 e Lebesgue, 1902. A extensao
a o-algebras sobre espagos abstratos foi feita por Fréchet, em 1915. A integral é
definida, sucessivamente, para uma funcao simples, positiva e arbitraria.

Dado um espago mensuravel (Q,F), uma funcao simples f : @ — R é uma

combinacao linear finita de indicadores de subconjuntos mensuraveis Ay, ..., A de
Q, isto é,
k
f: E CiIAi, c € R.
i=1

Evidentemente, f admite mais de uma representacao como aquela acima, mas
podemos associar a f uma representa¢do candnica,

p
f = ZCLjIBj, (A.Q.l)
j=1

tal que:
(i) os Bj sdo ndo vazios e dois a dois disjuntos, B; = f~1(a;);
(ii) © = U_, B; (e portanto algum dos a; pode ser nulo).
Indicamos por S;(€2) o conjunto das fungoes simples f :  — Ry. Seja f €

S4 () com representacao canonica (A.2.1). Definimos a integral de f com respeito
a medida p como sendo

[ fdn= [ f)due) - jz:aju(Bj)

onde usamos a convengao 0 x oo = 0.
Sejam f,g € S4(Q) entdo:
(a) se f < g, segue-se [ fdu < [ gdu;
(b) se a,b> 0, temos [(af +bg)du =a [ fdu+b [ gdp.

Seja agora g : 2 — [0, 00| uma fungdo mensurdvel positiva com valores possivelmente
infinitos. Entao a integral de g com respeito & p é definida por

[odn= [ aiaut) =sup{ [ sau: 1€ su@).5 < g},

Os seguintes fatos sao validos:
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(a) Seg>0eh>0eg=h, em pu-q.t.p entdo [ gdu = [ hdy;
(b) se g > 0, entdo g = 0 em p-q.t.p implica que [ gdu = 0;
(c) se g>0e [gdu < oo, entdo g < oo em p-quase todo ponto;

(d) se g>0,h>0eg<h,entao [gdu < [ hdu.
Para toda g > 0 e A conjunto mensuravel, definimos

/ gdp = / Tagdp.
A

Os dois teoremas a seguir sao fundamentais. Para provas, veja Barttle (2001).

Teorema A.2.1. [Lema de Fatou] Seja fi : Q@ — [0,00], k > 1, uma sequéncia de
fungées mensuraveis. Entao,

/lim inf fr du < liminf/fk dp < oo.
k—o0 k—o0

Teorema A.2.2. [da Convergéncia Monétona] Seja fr : Q@ — [0,00], kK > 1, uma
sequéncia crescente de fung¢oes mensuraveis. Entao,

/ lim fi dp = lim /fkdu<oo.
k—oo k—o0

Consequéncias importantes desses teoremas sao:

() g>0,h>0 = [(g9+h)du= [gdu+ [ hdy;

(f) Dada uma sequéncia de fungdes positivas {fx, k > 1}, temos que

/(gfk)dﬂ_g/fk dps.

(g) Seja g > 0 e sejam {Ag, k > 1} uma sequéncia de subconjuntos mensurdveis
de €2, dois a dois disjuntos e cuja reuniao é §2. Entao,

/gdu=Z/ g dp.
k=17 Ak
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Consideremos, agora, uma func¢ao mensuravel g : 2 — R. Como essa fungao
pode ser escrita como a diferenca entre sua parte positiva, fy, e sua parte negativa,
f—,ouseja, f = f+ — f—, definamos

/ﬂm=/ﬁw—/ﬁw,

desde que tenhamos [ fidp < oo ou [ f_dp < oo. No caso em que as duas integrais
sao finitas, dizemos que f € integravel com respeito a pu.

Os seguintes fatos podem ser facilmente provados.

(a) Se g, h sao fungdes integréaveis, entao [(ag + bh)du = a [ gdp + b [ hdp, com
a e b reais;

(b) se h é uma fungao mensuravel tal que |h| < g em p-q.t.p e g é integravel, entao
h é integravel,

(c) se g,h sdo fungdes integraveis e g < h em p-q.t.p, entdao [ gdu < [ hdy;

(d) se g ¢ integravel, entao |g| ¢é integravel e | [gdu| < [|g|du. A reciproca
também vale.

O teorema seguinte é importante em muitas aplicagoes.

Teorema A.2.3. [da Convergéncia Dominada] Sejam f e {fi,k > 1} fungoes
mensuraveis, tal que fr — f, em u-q.t.p. Suponha que |fi| < g em p-q.t.p com g

integravel. Entao
lim /fkd,u:/fd,u.
k—o00

Terminamos esta segao observando que quando (Q, F,u) = (R,B,)) onde X é a
medidade de Lebesgue, é comum escrever (por analogia com a integral de Riemann)
[ fdz em vez de [ fdA.

A.3 Analise funcional

A seguir todos os espagos vetoriais considerados serdo sobre o corpo R.

Um espaco de Banach é um espago vetorial normado completo, isto é

Definicao A.3.1. Um espago vetorial normado (X, | - ||) é chamado de espaco de
Banach se toda sequéncia de Cauchy em X converge para um elemento de X, ou
seja: se {xp}n>1 C X e

Ve > 0,3N > 1 tal que ||z, — x| <e, Vn,m >N,
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entao existe z € X tal que lim, o ||z, — z|| = 0.

Um espaco de Hilbert é um espago de Banach cuja norma é induzida por um produto
interno.

Definicao A.3.2. Um espaco vetorial H é um espaco de Hilbert se ele é equipado
de um produto interno
(n):Hx H—=R,

isto é:

L {ax + By, 2) = afz, 2) + B(y, 2),

2. {x,y) = (y, ),

3. (x,z) > 0, com igualdade somente se 2 = 0,
tal que H é completo considerando a norma induzida

=] == V/(w, ).
Definicao A.3.3. Sejam X e Y espacos vetoriais. Uma aplicaggo T': X — Y é um
operador linear (ou transformagcao linear) se satisfaz:
T(ax + By) = aT(x) + BT (y), para todos z,y € X e o, 3 € R.

Se X e Y sao espacos normados, o operador linear T é continuo se existe uma
constante C' > 0 tal que

|T(x)|ly <C|lz|x, VrelX.

Um operador linear T é chamado de isometria se ||T(x)|ly = ||z||x para todo
x € X. T é chamado de contragao se |T(z)|ly < ||z|x para todo z € X.

