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Prefácio

An old joke says that “if you copy from
one book that is plagiarism, but if you copy from ten books, that is
scholarship.”From that viewpoint this is a scholarly book. If you bought
all these books you would spend more than a thousand dollars but for a
fraction of that cost you can have this book, the intellectual equivalent
of a ginsu knife.

Richard Durrett, from the preface of his 1996 book.

Partes destas notas foram organizadas ao longo dos anos em que o primeiro
autor ministrou a disciplina Probabilidade Avançada, para alunos de doutorado do
Programa de Pós Graduação em Estat́ıstica do IME-USP e, o segundo autor, no
Programa de Pós Graduação em Estat́ıstica do IMECC-UNICAMP. Outros tópicos
foram acrescentados para seminários realizados com o Grupo de Séries Temporais
do IME-USP.

Há vários excelentes livros sobre probabilidade em ńıvel avançado. Alguns,
clássicos, como Loève (1963), Chung (1968) e Breiman (1968). Outros, mais con-
temporâneos, como Ash e Doléans-Dade (2000), Billingsley (1995) e Durrett (2019).
Então, por que mais um livro? Basicamente, porque quase não há literautura em
Português sobre o assunto e o primeiro autor de há muito se preocupa com isso.

Os livros citados acima, é claro, diferem entre si sob vários aspectos, mas em
comum trazem parte substancial da teoria da medida, ou na forma de caṕıtulo
ou apêndice. Além disso, alguns deles, apresentam números de páginas acima de
quinhentas. O presente livro é mais modesto, nesse último sentido, pois um objetivo
foi colocar material que pudesse ser ministrado em dois semestres.

O leitor deste livro deverá ter tido uma disciplina de probabilidade em ńıvel
de mestrado, como em James (1981) e, idealmente, uma disciplina sobre medida
e integração, ou uma disciplina avançada de análise real. Anexamos, no final do
livro, um apêndice contendo conceitos básicos dessas disciplinas necessários para o
melhor entendimento do texto. Respostas a problemas selecionados também são
adicionados após as Referências.
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viii SUMÁRIO

Ao prepararmos nossas aulas, nos baseamos em livros existentes sobre o assunto,
citados nas Referências, em especial Chung (1968) e Breiman (1968), bem como as
notas de aulas e dos seminários mencionados acima. Nesse sentido, parafraseando
Durrett, na citação acima, afirmamos que nenhum resultado apresentado no texto é
de nossa autoria.

Finalmente, o material inclúıdo e a ordem de apresentação são resultados da in-
fluência de três disciplinas cursadas pelo primeiro autor na University of California,
Berkeley, ministradas por Warry Millar, recentemente falecido. Naqueles dias, suas
aulas e os livros de Chung e Breiman foram as referências que guiaram os estudan-
tes. Em seu obituário (Institute of Mathematical Statistics, April 2025), lemos que
“Warry was outstanding as a lecturer . . . and had an almost magical ability to pace
his lectures so that students could take effective notes, while he kept the dialogue
flowing naturally”.

Este livro pode ser usado para um curso de um ou dois semestres, sendo que,
em cada caso, o professor deverá escolher os caṕıtulos mais convenientes. Para um
curso semestral recomendamos os caṕıtulos 1, 2, 3, 4, 6, 7 e 8. Para dois cursos
semestrais, recomendamos, no segundo, os caṕıtulos 5, 9, 10, 11 e 12.

Pedro A. Morettin, São Paulo,
Christophe F. Gallesco, Campinas,
dezembro de 2025
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Este livro é dedicado à memória de
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Caṕıtulo 1

Preliminares

Neste caṕıtulo, introduzimos espaços de probabilidade e variáveis aleatórias.
Para melhor entendimento dos conceitos e propriedades apresentados, introduzimos
noções básicas sobre medidas, integrais e alguns espaços de funções no Apêndice. As
referências pertinentes a esse caṕıtulo são Kolmogorov (1933, 1956), Chung (1968,
1974), Breiman (1968, 1992) e Billingsley (1995).

1.1 Fundamentos

As origens da teoria de probabilidades podem ser encontradas em trabalhos de
Fermat, Pascal, DeMoivre, Laplace e outros em meados do século 17. Huygens
escreveu o primeiro livro sobre o asunto em 1657. O interesse na época residia em
jogos de dados, baralhos etc. A primeira versão do teorema de Bayes foi publicada
em 1763.

Há pelo menos quatro abordagens para a definição de probabilidade. A pri-
meira, chamada de definição clássica, devida a Laplace (Laplace, 1795), que trata
de espaços amostrais finitos, no qual os eventos elementares têm a mesma probabi-
lidade de ocorrer. A segunda, usa o conceito de frequência relativa de ocorrência
de determinado evento em um grande número de repetições. Veja von Mises (1931,
1939). A terceira, usa o conceito de probabilidade subjetiva, que Gnedenko (1989)
chama de de uma medida do “grau de certeza”do observador. Referências para esse
assunto são de Finetti (1974) e Jeffreys (1939). Finalmente, a quarta abordagem
refere-se à construção axiomática da teoria de probabilidades, devida a Kolmogorov
(1933), cuja tradução em inglês está em Kolmogorov (1956).

A construção axiomática de Kolmogorov começa com um conjunto arbitrário
não vazio Ω e F um conjunto de subconjuntos de Ω.

Axioma 1. F é uma álgebra (veja o Apêndice A.1);

Axioma 2. A cada eventoA de F está associada um número real não negativo,

1



2 CAPÍTULO 1. PRELIMINARES

P (A), chamado a probabilidade do evento A;

Axioma 3. P (Ω) = 1;

Axioma 4. Se A e B são eventos disjuntos (ou mutuamente exclusivos), então

P (A ∪B) = P (A) + P (B). (1.1)

Desses axiomas podemos deduzir várias propriedades e resultados que podem ser
encontrados em livros como Gnedenko (1989), mas não serão considerados aqui.

A seguir, considera-se F uma σ-álgebra sobre Ω (veja o Apêndice A.1) e adiciona-
se o seguinte axioma:

Axioma 5. Para uma sequência decrescente de eventos An ∈ F , com An ↓ ∅,
a seguinte relação vale

lim
n→∞

P (An) = 0. (1.2)

Este axioma é chamado de Axioma da Continuidade. A partir desse axioma
pode-se provar que (Kolmogorov, 1956):

(a) P (
⋃
nAn) =

∑
n P (An), se An ∈ F disjuntos;

(b) P (
⋃
nAn) ≤

∑
n P (An), se An ∈ F .

Uma maneira equivalente de formular o conceito de probabilidade, sem recorrer
ao Axioma 5, é a seguinte, usando o conceito de medida (veja o Apêndice A.2):

Definição 1.1. Dado o espaço mensurável (Ω,F), uma probabilidade P sobre este
espaço é uma medida tal que P (Ω) = 1. A tripla (Ω,F , P ) é chamado um espaço de
probabilidade e Ω é o espaço amostral. Os elementos de F são chamados de eventos.

Segue que as relações (a) e (b) decorrem naturalmente.

Com esta formulação, o Axioma 5 pode, na realidade, ser provado. O seguinte
resultado (a prova a seguir é baseada em Chung (1968)) dá uma condição necessária
e suficiente para que uma função de conjunto seja uma medida de probabilidade.

Teorema 1.1. Seja P uma função de conjunto não negativa, finitamente aditiva
sobre o espaço mensurável (Ω,F), com P (Ω) = 1. Então P é uma medida de
probabilidade se e somente se o Axioma da Continuidade valer.

Prova: (a) Suponha que P seja uma medida de probabilidade, isto é, é enumera-
velmente aditiva. Então temos que

Morettin-Gallesco - dezembro/2025



1.1. FUNDAMENTOS 3

An = [(An −An+1) ∪ (An+1 −An+2) ∪ · · · ] ∪ [∩∞n=1An].

Se os An são disjuntos, o último termo é vazio. Logo,

P (An) =
∞∑
k=n

P (Ak −Ak+1).

Como a série
∑∞

k=1 P (Ak −Ak+1) é convergente, temos que limn→∞ P (An) = 0,
logo (1.2) é verdadeira.

(b) Suponha, agora, que (1.2) seja verdadeira e sejam An, n ≥ 1, disjuntos. Então,⋃∞
k=n+1Ak ↓ ∅ e por (1.2) limn→∞ P (

⋃∞
k=n+1Ak) = 0. A aditividade finita implica

que

P (∪∞k=1Ak) = P (∪nk=1Ak) + P (∪∞k=n+1Ak) =
n∑
k=1

P (Ak) + P (∪∞k=n+1Ak),

e fazendo n→∞, obtemos

P (∪∞k=1Ak) = lim
n→∞

n∑
k=1

P (Ak) + lim
n→∞

P (∪∞k=n+1Ak) =
∞∑
k=1

P (Ak). □

Corolário 1.1. Seja An ∈ F , n ≥ 1. Se An ↑ A, então limn P (An) = P (A) e se
An ↓ A, então limn P (An) = P (A).

Exemplo 1.1. (a) Seja Ω = {ω1, ω2, . . .}, F = 2Ω e P definida por P ({ωi}) =
pi, pi ≥ 0,

∑
i pi = 1. Então, (Ω,F , P ) é um espaço de probabilidade discreto e

{pi, i ≥ 1} é chamada de função probabilidade.

(b) Seja Ω = R, F = B e f ≥ 0 uma função mensurável tal que
∫
R f(x)dx = 1.

Para cada A ∈ F , define P (A) =
∫
A f(x)dx (veja o Apêndice A.2 para a definição

da integral). Então, (Ω,F , P ) é um espaço de probabilidade cont́ınuo e f é chamada
de função densidade de probabilidade.

Definição 1.2. Seja (Ω,F , P ) um espaço de probabilidade. Um conjunto Λ ∈ F
é chamado um conjunto nulo se P (Λ) = 0. Uma propriedade que vale para todo
ω ∈ Ω exceto para ω em um conjunto nulo é dita valer quase certamente (q.c), quase
em toda parte (q.t.p) ou com probabilidade 1 (c.p 1). O espaço de probabilidade
(Ω,F , P ) é chamado completo se, sempre que A ⊂ B, com B ∈ F tal que P (B) = 0,
então A ∈ F .

Teorema 1.2 Se (Ω,F , P ) for um espaço de probabilidade qualquer, então existe
um espaço de probabilidade (Ω,F , P ), tal que F ⊂ F , P (A) = P (A), se A ∈ F e
(Ω,F , P ) é completo.

Morettin-Gallesco - dezembro/2025



4 CAPÍTULO 1. PRELIMINARES

Prova: Considere F = {A ∪N : A ∈ F , N ⊂ ∆, ∆ é conjunto nulo}. Mostre que
F é uma σ-álgebra. Para cada B = A ∪ N ∈ F defina P (B) = P (A). Mostre que
esta definição não depende da escolha de A ∈ F . □

Exemplo 1.2. Seja Ω = [0, 1], F = B([0, 1]) a σ-álgebra dos conjuntos de Borel
em [0, 1] e P a medida de Lebesgue. Esta tripla determina um espaço de probabi-
lidade não completo. Completando este espaço obtemos os conjuntos mensuráveis
de Lebesgue.

Teorema 1.3. Seja F0 uma álgebra e F a σ-álgebra gerada por F0. Sejam P1 e P2

duas probabilidades definidas sobre F , tais que P1(A) = P2(A), para todo A ∈ F0.
Então, P1(A) = P2(A), para todo A ∈ F .

Prova: Seja C a classe de conjuntos para os quais P1(A) = P2(A). Então, C
⊃ F0, por hipótese. Sejam En conjuntos de F e suponha que En ↑ E. Então,
P1(E) = limn P1(En) = limn P2(En) = P2(E). Ou seja, se En ∈ C, com En ↑ E,
segue-se que E ∈ C. De modo análogo, se En ↓ E, En ∈ C, então E ∈ C. Logo C é
uma classe monotônica e portanto C ⊃ F (veja o Apêndice A.1). □

Teorema 1.4. Seja F0 uma álgebra. Seja P uma função de conjuntos não negativa
sobe F0, finitamente aditiva, com P (Ω) = 1. Suponha que, se An ∈ F0, com An ↓ ∅,
então limn P (An) = 0. Seja F a σ-álgebra gerada por F0. Então, existe uma
probabilidade P

′
sobre (Ω,F), tal que P ′

(A) = P (A), se A ∈ F0.

Esta é uma versão do Teorema da Extensão de Carathéodory. Veja Loève (1963)
para detalhes. Uma consequência desse resultado é a seguinte. Seja F0 a álgebra
sobre R consistindo de reuniões finitas de intervalos disjuntos, semi-abertos à es-
querda. Seja F uma função crescente, cont́ınua à direita tal que limx→∞ F (x) =
1, limx→−∞ F (x) = 0. Defina P como no Exemplo A.1.4. do Apêndice. Então,
existe uma medida de probabilidade P ′ sobre B, a σ-álgebra de Borel sobre R, que
coincide com P sobre F0. Tal medida é denotada por dF ou F (dx). Esse argumento
pode ser estendido para o Rn.

1.2 Variável aleatória

Iniciamos com a seguinte definição.

Definição 1.3. Seja (Ω,F) um espaço mensurável. Uma variável aleatória (v.a) X
sobre esse espaço é uma função definida em Ω com valores em R tal queX−1(B) ∈ F ,
se B ∈ B. Em outras palavras, X é uma função mensurável com respeito a F .

Para qualquer função X : Ω→ R, não necessariamente uma v.a, a função inversa
X−1 tem as propriedades:

Morettin-Gallesco - dezembro/2025



1.2. VARIÁVEL ALEATÓRIA 5

X−1(Ac) = [X−1(A)]c,

X−1(
⋃
α

Aα) =
⋃
α

X−1(Aα), (1.3)

X−1(
⋂
α

Aα) =
⋂
α

X−1(Aα).

onde α pertence a um conjunto arbitrário de ı́ndices. Veja o Problema 2.

Teorema 1.5. X é uma v.a se e somente se {ω : X(ω) ≤ x} ∈ F , para todo x ∈ R.

Prova: (a) Suponha que X seja uma v.a; então, {ω : X(ω) ≤ x} ∈ F , pois
{ω : X(ω) ≤ x} = X−1((−∞, x]) e esse último conjunto pertence a B, e pela
definição de v.a, para qualquer conjunto de Borel B, X−1(B) ∈ F .

(b) Suponha, agora, que {ω : X(ω) ≤ x} ∈ F , isto é, para todo x, X−1((−∞, x]) ∈
F . Seja C a coleção dos conjuntos B tais que X−1(B) ∈ F . Então, C contém
conjuntos da forma (−∞, a], por hipótese. C é uma σ-álgebra, pois se B ∈ C,
então X−1(Bc) = (X−1(B))c ∈ F , e se Bj ∈ C, para todo j, então X−1(∪jBj) =
∪jX−1(Bj) ∈ F , usando o Lema 1.1. Segue-se que C contem conjuntos da forma
(−∞, a], que geram B, logo C ⊃ B ( pois B é a menor σ-álgebra contendo conjuntos
da forma (−∞, a]). Isso significa que X−1(B) ∈ F , para cada B ∈ B, logo X é uma
v.a. □

Exemplo 1.3. Seja um espaço mensurável (Ω,F) e Λ ∈ F . Defina IΛ como segue:

IΛ(ω) =

{
1, se ω ∈ Λ,

0, se ω /∈ Λ.

Então, IΛ é uma v.a, chamada a função indicadora de Λ. Se c1, . . . , cm são
números reais e se X : Ω ← R é definida por

X(ω) =
m∑
i=1

ciIΛi(ω), Λi ∈ F ,

então dizemos que X é uma variável aleatória simples.

Exemplo 1.4. Seja Ω = [0, 1], F = B([0, 1]). Nesse caso, uma v.a sobre (Ω,F) é,
por definição, uma função de Borel (uma função f definida em Ω é uma função de
Borel se f−1(B) ∈ B, para todo B ∈ B).

O resultado seguinte é um teorema bem conhecido na Teoria da Medida.

Teorema 1.6. Seja X uma v.a. Então, X é um limite de v.a’s simples. Se X ≥ 0,
então X é o limite de uma sequência crescente de v.a’s simples.
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Definição 1.4. Se X é uma v.a, então F{X} é a menor σ-álgebra sobre Ω com
respeito à qual X é mensurável.

Proposição 1.1. F{X} = {Λ : Λ = X−1(B), B ∈ B}.

Prova: Basta usar (1.3). □

Lema 1.1. Se X é uma v.a e f é uma função mensurável de Borel sobre (R,B),
então f(X) é uma v.a.

Prova: Basta encarar f(X) como a aplicação composta f ◦ X : ω → f(X(ω)).
Veja o Problema 3. □

Teorema 1.7. Uma v.a Y é F{X}-mensurável se, e somente se, Y for da forma
Y = g(X), sendo g uma função de Borel.

Prova: (a) Suponha que Y = g(X). Queremos provar que Y −1(B) ∈ F{X}, para
todo B ∈ B. Mas isso é verdade pelo Lema 1.1.

(b) Suponha, agora, que Y seja F{X}-mensurável. É suficiente provar o resultado
para Y ≥ 0.

(i) Primeiramente, o resultado é verdadeiro se Y = IA, A ∈ F{X}. De fato, se
A ∈ F{X}, então A = X−1(B), para algum B ∈ B, pela Proposição 1.1. Assim, se
tomarmos g = IB, teremos

Y (u) = IA(u) = IX−1(B)(u) = IB(X(u)),

ou seja, Y = g(X).

(ii) A seguir, o resultado é verdadeiro se Y for da forma Y =
∑m

i=1 ciIAi , onde
Ai ∈ F{X}. Então Ai = X−1(Bi), Bi ∈ B. Se definirmos g =

∑m
i=1 ciIBi , então

teremos Y = g(X).

(iii) Finalmente, o caso geral. Existe uma sequência de funções simples Yn, que
tende a Y , quando n→∞. Por (ii), Yn = gn(X), para alguma função de Borel gn.
Logo, Y = limn→∞ gn(X). Como gn(X)→ Y , segue-se que gn converge na imagem
de X. Defina g como segue:

g(u) =

{
limn→∞ gn(u), se o limite existir,

0, caso contrário.

Segue-se que g é uma função de Borel e Y = g(X). □

Passemos, agora, a estudar os conceitos de distribuição e função de distribuição
de uma v.a.
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Definição 1.5. Seja X uma v.a sobre (Ω,F , P ). A distribuição de X é a medida
de probabilidade PX definida sobre (R,B) de tal sorte que, para B ∈ B, PX(B) =
P{X−1(B)} = P{X ∈ B} = P{ω : X(ω) ∈ B}.

Observação 1. Devemos verificar que PX assim definida é um probabilidade. Cla-
ramente, PX(B) ≥ 0. Se os Bn são conjuntos disjuntos em B, então X−1(Bn) são
disjuntos por (1.3) e

PX(∪nBn) = P{X−1(∪nBn)} = P{∪nX−1(Bn)} =
∑
n

P{X−1(Bn)} =
∑
n

PX(Bn).

Finalmente, X−1(R) = Ω, logo PX(R) = P (Ω) = 1.

O espaço de probabilidade (R,B, PX) é chamado o espaço de probabilidade indu-
zido pela v.a X. No caso em que a imagem de X é um subconjunto enumerável de
R, X é chamada de v.a discreta e a sua distribuição é caracterizada pela função de
probabilidade pX(x) := P{X = x}, para x ∈ R. No caso em que existe uma função
não negativa e mensurável f tal que para todo boreliano A, PX(A) =

∫
R f(x)dx, X

é dita absolutamente cont́ınua e f é chamada de função densidade de probabilidade
de X.

Observação 2. A v.a X determina univocamente sua distribuição PX , mas duas
v.a’s distintas podem ter a mesma distribuição. Por exemplo, considere Ω = [0, 1], F =
B([0, 1]), e P é a medida de Lebesgue. Considere as v.a’s X e Y definidas sobre esse
espaço de probabilidade por meio de

X(ω) = ω, Y (ω) = 1− ω.

Então, PX = PY = P (use o fato que P é invariante por translações).

Definição 1.6. A função de distribuição FX de uma v.a X é a função definida por

FX(x) = P{ω : X(ω) ≤ x} = PX((−∞, x]), para todo real x,

e que escreveremos, simplesmente, P{X ≤ x}.

As seguintes propriedades de FX são válidas.

Teorema 1.8. Seja FX a função de distribuição (f.d) da v.a X. Então:

(i) FX é não decrescente;

(ii) limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1;

(iii) FX é cont́ınua à direita.
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Prova: Veja o Problema 4.

Observação 3. A função FX pode ser definida por FX(x) = P{ω : X(ω) < x}.
Nesse caso, FX é cont́ınua à esquerda. Veja o Problema 13.

Teorema 1.9. Sejam X e Y duas v.a’s. Então PX = PY se, e somente se, FX = FY .

Prova: (a) Suponha PX = PY ; então, PX(B) = PY (B), para todo B ∈ B. Em
particular, se B = (−∞, x], obtemos FX(x) = FY (x).

(b) Considere a classe C de todos os conjuntos B, tais que PX(B) = PY (B). Essa
classe contem conjuntos da forma B = (−∞, b], porque FX(x) = FY (x), para todo
real x. Logo, C contem conjuntos da forma (a, b], do que segue que C contem reuniões
finitas de intervalos fechados à direita, disjuntos. Logo, PX e PY coincidem numa
álgebra que gera B, portanto PX e PY coincidem sobre B, pelo Teorema 1.3. □

Uma definição equivalente de f.d é dada a seguir.

Definição 1.7. Uma função de distribuição é qualquer função F não decrescente,
cont́ınua à direita, tal que limx→−∞ F (x) = 0 e limx→∞ F (x) = 1.

Um problema que se coloca é o seguinte:

Suponha que seja dada uma f.d F . Existe um espaço de probabilidade (Ω,F , P ) e
uma v.a sobre esse espaço, tendo F como sua f.d?

A resposta é afirmativa e uma construção é a seguinte. Construa (Ω,F , P ) como:

Ω = R, F = B, P = dF.

Além disso, defina a v.a X por X(ω) = ω. Então, a f.d de X é F . De fato,

P{ω : X(ω) ≤ x} = P{ω : ω ≤ x} = F (x)− F (−∞) = F (x).

1.3 Vetor aleatório

Nessa seção iremos generalizar os conceitos da seção anterior para o caso de
termos mais de uma v.a.

Definição 1.8. ConsidereX1, . . . , Xn v.a’s sobre (Ω,F , P ). EntãoX = (X1, X2, . . . , Xn)
é um vetor aleatório.

Observe que X : Ω→ Rn.

Proposição 1.2. Se Bn é a σ-álgebra de conjuntos de Borel do Rn, então X−1(B) ∈
F , para todo B ∈ Bn.

Morettin-Gallesco - dezembro/2025



1.3. VETOR ALEATÓRIO 9

Prova: Para simplificar as notações, suponha X = (X1, X2). Considere a classe C
de conjuntos B para os quais X−1(B) ∈ F . Esta classe contem retângulos. De fato,

X−1(A×B) = {ω : X1(ω) ∈ A,X2(ω) ∈ B} =
= {ω : X1(ω) ∈ A} ∩ {ω : X2(ω) ∈ B} =M ∩N.

Logo, X−1(A × B) = M ∩ N , tal que M ∈ F , N ∈ F , do que segue que
X−1(A × B) ∈ F . Além disso, essa classe C é uma σ-álgebra, e como a classe dos
conjuntos de Borel de B2 é a menor σ-álgebra contendo todos os retângulos, C ⊃ B2.
□

Definição 1.9. Seja X = (X1, X2, . . . , Xn). Então, F{X1, . . . , Xn} é a menor
σ-álgebra com respeito à qual todas as v.a’s Xi, i = 1, . . . , n, são mensuráveis.

Teorema 1.10. Uma v.a Y é F{X1, . . . , Xn}-mensurável se, e somente se, Y =
g(X1, . . . , Xn), onde g é uma função de Borel de Rn em R.

Prova: Como no Teorema 1.7, observando que, por exemplo, se X e Y são v.a’s e f
é uma função de Borel mensurável de duas variáveis, então f(X,Y ) é uma v.a. □

Definição 1.10. A distribuição de X é a probabilidade sobre (Rn,Bn) definida por

PX(B) = P{ω ∈ Ω : (X1(ω), . . . , Xn(ω) ∈ B}, B ∈ Bn.

Dois casos particulares importantes de distribuição de vetores aleatórios são os
vetores aleatórios discretos e absolutamente cont́ınuos. As definições são obtidas
adaptando de maneira natural as definições dadas no caso de variáveis aleatórias.
Definição 1.11. A função de distribuição de X é a função

FX(x1, . . . , xn) = P{ω : X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn}.

Como antes, podemos provar os seguintes resultados.

Teorema 1.11. Se X e Y são dois vetores aleatórios, então PX = PY se, e somente
se, FX = FY.

Teorema 1.12. A f.d. FX de X tem as seguintes propriedades:

(i) FX é não decrescente em cada variável;

(ii) FX é cont́ınua à direita em cada variável;

(iii) limxi→−∞ FX(x1, . . . , xn) = 0 para todo 1 ≤ i ≤ n;

(iv) limx1,...,xn→∞ FX(x1, . . . , xn) = 1;
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(v) para (a1, . . . , an), (b1, . . . , bn) ∈ Rn tais que ai ≤ bi para todo 1 ≤ i ≤ n,
temos que

∑
x sgn(x)FX(x) ≥ 0, onde a soma é sobre todos os vetores x =

(x1, . . . , xn) tais que para todo i, xi ∈ {ai, bi} e sgn(x) é igual a 1 (resp. −1)
se o número de coordenadas do tipo ai no vetor x é par (resp. ı́mpar).

Como no caso de uma v.a, podemos definir uma f.d multidimensional como sendo
qualquer função F satisfazendo (i)-(v) do Teorema 1.12. Note que, ao contrário do
caso unidimensional, para n ≥ 2 as propriedades (i)-(iv) não são suficientes para que
uma função F seja uma f.d.

1.4 Processo estocástico

Nesta seção discutiremos um conceito mais geral do que variável aleatória ou
vetor aleatório, pois teremos uma função, que além de ser indexada por um ele-
mento de Ω, também será indexada por um elemento pertencente a um conjunto T ,
que usualmente será um conjunto de instantes de tempo, mas não necessariamente.
Antes de definir o que seja um processo estocástico (ou função aleatória), alguns
conceitos são necessários.

Definição 1.12. Seja T um conjunto arbitrário. Para cada t ∈ T , seja Ωt um
conjunto. Então,

∏
t∈T Ωt é o conjunto de todas as funções ω : T →

⋃
t∈T Ωt, tal

que ω(t) ∈ Ωt.

Exemplo 1.5. (a) Se T = {1, 2, . . . , n}, então
∏
t∈T Ωt = Ω1 × Ω2 × · · · × Ωn.

(b) Se T = {1, 2, . . .}, Ωt = R, para cada t ∈ T , então
∏
t∈T Ωt é o conjunto de todas

as sequências de números reais.

(c) Se T = (a, b], Ωt = R, então
∏
t∈T Ωt é o conjunto de todas as funções de (a, b]

em R.

Se Ωt = Ω, para todo t, então iremos escrever
∏
t∈T Ωt = ΩT .

Definição 1.13. (σ-álgebra produto) Seja T um conjunto de ı́ndices; para cada
t ∈ T , seja (Ωt,Ft) um espaço mesurável. Um retângulo A é qualquer conjunto da
forma A =

∏
t∈T At, onde At = Ωt, para todo t, exceto por um número finito deles.

A σ-álgebra produto é a menor σ-álgebra sobre
∏
t∈T Ωt que contém esses retângulos.

Usaremos a notação
⊗

t∈T Ft para denotar essa σ-álgebra produto. Se Ωt = R e
Ft = B, para todo t ∈ T , então chamamos o espaço resultante de σ-álgebra de Borel
sobre RT e a denotamos por BT .

Definição 1.14. Seja (Ω,F , P ) um e.p e T um subconjunto de R. Um processo
estocástico é uma coleção de v.a’s X = {Xt, t ∈ T} definidas sobre (Ω,F , P ).
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Dizemos que T é o conjunto paramétrico do processo.

Note que X : Ω→ RT . Alguns casos especiais são:

(a) T = {1, 2, . . . , n}, neste caso X = {Xk, 1 ≤ k ≤ n} é um vetor aleatório de
dimensão n.

(b) T = N, neste caso X = {Xn, n ≥ 1} é uma sequência de variáveis aleatórias.
X é um processo estocástico com parâmetro discreto.

(c) T = [a, b], neste caso X = {Xt , a ≤ t ≤ b} é um processo estocástico com
parâmetro cont́ınuo.

Dado o processo estocástico (p.e) X : Ω → RT , a questão que surge é: X é
mensurável? A resposta é dada pelo

Teorema 1.13. Seja B ∈ BT . Então, X−1(B) ∈ F .

Prova: Similar à da Proposição 1.2. □

Definição 1.15. Defina uma probabilidade PX sobre (RT ,BT ) por PX(B) =
P{X−1(B)}. PX é chamada de distribuição de X.

Teorema 1.14. Seja P ∗ uma probabilidade sobre (RT ,BT ). Então, existe um
processo estocástico X = {Xt, t ∈ T} tal que P ∗ é a distribuição de X e esse
processo está definido sobre (RT ,BT , P ∗).

Prova: Se ω ∈ RT , defina Xt(ω) = ω(t). Lembremos que ω ∈ RT significa que
ω : T → R, isto é, ω(t) ∈ R. □

Como exemplo, seja T = N; aqui RT = R × R × · · · é o conjunto de todas as
sequências de números reais, isto é, ω ∈ RT se ω = {x1, x2, . . .}. Então, Xn(ω) = xn.

Contudo, usualmente a situação do Teorema 1.14 não aparece. A situação comum
é a seguinte. Seja dado um conjunto de ı́ndices T ⊂ R; para uma sequência finita de
elementos distintos t1, . . . , tn ∈ T , é dada uma probabilidade Pt1,...,tn sobre (Rn,Bn).
Pede-se para construir um processo estocástico {Xt, t ∈ T}, tal que a distribuição
de (Xt1 , Xt2 , . . . , Xtn) seja Pt1,...,tn .

Por exemplo, frequentemente temos a seguinte situação: X1, X2, . . . são v.a’s
independentes, com f.d comum F . A questão então é: Tal sequência existe? Ou
seja, existe um e.p (Ω,F , P ), tal que um processo estocástico {Xn, n ≥ 1} esteja
definido sobre o mesmo?

Definição 1.16. Dado um processo estocástico X = {Xt, t ∈ T}, as probabilidades
Pt1,··· ,tn são chamadas as distribuições finito-dimensionais do processo estocásticoX.

Portanto, podemos refrasear o nosso problema da seguinte forma: seja dada uma
coleção de probabilidades, que são supostas serem as distribuições finito-dimensionais
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de algum processo estocástico. Podemos construir um processo estocástico com
essas distribuições? A resposta é afirmativa, desde que essas probabilidades se-
jam “consistentes”. Eis um exemplo do que entendemos por consistência. Se
P{X1 ∈ A,X2 ∈ B,X3 ∈ R} = P1,2,3(A × B × R), então o primeiro membro
dessa igualdade é igual a P{X1 ∈ A,X2 ∈ B} = P1,2(A×B).

[C] Condições de Consistência. Para toda sequência finita t1, . . . , tn de elemen-
tos distintos de T , seja Pt1,··· ,tn uma probabilidade. A primeira condiçâo de con-
sistência estabelece que para toda permutação π = (π(1), . . . , π(n)) de {1, . . . , n} e
A1, . . . , An ∈ B,

Pt1,...,tn(A1 × · · · ×An) = Ptπ(1),...,tπ(n)
(Aπ(1) × · · · ×Aπ(n)).

A segunda condição é

Pt1,...,tn−1(A1 × · · · ×An−1) = Pt1,...,tn(A1 × · · · ×An−1 × R).

O Teorema de Consistência de Kolmogorov ou Teorema de Extensão de Kolmogo-
rov-Daniell, pode ser enunciado como segue.

Teorema 1.15. Seja T um conjunto de ı́ndices. Suponha que para cada sequência
finita t1, . . . , tn de elementos distintos de T tenhamos uma probabilidade Pt1,...,tn so-
bre (R{t1,...,tn},B{t1,...,tn}). Suponha que essas probabilidades satisfaçam [C]. Então,
existe uma única probabilidade P sobre (RT ,BT ), tal que P restrita a (R{t1,...,tn},B{t1,...,tn})
seja Pt1,...,tn .

Para uma prova veja Billingsley (1995).

Corolário 1.2. Sejam X = {Xt, t ∈ T} e Y = {Yt, t ∈ T} dois processos es-
tocásticos tendo as mesmas distribuições finito-dimensionais. Então, X e Y têm
a mesma distribuição. Ou seja, as distribuições finito-dimensionais determinam a
distribuição de um processo.

Uma formulação alternativa do Teorema 1.15 pode ser dada em termos de f.d’s.
Para cada t1, . . . , tn distintos contidos em T seja dada uma f.d Ft1,...,tn . Então, existe
um processo estocástico X = {Xt, t ∈ T} tal que {Xt1 , . . . , Xtn} tenha f.d Ft1,...,tn ,
desde que essa seja consistente. Consistência, agora, significa:

(a) limxn→∞ Ft1,...,tn(x1, . . . , xn) = Ft1,...,tn−1(x1, . . . , xn−1),
(b) para toda permutação π = (π(1), . . . , π(n)) de {1, . . . , n},

Ftπ(1),...,tπ(n)
(xπ(1), . . . , xπ(n)) = Ft1,...,tn(x1, . . . , xn).

Teorema 1.16. Seja X = {Xt, t ∈ T} um processo estocástico e Y uma v.a F{X}-
mensurável. Suponha que T seja não enumerável. Então, existe uma sequência
{tn, n ≥ 1} de T , tal que Y seja F{Xt1 , Xt2 , . . .}-mensurável.
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Prova: (i) Suponha Y = IA, A ∈ F{X}. Considere a classe A de conjuntos A
tais que IA seja determinada por um número enumerável de coordenadas. Então,
A é uma σ-álgebra que contem retângulos (porque esses são determinados por um
número finito de coordenadas). Então, A ⊃ F{X}.

(ii) O resultado é válido se Y =
∑m

i=1 ciIAi , Ai ∈ F{X}.

(iii) Logo, é valido para todo Y que seja F{X}-mensurável, pois cada tal Y é um
limite de funções simples. □

Teorema 1.17. Seja X = {Xt, t ∈ T} um processo estocástico e T não enumerável.
A classe de funções Y que são F{X}-mensuráveis é a menor classe Γ tal que:

(i) Se t1, . . . , tn pertencem a T e se g é uma função de Borel n-dimensional, então
g(Xt1 , . . . , Xtn) ∈ Γ;

(ii) Se Y1, Y2, · · · ∈ Γ e se Y = limn→∞ Yn, então Y ∈ Γ.

Prova: Veja o Problema 6.

1.5 Esperança

O conceito de esperança matemática (ou valor esperado, ou simplesmente espe-
rança) de uma v.a X é equivalente ao conceito de integral de uma função mensurável
sobre um espaço de probabilidade.

Definição 1.17. Seja (Ω,F , P ) um e.p e X uma v.a sobre esse espaço. A esperança
de X, quando existe, é definida por

E(X) =

∫
Ω
X(ω)dP (ω).

Para cada Λ ∈ F , definimos∫
Λ
X(ω)dP (ω) = E(XIΛ).

Como uma integral, a esperança de uma v.a tem as propriedades familiares de
uma integral (veja o Apêndice A.2), como as que seguem.

(a) E(aX + bY ) = aE(X) + bE(Y ), desde que o lado direito tenha sentido (ou
seja, não pode ser ∞−∞ ou −∞+∞);

(b) se Xn ≥ 0 e X = limnXn q.c, então E(X) ≤ lim infnE(Xn) (lema de Fatou);
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(c) se Xn ≥ 0 e se Xn ↑ X q.c então limnE(Xn) = E(X), desde que +∞ seja
permitido como um valor de cada lado (teorema da convergência monótona);

(d) se Xn → X, em probabilidade ou q.c e |Xn| ≤ Y , para todo n, com E(Y ) <∞,
então limnE(Xn) = E(X) (teorema da convergência dominada).

Teorema 1.18. A seguinte desigualdade é válida:

∞∑
n=1

P{|X| ≥ n} ≤ E(|X|) ≤ 1 +
∞∑
n=1

P{|X| ≥ n}, (1.4)

de modo que E(|X|) <∞ se, e somente se, a série em (1.4) convergir.

Prova: A prova segue Chung (1968). Se {Λn, n ≥ 1} são conjuntos disjuntos, então
temos ∫

∪nΛn

XdP =
∑
n

∫
Λn

XdP.

Se tomarmos Λn = {n ≤ |X| < n+ 1}, então

E(|X|) =
∞∑
n=0

∫
Λn

|X|dP.

Também, temos que, se a ≤ X ≤ b sobre Λ, então aP (Λ) ≤
∫
ΛXdP ≤ bP (Λ),

de modo que, para cada conjunto Λn,

∞∑
n=0

nP (Λn) ≤ E(|X|) ≤ (n+ 1)P (Λn) = 1 +

∞∑
n=0

nP (Λn). (1.5)

Resta provar que
∞∑
n=0

nP (Λn) =
∞∑
n=1

P{|X| ≥ n}, (1.6)

onde as somas podem ser finitas ou infinitas.
Agora, as somas parciais do lado esquerdo de (1.6) podem ser rearranjadas

(método de Abel) de modo que, para N ≥ 1,

N∑
n=0

nP (Λn) =

N∑
n=0

n(P{|X| ≥ n} − P{|X| ≥ n+ 1})

=
N∑
n=1

(n− (n− 1))P{|X| ≥ n} −NP{|X| ≥ N + 1}

=

N∑
n=1

P{|X| ≥ n} −NP{|X| ≥ N + 1}. (1.7)
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Temos que

N · P{|X| ≥ N + 1} ≤
∫
{|X|≥N+1}

|X|dP. (1.8)

Se E(|X|) < ∞, deduzimos que o lado direito de (1.8) tende a zero. Portanto∑∞
n=0 nP (Λn) =

∑∞
n=1 P{|X| ≥ n}. No caso em que E(|X|) = ∞, deduzimos de

(1.5) que
∑∞

n=0 nP (Λn) =∞ e portanto usando (1.7) deduzimos que
∑∞

n=1 P{|X| ≥
n} =∞. □

Existe uma relação básica entre a integral abstrata com respeito a P , sobre
conjuntos de F , de um lado, e a integral de Lebesgue-Stieltjes com respeito a PX ,
sobre conjuntos de B, induzida pela v.a X, de outro lado.

Teorema 1.19. Seja X sobre (Ω,F , P ), induzindo o e.p (R,B, PX) e seja f uma
função mensurável de Borel. Então, temos∫

Ω
f(X(ω))dP (ω) =

∫
R
f(y)dPX(y), (1.9)

desde que pelo menos uma das duas integrais exista.

Prova. (a) Seja B ∈ B e tome f = IB. Então, o lado esquerdo de (1.9) fica∫
Ω
IB(X(ω))dP (ω) = P (X ∈ B),

e, o lado direito, PX(B). Há, então, igualdade, pela definição de PX .

(b) Em seguida, (1.9) vale para f simples, ou seja, da forma f =
∑

j bjIBj .

(c) Se f ≥ 0, existe uma sequência {fn, n ≥ 1} de funções simples, tal que fn ↑ f .
Para cada fn temos

∫
Ω fn(X(ω))dP (ω) =

∫
R fn(y)dPX(y). Quando n→∞ e usando

o teorema da convergência monótona, obtemos que (1.9) é válida.

(d) No caso geral, tome f = f+ − f−. □

Vejamos, agora, algumas desigualdades importantes.

Proposição 1.3. (desigualdade de Chebyshev) Se φ é uma função par, estritamente
crescente e positiva sobre [0,∞), e X uma v.a, então, para cada λ > 0, temos

P{|X| ≥ λ} ≤ E(φ(X))

φ(λ)
.

Prova. Observamos que P{|X| ≥ λ} = P{φ(|X|) ≥ φ(λ)}. Depois, observamos
que φ(|X|) ≥ φ(λ)1{φ(|X|)>φ(λ)} e tomamos a esperança dos dois lados. Enfim, como
φ é par, temos que φ(|X|) = φ(X). □
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Exemplos especiais são:

(a) Se φ(x) = x2, a desigualdade fica

P{|X| ≥ λ} ≤ E(X2)

λ2
.

(b) Se φ(x) = |x|p, 0 < p <∞, então

P{|X| ≥ λ} ≤ E(|X|p)
λp

.

(c) Se φ(x) = exp(t|x|), t > 0, então

P{|X| ≥ λ} ≤ E(et|X|)

etλ
.

Recordemos que Lp = Lp(Ω,F , P ) é a coleção de todas as v.a’s X sobre (Ω,F , P )
tais que E(|X|p) < ∞ (identificamos neste caso variáveis aleatórias iguais q.c, veja
o Apêndice A.3). Lembramos também que a norma Lp de X é definida por

||X||p =
[∫
|X|pdP

]1/p
= [E(|X|p]1/p .

Proposição 1.4. (desigualdade de Hölder) Se X ∈ Lp e Y ∈ Lq, com p ≥ 1, q ≥ 1
e 1
p +

1
q = 1, então

||XY ||1 ≤ ||X||p · ||Y ||q, (1.10)

ou, de modo equivalente,

E(|XY |) ≤ [E(|X|p)]1/p · [E(|Y |q)]1/q .

Prova. Veja o Problema 7.

Se Y = 1 em (1.10), obtemos E(|X|) ≤ [E(|X|p)]1/p. Se p = 2 em (1.10) temos
a desigualdade de Cauchy-Schwarz.

Proposição 1.5. (desigualdade de Minkowski) Se X e Y estão em Lp, temos

||X + Y ||p ≤ ||X||p + ||Y ||p,

ou seja,

[E(|X + Y |p]1/p ≤ [E(|X|p)]1/p + [E(|Y |p)]1/p .
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Prova. Veja o Problema 8.

Proposição 1.6. (desigualdade de Jensen) Seja φ uma função mensurável convexa
e suponha que E(X) e E(φ(X)) existam. Então,

E(φ(X)) ≥ φ(E(X)).

Igualdade ocorre se, e somente se, φ for linear.

Prova. Dado ξ, existe uma reta passando por φ(ξ), que está totalmente abaixo da
curva φ. Tal reta é dada por

y − φ(ξ) = λ(x− ξ),

para algum λ. Então, φ(x) ≥ λ(x− ξ) + φ(ξ), para todo x. Segue-se que

E(φ(X)) ≥ λE(X − ξ) + φ(ξ).

Escolha ξ = E(X) e o resultado esperado é obtido. O caso linear segue da prova
anterior e é deixado para o leitor. □

Se φ(x) = x2, obtemos E(X2) ≥ [E(X)]2. Se φ(x) = |x|p, temos E(|X|p) ≥
|E(X)|p, para p ≥ 1.

1.6 Convergência

Nesta seção apresentamos os conceitos dos diversos modos de convergência de
sequências de v.a’s, que são idênticos aos conceitos correspondentes sobre sequências
de funções mensuráveis em um espaço de medida.

Consideremos um e.p (Ω,F , P ) e {Xn} uma sequência de v.a’s definidas sobre
esse espaço.

Definição 1.18. Dizemos que Xn converge para X quase certamente, se existe um
conjunto nulo N tal que limn→∞Xn(ω) = X(ω), sempre que ω ∈ N c.

Dizemos, também, que Xn converge para X com probabilidade um e usamos a
notação Xn

q.c.→ X, ou Xn → X q.c.

Teorema 1.20. A sequência {Xn} converge para X q.c. se, e somente se, tiver-
mospara todo ε > 0

lim
m→∞

P{|Xn −X| ≤ ε, para todo n ≥ m} = 1,

ou

lim
m→∞

P{∩∞n=m{|Xn −X| ≤ ε}} = 1. (1.11)
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A relação (1.11) é equivalente a

lim
m→∞

P{|Xn −X| > ε, para algum n ≥ m} = 0,

ou

lim
m→∞

P{∪∞n=m{|Xn −X| > ε}} = 0.

Prova. (a) Suponha que Xn
q.c.→ X. Para m ≥ 1, seja Am o evento em (1.11), ou

seja, Am = ∩∞n=m{|Xn − X| ≤ ε}. Então, {Am} é uma sequência crescente. Para
cada ω ∈ N c, a convergência de {Xn(ω)} para X(ω) implica que, dado ε > 0, existe
um m(ω, ε) tal que se n ≥ m(ω, ε), então |Xn(ω)−X(ω)| ≤ ε.

Logo, cada tal ω pertence a algum Am, e portanto N c ⊂ ∪∞m=1Am. Logo,
P (N c) ≤ P (∪∞m=1Am) = limm P (Am), pois a sequência é crescente. Portanto,
limm P (Am) = 1.

(b) Suponha que Xn não convirja para X sobre um conjunto Λ, com P (Λ) > 0.
Considere a v.a Z definida por Z(ω) = limn sup |Xn(ω) −X(ω)|, que pode não ser
finita. Observe que

{Z > 0} =
∞⋃
n=1

{
Z >

1

n

}
. (1.12)

Para cada ω ∈ Λ, temos que Z(ω) > 0 e, portanto, Λ ⊂ {Z > 0}. Segue-se que,
para algum n, um membro da reunião do lado direito de (1.12) deve ter probabilidade
estritamente positiva, e portanto, para algum ε > 0, o conjunto {Z > ε} tem
probabilidade estritamente positiva. Pela definição de Z, este último conjunto está
contido no conjunto Acm, para todo m, logo P (Acm) ≥ P (Z > ε), e portanto (1.11)
não pode ser verdadeira. □

Definimos o lim supnAn como o conjunto de todos os elementos de Ω que per-
tencem a um número infinito de conjuntos An, e o lim infnAn como o conjunto dos
elementos de Ω que pertencem a todos os conjuntos An com exceção de um número
finito deles (veja o Apêndice A.1). Também dizemos que o evento lim supnAn ocorre
se, e somente se, os eventos An ocorrem infinitas vezes (infinitely often) e escrevemos

P
(
lim sup

n
An

)
= P (An i.v).

Proposição 1.7. Para cada An ∈ F , temos que:

P
(
lim sup

n
An

)
= lim

m→∞
P (∪∞n=mAn),

P
(
lim inf

n
An

)
= lim

m→∞
P (∩∞n=mAn).
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Prova: Chamemos Fm = ∪∞n=mAn, para todo m ≥ 1. Então, Fm decresce, quando
m cresce. Pela monotonicidade de P ,

P (∩∞m=1Fm) = lim
m→∞

P (Fm). □

Teorema 1.21. Xn converge para X q.c se, e somente se, para todo ε > 0, tivermos
P{|Xn −X| > ε i.v } = 0.

Prova: Seja Am = ∩∞n=m{|Xn −X| ≤ ε}. Segue-se que

{|Xn −X| > ε i.v } = ∩∞m=1 ∪∞n=m {|Xn −X| > ε} = ∩∞m=1A
c
m.

De acordo com o Teorema 1.21, Xn → X q.c, se e somente se, para todo ε > 0,
tivermos P (Acm)→ 0, quando m→∞. Como a sequência Acm é decrescente, isso é
equivalente a P{|Xn −X| > ε i.v } = 0. □

Um conceito mais fraco do que convergência q.c é o de convergência em proba-
bilidade.

Definição 1.19. Dizemos que a sequência {Xn} converge para X em probabilidade
se, e somente se, para todo ε > 0, tivermos limn→∞ P{|Xn −X| > ε} = 0.

Usaremos a notação Xn
P→ X. Note que P{|Xn − X| > ε} significa P{ω :

|Xn(ω)−X(ω)| > ε}.

Teorema 1.22. Se Xn convergir para X q.c., então Xn converge para X em pro-
babilidade.

Prova: Se Xn
q.c→ X, então P{∪∞n=m(|Xn −X| > ε} → 0, quando m → ∞. Mas

isso implica P{|Xn −X| > ε} → 0, quando n→∞, logo Xn
P→ X. □

A rećıproca do teorema não vale. O que se verifica é o seguinte resultado.

Teorema 1.23. Se Xn
P→ X, existe uma subsequência {nk}, tal que Xnk

q.c→ X. Ou
seja, convergência em probabilidade implica em convergência quase certa ao longo
de uma subsequência.

Prova: Como Xn
P→ X se, e somente se Xn − X

P→ 0, podemos supor X = 0.
Então, por hipótese, para todo k > 0, P{|Xn| > 1/2k} → 0, quando n → ∞.
Segue-se que, para cada k > 0, existe um nk tal que

P{|Xnk
| > 1/2k} ≤ 1

2k
.

Tendo escolhido tal sequência {nk}, seja Ek = {|Xnk
| > 1/2k}. Então, P{Ek i.v} =

0, logo pelo Teorema 1.22, Xnk

q.c→ 0. □
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Um tipo de convergência importante em Probabilidade e Estat́ıstica é a con-
vergência em média quadrática. Essa é um caso particular do seguinte modo de
convergência.

Definição 1.20. A sequência {Xn} converge para X em Lp, se e somente se,

lim
n→∞

E(|Xn −X|p) = 0.

Usaremos a notação Xn
Lp→ X.

Teorema 1.24. Se Xn converge para zero em Lp, então Xn converge para zero em
probabilidade. A rećıproca é verdadeira desde que |Xn| ≤ Y q.c, com Y ∈ Lp.

Prova: (a) Se Xn
Lp→ 0, então E(|Xn|p) → 0, quando n → ∞. Pela desigualdade

de Chebyshev, com φ(x) = |x|p, temos

P{|Xn| ≥ ε} ≤
E(|Xn|p)

εp
.

Quando n→∞, o lado direito tende a zero, logo Xn
P→ 0.

(b) Suponha |Xn| ≤ Y q.c, com E(|Y |p) <∞. Temos que

E(|Xn|p) =
∫
{|Xn|<ε}

|Xn|pdP +

∫
{|Xn|≥ε}

|Xn|pdP ≤ εp +
∫
{|Xn|≥ε}

Y pdP.

Por hipótese, a última integral tende a zero (veja o Problema 9). Assim, faça

n→∞ e depois ε→ 0 para obter E(|Xn|p)→ 0, ou seja, Xn
Lp→ 0. □

Dizemos que a sequência {Xn} é uniformemente limitada se, e somente se,
|Xn| ≤M q.c, com M constante. Como um corolário do Teorema 1.24, se {Xn} for
uniformemente limitada, convergência em probabilidade e convergência em Lp são
equivalentes. O resultado geral segue.

Teorema 1.25. Xn
P→ 0 se, e somente se, E

(
|Xn|

1+|Xn|

)
→ 0. Além disso, a aplicação

d(·, ·) definida por d(X,Y ) = E
(

|X−Y |
1+|X−Y |

)
é uma métrica no espaço das v.a’s, desde

que identifiquemos v.a’s que sejam iguais q.c.

Prova: Veja Chung (1974).

Algumas vezes temos que tratar com problemas de convergência de v.a’s quando
nenhum limite esteja evidenciado. Se Xn − Xm → 0, quando m,n → ∞, segundo
qualquer um dos modos anteriores, então existe uma v.a.X tal queXn → X segundo
o mesmo modo. Esse é o critério de Cauchy.
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Problemas

1. Prove completamente o Teorema 1.2.

2. Prove as relações (1.3).

3. Prove completamente o Lema 1.1.

4. Prove o Teorema 1.8.

5. Dada uma f.d. F (x, y), encontre um vetor aleatório X tendo F como sua f.d.

[Sugestão: proceda extamente como no caso de uma v.a.]

6. Prove o Teorema 1.17.

7. Prove a Proposição 1.4.

8. Prove a Proposição 1.5.

9. Se X é uma v.a com E(|X|) <∞, então An ∈ F , An ↓ ∅ implica que limn

∫
An

XdP =
0.

10. Seja F0 uma álgebra e F a σ-álgebra gerada por F0. Seja P uma probabilidade sobre
F . Mostre, diretamente do Teorema da Convergência Monotônica, que dado ε > 0 e
A ∈ F , existe Aε ∈ F0, tal que P (A△Aε) < ε (A△B significa a diferença simétrica
entre A e B).

11. Mostre que, para qualquer sequência de v.a’s limitadas, existe uma sequência de cons-
tantes {bn}, tal que Xn/bn converge para zero q.c.

12. Seja F cont́ınua, estritamente crescente, limx→∞ F (x) = 1, limx→−∞ F (x) = 0, e seja
λ a medida de Lebesgue.

(a) Mostre que P (A) = λ(F (A)) é uma medida de probabilidade sobre B((0, 1));
(b) Mostre que P pode ser obtida via uma construção similar à construção do Exem-

plo A.1.4.

13. Mostre que a f.d de uma v.a X como definida no texto é cont́ınua à direita, mas como
definida na Observação 3 é cont́ınua à esquerda.

14. Seja X = {Xt, t ∈ T} um processo estocástico, T não enumerável. Mostre que a classe
de funções F{X}-mensuráveis é a menor classe Γ tal que:

(a) se f for uma função de Borel sobre Rn, então f(Xt1 , . . . , Xtn) ∈ Γ, para t1, . . . , tn ∈
T ;

(b) se Y1, Y2, . . . estão em Γ e se limn Yn = Y existir, então Y ∈ Γ.

15. Apresente uma sequência de eventos {An, n ≥ 1}, de um mesmo e.p, tais que:

(a)
∑∞

n=1 P (An) =∞ e P (An i.v) < 1;

(b) P (An i.v) = 1 e P (Ac
n i.v) = 0.
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16. Considere Ω = [0, 1], F = B([0, 1]) e P a medida de Lebesgue. Seja A0 = Ω, A1 =
A0 ∩ (1/3, 2/3)c = [0, 1/3] ∪ [2/3, 1], A2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1]
(isto é, retiramos a terceira parte central de cada um dos intervalos de A1). Pros-
seguindo desse modo, obteremos uma sequência de eventos {An, n ≥ 1}, monotônica
não crescente (An ⊃ An+1), com An sendo a reunião de 2n intervalos fechados.