Proposicao A.3.1. Seja H um espaco de Hilbert e S um subespaco fechado de H.
Existe um operador linear Il : H — H tal que

x — lz|| = min ||z — y||.

| I = min Jlz — y|

II é chamada de projecao ortogonal sobre S. Em particular II é uma contragao.
Teorema A.3.1. (Extensdo de Isometrias em Espacos de Hilbert) Sejam H e H’

espagos de Hilbert e V' C H um subespago vetorial denso em H. Seja uma isometria
T :V — H'. Entao, existe um tnico operador linear T : H — H' tal que:
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1. T é uma isometria de H em H'.

2. T estende T, isto é,

Espacos L,

Seja (2, F,p) um espago de medida. Definiremos os espagos Ly (2, F, ) para
p € [1,00). Para comegar definimos, para p € [1,00), 0 espago vetorial

L,(Q,F,pu) = {f : Q — R, f mensuravel tal que/ |fIPdu < oo}.

Observe que o espaco L1(£2,F,u) corresponde ao espago das fungdes integréveis
com respeito & p. Consideramos a relacao ~ em L,(€, F, u) definida por: f ~ g se
f = g em p-quase todo ponto. E facil mostrar que esta relagdo é uma relagao de
equivaléncia em £,(£2, F, ) e portanto podemos definir o espaco quociente

Ly, F,p) = Lp(,F,p)/ ~.

Intuitivamente, no espaco L, (€2, F, i) identificamos fungoes iguais em p-q.t.p. As-
sim, é comum identificar uma funcdo mensuravel f com a sua classe de equi-
valéncia e escrever simplesmente f € L,(Q,F,u). Agora, considere a aplicacao,

- llp s Lp(Q2, F, ) — Ry, y
£ ([ 1sraw) ™"

Proposicao A.3.2. Para todo p € [1,00), (Ly(%, F,p),|| - |lp) é um espago de
Banach.
No caso p =2, a norma || - ||2 é induzida pelo produto interno

Temos a seguinte

(r9) = [ o du.

isto é, || fll2 = v/ (f, f). Como consequéncia imediata da proposigao anterior temos a
Proposicao A.3.3. (L2(Q, F, ), (:,-)) é um espago de Hilbert.

No caso em que g é uma medida finita temos a seguinte

Proposicao A.3.4. Se p é uma medida finita temos que se p > p', L,(Q, F,p) C
Ly (2, F,p). No caso em que pn é uma probabilidade, se f € L,(Q, F, ), ||fllyy <
1 1lp-

Definigao A.3.4. Seja T um operador linear de L,(Q2, F, ) — Ly(Q, F, 1), para
p, ¢ > 1. Dizemos que T é um operador positivo se, para f > 0, tivermos T f > 0.
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Solucoes de Problemas
Selecionados

Capitulo 1

3)

10)

11)

Note que f(X) pode ser vista como fo X : w — f(X(w)), logo (fo X)~
X~1o f~l e, portanto, para todo B€ B, (foX) YB)=(X"tof 1B
XY f~YB)) € F, pois f~Y(B) € B.

~— =

(i) Se 1 < x3, entao (—oo,z1] C (—o0,x3], donde Fx(x1) < Fx(z2).

(ii) Se x,, — —o0, entao A, = (—o0, z,] sao encaixados e de intersec¢ao vazia.
Pelo Corolério 1.1, temos que P(A,) — 0. Similarmente, para z, — 0o.

(iii) Se x, | x, entdo A, = (—o0, zy] | (—00, 2], logo Fx(z,) — Fx(x).

Considere a classe A = {A € F : Ve > 0,existeA. tal queP(AAA.) < €} e
mostre que F C A. Primeiramente, note que A é nao vazia, pois ) € A e
A contém Fy, pois é suficiente tomar A = A.. Em segundo lugar, A é uma
classe monotonica (Prove!). Pelo teorema das CM, A contém F e portanto
todo conjunto de F pertence a A, e o resultado segue.

Devemos provar que existe uma sequéncia de constantes b,, tais que

lim P[U, |X,/by, — 0] > € =0,

n=m
m—o0

para todo € > 0. Mas, para cada inteiro n, podemos encontrar b, tal que
P(IXy| > bu/n) < 1/2". Logo,

P(UnZml 1> —) < ZP<‘T|>E)S > on

n=m n=m

e quando m — oo, esta é a cauda de uma série convergente, logo tende a zero
e o resultado segue com € = 1/n.
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15)

16)

18)

Para (a), tome A, = [0,1/n] sobre [0,1] com medida uniforme; P(A,) =
1/n,> 1/n=00¢e P(Apiv.)=0<1.

Para (b) tome A, = [0,1 — 1/n] sobre [0, 1], com medida uniforme ; P(A,) =
1-1/n,>(1—-1/n) =0 e P(A,iv.)=1.

Depois de n passos, removemos 2 — 1 intervalos abertos disjuntos e ficamos
com 2" intervalos fechados disjuntos. Chamemos de B,, a reuniao dos removi-
dos. Entao,

1 2 4 on—1 2\"
P(Bn):§—|—?+§—l—...+ 3 :1—() )

Quando n — oo, B, — B, aberto, e P(B,) — P(B) = 1, logo P(C) =
1 - P(B) = 0.

(1) Prove que F é uma o-algebra sobre 2; para isso mostre que 2 € F, F é
fechada sob complementos e é fechada sob reuniées enumeraveis.

(2) Prove que P é uma medida de probabilidade sobre (2, F). Para isso,
mostre que P(Q2) =1, P() = 0 e é enumeravelmente aditiva.

Capitulo 2

2)

Cada w € [0,1] tem expansao bindria w = 0.ajaza3---, com a; € {0,1} e
Xn(w) = a,. Temos que provar que

k
P(Xp, =bi,..., Xny, =) = [[ P(Xn; = b)),
j=1
para qualquer conjunto de indices ni,...,n; e valores by,...,b;. Calcule

P(X,, = b) para um n fixo e b € {0,1}. {X,, = b} é o conjunto de nimeros
cujo n-ésimo digito binario é b, logo a reuniao de intervalos de comprimento
27", Verifique que a probabilidade do primeiro termo acima é 27%. Mostre
que o segundo termo é H§:1(1/2) =1/2F.

Se S, /n — Y q.c, ent@o para quase todo w, Sy (w)/n — Y (w). Use a Lei 0-1 de
Kolmogorov; pela independéncia, todo evento caudal tem probabilidade zero
ou um. Mostre que Y é uma varidvel mensuravel relativamente a o-dlgebra
caudal. Isso implicara que Y é constante em q.t.p.

Temos que A = {w : X,(w) € B, iv}. Tome B € B> como segue: B=
conjunto de todas as sequéncias (x1,z9,...) tal que =, € B, i.v. Entao,

Morettin-Gallesco - dezembro/2025



250

RESPOSTAS

10)

11)

A= X"YB), onde X = (X1, X,...). Seja ¢ uma permutacio de 1,2,..., N
esejaY = (X(,l,XC,>27 ...). Note que X,, = X, , para todo n > N. Entao,
Y YB)={w: X,,(w) € B, iv} = X }(B). De fato, seja w € X 1(B), que
vale se, e somente se, X,,(w) € By, se e somente se X,, € B, para um nimero
infinito de n, se e somente se X, (w) pertence a algum dos B, By41, .. .,nao
importa quao grande seja n - a cauda da sequéncia B, se e somente X, (w) €
B,, i.v, se e somente se w € Y 1(B), com a escolha de n > N.

Suponha A = {w : X,,(w)converge}. Por Kolmogorov, ou P(A) =0 ou P(A) =
1. Suponha P(A) = 1. Entao, o valor limite deve ser uma constante c. Entao,
lim;, 00 P(|Xpn—c| > ¢) =0, paratodoe > 0. Como X; ~ X,,, P(X; =¢) =1,
uma contradicao com a hipdtese que a distribuicao de X nao esteja concentrada
num unico ponto.

(a) Temos

X

P( “ >2>:P(Xn>logn2):
logn

_ 2 1

1 - P(X, <logn?) =1— F(logn?) = ¢~ 8" =3

Logo,

> (o) =T

n>2 n>2

e por Borel-Cantelli, P(22 > 2 i.v) = 0.

logn
b) Tome
Xn
P >1]=P(X, >logn)=1-p(X, <logn)
logn
—logn 1
=1—F(logn) =¢ 8" = —.
n
Logo,

ad X, 1
Z (logn>1> :ZE:OO’

n=2

e lembrando que os X; sdo independentes, por Borel-Cantelli o resultado segue.
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16)
E(X +Y]) = / / &+ y|dFyx (z)dFy (y),

:/R[/R‘:U—&—dex($)]dFY(y>

a primeira igualdade pela indepenéncia e a segunda por Fubini.

Portanto, para pelo menos um yo, [ |z + yo|dFx(z) < co. Segue que

/|:c]dFX(:1:) < / |z + yo|dFx (x) + |yo| < oo.

19) (a) Var(Xi + ...+ X;) = 3211, Var(X;) + 23>, Cov(X;, Xj), mas como
as X; sdo nao correlacionadas, Cov(X;, X;) = 0, para todo ,j e o resultado
segue.

(b) Seja Y,, = > X;/n; pela desigualdade de Chebyshev,

Logo, pela hipdtese que Y ;_; a,% /n? — 0, para n — oo, obtemos que

lim, oo P(|Yn — E(Yy)| > €) = 0, ou seja, Y, — (1 + ... + pn)/n — 0 em
probabilidade. Também, por hipétese de (b), E(|Y;, — E(Y,)|?> = 0, se n — oo,
ou seja, Y, — E(Y;,) — 0 em Ls.

22) Para Fi, os dtomos sao A = A; = {1,3,5,7} and A° = A, logo Fi =
{0,{1,3,5,7},{2,4,6,8},Q}. Faga o mesmo para Fa e chame os dtomos de By
e By. Calcule P(A; N By) =1/4 = P(A1)P(B), etc, até P(A2NBy) =1/4 =
P(A3)P(By). Verificar que () and  satisfazem P(0NB) =0 = P(0)P(B) etc.

Capitulo 3

2) A o-algebra F é finita com dtomos Aj,...,,A,. Y é uma fungdo tomando
valores ¢; em cada A;. Logo, Y é mensuravel com respeito a F e, de fato,
o(Y) = F (Prove!). Por definicao, E(X|Y) = E(X|o(Y)) = E(X|F.
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6)

12)

Seja 0 e.p. (2,G,P) e F C G. (a) Chamemos Z = FE(X|F); por defini¢ao,
E(X|F) é F-mensuravel e integravel. Entao, como ZY ¢ integravel e Z é
JF-mensuravel, teremos

E(ZY) = E|[E(ZY|F)] = E[ZE(Y|F)] = E|[E(X|F)E(Y|F)].

(b) De modo andlogo, seja W = E(Y|F), que é F-mensurével e integravel, de
modo que

E(XW) = E[E(XW|F)] = E[WE(X|F)] = E|[E(Y|F)E(X|F)].
de (a) e (b), E(ZY) = E(XW), e o resultado segue.

Suponha, por absurdo, que E(X|F) seja ndo negativa q.c. Entao existe B € F
tal que E(X|F) < 0 sobre B. Defina B = {w € Q: F(X|F)(w) < 0}. Entao
B € F. Considere [ E(X|F)dP = [z XdP. Pela defini¢do de B a primeira
integral é negativa. Como X > 0 q.c., a segunda integral é nao-negativa, uma
contradicao.

Var[E(Y |[F)] = E[E(Y|F)]? - [B(E(Y|F))]?

< E[E(Y?)|F)] - ([E(Y)),

pela desigualdade de Jensen, e o lado direito da desigualdade é igual a E(Y?)—
[E(Y)]? = Var(Y).

Temos que Py (B—X) é F(X)-mensuravel, logo é suficiente verificar que P(X +
Y € B|X) satisfaz a definigao de esperanga condicional. Seja A € F(X), entao
A = X~Y(A), para algum A € B'. Segue que

/ Py(B — X)dP = / Py (B — X)Px/(dz).
A A

Seja A = Px Py e use o teorema de Fubini no lado direito:

/ Py (d) / Py (dy) = / / A(dz, dy) =
A {z+yeB} {z€A,z+yeB}

/ dP=P(X €A, X+Y € B)
{Xe€A,X+YeB}

e o resultado segue.
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15) Tome E(S,|Sn, Sn+1,--.); como S,, é mensuravel relativamente a F(S,,, Sp+1, - -.),
segue que E(S,|Sn, Spt1,...) = Sp. Mas

Sn = E(Su|Sn, Snt1s-..) = E(X1 + ...+ Xu|Sn,...)

= E(X1|Sn,...)+ ...+ E(Xp|Sh,...) = nE(X1|S,...),
por simetria, e o resultado segue.