O conjunto C = ∩∞n=1 é chamado conjunto de Cantor. Prove que P (C) = 0 (esse é um
exemplo de um conjunto infinito não enumerável com probabilidade (comprimento)
zero).

17. Se (Ω,F , P ) for um e.p., A ∈ F , P (A) > 0, defina P (B|A) = P (A ∩ B)/P (A), para
todo B ∈ F . Prove que (Ω,F , P (·|A)) é um e.p.

18. Seja Ω = {(x, y) : 0 < x, y ≤ 1}, F a classe dos conjuntos da forma {(x, y) : x ∈
A ∩ (0, 1], 0 < y ≤ 1}, onde A ∈ B, e seja P dada pela medida de Lebesgue nesse
conjunto. Prove que (Ω,F , P ) é um espaço de probabilidade.
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Caṕıtulo 2

Independência

Neste caṕıtulo estudaremos o importante conceito de independência, juntamente
com resultados relacionados: leis zero-um, leis dos grandes números, séries aleatórias
e aplicações. Algumas referências para esse caṕıtulo são Lamperti (1966), Chung
(1968, 1974), Breiman (1968, 1992) e Billingsley (1995).

2.1 Fatos básicos

Definição 2.1. (i) Seja (Ω,F , P ) um e.p e sejam F1,F2, . . . ,Fn σ-álgebras (ou
álgebras) contidas em F . Dizemos que essas σ-álgebras são independentes se para
quaisquer A1 ∈ F1, A2 ∈ F2, . . . , An ∈ Fn, tivermos

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An).

(ii) As v.a’a X1, . . . , Xn definidas sobre (Ω,F , P ) são independentes se
F{X1}, . . . ,F{Xn} são σ-álgebras independentes.

(iii) As σ-álgebras F1,F2, . . ., contidas em F , são independentes se para cada n,
F1, . . . ,Fn forem independentes.

(iv) As v.a’sX1, X2, . . . sobre (Ω,F , P ) são independentes se para cada n, X1, . . . , Xn

são independentes.

Lema 2.1 Sejam F0 e G0 álgebras independentes. Sejam F e G as σ-álgebras geradas
por F0 e G0, respectivamente. Então, F e G são independentes.

Prova: Fixemos A ∈ F0. Se P (A) > 0, defina a probabilidade PA por

PA(B) =
P (A ∩B)

P (A)
.

PA é uma probabilidade sobre G0, tal que, para todo B ∈ G0,
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24 CAPÍTULO 2. INDEPENDÊNCIA

PA(B) =
P (A ∩B)

P (A)
=
P (A)P (B)

P (A)
= P (B),

pois F0 e G0 são independentes. Logo, PA(B) = P (B), para todo B ∈ G, pelo
Teorema 1.3. Logo, para cada A ∈ F0 e cada B ∈ G, teremos P (A∩B) = P (A)P (B)
(esta última igualdade é trivial se P (A) = 0). Para terminar a prova, fixe B ∈ G e
repita o argumento. □

Definição 2.2. Os vetores aleatórios X = (X1, . . . , Xn) e Y = (Y1, . . . , Yn) são
independentes se F{X} é independente de F{Y}.

Definição 2.3. Os processos estocásticos X = {Xn, n ≥ 1} e Y = {Yn, n ≥ 1} são
independentes se (X1, . . . , Xn) e (Y1, . . . , Yn) são independentes, para todo n.

Proposição 2.1. As v.a’s X1, X2, . . . , Xn são independentes se, e somente se, para
toda coleção de conjuntos de Borel A1, . . . , An tivermos

P{X1 ∈ A1, . . . , Xn ∈ An} = P{X1 ∈ A1} · · ·P{Xn ∈ An}.

Prova: Segue imediatamente da definição de v.a’s independentes e do fato que todo
conjunto em F{Xi} é da forma X−1

i (B), B ∈ B. □

O mesmo resultado vale para uma sequência infinita de v.a’s independentes.
Veja, por exemplo, Breiman (1968).

Definição 2.4. Sejam A1, . . . , An eventos. Esses eventos são independentes se as
respectivas σ-álgebras geradas por eles são independentes.

Teorema 2.1. Sejam X = {Xn, n ≥ 1} e Y = {Yn, n ≥ 1} dois processos es-
tocásticos independentes sobre (Ω,F , P ). Então, toda função F{X}-mensurável é
independente de toda função F{Y }-mensurável.

Prova: ComoX e Y são independentes, (X1, . . . , Xn) é independente de (Y1, . . . , Yn),
para cada n. Ou seja, F{X1, . . . , Xn} é independente de F{Y1, . . . , Yn}, pela de-
finição de vetores independentes. Isso implica que ∪nF{X1, . . . , Xn} é independente
de ∪nF{Y1, . . . , Yn}. De fato, se A ∈ ∪nF{X1, . . . , Xn} e B ∈ ∪nF{Y1, . . . , Yn},
então A ∈ F{X1, . . . , Xn}, para algum n e B ∈ F{Y1, . . . , Ym}, para algum m.
Portanto, ∨nF{X1, . . . , Xn} é independente de ∨nF{Y1, . . . , Yn}, devido à inde-
pendência das álgebras ∪nF{X1, . . . , Xn} e ∪nF{Y1, . . . , Yn}.

Seja, agora, Z F{X}-mensurável e W F{Y }-mensurável. Então F{Z} ⊂ F{X}
e F{W} ⊂ F{Y }. Logo, F{Z} e F{W} são independentes, isto é, Z e W são
independentes. □
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Alguns casos especiais desse teorema são:

(a) lim supnXn é independente de lim supn Yn;

(b) Se f e g são funções de Borel sobre Rn, então f(X1, . . . , Xn) é independente de
g(Y1, . . . , Yn).

Teorema 2.2. Se X1, . . . , Xn são v.a’s sobre (Ω,F , P ) e X = (X1, . . . , Xn), então
X1, . . . , Xn são independentes se, e somente se, FX(x1, . . . , xn) = FX1(x1) . . . FXn(xn)
para todo x1, . . . , xn.

Prova: Para simplificar as notações consideramos somente o caso n = 2.
(a) Se X1 e X2 são independentes, P (X1 ∈ A,X2 ∈ B) = P (X1 ∈ A)P (X2 ∈ B),
logo basta tomar A = (−∞, x1] e B = (−∞, x2].

(b) Fixe b, um número real, e defina as medidas finitas µ1 e µ2 como segue:

µ1(A) = P (X1 ≤ b,X2 ∈ A),
µ2(A) = P (X1 ≤ b)P (X2 ∈ A).

Agora, mostremos que µ1 e µ2 são iguais, para todo conjunto de Borel A. Elas são
iguais sobre conjuntos da forma A = (−∞, c], pela definição de f.d e por hipótese.
Logo, elas são iguais também para todos os conjuntos A da forma (c, d] ou (c,∞).
Deduzimos que µ1 e µ2 são iguais para conjuntos de uma álgebra que gera os con-
juntos de Borel, logo elas concordam sobre todos os conjuntos de Borel. Ou seja,
provamos que: se FX = FX1FX2 , então para todo real b e todo conjunto de Borel
A, temos P (X1 ≤ b,X2 ∈ A) = P (X1 ≤ b)P (X2 ∈ A). Queremos provar que
P (X1 ∈ B,X2 ∈ A) = P (X1 ∈ B)P (X2 ∈ A). Basta fixar A, conjunto de Borel, e
proceder como antes. □

Uma consequência desse teorema é o seguinte resultado. Veja, também, Lamperti
(1966) para uma construção de v.a’s sobre um espaço de probabilidade.

Teorema 2.3. Sejam F1, F2, . . . f.d’s. Então, existe um e.p (Ω,F , P ) e v.a’s
X1, X2, . . . sobre esse espaço, tais que:

(i) As v.a’s Xi são independentes;

(ii) A f.d de Xi é Fi, i = 1, 2, . . . .

Prova: Forme o conjunto consistente de f.d’s F1(x1), . . . , Fn(xn) e use o teorema
da extensão de Kolmogorov. □

Teorema 2.4. Sejam F0,F1,F2, . . . σ-álgebras independentes sobre (Ω,F , P ). Então,
F0 é independente da σ-álgebra gerada por F1,F2, . . ..

Prova: Considere a álgebra F̂ definida como sendo a classe de reuniões finitas de
conjuntos disjuntos da forma A1 ∩ · · · ∩An, onde Ai ∈ Fi, i ≥ 1. Essa álgebra gera
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a σ-álgebra F{F1,F2, . . .}, e F0 e F̂ são independentes. De fato, se provarmos essa
afirmação, o teorema fica provado, pois álgebras independentes geram σ-álgebras
independentes.

Sejam A e B pertencentes a F0 e F̂ , respectivamente, B = A1∩ · · · ∩An. Então,

P (A ∩B) = P (A ∩A1 ∩ · · · ∩An) = P (A)P (A1 ∩ · · · ∩An),

pois F0,F1,F2, . . .Fn são independentes, logo P (A ∩B) = P (A)P (B).

Se B ∈ F̂ e B = D1 ∪D2, D1 ∩D2 = ∅, D1 = A1 ∩ · · · ∩An, D2 = C1 ∩ · · · ∩Cn,
então

P (A ∩B) = P (A ∩D1) + P (A ∩D2) = P (A)P (D1) + P (A)P (D2)

= P (A)[P (D1) + P (D2)] = P (A)P (D1 ∪D2) = P (A)P (B). □

Corolário 2.1. SejamX1, X2, . . . v.a’s independentes. Sejam {i1, i2, . . .} e {j1, j2, . . .}
conjuntos disjuntos de inteiros. Então, F{Xi1 , Xi2 , . . .} é independente de
F{Xj1 , Xj2 , . . .}.

Prova: Considere i1; então, F{Xi1} é independente de F{Xj1}, F{Xj2}, . . ., por
hipótese. Segue-se que F{Xi1} é independente de

∨
k≥1F{Xjk} = F{Xj1 , Xj2 , . . .}.

De modo análogo, F{Xik} é independente de F{Xj1 , Xj2 , . . .}, logo
∨
k≥1F{Xik} é

independente de F{Xj1 , Xj2 , . . .}. □

Esse corolário implica, por exemplo, que F{X1, . . . , Xn} é independente de
F{Xn+1, Xn+2, . . .}, se X1, X2, . . . são independentes. Também, se φ1, φ2, . . . são
mensuráveis sobre (Rn,Bn), então as v.a’s Z1 = φ1(X1, . . . , Xn),
Z2 = φ2(Xn+1, . . . , X2n), Z3 = φ3(X2n+1, . . . , X3n), . . . são independentes.

Teorema 2.5. Sejam X e Y v.a’s independentes. Suponha que ou E(|X|) < ∞,
E(|Y |) <∞. Então, E(|XY |) <∞ e

E(XY ) = E(X)E(Y ).

Prova: Pelo teorema de Fubini e a independência de X e Y temos

E(XY ) =

∫
Ω
X(ω)Y (ω)dP (ω)

=

∫
R×R

xydFX,Y (x, y)

=

∫
R

[∫
R
xydFX(x)

]
dFY (y)

=

∫
R
xdFX(x)

∫
R
ydFY (y) = E(X)E(Y ). □
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Como, se X e Y são independentes, também o serão f(X) e g(Y ), com f e g
funções de Borel, o teorema implica que E[f(X)g(Y )] = E[f(X)][g(Y )]. Também,
o resultado pode ser generalizado para um número finito X1, . . . , Xn de v.a’s inde-
pendentes.

Definição 2.5. Seja X uma v.a tal que E(X2) < ∞ e µ = E(X). Então a
variância de X é definida por

Var(X) = E((X − µ)2).

Proposition 2.2. (a) Se c constante, Var(cX) = c2Var(X) e Var(X+ c) = Var(X).
(b) Var(X) = E(X2)− µ2.
(c) Se X e Y são independentes, Var(X + Y ) =Var(X)+ Var(Y ).

Prova: Veja Problema 1. □

Exemplo 2.1. (Funções de Rademacher) Seja Ω = [0, 1), F = B ∩ [0, 1) e P a
medida de Lebesgue. Defina a sequência {Xn, n ≥ 1} de v.a’s sobre (Ω,F , P ) como
segue:

Xn(ω) =

{
1, se ω ∈ [2j/(2n), (2j + 1)/(2n)), j ∈ {0, 1, . . . , 2n−1 − 1},
−1, caso contrário.

Então as v.a’s Xn são independentes. Para provar isso, temos que verificar que

P (X1 = e1, . . . , Xk = ek) = P (X1 = e1) · · ·P (Xk = ek),

para todas as escolhas e1, . . . , ek ∈ {−1, 1}.

Exemplo 2.2. Seja Ω, F e P como no exemplo anterior. Defina {Xn, n ≥ 1} v.a’s
sobre (Ω,F , P ) por Xn(ω) = an, se ω ∈ Ω e ω = 0, a1a2a3 · · · (no caso em que ω
tem duas expansões decimais escolhemos a expansão infinita). Então essas v.a’s são
independentes. Veja o Problema 2.

2.2 Leis Zero-Um

Nesta seção investigaremos eventos cujas probabilidades são iguais a zero ou um.

2.2.1 Lema de Borel-Cantelli

Lembremos que, se {En} são eventos, então lim supnEn = ∩∞m=1 ∪∞n=m En e
escrevemos P (lim supnEn) = P (En i.v).

Teorema 2.6. Seja {Ek, k ≥ 1} uma sequência de eventos de F . Os seguintes
resultados são válidos:
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(a) Se
∑∞

k=1 P (Ek) <∞, então P (Ek i.v) = 0;

(b) Se os Ek’s são independentes e
∑∞

k=1 P (Ek) =∞, então P (Ek i.v) = 1.

Prova: (a) Seja Fn = ∪∞k=nEk, então Fn ↓ lim supnEn, quando n→∞. Logo,

P (Ek i.v) = P (lim sup
n

En) = lim
n→∞

P (Fn).

Mas P (Fn) ≤
∑∞

k=n P (Ek)→ 0, quando n→∞, porque essa é a cauda de uma
série convergente e portanto P (Ek i.v) = 0.

(b) 1 − P (Fn) ≤ 1 − P (∪n+pk=nEk) = P ((∪n+pk=nEk)
c) = P (∩n+pk=nE

c
k). Usando a inde-

pendência dos Ek, temos que 1−P (Fn) ≤
∏n+p
k=n P (E

c
k) =

∏n+p
k=n[1−P (Ek)]. Mas 1−

x ≤ e−x para x ≥ 0, logo 1−P (Fn) ≤
∏n+p
k=n exp{−P (Ek)} = exp{−

∑n+p
k=n P (Ek)} →

0, quando p→∞. Logo, 1− P (Ek i.v)→ 0, pois Fn ↓ lim supnEn. □

Observações: (1) A independência é necessária em (b); de fato, seja Λ um conjunto,
com 0 < P (Λ) < 1 e seja Ek = Λ, para todo k. Então,

∑
P (Ek) =

∑
P (Λ) = ∞,

mas P (lim supk Ek) = P (Λ) < 1.

(2) A parte (b) continua válida se os eventos Ek’s são independentes dois a dois.
Veja Chung (1968).

Aplicações: (1) Lembremos que E(|X|) <∞ se, e somente se,
∑∞

n=0 P (|X| > n) <
∞. Sejam X1, X2, . . . v.a’s independentes, com a mesma distribuição (i.i.d). Então,

P{ω : |Xn(ω)| > n i.v} = 0, se E(|X1|) <∞.

(2) Sejam X1, X2, . . . v.a’s i.i.d e suponha que (X1 + X2 + . . . + Xn)/n convirja
q.c. Então E(|X1|) < ∞. De fato, temos que |Xn|/n → 0 q.c, em particular
P (|Xn|/n > 1 i.v) = 0, ou seja

∑
P{|Xn|/n > 1} < ∞ ou

∑
P{|X1| > n} < ∞ e

portanto E(|X1|) <∞.

2.2.2 Lei Zero-Um de Kolmogorov

Essa lei depende do conceito de σ-álgebra caudal (tail σ-field em inglês) que
passamos a definir.

Definição 2.6. Sejam {Xn, n ≥ 1} v.a’s sobre (Ω,F , P ) e seja Fn = F{Xn, Xn+1, . . .}.
Então, F∞ = ∩∞n=1Fn é chamada a σ-álgebra caudal e qualquer conjunto Λ ∈ F∞ é
chamado evento caudal.

Isso significa que um evento caudal não depende de qualquer número finito de
coordenadas. Por exemplo, considere um evento Λ para o qual Sn/n = (X1 + . . .+
Xn)/n ↛ 1/2, quando se lança uma moeda “honesta”. Ou seja,
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Λ =
{
ω :

X1(ω) + . . .+Xn(ω)

n
↛ 1/2

}
.

Esse conjunto tem a propriedade que, se ω ∈ Λ ou não, isso não depende das
primeiras n coordenadas de ω, não importando o quão grande n seja. Ou seja, Λ é
um evento caudal. Formalmente, como para todo k ≥ 1,

Λ =
{
ω :

Xk(ω) + . . .+Xn(ω)

n
↛ 1/2

}
,

então Λ ∈ F{Xk, Xk+1, . . .}, para todo k ≥ 1, logo Λ ∈ F∞.

Teorema 2.7. Sejam {Xn, n ≥ 1} v.a’s independentes sobre (Ω,F , P ). Se Λ ∈ F∞,
então P (Λ) = 0 ou P (Λ) = 1.

Prova: Seja n um inteiro; então Xn é independente de F{Xm}, m > n, e con-
sequentemente, Xn é independente de F{Xm, Xm+1, . . .}. Isso implica que Xn é
independente de F∞. Mas n é arbitrário, logo todo Xn é independente de F∞, ou
seja, F{X1, X2, . . .} é independente de F∞. Mas F∞ ⊂ F{X1, X2, . . .} , logo F∞ é
independente de si mesmo. Tome Λ ∈ F∞. Então, P (Λ ∩ Λ) = P (Λ)P (Λ), ou seja
P (Λ) = [P (Λ)]2, isto é, P (Λ) = 0 ou P (Λ) = 1. □

Aplicações: 1) Sejam {Xn, n ≥ 1} independentes, Sn =
∑n

i=1Xi. Se Λ = {ω :
Sn(ω) converge}, então P (Λ) = 0 ou P (Λ) = 1. Informalmente, se Sn converge
ou não, isso depende somente das somas parciais (Xn +Xn+1 + . . .), isto é, o con-
junto de convergência é um conjunto de F{Xn, Xn+1 . . .}, ainda um conjunto de
∩∞n=1F{Xn, Xn+1 . . .}. Portanto, Λ ∈ F∞, logo P (Λ) = 0 ou P (Λ) = 1. Veja
Problema 3.

2) Sejam {Xn, n ≥ 1} independentes e Λ = {ω : Sn(ω)/n converge}. Então P (Λ) = 0
ou PΛ) = 1.

3) Sejam {Xn, n ≥ 1} independentes. Seja Y qualquer v.a que seja F∞-mensurável.
Então, Y é constante q.c.

2.2.3 Lei Zero-Um de Hewitt-Savage

Essa lei vale para conjuntos simétricos, cuja definição é dada a seguir.

Definição 2.7. Sejam X1, X2, . . . v.a’s e Λ ∈ F{X1, X2, . . .}. Então Λ é simétrico
se existe um conjunto de Borel B em R∞ tal que

Λ = {ω : (X1(ω), X2(ω), . . .) ∈ B} = {ω : (Xσ1(ω), Xσ2(ω), . . .) ∈ B},

onde σ é uma permutação de um número finito de inteiros.
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Exemplo 2.3 (i) Sejam {Xn, n ≥ 1} v.a’s. Então, {ω : Xn(ω) converge} é um
conjunto simétrico. Note que esse conjunto é também um evento caudal.

(ii) Se Sn = X1 + . . .+Xn, então {ω : Sn(ω) converge} é um conjunto simétrico.
De fato, tome B ∈ B∞ como segue: B é o conjunto de todas as sequências (a1, a2, . . .)
tais que a1 + . . . + an converge. Então Λ = X−1(B) é simétrico, onde X =
(X1, X2, . . .). De fato, seja σ uma permutação de 1, 2, . . . , N e seja X̂ = (Xσ1 , Xσ2 , . . .),
Sσn = Xσ1 + . . .+Xσn , para todo n. Note que Sσn = Sn, para todo n ≥ N . Agora,

X−1(B) = Λ =

∞⋂
m=1

⋃
k≥1

{
ω : sup

j≥k
|Sj(ω)− Sk(ω)| ≤ 1/m

}
=

∞⋂
m=1

⋃
k≥n0

{
ω : sup

j≥k
|Sj(ω)− Sk(ω)| ≤ 1/m

}
, ∀n0 ≥ 1

=
∞⋂
m=1

⋃
k≥N

{
ω : sup

j≥k
|Sσj (ω)− Sσk(ω)| ≤ 1/m

}
=

∞⋂
m=1

⋃
k≥1

{
ω : sup

j≥k
|Sσj (ω)− Sσk(ω)| ≤ 1/m

}
= X̂−1(B),

ou seja, X−1(B) = X̂−1(B), portanto Λ é simétrico.

(iii) Vejamos um exemplo de um evento simétrico que não seja um evento caudal.
Seja {Bn} uma sequência de conjuntos de Borel e Sn = X1 + . . . + Xn. Então,
Λ = {ω : Sn(ω) ∈ Bn i.v} é simétrico (veja o Problema 8). Mas esse evento não
necessita ser um evento caudal. Tome X1, X2, . . . independentes com X1 = 1, com
probabilidade 1/2 e X1 = 0, com probabilidade 1/2 e X2 = X3 = . . . = 0. Então,
{Sn = 0 i.v} não é caudal, pois P{Sn = 0 i.v} = 1/2.

Para provar a lei de Hewitt-Savage, necessitamos dos dois lemas a seguir.

Lema 2.1. Sejam A e B conjuntos de F , para algum e.p (Ω,F , P ). Defina d(A,B) =
P (A∆B). Então, d é uma pseudo-métrica sobre F , e se An → A, Bn → B nessa
pseudo-métrica, então An ∩ Bn → A ∩ B, An ∪ Bn → A ∪ B e Acn → Ac. Também,
se An → A nessa pseudo-métrica, então P (An)→ P (A).

Lemma 2.2. Seja F0 uma álgebra e F a σ-álgebra gerada por F0. Então, se A ∈ F ,
existe uma sequência An ∈ F0, tal que An → A na pseudo-métrica d.

Veja o Problema 21 deste caṕıtulo e o Problema 10 do Caṕıtulo 1.

Teorema 2.8. (Hewitt and Savage, 1955) Sejam {Xi, i ≥ 1} v.a’s independentes
e identicamente distribúıdas sobre (Ω,F , P ). Se Λ for um conjunto simétrico em
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F{X1, X2, . . .}, então P (Λ) = 0 ou P (Λ) = 1.

Prova: Suponha Λ simétrico. Pelo Lema 2.2, existe Λn ∈ F{X1, . . . , Xn} tal
que Λn → Λ, de acordo com d(Λn,Λ) = P (Λn△Λ). Ou seja, P (Λn△Λ) → 0.
Então, Λ = {ω : (X1(ω), X2(ω), . . .) ∈ B}, para algum B ∈ B∞ e Λn = {ω :
(X1(ω), . . . , Xn(ω)) ∈ Bn}, para algum Bn ∈ Bn. Defina uma permutação σn como:

σn =

(
1 2 · · · n n+ 1 n+ 2 · · · 2n

n+ 1 n+ 2 · · · 2n 1 2 · · · n

)
.

Defina Mn = {ω : (Xn+1(ω), . . . , X2n(ω)) ∈ Bn}, ou seja Mn = σnΛn. Então,
P (Mn△σnΛ) = P (Λn△Λ), pois (X1, . . . Xn) tem a mesma distribuição que
(Xn+1, . . . , X2n). Segue-se que P (Mn△Λ) = P (Λn△Λ), porque Λ é simétrico. Te-
mos, então:

(i) Λn → Λ, ou P (Λn△Λ)→ 0;

(ii) Mn → Λ, pois P (Mn△Λ) = P (Λn△Λ)→ 0;

(iii) Mn e Λn são independentes.

De acordo com o Lema 2.1, Λn ∩Mn → Λ ∩ Λ, e portanto P (Λn ∩Mn)→ P (Λ)
ou P (Λn)P (Mn)→ P (Λ∩Λ), ainda pelo Lema 2.1. Como o lado esquerdo converge
para P (Λ)P (Λ), temos P (Λ) = [P (Λ)]2, ou seja, P (Λ) = 0 ou P (Λ) = 1. □

2.3 Leis dos grandes números

Sejam X1, X2, . . . v.a’s. Uma lei dos grandes números (LGN) é qualquer teorema
relacionado com a convergência de

X1 +X2 + . . .+Xn − an
bn

,

onde {an}, {bn} são sequências de constantes, bn ↑ +∞. Como caso especial temos
(X1 + . . .+Xn)/n.

Uma LGN é chamada uma lei fraca (LFrGN) se a convergência for em probabi-
lidade e lei forte (LFGN) se a convergência for q.c.

Teorema 2.9. (Desigualdade de Kolmogorov) Sejam {Xk, k ≥ 1} v.a’s indepen-
dentes, E(Xk) = 0, para todo k, Var(Xk) = σ2k <∞. Se Sk = X1 + . . .+Xk, então
para todo λ > 0,

P
{

max
1≤k≤n

|Sk| > λ
}
≤ 1

λ2

n∑
k=1

σ2k. (2.1)

Prova: Seja A = {ω : max1≤k≤n |Sk| > λ} e Ai = {ω : |Sk| ≤ λ, k < i, |Si| > λ}.
Então, os Ai’s são disjuntos e ∪ni=1Ai = A. Temos que
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Var(Sn) = E(S2
n) ≥

∫
A
S2
ndP =

n∑
i=1

∫
Ai

S2
ndP.

Mas, ∫
Ai

S2
ndP =

∫
Ai

(Sn − Si + Si)
2dP ≥

∫
Ai

S2
i dP + 2

∫
Ai

Si(Sn − Si)dP,

e ∫
Ai

Si(Sn − Si)dP =

∫
IAiSi(Sn − Si)dP =

∫
IAiSidP

∫
(Sn − Si)dP,

pois IAiSi e Sn−Si são independentes. Este último termo é nulo pois
∫
(Sn−Si)dP =

0, logo ∫
Ai

S2
ndP ≥

∫
Ai

S2
i dP.

Segue-se que

Var(Sn) ≥
n∑
i=1

∫
Ai

S2
i dP ≥

n∑
i=1

λ2P (Ai),

pois em Ai, |Si| > λ. Como
∑n

i=1 P (Ai) = P (A), temos que Var(Sn) ≥ λ2P (A).
Portanto,

∑n
i=1 σ

2
i = Var(Sn) ≥ λ2P (A), ou P (A) ≤ 1

λ2
∑n

i=1 σ
2
i . □

Teorema 2.10. Sejam {Xk, k ≥ 1} independentes e E(Xk) = 0, para todo k.
Suponha que

∑∞
k=1Var(Xk) =

∑∞
k=1E(X2

k) <∞. Então,
∑

kXk converge q.c.

Prova: Pela desigualdade de Kolmogorov,

P
{
ω : sup

0≤i≤n
|Sm+i − Sm| > ε

}
≤ 1

ε2

m+n∑
k=m+1

σ2k.

Então,

P
{
ω : sup

i≥0
|Sm+i − Sm| > ε

}
≤ 1

ε2

∞∑
k=m+1

σ2k,

porque os conjuntos decrescem. Logo, limm→∞ P{ω : supi≥0 |Sm+i − Sm| > ε} = 0,
porque temos a cauda da série convergente

∑
k Var(Xk). Isso implica que {Sn} é

uma sequência de Cauchy, para quase todo ω, logo Sn converge q.c. □

No Teorema 2.10, dizer que
∑∞

k=1Var(Xk) <∞ é equivalente a dizer que
∑

kXk

converge em L2, logo o teorema pode ser enunciado como: Se
∑

kXk converge em
L2, então essa soma converge q.c.
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Exemplo 2.4. Como uma aplicação do Teorema 2.10, vamos mostrar que a série∑∞
k=1

(±1
k

)
converge para quase todas as escolhas de ±.

Sejam {rk} as funções de Rademaker sobre [0, 1) e considere a série
∑∞

k=1
rk(t)
k .

Lembremos que essas funções são independentes. Segue-se que Xk = rk/k é uma
sequência de v.a.’s, de média zero,

∑
k Var(Xk) =

∑
k k

−2 <∞. Logo, pelo teorema
anterior,

∑
k rk(t)/k converge q.c, ou seja, converge para quase todo t ∈ [0, 1). Mas

rk(t) = ±1, e o resultado segue.

Para provarmos uma versão da LFGM necessitamos do resultado seguinte (veja
por exemplo Breiman (1968)).

Lema 2.3. (Lema de Kronecker) Seja {xk, k ≥ 1} uma sequência de números reais
tais que

∑
k xk/ak converge, onde {ak, k ≥ 1} é uma sequência de números reais

positivos, tais que ak ↑ ∞. Então,
∑n

k=1 xk/an → 0.

Teorema 2.11. (Uma versão da LFGN) Sejam {Xk, k ≥ 1} v.a’s independentes,
E(Xk) = µk e suponha que

∑∞
k=1 σ

2
k/k

2 <∞. Então,

X1 +X2 + . . .+Xn

n
− µ1 + µ2 + . . .+ µn

n
→ 0 q.c. (2.2)

Prova: Considere Yk = (Xk − µk)/k; então {Yk, k ≥ 1} são independentes, têm
média zero e

∑
k Var(Yk) =

∑
k σ

2
k/k

2 < ∞. Pelo Teorema 2.10,
∑

k Yk converge
q.c. Pelo Lema de Kronecker,

∑n
k=1 kYk/n→ 0 q.c, isto é,

1

n
((X1 − µ1) + (X2 − µ2) + . . .+ (Xn − µn))→ 0 q.c,

ou seja, obtemos (2.2). □

Para provarmos a LFGN de Kolmogorov, precisamos do seguinte resultado.

Lema 2.4. Se X é uma v.a com f.d F , tal que E(|X|) <∞, então

∞∑
n=1

1

n2

∫ n

−n
x2dF (x) <∞.

Prova: Temos que
∑∞

n=1
1
n2

∫ n
−n x

2dF (x) =
∑∞

n=1

∑n
k=1

1
n2

∫
{k−1<|x|≤k} x

2dF (x).

Mudemos a ordem de integração e usemos
∑

n>k 1/n
2 < 2/k, n ≥ 1, para obter

∞∑
n=1

n∑
k=1

1

n2

∫
{k−1<|x|≤k}

x2dF (x) =

∞∑
k=1

∫
{k−1<|x|≤k}

x2dF (x)

∞∑
n=k

1

n2

≤
∞∑
k=1

2

k

∫
{k−1<|x|≤k}

x2dF (x) ≤
∞∑
k=1

2

k

∫
{k−1<|x|≤k}

k|x|dF (x) = 2E(|X|) <∞. □
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Teorema 2.12. (LFGN de Kolmogorov) Sejam {Xn, n ≥ 1} v.a’s i.i.d. Se µ =
E(X1) e E(|X1|) <∞, então (X1 + . . .+Xn)/n→ µ q.c.

Prova: Defina v.a’s truncadas {Yn, n ≥ 1} como segue:

Yn =

{
Xn, se |Xn| ≤ n,
0, se |Xn| > n.

Defina Zn = Xn − Yn. Então,

X1 + . . .+Xn

n
=
Y1 + . . .+ Yn

n
+
Z1 + . . .+ Zn

n
.

Sem perda de generalidade, podemos supor E(X1) = 0, pois se não, considere
Xn − E(Xn), no lugar de Xn. A prova consiste de duas partes:

(a) Mostrar que (Z1 + . . . + Zn)/n → 0 q.c. Para isso, mostramos que P{Zn ̸=
0 i.v} = 0. De fato, P{Zn ̸= 0} = P{|Xn| > n}. Mas, usando o fato de que as
variáveis são i.i.d,∑

n

P (|Xn| > n} =
∑
n

P{|X1| > n} ≤ E(|X1|) <∞,

usando o Teorema 1.18, logo pelo Lema de Borel-Cantelli, o resultado segue.

(b) Mostrar que (Y1 + . . . + Yn)/n → 0 q.c. Para isso, aplicamos o Teorema 2.11.
Temos que

∞∑
k=1

Var(Yk)

k2
≤

∞∑
k=1

E(Y 2
k )

k2
=

∞∑
k=1

1

k2

∫ k

−k
x2dF (x) <∞,

pelo Lema 2.4. Então, usando o Teorema 2.11, (Y1 + . . . + Yn)/n − (E(Y1) + . . . +

E(Yn))/n→ 0, q.c. Por hipótese, E(X1) = 0, de modo que E(Yk) =
∫ k
−k xdF (x)→

0, q.c, quando k →∞. Portanto (E(Y1) + . . .+ E(Yn))/n→ 0, q.c, do que segue o
resultado. □

Teorema 2.13. (Rećıprocas à LFGN) Sejam {Xn, n ≥ 1} v.a’s i.i.d.

(a) Se (X1 + . . .+Xn)/n converge q.c para um limite finito, então E(|X1|) <∞;

(b) Se E(|X1|) =∞, então lim supn→∞ |(X1 + . . .+Xn)/n| = +∞, q.c.

Prova: (a) Como (X1 + . . . + Xn)/n converge q.c, |Xn|/n → 0 q.c, pois Xn/n =
Sn/n − Sn−1/n, e a diferença converge para zero. Logo, P (|Xn|/n > 1 i.v} = 0
e pelo Lema de Borel-Cantelli,

∑
n P (|Xn| > n) < ∞ e como as v.a.’s são i.i.d,

E(|X1|) <∞.
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(b) Se E(|X1|) =∞, então E(|cX1|) =∞, para todo c > 0. Logo,
∑
P (|X1| > cn) =

∞, ou ainda
∑
P (|Xn| > cn) = ∞. Por Borel-Cantelli, P (|Xn|/n > c i.v) = 1.

Agora, se |Xn|/n = |Sn/n−Sn−1/n| > c i.v, então ou |Sn/n| > c/2 i.v, ou |Sn−1/n| >
c/2 i.v. Como c é arbitráriamente grande, segue-se que lim supn |Sn/n| = +∞. □

SejaX1, X2, . . . uma sequência de v.a’s i.i.d, com f.d comum F , suposta desconhe-
cida. Considere n valores observados de X1, . . . , Xn e defina a função de distribuição
emṕırica (f.d.e) como

Fn(λ, ω) =
número dos Xi(ω), i ≤ n, que são ≤ λ

n
.

Então temos o seguinte importante resultado.

Teorema 2.14. (Glivenko-Cantelli) Para quase todo ω, Fn(λ, ω) converge para
F (λ), uniformemente em λ.

Prova: (a) Em primeiro lugar, verificamos que para cada λ, existe um conjunto
nulo Aλ, tal que se ω /∈ Aλ, então Fn(λ, ω)→ F (λ).

De fato, defina

Yn(ω) =

{
1, se Xn(ω) ≤ λ,
0, se Xn(ω) > λ.

Então, Y1, Y2, . . . são v.a’s i.i.d. e Fn(λ, ω) = (Y1+ . . .+Yn)/n. Essa v.a converge
para E(Y1), pela LFGN e E(Y1) = P (Xn ≤ λ) = F (λ).
Deduzimos que existe um conjunto nulo N , tal que se ω /∈ N , então limn→∞ Fn(λ, ω)
= F (λ), sempre que λ seja um número racional (Seja λ1, λ2, . . . uma enumeração
dos racionais e tome N = ∪∞k=1Aλk).

(b) F tem um número enumerável de descontinuidades. Seja a1, a2, . . . uma enu-
meração de tais descontinuidades. Vamos mostrar que para todo ak, Fn(ak, ω) −
Fn(ak−, ω) converge para F (ak, ω) − F (ak−, ω) q.c. Ou seja, para ω /∈ Aak , um
conjunto nulo, temos essa convergência. De fato, seja

Zk(ω) =

{
1, se Xn(ω) = ak,

0, caso contrário.

Então, usando o mesmo argumento que em (a), obtemos o resultado. Além disso,
existe um conjunto nulo M tal que, se ω /∈M , teremos

lim
n→∞

{Fn(λ, ω)− Fn(λ−, ω)} = F (λ, ω)− F (λ−, ω),

sempre que λ seja um ponto no qual F tenha um salto.
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(c) Tome qualquer ω /∈M∪N . Para tal ω, temos Fn(λ, ω)→ F (λ, ω), para qualquer
λ racional, e {Fn(λ, ω)−Fn(λ−, ω)} → F (λ, ω)−F (λ−, ω) para qualquer ponto de
salto λ de F . Isso implica a convergência uniforme de Fn para F para o ω escolhido.
□

2.4 Séries aleatórias

Nessa seção provamos o teorema das três séries de Kolmogorov, que dá uma
condição necessária e suficiente para que a série

∑
kXk, de v.a’s independentes,

convirja q.c. Primeiramente, obtemos uma cota inferior na desigualdade de Kolmo-
gorov.

Proposição 2.1. Sejam X1, X2, . . . v.a’s independentes, E(Xk) = 0, para todo k.
Suponha que |Xk| ≤ c, ∀k ≥ 1. Se Var(Xk) = σ2k, então para todo a > 0

P
{

max
0≤k≤n

|Sk| > a
}
≥ 1− (a+ c)2∑n

k=1 σ
2
k

.

Prova: Seja A = {max0≤k≤n |Sk| > a}, Ai = {ω : |Sj(ω)| ≤ a, j < i, |Si| > a}.
Então, os conjuntos Ai são disjuntos e ∪ni=1Ai = A. Portanto,

E[IAS
2
n] =

n∑
i=1

E(IAiS
2
i ) +

n∑
i=1

E(IAi(Sn − Si)2).

Agora, E(IAiS
2
i ) ≤ (a + c)2P (Ai), pois Si−1 ≤ a, Xi ≤ c. Por outro lado,

E(IAi(Sn−Si)2) = P (Ai)E(Sn−Si)2 ≤ P (Ai)
∑n

k=1 σ
2
k, usando a independência de

IAi e (Sn − Si)2. Segue-se que temos

E(IAS
2
n) ≤ (a+ c)2P (A) + P (A)

n∑
k=1

σ2k =
[
(a+ c)2 +

n∑
k=1

σ2k

]
P (A), (2.3)

e

E(IAS
2
n) = E(S2

n)− E(S2
nIAc) ≥

n∑
k=1

σ2k − a2[1− P (A)], (2.4)

de modo que combinando (2.3) e (2.4) temos

[(a+ c)2 +

n∑
k=1

σ2k]P (A) ≥
n∑
k=1

σ2k − a2[1− P (A)],

logo

P (A) ≥
∑n

k=1 σ
2
k − a2

(a+ c)2 +
∑n

k=1 σ
2
k − a2

= 1− (a+ c)2

(a+ c)2 +
∑n

k=1 σ
2
k − a2

≥ 1− (a+ c)2∑n
k=1 σ

2
k

.
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□

Provamos antes que, seX1, X2, . . . são independentes, de média zero, e se
∑

k σ
2
k <

∞, então
∑

kXk converge q.c. A rećıproca é verdadeira se adicionarmos uma outra
condição.

Teorema 2.15 Sejam X1, X2, . . . independentes, de média zero, |Xk| ≤ c, para
todo k e algum c. Suponha que

∑
kXk convirja q.c. Então

∑
k σ

2
k < ∞, onde

σ2k =Var(Xk).

Prova: Suponha que Sn =
∑n

k=1Xk converge. Então supn≥1 |Sn+N − SN | → 0
q.c, quando N →∞. Portanto, limN→∞ P{supn≥1 |Sn+N − SN | > ε} = 0. Tome N
grande de modo que P{supn≥1 |Sn+N−SN | > ε} ≤ 1/2. Suponha que

∑∞
k=1 σ

2
k =∞.

Então, teremos

1

2
≥ P

{
sup
n≥1
|Sn+N − SN | > ε

}
≥ P

{
sup

M≥n≥1
|Sn+N − SN | > ε

}
≥ 1− (ε+ c)2∑N+M

k=N+1 σ
2
k

,

usando a Proposição 2.1. Como
∑N+M

k=N+1 σ
2
k → ∞, quando M → ∞, obtemos

1/2 ≥ 1, uma contradição. Logo devemos ter
∑∞

k=1 σ
2
k <∞. □

Teorema 2.16. (Teorema das três séries de Kolmogorov) Sejam X1, X2, . . . v.a’s
independentes. A série

∑
nXn converge q.c se e somente se para algum c > 0, as

seguintes três séries convergem:

(i)
∑

n P{|Xn| > c}; (ii)
∑

nVar(X
c
n); (iii)

∑
nE(Xc

n),

onde Xc
n = Xn, se |Xn| ≤ c e Xc

n = 0, se |Xn| > c.

Prova: (a) Suponha que as três séries dadas em (i)-(iii) convergem. Para mostrar
que

∑
nXn converge q.c, basta mostrar que

∑
nX

c
n converge q.c. pois (i) implica

que Xc
n = Xn , com exceção de um número finito de ı́ndices n, pelo Lema de Borel-

Cantelli. Mas, por (ii), temos que
∑∞

n=1[X
c
n − E(Xc

n)] converge q.c, pelo Teorema
2.10. Também, por (iii) obtemos que

∑
nX

c
n converge q.c.

(b) Suponha, agora, que
∑

nXn converge q.c. Então Xn → 0 q.c, o que implica
P{|Xn| > c i.v} = 0, para todo c > 0, logo por Borel-Cantelli,

∑
n P (|Xn| > c) <∞,

e (i) segue. Também segue que
∑

nX
c
n converge q.c, pois as caudas de ambas as

séries são as mesmas.
Sejam Y1, Y2, . . . v.a’s independentes tais que, para todo k, Yk tenha a mesma

distribuição que Xc
k e F{Y1, Y2, . . .} seja independente de F{Xc

1, X
c
2, . . .}. Então,∑

n(X
c
n − Yn) converge q.c. Os termos dessa soma têm média zero, e são limitados

em valor absoluto por 2c. Portanto, pelo Teorema 2.15,
∑

nVar(X
c
n − Yn) < ∞.

Mas Var(Xc
n − Yn) = 2Var(Xc

n), portanto
∑

nVar(X
c
n) <∞, provando (ii).

Novamente, usando o Teorema 2.10, segue-se que
∑

n[X
c
n−E(Xc

n)] <∞ e como∑
nX

c
n <∞, obtemos que

∑
nE(Xc

n) converge q.c, e (iii) fica provada. □
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Até agora usamos três métodos importantes:

(i) Truncamento: substitúımos Xk por Xc
k;

(ii) Centralização com respeito a médias: substitiúımos Xk por Xk − E(Xk);

(iii) Simetrização: substitúımos Xk por Xk − Yk, onde Yk é independente de Xk e
tem a mesma distribuição que Xk.

Uma outra possibilidade: centrar com respeito a medianas. Lembremos que a
mediana de uma v.a. X é um número m tal que P (X ≥ m) ≥ 1/2 e P (X ≤ m) ≥
1/2. Usaremos a notação m(X).

Teorema 2.17 (Desigualdade de Lévy) Sejam X1, X2, . . . independentes e Sn =∑n
k=1Xk. Então,

P
{

max
1≤k≤n

|Sk −m(Sn − Sk)| ≥ λ
}
≤ 2P{|Sn| ≥ λ}.

Prova: (a) Provamos primeiro que P{max1≤k≤n(Sk−m(Sn−Sk)) ≥ λ} ≤ 2P{Sn ≥
λ}. Chamemos mk,n = m(Sn − Sk). Então, temos:

(i) P{max1≤k≤n(Sk −mk,n) ≥ λ, Sn ≥ λ} ≤ P{Sn ≥ λ),

(ii) P{max1≤k≤n(Sk −mk,n) ≥ λ, Sn < λ} =
∑n−1

k=1 P (τ = k, Sn < λ),

onde τ é o primeiro inteiro k tal que Sk −mk,n ≥ λ. Segue-se que a última soma
é ≤

∑n−1
k=1 P (τ = k, Sn < Sk − mk,n) =

∑n−1
k=1 P (τ = k)P (Sn − Sk < −mk,n) =∑n−1

k=1 P (τ = k)P (mk,n < Sk − Sn)), devido à independência entre {τ = k} e {Sn <
Sk −mk,n}.

Pela definição de mediana, P (mk,n < Sk − Sn) ≤ P (Sk − Sn ≤ mk,n), logo∑n−1
k=1 P (τ = k)P (mk,n < Sk − Sn)) ≤

∑n−1
k=1 P (τ = k)P (Sn ≥ Sk − mk,n) =∑n−1

k=1 P (τ = k, Sn ≥ Sk −mk,n) ≤
∑n−1

k=1 P (τ = k, Sn ≥ λ) = P (Sn ≥ λ).
Portanto, P{max(Sn − mk,n) ≥ λ, Sn < λ} ≤ P (Sn ≥ λ}. Adicione (i) e (ii)

para obter o desejado.

(b) Para o caso geral, na parte (a) substitua Xn por −Xn na prova. Obtenha

P
{

max
1≤k≤n

(−Sk +mk,n) ≥ λ
}
≤ 2P{−Sn ≥ λ},

portanto

P
{

max
1≤k≤n

|Sk−mk,n| ≥ λ
}
≤ P

{
max
1≤k≤n

(Sk−mk,n) ≥ λ
}
+P
{

max
1≤k≤n

(−Sk+mk,n) ≥ λ
}

≤ 2P{Sn ≥ λ) + 2P{−Sn ≥ λ} = 2P{|Sn| ≥ λ}. □

Esse resultado pode ser usado para provar o teorema a seguir.
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Teorema 2.18. Sejam {Xn, n ≥ 1} v.a’s independentes. Então
∑

nXn converge
em probabilidade se e somente se

∑
nXn converge q.c.

Prova: (⇐) Trivial

(⇒) Seja Sn =
∑n

k=1Xk. Suponha que Sk → S em probabilidade. Então, existe
uma subsequência {nk} tal que Snk

→ S q.c e
∑∞

k=1 P{|Snk
− Snk+1

| > 1/2k} <∞.
Defina

Mk = max
nk≤n≤nk+1

|Sn − Snk
−m(Sn − Snk+1

)|.

Então, pela desigualdade de Lévy,

P (Mk ≥ 1/2k) ≤ 2P{|Snk
− Snk+1

| > 1/2k}.

Logo
∑

k P (Mk ≥ 1/2k) <∞, implicando que Mk → 0 q.c. Ou seja, para nk ≤ n ≤
nk+1,

|Sn −m(Snk+1
− Sn)− S| ≤ |S − Snk

|+ |Sn − Snk
−m(Snk+1

− Sn)|,

e como S − Snk
→ 0, e o segundo termo é menor ou igual a Mk, que tende a zero

q.c, segue-se que Sn − m(Snk+1
− Sn) → S q.c. Mas Sn → S em probabilidade,

portanto m(Snk+1
− Sn)→ 0, isto é, Sn → S q.c. □

Problemas

1. Prove a Proposição 2.2.

2. Prove que as v.a’s definidas no Exemplo 2.2 são independentes.

3. Prove a Aplicação 1, logo após o Teorema 2.6.

4. Prove formalmente a Aplicação 1 (b), após o Teorema 2.7.

5. Idem, Aplicação 3.

6. Sejam X1, X2, . . . independentes. Prove que se Sn/n converge a um limite finito Y ,
então Y é necessariamente constante.

7. Prove (i) do Exemplo 2.3.

8. Prove que o evento Λ de (iii) do Exemplo 2.3 é um evento simétrico.

9. Prove que a classe dos eventos simétricos é uma σ-álgebra.

10. Sejam {Xi, i ≥ 1} v.a’s i.i.d. Mostre que P{ω : Xn(ω) converge} = 0, supondo que a
distribuição de X1 não está concentrada num único ponto.
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11. Sejam {Xi, i ≥ 1} v.a’s i.i.d., com f.d F definida por F (x) = 1− e−x, x ≥ 0, F (x) =
0, x < 0. Prove que:

(a) P{(Xn/ logn) > 2 i.v} = 0, mas que

(b) P{(Xn/ logn) > 1 i.v} = 1.

12. Sejam X1, X2, . . . v.a’s i.i.d., P (X1 = 1) = p, P (X1 = −1) = q, p > q, p+ q = 1. Seja
Sn = X1 + . . .+Xn. Sn é um passeio aleatório. Então, prove que P (Sn = 0 i.v) = 0.

13. Prove que P{ω : lim infn→∞
∑n

k=1Xk(ω) > −∞} = 0 ou 1, onde {Xn, n ≥ 1} é uma
sequência de v.a’s independentes, cada uma q.c finita.

14. Seja {Xn, n ≥ 1} uma sequência de v.a’s i.i.d, com E(Xn) = 0 e seja {cn, n ≥ 1} uma
sequência limitada de constantes. Prove que

∑n
k=1 ckXk/n→ 0 q.c.

15. A afirmação: lim supn(X1+. . .+Xn)/n é mensurável relativamente à σ-álgebra caudal,
é falsa ou verdadeira? Justifique.

16. SejamX e Y v.a’s independentes e suponha que E(|X+Y |) <∞. Prove que E(|X|) <
∞.

17. Sejam {Xi, i ≥ 1} v.a’s i.i.d, E(|X1|) < ∞. Prove que (X1 + . . . + Xn)/n converge
para E(X1) em L1.

18. Sejam {Xi, i ≥ 1} v.a’s i.i.d, cada uma N(0, 1). Mostre que
∑

n(Xn/n
α) converge q.c

se α > 1/2 e diverge se α ≤ 1/2.

19. Suponha {Xi, i ≥ 1} v.a’s com médias µi e variâncias σ2
i , não necessariamente inde-

pendentes. Suponha Xi não correlacionadas.

(a) Prove que Var(
∑n

i=1Xi) =
∑n

i=1 Var(Xi);

(b) Prove que, se
∑n

i=1 σ
2
i /n

2 → 0, para n→∞, então (X1 + . . .+Xn)/n− (µ1 +
. . .+ µn)/n→ 0, em L1 e em probabilidade.

20. Seja (Ω,F , P ) um e.p. e os eventos A,B de F . Prove que, se P (A) = 0 ou 1, então A
e B são independentes.

21. Prove o Lema 2.1.

22. Seja Ω = {1, 2, 3, 4, 5, 6, 7, 8} e F = 2Ω, Suponha que P ({1}) = · · · = P ({8}) = 1/8.
Sejam F1 e F2 σ-álgebras sobre Ω geradas por {1, 3, 5, 7} e {1, 2, 3, 4}, respectivamente.
Verifique se F1 e F2 são independentes.

23. Prove que as v.a’s do Exemplo 2.1 são independentes, mostrando que ambos os lados
da igualdade são iguais a 2−k.

24. (Doukhan, 2015) (a) Sejam X,Y v.a’s reais e independentes com X simétrica (isso
significa que −X tem a mesma distribuição de X), E(X2) <∞ e P (Y = ±1) = 1/2.
Considere Z = XY . Prove que Cov(X,Z) = 0 e, além disso, se |X| não for constante
q.c, então X,Z não são independentes.

(b) Se as v.a’s X e Y têm valores em {0, 1} e satisfazem Cov(X,Y ) = 0, prove que X
e Y são independentes.
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Caṕıtulo 3

Esperança Condicional

Neste caṕıtulo iremos tratar do importante conceito de esperança condicional
com respeito à uma σ-álgebra. Estudaremos as suas propriedades mais importantes
e terminaremos com o conceito de probabilidade condicional regular. As referências
principais para este caṕıtulo são Chung (1968, 1974), Breiman (1968, 1992) e Bil-
lingley (1995).

3.1 Definições e fatos básicos

No Problema 17 do Caṕıtulo 1, para A ∈ F , P (A) > 0, definimos a probabi-
lidade condicional P (B|A) = P (A ∩ B)/P (A), para todo B ∈ F . Segue-se que
(Ω,F , P (·|A)) é um e.p. Dessa definição seguem resultados importantes, como a lei
da probabilidade total, P (B ∩A) = P (A)P (B|A), e o Teorema de Bayes,

P (B|A) = P (B)P (A|B)

P (A)
,

que nos diz que a probabilidade a posteriori de B, dado que A ocorreu, é obtida,
essencialmente, pelo produto da probabilidade a priori de B, P (B), pela verossimi-
lhança P (A|B). Veja os Problemas 21 e 22.

Se X for uma v.a definida neste e.p, com valores {xk, k ≥ 1}, podemos também
definir a probabilidade condicional

P (A|X = xk) =
P (A,X = xk)

P (X = xk)
,

se P (X = xk) > 0, e definida arbitrariamente como sendo zero, se a probabilidade
do denominador for zero. No caso geral, podemos considerar A ∈ F e B ∈ B, com
P (X ∈ B) > 0 e definir

P (A|X ∈ B) =
P (A,X ∈ B)

P (X ∈ B)
.
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Se quisermos dar um significado preciso para P (A|X = x) teremos que recorrer
ao conceito de derivada de Radon-Nikodym, o que será feito a seguir, quando de-
finirmos o conceito mais geral de esperança condicional. Uma maneira equivalente
é definir a probabilidade condicional de A, dada X(ω), como qualquer v.a sobre Ω,
F{X}-mensurável, satisfazendo

P (A,X ∈ B) =

∫
{X∈B}

P (A|X)dP, para todo B ∈ B.

Quaisquer duas versões de P (A|X) diferem num conjunto de probabilidade nula.
Ver Breiman (1968) para detalhes.

De modo análogo, podemos considerar a esperança condicional E(Y |X = x),
dadas duas v.a’s X e Y sobre (Ω,F , P ). Se E(|Y |) <∞, então E(Y |X) é qualquer
função F{X}-mensurável satisfazendo∫

A
E(Y |X)dP =

∫
A
Y dP, para todo A ∈ F{X}.

Ou seja, tanto P (A|X) como E(Y |X) dependem somente de F{X}.

A seguir definimos uma esperança condicional mais geral, ou seja, a esperança
condicional de uma v.a com respeito a uma σ-álgebra.