17) Observe que por simetria, (X,Y) tem mesma lei que (—X,—Y). Portanto,
temos que para toda funcao g boreliana e limitada,

E(g((X +Y)*)X) = —E(g((X +Y)*)X).
Assim, E(g((X +Y)?)X) = 0 o que implica que E(X | (X +Y)?) =0.

19) O lado esquerdo da igualdade fica E(X?) — 2E[XE(X|F)] + E[E(X|F)?].
Como E(X|F) é mensuravel relativamente a F, mostre que E[XE(X|F)] =
E[E(X|F)?, usando a lei de esperangas iteradas. A igualdade segue.

Capitulo 4

4) Provemos para o caso de um submartingale. Nesse caso, E(X,+1) > E(X,),
para todo n. Como E(X,) = E(X1), para todo n, entdo E(X,4+1) = E(X,),
para todo n. Defina V,, = X, 11 — X,,. Segue que E(Y,,|F,) > 0e que E(Y,,) >
0 (Por que?). Como E(X,+1) = E(X,), obtemos E(Y,) = 0 = E[E(Y,|Fn)],
de onde segue E(Y,|F,) =0 e, portanto, E(X,,+1|F,) = X,, q.c.

10) (a) F é gerada por reunioes de conjuntos da forma {n} e Q—{1,2,...,n}, logo
é suficiente verificar que E(X|F,—1) = X,,—1 para tais conjuntos. Claramente
vale para A = {n} e para A =Q —{1,2,...,n — 1} temos

/ X, dP = / X,dP + Xp,dP =nP(k>n)— P(k=n) =
A Q-{1,2,..., {n}

n (l 1 )_n—l_

n+1 n n+1"  n
n—1
/ Xp-1dP=(n—-1)Pk>n—-1)= )
Q—{1,...,n—1} n

Agora lim,, . X, = —1 e o resultado segue.
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(b) Seja lim, lim sup,, f|Xn|>a | X |dP; tome k > n > a (a — +00). Temos que
essa expressao ¢ igual a

limli Pk > = lim li =1
im unnsup[n (k> n)] im 1mnsup i
logo X,, nao é u.i. por que o limite deveria ser zero.
(¢) Mostre que P(sup,, | X,| > A) =1/(A+1). Pelo teorema,
Pmax |Xel 2 3) < £ B(Xa)
a - .
121193}{71 kl = A "
Mas E(|X,|) =2n/(n+ 1) (prove!), portanto
1 2n
P X <= .
(g, Ol =0 = 355
Para n — oo, P(supy |Xx| > A) < 2/()\) e este limite superior é maior que
1/(A+1), para A > —1.

11) (a) Considere os martingales {Y7,Y] + Y2} e {Y2,Y2}. Entéo Y7 e Y3 sao i.i.d,
média zero (Prove!). A soma é {Y1 + Y2,Y7 + 2Y52}, que ndo é um martingale
pois

E(Y1 +2Y2|V1 +Y2) = Y1 + Yo + E(Y2|Y1 + Y2) = (3/2)(Y1 + Ya).
Por exemplo, podemos tomar Y] e Y3 iid, resultantes do langamento de duas
modedas honestas.
(b) Tome X; = —1, X, =0, F; = F = {§,Q}. Entdo, BE(X5|F;) =0> —1 =
X e E(’XQH.Fl) =0<1= ‘Xl‘

13) Primeiro, observe que |E(X|B)| < E(|X||B). Logo,

/ |E(X|B)|dP g/ E(|X||B)dP. (12.15)
{|E(X|B)|>A} {|E(X|B)|>A}

Pela defini¢ao de EC, notando que o conjunto {w : |E(X|B)|A} é B-mensuravel,
temos que

/ |E(X|B)|dP = | X|dP (12.16)
{IB(X|B)[>A} {IB(X|B)[>A}

Por Chebyshev,
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18)

P{E(X|B)| > A} < E(’E(f‘B)D < E(’AX’). (12.17)
Usando (12.19) e (12.20) temos
/ |E(X|B)|dP g/ | X |dP, (12.18)
{IE(X|B)[>A} {|E(X|B)|>A}

sujeitos a (12.17). Mas X é integravel, entao dado ¢ > 0, existe 6 > 0 tal

que se P(A) <4, [,|X|dP < e. Logo, para A — 0o, A > M, temos que

P{|E(X|B)| > A\} < ¢ e, portanto,

/ | X|dP < e
{|E(X[B)|>A}

/ \E(X|B)|dP < ,
BB

logo {E(X|B)} é uniformemente integravel.

Temos que

E(Xr|Fs) = E[E(Xoo| Fr)|Fs]| = E(Xoo|Fs) = Xs.

Logo, é suficiente provar que F(X|Fr) = X

Seja A € Fr. E suficiente provar que fAﬂ{T<oo} Xr = fAm{T<oo} X oo, Porque
X1 = X sobre {T = co}.

Sejaty, = T Ak, entao AN{T < k} € Fr,, porque AN{T < k}n{T} < j} € Fj,
para todo j. Usando o TAO,

/ X7, = / Xp, pois T <k. (12.19)
AN{T <k} AN{T <k}

Também, X7, = X7ar — X7, q.c. quando k — o0 e E(X|Fr,) = X13,. Isso

é verdade porque
/XTk:/Xk:/Xk+n:/Xo<>7
A A A A

para todo A € Fr,. A segunda igualdade segue pela definigao de martingale e
a terceira pela i.u.
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Agora, a equagao (12.19) pode ser escrita

/ Xr, :/ Xiin :/ Xoo, (12.20)
AN{T<k} AN{T<K} AN{T<k}

para todo n, usando propriedades de martingales, pois AN{T < k} € Fr,.
Agora, pelo Problema 13, { X7, ,k > 1} é u.i. Para k — oo em (12.20) obtemos

Foirs 0= Jigr ™
AN{T <0} AnN{T'<oo}
Capitulo 5

7) Seja U(EZ) o ntmero de cruzamentos de (a,b) por X m,-- s X . Pelo resul-
1 n

tado do caso discreto, temos que

E(X*t )+a

A E(X*) +a
BU3) < sup —t— <sup— o

Agora, para n — oo, Uég) — Uyp (cresce) portanto

E(Uw) < sup E(i)({); =
9) O processo de Poisson é um processo de Lévy porque:
(a) tem trajetérias continuas & direita com limites & esquerda (cadlag);
(b) tem incrementos independentes;
(c) tem incrementos estaciondrios;
(d) é continuo em probabilidade.
Argumento similar para o Movimento Browniano.
12) Temos que
BE(X;) = E(W,) —tE(W;) =0 —t-0 = 0.
Para a funcao de autocovariancia, obtemos
~(t,s) = Cov(Xy, Xs)
= BE(X¢X;)
= E(W,W,) — sE(W;Wy) — tE(W,W1) + tsE(W?)
=min{t,s} — st —ts+ts-1

= min{¢, s} — ts.

Morettin-Gallesco - dezembro/2025



RESPOSTAS 257

14) Um processo de Poisson NV; é continuo em probabilidade pois:
(a) Para cada t, IV, é finito quase certamente;
(b) NV; é cadlag;
(c) Para cada t > 0, Ny_ = N; com probabilidade 1;

(d) O resultado segue de (c) pois convergéncia q.c implica convergéncia em
probabilidade.

Capitulo 6
1) (i) Sejam F,, e F as f.d. de X,, e X, respectivamente, e Gy(z), G as f.d. de
Xpn +Y, e de X + ¢, respectivamente. Seja A, = {w : |V, (w) —¢|} < e}, logo

P(A%) < e, para n > ng(e), porque Y,, = ¢. Seja E, = {w: X,, <z —-Y,},
para n > ng(e), entdo,

PX,<z-Y,)<PXp,<z-Y,Y,>c—¢e)+e<PX,<z—c+e)+e.

Seja B, = {w: X,, <z —c— e}, para n > ng(e) , donde segue

/

P(E,) = P(X, <xz—c—¢) < P(X,, <z—c—¢,Y, < cte)+e < P(X,, <z2-Y,)+e.

Segue-se que
Folr—c—¢)—e<PX,+Y,<z)<F,(xr—c+e)+e,
logo
Folx —c—¢e)—e<Gp(z) < Fy(r—c—e¢)+e.
Quando n — oo e para todo § > 0, temos
Glz—90)=F(zx—c—9)<lmGy(z) < F(zx —c+9) =Gz +9).
Como 0 é arbitrério, Gy, (z) converge para F'(z — c¢).
(iii) Considere X,, = 0, com probabilidade (cp) 1/2e X, = 1, c¢p 1/2. Também,

seja X =0,cp 1/2e X =1, cp 1/2. Entao, | X, — X| = 1, mas Fx, = Fx,
logo X;, — X em distribuicao, mas X,, nao converge para X em probabilidade,
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pois deveriamos ter P(|X,, — X| > €) — 0, para todo € > 0. Para a segunda
parte, seja € > 0 e escolha ¢ talque 0 < § < . Entao,

P(|Xp—c| >¢e) < P(X,, >c+e)+P(X, <c—0) =1-Fx, (c+e)+Fx, (c—9).

Como F é continuaem c+ecec—3de F(c+e)=1e F(c—9) =0, vemos que
lim,, P(|X,, — ¢| >) — 0.

4) (b) Se m é fechada, para todo € > 0, existe K compacto tal que P(K) >1—¢
e Q(K) > 1—¢, para quaisquer P e () de m. Considere P @, P,(Q € 7. Entao,

P = [ 1c(@iPsQ) = [ [ 1crnap@iou) = [ dpaew) -

=PxQK xK)=PEK)QK)>(1—-¢e)?>1-2e,
logo 7* é fechada.

9) ™ = {P,m;',n > 1} é uma familia de medidas de probabilidade definidas
sobre (R, B¥), tal que P,m, ' (B) = P,{m, ' (B)}, para todo B € B*.

7 é fechada (tight) por hipétese, logo pelo teorma de Prokhorov, 7* é relati-
vamente compacta. Entao, 7* tem uma subsequéncia que converge fracamente
para alguma medida de probabilidade. Esta subsequéncia pode ser escolhida
por um processo diagonal (conhecido) logo temos que P,m = @, para cada
k e as medidas @ sdo consistentes, de tal sorte que existe uma medida de
probabilidade ) sobre R* tal que Q7rk_1 = @, pelo teorema da extensao
de Kolmogorov, portanto Pmrk_1 = Q?Tk_l, para cada k. Isso mostra que
7w = {Pp,n > 1} é relativamente compacta. Mas R*> é completo e separdvel,
logo, de novo, pelo teorema de Prokhorov, 7 é fechada (tight).

12) Em geral, a classe dos conjuntos P-continuos nao é uma o-dlgebra. De fato,

considere o espago de probabilidade (2, F, P), onde:

- Q=10,1],

— F é a o-dlgebra de Borel em [0, 1],

— P é a medida de Lebesgue restrita a [0, 1] (ou seja, a probabilidade uni-

forme).

Denote por A a classe dos subconjuntos mensuraveis de {2 que sdo P-continuos,
isto é:

A={AeF:P@BA) =0},
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onde JA é a fronteira topoldgica de A.
Vamos mostrar que A nao é uma o-dlgebra. Considere os nimeros racionais
em [0, 1], que podem ser enumerados como:

Qm [07 1] = {Q1,QQ7(137~~}‘

Para cada n € N, defina:
Ap = {Qn}

— Temos que A, = {qn}
— Como P é a medida de Lebesgue, temos: P(0A,) = P({¢g.}) = 0.
— Logo, A,, € A para todo n € N.

Agora, considere a uniao enumeravel:

A= UlAn:Qm[O,l].

Este conjunto contém todos os racionais em [0, 1]. Vamos examinar sua fron-
teira.

— Como os racionais sao densos em [0, 1], e o conjunto QN 0, 1] ndo contém
nenhum aberto, sua fronteira é todo o intervalo:

9A =[0,1].

— Portanto:
P(0A) = P(]0,1]) = 1.

— Assim, A ¢ A.

Concluimos que A nao é uma o-algebra.

Capitulo 7

3) Para a normal padrao,

1 : 1 ,
o(t) = or /6zm$2/2daz = meﬂ/z/e;(“’”ﬁdx.

Considere a integral fR e/ 2dz, sobre retangulos cujos vértices sdo +k + 0i,

+k —it. A exponencial e**/2 ¢ uma fungao inteira, logo
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k —k t
/6_22/2dz:/ e_$2/2d$+/ e_(z_it)2/2dm+/ e~ (ki) /2,
R —k k 0

0
+ / e~ (k+iu)*/2gy, — (.
—t

As duas ultimas integrasi sao limitadas por \t\e‘k2/ 2 e ambas tendem a zero,
quando k — oo; obtemos que a primeira integral multiplicada por \/%7 tende

aleop(t)=et/2

Temos que f(x) = 1/[x(1 + 2?)], for z € R. Entdo,

1 itx
o(t) = / °_da.