Definição 3.1. Seja (Ω,G, P ) um e.p e F uma σ-álgebra contida em G. Seja X
uma v.a integrável sobre (Ω,G, P ). A esperança condicional de X com respeito a F ,
denotada por E(X|F), é qualquer v.a satisfazendo:

(i) E(X|F) é F-mensurável;

(ii) Se Λ é qualquer conjunto em F , então∫
Λ
E(X|F)dP =

∫
Λ
XdP.

Note que E(X|F) não é definida univocamente, mas quaisquer duas v.a’s que
satisfazem (i) e (ii) serão iguais q.c. Assim, E(X|F) é qualquer uma das classes de
equivalência de v.a’s sobre Ω satisfazendo (i) e (ii).

Seja (Ω,G) qualquer espaço mensurável, µ uma medida sobre esse espaço e ν uma
medida sinalizada sobre o mesmo espaço. Dizemos que ν é absolutamente cont́ınua
com respeito a µ se ν(A) = 0 sempre que µ(A) = 0, para todo A ∈ G. Escrevemos
ν << µ. O seguinte resultado é fundamental (veja Halmos (1976)).

Teorema 3.1. (Radon-Nikodym) Seja (Ω,G) um espaço mensurável e µ uma medida
finita sobre o mesmo. Suponha ν << µ. Então, existe uma função G-mensurável X
tal que, para todo A ∈ G,

Morettin-Gallesco - dezembro/2025
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ν(A) =

∫
A
Xdµ.

A v.a X é única a menos de conjuntos de medida µ-nula; dizemos que X é a
derivada de Radon-Nikodym de ν com respeito a µ e escrevemos X = dν

dµ . Usamos
esse fato para provar o seguinte resultado.

Teorema 3.2. A esperança condicional como definida acima existe.

Prova: Considere a função de conjunto ν sobre F definida por

ν(A) =

∫
A
XdP, ∀A ∈ F .

Esta função tem valores finitos e é enumeravelmente aditiva, logo é uma medida
sinalizada. Se P (A) = 0, então ν(A) = 0, logo ν << P . Pelo Teorema 3.1, existe
uma função F -mensurável Y tal que ν(A) =

∫
A Y dP . Segue-se que Y satisfaz a

definição de esperança condicional, e dν/dP = E(X|F). □

Para a σ-álgebra F{X} gerada pela v.aX, escrevemos E(Y |X) para E(Y |F{X}).
De modo similar, E(Y |X1, . . . , Xn) é definida como E(Y |F{X1, . . . , Xn}). Para
Λ ∈ G, defina P (Λ|F) = E(IΛ|F), como sendo a probabilidade condicional de Λ
com respeito a F . Especificamente, P (Λ|F) é qualquer uma das classes de equi-
valência de v.a’s F -mensuráveis satisfazendo

P (Λ ∩B) =

∫
B
P (Λ|F)dP, para todo B ∈ F .

Considere X1, X2, . . . v.a’s sobre (Ω,G, P ) e E(Y |X1, . . . , Xn). Cada versão da
esperança condicional de Y , dadas X1, . . . , Xn é F{X1, . . . , Xn}-mensurável. Tome
qualquer uma dessas versões. Então existe uma função mensurável de Borel φ :
Rn → R, tal que

E(Y |X1, . . . , Xn) = φ(X1, . . . , Xn) q.c,

pelo Teorema 1.10. Como consequência desse fato, a função E(Y |X) (ou
E(Y |X1, . . . , Xn)), como função de ω, é constante q.c em cada conjunto sobre o
qual X(ω) seja constante (ou sobre o qual (X1, . . . , Xn) seja constante). Frequen-
temente, usamos a notação E(Y |X = x) = φ(x) ou E(Y |X1 = x1, . . . , Xn = xn) =
φ(x1, . . . , xn).

Exemplo 3.1. (a) Se F = {∅,Ω}, então E(X|F) = E(X).

(b) Se X é F-mensurável, então E(X|F) = X.

Exemplo 3.2. (a) Sejam Λ1, . . . ,Λn eventos disjuntos em G tais que e ∪iΛi = Ω e
P (Λi) > 0 para todo i ∈ {1, . . . , n}. Seja F a σ-álgebra gerada pelos {Λi}. Então,
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E(X|F)(ω) = 1

P (Λi)

∫
Λi

XdP, para todo ω ∈ Λi, i ∈ {1, . . . , n}. (3.1)

De fato, (i) da definição está satisfeita, pois (3.1) é constante nos Λi. Quanto a
(ii), devemos mostrar que, se Λ ∈ F , então

∫
ΛE(X|F)dP =

∫
ΛXdP . É suficiente

verificar a igualdade para cada Λi, pois F é composta por reuniões dos Λi. Então,
para cada i,

∫
Λi

E(X|F)dP =

∫
Λi

[
1

P (Λi)

∫
Λi

XdP

]
dP =

1

P (Λi)

∫
Λi

dP

∫
Λi

XdP =

∫
Λi

XdP.

Note que E(X|F) é constante q.c sobre os átomos de F (dada uma σ-álgebra
F , um átomo de F é qualquer conjunto Λ ∈ F tal que, se A ⊂ Λ e se A ∈ F , então
P (A) = 0 ou P (A) = P (Λ)).

(b) Dados os Λi de (a), defina Y =
∑n

i=1 ciIΛi , sendo os ci distintos. Então,
E(X|Y ) = E(X|F), onde F é a σ-álgebra gerada pelos Λi.

(c) Seja F gerada por um conjunto Λ, isto é, F = {∅,Ω,Λ,Λc}. Se 0 < P (Λ) < 1,
então para A ∈ G,

P (A|F) =

{
P (A|Λ), se ω ∈ Λ,

P (A|Λc), se ω ∈ Λc.

Exemplo 3.3. Seja Ω = [−1, 1], F = B([−1, 1]) e P=(medida de Lebesgue)/2.
Defina uma v.a Y sobre (Ω,F , P ) por Y (ω) = ω. Então, Y gera F . Seja X uma v.a
sobre o mesmo e.p, integrável.

(a) E(X|Y ) = X, pois X é F-mensurável e F{Y } = F .

(b) E(X|Y 3) = X, pela mesma razão.

(c) E(X|Y 2) = [X(ω) + X(−ω)]/2. Note que, agora, a σ-álgebra gerada por Y 2

consiste de todos os conjuntos de Borel M , tais que M = −M . Mostre que (i) e (ii)
da definição estão satisfeitas.

Exemplo 3.4. Seja Ω = R2,G a σ-álgebra de Borel sobre R2; seja uma função
não negativa, f : R2 → R, com

∫
R2 f(x, y)dxdy = 1. Defina P sobre (Ω,G) por

P (A) =
∫
A fdxdy, para todo A ∈ G. Defina v.a’s X e Y sobre (Ω,G, P ) por:

se ω ∈ R2, ω = (ω1, ω2), X(ω) = ω1, Y (ω) = ω2.

Então, a f.d conjunta de (X,Y ) é dada por
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F (x, y) = P{ω : X(ω) ≤ x, Y (ω) ≤ y} =
∫ x

−∞

∫ y

−∞
f(x, y)dxdy.

Seja f1(x) a densidade marginal de X. Então, afirmamos que uma versão da
E[g(Y )|X], para alguma função de Borel g, é dada por

E[g(Y )|X] =

∫∞
−∞ g(y)f(X, y)dy

f1(X)
=: h(X).

Para justificar tal afirmação, temos que provar que h(X) é F{X}-mensurável e
satisfaz a propriedade (ii).

(i) f1(x) é F{X}-mensurável, o mesmo valendo para
∫∞
−∞ g(y)f(x, y)dy, pelo te-

orema de Fubini. Em seguida, vamos mostrar que P{f1(X) = 0} = 0. Logo, o
quociente h(X) em (3.8) é bem definido q.c. Definindo h(x) = 0 nos pontos tais que
f1(x) = 0, obtemos que h é F{X}-mensurável. Seja Λ = {x : f1(x) = 0}. Então,

P (Λ) =

∫
Λ

∫ ∞

−∞
f(x, y)dxdy =

∫
Λ
f1(x)dx = 0.

(ii) Tome Λ ∈ F{X}. Devemos provar que∫
Λ
g(Y )dP =

∫
Λ
h(X)dP.

Mas qualquer tal Λ é da forma Λ = A1 × R, onde A1 ∈ B, logo

∫
A1×R

g(Y )dP =

∫
A1

∫
R
g(y)f(x, y)dxdy =

∫
A1

(∫
R

g(y)f(x, y)

f1(x)
f1(x)dy

)
dx

=

∫
A1

h(x)f1(x)dx =

∫
A1

h(x)
(∫

R
f(x, y)dy

)
dx =

∫
A1×R

h(x)f(x, y)dxdy

=

∫
A1×R

h(x)dP.

Note que, na primeira e última igualdades, usamos os fato que dP = fdxdy.

3.2 Propriedades da esperança condicional

As propriedades da esperança condicional são de três tipos: aquelas análogas
a propriedades das integrais, aquelas denominadas de suavização e uma proprie-
dade relacionada a espaços lineares. Lembramos aqui que todas as igualdades (e
desigualdades) a seguir envolvendo esperanças condicionais valem q.c.
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46 CAPÍTULO 3. ESPERANÇA CONDICIONAL

[A] Propriedades de Integrais

Seja X,Y v.a’s sobre (Ω,G, P ), integráveis e F ⊂ G.

P1. E(αX + βY |F) = αE(X|F) + βE(Y |F).

Veja o Problema 4.

P2. Se X ≤ Y q.c, então E(X|F) ≤ E(Y |F)

De fato, para cada Λ ∈ F , temos∫
Λ
E(X|F)dP =

∫
Λ
XdP ≤

∫
Λ
Y dP =

∫
Λ
E(Y |F)dP.

P3. (Teorema da Convergência Dominada). Seja {Xn} uma sequência de v.a’s
integráveis, Xn → X q.c. Suponha supn |Xn| integrável. Então,

lim
n→∞

E(Xn|F) = E(X|F).

(a) Suponha Xn ≥ 0, Xn ↓ 0 q.c. Então, X1 ≥ X2 ≥ · · · e por P2,

E(X1|F) ≥ E(X2|F) ≥ · · · , (3.2)

logo E(Xn|F) ↓ W ≥ 0. Agora, E(Xn) → 0 pelo TCD e E[E(Y |F)] = E(Y ), pela
definição de esperança condicional, com Λ = Ω. Por (3.2), E(Xn) ≥ E(W ), portanto
E(W ) = 0. Segue-se que limn→∞E(Xn|F) = 0.

(b) Para o caso geral, temos que

|E(Xn|F)−E(X|F)| = |E(Xn−X)|F)| ≤ E(|Xn−X| |F) ≤ E
(
sup
k≥n
|Xk−X| |F

)
,

e o último termo tende a zero pela parte (a). A primeira desigualdade na expressão
acima, isto é, |E(X|F)| ≤ E(|X||F) pode ser obtida usando −|X| ≤ X ≤ |X|.

P4. (Teorema da Convergência Monotônica) Suponha que Xn ≥ 0, Xn ↑ X, X
integrável. Então, limn→∞E(Xn|F) = E(X|F) q.c.

Chamemos de Z o limite de E(Xn|F), que existe q.c, pela propriedade anterior.
Então, para cada Λ ∈ F , temos∫

Λ
ZdP = lim

n

∫
Λ
E(Xn|F)dP = lim

n

∫
Λ
XndP =

∫
Λ
XdP,

sendo que na última igualdade usamos o TCM. Segue-se que Z satisfaz a definição
de esperança condicional e é F-mensurável, logo Z = E(X|F).
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P5. (Lema de Fatou). Se Xn ≥ 0 e Xn, lim infnXn são integráveis, então

E(lim inf
n
Xn|F) ≤ lim inf

n
E(Xn|F).

P6. (Desigualdade de Jensen). Se φ é uma função convexa sobre R e X e φ(X) são
integráveis, então

φ (E(X|F)) ≤ E (φ(X)|F) .

[B] Propriedades de Suavização

P7. Se X for integrável e F1 ⊂ F2, então

E [E(X|F1)|F2] = E [E(X|F2)|F1] = E(X|F1).

E(X|F1) é F1-mensurável e como F1 ⊂ F2, é também F2-mensurável, logo
E[E(X|F1)|F2] = E(X|F1), pelo Exemplo 3.1 (b). Seja, agora,W = E[E(X|F2)|F1].
Tome Λ ∈ F1. Devemos mostrar que

∫
ΛWdP =

∫
ΛXdP .

Mas
∫
ΛWdP =

∫
ΛE(X|F2)dP =

∫
ΛXdP , pois se Λ ∈ F1, então Λ ∈ F2.

Como casos especiais desse resultado, temos:

(i) E[E(X|F1)] = E(X).
(b) Se F1 = F{Y1}, F2 = F{Y2}, temos

E [E(X|Y1)|Y1, Y2] = E [E(X|Y1, Y2)|Y1] = E(X|Y1).

P8. Suponha que X e XY sejam integráveis e X seja F -mensurável. Então,

E(XY |F) = XE(Y |F). (3.3)

É fácil ver que (3.3) vale para X = IB, B ∈ F . A seguir, é válida para uma
função simples e logo se X ≥ 0, F-mensurável. Para o caso geral, considere X =
X+ −X−.

P9. Seja (Ω,G, P ) um e.p, X uma v.a sobre esse espaço, integrável, e F1, F2 duas
sub-σ-álgebras de G. Suponha que F{X} ∨ F1 seja independente de F2. Então,
E(X|F1 ∨ F2) = E(X|F1).

Temos que E(X|F1) é mensurável relativamente a F1 ∨F2. É suficiente mostrar
que se Λ ∈ F1 ∨ F2, então ∫

Λ
E(X|F1)dP =

∫
Λ
XdP. (3.4)

Primeiramente, suponha que Λ = A1 ∩A2, Ai ∈ Fi, i = 1, 2. Então,
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∫
A1∩A2

E(X|F1)dP =

∫
IA1IA2E(X|F1)dP =

∫
IA2dP

∫
IA1E(X|F1)dP

= P (A2)

∫
A1

E(X|F1)dP = P (A2)

∫
A1

XdP =

∫
A1∩A2

XdP.

a segunda igualdade por independência e por definição de esperança condicional, a
última igualdade novamente usando a independência.

Logo, (3.4) vale para esse caso. Também, (3.4) vale se Λ for uma reunião de
conjuntos disjuntos da forma A1 ∩ A2, Ai ∈ Fi, i = 1, 2. Mas a coleção de todos
os conjuntos dessa forma é uma álgebra, de modo que (3.4) é verdadeira para todos
os conjuntos em uma álgebra, e a σ-álgebra gerada por essa álgebra é F1 ∨ F2.
Concluimos a prova observando que os eventos satisfazendo (3.4) formam uma classe
monotônica. Obtemos finalmente que (3.4) é satisfeita para todo Λ ∈ F1 ∨F2 (veja
o Apêndice A.1).

Um caso especial importante desse resultado é que, se X e F são independentes,,
então

E(X|F) = E(X).

[C] Propriedade de Espaços Lineares

Seja (Ω,G, P ) um e.p e F ⊂ G. Então, E(·|F) pode ser considerada como um
operador linear no espaço L2(Ω,G, P ) (veja o Apêndice A.3). Como tal, E(·|F) é
uma projeção ortogonal de L2(Ω,G, P ) sobre o subespaco L2(Ω,F , P ). Para ver isto,
lembramos que o espaço L2(Ω,G, P ) é um espaço de Hilbert com norma dada por

||X||2 :=
√
⟨X,X⟩ =

√
E(|X|2). (3.5)

Dada X uma v.a qualquer sobre L2(Ω,G, P ), E(X|F) é a função F -mensurável
que é a “mais próxima”de X em termos da norma definida em (3.5). De fato, seja
Y uma v.a F-mensurável. Temos que

||X − Y ||22 = E(|X − Y |2) = E(|X − E(X|F) + E(X|F)− Y |2)

= E(|X − E(X|F)|2) + E(|E(X|F)− Y |2) + 2E[(X − E(X|F))(E(X|F)− Y )].

Chamando o último termo dentro da esperança deH, temos que E(H) = E[E(H|F)]
= 0, pois E(H|F) = 0. Logo, basta tomar Y = E(X|F).
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3.3 Probabilidade condicional regular

Até agora temos definidas a esperança condicional E(X|F) e a probabilidade con-
dicional P (Λ|F). Para a esperança de uma v.a X temos

E(X) =

∫
X(ω)dP (ω).

Uma questão que surge é: podemos escrever a esperança condicional de modo
similar, isto é,

E(X|F)(ω) =
∫
X(α)P (α|F)(ω)?

Parte do problema é: será que P (·|F) é uma probabilidade sobre alguma σ-
álgebra, para cada ω?

Definição 3.2. Seja (Ω,G, P ) um e.p eA, B sub-σ-álgebras de G. Uma probabilidade
condicional regular sobre A, relativamente a B, é uma função ν(·, ·) definida emA×Ω
com valores em R tal que:

(i) Para cada ω, ν(·, ω) é uma medida de probabilidade sobre A;

(ii) Para cada A fixo em A, ν(A, ·) é uma versão de P (A|B).

Teorema 3.3. Seja (Ω,G, P ) um e.p, A, B sub-σ-álgebras de G. Suponha que exista
uma probabilidade condicional regular ν(·, ·) sobre A, relativamente a B. Então, se
X é A-mensurável, uma versão de E(X|B) é

∫
ΩX(α)ν(dα, ω), ou seja,∫

Ω
X(α)ν(dα, ω) = E(X|B)(ω) q.c. (3.6)

Prova: Considere a classe das funções A-mensuráveis para as quais (3.6) vale.

(i) Essa classe contém funções indicadoras de conjuntos de A, pois se A ∈ A, temos
E(IA|B) = P (A|B) por definição, e∫

Ω
IA(α)ν(dα, ω) =

∫
A
ν(dα, ω) = ν(A,ω) = P (A|B) q.c,

onde na penúltima igualdade usamos (i) e na última usamos (ii) da definição. Logo,
(3.6) é válida se X = IA, para algum A ∈ A.

(ii) Depois, (3.6) vale se X =
∑
ciIAi , Ai ∈ A, ou seja, se X é uma função simples.

(iii) A seguir,(3.6) vale para X ≥ 0, integrável, A-mensurável. Basta tomar uma
sequência Xn ↑ X, de funções simples e usar o TCM.
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(iv) Portanto, (3.6) vale para qualqer X que seja A-mensurável, usando X = X+ −
X−. □

Um caso importante na prática é o caso em que A = F{X} e B = F{Y } onde
X e Y são dois vetores aleatórios. Neste caso é posśıvel mostrar que a probabilidade
condicional sobre A relativamente a B sempre existe (Veja Kallenberg (2002) para
um teorema mais geral). Neste contexto falamos de lei condicional de X dado Y .
Na maioria das vezes, uma construção explicita da lei condicional nos permite evitar
recorrer ao teorema de existência. Em relação à unicidade, temos que se ν e ν̃ são
duas leis condicionais, então para todo A ∈ F{X},

ν(A,ω) = ν̃(A,ω), q.c.

Como F{X} é contavelmente gerada, obtemos que q.c,

ν(A,ω) = ν̃(A,ω), ∀A ∈ F{X}.

É neste sentido que temos unicidade e claramente por (3.6) não podemos esperar
mais do que isto. Por abuso de linguagem, falamos da lei condicional de X dado Y .

Terminamos esta seção com uns exemplos de leis condicionais.

Exemplo 3.5. Sejam X e Y vetores aleatórios com dimensões m e n respectiva-
mente.
(a) Supomos que Y é um vetor discreto. Seja g : Bm × Rn tal que

g(A, y) =

{
P (X ∈ A | Y = y), se P (Y = y) > 0;

δx0(A), se P (Y = y) = 0,

onde x0 é um ponto arbitrário de Rm. Seja ν(A,ω) := g(A, Y (ω)). Usando a
propriedade caracteŕıstica da esperança condicional podemos verificar que ν satisfaz
a Definição 3.2. e portanto ν é a lei condicional de X dado Y .

(b) Assumimos agora que o vetor (X,Y ) é absolutamente cont́ınuo com densidade
fX,Y . A densidade de Y é dada por

fY (y) =

∫
Rm

fX,Y (x, y)dx.

Note que é posśıvel que o termo da direita seja igual a +∞ num conjunto de medida
de Lebesgue igual a 0. Neste caso, para que fY tenha valores reais, redefinimos fY
igual 0 neste conjunto. Agora, definimos g : Bm × Rn por

g(A, y) =

{
1

fY (y)

∫
A fX,Y (x, y)dx, se fY (y) > 0;

δx0(A), se fY (y) = 0.

Seja ν(A,ω) := g(A, Y (ω)). Como na parte (a), podemos mostrar que ν é a lei
condicional de X dado Y .
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Problemas

1. Prove (a) e (b) do Exemplo 3.1.

2. Prove (b) do Exemplo 3.2.

3. Prove (c) do Exemplo 3.3.

4. Prove a Propriedade P1.

5. Prove as Propriedades P5 e P6.

6. Seja X integrável, Y limitada. Prove que

E [E(X|F)Y ] = E [XE(Y |F)] .

7. Prove que se X ≥ 0, então E(X|F) ≥ 0 q.c.

8. Prove que, se F{X} for independente de F , então E(X|F) = E(X) q.c.

9. Prove que Var[E(Y |F)] ≤ Var(Y ).

10. Dê um exemplo onde E[E(Y |X1) | X2] ̸= E[E(Y |X2) | X1].

11. Seja Y uma v.a com f.d F (x) = 1− e−x, se x ≥ 0 e F (x) = 0, se x < 0. Calcule:

(a) E(Y |Y ∨ t); (b) E(Y |Y ∧ t), t > 0.

12. Sejam X e Y independentes e B um conjunto de Borel. Prove que P{(X + Y ) ∈
B|X} = PY {B −X} q.c.

13. Sejam X1, . . . , Xn independentes e Sn = X1 + . . .+Xn. Prove que

P{Sn ∈ B|S1, . . . , Sn−1} = P{Sn ∈ B|Sn−1}.

14. Seja Ω = [−π, π], F a σ-álgebra de Borel e P = (medida de Lebesgue sobre [−π, π])/2π.
Calcule E(X|Y ), se X integrável sobre (Ω,F , P ) e Y (ω) = sen(nω), n um inteiro po-
sitivo fixo.

15. SejamX1, X2, . . . v.a’s i.i.d e Sn = X1+X2+. . .+Xn. Prove que E(X1|Sn, Sn+1, . . .) =
Sn/n.

16. Se X e Y estão em L2, prove que E[E(X|F)Y ] = E[XE(Y |F)].

17. Seja Ω = [−1, 1]2, F = B([−1, 1]2), P = (medida de Lebesgue sobre [−1, 1]2)/4. Se
ω = (ω1, ω2) ∈ Ω, seja X(ω) = ω1, Y (ω) = ω2. Calcule E[X|(X + Y )2].

18. Seja X uma v.a, F1, F2 duas σ-álgebras. Prove que, se F{X} ∨ F1 for independente
de F2, então E(X|F1 ∨ F2) = E(X|F1) q.c.

19. Suponha que X seja uma v.a com variância finita e F uma sub-σ-álgebra de G. Prove
que

E(X − E(X|F))2 = E(X2)− E(E(X|F))2.
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20. Defina a variância condicional como Var(X|F) = E((X − E(X|F))2|F). Sejam X e
Y duas v.a’s com variâncias finitas, F ⊂ G, e seja g uma função com valores reais, tal
que E(g(X)2) <∞. Prove que

E[(Y − g(X))2] = E[Var(Y |F)] + E[E(Y |F)− g(X)]2 ≥ E[Var(Y |F)],

com igualdade se g(X) = E(Y |F).

21. Considere {C1, . . . , Cn} uma partição de Ω (ou seja, uma coleção de eventos mutua-
mente exclusivos cuja reunião é Ω) tal que P (Ck) > 0 para todo k. Prove que, para
todo evento A ⊂ Ω, P (A) =

∑n
k=1 P (A|Ck)P (Ck).

22. Com a mesma partição do problema anterior, prove que, para todo evento A ⊂ Ω,

P (Ck|A) =
P (A|Ck)P (Ck)∑n
j=1 P (A|Cj)P (Cj)

, k = 1, 2, . . . , n.
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Caṕıtulo 4

Martingales

Neste caṕıtulo, vamos nos restringir ao estudo de martingales com tempo dis-
creto. No caṕıtulo seguinte trataremos de processo com tempo cont́ınuo e, em
particular, martingales com tempo cont́ınuo. Os conceitos de tempo de parada e
integrabilidade uniforme serão estudados antes de definir martingales.

Martingales são generalizações de somas de v.a’s independentes com média zero.
Veja o Exemplo 4.3 (a). Aparentemente, foram definidos pela primeira vez por Ville
(1939), sendo que os resultados mais inovadores aparecem em Doob (1953). A teoria
de martingales tem aplicações em diversas áreas, em particular em confiabilidade e
finanças. Referências importantes são Neveu (1975) e Williams (1991). Notamos
por fim que na literatura em Português, é comum usar também os termos martingal
e martingais.

4.1 Tempos de parada

Seja (Ω,F , P ) um e.p e {Fn, n ≥ 1} uma sequência de sub-σ-álgebras de F .
Dizemos que {Fn} é crescente se Fn ⊂ Fn+1, para todo n ≥ 1.

Seja X = {Xn, n ≥ 1} um processo estocástico sobre (Ω,F , P ); dizemos que X
é adaptado a {Fn, n ≥ 1} se Xn é Fn-mensurável, para cada n ≥ 1.

Na seção 4.3 estaremos interessados na seguinte questão: o que acontece quando
paramos um martingale num instante de tempo aleatório? Para responder a essa
questão, temos que ter uma regra para parar um processo estocástico num dado
instante, de modo que essa regra não dependa do futuro. Isso nos leva à definição
de tempo de parada.

Definição 4.1. Um tempo de parada τ (ou v.a opcional) relativo a uma famı́lia
crescente {Fn, n ≥ 1}, é uma v.a sobre (Ω,F , P ) com valores em N = N ∪ {+∞},
N = {1, 2, 3, . . .}, tal que

{ω : τ(ω) = n} ∈ Fn, para cada n ∈ N. (4.1)
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Quando dizemos que τ é um tempo de parada para um processo X, isso sig-
nifica que τ é um tempo de parada relativo à sequência crescente de σ-álgebras
Fn = F{X1, . . . , Xn}. Intuitivamente, τ é uma v.a com valores inteiros positivos
(possivelmente ∞) que fornece uma regra para parar um processo estocástico. A
equação (4.1) nos diz que a decisão de parar ou não o processo no instante n depende
somente da informação dispońıvel no instante n (ou seja, a história do proceso até
e incluindo o instante n). Nenhum conhecimento do futuro é necessário.

Definição 4.2. Seja X = {Xn, n ≥ 1} um processo estocástico e τ um tempo de
parada para X. Suponha τ < ∞ q.c, isto é, P{τ < ∞} = 1. Considere v.a Xτ

tomando o valor Xn(ω) sobre o conjunto {ω : τ(ω) = n}. Ou seja, se τ(ω) = n,
então Xτ(ω)(ω) = Xn(ω). A σ-álgebra gerada por Xτ , Xτ+1, . . . é chamada σ-álgebra
pós-τ , e indicada Fτ+.

Definição 4.3. Seja {Fn, n ≥ 1} uma famı́lia crescente de σ-álgebras e τ um tempo
de parada relativo a essa famı́lia. A σ-álgebra pré-τ , denotada Fτ−, é a σ-álgebra
consistindo de todos os conjuntos Λ de F∞ :=

∨
n≥1Fn tal que Λ∩{ω : τ(ω) = n} ∈

Fn, para todo n ≥ 1.

Segue-se que os eventos de Fτ− são aqueles ocorrendo antes do tempo de parada
τ , enquanto que os eventos de Fτ+ são aqueles eventos ocorrendo depois de τ .

Exemplo 4.1. (a) Seja {Fn, n ≥ 1} e defina τ(ω) = p, constante, p ∈ N. Então, τ
é um tempo de parada e Fτ− = Fp.

(b) Seja X um processo estocástico e B um conjunto de Borel. Defina τ por:
τ(ω) = inf{n ≥ 1 : Xn(ω) ∈ B}, e τ(ω) = ∞, se o conjunto anterior for vazio.
Segue-se que τ é o primeiro instante de tempo que X entra em B, e é um tempo
de parada. De fato, {ω : τ(ω) = n} = {ω : Xj(ω) /∈ B, j < n,Xn(ω) ∈ B}, que
pertence a Fn = F{X1, . . . , Xn}.

(c) Sejam Y1, Y2, . . . v.a’s i.i.d, P (Y1 = 1) = p, P (Y1 = −1) = q, p > q. Defina
Xn = 1 + Y1 + Y2 + . . . + Yn e seja τ = inf{n ≥ 1 : Xn(ω) = 0}, e τ = ∞, se esse
conjunto for vazio. Então, τ é um tempo de parada.

(d) Considere a situação de (c) mas desta vez Xn = −1+Y1+ · · ·+Yn. Sabemos que
com probabilidade 1, Xn atingirá o valor zero somente um número finito de vezes,
ou seja, P{Xn = 0 i.v} = 0. Defina τ como o último tempo em que Xn = 0. Então,
τ <∞ q.c, está bem definido, mas não é um tempo de parada.

4.1.1 Propriedades dos tempos de parada

Algumas propriedades dos tempos de paradas são enunciadas a seguir. Algumas
serão demonstradas, as demais ficam como exerćıcios.
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[1] Para cada n, os seguintes conjuntos estão em Fn, onde τ é um tempo de parada
relativo a {Fn, n ≥ 1}:

{τ ≤ n}, {τ = n}, {τ < n}, {τ > n}, {τ ≥ n}.
De fato, {τ ≤ n} = ∪nm=0{τ = m} e {τ = m} ∈ Fm ⊂ Fn, se m ≤ n. O conjunto
{τ > n} ∈ Fn, tomando o complementar.

[2] Se σ e τ são tempos de parada, então σ ∧ τ e σ ∨ τ são tempos de parada.

De fato, {σ ∧ τ = n} = {σ = n, τ > n} ∪ {σ > n, τ = n} ∪ {σ = n, τ = n}.

[3] Seja k ∈ N e τ um tempo de parada. Então, τ+k é também um tempo de parada
(Note que τ − k não necessita ser um tempo de parada).

[4] Sejam τ1, τ2, . . . tempos de parada; então supn τn é também um tempo de parada.

[5] τ é Fτ−-mensurável.

[6] Seja τ um tempo de parada finito relativo a X = {Xn, n ≥ 1}. Se X é adaptado
à sequência {Fn, n ≥ 1}, então Xτ é Fτ−-mensurável.

[7] Sejam τ1, τ2 tempos de parada, τ1 ≤ τ2. Então, Fτ1− ⊂ Fτ2−.

De fato, se B ∈ Fτ1−, temos que B ∩ {τ2 ≤ n} = B ∩ {τ1 ≤ n} ∩ {τ2 ≤ n} ∈ Fn,
para todo n ≥ 1, ou seja B ∈ Fτ2−.

[8] Seja X = {Xn, n ≥ 1} um processo estocástico e τ um tempo de parada. Para
qualquer inteiro positivo n e qualquer ω ∈ Ω, defina τ ∧ n(ω) = min{τ(ω), n}.
Definimos, então, o processo parado Xτ = {Xτ

n, n ≥ 1} por Xτ
n(ω) = Xτ∧n(ω)(ω).

Na seção 4.3 veremos que se X é um martingale, então Xτ = {Xτ∧n} é também
um martingale.

Exemplo 4.2. Sejam X1, X2, . . . v.a’s i.i.d e seja τ um tempo de parada finito para
X = {Xn, n ≥ 1}. Então, Fτ− e Fτ+ são independentes e (X1, X2, . . .) tem a mesma
distribuição que (Xτ+1, Xτ+2, . . .) (esse é um caso especial da chamada propriedade
forte de Markov).

De fato, seja Λ ∈ Fτ−. É suficiente provar que

P (Λ, Xτ+1 ∈ B1, . . . , Xτ+n ∈ Bn) = P (Λ)P (X1 ∈ B1, . . . , Xn ∈ Bn),

onde Bi são conjuntos de Borel.
Temos que

P (Λ, {τ = k}, Xk+1 ∈ B1, . . . , Xk+n ∈ Bn) = P (Λ, {τ = k})P (Xk+1 ∈ B1, . . . , Xk+n ∈ Bn)
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= P (Λ, {τ = k})P (X1 ∈ B1, . . . , Xn ∈ Bn),

onde notamos que, Λ ∩ {τ = k} ∈ Fk, a primeira igualdade decorre do fato de Fk
ser independente de {Xk+1, . . . , Xk+n} e a última igualdade vale pois os Xi são i.i.d.
Agora, basta somar sobre k para obter o resultado.

4.2 Integrabilidade uniforme

Nesta secção apresentamos o importante conceito de integrabilidade uniforme
que usaremos no decorrer do caṕıtulo.

Definição 4.4. Seja I um conjunto de ı́ndices. A famı́lia de v.a’s {Xi, i ∈ I} é
uniformemente integrável (u.i) se

sup
i∈I

∫
{|Xi|>λ}

|Xi|dP → 0, quando λ→∞. (4.2)

Teorema 4.1. Seja X uma v.a integrável e suponha que |Xi| ≤ X, para todo i ∈ I.
Então, a famı́lia {Xi, i ∈ I} é uniformemente integrável

Prova: Temos que
∫
{|Xi|>λ} |Xi|dP ≤

∫
{|Xi|>λ} |X|dP ≤

∫
{|X|>λ} |X|dP . Como isso

é verdade para todo i ∈ I, temos que

sup
i∈I

∫
{|Xi|>λ}

|Xi|dP ≤
∫
{|X|>λ}

|X|dP → 0, λ→∞,

pelo Teorema de Convergencia Dominada. □

Teorema 4.2. A famı́lia {Xi, i ∈ I} é u.i se, e somente se:

(a) supi∈I E(|Xi|) <∞;

(b) Dado ε > 0, existe δ = δ(ε) > 0, tal que se P (A) ≤ δ, então
∫
A |Xi|dP ≤ ε,

para todo i ∈ I.

Prova: (⇒) Suponha que {Xi, i ∈ I} seja u.i. Então, (a) vale, pois, tomando-se λ0
tão grande tal que

∫
{|Xi|>λ0} |Xi|dP ≤ 1, para todo i ∈ I, por i.u, temos que∫

Ω
|Xi|dP =

∫
{|Xi|>λ0}

|Xi|dP +

∫
{|Xi|≤λ0}

dP ≤ 1 + λ0.

Também, seja ε > 0; então,
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∫
A
|Xi|dP =

∫
A∩{|Xi|>λ}

|Xi|dP +

∫
A∩{|Xi|≤λ}

|Xi|dP ≤
∫
{|Xi|>λ}

|Xi|dP + λP (A).

Tome λ grande de modo que a primeira integral seja menor que ε/2, para todo i,
por i.u. Com λ assim escolhido (e igual a λ1, digamos), tome δ = ε/(2λ1). Então, se
P (A) < δ, o segundo termo é menor que λ1ε/(2λ1) = ε/2, portanto

∫
A |Xi|dP < ε,

e (b) vale.

(⇐) Pela desigualdade de Chebyshev, temos que

P{|Xi| > λ} ≤ E(|Xi|)/λ ≤
supiE(|Xi|)

λ
≤ M

λ
,

onde M < ∞, usando (a). Então, dado ε > 0,
∫
{|Xi|>λ} |Xi|dP ≤ ε, sempre que

P{|Xi| > λ} ≤ δ(ε), por (b), isto é, se λ ≥M/δ. □

Teorema 4.3. Suponha que Xn
P→ X. Então, Xn

L1→ X se, e somente se, {Xn, n ≥
1} for u.i.

Prova: (⇒) Suponha que Xn
L1→ X. Mostraremos que as condições (a) e (b) do

Teorema 4.2 valem.

(a) tome N tão grande de modo que E(|Xn−X|) ≤ 1, para n ≥ N , pois Xn converge
para X em L1. Então,

E(|Xn|) ≤ E(|Xn −X|) + E(|X|) ≤ 1 + E(|X|), para todo n ≥ N.

Portanto,

sup
n
E(|Xn|) ≤ max{1 + E(|X|), E(|X1|), . . . , E(|XN−1|)} <∞.

(b) Temos que
∫
A |Xn|dP ≤

∫
A |Xn −X|dP +

∫
A |X|dP. Seja ε > 0 e seja N grande

de tal sorte que, para n ≥ N , tenhamos
∫
Ω |Xn −X|dP < ε/2, por hipótese. Logo,

∫
A
|Xn|dP ≤

∫
A
|Xn −X|dP +

∫
A
|X|dP ≤ ε/2 +

∫
A
|X|dP, n ≥ N.

Seja δ1 pequeno, tal que se P (A) < δ1, então
∫
A |X|dP < ε/2, poisX é integrável.

Seja δ2 tão pequeno, de modo que, se P (A) < δ2, então
∫
A |Xn|dP < ε, para

n = 1, 2, . . . , N . Segue-se que, para todo n, se P (A) ≤ min{δ1, δ2}, temos que∫
A |Xn|dP ≤ ε.
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(⇐) Suponha que Xn
P→ X e {Xn, n ≥ 1} seja u.i. Primeiro, X é integrável, porque

se nk é uma subsequência tal que Xnk

q.c→ X, pelo Lema de Fatou, teremos

E(|X|) ≤ lim inf
k
E(|Xnk

|) ≤ sup
n
E(|Xn|) <∞.

Agora,

∫
Ω
|Xn −X|dP =

∫
{|Xn−X|>ε}

|Xn −X|dP +

∫
{|Xn−X|≤ε}

|Xn −X|dP

≤
∫
{|Xn−X|>ε}

|Xn|dP +

∫
{|Xn−X|>ε}

|X|dP + ε.

Se n→∞, então lim supn
∫
Ω |Xn−X|dP ≤ 0+ 0+ ε, logo E(|Xn−X|)→ 0. □

Teorema 4.4 Suponha queXn
P→ X eXn ≥ 0, para todo n ≥ 1. Então, {Xn, n ≥ 1}

é u.i se, e somente se, limnE(Xn) = E(X) <∞.

Prova: (a) Se {Xn, n ≥ 1} é u.i, pelo Teorema 4.3, Xn
L1→ X, logo E(Xn)→ E(X)

e X é integrável.

(b) Pelo teorema anterior, Xn é u.i se, e somente se, Xn
L1→ X. Temos que E(|Xn −

X|) = E{2(X −Xn)∨ 0− (X −Xn)}. Mas {2(X −Xn)∨ 0} → 0 em probabilidade,
logo E{2(X −Xn)∨ 0} → 0, pelo TCD, pois 0 ≤ {2(X −Xn)∨ 0} ≤ 2X. Também,
E(Xn −X)→ 0, por hipótese. Segue-se que E(|Xn −X|)→ 0 e Xn é u.i. □

Teorema 4.5. Seja f : [0,∞) → [0,∞), tal que limx→∞ f(x)/x = +∞. Se
supiE(f(|Xi|)) <∞, então {Xi, i ∈ I} é u.i.

Prova: Seja ε > 0 e seja M = supiE(f(|Xi|)). Tome x0 tal que se x ≥ x0,
f(x)/x ≥M/ε, pois f(x)/x→∞. Logo, f(x)ε/M ≥ x e portanto para todo i ∈ I,∫

{|Xi|>λ}
|Xi|dP ≤

ε

M

∫
Ω
f(|Xi|)dP ≤

ε

M
M = ε,

sempre que λ ≥ x0. □

Como casos especiais importantes do teorema, temos f(x) = xp, para p > 1 e
f(x) = x log+ x.

4.3 Martingales

Como dissemos na introdução desse caṕıtulo, trataremos aqui o caso de mar-
tingales com tempo discreto. No entanto, daremos a definição de martingale para
o caso em que o conjunto paramétrico é um subconjunto dos números reais. Um
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resultado importante que será provado nessa seção é o Teorema da Amostragem
Opcional.

Definição 4.5. Seja (Ω,F , P ) um e.p e T um subconjunto de R. Seja {Ft, t ∈ T}
uma famı́lia crescente de sub-σ-álgebras de F , ou seja, Fs ⊂ Ft, se s ≤ t. Seja
{Xt, t ∈ T} um processo estocástico adaptado a {Ft, t ∈ T}. Um processo X =
{Xt,Ft, t ∈ T} é um martingale se:

(a) Xt é integrável, para cada t ∈ T ;

(b) Se s ≤ t, então E(Xt|Fs) = Xs.

Definição 4.6. Um submartingale tem as mesmas caracteŕısticas da definição an-
terior, exceto que (b) é substitúıda por:

(b
′
) Se s ≤ t, então E(Xt | Fs) ≥ Xs.

Um supermartingale substitui (b) por

(b
′′
) Se s ≤ t, então E(Xt | Fs) ≤ Xs.

Uma interpretação da definição em termos de jogos é a seguinte. SeXn representa
a fortuna de um jogador após o jogo n e Fn representa a sua história até (incluindo)
o instante n, então E(Xn+1|Fn) = Xn significa que o ganho esperado do jogador no
instante n + 1, dado todo o conhecimento passado, é igual à sua fortuna presente.
Teremos um jogo justo. Vale uma interpretação similar para (sub)supermartingale.

Observações: (a) Quando dizemos que {Xt, t ∈ T} é um martingale, queremos
dizer que as σ-álgebras da definição são Ft = F{Xs, s ≤ t}.

(b) Um martingale com parâmetro discreto ou com tempo discreto é aquele para o
qual T é uma coleção de números inteiros. Usualmente consideramos T = {1, 2, 3, . . .}
ou T = Z.

(c) Se {Xt, t ∈ T} é um submartingale, então {−Xt, t ∈ T} é um supermartingale.

(d) Se {Xt, t ∈ T} e {Yt, t ∈ T} são martingales, então não é necessário que {Xt +
Yt, t ∈ T} seja um martingale. É verdade se X e Y são martingales com repeito à
mesma sequência de σ-álgebras.

(e) Para verificar que {Xn,Fn, n ≥ 1} é um martingale, é suficiente provar que
E(Xn|Fn−1) = Xn−1.

(f) Seja {Xn, n ≥ 1} um submartingale. Então {E(Xn), n ≥ 1} é uma sequência
crescente.

De fato, E(Xn|Fn−1) ≥ Xn−1, bastando tomar a esperança de ambos os mem-
bros.
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(g) Se {Xn, n ≥ 1} é um martingale, então E(Xn) = E(X1), para todo n.

De fato, de E(Xn|Fn−1) = Xn−1, obtemos E(Xn) = E(Xn−1) = . . . = E(X1),
para todo n.

(h) Se {Xn, n ≥ 1} é um submartingale ou supermartingale, e se E(Xn) = E(X1)
para todo n, então, {Xn, n ≥ 1} é um martingale.

Exemplo 4.3. (a) Sejam {Xn, n ≥ 1} v.a’s independentes, com média zero. Então,
Yn = X1 + . . .+Xn é um martingale.

De fato, temos que

E(Yn+1|Fn) = E(Yn+1|X1, . . . , Xn) = E(

n+1∑
i=1

Xi|X1, . . . , Xn)

= X1 + . . .+Xn + E(Xn+1|X1, . . . , Xn) = X1 + . . .+Xn + E(Xn+1) = Yn,

sendo que a penúltima igualdade vale pela independência e a última porque a média
é zero.

(b) Se {Xn, n ≥ 1} são v.a’s independentes, E(Xi) = µi ≥ 0, então Yn =
∑n

i=1Xi é
um submartingale e

∑n
i=1(Xi − µi) = Zn é um martingale.

(c) Seja X integrável, {Fn, n ≥ 1} uma famı́lia crescente de σ-álgebras. Então,
Xn = E(X|Fn) é um martingale.

De fato,

E(Xn|Fn−1) = E[E(X|Fn)|Fn−1] = E(X|Fn−1) = Xn−1,

pelo fato que Fn−1 ⊂ Fn.

Exemplo 4.4. (a) Seja {Yn} um martingale com tempos {. . . ,−3,−2,−1}. Então,
Yn deve ter a forma dada no Exemplo 4.3 (c), isto é, Y−n = E(Y−1|F−n). Esse é um
exemplo de um martingale reverso.

(b) Sejam {Xn, n ≥ 1} v.a’s i.i.d, integráveis. Defina:

Y−1 = X1,

Y−2 = (X1 +X2)/2;

· · ·

Y−n = (X1 + . . .+Xn)/n.
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Então, {. . . , Y−2, Y−1} é um martingale com respeito a F{. . . , Y−2, Y−1} = F−1,
F{. . . , Y−3, Y−2} = F−2 etc.

Martingales podem não ter a forma dada no Exemplo 4.3 (c). Veja o Problema
6. Em algumas situações, como em econometria, finanças e no estudo de somas
de v.a’s independentes, é mais conveniente considerar incrementos. Uma sequência
{Un,Fn, n ≥ 1} é chamada uma diferença martingale se

E(Un+1|Fn) = 0, para todo n ≥ 1.

Diferentemente de martingales, diferenças martingales são ortogonais. Veja o
Problema 22.

Teorema 4.6. (a) Seja φ uma função convexa e {Xn,Fn, n ≥ 1} um martingale.
Suponha que φ(Xn) seja integrável, para cada n. Então, {φ(Xn),Fn, n ≥ 1} é um
submartingale.
(b) Suponha φ convexa crescente e {Xn,Fn, n ≥ 1} um submartingale. Se φ(Xn) é
integrável, então {φ(Xn),Fn, n ≥ 1} é um submartingale.

Prova: (a) Temos que

E (φ(Xn+1|Fn)) ≥ φ (E(Xn+1|Fn)) = φ(Xn),

onde usamos a desigualdade de Jensen e o fato que Xn é um martingale.

(b) De modo análogo,

E (φ(Xn+1|Fn)) ≥ φ (E(Xn+1|Fn)) ≥ φ(Xn),

novamente usando Jensen, E(Xn+1|Fn) ≥ Xn e φ crescente. □

Exemplo 4.5. (a) Se {Xn} é um martingale, então {X2
n}, {X+

n }, {Xn∨M, M > 0}
são submartingales. Também, {|Xn|} é um submartingale, pela parte (a) do teorema
anterior.

(b) Se {Xn} é um submartingale, então {X+
n }, {Xn∨M, M > 0} são submartingales.

Mas {|Xn|} não necessita ser, pois a função |x| não é crescente (parte (b) do teorema).

Consideramos, a seguir, o Teorema da Amostragem Opcional (TAO) de Doob.
Veja Doob (1971) e Williams (1991). O teorema diz, sob determinadas suposições,
que o valor esperado de um martingale em um tempo de parada é igual ao valor
esperado de seu valor inicial. Como vimos, martingales podem ser usados para
modelar a fortuna de um jogador, participando de um jogo justo.

Ou seja, se {Xn} é um martingale, temos que E(Xn) = E(Xn−1) = . . . = E(X1),
de modo que a fortuna esperada do jogador em qualquer tempo é igual à sua fortuna
esperada inicial.
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Suponha, agora, que T seja um tempo de parada e XT é a fortuna do jogador
nesse instante; será que E(XT ) = E(X1)? Em geral, a resposta é negativa, como
mostrado em Doyle e Snell (1984). O TAO dá condições para que isso seja verdade.

O TAO é importante em muitas aplicações, em particular em finanças, no con-
texto do teorema fundamental do apreçamento de ativos. O conteúdo essencial desse
teorema é que não se pode ganhar (em média) comprando-se e vendendo-se um ativo
cujo preço é modelado por um martingale.

Teorema 4.7. (Teorema da Amostragem Opcional). Seja {Xn,Fn, n ≥ 1} um
(sub)martingale e T1 ≤ T2 ≤ . . . tempos de parada finitos relativamente a {Fn, n ≥
1}. Suponha que:

(a) E (|XTn |) <∞, para cada n.

(b) limN→∞
∫
{Tn>N} |XN |dP = 0, para cada n.

Então, {XT1 , XT2 , . . .} é um (sub)martingale relativo a {FT1 ,FT2 , . . .}.

Antes de demonstrar o teorema, vamos fazer uma observação e apresentar algu-
mas aplicações do TAO.

Observação: Há uma versão “mais simples”’ do TAO, dada em Williams (1991,
Theorem 10.10). Seja X um martingale e T um tempo de parada. Suponha que
qualquer uma das seguintes condições valha:

(i) Existe um inteiro positivo N tal que T (ω) ≤ N , q.c.

(ii) Existe um real positivo K tal que |Xn(ω)| < K, q.c, para todo n, e T é finito
q.c.

(iii) E(T ) < ∞ e existe um real positivo K tal que |Xn(ω) −Xn−1(ω)| < K, q.c,
para todo n.

Então XT é integrável e E(XT ) = E(X1).

Aplicações do TAO

[1] Seja M > 0, inteiro, e T um tempo de parada tal que T ≤ M q.c. Então, se
{Xn, n ≥ 1} é um (sub)martingale, também o será {X1, XT , XM}.

De fato, (b) está satisfeita e (a) também, pois E(|XT |) ≤
∑M

k=1E(|Xk|) < ∞.
Em particular, se {Xn} é um martingale, E(X1) = E(XT ) = E(XM ). Se for um
submartingale, substituir os sinais de igualdade por desigualdade.

[2] Se {Xn, n ≥ 1} é um (sub)martingale, e T um tempo de parada, finito ou não,
então {XT∧1, XT∧2, . . .} é um (sub)martingale.
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[3] Sejam T1 ≤ T2 ≤ . . . tempos de parada eM1,M2, . . . constantes, tais que Ti ≤Mi,
para todo i ≥ 1. Se {Xn, n ≥ 1} é um (sub)martingale, então {XT1 , XT2 , . . .}
também o será.

[4] Seja {Xn, n ≥ 1} um martingale uniformemente integrável. Sejam T1 ≤ T2 ≤ . . .
tempos de parada finitos. Então, {XT1 , XT2 , . . .} é um martingale.

De fato, a condição (b) do TAO vale, pois X é u.i. Por outro lado, {|Xn|}
é um submartingale pelo Teorema 4.6, logo para todo k ≥ 1, {XTk∧n, n ≥ 1} é
um submartingale e portanto E(|XTk∧n|) ≤ E(|Xn|). Segue-se que E(|XTk∧n|) ≤
supnE(|Xn|) <∞, pois temos i.u. Agora, pela condição b) do TAO e o fato que Tk
é finito q.c, temos pelo TCM que E(|XTk |) = limn→∞E(|XTk∧n|). Logo E(|XTk |) ≤
supnE(|Xn|) <∞.

Prova do TAO: É suficiente provar que, dadas as hipóteses, se S ≤ T são dois
tempos de parada, então E(XT |FS) = XS , no caso de um martingale e com sinal de
desigualdade ≥, se submartingale. Ou seja, se Λ ∈ FS , provar que

∫
ΛXTdP = (≥

)
∫
ΛXSdP . Mas, para provar essa relação é suficiente provar a igualdade (desigual-

dade se submartingale) mais forte∫
Λ∩{S=j}

XTdP = (≥)
∫
Λ∩{S=j}

XSdP.

No entanto,

∫
Λ∩{S=j}

XSdP =

∫
Λ∩{S=j}

XjdP =

∫
Λ∩{S=j,T=j}

XjdP +

∫
Λ∩{S=j,T>j}

XjdP.

Como o conjunto Λ ∩ {S = j, T > j} ∈ Fj , obtemos que o último termo é

= (≤)
∫
Λ∩{S=j,T=j+1}

Xj+1dP +

∫
Λ∩{S=j,T>j+1}

Xj+1dP,

pela definição de (sub)martingale. Fazendo-se Λ ∩ {S = j, T > j} = (Λ ∩ {S =
j, T = j + 1}) ∪ (Λ ∩ {S = j, T > j + 1}), e assim sucessivamente, obtemos

= (≤)
N∑
k=j

∫
{Λ,S=j,T=k}

XkdP +

∫
{Λ,S=j,T>N}

XNdP

=

∫
{Λ,S=j, j≤T≤N}

XTdP +

∫
{Λ,S=j, T>N}

XNdP.

Quando N → ∞, o último termo tende a zero, por (b), e pelo TCD a primeira
integral tende a

∫
{Λ,S=j}XTdP. □

Morettin-Gallesco - dezembro/2025
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4.4 Convergência de martingales

O objetivo dessa seção é provar alguns teoremas sobre convergência de
(sub)martingales. Uma desigualdade devida a Doob (veja Doob, 1953) é essencial
nesse contexto.

Seja x1, . . . , xn uma sequência qualquer de números reais e suponha a < b.
Defina Un(a, b) como o número de vezes que a sequência {xk, k ≤ n} vai de um
valor abaixo de a para um valor acima de b, ou seja, o número de cruzamentos
ascendentes (upcrossings) de [a, b]. A partir de agora usaremos simplesmente a
palavra cruzamento.

Teorema 4.8. (Upcrossing inequality - Doob) Seja {X1, X2, . . . , Xn} um submartin-
gale e Un(a, b) o número de cruzamentos de [a, b] pela sequência {X1(ω), . . . , Xn(ω)}.
Então,

E (Un(a, b)) ≤
E(Xn − a)+ − E(X1 − a)+

b− a
≤ E(Xn − a)+

b− a
≤ E(|Xn|) + a

b− a
. (4.3)

Prova: Defina Yk = (Xk − a)+. Segue-se que {Yk, k ≤ n} é um submartingale.
Ainda, o número de cruzamentos de [a, b] por X1, . . . , Xn é o mesmo número de
cruzamentos de [0, b− a] por Y1, . . . , Yk. Logo, é suficiente calcular Un(0, b− a) para
a sequência Y .

Defina a sequência de tempos de parada T1 ≤ T2 ≤ . . . como segue:

T1 = 1,

T2 = inf{k > 1 : Yk = 0},
T3 = inf{k : k > T2, Yk ≥ b− a},
T4 = inf{k : k > T3, Yk = 0},
T5 = inf{k : k > T4, Yk ≥ b− a} etc.

Defina Tk = n se o conjunto definido for vazio.
Escrevamos:

Yn − Y1 = (YT2 − YT1) + (YT3 − YT2) + . . .+ (YTn − YTn−1).