T ) 1422

Considere a densidade fi(z) = e~1#1/2 e seja ¢ (t) sua f.c. Nao é dificil ver
que

1) = ——

que é absolutamente integravel sobre R e da inversa obtemos que

—it
elrlzl/ < .
) 14 t2

Mudando o sinal da exponencial dentro da integral (que ndo altera o resultado)
e trocando os papéis de t e x obtemos

1 it
eIt = / € dx.
m ) 1+ 2

Comparando a primeira e ultima integral obtemos o resultado.

(a) Se ® é equicontinua no zero, entao existem € > 0, § > 0 tais que, para
|t — 0] < d temos |¢,(t) — ¢n(0)] < e, para todo n. Mas ¢, (t) é uma f.c., logo
©n(0) = 1, para todo n, logo |1 — ¢, (t)| < €, para todo n.

Se P, é a distribuigao de probabilidades cuja f.c. é ¢, (t), temos que

a a

1 — on(t)]dt < % / cdt = 2.

—a

P.{|X| > 2/a} < i/

—a

logo, P, {|X| > 2/a} < 2¢, para todo n, ou seja {P,,n > 1} é fechada.

(b) Para a solugao de (b), use os seguintes resultados e o teorema da continu-
idade para f.c.:
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15)

(i) Se ¢, — g em (=T,T) e g é continua no zero, entao as @, sao equi-
continuas e a convergéncia é uniforme.

(ii) Teorema de Arzela-Ascoli: Seja ¢, uma sequéncia equicontinua de fungoes,
|on| < 1. Entao existe uma subsequéncia {¢,x} convergindo a um limite
continuo f e a convergéncia é uniforme em todo intervalo finito.

(iii) Se {yn} é uma sequéncia de fungoes continuas definidas num conjunto £
e se g, converge uniformemente para f em E, entdo f é continua em E.

Por hipétese, [ |o(t)]?dt < oo, ou ¢(t) € Lo. Seja X com f.c. ¢(t) e considere
X -X l, com X' independente de X e com a mesma distribuicdo de X. A
distribuicio de X — X' é G = F+« F~,sendo F~ afd. de —X' e F a f.d. de
X (ou de X'). Usando a propriedade G(z) = 1 — G(—z), temos

G(z) = /F(x—i—y)dF(y).

Afc de =X é o(—t) = ¢(t) e afc. de G é o(t)p(t) = |p(t)|.

Se ¢ € Ly, segue-se que a densidade de G, digamoes g(z) = [ f(y — z) f(y)dy,
¢ limitada e continua e

or [ letPe ds = [ f(y-2)7wdy =6 (@)

Faca z = 0 para obter a igualdade desejada e sendo o primeiro membro finito,
segue que f € L.

Capitulo 8

1) Como os {X,, , k < n} sao ii.d. para cada n, temos:

P(|Xn k| >€) =P(|Xn1| >€), paratodok=1,...,n.

Portanto,
P(|Xp k| > €) = P(1X,
Joax P Xl > &) = P(1Xn1| > ),
e basta mostrar que P(‘Xn,l| > ) = 0.

Com S, := X, 1 +---+ X, » temos que pg, converge para ¢y uniformemente
sobre compactos de R. Além disto sabemos pelo Teorema 8.6 que X tem lei
infinitamente divisivel e portanto ¢ x (t) # 0 para todo ¢t € R. Logo, para todo
to > 0 existe N tal que para todo n > N, ¢g, (t) # 0 para todo t € [—to, to].
Assim para todo n > N, existe um tnico logaritmo continuo L, : [—tg, to] —
C tal que L,(0) = 0. Analogamente, como ¢s, = [¢x,,]", obtemos que
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©x,,(t) # 0 sobre [~tg,to] e portanto para todo n > N, existe um tnico
logaritmo continuo g, : [—to,to] — C tal que ¢,(0) = 0. Pela unicidade do
logaritmo, obtemos que L, = ng,. Finalmente, como ¢x(t) # 0, existe um
tnico logaritmo continuo L : [—tg, t] — C tal que L(0) = 0.

Agora, a convergéncia de ¢g, para @x sobre [—tg,to] implica a convergéncia
pontual de L,, para L. Assim, para todo t € [—t, to],
L, (t) = ngn(t) — L(t), quando n — oo,

e portanto g,(t) — 0 sobre [—tg, o], ou seja ¢y, , — 1 sobre [~tg,to] . Como
to € arbitrario, deduzimos que ¢x, , () — 1 para todo t € R, ou seja X, 1 — 0
em probabilidade.

(a) X é infinitamente divisivel se, para cada n, existe uma f.c. ¢, tal que
o(t) = [pn(t)]™”, onde ¢ é a f.c. de X. Aqui, p(t) = (1 —it)~* e, portanto,
on(t) = (1 —it)~*/" e essa é a f.c. da v.a. T(a/n).

(b) Se ¢y, é como acima, a v.a cuja f.c. é essa é uma v.a. I'(a/n) com densidade

0, se x <0,
9(x) = 1 a/n=le=z g0 x> ().

(c) Temos que

U 1‘2

n voa? a/n—1_—zx
d pu—
I'(a/n) /0 1 —|—x2x c o

n /u xa/n—l o
Ma/m Jo Ta2¢ @
Agora,

n (67 (07

= = -

I(a/n)  (a/n)T(a/n) T(1+a/n)
quando n — oo e, portanto, pelo TCD, Gp(u) — G(u) = o f)'(z/(1 +
r?)e *dz, de modo que a medida dG(z) é dada pelo integrando, dG(z) =
“Tdx.

(07

x
1+z2 €
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9) Temos que provar que a f.c. de X é da forma ¢(t) = e~" ¢ > 0 e aqui
a=1/2. Seja py(t) afc. deY, e (t) afc. de % Entao,

. ., sinal(z)
(X, n ;sina .
Y(t) =F [exp{it%}éi’)}] = /_n e}(p{z2n””2}d:ﬁ = n/o cos(%)dm.

Pela independéncia, ¢, (t) = [¢(t)]", ou seja,

S|

on(t) = BE{e™) = [ /On cos(t/xz)dx]n = [1 —1+ :l/on Cos(t/x2)dac]n

_ [1 1 /Onu _ cos(t/a:Q)d:r}

n

n

n

n

- [1 ! /000[1 — cos(t/2”)]dx + o(nlﬂ

Para n — oo, (1 — A/n)" — e logo

on(t) = o(t) = exp{— /0 T = cos(t /)] da)}

Considere a transformacdo /2% = u. Segue que

e 01 — cos(tu
/0 [1 — cos(t/x?)]dx = 2/0 u1/2+(1)du.