Observe, por exemplo, que YT3 − YT2 ≥ b− a e YTn = Yn. Portanto,∑
k par

(YTk+1
− YTk) ≥ (b− a)Un(0, b− a),

e, então,

Yn − Y1 ≥ (b− a)Un(0, b− a) +
∑

k ı́mpar

(YTk+1
− YTk),
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4.4. CONVERGÊNCIA DE MARTINGALES 65

do que segue

E (Yn − Y1) ≥ (b− a)E (Un(0, b− a)) +
∑

k ı́mpar

E
(
YTk+1

− YTk
)
,

e como o último termo é não negativo (pois temos um submartingale), obtemos

E(Xn − a)+ − E(X1 − a)+

b− a
≥ E (Un(a, b)) . □

Teorema 4.9. (Teorema de Convergência de Submartingales de Doob). Seja
{Xn,Fn, n ≥ 1} um submartingale e suponha que Xn seja L1-limitado (ou seja,
supn(E|Xn|) < ∞). Então, {Xn, n ≥ 1} converge q.c para um limite X∞, que é
integrável.

Prova: Sejam a < b números racionais e defina:

Mab =
{
ω : lim

n
infXn(ω) ≤ a < b ≤ lim

n
supXn(ω)

}
.

Pela desigualdade de Doob, E(Un(a, b)) ≤ E(Xn−a)+
b−a ≤ supn

E(|Xn|)+a
b−a <∞.

Seja U(a, b) = limn→∞ Un(a, b), que é o número de cruzamentos da sequência
X1, X2, . . .. Então, E(U(a, b)) < ∞, de modo que U(a, b) < ∞ q.c. Segue-se que
P (Mab) = 0, pois o número de cruzamentos é finito q.c. Defina M = ∪a,bMab, onde
a união é sobre todos os racionais a < b. Então, P (M) = 0 e o conjunto no qual
{Xn} converge é M c, logo {Xn} converge q.c.

A integrabilidade de X∞ segue do lema de Fatou:

E(|X∞|) = E(lim
n

inf |Xn|) ≤ lim
n

inf E(|Xn|) ≤ sup
n
E(|Xn|) <∞. □

Observação: A condição supnE(|Xn|) < ∞ pode ser substitúıda pela condição
supnE(X+

n ) < ∞. Isso porque E(|Xn|) = 2E(X+
n ) − E(Xn) ≤ 2E(X+

n ) − E(X1),
pois temos um submartingale e E(Xn) é crescente. Portanto, supnE(|Xn|) ≤
2 supnE(X+

n ) + E(|X1|) <∞.

Exemplo 4.6. (a) Todo submartingale negativo converge.
(b) Todo martingale positivo converge.

Teorema 4.10. Seja {Xn,Fn, n ≥ 1} um (sub)martingale. As seguintes afirmações
são equivalentes:

(a) {Xn, n ≥ 1} converge em L1;

(b) {Xn, n ≥ 1} é uniformemente integrável;
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(c) Xn → X∞ q.c, {Xn, 1 ≤ n ≤ ∞} é um (sub)martingale e E(Xn)→ E(X∞).

Prova: (b) ⇒ (a) De fato, {Xn} u.i implica que {Xn} é limitado em L1 e pelo
Teorema 4.9, Xn converge q.c, logo converge em L1.

(a) ⇒ (c) Se Xn converge em L1, então {Xn} é necessariamente limitada em L1,
portanto Xn → X∞ q.c, pelo teorema anterior. Resta provar que {Xn}, 1 ≤ n ≤ ∞,
é um (sub)martingale, ou seja, E(X∞|Fn) = (≥)Xn. Mas, se m > n e Λ ∈ Fn,
temos

∫
ΛXmdP = (≥)

∫
ΛXndP . Se m → ∞, como Xm → X∞ em L1, obtemos∫

ΛX∞dP = (≥)
∫
ΛXndP .

(c) ⇒ (b) Considere {X+
n , 1 ≤ n ≤ ∞}; este é um submartingale, pois {Xn} o é.

Desta forma, obtemos que E(X+
∞) ≥ limn→∞E(X+

n ). Por outro lado, pelo Lema de
Fatou temos que E(X+

∞) ≤ limn→∞E(X+
n ). Obtemos assim que limn→∞E(X+

n ) =
E(X+

∞) < ∞. Pelo Teorema 4.4, isso implica que {X+
n , n ≥ 1} é u.i. Mas, como

X+
n → X+

∞ q.c, obtemos a mesma convergência em L1. Como E(Xn) → E(X∞) e
E(X+

n ) → E(X+
∞), segue-se que E(X−

n ) → E(X−
∞). Como X−

n ≥ 0, para todo n,
temos que {X−

n } é u.i pelo Teorema 4.4. Finalmente, como {X+
n } e {X−

n } são u.i,
segue-se que {Xn} é u.i. □

Teorema 4.11. Suponha que {Xn,Fn, n ≥ 1} seja um martingale. Então {Xn} é
u.i se, e somente se, existe uma v.a Y , integrável, e Xn = E(Y |Fn). Além disso, se
Y for mensurável relativamente a

∨∞
n=1Fn, então Xn → Y q.c.

Prova: (⇒) Suponha que {Xn} seja u.i. Então, Xn → X∞ q.c e em L1 e {Xn, 1 ≤
n ≤ ∞} é um martingale, pelo resultado anterior. Logo, basta tomar Y = X∞.

(⇐) Suponha Xn = E(Y |Fn), Y integrável. O resultado segue do Problema 13.
Para completar, seja Xn → X∞ em q.c e L1. Mostremos que Y = X∞ q.c. Sabemos
que E(Y |Fn) = Xn e E(X∞|Fn) = Xn. Seja Λ ∈ Fn; então,

∫
Λ Y dP =

∫
ΛXndP e∫

ΛX∞dP =
∫
ΛXndP , do que decorre que

∫
Λ Y dP =

∫
ΛX∞dP . Portanto, a mesma

igualdade vale para Λ ∈ ∪∞n=1Fn e essas duas medidas concordam em uma álgebra
que gera

∨∞
n=1Fn, e portanto Y = X∞ q.c. □

Teorema 4.12. Seja {X−n,F−n, n ≥ 1} um martingale reverso. Então, esse mar-
tingale converge q.c e em L1.

Prova: Temos que X−n = E(X−1|F−n), por definição de martingale, logo se X−n
convergir, deve fazê-lo em L1, pois {X−n} é u.i. Portanto, é suficiente provar que
{X−n} converge q.c. Seja Un(a, b) o número de cruzamentos de [a, b] pelo martingale

{X−n, . . . , X−2, X−1}. Pelo Teorema 4.8, E(Un(a, b)) ≤ E(|X−1|)+a
b−a , e fazendo n →

∞, obtemos Un(a, b) → U(a, b), sendo o limite o número de cruzamentos de [a, b]
pelo martingale reverso {X−n}. Pelo TCM, E(U(a, b)) ≤ (E(|X−1|) + a)/(b − a).
Segue-se que {X−n} converge q.c, usando o mesmo argumento usado no caso usual
(Teorema 4.9). □
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Corolário 4.1. (Teorema da Continuidade de Lévy para a Esperança Condicional)
Suponha que (Ω,F , P ) seja um espaço de probabilidade. Então:

(a) Se F1 ⊂ F2 ⊂ · · · é uma famı́lia crescente de sub-σ-álgebras de F e se X é uma
v.a integrável, então limn→∞E(X|Fn) = E(X|

∨
n≥1Fn) q.c e em L1.

(b) Se F1 ⊃ F2 ⊃ · · · , então limn→∞E(X|Fn) = E(X| ∩n≥1 Fn) q.c e em L1.

Prova: (a) Como F1 ⊂ F2 ⊂ · · · , E(X|Fn) é um martingale; é u.i, pelo Problema
13. Logo, limn→∞E(X|Fn) existe q.c e em L1. Vamos provar que esse limite é
X∞ = E(X|

∨
n≥1Fn). É suficiente mostrar que se Λ ∈

∨
n≥1Fn, então

∫
ΛX∞dP =∫

ΛXdP . Tome um Λ ∈ Fn. Segue-se que
∫
ΛXmdP =

∫
ΛXdP , para m ≥ n, pois

temos um martingale. Faça m → ∞ e obtenha
∫
ΛX∞dP =

∫
ΛXdP , para todo

Λ ∈ Fn. Portanto, a classe dos conjuntos Λ para os quais a última igualdade vale
contém conjuntos em Fn, para todo n, ou seja, contém conjuntos em ∪n≥1Fn, donde
também em

∨
n≥1Fn.

(b) Seja X−n = E(X|Fn), Fn ⊃ Fn+1. Então, {X−n} é um martingale reverso,
e pelo teorema anterior, X−n → X−∞ q.c e em L1. Resta provar que X−∞ =
E(X| ∩n≥1 Fn). Mas, se Λ ∈ ∩n≥1Fn, então

∫
ΛX−mdP =

∫
ΛXdP , porque se

Λ ∈ ∩n≥1Fn, então Λ ∈ Fm. Quando m→∞, e como X−m → X−∞ em L1, temos∫
ΛX−∞dP =

∫
ΛXdP . □

4.5 Aplicações dos martingales

Nesta seção apresentaremos algumas aplicações dos martingales à análise se-
quencial (equação de Wald), à teoria das v.a’s independentes, derivadas, razão de
verossimilhanças e divergência de séries.

4.5.1 Igualdade de Wald

Teorema 4.13. (Wald) Sejam {Xn, n ≥ 1} v.a’s i.i.d, integráveis. Seja T um tempo
de parada, E(T ) <∞. Se Sn = X1 + . . .+Xn, então E(ST ) = E(X1)E(T ).

Prova: (i) Considere, primeiramente, Yn = |X1| + . . . + |Xn|. Então, Zn = Yn −
nE(|X1|) é um martingale. Logo, ZT∧n = YT∧n− (T ∧n)E(|X1|) é um martingale e
pelo TAO E(YT∧n − (T ∧ n)E(|X1|)) = E(ZT∧n) = E(Z1) = 0, ou seja, E(YT∧n) =
E(T ∧ n)E(|X1|). Para n → ∞, como E(T ) < ∞, pelo TCM obtemos E(YT ) =
E(T )E(|X1|) <∞.

(ii) Caso geral: temos que Sn−nE(X1) é um martingale, logo ST∧n− (T ∧n)E(X1)
também é, pelo TAO. Logo, novamente, E(ST∧n) = E(X1)E(T ∧ n). Fazendo n→
∞, o lado direito da última igualdade converge para E(X1)E(T ), pelo TCM. Para
o lado esquerdo, note que |Sn| ≤ |X1|+ . . .+ |Xn|, portanto |ST∧n| ≤ |YT∧n| ≤ YT .
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Mas YT é integrável, pela parte (i), logo podemos fazer n → ∞ no lado esquerdo
para obter E(ST ), usando o TCD. □

Exemplo 4.7. (Aplicações da igualdade de Wald).

[1] Sejam X1, X2, . . . v.a’s i.i.d., P (X1 = 1) = P (X1 = −1) = 1/2; sejam a, b inteiros
positivos e Sn = X1+ . . .+Xn. Queremos calcular a probabilidade de atingir b antes
de atingir −a.

Sejam T1 = inf{n : Sn = −a} e T2 = inf{n : Sn = b}. Defina T = T1 ∧ T2.
Queremos P (T = T2). Suponha, por um momento, que E(T ) <∞. Então, E(ST ) =
E(X1)E(T ), pela igualdade de Wald. Como E(X1) = 0, obtemos E(ST ) = 0.

Também, E(ST ) = bP (T = T2) − a[1 − P (T = T2)] = 0. Resolva e obtenha
P (T = T2) = a/(a+ b).

Vamos mostrar que, de fato, E(T ) <∞. Seja c = a+ b. Encontre d tão grande
de modo que P (|X1 + . . . + Xd| < c) ≤ δ < 1. Então, pela independência dos
incrementos temos

P (T > nd) ≤ P{|X1 + . . .+Xd| < c, . . . , |X(n−1)d + . . .+Xnd| < c} ≤ δn,

ou seja,
∑

n P (T > nd) <∞, ou E(T ) <∞.

[2] Sejam X1, X2, . . . v.a’s i.i.d., de média zero e Sn = X1 + . . . + Xn. Seja T o
primeiro instante de tempo em que Sn > 0, ou seja, T = inf{n ≥ 1 : Sn > 0}.
Então, E(T ) = +∞. De fato, se E(T ) < ∞, pela igualdade de Wald devemos ter
E(ST ) = E(T )E(X1) = 0, mas E(ST ) > 0, uma contradição. Um argumento similar
nos mostra que o tempo de espera para que Sn torne-se negativo pela primeira vez
é infinito.

Teorema 4.14. Seja {Xk,Fk, k = 1, 2, . . . , n} um submartingale e λ > 0. Então,

(a) λP{max1≤k≤nXk ≥ λ} ≤
∫
{maxkXk≥λ}XndP ≤ E(X+

n );

(b) λP{min1≤k≤nXk ≤ −λ} ≤ E(Xn) − E(X1) −
∫
{minkXk≤−λ}XndP ≤ E(X+

n ) −
E(X1).

Prova: Defina o tempo de parada limitado T por T = inf{1 ≤ k ≤ n : Xk ≥
λ} ∧ n com a convenção inf{∅} = ∞. Seja Λ = {ω : max1≤k≤nXk ≥ λ}. Então,
Λ = {T < n} ∪ {T = n,Xn ≥ λ}, de modo que Λ ∈ FT . Segue-se que {XT , Xn}
é um submartingale e pelo TAO e

∫
ΛXTdP ≤

∫
ΛXndP , do que decorre λP (Λ) ≤∫

ΛXTdP ≤
∫
ΛXndP . O item (b) é provado de maneira similar observando que −Xn

é um supermartingal. □

Aplicações

[1] Sejam {Xn, n ≥ 1} v.a’s independentes, média zero e Var(Xk) = σ2k. Então,∑n
i=1Xi = Yn é um martingale e, portanto, (

∑n
i=1Xi)

2 é um submartingale, e
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portanto

λ2P{ max
1≤k≤n

|X1 + . . .+Xk| ≥ λ} = λ2P{ max
1≤k≤n

|X1 + . . .+Xk|2 ≥ λ2}

≤ E(X1 + . . .+Xn)
2 =

n∑
k=1

σ2k,

pelo Teorema 4.14. Vemos, pois, que a a desigualdade de Kolmogorov é um caso
especial do Teorema 4.14.

[2] Seja {Xn, n ≥ 1} um submartingale não negativo. Então, para todo n ≥ 1,

E

(
sup

1≤k≤n
Xp
k

)
≤ qpE (Xp

n) , (4.4)

para 1/p+ 1/q = 1, p, q > 1.

Para a prova, use a fórmula

E(Y p) = p

∫ ∞

0
λp−1P (Y > λ)dλ, p > 1,

com Y = supkXk, e use o primeiro limite superior para P (supkXk > λ) dado no
Teorema 4.14. Como um caso especial temos que, se {Xn} é um martingale, então
(4.4) é válida para {|Xn|, n ≥ 1}.

4.5.2 Aplicações a variáveis independentes

Nesta seção fazemos duas aplicações: uma, à LFGN e, outra, a funções carac-
teŕısticas.

[1] LFGN. Sejam {Xn, n ≥ 1} v.a’s i.i.d, integráveis e Sn = X1 + . . .+Xn. Então,
E(X1| Sn, Sn+1, . . .) é um martingale (reverso) e igual a Sn/n. Portanto, Sn/n
converge q.c e em L1.

Prova: Temos que

E(X1|Sn, Sn+1, . . .) = E(X1|Sn, Xn+1, Xn+2, . . .)

= E(X1|Sn) = E(X2|Sn) = . . . = E(Xn|Sn). (4.5)

A segunda igualdade segue pela independência. Logo,

E(X1|Sn) =
E(X1|Sn) + . . .+ E(Xn|Sn)

n
=
E(X1 + . . .+Xn|Sn)

n
=
Sn
n
.
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Resta verificar a terceira igualdade de (4.5) e as conseguintes. Vamos mostrar
por exemplo que E(X1|Sn) = E(X2|Sn). Ou seja, verificar que, se Λ ∈ F{Sn},∫
ΛX1dP =

∫
ΛX2dP . Considere Λ = {ω : Sn ≤ λ}. Então,∫

{Sn≤λ}
X1dP =

∫
{x1+...+xn≤λ}

x1dF (x1) · · · dF (xn),

onde F é a f.d de X1, e∫
{Sn≤λ}

X2dP =

∫
{x1+...+xn≤λ}

x2dF (x1) · · · dF (xn),

portanto igualdade vale para conjuntos da forma acima e em consequência para todo
Λ ∈ F{Sn}. Pelo Teorema 4.12, Sn/n = E(X1|Sn, Sn+1, . . .) converge q.c e em L1.
□

[2] Funções caracteŕısticas. SejaX uma v.a. A função ϕ(λ) = E(eiλX) é chamada
função caracteŕıstica (f.c) de X. No Caṕıtulo 6 iremos estudar essa função com
detalhes.

Teorema 4.15. Sejam {Xn, n ≥ 1} v.a’s independentes. Seja ϕn(λ) a f.c de Xn.
Seja φn(λ) =

∏n
k=1 ϕk(λ). Se φn(λ) convergir, quando n → ∞, para todo λ que

pertence a algum intervalo [a, b], a < b, então
∑∞

n=1Xn converge q.c.

Prova: Seja Sn =
∑n

i=1Xi e seja Yn = eiλSn/φn(λ). Segue-se que {Yn, n ≥ 1} é um
martingale limitado, logo converge q.c. Como φn(λ) converge, para todo λ ∈ [a, b],
obtemos que exp{iλSn} converge q.c para todo λ ∈ [a, b].

Queremos provar que Sn converge q.c; temos que, para todo λ ∈ [a, b], exp{iλSn(ω)}
converge, para quase todo ω.

Fato: para quase todo ω, exp{iλSn(ω)} converge para quase todo (c.r à medida de
Lebesgue) λ ∈ [a, b].

Seja hn(λ, ω) = exp{iλSn(ω)} e h(λ, ω) = limn hn(λ, ω), sempre que esse li-
mite exista. Temos que hn é mensurável c.r ao espaço produto ([a, b],B[a,b], µ) ×
(Ω,F , P ), onde µ é a medida de Lebesgue em [a, b]. Chamemos de M = {(λ, ω) :
hn(λ, ω) converge}. Então, IM é mensurável relativamente à σ-álgebra produto.
Temos que

(µ× P )(M) =

∫
[a,b]×Ω

IMdµ× dP =

∫
[a,b]

[∫
Ω
IM (λ, ω)dP

]
dµ.

Para λ fixo,
∫
IMdP = 1, logo (µ× P )(M) = µ[a, b]. Mas também temos que∫

Ω

[∫
[a,b]

IM (λ, ω)dµ

]
dP = µ[a, b],
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e a integral interior é menor ou igual a µ[a, b], portanto devemos ter que essa integral
é igual a µ[a, b], para quase todo ω.

Portanto, para quase todo ω, IM (λ, ω) = 1, para quase todo λ. Agora, seja
[c, d] ⊂ [a, b]. Tome qualquer ω0 tal que limn exp{iλSn(ω0)} exista, para quase todo
λ. Mostremos que, para esse ω0 escolhido, Sn(ω0) converge. Pelo TCD,∫

[c,d]
lim
n

exp{iλSn(ω0)}dµ = lim
n

∫
[c,d]

exp{iλSn(ω0)}dµ. (4.6)

Definimos An =
∫
[c,d] exp{iλSn(ω0)}dµ. Por (4.6), limnAn existe. Observe

também que se Sn(ω0) ̸= 0,

|An| =
∣∣∣eidSn(ω0) − eicSn(ω0)

iSn(ω0)

∣∣∣ ≤ 2

|Sn(ω0)|
.

Segue-se que limn supSn(ω0) = +∞ e limn inf Sn(ω0) = −∞ não são posśıveis.
Porque, se por exemplo, limn supSn(ω0) = +∞, então limnAn = 0, mas então∫
[c,d] limn exp{iλSn(ω0)}dµ = 0, para todo c, d, ou seja, limn exp{iλSn(ω0)} = 0,

para quase todo λ, uma contradição, pois | exp{iλSn(ω0)}| = 1. Portanto, se
Sn(ω0) não converge, deve oscilar entre dois valores finitos r e s, r < s, ou seja
limn inf Sn(ω0) = r, limn supSn(ω0) = s. Mas, se assim for, então eiλr = eiλs, para
quase todo λ ∈ [a, b]. Mas, isso é imposśıvel para dois valores de λ cujo quociente é
irracional. Segue-se que Sn(ω0) deve convergir. □

4.5.3 Diversas aplicações

Derivadas

Seja (Ω,F , P ) um e.p. Para cada n, considere {Λn,1, . . . ,Λn,k} como uma
partição de Ω, ou seja, ∪∞k=1Λn,k = Ω, {Λn,k, k ≥ 1} são disjuntos e P (Λn,k) > 0.

Suponha que a partição (n + 1)-ésima seja um refinamento da n-ésima, ou seja
para todo k ≥ 1, Λn+1,k é um subconjunto de Λn,j , para algum j.

Seja φ uma função de conjuntos positiva e aditiva e defina

Xn(ω) =
φ(Λn,k)

P (Λn,k)
, se ω ∈ Λn,k.

Então {Xn, n ≥ 1} é um martingale positivo e, portanto converge q.c.

Exemplo 4.8. Seja Ω = [0, 1], F a σ-álgebra de Borel e P a medida de Lebesgue
sobre [0, 1]. Considere F uma função crescente definida sobre [0, 1]. Defina:
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72 CAPÍTULO 4. MARTINGALES

Λn,1 =

[
0,

1

2n

)
,

Λn,2 =

[
1

2n
,
2

2n

)
,

Λn,3 =

[
2

2n
,
3

2n

)
etc.

Seja

Xn(ω) =
F
(
k+1
2n

)
− F

(
k
2n

)
k+1
2n −

k
2n

, se ω ∈
[
k

2n
,
k + 1

2n

)
.

Então, {Xn, n ≥ 1} é um martingale positivo, portanto converge q.c. Como F é
crescente, F

′
(ω) existe para quase todo ω ∈ [0, 1]. Assim, obtemos que Xn → F ′,

q.c.

Razões de verossimilhanças

Sejam X1, X2, . . ., v.a’s i.i.d, com função densidade de probabilidade f(x) e
seja g(x) outra densidade qualquer. Defina

Ln =

{
g(X1)g(X2)···g(Xn)
f(X1)f(X2)···f(Xn)

, se f(Xi) > 0, para todo i,

0, se f(Xi) = 0, para algum i.
(4.7)

Então, {Ln, n ≥ 1} é um martingale positivo e, portanto, converge q.c, quando
n → ∞. Na realidade, se P (f(X1) = g(X1)) < 1, Ln → 0 q.c. De fato, seja
L = limn→∞ Ln. Se L̂ é qualquer v.a tal que L̂ seja independente de L, mas com
a mesma distribuição de L, L̂ ∼ L, então LL̂ ∼ L. No entanto, pela lei de Hewitt-
Savage, L é uma constante e LL̂ ∼ L vale somente se L = 0 ou L = 1. Essa
constante não pode ser 1, pois se o quociente em (4.7) for 1, então

∏∞
i=1

g(Xi)
f(Xi)

= 1,

logo g(X1)/f(X1) = 1, q.c, o que contradiz nossa hipótese. Portanto, L = 0 é o
único limite posśıvel.

A relevância desse fato em Estat́ıstica é a seguinte. Suponha X1, X2, . . . i.i.d. A
densidade é f ou g, mas não sabemos qual. Para decidir, calcule (4.7); se o limite
for 0, é f , se o limite for infinito, é g.

Divergência de séries

Teorema 4.16. Seja {Xn, n ≥ 1} um martingale tal que E(supn |Xn+1−Xn|) <∞.
Sejam Ω1 = {ω : Xn(ω) converge } e
Ω2 = {ω : lim infnXn(ω) = −∞, lim supnXn(ω) = +∞}. Então, Ω = Ω1 ∪ Ω2.
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Prova: Seja M > 0 e seja T = inf{n ≥ 1 : Xn > M}, e T =∞, se não existir tal n.
Então, T é um tempo de parada e {XT∧1, XT∧2, . . .} é um martingale, pelo TAO.
Temos, então,

E(X+
T∧n) ≤ E[M + sup

n
|Xn+1 −Xn|] ≤M + E(sup

n
|Xn+1 −Xn|) <∞,

e portanto supnE(X+
T∧n) <∞, do que segue que {XT∧n} converge q.c.

Note que XT∧n(ω) = Xn(ω), para todo n sobre o conjunto {T = +∞}, portanto
Xn(ω) converge q.c sobre {T = +∞}, ou seja, {Xn} converge no conjunto onde
supnXn ≤ M , pela definição de T . Para M → ∞, segue-se que {Xn} converge
sobre o conjunto onde lim supnXn < ∞. Proceda do mesmo modo para {−Xn} e
obtenha que {Xn} converge sobre o conjunto onde lim infnXn > −∞. □

Corolário 4.2. Sejam {Xn, n ≥ 1} independentes, média zero, |Xn| ≤M , para todo
n ≥ 1. Então, para quase todo ω ∈ Ω, ou

∑
Xn(ω) converge ou lim infn

∑n
k=1Xk(ω) =

−∞ e lim supn
∑n

k=1Xk(ω) = +∞.

Problemas

1. Prove que τ , como definido no Exemplo 4.1(c), é um tempo de parada.

2. Prove a afirmação do Exemplo 4.1(d).

3. Prove as propriedades [3]-[6] dos tempos de parada.

4. Prove a observação (h) da seção 4.3.

5. Provem o item (b) do Exemplo 4.3.

6. Sejam {Zn, n ≥ 1} i.i.d, P (Z1 = 1) = P (Z1 = 0) = 1/2. Defina Xn = 2n
∏n

k=1 Zk.
Prove que {Xn} é um martingale. Prove que esse martingale não tem a forma dada
no Exemplo 4.3 (c).

7. Prove que {Y−n} do Exemplo 4.4 (b) é um martingale.

8. Prove que, se {Xn, n ≥ 1} é um (sub)martingale, e T um tempo de parada, finito ou
não, então {XT∧1, XT∧2, . . .} é um (sub)martingale.

9. Prove (a) e (b) do Exemplo 4.5.

10. Seja Ω = {1, 2, 3, . . .}, F a classe de todos os subconjuntos de Ω, P ({k}) = 1/k −
1/(k + 1), se k ∈ Ω. Suponha que {Xn, n ≥ 1} seja definido por Xn({k}) = n, se
k > n e Xn({k}) = −1, se k ≤ n.

(a) Prove que {Xn} é um martingale e encontre seu limite, quando n→∞.

(b) Determine se {Xn} é ou não u.i.

(c) Calcule P{supn |Xn| > λ} exatamente.
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11. Produza exemplos de: (a) martingales {Xn} e {Yn} tais que {Xn + Yn} não seja um
martingale; (b) um submartingale {Xn} tal que {|Xn|} não seja um submartingale.

12. (Decomposição de Submartingales - Doob) (a) Seja {Xn,Fn, n ≥ 1} um submartin-
gale. Mostre que Xn = Mn + An, univocamente, onde {Mn,Fn, n ≥ 1} dé um mar-
tingale e {An} tem as propriedades: A1 = 0, An ≤ An+1 e An é Fn−1-mensurável. O
processo {An} é chamado de compensador.

(b) Suponha que se saiba que todo martingale limitado no sentido de L1 converge
q.c. Use esse fato e (a) para provar diretamente que todo submartingale limitado no
sentido L1 converge q.c.

[Esse resultado é útil em Confiabilidade. Sugestão: An =
∑n−1

k=1 E(Xk+1−Xk|Fk), n ≥
2.] Veja Gut( 2013).

13. Seja X uma v.a. integrável sobre (Ω,F , P ). Mostre que a classe de funções {E(X|G)},
onde G varia sobre todas as sub-σ-álgebras de F , é uniformemente integrável.

14. (a) Seja {Xn,Fn, n ≥ 1} um martingale e seja V = {Vn, n ≥ 1} um processo es-
tocástico tal que |Vn| ≤ 1, para todo n e Vn sendo Fn−1-mensurável (tome F0 =
{Ω, ∅}). Prove que

∑n
k=1 Vkdk = Yn é um martingale, onde d1 = X1, dk = Xk −

Xk−1, k > 1.

(b) Um modo útil de olhar um tempo de parada é o seguinte. Seja T um tempo de
parada para um martingale {Xn,Fn, n ≥ 1}. Prove que {XT∧n, n ≥ 1} tem a forma
dada em (a). Tome Vk = I{T ≥ k}.

15. Sejam {Yn, n ≥ 1} independentes, simetricamente distribúıdas, mas não necessaria-
mente integráveis. Seja Fn = F{Y1, . . . , Yn}. Seja Vn Fn−1-mensurável. Prove que se∑

k Yk converge q.c para um limite finito, então
∑

k VkYk converge q.c para um limite
finito sobre o conjunto {supn |Vn| <∞}. Note que

∑
k VkYk não é uma soma de v.a’s

independentes.

16. Prove a chamada decomposição de Riesz para supermartingales: se {Xn,Fn, n ≥ 1} é
um supermartingale u.i, então Xn =Mn+An, onde {Mn,Fn, n ≥ 1} é um martingale
u.i. e {An,Fn, n ≥ 1} é um potencial, isto é, um supermartingale não negativo tal
que limn→∞E(An) = 0.

17. Prove a Decomposição de martingales de Krichberg: se {Xn, n ≥ 1} é um martingale,

então Xn = X
(1)
n −X(2)

n , onde {X(i)
n , n ≥ 1} é, para cada i = 1, 2, um martingale não

negativo.

[Sugestão: considere a decomposição de Doob do submartingale X+
n = Mn + An e

coloque X
(1)
n =Mn + E(A∞|Fn).]

18. Estabeleça a seguinte extensão do TAO. Seja {Xn, n ≥ 1} um martingale u.i e seja
X∞ = limnXn. Suponha que S ≤ T sejam tempos de parada e coloque XT = X∞
sobre o conjunto {T = ∞}. Prove que E(XT |FS) = XS . A diferença para o TAO
provado no texto é que S, T podem ser infinitos.

19. Seja {Xn, n ≥ 1} um supermartingale não negativo. Prove que, para qause todo ω, se
Xn(ω) = 0, então Xn+k(ω) = 0, para todo k ≥ 0 (Esse resultado nos diz que sempre
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que um supermartingale não negativo atinge zero, ele permance lá permanentemente,
o que pode parecer surpreendente).

[Sugestão: considere o tempo de parada T = inf{n : Xn(ω) = 0} e use o TAO.]

20. Prove o Corolário 4.2.

21. Prove que, de fato, Fτ− e Fτ+ são σ-álgebras.

22. Se {Xn,Fn, n ≥ 1} é um martingale em L2, com Un+1 = Xn+1−Xn, n ≥ 1, diferenças
martingales, prove que:

(a) E(UnUm) = E(U2
n), se n = m e igual a zero se n ̸= m.

(b) Para m < n, E(UnXm) = E(UnE(Xn|Fn)) = 0.
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Caṕıtulo 5

Processos Estocásticos com
Tempo Cont́ınuo

Neste caṕıtulo, faremos uma introdução aos processos estocásticos com tempo
(parâmetro) cont́ınuo. Em particular, veremos as dificuldades encontradas nesse
caso. Estenderemos o estudo dos martingales com tempo discreto, estudados no
Caṕıtulo 4 para o caso de tempo cont́ınuo e daremos uma introdução aos processos
com incrementos independentes. No Caṕıtulo 9 estudaremos com mais detalhes o
movimento browniano, ou processo de Wiener. A seção 5.1 traz conceitos mais
dif́ıceis e pode ser ignorada numa primeira leitura. Referências para esse caṕıtulo
são Doob (1953), Breiman (1968, 1992) e Itô (2006).

5.1 Separabilidade e mensurabilidade

Iniciamos com a definição de processo estocástico com parâmetro cont́ınuo.

Definição 5.1. Seja (Ω,F , P ) um e.p e T um intervalo dos reais. Então, X =
{Xt, t ∈ T} é um processo estocástico com parâmetro cont́ınuo se cada Xt é uma
variável aleatória sobre (Ω,F , P ).

Podemos considerar X como uma aplicação de T ×Ω→ R, tal que X : (t, ω)→
Xt(ω). Frequentemente, escrevemos Xt(ω) = X(t, ω).

As funções (uma para cada ω) definidas por X(·, ω) são chamadas funções amos-
trais ou trajetórias de X (ou ainda realizações).

Exemplo 5.1. Seja (Ω,F , P ) um e.p e considere Y uma v.a normal sobre esse e.p.
Defina Xt(ω) = sen[at+ Y (ω)]. Então, para cada ω, uma trajetória de X será uma
senóide, como função de t real.

Definição 5.2. Seja (Ω,F , P ) um e.p, X = {Xt, t ∈ T} um processo estocástico.

77
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(a) Dizemos que quase todas as trajetórias de X são cont́ınuas se existe um con-
junto nulo Λ tal que, se ω /∈ Λ, então X(·, ω) é cont́ınua.

(b) Dizemos que X é cont́ınuo em t0 q.c, se existe um conjunto nulo Λ0 tal que
limt→t0 Xt(ω) = Xt0(ω), sempre que ω /∈ Λ0. X é cont́ınuo q.c seX for cont́ınuo
q.c em cada t ∈ T .

(c) X é cont́ınuo em probabilidade em t0 se limt→t0 Xt = Xt0 , limite este em pro-
babilidade. X é cont́ınuo em probabilidade se for cont́ınuo em probabilidade
em todo ponto t ∈ T .

Observamos que (a) ⇒ (b) ⇒ (c). Claramente, (c) não necessita implicar (b).

Exemplo 5.2. Vejamos um exemplo de X que satisfaz (b) mas não (a). Considere
Ω = [0, 1], F σ-álgebra de Borel sobre [0, 1] e P a medida de Lebesgue sobre [0, 1].
Considere, também, T = [0, 1]. Defina X por

Xt(ω) =

{
0, se t < ω,
1, se t ≥ ω (5.1)

Então, X satisfaz (b), mas não (a).

Vamos discutir algumas dificuldades encontradas no caso de parâmetro cont́ınuo.
Seja {Xn, n ≥ 1} um processo estocástico com parâmetro discreto. Então, operações
razoáveis com a sequência X1, X2, . . . , sempre produz funções mensuráveis como
resultados.

Por exemplo, supnXn é uma v.a (isto é, mensurável), porque {supnXn < λ} =
∩n{Xn < λ} é mensurável.

Do mesmo modo, limnXn, lim supnXn, infnXn etc, são mensuráveis.

Seja, agora, um processo estocástico {Xt, t ∈ T} com parâmetro cont́ınuo. Então,
supt∈T Xt não necessita ser mesurável. De fato, {suptXt < λ} = ∩t∈T {Xt < λ}, e
este conjunto pode ser não mensurável, porque temos uma intersecção não enu-
merável. De modo similar, o conjunto {ω : X(·, ω) é cont́ınuo} ou o conjunto
{ω : |X(·, ω)| permanece limitado} etc não são necessariamente mensuráveis.

Outra observação: {Xt, t ∈ T} é usualmente constrúıdo usando-se somente as dis-
tribuições finito-dimensionais (lembre-se do Teorema da Extensão de Kolmogorov).
Os conjuntos que temos discutido envolvem todas as distribuições ao mesmo tempo.
De fato, dois processos tendo as mesmas distribuições finito-dimensionais podem ter
trajetórias radicalmente diferentes.

Exemplo 5.3. Seja Ω = [0, 1], F a σ-álgebra de Borel e P a medida de Lebesgue,
ambas sobre [0, 1]. Defina os processos {Xt, t ∈ T} e {Yt, t ∈ T} como segue:
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Xt(ω) = 0,

Yt(ω) =

{
0, t ̸= ω,
1, t = ω.

Note que para todo t ∈ [0, 1], Xt = Yt q.c, de modo que esses processos têm as
mesmas distribuições finito-dimensionais. Mas o comportamento das trajetórias é
diferente. Por exemplo, P ({ω : suptXt(ω) = 1}) = 0, mas P ({ω : supt Yt(ω) =
1}) = 1. Também, P ({ω : X(·, ω) é cont́ınuo}) = 1, ao passo que a probabilidade
do conjunto similar para Yt é zero.

Exemplo 5.4. Considere o mesmo e.p do exemplo anterior e seja A
′
um conjunto

não mensurável de [0, 1] e defina A = {(x, y) : x = y e x ∈ A′}. Defina Xt(ω) =
IA(t, ω), que define um p.e {Xt, t ∈ T}. Então, {ω : suptXt = 1} = A

′
, que não é

mensurável.

Daremos, a seguir três definições de processo separável. Por comodidade, os
processos estocásticos envolvidos nestas definições serão considerados com valores
em [−∞,∞].

Definição 5.4. Seja X = {Xt, t ∈ T} um p.e com valores em [−∞,∞] e A a
classe de todos os conjuntos fechados de [−∞,∞]. Dizemos que X é separável se a
seguinte afirmação é verdadeira: Existe um conjunto enumerável S de pontos em T
e um conjunto nulo Λ, tal que se A ∈ A, então os conjuntos

Λ1 = {ω : Xt(ω) ∈ A, t ∈ I ∩ S}

e

Λ2 = {ω : Xt(ω) ∈ A, t ∈ I ∩ T}

diferem no máximo por um subconjunto de Λ. Aqui, I é qualquer subintervalo aberto
de T .

O conjunto enumerável envolvido, S, é chamado um separador.

Definição 5.5. X é separável se existe um conjunto nulo Λ tal que, sempre que
ω /∈ Λ, o fecho do gráfico de X(t, ω), para t ∈ S, contém o gráfico de X(t, ω), para
t ∈ T .

Definição 5.6. X é separável se existe um conjunto nulo Λ tal que, se ω /∈ Λ,
então Xt(ω) ∈ ∩I:t∈IX(I ∩ S, ω), para todo t, onde I é um intervalo aberto da reta
e X(I ∩ S, ω) := fecho{X(s, ω) : s ∈ I ∩ S}.

Essas três definições são equivalentes (veja o Problema 1).
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Algumas consequências: Seja {Xt, t ∈ T} um processo separável e I qualquer
subintervalo de T .

[1] supt∈I∩S Xt(ω) = supt∈I Xt(ω), se ω /∈ Λ.

Note que o membro esquerdo é mensurável, pois I ∩ S é enumerável. Para a
prova, note que o lado esquerdo é menor ou igual ao segundo, pois estamos tomando
o supremo sobre um conjunto menor. Cada Xt é um limite de Xs, para s ∈ S, para
todo ω /∈ Λ, logo o segundo membro não pode ser maior do que o primeiro.

De modo similar, temos que

lim sup
t→t0, t∈S

Xt(ω) = lim sup
t→t0

Xt(ω), ω /∈ Λ.

[2] Seja S
′
um conjunto enumerável, S

′ ⊃ S, sendo S um separador. Então S
′
é

também um separador.

[3] S é denso em T .

[4] Se {Xt, t ∈ T} é separável, e se f for cont́ınua, então Yt = f(Xt) é também
separável.

[5] Seja X um processo tal que quase todas as trajetórias de X são cont́ınuas à
direita. Então, X é separável.

Exemplo 5.5. Vejamos um exemplo de um processo não separável. Defina Yt(ω)
como no exemplo 5.2. Então {Yt, t ∈ T} é não separável. Para provar, use a
Definição 5.5.

Definição 5.7. Sejam X = {Xt, t ∈ T} e Y = {Yt, t ∈ T} dois processos es-
tocásticos. Dizemos que X e Y são equivalentes se, para cada t, Xt = Yt q.c.

Para provar o teorema seguinte, necessitamos de dois lemas.

Lema 5.1. Seja A0 o conjunto de todas as reuniões finitas de intervalos abertos
ou fechados de [−∞,∞], tendo extremos racionais (ou infinitos). Seja A a classe
dos conjuntos que são intersecções de conjuntos de A0. Então, A contém todos os
conjuntos fechados de [−∞,∞].

Lema 5.2 Seja {Xt, t ≥ T} um processo estocástico.
(a) Seja A um boreliano de [−∞,∞]. Existe uma sequência enumerável (finita ou
infinita) {t1, t2, . . .} dependendo de A tal que para todo t ∈ T ,

P{Xtn ∈ A,n ≥ 1, Xt /∈ A} = 0.
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(b) Seja A0 qualquer coleção enumerável de borelianos de [−∞,∞]. Seja A a classe
de todos os conjuntos que são intersecções de conjuntos de A0. Então, existe uma
sequência enumerável (finita ou infinita) {t1, t2, . . .} tal que, para todo t ∈ T , existe
um conjunto nulo Λt tal que

{Xtk ∈ A, k ≥ 1, Xt /∈ A} ⊂ Λt,

para todo A ∈ A.

Teorema 5.1. Seja X = {Xt, t ∈ T} um p.e sobre (Ω,F , P ). Então, existe um p.e
X̃ = {X̃t, t ∈ T} tal que X̃ é equivalente a X e X̃ é separável. Em geral, X̃ tem
valores em [−∞,+∞] mesmo que X tenha valores em R.

Prova: Seja A0 a coleção de conjuntos que são reuniões finitas de conjuntos abertos
ou fechados com extremos racionais (ou infinitos). Seja A o conjunto que contém
todas as intersecções de conjuntos de A0.

Pelo Lema 5.1, A contém os conjuntos fechados de [−∞,∞]. Também, A0 é
uma coleção enumerável de conjuntos.

Seja I um subintervalo com extremos racionais ou infinitos de T . Apliquemos
o Lema 5.2 (b) com A0 e A descritos aqui e T substitúıdo por I ∩ T . Temos,
então, que para um conjunto enumerável SI e um conjunto nulo N I

t , {Xs ∈ A, s ∈
SI , Xt /∈ A} ⊂ N I

t . Defina um separador S por S = ∪ISI e defina Nt = ∪IN I
t e

A(I, ω) = {Xs(ω) : s ∈ I ∩ S}. Finalmente, seja A(t, ω) = ∩I:t∈IA(I, ω).
Observe queXt(ω) ∈ A(t, ω), se ω /∈ Nt. Também, se ω ∈ Nt, A(t, ω) é ainda não

vazio (pois intersecções finitas dos A(I, ω)’s na definição de A(t, ω) não são vazias,
e cada A(I, ω) é um conjunto compacto em [−∞,∞], portanto vale a propriedade
da intersecção finita).

Assim, A(t, ω) é não vazio, para todo ω. Portanto, definamos X̃ como segue:
X̃t(ω) = Xt(ω), se ω /∈ Nt, e igual a qualquer ponto em A(t, ω), se ω ∈ Nt.

Então, X̃t(ω) = Xt(ω) q.c e portanto X̃ é equivalente a X. Também, X̃ é
separável, pois por construção

X̃t(ω) ∈ A(t, ω) = ∩I:t∈IA(I, ω) = ∩I:t∈IX̃(I ∩ S, ω),

para I com extremos racionais (ou infinitos). Pela definição 5.6, devemos mos-

trar que X̃t(ω) ∈ ∩I:t∈IX̃(I ∩ S, ω), I aberto. Se I for qualquer intervalo aberto
contendo t, segue-se que existe um intervalo aberto racional I

′
, tal que I

′ ⊂ I e
t ∈ I

′
. Mas X(I ′ ∩ S, ω) ⊂ X(I ∩ S, ω), portanto ∩I rac. aberto:t∈IX(I ∩ S, ω) =

∩I aberto:t∈IX(I ∩ S, ω). □

Definição 5.8. Seja X = {Xt, t ∈ T} um p.e sobre (Ω,F , P ). Seja BT × F a
σ-álgebra produto sobre T , onde BT é a σ-álgebra de Borel sobre T . Dizemos que o
processoX é mensurável se a aplicaçãoX : (t, ω)→ R for conjuntamente mensurável
em (t, ω).
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Teorema 5.2. Seja X = {Xt, t ∈ T} um processo mensurável. Então:

(a) Para todo ω, a trajetória X(·, ω) é Borel mensurável;

(b) Se Xt for integrável, para cada t, então E(Xt) é uma função Borel mensurável
de t.

Prova: (a) Imediata.

(b) Veja o Problema 5. □

Exemplo 5.6. (Um processo mensurável) Se X tem trajetórias cont́ınuas à direita
então X é mensurável. De fato: para todo n ≥ 1, defina X(n)(t, ω) = (k + 1)/n, se
{k/n ≤ X(t, ω) < (k + 1)/n}, k ≥ 0. Então, esses procesos são mensuráveis. Pela
continuidade à direita, X(n)(t, ω) → X(t, ω), para cada (t, ω) fixado. Deduzimos
que X é mensurável como limite simples de processos mensuráveis.

5.2 Martingales com parâmetro cont́ınuo

Nesta seção vamos estender o conceito de (sub/super)martingales para o caso
de um processo com tempo cont́ınuo. Em particular, o TAO é estendido para esse
caso.

Definição 5.9. Seja (Ω,F , P ) um e.p e T um intervalo de R. Para cada t ∈ T , seja
Ft uma σ-álgebra. Suponha que, para t ≤ s, temos Ft ⊂ Fs (crescente). O processo
X = {Xt, t ∈ T} é um martingale com parâmetro cont́ınuo se

(a) Xt é Ft-mensurável e integrável;

(b) se s < t, então E(Xt|Fs) = Xs, q.c.

Submartingales e supermartingales são definidos de maneira similar ao caso dis-
creto.

Teorema 5.3. Seja X = {Xt,Ft, t ∈ T} um submartingale separável. Então:

(a) λP{supt∈T Xt ≥ λ} ≤ supt∈T E(X+
t );

(b) E(U(a, b)) ≤ supt∈T
E(X+

t )+a
b−a , onde U(a, b)(ω) é o número de vezes que a tra-

jetória de X(·, ω) vai de abaixo de a para cima de b.

Prova: (a) Seja S = {s1, s2, . . .} um conjunto separador para X. Suponha s1 <
s2 < · · · . Então, {Xs1 , . . . , Xsn} é um martingale com parâmetro discreto, logo pelo
teorema análogo no caso discreto temos

λP
{

sup
1≤k≤n

Xsk ≥ λ
}
≤ sup

k≤n
E(X+

sk
) ≤ sup

t∈T
E(X+

t ).
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Fazendo n → ∞, obtemos λP{supk≥1Xsk ≥ λ} ≤ suptE(X+
t ). Mas, então,

supkXsk = supt∈T Xt q.c, pois X é separável.

(b) Mesmo tipo de prova. Veja o Problema 7. □

Teorema 5.4. Seja X = {Xt, t ∈ T} um submartingale separável. Então:

(a) Quase todas as trajetórias de X são limitadas sobre subintervalos compactos de
T .

(b) Quase todas as trajetórias de X são livres de descontinuidades oscilatórias.

Prova: (a) Seja I = [a, b] um subintervalo compacto de T . Pelo teorema anterior,

λP
{
sup
t∈I

Xt ≥ λ
}
≤ sup

t∈I
E(X+

t ) = E(X+
b ) <∞.

Para λ → ∞, obtemos P{supt∈I Xt < ∞} = 1, portanto quase todas as tra-
jetórias são tais que supt∈I Xt <∞. Também, temos que

λP
{
inf
t∈I

Xt ≤ −λ
}
≤ E(X+

b )− E(Xa).

Para λ→∞, temos P{inft∈I Xt > −∞} = 1, logo para todo t ∈ I e quase todo
ω, Xt(ω) > −∞. Segue-se que quase todas as trajetórias são limitadas.

(b) Seja I como na parte (a). Sejam r < s números racionais e UI(r, s)(ω) o número
de cruzamentos de [r, s] pela trajetória X(t, ω), a ≤ t ≤ b. Então, E[UI(r, s)] <∞,
pelo teorema anterior. Em particular, UI(r, s)(ω) < ∞, exceto para ω ∈ Λr,s de
probabilidade nula. Seja Λ = ∪r<sΛr,s, r, s racionais; Λ é um conjunto nulo. Se
ω /∈ Λ, a trajetória X(·, ω) não tem descontinuidades oscilatórias sobre I. Pois,
suponha que X(·, ω) não tenha limite à esquerda no ponto u ∈ I. Então, existem
números racionais r < s tais que lim supt↑uXt ≥ s e lim inft↑uXt ≤ r. Mas, então,
Xt cruza [r, s] um número infinito de vezes, e isso é imposśıvel, se ω /∈ Λ. □

Observação: A parte (b) significa que, existe um conjunto nulo Λ tal que, se
ω /∈ Λ, então a trajetória X(·, ω) tem a seguinte propriedade: se u é um ponto
interior de T , então limXt↑u e limt↓uXt ambos existem. Deduzimos que trajetórias
de submartingales separáveis somente podem ter descontinuidades com saltos.

A seguir, responderemos às seguintes questões:

[1] Suponha que X = {Xt, a ≤ t < b} seja um submartingale separável. Então

(a) Existe o limt↑bXt? Quando?

(b) Se existir o limite em (a) e o chamarmos Xb, quando X = {Xt, a ≤ t ≤ b} será
um submartingale?

[2] Suponha X = {Xt, a < t ≤ b} seja um submartingale separável.
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(c) Existe o limt↓aXt?

(d) Se existir o limite em (c) e o chamamos Xa, quando X = {Xt, a ≤ t ≤ b} será
um submartingale?

Teorema 5.5. Seja X = {Xt, a ≤ t < b} um submartingale separável.

(a) Se supa≤t<bE(|Xt|) <∞, então limt↑bXt existe q.c.

(b) Se X = {Xt, a ≤ t < b} for u.i, então o limite em (a) existe no sentido L1 e
X = {Xt, a ≤ t ≤ b} é um submartingale, se definirmos Xb = limt↑bXt.

Prova: (a) Suponha tn ↑ b, então {Xtn , n ≥ 1} é submartingale com parâmetro dis-
creto, L1-limitado, usando a hipótese de (a). Portanto, limn→∞Xtn existe q.c e deno-
tamos por Y este limite. O limite independe (q.c) da sequência tn escolhida; de fato,
suponha que sn ↑ b e tal que limnXsn = Y ′. Considere a sequência {s1, t1, s2, t2, . . .}
e seja {r1, r2, . . .} essa sequência em ordem crescente. Então, {Xrn , n ≥ 1} é um sub-
martingale L1-limitado e portanto limnXrn existe q.c, e isso é imposśıvel, a menos
que Y = Y ′, q.c.

(b) É suficiente mostrar que {Xt, a ≤ t ≤ b} é um submartingale. Para isso, mos-
tremos que

∫
ΛXtdP ≤

∫
ΛXbdP , sempre que Λ ∈ Ft. Sejam t < tn < b, tn ↑ b;

então,
∫
ΛXtdP ≤

∫
ΛXtndP , pela definição de submartingale. Para n → ∞, por

integrabilidade uniforme, obtemos o desejado, pois Xtn → Xb, por definição. □

Teorema 5.6. Seja X = {Xt, a < t ≤ b} um submartingale separável. Então,
limt↓aXt existe q.c e em L1. Além disso, {Xt, a ≤ t ≤ b} é um submartingale, se
definirmos Xa = limt↓aXt.

Prova: Suponha que tn ↓ a, então {Xtn , n ≥ 1} é um submartingale reverso e
portanto limn→∞Xtn existe q.c e em L1. Este limite é independente da sequência
{tn} escolhida, pelo mesmo argumento feito no teorema anterior. Logo, {Xt, a ≤
t ≤ b} é um submartingale, pelo argumento do teorema anterior. □

Definição 5.10. Seja T um intervalo real aberto à direita. Seja {Ft, t ∈ T} uma
famı́lia crescente de σ-álgebras e Ft+ = ∩s>tFs. Se Ft+ = Ft, para todo t, a famı́lia
{Ft, t ∈ T} é chamada cont́ınua à direita.

Exemplo 5.7. Seja Ft a σ-álgebra gerada pelos conjuntos de Borel de [0, t) e [t, 1).
Então, para cada t, o ponto {t} satisfaz: {t} ∈ Ft+, mas {t} /∈ Ft.

Definição 5.11. Sejam X = {Xt, t ∈ T} e Y = {Yt, t ∈ T} dois p.e. Dizemos que
Y é uma modificação càdlàg (do francês “continue à droite, limite à gauche”) de X
se Y tem as suas trajetórias cont́ınuas à direita, com limites à esquerda e Xt = Yt
q.c, para todo t ∈ T .

A seguir, apresentamos um resultado que garante a existência de modificações
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càdlàg de um submartingale. Chamaremos uma famı́lia {Ft, t ∈ T} de completa se
todos os subconjuntos de conjuntos nulos de F pertencem a Ft para todo t ∈ T .
No teorema a seguir, consideraremos o processo {Xt+, t ∈ T} definido por Xt+ =
limt′↓tXt′ se o limite existir e 0 se não. Pela observação seguindo o Teorema 5.4,
observe que fora de um conjunto nulo, limt′↓tXt′ existe para todo t ∈ T . Também
observe que por construção, para todo t ∈ T , Xt+ é Ft+ mensurável.

Teorema 5.7. Seja T um intervalo real aberto à direita. Seja X = {Xt, t ∈ T} um
submartingale separável.

(a) O processo {Xt+, t ∈ T} é um submartingale relativamente a {Ft+, t ∈ T} e, é
um martingale se X for um martingale.

(b) Seja {Ft, t ∈ T} uma famı́lia completa e cont́ınua à direita. Então {Xt,Ft, t ∈ T}
tem uma modificação càdlàg que também é um submartingale se, e somente se,
E(Xt) é cont́ınua à direita como uma função de t. Em particular, todo martingale
separável relativo a {Ft, t ∈ T} tem uma modificação càdlàg que também é um
martingale.

Observação: A hipótese de separabilidade não é necessária no Teorema 5.7. Veja
Le Gall (2013), Théorème 3.4.

Prova: (a) Devemos provar que se Λ ∈ Fs+ e s < t, então
∫
ΛXs+dP ≤

∫
ΛXt+dP .

Suponha que sn ↓ s, s < sn < t e tn ↓ t. Então, como Λ ∈ Fs+, segue-se que Λ ∈ Fsn ,
para todo n, pois Fs+ = ∩Fsn . Portanto,

∫
ΛXsndP ≤

∫
ΛXtndP . Faça n→∞ para

obter o resultado. A segunda afirmação do enunciado decorre imediatamente da
prova trocando ≤ por =.

(b) Primeiramente, pela observação seguindo o Teorema 5.4, sabemos que existe um
conjunto nulo N tal que se ω /∈ N , as trajetórias X(·, ω) tem limites à direita e a
esquerda. Definimos o processo Y = {Yt, t ∈ T} por Yt(ω) = Xt+(ω) se ω /∈ N
e 0 senão. Note que como {Ft} é completa, temos que Yt é Ft mensurável para
todo t ∈ T e por (a) obtemos que Y é um submartingale (ou um martingale se X
for um martingale). Além disto, por construção, as trajetórias de Y são càdlàg.
Agora, devemos mostrar que Y é uma modificação de X se e somente se t→ E(Xt)
é cont́ınua à direita. Temos que

Xt ≤ E(Xt+|Ft) = E(Yt|Ft+) = Yt, (5.2)

sendo que a primeira igualdade segue da continuidade à direita de Ft e, a segunda,
porque Yt é Ft+-mensurável. Logo, Xt ≤ Yt.

Suponha, agora, tn ↓ t. Se Λ ∈ Ft, temos
∫
ΛXtdP ≤

∫
ΛXtndP . Faça n → ∞

para obter
∫
ΛXtdP ≤

∫
Λ YtdP . Como Xt ≤ Yt, obtemos Xt = Yt q.c se e somente

se E(Xt) = E(Xt+) = E(lims↓tXt) = lims↓tE(Xt). □
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Passemos, agora, a considerar o Teorema da Amostragem Opcional no caso de
martingales com tempo cont́ınuo. Antes, definamos tempo de parada nesse caso.

Definição 5.12. Seja {Ft, t ∈ T} uma famı́lia crescente de σ-álgebras. Um tempo de
parada τ relativamente a {Ft} é uma v.a com valores em [0,∞] tal que {τ ≤ t} ∈ Ft
para todo t ∈ T .

Definamos Fτ = {A ∈
∨
t∈T Ft : ∀t ∈ T, A ∩ {τ ≤ t} ∈ Ft}.

Algumas propriedades:

[1] Fτ é uma σ-álgebra.

[2] Os conjuntos {τ < t}, {τ = t}, {τ ≤ t} todos pertencem a Ft.

[3] Se τ, ν são tempos de parada, também o serão τ ∧ ν e τ ∨ ν.

[4] Se τ1 ≤ τ2, então Fτ1 ⊂ Fτ2 .

[5] τ é Fτ - mensurável.

Proposição 5.1. Seja X = {Xt, t ≥ 0} um p.e com trajetórias cont́ınuas à direita
e Xt é Ft-mensurável, com {Ft, t ≥ 0} uma famı́lia crescente de σ-álgebras. Seja τ
um tempo de parada finito. Então, Xτ é Fτ -mensurável.

Prova: Considere X(t, ω) : T × Ω → R, com T = [0,∞). Então, a restrição dessa
aplicação a [0, t]×Ω é mensurável, considerando Bt a σ-álgebra de Borel sobre [0, t]
e Bt ×Ft a σ-álgebra sobre [0, t]×Ω. A prova é a mesma daquela que mostrou que
um processo cont́ınuo à direita é mensurável.

Considere as aplicações

ω → τ(ω)→ (ω, τ(ω))→ Xτ(ω)(ω).

Para mostrar que Xτ é Fτ -mensurável, basta mostrar que, se A for qualquer
conjunto de Borel, {ω : Xτ(ω)(ω) ∈ A} ∩ {τ ≤ t} ∈ Ft. Note que a aplicação
h : ω → (ω, τ(ω)) é uma aplicação mensurável, por definição de tempo de parada e a
aplicação g : (t, ω)→ R, definida por g(t, ω) = Xt(ω) é mensurável, pela observação
feita no ińıcio da prova. Como Xτ(ω)(ω) = (g ◦ h)(ω), obtemos o resultado. □.

Vejamos, agora, o teorema da amostragem opcional de Doob para o caso de
submartingales cont́ınuos.

Teorema 5.8. (TAO) Seja X = {Xt,Ft, t ∈ T} um submartingale com trajetórias
cont́ınuas à direita. Sejam S ≤ R tempos de parada finitos. Então. se

(a) R ≤ t0 q.c, para algum t0 ∈ T , ou

(b) {Xt, t ∈ T} é uniformemente integrável,
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teremos que

E(XR|FS) ≥ XS , (5.3)

ou seja, {XS , XR} é um submartingale.

Prova: Suponha T = [a, b] e defina para todo n ≥ 1, S(n) como:

S(n)(ω) =
k + 1

2n
, se

k

2n
< S(ω) ≤ k + 1

2n
, k ≥ 1

=
1

2n
, se 0 ≤ S(ω) ≤ 1

2n
.

Segue-se que S(ω) ≤ S(n)(ω), para todo ω. Considere o submartingale {Xk/2n , k ≥
0} e as σ-álgebras {Fk/2n , k ≥ 0}. Então, S(n) é um tempo de parada para esse
submartingale, porque{

S(n) =
k + 1

2n

}
=
{ k
2n

< S ≤ k + 1

2n

}
∈ F(k+1)/2n ,

pois S é um tempo de parada. Defina R(n) em função de R(ω) de modo similar
ao definido para S(n). Então, R(n) ≥ R e R(n) é um tempo de parada para o
submartingale {Xk/2n , k ≥ 0}. Se a suposição (a) for válida, então R(n) e S(n) têm
somente um número finito de valores (no máximo 2nt0 valores). Logo, pelo TAO no
caso discreto,

E(XR(n) | FS(n)) ≥ XS(n) . (5.4)

Se (b) valer, (5.4) é também verdadeira, pois o submartingale {Xk/2n , k ≥ 0} é
u.i. e então podemos aplicar o TAO estendido (veja o Problema 18 do Caṕıtulo 4).

Tome Λ ∈ FS . Como S(n) ≥ S, Λ ∈ FS(n) , porque FS ⊂ FS(n) . Logo, (5.4)
implica que ∫

Λ
XR(n)dP ≥

∫
Λ
XS(n)dP. (5.5)

Faça n → ∞ em (5.5). Como R(n) ↓ R e S(n) ↓ S, e como {Xt} tem todas as
trajetórias cont́ınuas à direita, segue-se que limn→∞XR(n) = XR e limn→∞XS(n) =
XS , ambos q.c. Esses limites também valem em norma L1. De fato, note que S(n) ≥
S(n+1), para todo n, logo sob a condição (a) ou (b), E(XS(n) |FS(n+1)) ≥ XS(n+1) , ou
seja, {XS(n) , n ≥ 1} é um submartingale reverso, que converge em L1 e q.c.

Logo, podemos tomar o limite em (5.5) para obter
∫
ΛXRdP ≥

∫
ΛXSdP , que

vale para todo Λ ∈ FS . Ou seja, E(XR|FS) ≥ XS . □
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5.3 Processos com incrementos independentes

Nesta seção estudamos processos importantes, como o Processo de Poisson e o
Movimento Brownianno. O primeiro tem aplicações, por exemplo, no modelo de
risco adotado em seguros e, o segundo, em modelos de opções financeiras, como a
fórmula de Black-Scholes (ver Caṕıtulo 13).

Definição 5.13. Um p.e X = {Xt, t ∈ T} tem incrementos independentes se, para
toda sequência t1 < t2 < · · · < tn de T , tivermos que Xt2−Xt1 , Xt3−Xt2 , . . . , Xtn−
Xtn−1 são v.a’s independentes.

Exemplo 5.8. Seja c > 0. Construa um p.e com incrementos independentes como
segue:

(a) X0 = 0;

(b) Se s < t, suponha Xt −Xs ∼ Poi(c(t− s)).

Sabemos a distribuição de Xt2 − Xt1 , . . . , Xtn − Xtn−1 ; suponha que o pro-
cesso tenha incrementos independentes, portanto teremos a distribuição conjunta
de Xt1 , . . . , Xtn . Finalmente, teremos que verificar sua consistência, usando o teo-
rema da extensão de Kolmogorov.

Um p.e separável com essa distribuição é chamado um Processo de Poisson com
parâmetro c. As trajetórias de um processo de Poisson são funções em patamar, não
decrescentes, constantes, exceto por saltos de tamanho unitário.

Exemplo 5.9. Construa um processo {Xt, t ≥ 0} com incrementos independentes
como segue:

(a) X0 = 0;

(b) Se s < t, suponha Xt −Xs ∼ N(0, t− s).

Um p.e. separável com essa distribuição é chamado Movimento Browniano (MB)
ou processo de Wiener. Pode-se provar que quase todas as trajetórias do MB são
cont́ınuas, mas não deriváveis q.c. Para detalhes, veja Wiersema (2008), Evans
(2013), Dvoretzky et al. (1950, 1954) e a Seção 9.2.

Definição 5.14. Um processo X = {Xt, t ≥ 0} com incrementos independentes
é estacionário se a distribuição de Xt − Xs somente depender de t − s, t > s (e
escrevemos Xt − Xs ∼ Xt−s). Também dizemos que o processo tem incrementos
estacionários.

Os processos de Poisson e MB têm incrementos independentes e estacionários.

Proposição 5.2. Se X = {Xt, t ≥ 0} é um Movimento Browniano, então X é um
martingale.

Morettin-Gallesco - dezembro/2025



5.3. PROCESSOS COM INCREMENTOS INDEPENDENTES 89

Prova: Tomemos Ft = F{Xs, s ≤ t}. Devemos mostrar que E(Xt|Fs) = Xs.
Temos

E(Xt|Fs) = E(Xt −Xs +Xs|Fs) = E(Xt −Xs|Fs) +Xs.

Mas, Xt − Xs é independente de Xu − X0, u ≤ s, logo E(Xt − Xs|Fs) + Xs =
E(Xt−Xs)+Xs = E(Xt−s)+Xs = Xs, pela estacionariedade e o fato que Xt−s ∼
N(0, t− s). □.

Proposição 5.3. Seja P = {Pt, t ≥ 0} um processo de Poisson com parâmetro
c > 0. Então, Yt = Pt − ct é um martingale.

Prova: Tome Ft = F{Ps, s ≤ t}. Então, E(Yt|Fs) = E(Pt − ct|Fs) = E(Pt −
Ps|Fs) − ct + Ps, e usando o fato que o processo tem incrementos independentes e
estacionários, obtemos que E(Yt|Fs) = E(Pt−s) − ct + Ps = c(t − s) − ct + Ps =
Ps − cs = Ys. □

Observação: Se X = {Xt, t ≥ 0} é um processo com incrementos independentes
e estacionários, e se Xt é integrável, para cada t, então Yt = Xt − tE(X1) é um
martingale.

Definição 5.15. Um processo de Lévy é um processo càdlàg com incrementos
independentes e estacionários e P (X0 = 0) = 1.

Os processos de Lévy têm merecido uma grande atenção recentemente, notada-
mente por suas aplicações em finanças.

A seguir, consideramos um resultado que fornece uma propriedade forte de Mar-
kov para processos com incrementos independentes e estacionários.

Teorema 5.9. (Hunt) Seja X = {Xt, t ≥ 0} um p.e com incrementos independen-
tes e estacionários e seja Ft = F{Xs, s ≤ t}. Suponha que X0 = 0 e que as suas
trajetórias sejam cont́ınuas à direita. Seja T um tempo de parada finito. Defina o
processo Y = {Yt, t ≥ 0} por Yt = XT+t −XT . Então, Y tem incrementos indepen-
dentes e estacionários, Yt tem a mesma distribuição que Xt e Y é independente de
FT .

Prova: Seja Λ qualquer conjunto em FT e t1 < t2 < · · · < tn. Devemos mostrar
que

P{Λ, Yt1 ∈ A1, . . . , Ytn ∈ An} = P (Λ)P{Xt1 ∈ A1, . . . , Xtn ∈ An},

onde A1, . . . , An são conjuntos de Borel arbitrários. Vamos considerar somente o
caso n = 1 (o caso n > 1 é similar). De modo que temos que provar que P{Λ, Yt ∈
A} = P (Λ)P{Xt ∈ A}.

Ou ainda, temos que provar que
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E(IΛf(Yt)) = P (Λ)E(f(Xt)), (5.6)

onde f = IA. Para provar (5.6), provamos que essa vale para qualquer função
cont́ınua, limitada f . Defina

T (n)(ω) =
k + 1

2n
, se

k

2n
< T (ω) ≤ k + 1

2n
, k ≥ 1,

=
1

2n
, se 0 ≤ T (ω) ≤ 1

2n
.

Segue-se que T (n) é tempo de parada e T (n) ↓ T . Agora,

f(Yt) = f(XT+t −XT ) = lim
n→∞

f(XT (n)+t −XT (n)),

pela continuidade à direita de Xt e continuidade de f . Agora provamos que

E
[
IΛf(XT (n)+t −XT (n))

]
= P (Λ)E(f(Xt)).

Pelo limite acima, o teorema seguirá desse resultado. Agora,

E
[
IΛf

(
XT (n)+t −XT (n)

)]
=

∑
k≥1

∫
{T (n)=k/2n}

IΛf
(
Xk/2n+t −Xk/2n

)
dP

=
∑
k≥1

∫
IΛ∩{T (n)=k/2n}f

(
Xk/2n+t −Xk/2n

)
dP. (5.7)

Mas Λ ∈ FT ⊂ FT (n) , logo Λ∩{T (n) = k/2n} ∈ Fk/2n , por definição de tempo de

parada. Segue-se que Λ∩{T (n) = k/2n} é independente de Xk/2n+t−Xk/2n , devido
a incrementos independentes. Logo (5.7) torna-se

E
(
f(Xt)

∑
k≥1

P (Λ ∩ {T (n) = k/2n})
)
= E(f(Xt))P (Λ),

usando a estacionariedade. □

Veja Mörters e Peres (2010), Hunt (1956) e Dynkin (1957) para detalhes sobre
a propriedade forte de Markov.

Problemas

1. Prove que as definições 5.4, 5.5 e 5.6 são equivalentes.

2. Prove a afirmação do Exemplo 5.2.

3. Prove as Consequências (2)-(5).
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4. Prove a afirmação do Exemplo 5.5.

5. Prove (b) do Teorema 5.2.

6. Seja X um processo estocástico com parâmetro cont́ınuo e seja T um intervalo. Su-
ponha que X seja cont́ınuo em probabilidade para cada t ∈ T . Prove que existe um
p.e X̃, tal que X̃ seja equivalente a X, separável e mensurável.

7. Prove (b) do Teorema 5.3.

8. Prove o conteúdo da Observação após a Proposição 5.3.

9. Mostre que o processo de Poisson e o Movimento Browniano são processos de Lévy.

10. Mostre que, se Z ∼ N(0, 1), então para λ real, E(eλZ) = eλ
2/2.

11. (Movimento Browniano Geométrico). Black and Scholes (1973) e Merton (1973) su-
geriram o Movimento Browniano Geométrico para descrever preços num mercado
especulativo. Tal processo é dado por

Xt = eµt+σWt , t ≥ 0,

onde Wt é o Movimento Browniano. Segue-se que logXt segue um Movimento Brow-
niano, com drift µ real e volatilidade σ > 0. Use o problema anterior para calcular a
média e função de autocovariância de Xt. Mostre que esse processo não é gaussiano.

12. (Ponte Browniana) Considere o processo estocástico dado por

Xt =Wt − tWt−1, 0 ≤ t ≤ 1,

onde Wt é Movimento Browniano no intervalo [0, 1]. Segue-se que X0 = X1 = 0.
Mostre que Xt é um processo gaussiano, com média zero e função de autocovariância
dada por γ(t, s) = min{t, s} − ts, t, s ∈ [0, 1].

13. Encontre exemplos de:

(a) um processo separável que não seja mensurável;

(b) um processo mensurável que não seja separável.

14. Prove que, embora tenha trajetórias descont́ınuas, um processo de Poisson é cont́ınuo
em probabilidade.
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Caṕıtulo 6

Convergência Fraca

Neste caṕıtulo introduzimos o importante conceito de convergência fraca para
uma famı́lia de medidas de probabilidade e, depois, para variáveis aleatórias e pro-
cessos estocásticos. As referências básicas aqui são Billingsley (1999) e Parthasaraty
(2005).

6.1 Introdução

Denotaremos por S um espaço métrico e S a σ-álgebra de conjuntos de Borel
sobre S, que coincide com a σ-álgebra gerada pelos conjuntos abertos de S. Usaremos
a notação (S,S). Alguns espaços métricos que podemos considerar são:

(a) (R,B), com métrica d(x, y) = |x− y|;

(b) (Rk,Bk), com métrica d(x, y) associada a qualquer norma sobre Rk;

(c) (R∞,B∞), sendo R∞ o espaço de todas as sequências (x1, x2, . . .) de números
reais, e a métrica associada é

d(x, y) =
∑
n≥1

2−n
|xn − yn|

1 + |xn − yn|
.

(d) (C([0, 1]), C), onde C([0, 1]) é o espaço de todas as funções cont́ınuas sobre [0, 1] e
C é a σ-álgebra de Borel sobre este espaço. Se x = {x(t), t ∈ [0, 1]} e y = {y(t), t ∈
[0, 1]}, então a métrica é definida por

d(x, y) = sup
0≤t≤1

|x(t)− y(t)|.

Convergência em (c) é ponto a ponto e, em (d), uniforme. Chamemos de Cb(S)
o conjuntos de todas as funções cont́ınuas e limitadas sobre S com valores reais.
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Definição 6.1. Seja {Pn, n ≥ 1} uma famı́lia de medidas de probabilidade sobre
(S,S) e P uma medida sobre (S,S). Dizemos que Pn converge fracamente para P
se

lim
n→∞

∫
S
f(x)dPn(x) =

∫
S
f(x)dP (x), (6.1)

para toda f ∈ Cb(S).

Usaremos a notação Pn ⇒ P . Uma notação padrão bastante usada é a seguinte:
se P é uma medida de probabilidade, defina Pf como o valor esperado de f sob P :

Pf =

∫
f(x)dP (x).

Então, (6.1) pode ser escrita

Pnf → Pf, ∀f ∈ Cb(S).

Essa notação compacta enfatiza a interpretação de P como um funcional linear.

A medida P em (6.1) é necessariamente uma medida de probabilidade. Tome
f = 1 e obtemos

∫
S dPn →

∫
S dP , ou seja 1 = Pn(S)→ P (S), logo P (S) = 1.

Exemplo 6.1. (a) Tome S = R e seja {xn} uma sequência de pontos de R. Con-
sidere Pn como massa unitária em xn. Então, xn → x se, e somente se, Pn ⇒ P ,
onde P coloca massa unitária em x.

(b) Seja S = [0, 1] e suponha que Pn coloque massa 1/n nos pontos 1/n, 2/n, , . . . , 1.
Então, Pn ⇒ P , onde P é a medida de Lebesgue sobre [0, 1].

Teorema 6.1. Sejam P,Q medidas de probabilidade sobre (S,S). Se
∫
S fdP =∫

S fdQ, para toda f ∈ Cb(S), então P = Q.

Prova: Seja K um conjunto fechado em S e defina fn(x) = e−nd(K,x). Então, como
K é fechado, temos que fn(x)→ IK(x). Também, como

∫
S fdP =

∫
S fdQ, obtemos

pelo TCD que
∫
K fdP =

∫
K fdQ, logo P (K) = Q(K) se K for fechado. Também,

P = Q sobre todos os conjuntos abertos. Vamos provar que: Para todo ε > 0 e todo
conjunto B em S, podemos encontrar um conjunto fechado A e um conjunto aberto
C, tal que A ⊂ B ⊂ C e P (C −A) < ε. Se isso for verdade, o resultado segue, pois
P = Q para conjuntos abertos e fechados.

Seja H a classe de todos os conjuntos B ∈ S tais que, para todo ε > 0, existe
A fechado e C aberto, tais que A ⊂ B ⊂ C e P (C − A) < ε. Essa classe contém
conjuntos fechados. Seja B fechado. Escolha A = B. Defina Cδ = {x ∈ S :
d(B, x) < δ}, aberto. Vemos que Cδ ↓ B, para δ ↓ 0, pois B é fechado. Tome δ tão
pequeno de modo que P (Cδ −B) < ε. Segue-se que A ⊂ B ⊂ Cδ.
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Também é fácil ver que H é fechada sob complementação. Finalmente, é fechada
sob reuniões enumeráveis. De fato, sejam B1, B2, . . . conjuntos de H e ε > 0. Existe
uma famı́lia {Ai} de conjuntos fechados, outra {Ci} de conjuntos abertos, tais que
Ai ⊂ Bi ⊂ Ci, tais que P (Ci−Ai) < ε/2i+1, para todo i ≥ 1. Defina C = ∪iCi, A =
∪Ni=1Ai, onde N é tão grande que P (∪iAi − ∪Ni=1Ai) < ε/2; mais ainda, C é aberto
e A é fechado. Então, A ⊂ B ⊂ C e P (C −A) < ε. □

Corolário 6.1. Se Pn ⇒ P, e Pn ⇒ Q, então P = Q.

Definição 6.2. Seja A um conjunto em (S,S). A fronteira de A, denotada ∂A, é o

conjunto A−
◦
A, onde A é o fecho de A e

◦
A é o interior de A. Um conjunto A é um

conjunto P -cont́ınuo se P (∂A) = 0.

Exemplo 6.2 (a) Seja S = R e A = (a, b]. Então, ∂A = {a} ∪ {b}.

(b) Se S = R e A é o conjunto dos racionais, ∂A = R.

c) Se S = R e A = (a, b], então A é um conjunto P -cont́ınuo se P não coloca massa
sobre {a} ∪ {b}.

O teorema a seguir é chamado “Portmanteau”, pois fornece condições úteis que
são equivalentes à definição de convergência fraca.

Teorema 6.2. As seguintes afirmações são equivalentes:

(a) Pn ⇒ P ;

(b) lim supn Pn(K) ≤ P (K), para todo K fechado;

(c) lim infn Pn(A) ≥ P (A), para todo A aberto;

(d) limn Pn(A) = P (A), para todo conjunto P -cont́ınuo A.

Prova: (a) ⇒ (b): Suponha que K seja fechado; tome ε > 0 e considere Aδ =
{x ∈ S : d(K,x) < δ}, que é aberto. Tome δ0 tão pequeno de tal sorte que
P (Aδ0) ≤ P (K) + ε, pois Aδ ↓ K.

Seja f uma função cont́ınua que tome o valor 1 sobre K , o valor 0 fora de Aδ0
e 0 ≤ f ≤ 1. Para tanto, defina g(x) = 1, para x ≤ 0, g(x) = 1− x, se 0 ≤ x ≤ 1 e
g(x) = 0, se x ≥ 1; g assim definida é cont́ınua. Agora defina f(x) = g(d(x,K)/δ0).
Agora,

Pn(K) =

∫
K
fdPn ≤

∫
S
fdPn →

∫
S
fdP =

∫
Aδ0

fdP ≤
∫
Aδ0

1·dP = P (Aδ0) ≤ P (K)+ε,

a penúltima igualdade porque f é zero fora de Aδ0 . Segue-se que lim supn Pn(K) ≤
P (K) + ε, mas ε é arbitrário, logo o resultado segue.
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(b) ⇔(c): tome complementos.

(c) ⇒ (d): Temos que (c) vale e também (b). Suponha que P (A−
◦
A) = 0, pois A é

um conjunto P-cont́ınuo. Então,

lim sup
n→∞

P (An)(A) ≤ lim sup
n→∞

Pn(A) ≤ P (A) = P (A),

sendo que a última desigualdade vale por (b). De modo análogo,

lim inf
n→∞

Pn(A) ≥ lim inf
n→∞

Pn(
◦
A) ≥ P (

◦
A) = P (A),

usando (c). Logo, limn→∞ Pn(A) = P (A).

(d) ⇒ (a): Seja f ∈ Cb(S). Devemos provar que limn→∞
∫
fdPn =

∫
fdP .

Defina Pf uma medida na reta por: se B é um conjunto de Borel, Pf (B) = P{x ∈
S : f(x) ∈ B}. Note que, como f é limitada, Pf é concentrada sobre um intervalo
limitado, [a, b) digamos. Também, existe no máximo um conjunto enumerável de
pontos na reta, sobre os quais Pf coloca massa positiva. Logo, podemos escolher a
e b tais que para todo ε > 0, podemos encontrar a = t1 < t2 < . . . < tN = b tais que
ti+1 − ti < ε e Pf{ti} = 0. Seja Ai = {x ∈ S : ti−1 ≤ f(x) < ti} para 2 ≤ i ≤ N .
Então, ∂Ai ⊂ {x : f(x) = ti ou f(x) = ti−1}.

Portanto, P (∂Ai) ≤ Pf{ti} + Pf{ti−1} = 0, logo cada Ai é um conjunto P-
cont́ınuo.

Seja f̂ a função

f̂ =

n∑
i=2

ti−1IAi . (6.2)

Segue-se que f̂ é uma função simples e |f̂ − f | < ε. Então,

∣∣∣ ∫ fdPn −
∫
fdP

∣∣∣ ≤ ∫ |f − f̂ |dPn + ∣∣∣ ∫ f̂dPn −
∫
f̂dP

∣∣∣+ ∫ |f̂ − f |dP
≤ 2ε+

∣∣∣ ∫ f̂dPn −
∫
f̂dP

∣∣∣ ≤ 2ε+
N∑
i=1

|ti||Pn(Ai)− P (Ai)|.

Para n→∞ e por (d), Pn(Ai)− P (Ai)→ 0, pois Ai é um conjunto P-cont́ınuo.
Então,

lim sup
n

∣∣∣ ∫ fdPn −
∫
fdP

∣∣∣ ≤ 2ε.

Como ε é arbitrario, obtemos o resultado desejado . □
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Exemplo 6.3. (i) Suponha que S = R e que Pn coloque massa unitária em {1/n} e
P coloque massa unitária em zero. Então, Pn ⇒ P . Considere A = [−1, 0]. Então,
Pn(A) = 0, mas P (A) = 1. Segue-se que Pn ⇒ P , mas Pn(A) não converge para
P (A). Isso ocorre porque [−1, 0] não é um conjunto P -cont́ınuo.

(ii) Suponha S = [0, 1], Pn coloca massa 1/n sobre 1/n, 2/n, . . . , 1 e P é medida
de Lebesgue. Então, Pn ⇒ P . Considere A = Q ∩ [0, 1], onde Q é o conjunto dos
racionais. Então, Pn(A) = 1, mas P (A) = 0. Aqui temos ∂A = [0, 1] e P (∂A) =
P ([0, 1]) = 1.

Corolário 6.2. Sejam Pn, P medidas de probabilidade sobre (S,S) eH uma coleção
de subconjuntos de S tal que:

(i) H é fechado sob intersecções finitas;

(ii) todo conjunto aberto é uma reunião enumerável de conjuntos de H.

Então, se Pn(A)→ P (A), para todo conjunto A ∈ H, segue-se que Pn ⇒ P.

Prova: Sejam A,B dois conjuntos em H. Então, Pn(A ∪ B) = Pn(A) + Pn(B) −
Pn(A∩B)→ P (A∪B), para n→∞, por hipótese. Por indução, limn Pn(∪Ni=1Ai) =
P (∪Ni=1Ai), para todo N .

SejaB um conjunto aberto. Então, existemA1, A2, . . . ∈ H, tais queB = ∪∞i=1Ai.
Seja ε > 0 e tome N tão grande de modo que P (B)− ε ≤ P (∪Ni=1Ai). Então,

P (B)− ε ≤ P (∪Ni=1Ai) = lim
n
Pn(∪Ni=1Ai) ≤ lim

n
inf Pn(∪∞i Ai) = lim

n
inf Pn(B).

Como ε > 0 é arbitrário, Pn ⇒ P , pelo critério (c) do teorema anterior. □

Um caso particular importante

Tomemos S = R e sejam Pn e P probabilidades na reta real. Seja D qualquer
conjunto denso de pontos de R. Defina H como a coleção de todos os intervalos da
forma (a, b], com a, b ∈ D. Então, H satisfaz as condições (i) e (ii) do corolário.
Logo, se Pn((a, b]) → P ((a, b]), para todos os intervalos (a, b] ∈ H, segue-se que
Pn ⇒ P .

Se S = R e P é uma medida de probabilidade sobre R, lembremos que a f.d para
P é a função F (x) = P{(−∞, x]}, para todo x real. Também, F é não decrescente,
cont́ınua à direita, F (−∞) = 0 e F (+∞) = 1.

Teorema 6.3. Sejam Pn, P probabilidades sobre R, com f.d’s Fn, F , respectiva-
mente.

(a) Se Pn ⇒ P , então limn→∞ Fn(x) = F (x), para cada ponto x onde F é cont́ınua;

(b) se Fn(x)→ F (x), para todo x em um conjunto denso em R, então Pn ⇒ P .
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Prova: (a) Se F for cont́ınua em x, então o conjunto (−∞, x] é P -cont́ınuo. Por-
tanto, pela parte (d) do teorema anterior, Pn((−∞, x]) → P ((−∞, x]), ou seja
Fn(x)→ F (x).

(b) Se Fn(x) → F (x), para todo x num subconjunto denso de R, então Fn(b) −
Fn(a) → F (b) − F (a), para quaisquer a, b nesse conjunto. Logo, Pn((a, b]) →
P ((a, b]). Logo, (b) segue pelo caso particular discutido acima. □

6.2 Convergência fraca para elementos aleatórios

Lembremos que a distribuição de um elemento aleatório X com valores em S é
a probabilidade PX sobre S definida por PX(B) = P{ω : X(ω) ∈ B}, para B ∈ S.
Continuamos supondo que S é um espaço métrico e S é a sua σ-álgebra de Borel.

Definição 6.3. Dizemos que Xn converge para X em distribuição se PXn ⇒ PX ,
ou seja, para toda f ∈ Cb(S), E(f(Xn))→ E(f(X)).

Com todo rigor, deveriamos escrever En(f(Xn)) → E(f(X)) pois os elementos
aleatórios Xn (e X) não precisam ser definidos no mesmo espaço de probabilidade.
No entanto, mas para não sobrecarregar as notações não colocaremos explicitamente
esta dependência.

Vamos usar a notação Xn
D→ X ou Xn

D→ P . Podemos dizer também que Xn

converge para X em lei e escrevemos L(Xn)→ L(X).

Definição 6.4. Sejam Xn, X elementos aleatórios. Dizemos que A é um conjunto
X-cont́ınuo se PX(∂A) = 0.

Se X estiver definido sobre (Ω,F , P ), então A é um conjunto X-cont́ınuo se
P{ω : X(ω) ∈ ∂A} = 0.

Os dois teoremas a seguir podem se provados de modo análogo ao que foi feito
com os Teoremas 6.2 e 6.3.

Teorema 6.4. As afirmações seguintes são equivalentes:

(a) Xn
D→ X;

(b) lim supn PXn(A) ≤ PX(A), A fechado;

(c) lim infn PXn(A) ≥ PX(A), A aberto;

(d) limn PXn(A) = PX(A), para todo conjunto A X-cont́ınuo.

Teorema 6.5. Seja {Xn, n ≥ 1} uma sequência de v.a’s com f.d’s Fn e X uma v.a
com f.d F . Então, temos:
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(a) Se Xn
D→ X, então limn→∞ Fn(x) = F (x), para todos os pontos de continui-

dade de F ;

(b) Se limn→∞ Fn(x) = F (x), para x num conjunto denso de R, então Xn
D→ X.

Para ver a necessidade de F ser uma f.d em (b), basta tomar Fn(x) = 0, se x < n
e F (x) = 1, se x ≥ n. As {Fn} são f.d’s e Fn converge, para cada x real, e o limite
é zero.

Agora, consideremos as seguintes questões:

[1] Se Xn, X são v.a’s e Xn
D→ X, quando h(Xn)

D→ h(X)?

[2] Se Pn ⇒ P , sabemos que
∫
S f(x)dPn(x) →

∫
S f(x)dP, para toda f ∈ Cb(S).

Para quais outras funções f essa implicação vale?

Certamente, [2] não vale para qualquer f . Por exemplo, tome S = R, Pn colo-
cando massa unitária em 1/n. Então, Pn ⇒ P , onde P coloca massa unitária no
zero. Tome f(x) = I(0,∞)(x). Então,

∫
S fdPn = 1 e

∫
S fdP = 0.

[3] Sejam Pn, P medidas de probabilidade sobre (S,S). Seja h uma função men-
surável de (S,S) em (S

′
,S ′

), outro espaço métrico. Defina Ph−1, uma medida sobre
(S

′
,S ′

), por meio de:

Ph−1(B) = P{h−1(B)}, B ∈ S ′
.

Suponha que Pn ⇒ P . Podemos afirmar que Pnh
−1 ⇒ Ph−1?

Teorema 6.6. Sejam Pn, P medidas sobre (S,S) e seja h uma função mensurável de
(S,S) em (S

′
,S ′

). Seja Dh o conjunto dos pontos de S para os quais h é descont́ınua.
Se Pn ⇒ P e se P (Dh) = 0, então Pnh

−1 ⇒ Ph−1.

Prova: Seja K um conjunto fechado em (S
′
,S ′

). Então,

lim sup
n

Pnh
−1(K) = lim sup

n
Pn[h

−1(K)] ≤ lim sup
n

Pn

[
h−1(K)

]
≤ P

[
h−1(K)

]
,

pois Pn ⇒ P . Como K é fechado h−1(K) ⊂ h−1(K) ∪ Dh, e P (Dh) = 0, logo

P
[
h−1(K)

]
≤ P (h−1(K)) = Ph−1(K). □

Corolário 6.3. Seja S = R e h : R→ R, mensurável. Suponha Pn ⇒ P , que h seja
limitada e P (Dh) = 0. Então,

∫
S hdPn →

∫
S hdP .

Prova: Como h é limitada, |h(x)| ≤ M , para todo x real, e alguma constante
M > 0. Defina uma função cont́ınua f por: f(x) = x, se −M ≤ x ≤M , f(x) =M ,
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se x ≥ M , e f(x) = −M , se x ≤ −M . Então, pelo teorema anterior,
∫
fdPnh

−1 →∫
fdPh−1, pois Pnh

−1 ⇒ Ph−1. Logo,
∫
f(h(x))dPn(x) →

∫
f(h(x))dP (x), e pela

definição de f e pelo fato que h é limitada, temos que
∫
h(x)dPn(x)→

∫
h(x)dP (x).

□

Corolário 6.4. Sejam Xn, X elementos aleatórios e suponha que Xn
D→ X. Supo-

nha que h : S → S
′
seja mensurável e PX(Dh) = 0. Então, h(Xn)

D→ h(X).

Prova: Observe que a distribuição de h(X) é PXh
−1 e use o Teorema 6.6. □.

Exemplo 6.5. Seja (Xn, Yn) uma sequência de vetores aleatórios e suponha que

(Xn, Yn)
D→ (X,Y ). Pelo corolário anterior, Xn + Yn

D→ X + Y.

Note que, se Xn, Yn são v.a’s, com Xn convergindo em lei para X e Yn conver-
gindo em lei para Y , não é necessariamente verdade que Xn + Yn convirja em lei
para X + Y .

Teorema 6.7. Sejam Xn, X v.a’s.

(a) Se Xn
D→ X, então E(|X|) ≤ lim infnE(|Xn|).

(b) Se Xn
D→ X, e se {Xn} for u.i, então E(Xn)→ E(X).

Prova: (a) Defina h(x) por h(x) = |x|, se |x| < a e zero caso contrário. Escolha
a como um ponto de continuidade de F , onde F é a f.d correspondente a P . Pelo
último corolário,

∫
hdPn →

∫
hdP , donde

lim
n

inf E(|Xn|) ≥
∫
|x|≤a

|x|dP. (6.3)

Faça a → ∞ pelos pontos de continuidade de F , portanto o limite do termo da
direita em (6.3) será E(|X|).

(b) Pelo Corolário 6.4, temos que X+
n

D→ X+ e X−
n

D→ X−. Portanto, pode-
mos assumir que X ≥ 0 e Xn ≥ 0 para todo n. Novamente, pelo Corolário 6.4,∫
|x|≤a |x|dPn →

∫
|x|≤a |x|dP , se a é ponto de continuidade de F . Tome a tão grande,

de modo que
∫
|x|≤a |x|dP difira de E(X) de menos que ε > 0 e tão grande de modo

que
∫
|x|≤a |x|dPn difira de E(Xn) de menos que ε, uniformemente em n. Segue-se

que E(Xn)→ E(X). □

Teorema 6.8. Se Xn, X são v.a’s em (Ω,F , P ) e Xn converge em probabilidade
para X, então Xn converge em lei para X.

Prova: Se f é qualquer função cont́ınua e se Xn → X em probabilidade, então
f(Xn) → f(X) em probabilidade. Tome f limitada, pelo TCD E(f(Xn)) →
E(f(X)), ou seja Xn → X em distribuição. □
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Note que, se Xn converge em lei para X e se X for uma constante, então, Xn

converge em probabilidade para X.

6.3 Convergência fraca sobre C[0, 1] e R∞

As seguintes questões são de interesse:

(1) Sejam Xn = (Xn
1 , X

n
2 , . . .) e X = (X1, X2, . . .) processos estocásticos. Supo-

nha que se saiba que, para cada k, (Xn
1 , X

n
2 , . . . , X

n
k ) converge fracamente para

(X1, X2, . . . , Xk). É verdade que Xn D→ X?

(2) Sejam Xn = {Xn(t), 0 ≤ t ≤ 1} e X = {X(t), 0 ≤ t ≤ 1} dois processos es-

tocásticos. Suponha que, para 0 ≤ t1 ≤ · · · ≤ tk ≤ 1, tenhamos (Xn(t1), . . . , X
n(tk))

D→
(X(t1), . . . , X(tk)). Daqui podemos concluir que Xn D→ X?

Veremos que a primeira questão tem resposta afirmativa, mas a segunda não.

Teorema 6.9. SejamXn = (Xn
1 , X

n
2 , . . .) eX = (X1, X2, . . .) processos estocásticos.

Se, para cada k, (Xn
1 , X

n
2 , . . . , X

n
k ) converge fracamente para (X1, X2, . . . , Xk), então

Xn converge fracamente para X.

Prova: Um conjunto A é um retângulo k-dimensional semi-aberto se A for da
forma A = {(x1, x2, . . .) ∈ R∞ : a1 < x1 ≤ b1, . . . , ak < xk ≤ bk}. Se desprezarmos
uma coleção enumerável de ai’s e bi’s, os retângulos remanescentes são conjuntos de
continuidade para X. Defina uma coleção H de conjuntos em R∞ como segue: um
conjunto está em H se, para algum k, é um retângulo k-dimensional e também um
conjunto X-cont́ınuo. Então, H é fechada sob intersecções finitas e também todo
conjunto aberto em R∞ é uma reunião enumerável de conjuntos de H. O resultado,
então, segue do Corolário 6.2. □

Uma formulação diferente desse teorema é a seguinte. Defina, para cada k, a
função πk : R∞ → Rk por meio de

πk(x1, x2, . . .) = (x1, . . . , xk).

Então, o teorema nos diz que, se Pn, P são medidas de probabilidade sobre R∞,
tais que Pnπ

−1
k ⇒ Pπ−1

k , para todo k, então Pn ⇒ P. A rećıproca também vale.

Exemplo 6.6. Considere C[0, 1] e defina elementos Xn de C[0, 1] por meio de:

Xn = nt, 0 ≤ t ≤ 1/n,

= 2− nt, 1/n ≤ t ≤ 2/n,

= 0, outros casos.
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Além disso, suponha X ≡ 0.
Suponha que Pn = δXn e P = δX . Então, as distribuições finito-dimensionais

convergem fracamente, mas Pn não converge fracamente para P . Uma outra maneira
de ver que Pn não converge fracamente para P é a seguinte. Defina a função f
sobre C[0, 1], com valores reais, como segue: se x é um elemento de C[0, 1], f(x) =
sup0≤t≤1 |x(t)|∧1. Então, f é cont́ınua e limitada, contudo

∫
fdPn = 1 e

∫
fdP = 0,

logo Pn não converge fracamente para P .
No espaço C[0, 1], além da convergência fraca das distribuições finito-dimensionais

é preciso que a sequência {Pn} seja fechada para ter convergência fraca (Veja o
Caṕıtulo 9). Esta condição é o objeto da próxima seção.

6.4 Teoremas de Helly e Prokhorov

Sabemos que F é uma f.d sobre R se: (i) F for cont́ınua à direita, crescente; (ii)
F (−∞) = 0, F (∞) = 1. Dizemos que F é uma f.d imprópria se F satisfaz (i) e
0 ≤ F (x) ≤ 1, para todo real x. Dizemos que Fn converge para F se limn→∞ Fn(x) =
F (x), sempre que x for um ponto de continuidade de F .

Teorema 6.10. (Teorema da seleção de Helly). Seja {Fn} uma sequência de f.d’s
sobre R. Essas podem ser impróprias. Então, existe uma subsequência {nk} e uma
f.d F (possivelmente imprópria) tal que Fnk

(x) converge para F (x), em pontos de
continuidade de F .

Prova: Seja r1, r2, . . . uma enumeração dos racionais Q, então {Fn(r1)} é uma
sequência limitada, logo existe uma subsequência F1,k tal que {F1,k(r1), k ≥ 1}
converge. A seguir, existe uma subsequência da subsequência escolhida, digamos
F2,k, tal que {F2,k(r2), k ≥ 1} converge. Logo, F2,k(r1) e F2,k(r2) ambas convergem.
Continuando, obtemos

F1,1, F1,2, F1,3 · · · convergem em r1

F2,1, F2,2, F2,3, · · · convergem em r1, r2
...

...

Agora, observe que a sequência {Fn,n, n ≥ 1} converge para todos os racionais.
Seja F̂ o limite. A sequência {Fn,n, n ≥ 1} corresponde a alguma subsequência nk
da sequência original. Logo, limk Fnk

(x) = F̂ (x), para todo x racional. Defina

F (x) =

{
F̂ (x), se x é racional,

limy↓x,y∈Q F̂ (y), se x não é racional.

Então, F é crescente, cont́ınua à direita. Resta provar que limk Fnk
(x) = F (x), para

todo x no qual F é cont́ınua. Temos:
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(a) lim supk Fnk
(x) ≤ F (x), para todo x. De fato, tome y > x, y racional, então

lim supk Fnk
(x) ≤ lim supk Fnk

(y) = F (y), pois Fnk
é crescente. Faça y ↓ x. Pela

continuidade à direita, obtemos o resultado.

(b) lim infk Fnk
(x) ≥ F (x−), para todo x.

Tome y < x racional, então lim infk Fnk
(y) ≤ lim infk Fnk

(x) e F (y) = lim infk Fnk
(y);

faça y ↑ x para obter o resultado.

Se x for um ponto de continuidade de F , então F (x) = F (x−), logo por (a) e
(b), lim supk Fnk

(x) = lim infk Fnk
(x). □

Observe que, mesmo que todas as f.d’s Fn sejam próprias, a f.d limite F não é
necessariamente própria.

Definição 6.4. Uma famı́lia Π de medidas de probabilidade sobre um espaço
métrico (S,S) é chamada fechada (tight) se, para todo ε > 0, existe um conjunto
compacto K, tal que P (K) ≥ 1− ε, para toda P ∈ Π.

Exemplo 6.7. (a) Seja S = R, Π é fechada se, para todo ε > 0, existe um
intervalo (a, b) tal que P{(a, b)c} ≤ ε, para toda P ∈ Π. Em termos de f.d’s,
F (b)− F (a) ≥ 1− ε, para toda F cuja P ∈ Π.

(b) Considere Pn uniformemente distribúıda sobre [−n, n]. Então, Π = {Pn, n ≥ 1}
não é fechada.

(c) Suponha que Pn coloque massa unitária em {n}. Então, Π = {Pn, n ≥ 1} não é
fechada.

Lema 6.1. Sejam {Pn, n ≥ 1} probabilidades sobre R com f.d’s Fn, respectivamente.
Suponha que exista uma f.d F (possivelmente imprópria), tal que limn→∞ Fn(x) =
F (x), em pontos de continuidade de F . Se a famı́lia {Pn} for fechada, então F é
uma f.d.

Prova: Tome a e b tais que Fn(b) − Fn(a) ≥ 1 − ε, para todo n, o que é posśıvel,
pois Pn é fechada. Suponha, também, que a, b sejam pontos de continuidade de F .
Como Fn(b) → F (b), Fn(a) → F (a), segue-se que F (b) − F (a) ≥ 1 − ε. Portanto,
F (+∞)− F (−∞) = 1, logo F é uma f.d própria. □

Lema 6.2. Seja {Pn, n ≥ 1} uma famı́lia de probabilidades sobre (S,S). Suponha
que exista uma probabilidade P tal que, toda subsequência Pnk

possui uma outra
subsequência n

′
k, tal que Pn′

k
⇒ P . Então, Pn ⇒ P .

Prova: Suponha que Pn não convirja fracamente para P . Então, existe um ε > 0,
uma função cont́ınua e limitada f e uma subsequência nk tais que

∫
fdPnk

≤
∫
fdP−

ε (ou
∫
fdPnk

≥
∫
fdP + ε), para todo k. Mas existe uma subsequência n

′
k dessa

sequência tal que P
n
′
k
⇒ P , uma contradição. □
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Teorema 6.11. Seja {Pn} uma famı́lia fechada de probabilidades sobre R, com
f.d’s Fn. Então, existe uma f.d F tal que limn→∞ Fn(x) = F (x) em pontos de
continuidade de F se, e somente se, limn→∞

∫
fdPn existe, para toda f cont́ınua e

limitada.

Prova: (⇒) já provada, Teorema 6.3; de fato, provamos que
∫
fdPn →

∫
fdF .

(⇐) Seja Pnk
qualquer subsequência. Vamos provar que existe uma outra sub-

sequência P
n
′
k
e uma medida P , independente dessa subsequência, tal que P

n
′
k
⇒ P .

Isso será suficiente, pelo Lema 6.2.

Sejam F
n
′
k
as f.d’s correspondentes. Pelo Teorema de Helly, existe uma f.d pos-

sivelmente imprópria tal que F
n
′
k
(x) → F (x), para pontos de continuidade x. Pelo

fato de a famı́lia ser fechada e Lema 6.1, F é, de fato, uma f.d própria. Resta
provar que esse limite é independente da subsequência envolvida. Seja {Fmk

} uma
subsequência qualquer e suponha que hajam duas f.d’s F e G tais que:

lim
k

∫
fdFnk

=

∫
fdF, ∀f ∈ Cb(R),

lim
k

∫
fdFmk

=

∫
fdG, ∀f ∈ Cb(R).

Como o limite limn→∞
∫
fdFn existe,

∫
fdF =

∫
fdG, para todo f ∈ Cb(R),

logo F = G pelo Teorema 6.1. □

Definição 6.5. Seja Π uma famı́lia de medidas de probabilidade sobre (S,S).
Dizemos que Π é relativamente compacta se toda sequência {Pn, n ≥ 1} de probabi-
lidades de Π tem uma subsequência que converge fracamente para alguma medida
de probabilidade. A medida de probabilidade limite não necessita estar em Π.

O teorema a seguir não será provado aqui. Veja Prokhorov (1956), Billingsley
(1999) ou Durrett (1996b). A prova pode ser feita, sucessivamente, para Rk, R∞, S
σ-compacto (uma reunião enumerável de conjuntos compactos) e, finalmente, para
S geral.

Teorema 6.12. (Prokhorov). Seja Π uma famı́lia de medidas de probabilidade
sobre o espaço métrico (S,S).

(a) Se Π for fechada, então Π é relativamente compacta.

(b) Se Π for relativamente compacta e se S for completo e separável, então Π é
fechada.

A parte (b) nos diz, essencialmente, que para espaços “bem comportados”, os
dois conceitos (famı́lia relativamente compacta e fechada) são equivalentes. Veja o
Problema 13.
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Problemas

1. Sejam Xn, X, Yn v.a’s, e c uma constante. Prove que:

(i) Se Xn
D→ X, Yn → c, em probabilidade, então Xn + Yn

D→ X + c e XnYn
D→ cX.

(ii) Não é verdade, de modo genérico, que se Xn
D→ X e Yn

D→ Y , então Xn + Yn
D→

X + Y .

(iii) Se Xn
D→ X, então Xn não necessita convergir para X em probabilidade (dê um

contra-exemplo). Contudo, Xn
D→ X implica Xn → X em probabilidade se X

for uma constante.

2. Sejam Pn, P medidas de probabilidade sobre (S,S). Se Pn(A)→ P (A) para todos os
abertos A, então Pn(A)→ P (A), para todos os conjuntos de Borel (ou seja, todos os
conjuntos de S).

3. Prove que, se Fn, F são f.d’s sobre R, e se F for cont́ınua, então supx∈R |Fn(x) −
F (x)| → 0, n→∞.

4. Sejam P , Q probabilidades sobre Rk. Defina a convolução de P e Q como a probabi-
lidade sobre Rk dada por P ⋆ Q(A) =

∫
Rk P (A− y)Q(dy), onde A é um boreliano de

Rk.

(a) Mostre que se Pn ⇒ P, Qn ⇒ Q, então Pn ⋆ Qn ⇒ P ⋆ Q.

(b) Se Π for uma famı́lia fechada de medidas de probabilidade, então Π∗ = {P ⋆ Q :
P ∈ Π, Q ∈ Π} é fechada.

5. Prove (a)-(c) do Exemplo 6.7.

6. (Métrica de Prokhorov) Se P e Q são medidas de probabilidade, defina ρ(P,Q) =
inf{ε > 0 : Q(A) ≤ P (Aε) + ε, e P (A) ≤ Q(Aϵ) + ε, ∀A ∈ S}. Mostre que ρ é uma
métrica no espaço das medidas de probabilidade sobre (S,S). Aqui, Aϵ = {x ∈ S :
d(A, x) < ε}, sendo d a métrica sobre S.

7. Seja (S,S) um espaço métrico separável (pode usar Rk). Mostre que Pn ⇒ P se, e
somente se, ρ(Pn, P )→ 0.

8. (Métrica de Lévy) Sejam F,G f.d’s sobre R. Defina ρL(F,G) = inf{ε : ∀x ∈ R, G(x−
ε)− ε ≤ F (x) ≤ G(x+ ε) + ε}.

(a) Mostre que ρL é uma métrica.

(b) Mostre que Fn
D→ F se, e somente se ρL(Fn, F )→ 0.

9. Sejam {Pn, n ≥ 1} medidas de probabilidade sobre R∞, e seja πk a projeção de R∞

sobre Rk, isto é, πk{(x1, x2, . . .)} = (x1, . . . , xk). Mostre que, se {Pnπ
−1
k , n ≥ 1} é

uma famı́lia fechada, para cada k, então {Pn, n ≥ 1} é uma famı́lia fechada.
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10. Seja h uma função mensurável de R em R, tal que |h(x)| → +∞, quando |x| → +∞.
Se Π for uma famı́lia de medidas de probabilidade e se supP∈Π

∫
|h|dP <∞, então Π é

fechada. Um caso especial é: se {Xn, n ≥ 1} são v.a’s tais que supn≥1E(|Xn|δ) <∞,
para algum δ > 0, então {Xn} é fechada.

11. Sejam Pn, P medidas de probabilidade sobre R, cada uma absolutamente cont́ınua
com respeito à medida de Lebesgue e tendo densidades gn, g, respectivamente.

(a) Se gn(x)→ g(x) q.c, então Pn ⇒ P .

(b) A rećıproca de (a) pode não ser verdade; dê um exemplo.

(c) Suponha {Pn} normais e Pn ⇒ P . Mostre que, nesse caso, P é também normal e
a rećıproca de (a) vale.

(d) Mostre que, se cada Pn é normal, então {Pn, n ≥ 1} é fechada se, e somente se,
médias e variâncias são limitadas.

12. Prove que a classe dos conjuntos P -cont́ınuos (P fixa) é uma álgebra. Mostre, por
meio de um exemplo, que essa classe não precisa ser uma σ-álgebra.

13. Prove a parte (a) do Teorema de Prokhorov, para S = Rk. Use o Teorema de Helly e
o Teorema 6.11.
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Caṕıtulo 7

Funções Caracteŕısticas

As funções caracteŕısticas constituem uma ferramenta importante em diversas
áreas da Teoria de Probabilidade e Estat́ıstica. Por exemplo, são úteis na demons-
tração de teoremas limites centrais, do teorema de Bochner para procesos esta-
cionários, no estudo de distribuições estáveis etc. Uma referência adequada aqui é
Chung (1974).

7.1 Introdução

Nesta seção definimos a função caracteŕıstica e apresentamos suas propriedades.
A seguir, apresentamos dois resultados importantes, o teorema da unicidade e o da
continuidade.

Definição 7.1. Seja P uma medida de probabilidade sobre Rk. A função carac-
teŕıstica (f.c) de P é a função φ : Rk → C, definida por

φ(t) =

∫
eit·xdP (x), (7.1)

onde t = (t1, . . . , tk), x = (x1, . . . , xk) e t · x =
∑k

i=1 tixi.

Se X = (X1, . . . , Xk) é um vetor aleatório, então a f.c de X é

φ(t) = E
(
eit·X

)
. (7.2)

Algumas propriedades elementares da f.c são:

(1) |φ(t)| ≤ 1 = φ(0); φ(t) = φ(−t).

(2) φ(t) é uniformemente cont́ınua. Veja o Problema 1.

107
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(3) Se X é um vetor aleatório com f.c φ(t), então a f.c de aX+ b é eit·bφ(at). Em
particular a f.c de −X é φ(−t) = φ(t). Logo, se φ é uma f.c, também o será
φ.

(4) Sejam X e Y vetores aleatórios independentes, com f.c’s φX e φY , respectiva-
mente. Seja φX+Y a f.c de X+Y. Então,

φX+Y (t) = φX(t)φY (t). (7.3)

Se essa relação vale, X e Y não precisam ser independentes.

Para provar o teorema da unicidade precisamos dos seguintes lemas.