Fazendo tu = z obtemos que a integral é igual a |t|!/2[2 Jo (1 —cos 2)/(23/?)dz]

e a integral é uma constante ¢ > 0. Logo ¢(t) = —e~eltl"? ¢ o resultado segue.

10) (a) Devido & simetria dos valores possiveis de X, temos

E[X;] = 0.
© 2
Var(X;) = E[X?]
1 1
2\2 2
= 2. =
(%) 1252 7 20
P P
f— .4 - — '2 Pp—
RRTY PR
PLELP
6 6 3
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Portanto, como os X; sao independentes,

Var(S. Z Var(X Z ‘% %

A condicao de Lindeberg requer que, para todo € > 0,

Var ZE { j {‘X |>er/Var(Sn) }} — 0 quando n — oc.

Observe que os termos X; podem assumir valores grandes ;2 com probabili-
dade 1/(125%), e

E Xy =7 5 = G-

Para n grande, €/ Var(S,) ~ e~ 3 Somando os termos para os quais jZ >
ey/Var(S,), ou seja, para j > cn3/4, temos:

n 2 3

9 x n
Z E[X51)x;=j2] ~ /Cn3/4 gdw AT

j>cn3/4

O termo dominante é n3, portanto

Var ZE |X I>e Var(Sn)] — constante # 0.

Logo, a condicao de Lindeberg nao é satisfeita.

Agora definimos

Y; = Xilyx;<p By =X; =Y = Xj1gx, =52}

As Y;’s sao varidveis truncadas que satisfazem a condicao de Lindeberg. Por-
tanto, obtemos que

3vV23 Y
j=1-J d

T ﬁ N(07 1).

Por outro lado, pelo lemma de Borel-Cantelli, obtemos que

>R p
B — 0.
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Assim, conclui-se que

3v/2S,,

n3/2

2 (0, 1).

Capitulo 9

1) Observe que |7 (f)| = [f ()] < maxiepo1) [f(8)] = [ f]loo-

3) Vamos comecar com o calculo da transformada de Laplace de X distribuida de
acordo com a lei de Lévy, L(t) = E(e™*X), t > 0.

2

® a 1 a
2 [ , a’t
:\/7?/0 exp (—ut = 55 )du
2
1 i t
= ﬁ/_mexp(— <u— Z\/;> —a@)du
usando a mudanga de varidvel x = a?/(2u?). Usando o teorema mestre de Glasser

obtemos que

L(t) = exp(—av/2t).

Pelo teorema de extensao analitica, obtemos que L(z) = exp(—av/2z) para z com-
plexo tal que Re(z) > 0. Finalmente, deduzimos que a f.c ¢ de X é dada por

o(t) = exp(—av—2it), teR.

Usando Teorema 8.13, deduzimos que a lei de Lévy é estdvel com indice o = 1/2.

7) Observe que maxo<i<i Xn(t) = maxkgngs—\/’“ﬁ. Por outro lado, a fungdo h :
C(]0,1]) — R, z — maxop<¢<1 x(t) é continua pois

< = )
h(@)] < max 2(t)] = o]

Usando o Teorema 9.4 e o Corolério 9.1, obtemos que

X, (t) — Wt
(nax Xy (t) = max W(t)

em lei quando n — oco. Finalmente, para todo x > 0, temos que

0<t<1

P{ max W(t) < x} = \/227/ e 12t
m™Jo
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9) (a) Temos que

2 V2,
W4 sup z(t) <1 = / e V124t
{0§t§1/2 Q } V2w Jo

(b) Em primeiro lugar, observe que
W{0 <z(t) <1,te€0,1]} < W{x(t) > 0,t € [0,1]}.

Agora, considere € > 0 e seja A, = {z(t) > —¢,t € [0, 1]}. Por simetria, temos que

2 g
Wi = w{ s o0 <} = 2 [

Assim, obtemos que

WHa(t) > 0,¢ € [0,1]} = lim W(A:) = 0.

Capitulo 10

10) (a) Seja {X,,n > 0} uma C.M. Seja a matriz

0 1/2 1/2
P=|1/3 1/4 5/12
2/3 1/4 1/12
e seja p = (1/37 1/37 1/3> = (p17p27p3)7 Pr = P(XO = k)7 k€ {17273} =1
Considere X,, com valores 1,2 e 3 e f(X,) com valores a,a,b, ou seja, f(1) =
f(2) # f(3).

Entao, {f(X,),n > 0} ndo é uma C.M. porque, por exemplo,
P{f(X2) =0b|f(X0) =0, f(X1) =a} =

P(X()Z?),Xl:1,X2:3)—|—P(X0:3,X1:2,X2:3)
P(X0:3,X1:1)+(P(X0:3,X1:2)

_ P3-p31-pi3+p3-psp-ps  1/3-2/3-1/241/3-1/4-5/12 21

ps - D31 + D3 - P32 B 1/3-2/3+1/3-1/4 T
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12)

pois X,, é C.M.

Por outro lado, se {f(X,),n > 0} fosse uma C.M. deveriamos ter

P{f(X2) =b|f(Xo) = b, f(X1) = a} = P{f(X2) = b[f(X1) = a} =

P(X1=1,X=3)+P(X1=2,X,=3) 1/3-1/2+1/3-5/12 11
P(X1=1)+P(X; =2) B 1/3+1/3 T 24

pois P(X; =1) = P(X; =2) = 1/3 (verifique!)

(b) Suponha que f seja 1-1. Entao f : {1,2,3} — {f(1),f(2),f(3)} =
{a1,a2,a3}, com a; distintos. Logo

P(f(Xnt1) = Jns1lf(Xo) = Jo, -, [(Xn) = Jn} = (f 2k — Ji)

P(Xn+1 - in+1‘X0 - Z‘(], PPN 7Xn - Zn} — P(Xn+1 — in—i—l’Xn - Zn} -

P(f(Xn-i-l) = jn+1|f(Xn) = ]n
e {f(Xpn)} é uma C.M.

Considere
. . ZP<XT'L+1:j7Xn:7:7"'7X0:i0)
P(X,1=jlX,=1)=
Kier = J1Xn =1) > P(Xn = i,..., Xo = i0)
onde as somas sao sobre ig,...,i,_1. Agora, o termo genérico do numerador
é igual a

gO(Z,j)P(Xn = i, ooy X() = io) = (p(i,j)(p(in_l, Z) ce go(il, io)P(X() = io).
De modo similar, o termo genérico do denominador € igual a

©(in—1,9)@(in—2,9n-1) - - - @(i1, 70) P(Xo = o).

logo, P(Xp4+1 = j|Xn =1) = ¢(i,7) e X é uma C.M. Como, para cada n, isso
é uma funcao de i, j, a cadeia tem transicoes estaciondrias.