Lema 7.1. (Uma versão do Teorema de Stone-Weierstrass) Seja S um espaço de
Hausdorff compacto e C(S) a álgebra de todas as funções sobre S, com valores
complexos e cont́ınuas. Seja A uma sub-álgebra de C(S) tal que:

(a) A separa pontos (se x, y ∈ S, então existe f ∈ A tal que f(x) ̸= f(y)).

(b) Se f ∈ A, então f ∈ A.

(c) Para cada ponto x ∈ S, existe f ∈ A, tal que tal que f(x) ̸= 0.

Então, A é densa em C(S), no sentido que, dado ε > 0 e g ∈ C(S), existe f ∈ A,
tal que supx∈S |f(x)− g(x)| < ε.

Para uma prova, veja Simmons (2003).

Lema 7.2. Sejam P e Q medidas de probabilidade sobre Rk tais que
∫
fdP =∫

fdQ, para toda função real f que seja cont́ınua e se anule fora de um conjunto
compacto. Então, P = Q.

Prova: Seja B um conjunto compacto e defina a função g por g(t) = 1, para
t ≤ 0, g(t) = 0 para t ≥ 1, e g(t) = 1 − t, para 0 ≤ t ≤ 1. Seja ε > 0 e
defina fε por fε(x) = g(d(x,B)/ε). Como B é fechado, limε↓0 fε(x) = IB(x). Por
hipótese,

∫
fεdP =

∫
fεdQ, logo

∫
B dP =

∫
B dQ, pelo TCD. Logo, P (B) = Q(B),

para todos os conjuntos compactos e consequentemente pela continuidade de P e Q,
P (F ) = Q(F ), para todos os conjuntos fechados F . Concluimos que P = Q. □

Teorema 7.1. (Da Unicidade) Sejam P e Q medidas de probabilidade sobre Rk,
tendo f.c’s φ e ψ, respectivamente. Se φ(t) = ψ(t), para todo t, então P = Q.

Prova: Considere S = [−πN, πN ]k e seja A0 a classe de todas as funções da forma
f(x) = exp{in·x}, onde n = (n1/2N, . . . , nk/2N), nj = 0,±1, . . . . Seja A a classe de
todas as combinações lineares de funções de A0. Então, A é uma álgebra que satisfaz
(a)-(c) do Lema 7.1, logo é densa em C(S). Observe que, como

∫
eit·xdP =

∫
eit·xdQ,

para todo t, segue que
∫
fdP =

∫
fdQ, para toda f ∈ A.
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Tome f ∈ C(S), seja ε > 0 e tome g ∈ A tal que ∥f−g∥ = supx |f(x)−g(x)| ≤ ε.
Então,

∣∣∣ ∫ fdP −
∫
fdQ

∣∣∣ ≤ ∫ |f − g|dP +

∫
|f − g|dQ+

∣∣∣ ∫ gdP −
∫
gdQ

∣∣∣ ≤ 2ε,

pois a última integral anula-se. Portanto, temos que
∫
fdP =

∫
fdQ, para toda

f cont́ınua sobre Rk e que se anula fora de S, e a mesma conclusão vale para f
nas mesmas condições que se anula fora de conjuntos compactos. A conclusão do
teorema segue do Lema 7.2. □

Teorema 7.2. Seja X = (X1, . . . , Xn) um vetor aleatório, com f.c φX . Seja φXi a
f.c de Xi, i = 1, . . . , n. Então as v.a’s X1, . . . , Xn são independentes se, e somente
se, φX =

∏n
i=1 φXi .

Prova: Vamos dar a prova para o caso n = 2.

(⇒): trivial

(⇐) Suponha φ(X,Y ) = φX · φY , isto é, E
(
ei(tX+sY )

)
= E

(
eitX

)
E
(
eisY

)
. Então,∫

R2

ei(tX+sY )dP(X,Y )(x, y) =

∫
R
eitXdPX(x) ·

∫
R
eisY dPY (y) =∫

R2

ei(tX+sY )dPX(x)dPY (y),

onde a segunda igualdade vale pelo Teorema de Fubini. As medidas dP(X,Y ) e
dPXdPY têm a mesma f.c., logo pelo teorema da unicidade, elas são iguais, e portanto
X e Y são independentes. □

7.2 Funções caracteŕısticas e distribuições normais

Nessa seção provamos alguns resultados envolvendo distribuição normal, univa-
riada e multivariada.

Se X ∼ N(µ, σ2), sua função caracteŕıstica é dada por

φ(t) = eitµ−σ
2t2/2. (7.4)

Em particular, para uma distribuição normal padrão, φ(t) = e−t
2/2. Veja o Pro-

blema 3.

Um vetor aleatório X = (X1, . . . , Xk) tem distribuição normal multivariada se
existem v.a’s normais padrões independentes Z1, . . . , Zk e reais µi, aij , 1 ≤ i, j ≤ k,
tais queX tem a mesma distruição que o vetor (µ1+

∑k
i=1 a1iZi, . . . , µk+

∑k
i=1 akiZi).
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Se A = [aij ], Z = (Z1, . . . , Zk) e µ = (µ1, . . . , µk), então podemos escrever
X ∼ AZ+ µ (o sinal ∼ significa “tem a mesma distribuição”).

Alguns fatos básicos sobre distribuições normais são dados a seguir.

[1] Suponha que X = (X1, . . . , Xk) tenha distribuição normal multivariada. Então,∑k
j=1 ajXj tem distribuição normal univariada.

Devido à caracterização acima de um vetor mutivariado,
∑

j ajXj é uma com-
binação linear de Z1, . . . , Zk e qualquer combinação linear de v.a’s normais indepen-
dentes é normal. Basta calcular a f.c da combinação linear e ver que é dada por
(7.4). O resultado segue do teorema da unicidade.

[2] Seja X = (X1, . . . , Xk) um vetor com distribuição normal multivariada. Então,
a f.c de X é dada por

φ(t) = exp{iµ · t− t ·Rt}, (7.5)

onde R = [rij ] é a matriz de covariâncias, com rij = E[(Xi − µi)(Xj − µj)]. Note
que R = A2 com A dada na definição de X acima. Veja o Problema 4.

[3] (Rećıproca de [2]) Dada qualquer matriz R simétrica semi-definida positiva e
qualquer vetor µ, existe um vetor com distribuição normal multivariada com f.c
dada por (7.5).

Basta considerar Z1, . . . , Zk, independentes, com distribuição normal padrão e
definir X =

√
RZ+ µ.

[4] Sejam X e Y dois vetores com distribuição normal multivariada, com as mesmas
médias e matrizes de covariâncias. Então, X ∼ Y.

De fato, X e Y terão a mesma f.c, e o resultado segue do teorema da unicidade.

[5] Suponha X = (X1, . . . , Xk) com distribuição normal multivariada e matriz de
covariânciasR. Se todos os elementos deR são nulos, exceto aqueles sobre a diagonal
principal, então X1, . . . , Xk são independentes.

É suficiente notar que a f.c de X é o produto de termos da forma exp{itjµj −
rjjt

2
j/2} e o resultado segue.

Definição 7.2.[Convolução] Consideremos duas medidas de probabilidades P e Q
sobre Rk. Então, P ⋆ Q é a medida de probabilidade sobre Rk definida por

P ⋆ Q(A) =

∫
Rk

P (A− y)dQ(y).

Note que, se h for uma função integrável, então∫
h(x)dP ⋆ Q(x) =

∫ ∫
h(x+ y)dP (x)dQ(y).
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Teorema 7.3. Sejam P e Q medidas de probabilidade sobre Rk com f.c’s φ1, φ2,
respectivamente. Então temos:

(a) A f.c de P ⋆ Q é φ1(t)φ2(t).

(b) Sejam X e Y dois vetores aleatórios independentes. Então, PX+Y = PX ⋆ PY,
onde PX+Y é a distribuição de X+Y.

Prova: (a) A f.c de P ⋆ Q é

∫
eit·xdP⋆Q(x) =

∫ ∫
eit·(x+y)dP (x)dQ(y) =

∫
eit·xdP (x)

∫
eit·ydQ(y) = φ1(t)φ2(t),

a primeira igualdade pela nota anterior e a segunda pelo Teorema de Fubini.

(b) A f.c de PX ⋆ PY é φX(t)φY (t), pela parte (a). A f.c de PX+Y é φX(t)φY (t),
provada anteriormente. O resultado segue pelo teorema da unicidade. □

A operação de convolução entre duas medidas de probabilidades é uma operação
de suavização, no seguinte sentido: sejam P,Q probabilidades sobre Rk.

(i) Se P for absolutamente cont́ınua (com respeito à medida de Lebesgue) e Q for
arbitrária, então P ⋆ Q é absolutamente cont́ınua.

(ii) Se P for não atômica, e Q arbitrária, então P ⋆ Q será não atômica. Veja o
Problema 6.

7.3 O Teorema da continuidade

O teorema da continuidade para funções caracteŕısticas tem sua origem em tra-
balhos de Lévy (1925), Glivenko (1936) e Cramér (1937). Esse resultado é básico
para o estudo do teorema limite central (caṕıtulo seguinte) e, em particular, para
caracterizar distribuições infinitamente diviśıveis. Para desenvolvimentos recentes,
veja Heyer e Kawakami (2005).

Teorema 7.4. ( Teorema da continuidade, Lévy-Cramér) Sejam Pn probabilidades
sobre Rk, com f.c’s φn.

(a) Se Pn ⇒ P , então limn→∞ φn(t) = φ(t), onde φ é a f.c de P . A convergência
é uniforme sobre conjuntos compactos e {φn} é uma famı́lia uniformemente equi-
cont́ınua.

(b) Suponha Pn, φn como acima. Se:

(i) limn→∞ φn(t) = h(t) existir, para todo t, e

(ii) h(t) for cont́ınua no zero, então
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existe uma medida de probabilidade P com Pn ⇒ P , e h é a f.c de P .

Prova: (a) Para cada t, eit·x é uma função limitada e cont́ınua sobre Rk, logo
como Pn ⇒ P ,

∫
eit·xdPn →

∫
eit·xdP , para cada t. Para provar a equicontinui-

dade uniforme, lembremos que uma famı́lia de funções {fi, i ∈ I} é uniformemente
equicont́ınua se para todo ε > 0, existe δ > 0 tal que para todo |h| ≤ δ, temos
|fi(x+ h)− fi(x)| < ε, para todo x ∈ Rk e i ∈ I. Aqui temos que

|φn(t+h)−φn(t)| =
∣∣∣ ∫ {ei(t+h)·x−eit·x}dPn

∣∣∣ ≤ ∫ |eih·x−1|dPn → ∫
|eih·x−1|dP,

quando n → ∞, uniformemente em t. Como o último termo tende a zero quando
h→ 0, obtemos a equicontinuidade de {φn}. Convergência uniforme sobre conjuntos
compactos segue da convergência ponto a ponto e da equicontinuidade uniforme.

(b) Segue da aplicação dos dois lemas a seguir. □

Lema 7.3. Se limn→∞ φn(t) = h(t) e se {Pn} é fechada, então existe uma medida
de probabilidade P tal que Pn ⇒ P .

Prova: Se {nk} é qualquer subsequência, existe uma subsequência de {nk}, {n
′
k}, e

uma medida de probabilidade P , tal que P
n
′
k
⇒ P , pelo Teorema de Prokhorov. O

resultado seguirá se mostrarmos que P é independente da subsequência {nk}. Como
P
n
′
k
⇒ P , segue-se da parte (a) do teorema que limφ

n
′
k
(t) = φ(t) = limφn(t), pela

hipótese que a sequência original de f.c’s converge. Portanto, todas as P ’s que
podem ser candidatas como limites têm a mesma f.c, logo P é única, pelo teorema
da unicidade e Pn ⇒ P . □

Lema 7.4. Se limn→∞ φn(t) = h(t), e h(t) for cont́ınua no zero, então {Pn} é
fechada.

Prova: Em primeiro lugar, observamos que

Pn{(Xn
1 , . . . , X

n
k ) /∈ [−a, a]k} ≤

k∑
i=1

Pn{|Xn
i | > a}.

Portanto é suficiente mostrar o resultado para k = 1. Temos que

1

a

∫ a

−a
[1− φn(t)]dt =

1

a

∫ a

−a
[1−

∫
eitxdPn(x)]dt =

=
1

a

∫ ∫ a

−a
[1− eitx]dtdPn(x) = 2

∫ [
1− sin ax

ax

]
dPn(x)

≥ 2

∫
{|x|>2/a}

[
1− 1

|ax|

]
dPn(x) ≥ Pn{|Xn

1 | > 2/a}.
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Considere a tão pequeno de modo que a−1
∫ a
−a[1−h(t)]dt < ε, que é posśıvel pois

h é cont́ınua no zero e h(0) = 1. A seguir, tome N tão grande que, se n ≥ N , então
a−1

∫ a
−a[1− φn(t)]dt ≤ 2ε (pois φn(t) → h(t)). Logo, para n ≥ N , 2ε ≥ Pn{|Xn

1 | >
2/a} e tomando ε ainda menor, se necessário, podemos obter Pj{|Xj

1 | > 2/a} < 2ε,
para j = 1, . . . , N − 1. Assim, para todo n, com a escolhido dessa forma, temos
2ε ≥ Pn{|Xn

1 | > 2/a}, ou seja {Pn} é fechada. □

Corolário 7.1. Sejam {Xn, n ≥ 1} v.a’s independentes com f.c’s φn. Seja Sn =∑n
i=1Xi. Se Sn converge em distribuição, então Sn converge q.c.

Prova: Provamos, via martingales, que se
∏n
k=1 φk(t) converge, para todo t num

intervalo, então Sn converge q.c. Por hipótese, Sn converge em distribuição, logo a
f.c de Sn, o produto em questão, converge para todo t. □

7.4 Funções caracteŕısticas sobre R

Nesta seção iremos estudar resultados espećıficos para f.c’s definidas sobre R,
em particular a importante fórmula de inversão.

Teorema 7.5. Seja X uma v.a com f.c φ.
(a) Se E(|X|k) <∞, então a k-ésima derivada φ(k)(t) existe, é cont́ınua e

φ(k)(t) =

∫
(ix)keitxdP (x). (7.6)

Também, φ(k)(0) = (i)kE(Xk).

(b) Se φ(k)(0) existe e se k é par, então E(|X|k) <∞.

Prova: (a) Vamos dar a prova somente para o caso k = 1. Temos

φ(t+ h)− φ(t)
h

=

∫
ei(t+h)x − eitx

h
dP.

O módulo do integrando é limitado por |x|, que é intergrável por hipótese; faça
h→∞ e use o TCD para obter o resultado.

(b) Para k = 2,

φ
′′
(0) = lim

h→0

φ(h)− 2φ(0) + φ(−h)
h2

= lim
h→0

1

h2

∫
[eihx − 2 + e−ihx]dP

= −2 lim
h→0

∫
1− coshx

h2
dP.

Então, pelo lema de Fatou,
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∫
x2dP =

∫
lim
h→0

1− coshx

h2
dP ≤ lim

h→0

∫
1− coshx

h2
dP = −1

2
φ

′′
(0) <∞.

Para o caso geral k par, suponha o teorema válido para k − 2 e defina H(x) =∫ x
−∞ yk−2dP (y). A função H é crescente, logo H(x)/H(∞) é uma f.d. Seja ψ a f.c.
dessa f.d. Então,

ψ(t) =

∫
eitx

dH(x)

H(∞)
=

∫
eitxxk−2 dP (x)

H(∞)
.

Aplique o caso k = 2 a essa f.c. e obtenha

∞ > −1

2
ψ

′′
(0) ≥

∫
x2
dH(x)

H(∞)
=

∫
x2xk−2 dP (x)

H(∞)
=

1

H(∞)

∫
xkdP (x). □

Observe que o resultado não é em geral válido se k for ı́mpar.

Exemplo 7.1. φ(t) = e−t
4
não é uma f.c. A segunda derivada de φ existe e é igual

a zero para t = 0. Pela parte (b) do teorema, E(X2) <∞. Por (a) E(X2) = 0, logo
X = 0, mas φ não é a f.c. de X = 0.

Corolário 7.2. (Expansão de Taylor). Seja X uma v.a com f.c φ e suponha que
E(|X|n) <∞. Então temos para todo t ∈ R,∣∣∣φ(t)−∑n

k=0
(it)kE(Xk)

k!

∣∣∣ ≤ E(min
{

|tX|n+1)
(n+1)! ,

2|tX|n
n!

})
.

Prova: Veja o Problema 12.

Teorema 7.6. (Método dos momentos) Sejam {Xn} v.a’s com distribuições {Pn}.
Suponha E(|Xn|k) <∞, para todo k e n. Suponha que:

(a) limn→∞E(Xk
n) = µk <∞;

(b) lim supn→∞
(µn)1/n

n = λ <∞.

Então, existe uma medida de probabilidade P e Pn ⇒ P.

Prova: Seja {nk} qualquer subsequência. Vamos provar que podemos extrair uma
subsequência n

′
k tal que P

n
′
k
⇒ P , e P é uma probabilidade que não depende das

subsequências consideradas. Note que supn
∫
x2dPn < ∞, por (a). Segue-se que

{Pn} é uma famı́lia fechada (veja o Problema 13). Pelo teorema de Prokhorov, existe
uma subsequência n

′
k de nk e uma probabilidade P tal que P

n
′
k
⇒ P . Provemos

agora que P independe de {nk}. Para cada j, temos que
∫
xjdP

n
′
k
→
∫
xjdP pois

{Xj
n}n é u.i. Logo, como

∫
xjdPn → µj , para todo j, segue-se que todos os P
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limites têm os mesmos momentos. Para mostrar que P é única, basta mostrar que
é univocamente determinada por seus momentos.

Se φ é a f.c de P , usando a expansão de Taylor dado no Corolário 7.2,

∣∣∣φ(t+ h)− φ(t)− φ′
(t)− φ(2)(t)h2

2
− . . .− φ(k)(t)hk

k!

∣∣∣ ≤ E(|X|k+1)|h|k+1

(k + 1)!
,

onde X é uma v.a com lei P . Pela parte (b) e usando a fórmula de Stirling, se
|h| < 1/(4λ), o lado direito converge para zero, quando k →∞.

Conclúımos que φ admite uma expansão de Taylor ao redor de qualquer ponto da
reta, ou seja φ é anaĺıtica em uma vizinhança da reta, de modo que é univocamente
determinada por sua série de potências ao redor do zero. Mas essa é dada por∑

k
(it)kE(Xk)

k! , logo P é univocamente determinada por seus momentos. □

Provaremos, a seguir, a chamada fórmula de inversão para f.c’s. Uma motivação
para tal fórmula é a seguinte. Para dada f , satisfazendo determinadas condições, a
transformada de Fourier de f é definida por

f̂(ξ) =

∫ ∞

−∞
eiξxf(x)dx.

Sabe-se, também, que sob certas condições, temos a transformada inversa de
Fourier

f(x) =
1

2π

∫ ∞

−∞
e−iξxf̂(ξ)dξ.

Se f for uma densidade de probabilidade, com f.d F , a f.c correspondente à F é
a transformada de Fourier f̂ de f . Então,

F (b)− F (a) =
∫ b

a
f(x)dx =

∫ b

a

[ 1

2π

∫ ∞

−∞
e−iξxφ(ξ)dξ

]
dx.

O resultado rigoroso é apresentado a seguir.

Teorema 7.7. (Fórmula da inversão) Seja F uma f.d e φ a f.c correspondente.
Então, para a < b, temos

F (b) + F (b−)
2

− F (a) + F (a−)
2

=
1

2π
lim
c→∞

∫ c

−c
φ(t)

e−ita − e−itb

it
dt. (7.7)

Prova: Os seguintes fatos são necessários:

(i)
∫∞
0

sinx
x dx = π/2;

Morettin-Gallesco - dezembro/2025
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(ii) lima→−∞,b→∞
∫ b
a

sinx
x dx = π;

(iii)
∫∞
−∞

sin(αx)
x dx =


π, α > 0,

0, α = 0,

−π, α < 0;

(iv)
∫ c
−c

sin(αx)
x dx é limitada como função de c.

A integral em (7.7) é dada por

1

2π

∫ c

−c
φ(t)

e−ita − e−itb

it
dt =

1

2π

∫ c

−c

[
e−ita − e−itb

it

∫ ∞

−∞
eitxdP (x)

]
dt =

=
1

2π

∫ ∞

−∞

[∫ c

−c

eit(x−a) − eit(x−b)

it
dt

]
dP (x).

Para obter a última igualdade, o teorema de Fubini foi aplicado, pois∣∣∣∣∣eit(x−a) − eit(x−b)it

∣∣∣∣∣ ≤
∣∣∣∣e−ita − e−itbit

∣∣∣∣ = ∣∣∣∣∫ b

a
eitxdx

∣∣∣∣ ≤ b− a.
Seja

hc =

∫ c

−c

eit(x−a) − eit(x−b)

it
dt =

∫ c

−c

sin t(x− a)
t

dt−
∫ c

−c

sin t(x− b)
t

dt,

que é uma função limitada de c, por (iv) acima. Logo, podemos tomar o limite para
c→∞, sob o sinal da integral, para obter

lim
c→∞

1

2π

∫ c

−c
φ(t)

e−ita − e−itb

it
dt =

1

2π

∫ ∞

−∞
lim
c→∞

hcdP.

Mas, limc→∞ hc =



(−π)− (−π) = 0, x < a,

0− (−π) = π, x = a,

π − (−π) = 2π, a < x < b,

π, x = b,

0, x > b,

e, portanto, o limite acima

fica

1

2π

∫ ∞

−∞
lim
c→∞

hcdP =
1

2π

[∫
{x=a}

πdF +

∫
{a<x<b}

2πdF +

∫
{x=b}

πdF

]
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=
1

2
[F (a)−F (a−)]+[F (b)−F (a)]+1

2
[F (b)−F (b−)] = F (b) + F (b−)

2
−F (a) + F (a−)

2
.

□
Esse resultado fornece um teorema de unicidade para R.

Corolário 7.3. Duas medidas de probabilidade sobre R, tendo a mesma f.c., são
iguais.

Teorema 7.8. Suponha que
∫
R |φ(t)|dt < ∞, onde φ é a f.c da v.a X. Então, X

tem uma densidade de probabilidade limitada e cont́ınua.

Prova: (a) Seja F a f.d de X; então, F é cont́ınua. De fato, para h > 0,

F (x+ h) + F (x+ h−)
2

− F (x) + F (x−)
2

=
1

2π

∫ ∞

−∞
φ(t)

e−ixt − e−i(x+h)t

it
dt.

O integrando é limitado por |φ(t)|h. Para h → 0 e pelo TCD, o lado esquerdo

tende a a zero. Pelo mesmo argumento, F (x)+F (x−)
2 − F (x−h)+F (x−h−)

2 tende a zero,
para h→ 0. Deduzimos portanto que F é cont́ınua.

(b) Agora, vamos mostrar que F é derivável. Usando (a), obtemos para h > 0

F (x+ h)− F (x)
h

=
1

2π

∫ ∞

−∞
φ(t)

e−itx − e−it(x+h)

ith
dt.

O integrando é limitado por |φ(t)|; pelo TCD conclua que

lim
h→0

F (x+ h)− F (x)
h

=
1

2π

∫ ∞

−∞
φ(t)e−itxdx.

Podemos mostrar analogamente que limh→0
F (x)−F (x−h)

h tem o mesmo limite. Obte-
mos assim que F ′ é derivável. Pela expressão da derivada obtida acima, vemos que
F ′ é limitada e, por uma nova aplicação do TCD, que F ′ é cont́ınua. □

Corolário 7.4. Se
∫
R |φ(t)|dt <∞, então F

′
(x) existe, é limitada e cont́ınua, e

F
′
(x) =

1

2π

∫
R
φ(t)e−itxdt. (7.8)

Aplicações

[1] Sabe-se que, se 0 < α ≤ 2, então φ(t) = e−|t|α é uma f.c (na realidade, essa é a
f.c de uma distribuição estável simétrica, veja o Caṕıtulo 8). Pelo teorema, se X for
simétrica e estável, então X tem uma densidade limitada e cont́ınua.
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[2] Suponha que Pn ⇒ P , e Pn, P tenham densidades fn, f , respectivamente. Sa-
bemos que não é necessariamente verdade que fn(x) → f(x) q.c. Contudo, se∫
R |φn(t)− φ(t)|dt→ 0, então fn(t)→ f(t).

O teorema limite central na sua forma mais simples decorre de uma aplicação
das f.c’s.

Teorema 7.9. Sejam X1, X2, . . . v.a’s i.i.d, E(X1) = 0, Var(X1) = 1. Então,

(X1 + . . .+Xn)/
√
n

D→ N(0, 1).

Prova: Seja φ a f.c de X1 e Sn = X1+ . . .+Xn. Se ψn é a f.c de Sn/
√
n, mostremos

que ψn(t)→ e−t
2/2. Temos que

ψn(t) = E
[
eitSn/

√
n
]
=

[
φ

(
t√
n

)]n
=

=
[
1 + φ

′
(0)

t√
n
+
φ

′′
(0)

2!

( t√
n

)2
+ o
( 1
n

)]n
,

pela independência dos Xi e usando expansão de Taylor. Mas, φ
′
(0) = iE(X1) =

0, φ
′′
(0) = i2E(X2

1 ) = −1, de modo que ψn(t) = [1 − t2/(2n) + o(1/n)]n → e−t
2/2,

quando n→∞. □

Problemas

1. Prove que φ(t) é uniformemente cont́ınua.

2. Prove (7.3).

3. Prove (7.4).

4. Prove (7.5).

5. Prove que a f.c da distribuição de Cauchy padrão (densidade [π(1 + x2)]−1) é e−|t|.

6. Sejam P,Q probabilidades sobre Rk. Prove que: (a) Se P for absolutamente cont́ınua,
então P ⋆ Q é absolutamente cont́ınua; (b) Se P for não atômica, P ⋆ Q também não
o será.

7. Prove que, se h for uma função integrável, então∫
h(x)dP ⋆ Q(x) =

∫ ∫
h(x+ y)dP (x)dQ(y).

8. (a) Se uma famı́lia Φ de f.c’s sobre R for equicont́ınua no zero, então a famı́lia corres-
pondente de medidas de probabilidade é fechada.

(b) Seja {Qn} uma famı́lia de f.c’s convergindo uniformemente numa vizinhança do
zero. Prove que existe uma subsequência convergindo para uma f.c.
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9. Suponha que (X1, . . . , Xn) seja norma multivariada. Mostre que E(Xn|X1, . . . , Xn−1) =∑n−1
k=1 akXk, para constantes ak.

[Sugestão: Determine ak por meio de E{(Xn −
∑n−1

k=1 akXk)Xj} = 0.]

10. Seja {Xn, n ≥ 1} uma sequência de v.a’s com f.c’s φn. Suponha que |φn(t)| → 1, para
todo t, quando n→∞. Mostre que existem constantes an tais que Xn − an converge
para zero em lei.

[Sugestão: Simetrize e tome an = mediana{Xn}.]
11. (a) Sejam X1, X2, . . . v.a’s i.i.d, média zero e variância 1. Prove que∑n

i=1Xi√∑n
i=1X

2
i

D→ N(0, 1).

(b) Supomha Xn ∼ binomial(n, pn) e npn → λ. Prove que Xn converge em distri-
buição para Y ∼ Poisson(λ).

(c) Para o TLC simples (Teorema 7.9), prove que Sn/
√
n não converge em probabili-

dade, embora convergindo em distribuição.

(d) Sejam X e Y independentes, cada uma normal com variância um. Prove que
X + Y e X − Y são independentes, usando f.c’s.

12. Prove o Corolário 7.2.

13. Prove que a famı́lia {Pn} do Teorema 7.6, é fechada.

14. Prove a seguinte fórmula de inversão (mesmo método de prova do Teorema 7.7):

1

2
[F (x) + F (x−)] = 1

2
+ lim

c→∞,δ↓0

∫ c

δ

eitxφ(−t)− e−itxφ(t)

2πit
dt.

15. Seja X uma v.a com f.c φ. Prove que, se φ(t) ∈ L2 e se X tem densidade f , então
f ∈ L2 e ∫ ∞

−∞
f2(x)dx =

1

2π

∫ ∞

−∞
|φ(x)|2dx.

[Sugestão: Considere a f.c de X −X ′
, sendo X

′
independente de X e com a mesma

distribuição que X.]

16. Suponha P probabilidade sobre R com f.c φ.

(a) Se P for absolutamente cont́ınua com respeito à medida de Lebesgue, então
lim|t|→∞ φ(t) = 0;

(b) Se |φ(t1)| = 1, para algum t1 ̸= 0, então P é concentrada em um conjunto de
pontos da forma xn = a+ n(2π/t1).

[Sugestão para (a): comece com o caso que a densidade de P é uma função simples.

Sugestão para (b): existe θ1, tal que 1 = e−iθ1φ(t1). Então, note que 0 =
∫
[1 −

cos(t1x− θ1)dP (x) e o integrando é não negativo.]
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17. (Função de concentração de Lévy) Se P for uma probabilidade sobre R, definaQP (ε) =
supx∈R P ([x, x+ ε]). Prove que:

(a) o supremo é atingido, QP (ε) é crescente como função de ε e limε↑∞QP (ε) = 1.

(b) Se P = P1 ⋆ P2, então QP (ε) ≤ QP1
(ε) ∧QP2

(ε).
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Caṕıtulo 8

Teoremas Limites Centrais

Um teorema limite central (TLC) é qualquer teorema que trata da convergência
fraca de somas de v.a’s apropriadamente normalizadas. Os teoremas mais conhecidos
tratam da convergência de tais somas de variáveis independentes, satisfazendo certas
condições. O caso mais simples, visto no caṕıtulo anterior, trata do caso de v.a’s
i.i.d com variância finita. Nessas situações, a distribuição limite é a normal (ou
gaussiana).

Para v.a’s que tenham alguma forma de dependência, podemos ter TLC’s sob
condições de independência assintótica, também chamadas condições mixing. Por
exemplo, temos TLC’s para processos estacionários satisfazendo condições mixing.

Há situações em que a distribuição limite não é a normal. Por exemplo, veremos
mais adiante, que uma soma normalizada de v.a’s i.i.d converge, em distribuição,
para uma v.a estável. Também, o máximo de um número finito de v.a’s i.i.d, apro-
priadamente normalizado, tende para uma distribuição, chamada distribuição gene-
ralizada de valores extremos, que pode ser uma de três tipos: Gumbel, Weibull ou
Fréchet.

A primeira versão de um TLC foi postulada por de Moivre, em 1733, que usou
a distribuição normal como aproximação da distribuição de um número de caras,
resultantes de lançamentos de uma moeda. Laplace, em 1812, estendeu o resultado
de de Moivre, ao aproximar a distribuição binomial pela normal.

O termo “teorema limite central” foi usado pela primeira vez por Polya, em
1920, e ele se referia ao termo “central” como devido à sua importância em pro-
babilidades. De acordo com L. Le Cam, a escola francesa interpretava o termo no
sentido que “descrevia o comportamento do centro da distribuição, em oposição ao
comportamento das caudas.”

No Caṕıtulo 9 trataremos do teorema de Donsker, que trata do limite de certos
processos emṕıricos, às vezes denominado de TLC funcional.
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122 CAPÍTULO 8. TEOREMAS LIMITES CENTRAIS

8.1 Os Teoremas de Lindeberg e Feller

Para provar o Teorema de Lindeberg precisaremos dos seguintes lemas.

Lema 8.1. Seja C0 a classe das funções cont́ınuas sobre R tais que limx→∞ f(x) e
limx→−∞ f(x) existem em R. Seja D a classe de todas as funções tendo derivadas
cont́ınuas e limitadas de qualquer ordem. Então, qualquer função em C0 pode ser
uniformemente aproximada por uma função de D (isto é, D é densa em C0 na norma
sup).

Prova: Seja f ∈ C0 e para h > 0 defina fh(x) =
∫
f(t)ϕh(x − t)dt, sendo ϕh a

densidade da N(0, h). Então, fh tem derivadas cont́ınuas e limitadas de qualquer
ordem. Também,

|fh(x)− f(x)| ≤
∫
|f(t)− f(x)|ϕh(x− t)dt =

∫
|f(t− x)− f(x)|ϕh(t)dt.

Tome δ tão pequeno de modo que |f(t) − f(s)| ≤ ε, sempre que |t − s| ≤
2δ. Separando a última integral acima em uma integral sobre [−δ, δ] e a outra
sobre o complementar desse intervalo, obtemos que a integral será menor ou igual a
ε+2M [1−Φh(δ)+Φh(−δ)], onde M é tal que |f(x)| ≤M , para todo x e Φh é a f.d
da normal. Para h→ 0, 1−Φh(δ) +Φh(−δ)→ 0, logo supx |fh(x)− f(x)| ≤ ε. □

Lema 8.2. Sejam Pn, P medidas de probabilidade sobre R e suponha que
∫
R fdPn →∫

R fdP , para toda f tendo derivadas limitas e cont́ınuas de qualquer ordem. Então,
Pn ⇒ P .

Prova: Sejam Fn, F as f.d’s correspondentes a Pn, P e seja x um ponto de conti-
nuidade de F . Seja δ > 0 arbitrário e f uma função definida como segue: f(t) = 1,
para t ≤ x, f linear entre x e x+ δ e f(t) = 0, para t ≥ x+ δ. Seja fε uma função
em D, tal que supx |fε(x)− f(x)| ≤ ε. Então,

lim sup
n

Fn(x) ≤ lim sup
n

∫
fdPn ≤ lim sup

n

∫
(ε+ fε)dPn

= ε+ lim sup
n

∫
fεdPn = ε+

∫
fεdP ≤ 2ε+

∫
fdP ≤ 2ε+ F (x+ δ).

Para δ → 0, lim supn Fn(x) ≤ 2ε + F (x), e como ε > 0 arbitrário, obtemos
lim supn Fn(x) ≤ F (x). Por um argumento similar, obtemos lim infn Fn(x) ≥ F (x),
para x ponto de continuidade de F . Basta considerar f como acima, e os pontos
x− δ e x na sua definição, no lugar de x e x+ δ. □

Teorema 8.1. (Lindeberg) Para cada n, sejam Xn,1, . . . , Xn,kn v.a’s independentes,

com média zero, Var(Xn,j) = σ2n,j . Sejam Sn = Xn,1+ . . .+Xn,kn e s2n =
∑kn

j=1 σ
2
n,j .

Suponha que
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lim
n→∞

1

s2n

kn∑
j=1

∫
{|Xn,j |>εsn}

X2
n,j dP = 0, ∀ε > 0. (8.1)

Então, Sn/sn
D→ N(0, 1).

A equação (8.1) é chamada condição de Lindeberg.

Prova: Sejam Xn,1, . . . , Xn,kn como no teorema e denotemos por N uma v.a com
distribuição N(0, 1). Pelo Lema 8.2, é suficiente provar que

E(f(Sn/sn))→ E(f(N)), para f ∈ D, (8.2)

sendo D a classe definida no Lema 8.1. A ideia da prova é: suponha que as v.a’s
Xn,i fossem normais, cada uma N(0, σ2n,i). Então, Sn/sn seria N(0, 1) e (8.2) valeria

nesse caso. Suponha que Yn,1, . . . , Yn,kn sejam independentes N(0, σ2n,i), escolhidas
de tal maneira que Xn1, . . . , Xn,kn , Yn1, . . . , Yn,kn sejam independentes.

Vamos substituir, sucessivamente, em Sn,Xn,kn , Xn,kn−1, · · · por Yn,kn , Yn,kn−1, · · · ,
de tal sorte que E(f(Sn/sn)) seja substitúıda por E((f(Yn,1 + . . . + Yn,kn)/sn) =
E(f(N)).

Defina g(t) = supx∈R |f(x+ t)− f(x)− f ′
(x)t− f ′′

(x)t2/2|. Então, por Taylor,
|g(t)| ≤M1|t|3. Também, |g(t)| ≤M2t

2, pois g(t) ≤ supx |f(x+ t)−f(x)−f
′
(x)t|+

supx |f
′′
t2/2|. Segue que g(t) ≤M(t2 ∧ |t|3). Note que

|f(x+ t1)− f(x+ t2)− f
′
(x)(t1 − t2)− f

′′
(x)(t21 − t22)/2| ≤ g(t1) + g(t2). (8.3)

Defina

Zn,k =
∑

1≤j<k
Xn,j +

∑
k<j≤kn

Yn,j .

Observe que Zn,kn +Xn,kn = Sn e Zn,1 + Yn,1 ∼ N(0, s2n).

Considere∣∣∣Ef (Sn
sn

)
−Ef

(
Yn,1 + . . .+ Yn,kn

sn

) ∣∣∣ ≤ kn∑
k=1

∣∣∣Ef (Zn,k +Xn,k

sn

)
−Ef

(
Zn,k + Yn,k

sn

) ∣∣∣
≤

kn∑
k=1

Eg

(
Xn,k

sn

)
+

kn∑
k=1

Eg

(
Yn,k
sn

)
,

usando (8.3) e os cálculos seguintes:

E(f
′
(Zn,k)(Xn,k − Yn,k)) = Ef

′
(Zn,k)E(Xn,k − Yn,k) = 0,
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usando a independência de Xn,k, Yn,k de Zn,k e E(Xn,k−Yn,k) = 0. De modo similar,
obtemos E(f

′′
(Zn,k)(X

2
n,k − Y 2

n,k)) = 0, notando que E(X2
n,k − Y 2

n,k) = 0.
Para terminar a prova, mostraremos que cada uma das somas acima tende a

zero. Para a primeira,

kn∑
k=1

Eg

(
Xn,k

sn

)
=

kn∑
k=1

∫
{|Xn,k|≤snε}

g

(
Xn,k

sn

)
dP +

kn∑
k=1

∫
{|Xn,k|>snε}

g

(
Xn,k

sn

)
dP

≤M
kn∑
k=1

∫
{|Xn,k|≤snε}

|Xn,k|3

s3n
dP +M

kn∑
k=1

∫
{|Xn,k|>snε}

X2
n,k

s2n
dP ≤

≤Mε+M

kn∑
k=1

∫
{|Xn,k|>snε}

X2
n,k

s2n
dP,

para todo ε > 0. Tomando n → ∞ e em seguida ε → 0 obtemos que a primeira
soma converge para 0.

Para a segunda soma, escrevendo a integral como a soma de duas integrais, como
no caso anterior, ou seja uma sobre {|Yn,k| ≤ εsn} e a outra sobre o complementar
desse conjunto, obtemos que

kn∑
k=1

Eg

(
Yn,k
sn

)
≤ εM +M

kn∑
k=1

∫
{|Yn,k|>εsn}

Y 2
n,k

s2n
dP.

Mas,
kn∑
k=1

∫
{|Yn,k|>εsn}

Y 2
n,k

s2n
dP ≤ 1

ε

kn∑
k=1

∫ |Yn,k|3
s3n

dP =
C

ε

kn∑
k=1

σ3n,k
s3n

,

pois E(|Yn,k|3) = Cσ3n,k, onde C é uma constante absoluta. Logo a última parcela
da relação anterior

C

ε

kn∑
k=1

σ3n,k
s3n
≤ C

ε
max
k≤kn

σn,k
sn

kn∑
k=1

σ2n,k
s2n

,

notando que a soma é igual a um. Logo, é suficiente mostrar que maxk
σn,k

sn
→ 0,

para n → ∞. Mas,
σ2
n,k

s2n
= 1

s2n
E(X2

n,k) e quebrando a integral em duas, uma sobre

{|Xn,k| ≤ snδ} e outra sobre o complementar, obtemos que

max
k≤kn

σ2n,k
s2n
≤ δ2 +max

k≤kn

1

s2n

∫
{|Xn,k|>snδ}

|Xn,k|2dP,

sendo que o segundo termo tende a zero por (8.1). Como δ > 0 é arbitrário, o
resultado segue. □
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Exemplo 8.1. [1] Sejam {Xn, n ≥ 1} v.a’s i.i.d, média zero e variância comum σ2.

Então, (X1 + . . .+Xn)/(σ
√
n)

D→ N(0, 1).

De fato, temos que nesse caso, Xn,j = Xj , kn = n, s2n = nσ2 e a condição de
Lindeberg fica

1

σ2

∫
{|X1|>σ

√
nε}
|X1|2dP → 0.

[2] (Teorema de Lyapunov) Com a mesma notação do Teorema 8.1, suponha que

1

s2+δn

kn∑
j=1

E(|Xn,j |2+δ)→ 0, para algum δ > 0. (8.4)

Então, Sn/sn
D→ N(0, 1).

Basta observar que

1

s2n

kn∑
j=1

∫
{|Xn,j |>εsn}

X2
n,j dP ≤

1

s2+δn εδ

kn∑
j=1

E(|Xn,j |2+δ)→ 0,

para cada ε > 0, pois |Xn,j |δ/(εδsδn) > 1.

Na condição de Lindeberg (8.1), substitua Xn,i por Xn,i/sn = Yn,i, i = 1, . . . , kn.

Note que
∑kn

i=1Var(Yn,i) = 1. Obtemos, então, a seguinte reformulação do Teorema
8.1. Suponha que

kn∑
i=1

∫
{|Yn,i|>ε}

Y 2
n,i dP → 0, n→∞. (8.5)

Então,
∑kn

i=1 Yn,i
D→ N(0, 1).

Note que se (8.5) vale, então

lim
n→∞

max
k≤kn

P{|Yn,k| > ε} → 0, (8.6)

pois maxk P{|Yn,k| > ε} ≤ 1
ε2
∑kn

i=1

∫
{|Yn,i|>ε} Y

2
n,i dP → 0, por (8.5), sendo que a

desigualdade segue de Chebyshev.

Se as v.a’s Yn,1, Yn,2, . . . satisfazem (8.6), elas são chamadas:

(i) u.a.n (uniformly asymptotically negligible) (Loève);

(ii) null array (Feller);
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(iii) holouspoudic (Chung).

É natural perguntar se a condição (8.1) do teorema de Lindeberg é também
uma condição necessária para ter o TLC. A resposta é em geral negativa mas sob a
hipótese adicional (8.6) temos o teorema a seguir.

Teorema 8.2. (Feller) Sejam Xn,1, . . . , Xn,kn v.a’s independentes, de média zero,

Var(Xn,i) = σ2n,i, com
∑

i σ
2
n,i = 1. Seja Sn =

∑kn
i=1Xn,i. Suponha que:

(1) Sn
D→ N(0, 1);

(2) limn→∞maxk≤kn P{|Xn,k| > ε} = 0, ∀ε > 0.

Então,
∑kn

k=1

∫
{|Xn,k|>ε}X

2
n,kdP → 0, n→∞.

Prova: A condição (1) implica que

kn∏
k=1

φn,k(t)→ e−t
2/2, (8.7)

quando n→∞, sendo φn,k a f.c de Xn,k.

Provemos, agora, que (2) implica

lim
n→∞

max
k≤kn

|φn,k(t)− 1| → 0, para cada t. (8.8)

De fato, sendo Pn,k a lei de Xn,k,

|φn,k(t)−1| ≤
∫
|eitx−1|dPn,k(x) =

∫
{|x|>ε}

|eitx−1|dPn,k(x)+
∫
{|x|≤ε}

|eitx−1|dPn,k(x)

≤ 2P{|Xn,k| > ε}+
∫
{|x|≤ε}

|tx|dPn,k(x) ≤ 2P{|Xn,k| > ε}+ |t|ε.

Logo, temos

lim sup
n→∞

max
k≤kn

|φn,k(t)− 1| ≤ 2 lim
n→∞

max
k≤kn

P{|Xn,k| > ε}+ |t|ε = |t|ε.

Tomando ε→ 0, obtemos (8.8). De (8.8), deduzimos que existe um inteiro N(t),
tal que para n ≥ N(t), temos supk |φn,k(t) − 1| ≤ 1/2. Logo, podemos escrever,
usando (8.7):

kn∑
k=1

logφn,k(t)→ −t2/2, (8.9)
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na qual os logaritmos são tomados com argumento em (−π, π], e

logφn,k(t) = [φn,k(t)− 1] +M |φn,k(t)− 1|2, (8.10)

onde M tem valor complexo e é limitada por 2 em valor absoluto. De fato, pela

expansão de Taylor do valor principal de log z, log z =
∑

l≥1
(−1)l−1

l (z − 1)l, que é
válida para |z − 1| < 1. Logo, como |φn,k(t)− 1| ≤ 1/2, obtemos

| logφn,k(t)− (φn,k(t)− 1)| ≤
∑
l≥2

1

k
|φn,k(t)− 1|l ≤ |φn,k(t)− 1|2

∑
l≥0

1

2l
.

Temos também,

kn∑
k=1

|φn,k(t)− 1|2 ≤ max
k≤kn

|φn,k(t)− 1|
kn∑
k=1

|φn,k(t)− 1|. (8.11)

Mas

kn∑
k=1

|φn,k(t)− 1| ≤
kn∑
k=1

∫
|eitx − 1|dPn,k(x) ≤

kn∑
k=1

∫
t2x2

2
dPn,k(x) = t2/2,

pois
∑kn

k=1 σ
2
n,k = 1. Logo,

∑kn
k=1 |φn,k(t)− 1|2 → 0, para n→∞, por (8.11) e (8.8).

Usando esse fato, (8.9) e (8.10), obtemos que

kn∑
k=1

[φn,k(t)− 1]→ −t2/2 (8.12)

quando n→∞. Tome a parte real de (8.12) para obter

kn∑
k=1

∫
[1− cos(tx)]dPn,k(x)→ −t2/2.

Portanto,

lim sup
n

∣∣∣ t2
2
−

kn∑
k=1

∫
{|x|≤ε}

[1−cos(tx)]dPn,k(x)
∣∣∣ = lim sup

n

∣∣∣ kn∑
k=1

∫
{|x|>ε}

[1−cos(tx)]dPn,k(x)
∣∣∣

≤ lim sup
n

∣∣∣ kn∑
k=1

∫
{|x|>ε}

2dPn,k(x)
∣∣∣ ≤ 2 lim sup

n

kn∑
k=1

∫
|x|2

ε2
dPn,k(x) =

2

ε2
.

Segue que

2

ε2
≥ lim sup

n

∣∣∣∣∣ t22 −
kn∑
k=1

∫
{|x|≤ε}

[1− cos(tx)]dPn,k(x)

∣∣∣∣∣
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≥ lim sup
n

(
t2

2
−

kn∑
k=1

∫
{|x|≤ε}

t2x2

2
dPn,k(x)

)
.

Então,

4

ε2t2
≥ lim sup

n

(
1−

kn∑
k=1

∫
{|x|≤ε}

x2dPn,k(x)
)
≥ 0.

Faça t→∞, para obter
∑kn

k=1

∫
{|x|≤ε} x

2dPn,k(x)→ 1. Conclui-se que a soma

kn∑
k=1

∫
{|x|>ε}

x2dPn,k(x)→ 0,

pois
∑kn

k=1

∫
x2dPn,k(x) = 1. □

O seguinte teorema foi provado independentemente por Berry (1941) e Esseen
(1942). Veja Feller (1966) para uma prova.

Teorema 8.3. (Berry-Esseen) Sejam {Xn, n ≥ 1} v.a’s i.i.d, de média zero e
variância σ2 e suponha E(|X1|3) < ∞. Seja Fn a f.d de (X1 + . . . + Xn)/(σ

√
n)

e Φ a f.d de uma normal padrão. Então,

sup
x∈R
|Fn(x)− Φ(x)| ≤ 33

4

E(|X1|3)
σ3

1√
n
.

O teorema é caso particular de um resultado mais geral. Seja ∆n(x) = |Fn(x)−
Φ(x)|. Sob as condições do teorema (suponha σ = 1), existe uma constante absoluta
C0(δ), para δ ∈ (0, 1], tal que

sup
x

∆n(x) ≤ C0(δ)L
2+δ
n , onde L2+δ

n =
E(|X1|2+δ)

nδ/2
.

Observe que o teorema anterior é um caso particular para δ = 1. Vários trabalhos
subsequentes foram provados no sentido de tornar mais preciso o limite superior do
resultado. Veja Korolev e Shevtsova (2010) para uma resenha histórica.

8.2 Distribuições infinitamente diviśıveis

Vamos considerar os seguintes exemplos:

(a) Sejam {Xn, n ≥ 1} v.a’s i.i.d, média zero e variância 1. Então,

X1 + . . .+Xn√
n

D→ N(0, 1), f.c. e−t
2/2.
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(b) Sejam {Xn, n ≥ 1} v.a’s i.i.d, média µ. Então,

X1 + . . .+Xn

n

D→ µ, f.c. eitµ.

(c) Suponha que Xn tenha distribuição binomial, com parâmteros n e p = λ/n,

com λ > 0. Então, sabemos que Xn
D→ P (λ), ou seja, uma Poisson com

parâmetro λ, e f.c eλ(e
it−1). Se, para cada n, considerarmos Xn,1, . . . , Xn,n

independentes, cada uma Bernoulli, com p = λ/n, entãoXn ∼ Xn,1+. . .+Xn,n

e teremos Xn,1 + . . .+Xn,n
D→ P (λ).

Esses exemplos são instâncias da seguinte situação. Temos um arranjo triangular

X1,1

X2,1, X2,2

X3,1, X3,2, X3,3

· · ·

onde, para cada n, Xn,1, . . . , Xn,n são i.i.d. Seja Sn =
∑n

i=1Xn,i. Em cada um dos
exemplos acima, Sn converge para alguma v.a. Quais outras variáveis aparecem em
situações como essas?

Suponha que Sn
D→ X. Seja φ f.c de X. Temos que S2n

D→ X, mas S2n =
(X2n,1 + . . .+X2n,n) + (X2n,n+1 + . . .+X2n,2n) =: Yn + Y

′
n. As v.a’s {Yn} formam

uma famı́lia fechada, pois

P{|Yn| > K}2 ≤ 2[P{Yn ≥ K}2 + P{Yn < −K}2]
= 2[P{Yn ≥ K,Y ′

n ≥ K}+ P{Yn < −K,Y ′
n < −K}]

≤ 2P{|S2n| > K}

e como S2n converge em lei, a famı́lia é fechada. Portanto, usando o Teorema de
Prokhorov, existe uma subsequência {nk} tal que Ynk

converge em lei para Y e Y
′
nk

converge em lei para Y
′
, e pela independência Ynk

+Y
′
nk

converge em lei para Y +Y
′
,

com Y e Y ′ independentes. Como Ynk
+ Y

′
nk

converge em lei para X, temos que

X ∼ Y + Y
′
.

Seja φY a f.c de Y . Segue-se que φ(t) = [φY (t)]
2. De modo similar, φ(t) =

[φZ(t)]
k, para alguma v.a Z, e cada k.

Definição 8.1. Uma v.a X diz-se infinitamente diviśıvel se, para cada n, existe
uma f.c φn, tal que φ(t) = [φn(t)]

n, sendo φ a f.c de X.

De modo equivalente, podemos dizer queX é infinitamente diviśıvel se, para cada
n, existem v.a’s Xn,1, . . . , Xn,n, que são i.i.d e tais que X tem a mesma distribuição
que Xn,1 + . . .+Xn,n.
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Exemplo 8.2. São infinitamente diviśıveis as distribuições:

(1) Normal

(2) Cauchy

(3) Poisson

(4) exponencial

(5) Gama

Teorema 8.4. X é infinitamente diviśıvel se, e somente se, X for o limite em
distribuição de uma soma Sn = Xn,1 + . . .+Xn,n de v.a’s i.i.d.

Prova: (⇐) feito acima.

(⇒) Óbvio, pois se X for infinitamente diviśıvel, então, para cada n, X ∼ Xn,1 +
. . .+Xn,n. □

Teorema 8.5. A classe das distribuições infinitamente diviśıveis é fracamente se-
quencialmente fechada (isto é, se Pn ⇒ P , e se Pn for infinitamente diviśıvel, então
P também o será).

Prova: Para cada n, sejamXn,1, . . . , Xn,n infinitamente diviśıveis, tais que
∑n

i=1Xn,i

tenha Pn como sua distribuição. Como Pn ⇒ P ,
∑n

i=1Xn,i
D→ X, onde X tem dis-

tribuição P . Logo, P é infinitamente diviśıvel, pelo teorema anterior. □

Teorema 8.6. Seja φ a f.c de uma distribuição infinitamente diviśıvel. Então,
φ(t) ̸= 0, para todo t ∈ R.

Prova: É suficiente mostrar que |φ(t)|2 ̸= 0, para todo t. Observe que |φ(t)|2 é a
f.c de uma distribuição infinitamente diviśıvel (i.d). De fato, seja X i.d com f.c φ e
X

′
independente de X e com a mesma distribuição que X. Então, X −X ′

é i.d e
sua f.c é |φ(t)|2.

Seja g(t) = |φ(t)|2 e seja hn(t) a n-ésima raiz real de g(t): hn(t) = [g(t)]1/n.
Então, hn(t) é uma f.c e limn→∞ hn(t) existe e é igual a zero, se e somente se g(t) = 0
e igual a 1, caso contrário. Também, como g é uma f.c, existe ε > 0 tal que g(t) > 0,
para todo |t| < ε (pois g é cont́ınua na origem). Segue que limn→∞ hn(t) = 1, para
|t| < ε. Se h(t) é o limite, h(t) é cont́ınua no zero e portanto é uma f.c. Logo, h é
cont́ınua, donde h(t) = 1, para todo t. Logo, g(t) não pode ser zero. □

Definição 8.2. Seja X uma v.a com f.c φ. Sejam X1, X2, . . . v.a’s i.i.d, Xi ∼ X, e
seja X0 = 0. Seja N uma v.a independente de Xi, para todo i, tendo distribuição
de Poisson, P (λ). Defina Y =

∑N
i=0Xi. Dizemos que Y tem distribuição de Poisson

composta.

A f.c de Y é dada por ψ(t) = eλ[φ(t)−1]. Além disso, Y é infinitamente diviśıvel.
Veja o Problema 2.

Para o resultado a seguir, necessitamos de alguns fatos sobre funções complexas.
Seja S um espaço topológico e f : S → C, cont́ınua. Dizemos que f tem logaritmo
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cont́ınuo se existir uma função cont́ınua g : S → C tal que f = eg. A função g é
única sobre cada componente conectado de S, a menos de uma constante da forma
2πim, m ∈ Z. O resultado vale para S = R e f cont́ınua, não nula.