Morettin-Gallesco - dezembro/2025



268 RESPOSTAS

14) Defina T' = inf{n : X,, = 0}. Mostre que P(T < oo) = 1. Para isso, seja
A = {X} = 0} e escreva P(T < 00) = P(U2Ag). Use o fato que P(Ay) =
ZP(Xk = O,Xk_l = ik—la v ,Xo = io) € que Xk é uma C.M.

16) As probabilidades de transi¢ao a um passo da cadeia reversa sao

P(X,=j,Xnt1=1)

Qu =P = 11X =0 = oy 5 P = 1)

P(Xn - )
= 5 v  _ ~\Pji-
P(Xn+1 = ’L)

Se p; é a distribuicao estaciondria, temos
(n)_PX_'_ =1
p; =PXn=j)=) pip;;  =pj=)_piPi
i i
Logo,,
Py
Qi = Ly
Yoot

Mas, sabemos que p; = >, p;]m; = 7}, logo

T
J
DPji,
i

Q="
T
que é estaciondria (nao depende de n).

E facil ver que

(2) _ T4, (2
Qij = ;p]’i )

1

e, em geral, por indugao,

(n) _ T, (n)
QY = —Lpi).

Portanto,

ORI SR N ot LR

n

logo a cadeia é recorrente.
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Capitulo 11

6) Observe que se I é um intervalo de comprimento menor do que 1, entao os
intervalos I, 711, T72I,... sao disjuntos.

8) Pelo TEP, para todo A € F,

lim 3 14(8%) - Pi(4), Pi—qc
k=1

n—oo n

ol K

nhﬁ\nolo - Z 14(S"w) = P(A), P»—q.c.
k=1

Se P; e P, nao forem mutualmente singulares, obtemos que P;(A) = Py(A),

ou seja uma contadigdo com o fato P} # Ps.

11) (a) No caso em que « é irracional, T' é ergédica mas nao é mixing. Para
mostrar que 7' nao é mixing, considere o caso de dois intervalos abertos dis-
juntos A e B e mostre que neste caso P(ANT~"B) nao tem limite quando
n — 0o0. No caso em que « é racional, T nao é ergddica.

(b) Para k > 2, a transformagao 7' : w — kw (mod 1) é ergédica e mixing.

12) (a) Sim, usar a férmula da probabilidade total.
(b) Nao necessariamente, usar o Problema 8.

13) (a) Seja X = {X,,,n > 0} um processo gaussiano tal que E(X;) = 0 para
todo 4, e funcao de covariancia R(7,j) := Cov(X;, Xj).

Queremos mostrar que o processo X é estacionério se, e somente se, R(i, )
depende apenas de |i — j|.

(=) Suponha que X é estaciondrio (em sentido estrito). Como o processo
¢é gaussiano, a estacionariedade em sentido amplo implica estacionariedade
estrita. Logo, para todos %, j,h € Z, temos:

COV(XZ', Xj) = COV(XiJrh, XjJrh).
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Portanto,

R(i,j) = R(i+ h,j + h),

o que mostra que R(i,j) depende apenas da diferenga i — j. Como R(i,j) =
R(j,7) (simetria da covariancia), concluimos que existe uma funcao r : Z; — R
tal que:

R(i, j) = r(li = j).

(<) Suponha agora que R(i,j) = r(|i — j|). Queremos mostrar que X é
estaciondrio.

Como o processo é gaussiano com média zero, sua distribuicao é completamente
determinada pela fungao de covariancia R. Para qualquer h € Z,, temos:

R(i+h,j+h)=r((i+h) =G +h)]) =r(i-jl) = R@,j),

o que mostra que a fun¢ao de covariancia é invariante por translagao. Assim, as
distribuigbes conjuntas de vetores do tipo (X¢,, ..., Xt,) € (Xey4hs -+ Xt 4n)
coincidem para todo h, o que implica que X é estritamente estacionario.

Capitulo 12

3) E importante notar que, se (X(t));>0 é um martingale local, a varidvel
aleatéria X (t) nao é necessariamente integravel. Em particular, ndo temos
nenhuma informagao sobre X (0) além de ser Fyp-mensuravel. Isto nos da uma
maneira simples de construir martingales locais que nao sao martingales. Con-
sidere por exemplo um martingale (M (t));>0 € uma v.a. Z Fp-mensuravel tal
que E(|Z]) = oo. Entao X(t) = Z + M(t), t > 0, é um martingale local
mas nao ¢ um martingale. Para verificar que (X (¢))¢>0 ¢ um martingale local
pode-se considerar a sequéncia localizante 7, = nlyz<p), n > 1.

4) Ao multiplicar por e~ a desigualdade (12.14), obtemos

%(e_bt /Ot f(s)ds) < ae”,
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Integrando a desigualdade acima deduzimos que

—bt a —bt

Finalmente, usando esta ultima desigualdade em (12.14) obtemos o resultado
desejado.

5) (i) Como X,, > 0 temos que X > 0, q.c e portanto
(X -X,)"< X" =X, qec.

Como X € L', pelo teorema de convergéncia dominada, obtemos que F((X —
X)) = 0 quando n — oco. Por outro lado,

X, - X|=2(X - X,,)" — (X - X,,).

Tomando a esperancga desta ltima desiguadade e usando fato que por hipétese
E(X — X,) — 0, as n — oo, obtemos que E(|X — X,|) — 0 também.
(ii) Como X,, — X em probabilidade, existe uma subsequéncia (X, )i tal que
Xn, — X, g.c. Por outro lado, usando o lema de Fatou, obtemos que

E(X?) < liminf B(X? )<supE((X X,)?) < .
k—o0
Agora, para todo a > 0, usando as desigualdades de Cauchy-Schwarz e Markov,
obtemos que

B(X - X,|) < B(|X = X,|Aa) +a 'E(X — X,|%).

Devido a convergéncia em probabilidade de X, para X, o primeiro termo da
desigualdade acima tende a 0 quando n — oo, para todo a > 0. O segundo
termo pode se tornar arbitrariamente pequeno escolhando a grande o sufici-
ente. Assim, concluimos que E(|X — X,|) — 0 quando n — oc.
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