Teorema 8.7. X é infinitamente diviśıvel se, e somente se, X é o limite em distri-
buição de uma sequência de distribuições de Poisson compostas.

Prova: (⇐) Segue do Problema 2 e Teorema 8.5.

(⇒) A f.c de X, φ(t) , não se anula nunca, pois X é infinitamente diviśıvel. Logo
φ admite um logaritmo cont́ınuo g, ou seja, φ(t) = eg(t). Como φ(0) = 1 e como
g é única a menos de uma constante, 2πim, podemos escolher uma g única com
g(0) = 0.

Também sabemos que φ(t) = [φn(t)]
n, para cada n, onde φn é uma f.c; φn(t)

nunca se anula, logo pelo mesmo argumento, existe um único logaritmo cont́ınuo gn,
tal que φn(t) = egn(t) e gn(0) = 0.

Note que egn é uma n-ésima raiz de φ, logo pela unicidade do logaritmo cont́ınuo,
obtemos g = ngn + 2πim para algum m inteiro. Como g(0) = gn(0) = 0, segue-se
que m = 0. Portanto,

lim
n→∞

en(φn−1) = lim
n→∞

en[e
g/n−1] = eg,

usando ez − 1 ∼ z quando z → 0. Mas en(φn−1) é a f.c de uma distribuição de
Poisson composta. □

Queremos encontrar a forma geral da f.c de uma distribuição infinitamente di-
viśıvel. Sabemos que, se X for infinitamente diviśıvel e φ é a sua f.c, [φn]

n = φ,
então en(φn−1) → eg = φ, ou seja, n(φn − 1)→ logφ. Portanto, podemos escrever

lim
n→∞

∫
(eitx − 1) ndFn(x) = logφ(t),

onde Fn é a f.d correspondente a φn.
Como P{|Xn,k| > ε} → 0, as medidas ndFn(x) colocam mais e mais massa no

zero, quando n → ∞. Para estudar o limite acima vamos considerar a seguinte
decomposição

lim
n→∞

∫ (
eitx − 1− itx

1 + x2

)1 + x2

x2
dGn(x) + it

∫
x

x2 + 1
ndFn(x),

chamando x2

1+x2
ndFn(x) = dGn(x), e notando que o termo entre parêntesis na pri-

meira integral é da ordem de t2x2 perto de zero e a segunda integral é aproximada-
mente igual a it

∫
x−1dGn(x).

O resultado a seguir dá a representação da f.c de uma distribuição infinitamente
diviśıvel.
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Teorema 8.8. (Lévy-Khintchine)
(a) X é infinitamente diviśıvel, com f.c φ se, e somente se φ = eψ, onde

ψ(t) = itγ +

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)1 + x2

x2
dG(x), (8.13)

onde γ é uma constante real e G é uma função crescente e de variação limitada.

(b) A f.c φ determina univocamente γ eG, isto é, a representação de Lévy-Khintchine
é única.

Observação: O integrando em (8.13) é definido como −t2/2 em x = 0. Se G coloca
massa σ2 em zero, podemos escrever

ψ(t) = itγ − σ2t2

2
+

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)1 + x2

x2
dĜ(x), (8.14)

onde Ĝ é uma medida sem massa no zero. Outra maneira de escrever é

ψ(t) = itγ − σ2t2

2
+

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)
ν(dx), (8.15)

onde ν é chamada medida de Lévy.

Se X satisfaz (8.13), escreveremos X ∼ (γ,G).

Prova do Teorema: (a) (⇒) Seja φ a f.c de X, então φ(t) = [φn(t)]
n. Também,

φ(t) = eg, φn(t) = egn e n[φn(t)− 1]→ g(t).

Defina

Hn(t) =

∫ t

−∞

x2

1 + x2
ndFn(x),

na qual Fn é a f.d correspondente a φn.

Antes de prosseguir, vamos considerar os seguintes fatos.

[1] Temos que

lim sup
n→∞

nPn{[−a, a]c} ≤ a
∫ 2/a

−2/a
|g(t)|dt,

sendo Pn a distribuição de probabilidade de Fn.

De fato, usando a prova do Lema 7.4,

nPn{[−a, a]c} ≤ a
∫ 2/a

−2/a
n|φn(t)− 1|dt.

Mas n[|φn(t)− 1|]→ g(t), logo pelo TCD,
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∫ 2/a

−2/a
n[|φn(t)− 1|]dt→

∫ 2/a

−2/a
|g(t)|dt.

[2] Existe uma constante A tal que∫ 1

−1
x2ndFn(x) ≤ A, ∀ n.

De fato, temos que para todo n,

n[1−R(φn(1))] ≥
∫ 1

−1
[1− cosx]ndFn(x) ≥

1

π

∫ 1

−1
x2ndFn(x),

sendo que na última integral usamos que 1 − cosx ≥ x2/π para |x| ≤ 1. Mas
n[1 − R(φn(1))] → −R(g(1)) ≥ 0, logo existe uma constante A tal que A ≥∫ 1
−1 x

2ndFn(x), para todo n.

[3] Seja Hn(∞) =
∫
x2/(1 + x2)ndFn(x). Por [1] e [2], {Hn(∞), n ≥ 1} é limitada.

Defina Gn(t) = Hn(t)/Hn(∞), de modo que Gn é uma medida de probabilidade.
Além disto, se lim infnHn(∞) > 0, por [1], temos que {Gn, n ≥ 1} é fechada. Logo,
pelo Teorema de Prokhorov, existe uma subsequência {nk} e uma distribuição de
probabilidade G tal que Gnk

→ G em pontos de continuidade de G. Podemos
também escolher nk tal que Hnk

(∞)→ lim infnHn(∞) = L ∈ (0,∞).
Portanto, temos que

logφ(t) = g(t) = lim
nk→∞

n[φn(t)− 1] = lim
nk→∞

∫
[eitx − 1]nkdFnk

(x) =

= lim
nk→∞

(
Hnk

(∞)

{∫ [
eitx − 1− itx

1 + x2

]
1 + x2

x2
dGnk

(x)

}
+ itγnk

)
.

Como Gnk
→ G e o integrando é cont́ınuo e limitado, esse tende para uma

integral com dGnk
substitúıda por dG. Como Hnk

(∞)→ L, uma parte do limite em

questão resulta L{
∫
[eitx − 1 − itx

1+x2
]1+x

2

x2
dG(x)}, logo γnk

→ γ, para algum γ ∈ R.
No caso em que lim infnHn(∞) = 0, consideramos uma subsequência {nk} tal que
limkHnk

(∞) = 0. Neste caso o primeiro termo no limite acima vai para zero, o
que força a convergência da sequência γnk

para um valor γ ∈ R. Obtemos assim
logφ(t) = itγ.

(⇐) Suponha que X tenha f.c. φ = eψ, com (8.13) válida. Mostraremos que X é
i.d. Escreva ψ como um limite de somas da forma

ψn =
∑
k

[
eitak − 1− itak

1 + a2k

]
1 + a2k
a2k

[G(ak)−G(ak−1)].
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Esse é o logaritmo da f.c de uma soma de v.a’s independentes, com distribuições
de Poisson compostas. O limite de eψn é eψ, que é cont́ınua no zero, logo eψ é uma
f.c. Segue que X é i.d., pois é o limite em distribuição de v.a’s i.d’s (uma soma de
v.a’s independentes e com distribuições de Poisson compostas é i.d.).

(b) (Unicidade) Seja φ = eg, onde g tem a forma (8.13). Queremos provar que g
determina γ e G univocamente. Defina

h(t) =

∫ t+1

t−1
g(x)dx− 2g(t).

Então, g determina h univocamente. Defina, agora,

H(t) = 2

∫ t

−∞

(
1− sinx

x

)1 + x2

x2
dG(x).

Então, h(t) =
∫
eitxdH(x), logo h determina H univocamente (pois h é a trans-

formada de Fourier de H). Mas o integrando em H(t) é positivo, logo H determina
G univocamente. Segue que g determina G e portanto γ. □

Exemplo 8.3. (a) Se X ∼ N(0, σ2), então G coloca massa pontual σ2 no zero, e
γ = 0. Se E(X) = µ, então γ = µ.

(b) Se X ∼ P (λ), então G tem massa pontual de tamanho λ/2 em 1 e γ = λ/2.

Teorema 8.9. (da continuidade) Seja Xn infinitamente diviśıvel com parâmetros

(γn, Gn) e X com parâmetros (γ,G). Então, Xn
D→ X se, e somente se, γn → γ,

Gn → G nos pontos de continuidade de G e para todo ε > 0, existe a > 0 tal que
supnGn([−a, a]c) < ε.

Prova: (⇐) Imediata

(⇒) Se Xn
D→ X , então φn(t) → φ(t), para todo t; como φn, φ não são nunca

nulas, temos que logφn(t) → logφ(t). Ou seja itγn +
∫
[ · · · ]dGn converge para

itγ+
∫
[ · · · ]dG. Argumentando como na prova do teorema anterior, mostra-se que a

sequência {Gn(∞), n ≥ 1} é limitada e existem uma subsequência nk e uma medida
Ĝ tal que (Gnk

(x))/(Gnk
(∞))→ Ĝ(x) e Gnk

(∞)→ L. Segue-se que

Gnk

∫
[ · · · ]dGnk

Gnk

→ L

∫
[ · · · ]dĜ, k →∞,

pela definição de convergência fraca, pois o integrando é limitado e cont́ınuo. Como,
acrescentando-se itγnk

ao primeiro termo da relação anterior e itγ ao segundo, con-
tinuamos a ter convergência, por unicidade devemos ter G = LĜ, de modo que
Gnk

(x) → G(x) nos pontos de continuidade de G. De fato, Gn(x) → G(x) e, por-
tanto, γn → γ, pois eitγn → eitγ , para todo t. □
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8.3 Distribuições estáveis

Sabemos que, se X1, X2, . . . são v.a’s i.i.d, média µ e variância σ2, então

X1 + . . .+Xn − nµ
σ
√
n

D→ N(0, 1).

Esse é um teorema limite da seguinte forma: se {Xi, i ≥ 1} são i.i.d, então
X1+...+Xn

An
−Bn

D→ X.

Gostaŕıamos de decobrir todas as leis limites que surgem dessa maneira.

Definição 8.3. Seja X uma v.a e suponha que, para cada n, existam constantes
an, bn, tais que anX+bn ∼ X1+ . . .+Xn, onde X1, X2, . . . são v.a’s i.i.d, Xi ∼ X.
Então, dizemos que X é uma v.a tendo uma distribuição estável.

Como exemplos, temos as distribuições normal, Cauchy e de Lévy.

Para provar o resultado seguinte, precisamos do seguinte lema (convergência de
tipos). Veja Billingsley (1966). A prova pode ser feita usando f.c’s (veja Loéve,
1978). Uma prova simples aplicando o Teorema de Skorohod é dada por Fazli e
Behboodian (1995).

Lema 8.3. Suponha que Yn
D→ Y e anYn+ bn

D→ Ŷ . Suponha que Y e Ŷ sejam não
degeneradas e an > 0. Então, an → a > 0, bn → b e Ŷ ∼ aY + b, isto é, Y e Ŷ são
do mesmo tipo.

Prova: Veja Billingsley (1995).

Teorema 8.10. (a) Sejam X1, X2, . . . i.i.d e sejam An > 0, Bn constantes. Se

X1 + . . .+Xn

An
−Bn

D→ X,

onde X não é degenerada, então X é estável.

(b) Se X for estável, então X pode ser representada como um limite em distribuição
de somas como em (a).

Prova: (a) Seja Yn = (X1 + . . .+Xn)/An −Bn, então Yn converge em distribuição
para X, o que ocorre também com a sequência Ynk, para k inteiro positivo. Defina:

S(1)
n = X1 + . . .+Xn,

S(2)
n = Xn+1 + . . .+X2n,

· · · · · ·
S(k)
n = Xnk−n + . . .+Xnk
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Considere

S
(1)
n

An
−Bn +

S
(2)
n

An
−Bn + . . .+

S
(k)
n

An
−Bn =:

AnkYnk
An

+ Cn,k.

O lado esquerdo converge em distribuição para X(1) + . . .+X(k), com {X(j)
j } i.i.d,

com a mesma distribuição que X. Também, Ynk converge em distribuição para X,
e portanto AnkYnk/An+Cn,k converge em distribuição para X(1) + . . .+X(k). Pelo
lema, Ank/An → ak, Cn,k → bk e X(1) + . . .+X(k) ∼ akX + bk.

(b) Se X é estável, tome X1, . . . , Xn i.i.d, Xi ∼ X, de modo que anX + bn ∼
X1 + . . .+Xn. Então, X ∼ X1+...+Xn

an
− bn

an
(use f.c’s). A parte (b) segue. □

Corolário 8.1. Os ak’s da prova do item (a) do Teorema 8.10 satisfazem amk =
am · ak para todo k,m ≥ 1.

Prova: Basta notar que

Anmk
An

=
Anmk
Anm

Anm
An

,

e tomar n→∞. □

Teorema 8.11. Seja X estável. Então, an = n1/α, onde 0 < α ≤ 2.

Prova: Veja a prova do Teorema 8.12 abaixo.

O número α é chamado o ı́ndice de estabilidade ou o expoente e também dizemos
que X é α-estável.

Teorema 8.12. Seja X α-estável. Então,

(a) Ou X é normal, ou

(b) Para algum α, 0 < α < 2, a f.c de X é da forma φ(t) = eψ(t), onde

ψ(t) = itγ+m1

∫ ∞

0

(
eitx−1− itx

1 + x2

) 1

x1+α
dx+m2

∫ 0

−∞

(
eitx−1− itx

1 + x2

) 1

|x|1+α
dx

(8.16)
e γ, m1 ≥ 0, m2 ≥ 0 são constantes reais.

Prova: Sabemos que, se X é estável, X é i.d, de modo que sua f.c é da forma eψ(t),
com

ψ(t) = itγ − σ2t2

2
+

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)
ν(dx).

[1] Caso 1: σ2 > 0.
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ComoX é estável, akX+bk ∼ X(1)+. . .+X(k). Logo, tomando a f.c de ambos os
lados, temos kψ(t) = ψ(akt)+ibkt. Seja L(t, x) = [eitx−1−(itx)/(1+x2)](1+x2)/x2.

Então, se x ̸= 0, L(t, x)/t2 → 0, quando t → ∞, logo ψ(t) = iγt − σ2t2/2 +∫
L(t, x)dĜ(x) e ψ(t)/t2 → −σ2/2. Por um lado, kψ(t)/t2 → −kσ2/2, para t→∞,

e por outro (ψ(akt) + itbk)/t
2 → −a2kσ2/2, do que decorre ak =

√
k, pois σ2 > 0.

Temos, então, ψ(t) = ψ(
√
kt)/k + (itbk)/k. Para k →∞, o lado esquerdo converge,

logo o lado direito também converge e

ψ(
√
kt)

k
=
ψ(
√
kt)

kt2
t2 → −t2σ2/2,

pois ψ(t)/t2 → −σ2/2. Logo, ibkt/k → iγt e ψ(t) = iγt − t2σ2/2, portanto X é
normal.

[2] Caso 2: σ2 = 0

Lembremos que kψ(t) = ibkt+ ψ(akt), logo

kψ(t) = kiγt+

∫ [
eitx − 1− itx

1 + x2

]
kν(dx)

e

ibkt+ φ(akt) = ibkt+

∫ [
eiaktx − 1− iaktx

1 + x2

]
ν(dx)

e somando e subtraindo iaktx
1+(akx)2

ao integrando, obtemos que

ibkt+ φ(akt) = ibkt+

∫ [
eitx − 1− itx

1 + x2

]
ν1(dx) + itγk

= it(bk + γk) +

∫ [
eitx − 1− itx

1 + x2

]
ν1(dx).

Pelo teorema da unicidade, kν(dx) = ν1(dx) = ν(dx/ak) e também bk+γk = kγ.
Sejam ν+(x) = ν[x,+∞), se x > 0 e ν−(x) = ν(−∞, x], se x < 0. Então,

kν+(x) = ν(x/ak), uma fórmula similar para ν−. Suponha que ak = kλ, λ > 0. Seja
x = (k/n)λ nessa fórmula; obtemos

kν+
(
(k/n)λ

)
= ν+

(
1

nλ

)
. (8.17)

Escolhendo k = n, obtemos

nν+(1) = ν+
(

1

nλ

)
. (8.18)

Comparando (8.17) e (8.18) obtemos ν+
(
(k/n)λ

)
= ν+(1)(k/n)−1.

Logo, para x num conjunto denso,
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ν+(x) = ν+(1)x−1/λ. (8.19)

Como γ é decrescente, (8.19) vale para todo x. Isso prova o resultado, desde que
mostremos que 1/λ = α satisfaz 0 < α < 2.

Sabemos que
∫ 1
−1 x

2ν(dx) < ∞, logo
∫ 1
−1 x

2x−1/λ−1dx < ∞, do que segue 2 −
1/λ− 1 > −1 e daqui 1/λ < 2 e λ > 0.

Resta provar que ak = kλ, λ > 0 Para x = 1, kν+(1) = ν+(1/ak). Quando k
cresce, o lado esquerdo dessa igualdade cresce, logo 1/ak decresce e portanto ak deve
crescer para +∞.

Lembremos também que amn = aman. Fixando k, seja n um inteiro tal que kj ≤
n ≤ kj+1. Como aj é crescente, akj ≤ an ≤ akj+1 , ou seja, (ak)

j ≤ an ≤ (ak)
j+1.

Tomando logaritmos, j log ak ≤ log an ≤ (j + 1) log ak, de onde segue

log ak
j log k

≤ log an
j log k

≤ j + 1

j

log ak
log k

.

Para j →∞, limj→∞
log an
j log k = λ, independentemente de k e, portanto, log ak

log k = λ,

logo ak = kλ. □
As integrais do Teorema 8.12 podem ser calculadas explicitamente e temos o

seguinte resultado (para uma prova, veja Breiman (1968)).

Teorema 8.13. Se 0 < α < 2 e se X tem uma distribuição α-estável, então o
logaritmo da f.c de X é dado por:

ψ(t) = itµ− σ|t|α
[
1 + iβsinal(t) tan(

π

2
α)
]
, se α ̸= 1. (8.20)

Se α = 1, então,

ψ(t) = itµ− σ|t|
[
1 + iβsinal(t)

2

π
log(|t|)

]
. (8.21)

Em (8.20) e (8.21), µ é um parâmetro de localização real, σ > 0 é um parâmetro
de escala , β é um parâmetro de simetria real, |β| ≤ 1.

Usualmente, usamos a notação X ∼ Sα(σ, β, µ) para denotar uma v.a com dis-
tribuição estável, com parâmetros (α, σ, β, µ).

Se α decresce de 2 a 0, as caudas de X tornam-se mais pesadas que a normal.
Se 1 < α < 2 a média de X é µ, mas se 0 < α ≤ 1, a média é infinita. Se β = 0,
X é simétrica, ao passo que se β > 0 (β < 0), então X é assimétrica à direita (à
esquerda).

Proposição 8.1. Se X é α-estável, então X tem uma função densidade de proba-
bilidade limitada e cont́ınua.

Prova: De fato, |φ(t)| ≤ e−|t|α , integrável. □

Morettin-Gallesco - dezembro/2025



8.3. DISTRIBUIÇÕES ESTÁVEIS 139

Proposição 8.2. Suponha X simétrica, α-estável. Então, a f.c de X é da forma
φ(t) = e−c|t|

α
.

Prova: Imediata. □

Problemas

1. Para cada n, suponha que Xn,1, . . . , Xn,n sejam v.a’s i.i.d e suponha que Xn,1 + . . .+

Xn,n
D→ X. Então, limn→∞ max1≤k≤n P{|Xn,k| > ε} = 0.

2. Mostre que a f.c de distribuição de Poisson composta Y é dada por ψ(t) = eλ[φ(t)−1].
Mostre que Y é infinitamente diviśıvel.

3. Prove a Proposição 8.2.

4. Suponha queX tenha distribuição gama, Γ(α), com densidade f(x) = [Γ(α)]−1xα−1e−x,

para x > 0.

(i) Prove que X é infinitamente diviśıvel.

(ii) Encontre explicitamente a densidade da v.a correspondente a ϕn, a raiz n-ésima
de ϕ: ϕ(t) = [φn(t)]

n. Aqui, φ é a f.c de X.

(iii) Encontre G na representação canônica de φ, por meio da obtenção da mesma, e
calculando o limite dado nessa representação.

5. Se a medida de Lévy ν for concentrada sobre um intervalo finito [−a, a], então X tem
momentos de qualquer ordem.

6. Prove que qualquer v.a X i.d pode ser escrita como X ∼ c1X1 + c2X2 + c3X3, onde
as Xi são independentes, i.d, ci são constantes, possivelmente nulas em alguns casos,
e: (a) X1 é normal; (b) X2 é Poisson composta; (c) X3 tem momentos de todas as
ordens. [Sugestão: escreva a integral definindo ψ(t) como a soma de duas integrais,
sobre |x| < 1 e |x| > 1.]

7. Suponha que X seja i.d. Prove:

(a) X é simétrica se, e somente se, ν for simétrica.

(b) Se X ≥ 0, então ν é concentrada em (0,+∞) e ψ tem a forma

ψ(t) = itγ1 +

∫ ∞

0

[eitx − 1]ν(dx),

onde γ1 é uma constante.

(c) Se
∫∞
0
|x|ν(dx) < ∞, e se ν for concentrada em (0,+∞), então X ≥ 0. (Note

que (b) e (c) mostram que, não é verdade, em geral, que se ν for concentrada
em (0,∞), então X ≥ 0.)

8. (a) Mostre que se X ∼ N(0, 1) , então X não é Poisson composta, mas dê uma
sequência expĺıcita de distribuições de Poisson compostas convergindo para X.

(b) Mostre que no Teorema de Berry-Esseen, a taxa de convergência 1/
√
n é a melhor

posśıvel (Considere o caso Bernoulli).
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9. Considere Xn,1, . . . , Xn,n v.a’s i.i.d, cada uma com distribuição uniforme em [−n, n]
e seja Yn =

∑n
i=1 sinal(Xn,i)/X

2
n,i. Prove que Yn converge em distribuição para uma

v.a estável com α = 1/2 (Calcule a f.c.)

10. Sejam X1, X2, . . . independentes, com:

P (Xj = j2) = P (Xj = −j2) =
1

12j2
,

P (Xj = j) = P (Xj = −j) =
1

12

P (Xj = 0) = 1− 2

12
− 2

12j2
.

(a) Prove que a condição de Lindeberg não está satisfeita, mas existe uma constante
absoluta C tal que

X1 + . . .+Xn

Cn3/2
D→ N(0, 1).

[Sugestão: use truncamento.]

(b) Explique porque (a) não contradiz o Teorema de Feller.

11. Sejam Xn,1, . . . , Xn,n i.i.d e suponha que Xn,1 + . . . +Xn,n
D→ X. Seja Pn a distri-

buição de Xn,1.

(a) X é normal (ou degenerada) se, e somente se, nPn([−a, a]c) → 0, para todo
a > 0.

(b) Use (a) para provar o TLC ordinário.

(c) Prove que, para quaisquer v.a’s {Xn, n ≥ 1} que sejam i.i.d, teremos que (X1 +
. . . + Xn)/

√
n converge em distribuição para uma v.a N(0, 1) se, e somente se

max1≤k≤n |Xk|/
√
n converge para zero, em probabilidade.

(d) Prove que Xn,1+ . . .+Xn,n converge para uma distribuição de Poisson (ou uma

v.a degenerada) se, e somente se
∫ t

−∞ x2/(1 + x2)ndPn(x) → 0, para t < 1 e∫∞
t
x2/(1 + x2)ndPn(x)→ 0, para t > 1.
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Caṕıtulo 9

O Prinćıpio da Invariância

Na teoria de somas de variáveis aleatórias independentes, há resultados que
podem ser provados de acordo com o seguinte esquema: primeiramente, prova-se que
a distribuição limite não depende das distribuições das variáveis aleatórias, desde
que certa condições sejam válidas. A seguir, a distribuição limite é calculada para
uma escolha especial de variáveis aleatórias. A essa propriedade foi dado o nome de
prinćıpio da invariância.

Esse prinćıpio foi introduzido por Kolmogorov (1931). Em 1933, Kolmogorov
provou uma versão mais forte que foi usada para obter a distribuição limite da
diferença entre uma f.d emṕırica e a f.d teórica correspondente. Para mais detalhes
sobre os trabalhos subsequentes, veja Kruglov (1998).

Neste caṕıtulo apresentaremos o prinćıpio da invariância de Donsker e estudare-
mos com um pouco de mais detalhes o movimento browniano ou processo de Wiener.
A independência dos somandos no Teorema de Lindeberg-Feller garante também a
convergência fraca de todas as distribuições finito-dimensionais de um processo es-
tocástico cont́ınuo q.c para aquelas de um processo Gaussiano com incrementos
independentes, ou seja, o movimento browniano. Além disso, essas distribuições
convergem fracamente para a medida de Wiener sobre C([0, 1]), fato esse também
conhecido como TLC funcional, uma ideia originada em trabalhos de Erdos e Kac
(1946) e Donsker (1951), depois desenvolvidas por Billingsley, Prokhorov, Skorohod
e outros.

O movimento browniano tem aplicações relevantes em finanças, como na fórmula
de Black-Scholes (veja Caṕıtulo 12), para apreçamento de opções e em equações
diferenciais estocásticas, particularmente em problemas relacionados a difusões, que
descrevem o comportamento da volatilidade de séries financeiras.

141
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9.1 Introdução

Nesta seção desenvolveremos noções de convergência fraca no espaço C([0, 1]).
Algumas das definições e propriedades a seguir já foram vistas no Caṕıtulo 6.

Definição 9.1. C([0, 1]) é o espaço de todas as funções cont́ınuas definidas em [0, 1]
com valores reais. Definimos sobre esse espaço a métrica:

d(x, y) = sup
0≤t≤1

|x(t)− y(t)|, x, y ∈ C([0, 1]). (9.1)

Com esta métrica, o espaço C([0, 1]) é um espaço métrico completo e separável.
Observamos também que esta métrica é induzida pela norma infinita em C([0, 1]).

Definição 9.2. Para x ∈ C([0, 1]), definimos o módulo de continuidade

wx(δ) = sup
|t−s|<δ

|x(t)− x(s)|, 0 < δ < 1. (9.2)

Alguns fatos sobre o módulo de continuidade:

[1] wx(δ) é uma função cont́ınua de x, para δ fixo.

De fato,

wx(δ) = sup
|t−s|<δ

|x(t)− x(s)| = sup
|t−s|<δ

|x(t)− y(t) + y(t)− y(s) + y(s)− x(s)|

≤ sup
|t−s|<δ

|x(t)− y(t)|+ sup
|t−s|<δ

|y(t)− y(s)|+ sup
|t−s|<δ

|y(s)− x(s)|

≤ 2d(x, y) + wy(δ),

logo wx(δ)−wy(δ) ≤ 2d(x, y), de modo que |wx(δ)−wy(δ)| ≤ 2d(x, y), por simetria.

[2] Para x fixo, wx(δ)→ 0, quando δ → 0.

De fato, toda função cont́ınua sobre [0, 1] é uniformemente cont́ınua.

Definição 9.3. Para t1 < t2 < · · · < tn defina πt1,...,tn : C([0, 1])→ Rn por

πt1,...,tn(x) = (x(t1), . . . , x(tn)). (9.3)

Dizemos que πt1,...,tn é uma projeção.

De maneira genêrica, denotaremos projeções por π.

Definição 9.4. Se h é alguma função de C([0, 1]) em (S,S), mensurável, defina
Ph−1 por Ph−1(A) = P{h−1(A)}, onde A é um subconjunto de S e P é uma medida
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sobre C, os conjuntos de Borel de C([0, 1]). Segue-se que Ph−1 é uma medida sobre
(S,S) chamada medida imagem de P por h.

Definição 9.5. Se P é uma medida de probabilidade sobre (C([0, 1]), C), então
{Pπ−1 : π é uma projeção} é a distribuição finito-dimensional de P .

Teorema 9.1. Seja Fπ a menor σ-álgebra tornando cada π mensurável. Então:

(a) C = Fπ;

(b) Se P,Q são duas medidas de probabilidade sobre C([0, 1]), C e se Pπ−1 =
Qπ−1, para todas as projeções π, então P = Q.

(c) Se P é uma probabilidade sobre C([0, 1]), então P é fechada, ou seja, para
todo ε > 0, existe um compacto K tal que P (K) ≥ 1− ε.

Prova: (a) Como cada πt é cont́ınua, e C contém os conjuntos abertos, segue-se que
Fπ ⊂ C. Para provar que C ⊂ Fπ, basta provar que Fπ contém conjuntos abertos.
Como C([0, 1]) é separável, todo conjunto aberto é uma reunião enumerável de bolas
fechadas. Logo, é suficiente provar que Fπ contém bolas fechadas. Tome x0, ε > 0
e seja Bε(x0) uma bola fechada com centro em x0, de raio ε. Temos que

Bε(x0) = {x : d(x, x0) ≤ ε} =
{
x : sup

0≤t≤1
|x(t)− x0(t)| ≤ ε

}

=
{
x : sup

r∈[0,1]∩Q
|x(r)− x0(r)| ≤ ε

}
=

⋂
r∈[0,1]∩Q

{x : |x(r)− x0(r)| ≤ ε}.

Mas, {x : |x(r) − x0(r)| ≤ ε} = {x : −ε + x0(r) ≤ x(r) ≤ ε + x0(r)} =
π−1
r {[−ε+ x0(r), ε+ x0(r)]}, que pertence a Fπ, pela sua definição.

(b) Suponha Qπ−1 = Pπ−1, para toda π. Seja Ft1,...,tn = {π−1
t1,...,tn

(A) : A ∈ B(Rn)}.
Seja F̂ = ∪t1,...,tnFt1,...,tn . Então, F̂ é uma álgebra.

De Qπ−1 = Pπ−1 temos que Q(B) = P (B), para todo B ∈ F̂ , e como F̂ ⊂ Fπ e
gera Fπ, temos que Q(B) = P (B), para todo B ∈ Fπ, do que decorre que Q(B) =
P (B), para todo B ∈ C.

(c) Seja (S,S) um espaço métrico completo e separável. Mostramos que se P é uma
probabilidade sobre (S,S), então P é fechada. Para todo n ≥ 1, sejam B1

1/n, B
2
1/n, . . .

bolas abertas de raios 1/n que cobrem S. Seja ε > 0. Tome um inteiro kn tal que

P (∪knj=1B
j
1/n) ≥ 1−ε/2n+1. DefinaK = ∩n ∪knj Bj

1/n. Como ∩n∪knj B
j
1/n é totalmente

limitado, o fecho desse conjunto é compacto e P (K) ≥ 1− ε. □

Sabemos que:
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(a) Se Pn, P são medidas de probabilidade sobre C([0, 1]), então Pnπ
−1 ⇒ Pπ−1,

desde que Pn ⇒ P ;

(b) Se Pn, P são medidas de probabilidade sobre C([0, 1]), e se Pnπ
−1 ⇒ Pπ−1 para

todas as projeções π, não é necessariamente verdade que Pn ⇒ P.

Mas, o resultado seguinte é válido.

Teorema 9.2. Sejam Pn, P medidas de probabilidade sobre C([0, 1]), e Pnπ
−1 ⇒

Pπ−1 para todas as projeções π. Suponha, também, que a famı́lia {Pn, n ≥ 1} seja
fechada. Então, Pn ⇒ P.

Prova: Como {Pn} é fechada, existe uma subsequência nk e uma probabilidade Q
tal que Pnk

⇒ Q, pelo teorema de Prokhorov. A probabilidade Q poderia depender
de nk. Contudo, não depende. Porque a convergência para Q implica que Pnk

π−1 ⇒
Qπ−1, para toda π, e por hipótese Pnπ

−1 ⇒ Pπ−1, do que segue Pπ−1 = Qπ−1,
para toda π. Logo, Q = P , isto é, Q é independente da sequência nk. Logo, Pn ⇒ P ,
pelo Lema 6.2. □

Lema 9.1. (Arzela-Ascoli) K ∈ C tem um fecho compacto se, e somente se,
supx∈K |x(0)| ≤M <∞ e limδ→0 supx∈K wx(δ) = 0 (equicontinuidade).

Teorema 9.3. A sequência de medidas de probabilidade {Pn, n ≥ 1} é fechada se,
e somente se, o seguinte vale:

(a) Para todo ∆ > 0, existe λ tal que Pn{x : |x(0)| > λ} ≤ ∆, para todo n;

(b) Para todo ε > 0, ∆ > 0, existe δ, 0 < δ < 1 e um inteiro n0, tal que Pn{x :
wx(δ) > ε} ≤ ∆, para todo n ≥ n0.

Prova: (⇒) Sejam ∆ > 0 e K um conjunto compacto, tal que Pn(K) ≥ 1−∆, para
todo n. Como K é compacto, pelo Lema 9.1, supx∈K |x(0)| ≤ M , para algum M .
Então,

K ⊂ {x : |x(0)| ≤M} (9.4)

Também, limδ→0 supx∈K wx(δ) = 0, logo

K ⊂ {x : wx(δ) ≤ ε}, (9.5)

para δ suficientemente pequeno. Logo, por (9.4)

Pn{x : |x(0) > M} ≤ Pn(Kc} ≤ ∆, para todo n

e por (9.5),

Pn{x : wx(δ) > ε} ≤ Pn(Kc) ≤ ∆, para todo n.
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(⇐) Podemos supor na condição (b) que n0 = 1. Pela condição (a), se ∆ > 0 é
escolhido, podemos encontrar M tal que Pn(A) ≥ 1−∆/2, onde A = {x : |x(0)| ≤
M}. Se ∆ e k inteiros são dados, podemos encontrar δk tal que Pn(Ak) ≥ 1−∆/2k+1,
com Ak = {x : wx(δk) ≤ 1/2k}, usando (b). Defina K = A ∩ (∩k≥1Ak). Então, K
tem fecho compacto, pelo Lema 9.1 e Pn(K) ≥ 1−∆, de modo que a famı́lia {Pn}
é fechada. □

Teorema 9.4. Suponha que as seguintes afirmações sejam válidas:

(a) Para todo ∆ > 0, existe λ tal que Pn{x : |x(0)| > λ} ≤ ∆, para todo n;

(b) Para todo ε > 0, ∆ > 0, existe δ, 0 < δ < 1 e um inteiro n0, tal que

1

δ
sup

t∈[0,1−δ]
Pn

{
x : sup

t≤s≤t+δ
|x(s)− x(t)| > ε

}
≤ ∆,

para todo n ≥ n0.

Então, {Pn, n ≥ 1} é fechada.

Prova: Vamos mostrar que (b) implica (b) do Teorema 9.3. Fixemos t, que pertence
a algum intervalo da forma [iδ, (i+ 1)δ]. Se s ≥ t, então s ∈ [iδ, (i+ 2)δ], logo

{
x : sup

t≤s≤t+δ
|x(s)− x(t)| > ε

}
⊂

{
x : sup

t≤s≤t+δ
|x(s)− x(iδ)|+ |x(t)− x(iδ)| > ε

}
⊂
{
x : 2 sup

iδ≤s≤(i+2)δ
|x(s)− x(iδ)| > ε

}
. (9.6)

Então,

Pn{x : wx(δ) > ε} = Pn

{
x : sup

|t−s|<δ
|x(s)− x(t)| > ε

}

≤
⌊1/δ⌋∑
i=0

Pn

{
x : sup

|t−s|<δ, iδ≤t≤(i+1)δ
|x(s)− x(t)| > ε

}

≤
⌊1/δ⌋∑
i=0

Pn

{
x : sup

iδ≤s≤(i+2)δ
|x(s)− x(iδ)| > ε/2

}
≤ 1

δ
(2δ)∆ = 2∆

onde na segunda desigualdade usamos (9.6) e na última a hipótese (b). □

Seja (Ω,F , P ) um espaço de probabilidade e X : Ω→ C([0, 1]). Logo, para cada
ω ∈ Ω, X(ω) é uma função cont́ınua. Seja Xt(ω) o valor dessa função em cada ponto
t. Suponha que X seja mensurável.

Proposição 9.1. Se X = {Xt, 0 ≤ t ≤ 1}, então X é um processo estocástico com
trajetórias cont́ınuas.
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Prova: Claramente, X tem trajetórias cont́ınuas. Resta provar que cada Xt é uma
v.a. Mas Xt = πt ◦ X, logo se A ∈ B(R), então X−1

t (A) = X−1 ◦ π−1
t (A). Mas

B = π−1
t (A) ∈ C, pois πt é cont́ınua e X−1(B) ∈ F , pois X é mensurável, como

uma aplicação de Ω em C([0, 1]). □

A distribuição de X é a medida de probabilidade sobre C([0, 1]), PX , definida
por PX(A) = P{ω : X(ω) ∈ A} para todo A ∈ C.

Dada qualquer medida de probabilidade P ′ definida sobre C([0, 1]), existe um
processo estocástico tendo trajetórias cont́ınuas e P ′ como sua distribuição. De fato,
tome Ω = C([0, 1]), F = C e P = P ′. Defina X por X(ω) = ω (note que pontos de
Ω são identificados com pontos da trajetória).

Reciprocamente, dado qualquer p.e X = {Xt, 0 ≤ t ≤ 1}, com trajetórias
cont́ınuas, existe uma probabilidade P sobre C([0, 1]), que é a distribuição de X.

Os dois teoremas precedentes podem ser reescritos em termos de processos es-
tocásticos.

Definição 9.6. A medida de Wiener W é uma medida de probabilidade sobre
C([0, 1]) tal que, se X = {Xt, 0 ≤ t ≤ 1} for um processo estocástico com trajetórias
cont́ınuas tendo W como sua distribuição, então:

(1) X0 = 0, q.c.

(2) Para cada t, Xt ∼ N(0, t).

(3) Se 0 ≤ t1 < t2 < · · · < tn ≤ 1, então Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 são
independentes.

Consequências:

[1] Se X = {Xt, 0 ≤ t ≤ 1} é como descrito na definição anterior, então se s < t,
teremos que Xt −Xs ∼ N(0, t− s).

De fato, Xt = Xs+Xt−Xs e como Xs e Xt−Xs são independentes e se φ(u) é a

f.c de Xt−Xs, teremos e−tu
2/2 = φ(u)e−su

2/2, do que decorre que φ(u) = e−
u2

2
(t−s).

2] Suponha que X satisfaça a definição anterior. Sejam t1 < t2 < . . . < tn e o vetor
aleatório (Xt1 , . . . , Xtn), com f.c Γ(s1, . . . , sn). Então,

Γ(s1, . . . , sn) = E
[
eis1Xt1+...+isnXtn

]

= E exp
{
i
[
sn(Xtn −Xtn−1) + (sn + sn−1)(Xtn−1 −Xtn−2) + . . .+ (s1 + . . .+ sn)Xt1

] }
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= exp

[
−s

2
n

2
(tn − tn−1)−

(sn + sn−1)
2

2
(tn−1 − tn−2)− . . .−

(s1 + . . .+ sn)
2

2
t1

]
.

A última igualdade segue da normalidade de X.

Definição 9.7. O processo X = {Xt, 0 ≤ t ≤ 1} com trajetórias cont́ınuas, tendo
como distribuição a medida W da definição anterior, é chamado Movimento Brow-
niano (MB) ou processo de Wiener.

Teorema 9.4. (Donsker) Sejam Y1, Y2, . . . v.a’s i.i.d, com média zero e variância
σ2. Seja Sn = Y1 + . . . + Yn. Defina uma famı́lia de processos estocásticos Xn =
{Xn(t), 0 ≤ t ≤ 1} como segue:

Xn(t) =
S⌊nt⌋

σ
√
n
+
nt− ⌊nt⌋
σ
√
n

Y⌊nt⌋+1, (9.7)

onde ⌊a⌋ representa o maior inteiro menor ou igual a a. Então, a sequência {Xn, n ≥
1} converge fracamente em C([0, 1]) para um MB.

Prova: A prova tem duas partes:
(a) Para t1 < t2 < · · · < tk, mostramos que

(Xn(t1), . . . , Xn(tk))
D→ µt1,...,tk ,

onde µt1,...,tk é a medida correspondente à f.c Γ(s1, . . . , sk).
(b) Depois mostramos que a famı́lia {Xn, n ≥ 1} é fechada (tight).

Segue-se que Xn converge em distribuição para X, onde X satisfaz as proprieda-
des (1)-(3) da definição 9.6. De fato, seja n′ qualquer subsequência de inteiros e Pn a
distribuição de Xn. Por (b), existe uma outra subsequência n′′ e uma probabilidade
Q sobre C([0, 1]) tal que Pn′′ ⇒ Q (por Prokhorov). A medida Q não depende da
subsequência, pois por (a), cada distribuição limite Q tem a mesma distribuição
finito-dimensional. Como isso vale para cada subsequência n′, segue que Pn ⇒ Q e
Q =W .

Prova de (a). Sejam t1, . . . , tk dados; devemos mostrar que E(exp i{s1Xn(t1)+ . . .+
skXn(tk)}) converge para Γ(s1, . . . , sk). Mas

E(exp i{s1Xn(t1) + . . .+ skXn(tk)}) =

E(exp i{sk[Xn(tk)−Xn(tk−1)]+[sk+sk−1][Xn(tk−1)−Xn(tk−2)]+. . .+[s1+. . .+sk]Xn(t1)}).

Note que, para cada t, ∣∣∣∣Xn(t)−
S⌊nt⌋

σ
√
n

∣∣∣∣ ≤ nt− ⌊nt⌋
σ
√
n
|Y⌊nt⌋+1|.
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Quando n → ∞, o lado direito da desigualdade tende a zero em probabilidade,
pela desigualdade de Chebyshev. Portanto, é suficiente provar que

E(exp i{sk(S⌊ntk⌋−S⌊ntk−1⌋)/σ
√
n+. . .+(s1+. . .+sk)S⌊nt1⌋/σ

√
n})→ Γ(s1, . . . , sk).

Mas (S⌊ntk⌋−S⌊ntk−1⌋)/σ
√
n converge em distribuição para uma N(0, tk− tk−1),

pelo TLC e essas parcelas são independentes, logo o limite é exp{−s2k(tk− tk−1)/2−
. . .− (s1 + . . .+ sk)

2t1/2} = Γ(s1, . . . , sk).

Prova de (b). Temos que provar que a famı́lia Xn = {Xn(t), 0 ≤ t ≤ 1} é fechada. É
suficiente provar que:

(i) para todo ∆ > 0 e todo ε > 0, existe δ, 0 < δ < 1 e um inteiro n0, tal que

1

δ
P
{
ω : sup

t≤s≤t+δ
|Xn(s)−Xn(t)| > ε

}
≤ ∆, n > n0, ∀t;

(ii) Para todo ∆ > 0, existe λ > 0, tal que P{ω : |Xn(0)| > λ} ≤ ∆, ∀n.

A condição (ii) é trivial, pois Xn(0) = 0, logo basta provar (i).

Fixemos t e tome inteiros j, k tais que k/n ≤ t ≤ (k+1)/n e (j− 1)/n ≤ t+ δ ≤
j/n. Então, j/n− k/n ≤ δ + 2/n.

A desigualdade de Lévy (Teorema 2.17), com variáveis i.i.d, média zero e variância
comum σ2, pode ser re-escrita como

P

{
sup

1≤k≤n

|Sk|
σ
√
n
≥ λ

}
≤ 2P

{
|Sn|
σ
√
n
≥ λ− 1

}
, (9.8)

usando |m(X) − E(X)| ≤
√
V ar(X). Agora fixe ε > 0 e δ < ε2/16. Para n

suficientemente grande, temos que

1

δ
P
{
ω : sup

t≤s≤t+δ
|Xn(s)−Xn(t)| ≥ ε

}

≤ 1

δ
P
{
ω : sup

0≤i≤⌊nδ+2⌋

|Si|
σ
√
⌊nδ + 2⌋

≥ ε

2

1√
δ

}

≤ 2

δ
P

{
|S⌊nδ+2⌋|

σ
√
⌊nδ + 2⌋

≥ ε

2

1√
δ
− 1

}
≤ 2

δ
P

{
|S⌊nδ+2⌋|

σ
√
⌊nδ + 2⌋

≥ ε

4

1√
δ

}
.

Pelo TLC, obtemos se Z ∼ N(0, 1),
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lim
n→∞

2

δ
P

{
|S⌊nδ+2⌋|

σ
√
⌊nδ + 2⌋

>
ε

4

1√
δ

}
=

2

δ
P
{
|Z| > ε

4

1√
δ

}
≤ 2

δ

E(|Z|3)43

ε3
δ3/2,

pois P (|Z| > a) ≤ E(|Z|3)/a3. Dado ε > 0, dado ∆ > 0, podemos tomar δ tão
pequeno de modo que este último termo seja menor do que ∆. □

Corolário 9.1. Seja h uma função mensurável, h : C([0, 1])
D→ (S,S), um espaço

métrico. Suponha que Dh, conjunto das desontinuidades de h, tenha medida de

Wiener zero. Então, h(Xn)
D→ h(X), onde X é um MB.

9.2 Movimento browniano

Definimos, na seção anterior, o MB X = {X(t)}, para t ∈ [0, 1]. Queremos
estender esse processo para o conjunto paramétrico [0,∞).

Sejam X1, X2, . . . MBs independentes, com espaço paramétrico [0, 1]. Defina o
processo X(t) como:

X(t) = X1(t), 0 ≤ t ≤ 1,

= X1(1) +X2(t− 1), 1 ≤ t ≤ 2,

· · ·
= X1(1) +X2(1) + . . .+Xn(1) +Xn+1(t− n), n ≤ t ≤ n+ 1.

Então, X = {X(t), 0 ≤ t < ∞} tem a propriedade desejada. X é chamado de
MB sobre [0,∞) ou simplesmente de MB. Nessa seção, trataremos de tal processo.
Usaremos as notações X(t) ou Xt.

Teorema 9.5. (a) Se Ft = F{Xs, s ≤ t}, então X é um martingale relativamente
a {Ft, t ≥ 0}.
(b) E(XsXt) = min{s, t}.

Prova: (a) Para s < t, temos que E(Xt|Fs) = E(Xt−Xs|Fs)+Xs = E(Xt−Xs)+
Xs = 0+Xs = Xs, usando o fato de X ter incrementos independentes e média zero.

(b) Se s < t, E(XsXt) = E[Xs(Xt −Xs)] + E(X2
s ) = E(Xt −Xs)E(Xs) + s = s =

min{s, t}. □

O seguinte teorema pode ser provado usando resultados anteriores.

Teorema 9.6. Seja T um tempo de parada finito. Defina Yt = XT+t −XT . Então,
{Yt, t ≥ 0} é um MB, independente de FT (propriedade Forte de Markov).
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Teorema 9.7. (Prinćıpio da reflexão). Seja T um tempo de parada finito. Defina
{Ut, t ≥ 0} por:

Ut = Xt, se t < T ;

= 2XT −Xt, se t ≥ T.

Então, {Ut, t ≥ 0} é um MB.

Prova: É suficiente provar as seguintes propriedades. (a) Ut tem trajetórias cont́ınuas
(por construção); (b) as distribuições finito-dimensionais de Ut são as mesmas que
aquelas de Xt.

De fato, (a) é imediata. Para (b), consideramos em primeiro lugar o caso n = 1.
Seja T um tempo de parada com um número enumerável de valores. Provaremos
(b) para esse caso primeiramente. Temos que

E{eisUt} = E{eisUtI{T≤t}}+ E{eisUtI{T>t}}

= E{eis(2XT−Xt)I{T≤t}}+ E{eisXtI{T>t}}.

Agora,

E{eis(2XT−Xt)I{T≤t}} =
∑

i≥1,ai≤t
E
{
eis(2Xai−Xt)I{T=ai}

}
,

onde a1, a2, . . . são os valores de T . Por sua vez, o último termo é igual a

∑
i≥1,ai≤t

E
{
eis[Xai−(Xt−Xai )]I{T=ai}

}
=

∑
i≥1,ai≤t

E
{
eisXai I{T=ai}

}
E
{
e−is(Xt−Xai )

}
,

por independência. Como Xt é simétrico (normal), Xai − Xt tem a mesma distri-
buição que Xt −Xai , portanto da última igualdade obtemos∑

i≥1,ai≤t
E
{
eisXtI{T=ai}

}
= E

{
eisXtI{T≤t}

}
,

logo

E{eisUt} = E{eisXtI{T≤t}}+ E{eisXtI{T>t}} = E{eisXt}.

Caso de T arbitrário. Construa uma sequência Tn de tempos de parada, com um
número enumerável de valores, tais que Tn ↓ T . Por exemplo, defina Tn = k/2n, se
(k − 1)/2n ≤ T ≤ k/2n.
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Seja Unt o processo obtido usando Tn no lugar de T . Então, Unt → Ut, quando
n→∞, pois Ut tem trajetórias cont́ınuas. Pelo TCD, E{eisUn

t } → E{eisUt}, do que
segue E{eisUt} = E{eisXt} e portanto Ut ∼ N(0, t), para cada t.

Agora, observe que se t1 < t2, temos que E{eis1Ut1+is2Ut2} = E{eis1Xt1+is2Xt2},
veja o Problema 5. De modo similar, a mesma relação vale para t1, . . . , tn, de
modo que (Xt1 , . . . , Xtn) tem a mesma distribuição que (Ut1 , . . . , Utn), para quais-
quer t1, . . . , tn, isto é, Ut e Xt têm as mesmas distribuições finito-dimensionais. □

Teorema 9.8. Seja {Xt, t ≥ 0} um MB e λ, R reais positivos. Então,

P
{

max
0≤t≤R

Xt ≥ λ
}
= 2P{XR ≥ λ}.

Prova: Seja T definido por T = inf{t ≤ R : Xt = λ} e T = R+ 1, se esse conjunto
for vazio. Então, T é um tempo de parada para {Xt} e P{max0≤t≤RXt > λ} =
P{T ≤ R}.

Defina {Ut} por Ut = Xt, se t < T e Ut = 2XT −Xt, se t ≥ T . Seja T1 = inf{t :
Ut = λ} e igual a R+ 1, se o conjunto for vazio. Então,

P{T ≤ R,XR < λ} = P{T1 ≤ R,UR > λ} = P{T ≤ R,XR > λ},

pois U ∼ X. Agora,
P{ max

0≤t≤R
Xt > λ} = P{T ≤ R} =

P{T ≤ R,XR ≥ λ}+ P{T ≤ R,XR < λ} =

P{XR ≥ λ}+ P{T ≤ R,XR > λ} = P{XR ≥ λ}+ P{XR > λ},

pois {T ≤ R} ⊃ {XR ≥ λ}. Como X é normal, obtemos o resultado. □

Aplicações

[1] Seja X = {Xt, t ≥ 0} um MB. Então, quase todas as trajetórias de X são não
limitadas.

De fato pelo teorema anterior, P (max0≤t≤RXt ≥ λ) = 2P (XR√
R
≥ λ√

R
) = 2P (Z ≥

λ/
√
R), onde Z ∼ N(0, 1). Para R→∞, o último termo tende a 2(1/2) = 1.

[2] Seja Ta = inf{t ≥ 0 : Xt = a}, sendo X um MB e a > 0. Pela Aplicação [1],
Ta <∞ q.c. Então,

P (Ta ≤ t) = P ( max
0≤s≤t

Xs ≥ a) = 2P (Xt ≥ a) =
2√
2πt

∫ ∞

a
e−x

2/2tdx.

A densidade é f(t) = a√
2π
t−3/2e−a

2/2t, para t > 0. Veja o Problema 3.
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Teorema 9.9. (Lei do Logaritmo Iterado) Seja X = {Xt, t ≥ 0} um MB. Então,

P
{
lim sup
t→∞

Xt√
2t log log t

= 1
}
= 1,

e

P
{
lim inf
t→∞

Xt√
2t log log t

= −1
}
= 1.

Prova: Basta provar a parte do limite superior.

(a) Provamos, primeiramente, que

lim sup
t→∞

Xt√
2t log log t

≤ 1, q.c.

Seja c > 1. É suficiente provar que lim supt→∞Xt/c
√
2t log log t ≤ 1, q.c. Tome

tn = αn, para α > 1 a ser escolhido depois. Seja Mn = max0≤t≤tn Xt. Como
P (Mn ≥ λ) = 2P (Xtn ≥ λ), obtemos

P{Mn ≥ x
√
tn} = 2P{Xtn ≥ x

√
tn} =

2√
2π

∫ ∞

x
e−y

2/2dy

≤ 2√
2π

∫ ∞

x

y

x
e−y

2/2dy ≤ 2√
2π

1

x
e−x

2/2.

Escolha x = xn = (c/
√
tn)
√
2tn−1 log log tn−1. Então,

P{Mn ≥ xn
√
tn} ≤

2√
2π

1

xn
e−x

2
n/2

≤
√
α√

π log log tn−1

(log tn−1)
−c2/α ≤

√
α√

π log(n− 1)
(logα)−c

2/α(n− 1)−c
2/α.

Como c > 1, escolha α tal que 1 < α < c2, de modo que∑
n

P
{
Mn > c

√
2tn−1 log log tn−1

}
≤ K

∑
n

(n− 1)−c
2/α <∞.

Logo, por Borel-Cantelli, se tn−1 < t ≤ tn,

X(t) ≤Mn ≤ c
√

2tn−1 log log tn−1 ≤ c
√

2t log log t,

sendo que a segunda desigualdade vale para todos exceto um número finito de n.
Ou seja,

P
{

lim
t→∞

sup
Xt√

2t log log t
≤ c
}
= 1, ∀c > 1.
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(b) Basta provar que, se c < 1, então

P
{

lim
t→∞

sup
Xt√

2t log log t
≥ c
}
= 1.

Coloquemos xn = c′
√
2 log log tn, com c′ < 1, arbitrário, e seja Yn := Xtn−Xtn−1 ,

n ≥ 1, que são independentes. Agora, para n suficientemente grande temos

P{Yn > xn
√
tn − tn−1} =

1√
2π

∫ ∞

xn

e−y
2/2dy

≥ 1√
2π

1

xn
e−x

2
n/2 ≥ [c′

√
4π logn]−1(n logα)−(c′)2 ,

logo

∑
n

P{Yn > xn
√
tn − tn−1} ≥ C

∑
n

n−(c′)2

√
log n

=∞,

do que seque, por Borel-Cantelli, que {Yn > c′
√
2 log log tn

√
tn − tn−1} ocorre i.v,

ou ainda {Yn > c′
√
(α− 1)/α

√
2tn log log tn} ocorre i.v. Portanto,

Xtn ≥ Yn − |Xtn−1 | ≥

(
c′
√
α− 1

α
− 2√

α

)√
2tn log log tn

ocorre i.v, pois por (a),

P
{
Xtn−1 ≤ 2

√
2tn−1 log log tn−1 para todos exceto um número finito de n

}
= 1.

Ou seja, como tn−1 = αn−1 = tn/α,

P
{
Xtn−1 ≤

2√
α

√
2tn log log tn, para todos exceto un número finito de n

}
= 1.

Escolha c < c′. Para α suficientemente grande, temos também que

c < c′
√
(α− 1)/α− 2/

√
α,

logo

P
{
Xtn ≥ c

√
2tn log log tn i.v

}
= 1.

Como c′ < 1, arbitrário, c pode ser escolhido menor do que 1 arbitrariamente,
perto de 1. □
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Nota: Na prova foi usado o fato que
∫∞
x e−u

2/2du ≥ (1/x)e−x
2/2, para x suficiente-

mente grande. Para provar esta desigualdade, basta integrar por partes.

Teorema 9.10. Suponha X MB e seja Yt = t ·X(1/t). Então, Y = {Yt, t ≥ 0} é
também MB.

Prova: Primeiramente, Y tem trajetórias cont́ınuas, exceto possivelmente em t = 0.
De fato, Y é cont́ınuo em t = 0:

lim
t→0

Yt = lim
t→0

tX(1/t) = lim
t→0

X(1/t)√
(2/t) log log t−1

√
(2/t) log log t−1 · t.

O primeiro termo afetado pelo limite é limitado, pela lei do logaritmo iterado, e o
segundo termo do produto tende a zero, para t→ 0. Também, as distribuições finito-
dimensionais de Y são normais. Seja s < t. Então, E(XsXt) = s and E(YsYt) =
stE[X(1/s)X(1/t)]st(1/t) = s, logo X e Y têm a mesma função de covariância, logo
têm as mesmas distribuições finito-dimensionais. □

Corolário 9.2. (Lei Local do Logaritmo Iterado) Suponha t0 fixado. Então,

lim
h→0

sup
X(t0 + h)−X(t0)√

2h log log h−1
= 1, q.c

e

lim
h→0

inf
X(t0 + h)−X(t0)√

2h log log h−1
= −1, q.c.

Prova: É suficiente provar o caso t0 = 0. Temos que

P

{
lim sup

h→0

X(h)√
2h log log h−1

= 1

}
= P

{
lim sup

h→0

hX(h−1)√
2h log log h−1

= 1

}
=

P

{
lim sup

h→0

X(h−1)√
2h−1 log log h−1

= 1

}
= 1,

pela lei ordinária do logaritmo iterado. □

Aplicações

[1] lim supt→0
Xt
t = +∞ e lim inft→0

Xt
t = −∞.

Basta escrever X(t)/t como

X(t)

t
=

X(t)√
2t log log t−1

√
2t log log t−1

t
.
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O primeiro termo do produto é limitado, pelo Corolário 9.2 e o segundo termo
do produto tende para +∞, quando t→ 0.

[2] Quando t→ 0, Xt cruza o eixo das abscissas infinitas vezes.

Segue de [1], ou X(t)/
√

2t log log t−1 deve mudar de sinal infinitas vezes, mas
como as trajetórias são cont́ınuas, deve cruzar o eixo x infinitas vezes.

Teorema 9.11. O MB tem quase todas as trajetórias de variação não limitada.

Necessitamos do seguinte lema.

Lema 9.2. Sejam 1
2n ,

2
2n , . . . ,

2n

2n pontos de [0, 1] e seja Sn =
∑2n

k=1 |X(k/2n) −
X((k − 1)/2n)|2. Então, Sn → 1 q.c, quando n→∞.

Prova: De fato, temos que

Sn − 1 =

2n∑
k=1

{|X(k2−n)−X((k − 1)2−n)|2 − 2−n},

logo

P (|Sn − 1| > ε) ≤ E(Sn − 1)2

ε2
=

Var(Sn)

ε2
=

2n
Var(X(2−n)2)

ε2
=

Var(Z2)

2nε2
,

onde Z ∼ N(0, 1). Segue-se que

∑
n≥1

P{|Sn − 1| > ε} ≤ C

ε2

∑
n≥1

2−n <∞.

Por Borel-Cantelli, Sn → 1 q.c. □

Prova do Teorema: Mostramos que quase todas as trajetórias sobre [0, 1] são de
variação não limitada. Suponha que existe um conjunto Ω̃ tal que P (Ω̃) > 0, e tal
que para todo ω ∈ Ω̃ temos

2n∑
k=1

|X(k2−n, ω)−X((k − 1)2−n, ω)| ≤M(ω) <∞, para todo n.

Então,
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2n∑
k=1

|X(k2−n, ω)−X((k − 1)2−n, ω)|2 ≤ max
1≤k≤2n

|X(k2−n, ω)−X((k − 1)2−n, ω)|

×
2n∑
k=1

|X(k2−n, ω)−X((k − 1)2−n, ω)|

≤M(ω) max
1≤k≤2n

|X(k2−n, ω)−X((k − 1)2−n, ω)|.

Logo, ∑2n

k=1 |X(k2−n, ω)−X((k − 1)2−n, ω)|2

max1≤k≤2n |X(k2−n, ω)−X((k − 1)2−n, ω)|
≤M(ω).

Mas para n→∞, o numerador tende a 1 q.c e o denominador tende a zero, pois
o MB tem trajetórias cont́ınuas. Isso é uma contradição. □

Teorema 9.12. Seja X um MB sobre [0, 1]. Então, λ{t ∈ [0, 1] : Xt(ω) = 0} = 0,
para quase todo ω, sendo λ a medida de Lesbegue no intervalo [0, 1].

Prova: Seja I{0} o indicador do {0}. Então, 0 =
∫ 1
0 [
∫
Ω I{0}(Xt)dP ]dt, pois a integral

interna reduz-se a P{ω : Xt(ω) = 0} = 0, dado que Xt é normal, para cada t. Agora,
X(t, ω) é mensurável, como uma aplicação de [0, 1] × Ω → R (veja o Caṕıtulo 5).
Logo, I{0}(X(t, ω)) é mensurável em (t, ω) como uma aplicação entre os mesmo

conjuntos anteriores. Segue-se, portanto, por Fubini, que 0 =
∫
Ω[
∫ 1
0 I{0}(Xt)dt]dP .

Logo, para quase todo ω,
∫ 1
0 I{0}(X(t, ω))dt = 0, ou ainda, λ{t ∈ [0, 1] : X(t, ω) =

0} = 0, para quase todo ω. □

9.3 Aplicações do Teorema de Donsker

Nesta seção estudamos algumas aplicações do Teorema de Donsker, a saber, a
estat́ıstica de Kolmogorov-Smirnov, a lei do arco seno e uma lei do logaritmo iterado
derivada do Teorema de Skorohod.

[1] Estat́ıstica de Kolmogorov-Smirnov

Sejam Y1, Y2, . . . v.a’s i.i.d, com f.d comum F , suposta cont́ınua e seja Fn(x)
a f.d. emṕırica, baseada em uma amostra de F de tamanho n. O Teorema de
Glivenko-Cantelli nos diz que

sup
x∈R
|Fn(x)− F (x)| → 0, n→∞.

Seja
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Dn =
√
n sup
x∈R
|Fn(x)− F (x)|. (9.9)

Um intervalo I = [a, b] é chamado intervalo de constância para F se P{Y1 ∈
[a, b]} = 0 e nenhum intervalo contendo este intervalo tem essa propriedade.

Seja B a reunião de todos os intervalos de constância para F . Então, Dn =√
n supx∈Bc |Fn(x)− F (x)|, q.c. Seja Uk = F (Yk). Então Uk é uniforme em [0, 1].
Vamos usar os seguintes lemas.

Lema 9.3. A distribuição de Dn não depende de F .

Prova: Temos que

Dn =
√
n sup
x∈Bc

|Fn(x)− F (x)| =
√
n sup
x∈Bc

|Gn(F (x))− F (x)|,

onde Gn é a função de distribuição emṕırica de U1, . . . , Un. Agora observe que o
último termo é igual a

√
n sup0<x<1 |Gn(x)−x|, porque quando x varia em Bc, F (x)

varia em (0, 1) e isso envolve somente a distribuição uniforme. □

Lema 9.4. Sejam E1, E2, . . . v.a’s i.i.d exponencias com média 1 e Rk = E1+. . .+Ek.
Sejam U(1,n), . . . , U(n,n) as estat́ısticas de ordem de n v.a’s com distribuição uniforme
no intervalo [0, 1], U1, . . . , Un. Então:

(a) A distribuição conjunta de (U(1,n), . . . , U(n,n)) tem densidade f(y1, . . . , yn) = n!,
se 0 ≤ y1 < y2 < · · · < yn ≤ 1 e 0 senão;

(b) (R1/Rn+1, . . . , Rn/Rn+1) ∼ (U(1,n), . . . , U(n,n)).

Prova. Veja o Problema 8.

Teorema 9.13. Dn
D→ Y , onde Y = sup0≤t≤1 |W (t)− tW (1)|, sendo W (t) um MB.

O processo B(t) = W (t) − tW (1) é chamado ponte browniana. Vemos que
B(0) = B(1) = 0. A distribuição de Y é dada por

P (Y ≤ x) = 1 + 2
∞∑
k=1

(−1)ke−2k2x2 , x > 0.

Prova: Temos que Yk ≤ x se, e somente se, F (Yk) ≤ F (x), se x ∈ Bc. Para provar
essa afirmação, a parte⇒ é óbvia, pois F é crescente. Para a parte⇐, suponha que
F seja estritamente crescente à direita de x; se Yk ≥ x, então, F (Yk) > F (x), uma
contradição. Suponha, agora, que F não seja estritamente crescente à direita de x.
Como x ∈ Bc e supondo Yk > x, então F (Yk) ≥ F (x) e portanto F (Yk) = F (x).
Logo, Yk está no intervalo de constância [x, x0] e portanto P (x ≤ Yk ≤ x0) = 0.
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Pelo Lema 9.3, para provar o teorema, basta provar o caso em que Y1, Y2, . . .
são uniformes em [0, 1]. Note que Gn(x) é constante sobre os intervalos Ik =
[U(k,n), U(k+1,n)] e cresce em saltos de 1/n. Logo,

Dn =
√
n sup
k≤n

{
sup
x∈Ik
|Gn(x)− x|

}
=

√
n sup
k≤n

{
sup
x∈Ik
|Gn(U(k,n))− x|

}
=

√
n sup
k≤n

{
sup
x∈Ik

∣∣∣k
n
− x
∣∣∣}.

Temos que, ou o último termo é igual a |k/n−U(k,n)| ou é igual a |k/n−U(k+1,n)| =
|(k + 1)/n− U(k+1,n)|+M/n, com |M | ≤ 1.

Portanto, para provar que Dn converge em distribuição para Y , é suficiente
provar que

√
n supk≤n |k/n− U(k,n)| converge em distribuição para sup0≤t≤1 |B(t)|.

Usando o Lema 9.4, devemos mostrar que
√
n supk≤n |k/n−Rk/Rn+1| converge

em distribuição para o que se deseja. Mas essa quantidade é igual a

n

Rn+1
sup
k≤n

∣∣∣∣Rk − k√
n
− k

n

Rn+1 − n√
n

∣∣∣∣ .
Note que n/Rn+1 → 1, pois Rn =

∑n
i=1 Ei e Rn/n → E(E1) = 1. Como

En+1/
√
n → 0 em probabilidade, é suficiente provar que supk≤n |(Rk − k)/

√
n −

(k/n)(Rn+1 − n)/
√
n| converge em distribuição. Seja Sk = Rk − k e seja

X(n)(t) =
S[nt]√
n

+
nt− [nt]√

n

[
E[nt]+1 − 1

]
.

Pelo teorema de Donsker, X(n)(t) converge em distribuição para W (t). Seja
h : C([0, 1]) → R definida por h(x) = sup0≤t≤1 |x(t) − tx(1)|. Segue-se que h é

cont́ınua, logo h(X(n)(t)) converge em distribuição para h(W (t)). Por outro lado,

sup
k≤n

∣∣∣Rk − k√
n
− k

n

Rn+1 − n√
n

∣∣∣ = sup
0≤t≤1

|X(n)(t)− tX(n)(1)|

pois, note que o supremo é determinado pelos vértices da linha poligonal. □

[2] Lei do Arco seno

Seja x ∈ C([0, 1]) e defina uma função h : C([0, 1]) → R como segue, sendo λ a
medida de Lebesgue:

h(x) = λ{t ∈ [0, 1] : x(t) > 0}.

Então, temos:
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(a) h é uma função mensurável de C([0, 1]) em R.

(b) Seja Dh o conjunto dos pontos de descontinuidade de h. Então,

Dh = {x ∈ C([0, 1]) : λ{t ∈ [0, 1] : x(t) = 0} > 0}.

(c) W (Dh) = 0.

(d) Sejam Yi, i ≥ 1 v.a’s i.i.d, média zero e variância σ2. Defina Xn(t) como usual-
mente foi feito antes. Então, h(Xn) → h(W ). Seja Sn = Y1 + . . .+ Yn. Denotemos
por #Sn o número de ı́ndices k ≤ n tais que Sk > 0. Seja Rn = #Sn/n a proporção
das vezes que Sk > 0. Então, h(Xn)−Rn converge para 0 em probabilidade quando
n→∞.

(e) Logo,

P (Rn ≤ x)→ P{ω : λ{t ∈ [0, 1] :W (t) > 0} ≤ x} = P (h(W ) ≤ x) (9.10)

quando n→∞. Teŕıamos, então, a distribuição limite de Rn, desde que pudéssemos
calcular (9.10).

(f) Para calcular (9.10), consideremos um caso especial,ou seja, tomemos os Yi tais
que P (Y1 = 1) = P (Y1 = −1) = 1/2. Para esse caso, sabemos que (veja Feller,
1968) P (Rn ≤ x)→ 2

π arcsin
√
x, logo

P [h(W ) ≤ x] = 2

π
arcsin

√
x.

[3] Lei do Logaritmo Iterado: Teorema de Skorokhod

A seguinte versão do teorema de Skorokhod não será provada. Veja Billingsley
(1999).

Teorema 9.14. (Skorokhod). Sejam Xi, i ≥ 1 v.a’s i.i.d, média zero e variância
σ2 e seja Sn =

∑n
i=1Xi. Então, existe um espaço de probabilidade sobre o qual

podemos definir:

(i) v.a’s i.i.d, não negativas Ti, i ≥ 1, com E(T1) = σ2;

(ii) um MB W = {W (t)), t ≥ 0} tal que

(S1, S2, . . .) ∼ (W (T1),W (T1 + T2), . . .).

As v.a’s T1, T1 + T2, . . . podem ser vistas como tempos de parada para W .

Teorema 9.15. (Lei do Logaritmo Iterado) Sejam Xi, i ≥ 1, i.i.d, média zero,
variância 1 e Sn =

∑n
i=1Xi. Então,
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P
{

lim
n→∞

sup
Sn√

2n log log n
= 1
}
= 1, q.c

e

P
{

lim
n→∞

inf
Sn√

2n log log n
= −1

}
= 1 q.c.

Prova: Sejam W e T1, T2, . . . como no Teorema de Skorokhod. Para provar o
teorema é suficiente provar que:

1) lim supn→∞
W (T1+...+Tn)√

2n log logn
= 1, q.c. Para provar isso, devemos provar

2)
W (T1+...+T⌊t⌋)−W (t)√

2t log log t
→ 0, q.c.

Pela lei do logaritmo iterado para MB, temos que lim supt→∞
W (t)√

2t log log t
= 1, e

se 2) vale, então lim sup
W (T1+...+T⌊t⌋)√

2t log log t
= 1, q.c. Portanto, o resultado segue pois

√
2t log log t√

2⌊t⌋ log log⌊t⌋
→ 1, t→∞. Provemos 2).

Como T1, T2, . . . são i.i.d e E(T1) = 1, a LFGN nos dá (T1 + . . . + T⌊t⌋)/t → 1,
q.c, quando t→∞. Seja ε > 0. Para cada ω, existe um número τ(ω) tal que t > τ
implica

1

1 + ε
≤
T1 + . . .+ T[t]

t
≤ 1 + ε,

ou

t

1 + ε
≤ T1 + . . .+ T[t] ≤ (1 + ε)t,

portanto para tal t temos

|W (T1 + . . .+ T⌊t⌋)−W (t)| ≤ sup
t(1+ε)−1≤s≤t(1+ε)

|W (s)−W (t)|.

Seja tk = (1 + ε)k. Então, se tk ≤ t ≤ tk+1, então

|W (T1 + . . .+ T⌊t⌋)−W (t)| ≤ sup
tk−1≤s≤tk+2

|W (s)−W (t)|

≤ 2 sup
tk−1≤s≤tk+2

|W (s)−W (tk−1)|

=: 2Mk.
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Para mostrar que
|W (T1+...+T⌊t⌋)−W (t)|

Dt
→ 0, onde Dt =

√
2t log log t, é suficiente

provar que, para ∆ > 0 arbitrário, lim supkMk/Dtk ≤ ∆, para Dtk ≤ Dt. Para
tanto, usamos Borel-Cantelli. Note que

P{Mk > x} = P
{

sup
tk−1≤s≤tk+2

|W (s)−W (tk−1)| > x
}
= 2P

{
|W (tk+2)−W (tk−1)| > x

}
.

Note, também, que

tk+2 − tk−1 = (1 + ε)k[(1 + ε)2 − (1 + ε)−1] = tkδ

com δ := (1 + ε)2 − (1 + ε)−1 = 2ε+ ε2. Vamos considerar

P

{
Mk

Dtk

>
√
2δ

}
= 4P

{
W (tk+2)−W (tk−1)√

tk+2 − tk−1
> 2
√
log log tk

}
=

4√
2π

∫ ∞

2
√
log log tk

e−t
2/2dt ≤ 4√

2π
e−(2

√
log log tk)

2/2 =
4√
2π

1

k2[log(1 + ε)]2

para k suficientemente grande.
Segue que ∑

k

P
{Mk

Dtk

>
√
2δ
}
<∞,

ou seja Mk/Dtk ≤
√
2δ para todo k suficientemente grande. Como δ pode ser

feito arbitrariamente pequeno, tomando-se ε arbitrariamente pequeno, obtemos o
resultado. □

Problemas

1. Prove que uma projeção πt é uma função cont́ınua definida sobre C([0, 1]).

2. Prove o Teorema 9.6.

3. Prove que Ta da Aplicação [2] seguindo o Teorema 9.8 tem uma distribuição estável,
com ı́ndice α = 1/2. Esta distribuição é chamada lei de Lévy.

4. Prove (9.8).

5. Na prova do Teorema 9.7, prove a afirmação: se t1 < t2, temos que E{eis1Ut1
+is2Ut2 } =

E{eis1Xt1+is2Xt2 }.
6. Prove o afirmado na Nota depois da prova do Teorema 9.9.

7. Usando o Teorema 9.4 (Donsker) e Corolário 9.1, prove que

P
{
max
k≤n

Sk

σ
√
n
≤ x

}
→ 2√

2π

∫ x

0

e−t2/2dt,

onde Sn =
∑n

i=1 Yi, e Y1, Y2, . . . são v.a’s i.i.d, com média zero e variância σ2.

Morettin-Gallesco - dezembro/2025
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8. (Teorema de Donsker no caso Lindeberg) Sejam Yn,1, Yn,2, . . . , Yn,kn
v.a’s indepen-

dentes, de média zero, variância σ2
n,i e Sn,i =

∑i
j=1 Yn,j , s

2
n,i =

∑i
j=1 σ

2
n,j . Seja Xn o

processo estocástico com trajetórias cont́ınuas, definido por Xn = {Xn(t), 0 ≤ t ≤ 1},

Xn(t) =
Sn,i

sn,i
, se t =

s2n,i
s2n,kn

,

e linear entre os valores. Suponha que os Y ’s satisfaçam as condições do Teorema de
Lindeberg. Prove o Teorema de Donsker nesse caso.

9. Seja W a medida de Wiener. Encontre:

(a) W{x ∈ C([0, 1]) : sup0≤t≤1/2 x(t) ≤ 1};
(b) W{x ∈ C([0, 1]) : 0 ≤ x(t) ≤ 1, para todo t}.

10. (a) Seja T um tempo de parada, com E(T ) < ∞. Se X for um MB, prove que
E(XT ) = 0 (Use o TAO).

(b) Usando (a), prove que se b > 0, então o tempo esperado para que o MB atinja b
é infinito (mesmo que o MB atingirá b com probabilidade 1).
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Caṕıtulo 10

Cadeias de Markov

Neste caṕıtulo estudaremos os conceitos e propriedades principais sobre cadeias
de Markov discretas. As referências que serão usadas são Chung (1967), Freedman
(1983) e Norris (1997).

10.1 A propriedade de Markov

Definição 10.1. Seja X = {Xn, n ≥ 0} um p.e com parâmetro discreto e Fn =
F{X1, . . . , Xn}. Dizemos que X é um processo de Markov se, para todo conjunto
de Borel B e todo n, temos

P{Xn+1 ∈ B|Fn} = P{Xn+1 ∈ B|Xn}. (10.1)

A equação (10.1) é chamada Propriedade de Markov.

Note que X é um p.e de Markov se, e somente se,

E{f(Xn+1)|Fn} = E{f(Xn+1)|Xn},

para toda função f de Borel limitada.

Exemplo 10.1. São exemplos triviais de processos de Markov:

(1) Uma sequência {Xn, n ≥ 1} de v.a’s independentes.

(2) Uma sequência {Xn, n ≥ 1} de v.a’s tais que Xn = Y1+. . .+Yn, sendo Yi, i ≥ 1
independentes.

As duas proposições a seguir dão critérios para se saber se X é um p.e de Markov.

Proposição 10.1. Seja F ′
n = F{Xn+1, Xn+2, . . .}. X é um processo de Markov se,

e somente se, para todo M ∈ F ′
n, tivermos P (M |Fn) = P (M |Xn).
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164 CAPÍTULO 10. CADEIAS DE MARKOV

Prova: (⇐) trivial

(⇒) Sabemos que, para toda função de Borel f , limitada,

E{f(Xn+1)|F} = E{f(Xn+1)|Xn}. (10.2)

Considere f : R2 → R, Borel, limitada. Vamos provar a relação correspondente a
(10.2), para f(Xn+1, Xn+2). Para isso, considere primeiramente f(x, y) = g(x)h(y),
sendo f e g funções borelianas limitadas. Temos que

E{f(Xn+1, Xn+2)|Fn} = E{g(Xn+1)h(Xn+2)|Fn} = E{g(Xn+1)E[h(Xn+2)|Fn+1]|Fn},

pois Fn+1 ⊃ Fn. Por (10.2), o último termo da igualdade acima é igual a

E{g(Xn+1)E[(h(Xn+2)|Fn+1]|Xn} = E{g(Xn+1)E[(h(Xn+2)|Xn+1]|Xn} =

= E{g(Xn+1)E[h(Xn+2)|Xn+1, Xn]|Xn} = E{E[g(Xn+1)h(Xn+2)|Xn+1, Xn]|Xn} =

E{g(Xn+1)h(Xn+2)|Xn},

pois F{Xn, Xn+1} ⊃ F{Xn}. Portanto,

E{f(Xn+1, Xn+2)|Fn} = E{f(Xn+1, Xn+2)|Xn}, (10.3)

para f da forma acima. Por um argumento de classe monotônica (10.3) vale para
qualquer f boreliana, limitada de R2 em R. De modo similar, podemos provar que

E{f(Xn+1, Xn+2, . . . , Xn+k)|Fn} = E{f(Xn+1, Xn+2, . . . , Xn+k)|Xn},

para toda função de Borel limitada f : Rk → R.
Em particular, se A ∈ F{Xn+1, . . . , Xn+k}, então P{A|Fn} = P{A|Xn}, to-

mando f = IA. Como F ′
n = F{Xn+1, Xn+2, . . .} = ∨∞k=1F{Xn+1, . . . , Xn+k}, temos

o resultado por um argumento de classe monotônica. □

Proposição 10.2. X é um processo de Markov se, e somente se, sempre queM ∈ F ′
n

e N ∈ Fn, tivermos P{M ∩N}|Xn} = P{M |Xn}P{N |Xn}.

Prova: Será suficiente provar que a proposição é equivalente à Proposição 10.1.

(a) Suponha que

P (M |Fn) = P (M |Xn), M ∈ F ′
n. (10.4)

Mostremos que P (MN |Xn) = P (M |Xn)P (N |Xn), para N ∈ Fn. Temos que

P (M |Xn)P (N |Xn) = E(IM |Xn)E(IN |Xn) =

E(INE(IM |Xn)|Xn) = E(INE(IM |Fn)|Xn),
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pois E(IM |Xn) é F{Xn}-mensurável e por (10.4). O último termo é igual a

E(E(INIM |Fn)|Xn) = E(INIM |Xn) = P (M ∩N |Xn),

pois IN é Fn-mensurável.

(b) Suponha, agora, que

P (M ∩N |Xn) = P (M |Xn)P (N |Xn). (10.5)

Mostremos que (10.4) vale. Tome qualquer conjunto N ∈ Fn e considere∫
N
P (M |Xn)dP = E(INE(IM |Xn)) = E(E(IN |Xn)E(IM |Xn)) =

= E(P (N |Xn)P (M |Xn)) = E(P (M ∩N |Xn)) = P (M ∩N),

usando (10.5). Considere, agora,∫
N
P (M |Fn)dP =

∫
N
E(IM |Fn)dP =

∫
N
IMdP = P (M ∩N)

pela definição de esperança condicional, dado que N ∈ Fn. Portanto, para qualquer
conjunto N ∈ Fn, temos∫

N
P (M |Xn)dP =

∫
N
P (M |Fn)dP,

o que implica que P (M |Fn) = P (M |Xn). □

Esta proposição nos diz que, dado o presente, o passado e o futuro são indepen-
dentes.

Corolário 10.1 Se X0, X1, . . . , Xn é um processo de Markov, também o será Xn,
Xn−1, . . . , X0.

10.2 Cadeias de Markov

Definição 10.2. Seja X = {Xn, n ≥ 1} um processo de Markov. Seja I o conjunto
de todos os posśıveis valores de Xn, o chamado espaço de estados de X. Suponha
que I seja enumerável. Nesse caso, chamamos X de Cadeia de Markov (CM).

No caso de uma CM, a propriedade de Markov fica

P{Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in} = P{Xn+1 = in+1|Xn = in},

ou, alternativamente para todo k ≥ 1 e 0 ≤ n0 < n1 · · · < nk,

P{M |Xn0 = i0, . . . , Xnk
= ik} = P{M |Xnk

= ik}, se M ∈ F ′
nk
.
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Por exemplo,

P{X8 = a,X5 = b|X2 = c,X3 = d} = P{X8 = a,X5 = b|X3 = d}.

Não é verdade, em geral, que se M ∈ F ′
n, então

P{M |X1 ∈ A1, . . . , Xn ∈ An} = P{M |Xn ∈ An},

contudo é verdade que, se N ∈ Fn, então

P{M |N,Xn = i} = P{M |Xn = i}.

Definição 10.3. Seja X = {Xn, n ≥ 0} uma CM. Seja pk := P{X0 = k}. Então,
{pk, k ∈ I} é chamada a distribuição inicial de X. Se P{X0 = k} = 1, para algum
k ∈ I, dizemos que X começa em k.

Definição 10.4. A probabilidade de transição do estado i para o estado j no tempo
n é dada por P{Xn+1 = j|Xn = i}. A seguir, sempre consideraremos cadeias de
Markov homogêneas, isto é, cadeias para as quais essa probabilidade não depende
de n e a denotaremos por pij . A matriz [pij ](i,j)∈I2 , é chamada matriz de transição.

Uma matriz [aij ](i,j)∈I2 é uma matriz estocástica se aij ≥ 0 e
∑

j∈I aij = 1. Uma
matriz subestocástica satisfaz aij ≥ 0 e

∑
j∈I aij ≤ 1. Se C = AB, e A e B são

estocásticas, C também é.

Suponha que queiramos calcular P{X0 = i0, . . . , Xn = in}. Temos

P{X0 = i0, . . . , Xn = in} = P{Xn = in|X0 = i0, . . . , Xn−1 = in−1}

×P{X0 = i0, . . . , Xn−1 = in−1}

= P{Xn = in|Xn−1 = in−1}P{Xn−1 = in−1|X0 = i0, . . . , Xn−2 = in−2}

×P{X0 = i0, . . . , Xn−2 = in−2},

e prosseguindo, obtemos no final

P{X0 = i0, . . . , Xn = in} = pi0pi0i1pi1i2 · · · pin−1in .

Teorema 10.1. Seja I um conjunto enumerável e {p̂i, i ∈ I} uma distribuição de
probabilidade sobre I. Seja [p̂ij ](i,j)∈I2 , uma matriz estocástica. Então, existe uma
CM X = {Xn, n ≥ 0} tendo {p̂i} como distribuição inicial e [p̂ij ](i,j)∈I2 como matriz
de transição.

Prova: Seja Ω = I∞, ou seja Ω é o conjunto de todas as sequências ω = (i0, i1, . . .),
com ik ∈ I. Tome F como a σ-álgebra produto sobre Ω.
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Um cilindro baseado nas coordenadas 0, 1, . . . , k é um conjunto da forma {ω ∈ Ω :
ω0 = i0, ω1 = i1, . . . , ωk = ik}. Seja Fk a σ-álgebra em Ω gerada por tais cilindros.
Defina Pk sobre (Ω,Fk) por: se Ak = {ω ∈ Ω : ω0 = i0, ω1 = i1, . . . , ωk = ik}, então

Pk(Ak) = p̂i0 p̂i0i1 · · · p̂ik−1ik .

Então, as Pk são consistentes, isto é, Pk+1 restrita a (Ω,Fk) é Pk. Logo, pelo
teorema de Kolmogorov, existe uma probabilidade P sobre (Ω,F) tal que P restrita
a (Ω,Fk) é Pk.

Assim, nosso espaço de probabilidades básico é composto por: Ω = I∞, P a
probabilidade gerada por Kolmogorov de acordo com o exposto acima, F é a σ-
álgebra produto.

Defina X = {Xn, n ≥ 0} como segue: se ω = (ω0, ω1, . . .), então Xn(ω) = ωn.
Segue que X é Markov, com as distribuições corretas. De fato:

(a) É imediato que X tem a distribuição inicial correta.

(b) X tem as probabilidades de transição corretas:

P{Xn+1 = j|Xn = i} = P{Xn = i,Xn+1 = j}
P{Xn = i}

=

∑
i0,...,in−1

P{Xn+1 = j,Xn = i,Xn−1 = in−1, . . . , X0 = i0}∑
i0,...,in−1

P{Xn = i,Xn−1 = in−1, . . . , X0 = i0}
=

∑
p̂i0 p̂i0i1 · · · p̂in−1ip̂ij∑
p̂i0 p̂i0i1 · · · p̂in−1i

= p̂ij .

(c) X é Markov:

P{Xn+1 = j|X0 = i0, . . . , Xn−1 = in−1, Xn = i} =

P{X0 = i0, . . . , Xn−1 = in−1, Xn = i,Xn+1 = j}
P{X0 = i0, . . . , Xn = i}

=
p̂i0 p̂i0i1 . . . p̂in−1ip̂ij

p̂i0 p̂i0i1 . . . p̂in−1i

= p̂ij = P{Xn+1 = j|Xn = i}. □

Definição 10.5. As probabilidades de transição em n passos do estado i para o
estado j são definidas por:

Morettin-Gallesco - dezembro/2025
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p
(0)
ij = 1, se i = j,

= 0, se i ̸= j,

p
(1)
ij = pij ,

p
(n+1)
ij =

∑
k∈I

p
(n)
ik pkj . (10.6)

Por exemplo,

P{Xn+2 = j|Xn = i} =
∑
s∈I

P{Xn+2 = j,Xn+1 = s|Xn = i}

=
∑
s∈I

P{Xn+2 = j|Xn+1 = s,Xn = i}P{Xn+1 = s|Xn = i}

=
∑
s∈I

pispsj = p
(2)
ij ,

onde usamos a propriedade de Markov na primeira probabilidade da soma, despre-
zando Xk = i. Usando (10.6) repetidamente, encontramos

p
(m+n)
ij =

∑
k∈I

p
(n)
ik p

(m)
kj .

Esta é chamada equação de Chapman-Kolmogorov.

Sejam P := [pij ] e P(n) :=
[
p
(n)
ij

]
para todo n ≥ 0. Então, de (10.6) obtemos que

P(n) = Pn para todo n e finalmente,

P(n+m) = Pn+m = PnPm = P(n)P(m).

Exemplo 10.2. Vamos considerar alguns exemplos de CMs.

(a) Uma CM com probabilidades de transição pij diz-se espacialmente homogênea se
pij é uma função de j−i somente. Por exemplo, considere {Yi, i ≥ 1}, uma sequência
de v.a’s discretas, i.i.d, e suponha que Y0 seja independente de {Yk, k ≥ 1}. Defina
X = Y0+Y1+ . . .+Yn. Então, X tem incrementos independentes e é espacialmente
homogênea.

Uma rećıproca parcial desse resultado é a seguinte. Seja X uma CM com espaço
de estados I e suponha que pij seja uma função de j − i e que I seja um grupo
aditivo. Então, X tem incrementos independentes. Ou seja, se Y0 = X0, Y1 =
X1−X0, . . . , Yn = Xn−Xn−1, então Y0, . . . , Yn são independentes e {Yk, k ≥ 1} são
i.i.d.
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De fato, observe que
∑

k∈I pi,i+k =
∑

j∈I pi,j = 1. Seja qk = pi,i+k, de modo que∑
k qk = 1. Então,

P{Y0 = i0, Y1 = i1, . . . , Yn = in} =

P{X0 = i0, X1 = i1 + i0, X2 = i0 + i1 + i2, . . . , Xn = i0 + . . .+ in} =

= pi0 · pi0,i0+i1 · · · · · pi0+...+in−1,i0+...+in = pi0 · qi1 · qi2 · · · qin .

Somando, obtemos que para j ≥ 1, P{Yj = ij} = qij e finalmente

P{Y0 = i0, . . . , Yn = in} = P{Y0 = i0}P{Y1 = i1} . . . P{Yn = in}.

Como um outro exemplo, se I é um conjunto de inteiros positivos e se pij depende
de j − i somente, então X tem incrementos independentes.

(b) Passeio aleatório começando em i0. Nesse caso, I é o conjunto dos inteiros, a
distribuição inicial é dada por P (X0 = i0) = 1 e a matriz de transição é definida
por:

pi,i+1 = p,

pi,i−1 = q = 1− p,
pij = 0, caso contrário.

Pelo exemplo (a), essa CM tem incrementos independentes. De fato, se Y1, Y2, . . .
são i.i.d, cada uma com distribuição P (Y1 = 1) = p, P (Y1 = −1) = 1 − p, então
Xn = i0 + Y1 + . . .+ Yn.

(c) Considere, agora, o passeio aleatório com absorção no zero, começando em i0.
Aqui, I é o conjunto dos inteiros não negativos, pi,i+1 = p, i > 0, pi,i−1 = 1−p, i >
0, e p0,0 = 1.

(d) Passeio aleatório com reflexão no zero. Aqui, pi,i+1 = p, i > 0, pi,i−1 = q, i >
0, p0,0 = q, p0,1 = p.

10.3 Propriedade forte de Markov

SejaX = {Xn, n ≥ 0} uma CM sobre (Ω,F , P ) e Fn = F{X0, . . . , Xn}. Seja T um
tempo de parada para {Fn}, possivelmente infinito. Lembremos que {T = n} ∈ Fn
e defina FT como a classe dos conjuntos A ∈ F∆ tais que A ∩ {T = n} ∈ Fn, sendo
que ∆ e F∆ são tais que ∆ = {ω : T (ω) < ∞} (∆ ∈ F) e F∆ é a restrição de F a
∆, ou seja, F∆ = {A ∩∆ : A ∈ F}.

Defina P∆ sobre (Ω,F∆) como segue, supondo P (∆) > 0. Se A ∈ F∆, então

P∆(A) =
P (A)
P (∆) . Então, (∆,F∆, P∆) é um espaço de probabilidade.
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Defina Y = {Yn, n ≥ 0} por Yn(ω) = XT+n(ω), se T < ∞. Ou seja, Yn(ω) =
Xk+n(ω), se T (ω) = k. Então, Y é um processo estocástico sobre (∆,F∆, P∆),
chamado o processo pós-T .

Teorema 10.2 (Propriedade forte de Markov) Seja X = {Xn, n ≥ 0} uma CM, T
um tempo de parada e Y o processo pós-T . Então, Y é uma CM sobre (∆,F∆, P∆)
tendo distribuição inicial

P∆{Y0 = k} = 1

P (∆)

∑
n≥0

P{Xn = k, T = n}. (10.7)

Além disso, se A ∈ FT , teremos

P∆{A, Y0 = i0, . . . , Yn = in} = P∆{A, Y0 = i0}P{X1 = i1, . . . , Xn = in|X0 = i0}.
(10.8)

De modo equivalente,

P∆{Y1 = i1, . . . , Yn = in|A, Y0 = i0} = P{X1 = i1, . . . , Xn = in|X0 = i0}.

Em particular, Y tem as mesmas probabilidades de transição que X.

Prova: Primeiramente, se (10.8) vale, então Y é um processo de Markov sobre
(∆,F∆, P∆) (é óbvio que Y tem distribuição inicial dada por (10.7)). De fato, se
tomarmos A = ∆ em (10.8),

P∆{Yn = in|Y0 = i0, . . . , Yn−1 = in−1} =
P∆{Y0 = i0, . . . , Yn = in}

P∆{Y0 = i0, . . . , Yn−1 = in−1}

=
P{X1 = i1, . . . , Xn = in|X0 = i0}

P{X1 = i1, . . . , Xn−1 = in−1|X0 = i0}

=
P{X0 = i0, X1 = i1, . . . , Xn = in}

P{X0 = i0, X1 = i1, . . . , Xn−1 = in−1}
= P{Xn = in|Xn−1 = in−1, . . . , X0 = i0} = P{Xn = in|Xn−1 = in−1}

= P{X1 = in|X0 = in−1} = P∆{Y1 = in|Y0 = in−1}.

Resta verificar (10.8). Tome A ∈ FT . Temos

P∆{A, Y0 = i0, . . . , Yn = in} =
∑
k≥0

P∆{A, Y0 = i0, . . . , Yn = in, T = k}

=
1

P (∆)

∑
k≥0

P{A, T = k,Xk = i0, . . . , Xk+n = in}

=
1

P (∆)

∑
k≥0

P{Xk+1 = i1, . . . , Xk+n = in|Xk = i0, A, T = k}P{A, T = k,Xk = i0},
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sendo que a segunda igualdade decorre da definição de Yn. Como A ∈ FT , temos
que A ∩ {T = k} ∈ Fk, logo a última soma é igual a∑

k≥0

P{Xk+1 = i1, . . . , Xk+n = in|Xk = i0}P{A, T = k,Xk = i0}

= P{X1 = i1, . . . , Xn = in|X0 = i0}
∑
k≥0

P{A, T = k,Xk = i0}

= P{X1 = i1, . . . , Xn = in|X0 = i0}P (∆)P∆{A, Y0 = i0}. □

Algumas extensões

[1] Suponha que T seja um tempo de parada tal que P∆{Y0 = i0} = 1. Seja A ∈ FT
e B ∈ F{Y0, Y1, Y2, . . .}. Então, P∆(A ∩B) = P∆(A)P∆(B).
De fato, seja A ∈ FT . Então,

P∆{A, Y0 = i0, . . . , Yn = in} = P∆{A, Y0 = i0}P{X1 = i1, . . . , Xn = in|X0 = i0},

por (10.8). Temos que P∆{A, Y0 = i0} = P∆(A), usando P∆(Y0 = i0) = 1, logo a
última probabilidade é igual a

P∆(A)P∆{Y1 = i1, . . . , Yn = in|Y0 = i0} = P∆(A)
P∆{Y0 = i0, . . . , Yn = in}

P∆{Y0 = i0}

= P∆(A)P∆{Y0 = i0, . . . , Yn = in},

pois a distribuição condicional de Y é igual à dsitribuição condicional de X. Segue
que P∆(A ∩ B) = P∆(A)P∆(B), onde B = {Y0 = i0, . . . , Yn = in}, portanto essa
igualdade vale para todo B ∈ F{Yi, i ≥ 0}.

[2] Suponha que T e Y satisfaçam às hipóteses de [1]. Suponha, ainda, que P (T <
∞) = 1. Então, P∆ = P (pois P (∆) = 1). Logo, se A e B são como em [1],
P (A ∩B) = P (A)P (B).

Isso significa, claro, que A e B são independentes, isto é, passado e futuro são
independentes nesse caso.

[3] Sejam T1 ≤ T2 ≤ · · · ≤ TN tempos de parada para X. Seja ∆n = {Tn < ∞}.
Então, ∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆N .

Suponha que P∆i{XTi = ki} = 1, para cada i e que Ti < Ti+1 sobre ∆i. Sejam
A1, A2, . . . , AN+1 conjuntos tais que:
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A1 ∈ FT1 ,
A2 ∈ F{XT1 , XT1+1, . . .} ∩ FT2 ,
A3 ∈ F{XT2 , XT2+1, . . .} ∩ FT3 ,

e assim por diante, até

AN+1 ∈ F{XTN , XTN+1, . . .}.

Então,

P
(N+1⋂
i=1

Ai

)
= P (AN+1)

N∏
i=1

P∆i(Ai).

De fato, temos que

P∆1

(N+1⋂
i=1

Ai

)
= P∆1

(
A1 ∩

(N+1⋂
i=2

Ai

))
= P∆1(A1)P∆1

(N+1⋂
i=2

Ai

)

= P∆1(A1)P∆2(A2)
P (∆3)

P (∆1)
P∆3(A3)P∆3

(N+1⋂
i=4

Ai

)
= . . .

= P∆1(A1)P∆2(A2) · · ·P∆N−1
(AN−1)

P (∆N )

P (∆1)
P∆N

(AN )P∆N
(AN+1).

[4] Suponha que os Ti’s são como em [3], mas também que Ti < ∞ q.c., para
1 ≤ i ≤ N . Se os Ai são como em [3], temos

P
(N+1⋂
i=1

Ai

)
=

N+1∏
i=1

P (Ai).

Exemplo 10.3. Suponha que X = {Xn, n ≥ 0} seja um passeio aleatório usual,
começando no zero. Seja T1 = inf{n > 0 : Xn = 0}, T2 o próximo tempo depois de
T1 tal que Xn = 0, e assim por diante. P{T1 <∞} = 1 e portanto P{Ti <∞} = 1.
Também, XTi = 0, para todo i. Sejam: M1 o máximo de X no intervalo [0, T1),M2 o
máximo deX em [T1, T2) etc. Então, pelo visto acima,M1,M2, . . . são independentes
(e identicamente distribúıdas).
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10.4 Classificação de estados

Definição 10.6. Seja I o espaço dos estados da CM X e P = [pij ] a sua matriz de

transição. Dizemos que i atinge j (i → j) se p
(n)
ij > 0, para algum n ≥ 0. Dizemos

que i e j comunicam (i ↔ j) se i → j e j → i. P (ou a CM X) é dita iredut́ıvel se
todos os estados de I comumicam entre si.

Defina a classe Ci como o conjunto de todos os estados j que se comunicam com
i; Ci é chamada de classe comunicante.

Um estado i é essencial se ele se comunica com todo estado j que é atingido por
ele. Caso contrário, o estado é não essencial.

Exemplo 10.4. (a) No passeio aleatório simples, todo estado é essencial.

(b) No passeio aleatório com o zero sendo estado absorvente, o estado 0 é essencial,
todos os demais são não essenciais.

Fatos sobre Classes Comunicantes

[1] Para todo i ∈ I, i↔ i.

[2] Se i→ j e j → k, então i→ k.

Prova: use Chapman-Kolmogorov (veja o Problema 4).

[3] Se i↔ j, então Ci = Cj .

Prova: Suponha k ∈ Ci. Por hipótese, i ↔ j e i → k (pois k ∈ Ci). Portanto,
j → i→ k, logo j → k, por [2]. Também, k → i→ j, logo k → j , de onde Ci ⊂ Cj .
De modo similar, Cj ⊂ Ci.

[4] Suponha que Ci seja uma classe comunicante. Se j ∈ Ci é essencial, então todos
os estados de Ci são essenciais (veja o Problema 5).

Definição 10.7. Seja j um estado para o qual {n ≥ 1 : p
(n)
jj > 0} ̸= ∅. O peŕıodo

de j é o máximo divisor comum de {n ≥ 1 : p
(n)
jj > 0}. Caso o peŕıodo de j é igual

a 1, o estado j é dito aperiódico.

[5] Seja Ci uma classe comunicante tal que |Ci| ≥ 2. Então, todos os estados de Ci
têm o mesmo peŕıodo.

Prova: Em primeiro lugar, observe que como |Ci| ≥ 2, para todo j ∈ Ci o conjunto

{n ≥ 1 : p
(n)
jj > 0} ̸= ∅. Agora, sejam di e dj os peŕıodos de i e j, respectivamente.

Seja n0 ≥ 1 tal que p
(n0)
ii > 0. Como i ↔ j, existem m e n tais que p

(m)
ij >

0 e p
(n)
ji > 0. Portanto, p

(m+n+n0)
jj ≥ p

(n)
ji p

(n0)
ii p

(m)
ij > 0, de modo que dj divide

n + n0 + m. Mas também, p
(2n0)
ii ≥ p

(n0)
ii p

(n0)
ii > 0, logo pelo mesmo argumento,
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p
(n+2n0+m)
jj ≥ p(n)ji p

(2n0)
ii p

(m)
ij > 0, de modo que dj divide n+ 2n0 +m. Segue que dj

divide n+ 2n0 +m− (n+ n0 +m), ou seja, dj divide n0. Conclui-se que dj divide
tudo que di divide. Similarmente, di divide tudo que dj divide, logo di = dj . □

Exemplo 10.5. (a) Passeio aleatório simples: há uma classe comunicante, a saber,
a classe de todos os inteiros. O peŕıodo é dois.

(b) Seja X uma CM com pi,i+2 = 1/2, pi,i−2 = 1/2. Aqui, o espaço dos estados
é o conjuntos dos inteiros. Então, há duas classes comunicantes: C0, a classe dos
inteiros pares e C1, a classe dos inteiros ı́mpares, ambas com peŕıodo 2.

Definição 10.8. Seja i um estado com peŕıodo d ≥ 1. Para todo r ≥ 0, seja

Cri := {j ∈ Ci : p(nd+r)ij > 0, para algum n ≥ 0}.

Essas classes são chamadas subclasses movendo-se ciclicamente. Observe que Cr+di =
Cri para todo r.

[6] As classes Cri , r ∈ {0, 1, . . . , d− 1}, formam uma partição de Ci.

Prova: Em primeiro lugar, observe que como Ci é uma classe comunicante, C0
i ∪

· · · ∪ Cd−1
i = Ci. Agora, seja j ∈ Cri ∩ Cr

′
i com 0 ≤ r < r′ < d. Temos que existem

n ≥ 0 e m ≥ 0 tais que p
(nd+r)
ij > 0 e p

(md+r′)
ij > 0. Por outro lado, como j ∈ Ci

existe n′ ≥ 1 tal que p
(n′)
ji > 0. Deduzimos que p

(nd+n′+r)
ii > 0 e p

(md+n′+r′)
ii > 0.

Logo d divide md+ n′ + r
′ − (nd+ n′ + r) = (m− n)d+ r′ − r e portanto d divide

r′ − r o que é imposśıvel. Portanto, Cri ∩ Cr
′
i = ∅. □

[7] p
(n)
jk > 0 somente se j ∈ Cri e k ∈ Cr+ni para algum r.

Prova: Suponha que p
(n)
jk > 0 com j ∈ Cri para algum r ∈ {0, . . . , d − 1}. Por

definição de Cri existe m tal que p
(md+r)
ij > 0. Deduzimos que p

(md+r+n)
ik > 0, logo

k ∈ Cr+ni . □

[8] Se j, k ∈ Cri , então p
(nd)
jk > 0 para todo n suficientemente grande.

Prova: É uma consequência do seguinte resultado clássico da arithmética: Seja
S ⊂ N estável por adição com maior divisor comum M . Então para todo n grande o

suficiente nM ∈ S. Aplicamos este resultado ao conjunto {n ≥ 1 : p
(n)
ii > 0}. Agora,

escolhe m1 e m2 tais que p
(m1)
ji > 0 e p

(m2)
ik > 0. Obtemos

p
(m1+nd+m2)
jk ≥ p(m1)

ji p
(nd)
ii p

(m2)
ik > 0

para n grande o suficiente. Como, por [7], m1 +m2 é um multiplo de d, provamos
o resultado. □
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Exemplo 10.6. Considere o passeio aleatório ordinário: C0
0 contém todos os inteiros

pares, C1
0 todos os inteiros ı́mpares, C2

0 todos os inteiros pares etc. Depois C0
1 contém

todos os inteiros ı́mpares, C1
1 todos os inteiros pares, etc.

10.5 Recorrência

Chamemos de f
(n)
ij a probabilidade de alcançar o estado j pela primeira vez em

n ≥ 1 passos, dado que o processo começou no estado i, ou seja

f
(n)
ij = P{X1 ̸= j,X2 ̸= j, . . . , Xn−1 ̸= j,Xn = j | X0 = i}.

Seja, também, f∗ij =
∑

n≥1 f
(n)
ij a probabilidade de que Xn atinja j, começando

em i. Denote por Tj = inf{n > 0 : Xn = j}. Então,

f
(n)
ij = P{Tj = n|X0 = i}, f∗ij = P{Tj <∞|X0 = i}.

Denotemos por Uij o número esperado de visitas ao estado j, começando em i
(se i = j, contamos o estado inicial).

Lembrando que p
(0)
ij = 1, se j = i e p

(0)
ij = 0, se j ̸= i, então Uij =

∑
n≥0 p

(n)
ij . De

fato, se chamarmos uj =
∑

n≥0 I{j}(Xn) o número de vezes que Xn = j, teremos

Uij = E(uj |X0 = i) =
∑
n≥0

E(I{j}(Xn)|X0 = i)

=
∑
n≥0

P{Xn = j|X0 = i} =
∑
n≥0

p
(n)
ij .

Definição 10.9. Um estado i é chamado recorrente se P{Xn = i, i.v |X0 = i} = 1
e é chamado transitório se P{Xn = i, i.v |X0 = i} = 0.

Mostraremos que essas são as duas únicas possibilidades.

Teorema 10.3. (a) Suponha P{Ti <∞|X0 = i} = 1. Então, o estado i é recorrente.

(b) Nesse caso,
∑

n≥0 p
(n)
ii =∞.

Prova: (a) Sejam:

T
(1)
i = inf{n > 0 : Xn = i},

T
(2)
i = inf{n > T

(1)
i : Xn = i},

e assim por diante. Então, pela propriedade forte de Markov, os Ti são i.i.d, finitos.
Logo,
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P{Xn = i, i.v |X0 = i} = P{T (1)
i <∞, T (2)

i <∞, . . . |X0 = i} =

lim
n→∞

P{T (1) <∞, . . . , T (n)
i <∞} = lim

n→∞
Pn{Ti <∞|X0 = i} = 1,

usando a hipótese (a).

(b) Temos que a soma
∑
p
(n)
ii nos dá o número esperado de vezes que visitamos o

estado i, começando em i, logo
∑
p
(n)
ii = E{

∑
I{i}(Xn)|X0 = i} = ∞, dado que a

soma afetada pelo valor esperado é +∞ q.c. □

Teorema 10.4. (a) Suponha que P{Ti < ∞|X0 = i} < 1. Então, o estado i é
transitório.

(b) Nesse caso,
∑

n≥0 p
(n)
ii = [1− f∗ii]−1 <∞.

Prova: (a) Defina T
(1)
i , T

(2)
i , . . . como na prova do teorema anterior. Note que

T
(1)
i = +∞ é posśıvel. Seja ∆n = {T1 <∞, . . . , Tn−1 <∞}, n ≥ 2. Temos que

P{Xn = i, i.v |X0 = i} = P{T (1)
i <∞, T (2)

i <∞, . . . |X0 = i}

= lim
n→∞

P{T (1)
i <∞, . . . , T (n)

i <∞|X0 = i}

= lim
n→∞

P∆n−1(T
(n)
i <∞) · · ·P∆2(T

(2)
i <∞)P (T

(1)
i <∞)

= lim
n→∞

(P{T (1)
i <∞|X0 = i})n = 0,

usando a propriedade forte de Markov.

(b) Temos∑
n≥0

p
(n)
ii = Ei(número de visitas ao estado i)

=
∑

kP{houve exatamente k visitas |X0 = i}

=
∑

kP{T (j)
i <∞, j ≤ k − 1, T

(k)
i = +∞|X0 = i}

=
∑

kP{T (j)
i =∞|X0 = i}(P{T (1)

i <∞|X0 = i})k−1

= [1− f∗ii]
∑
k≥1

k(f∗ii)
k−1

= 1/(1− f∗ii).

□
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10.6. RECORRÊNCIA POSITIVA 177

Note que i é recorrente se, e somente se,
∑
p
(n)
ii = ∞, que por sua vez é equi-

valente a P{Ti < ∞|X0 = i} = 1. Também, i é transitório se, e somente se∑
n≥0 p

(n)
ii <∞, que é equivalente a P{Ti <∞|X0 = i} < 1.

Teorema 10.5. Suponha que C seja uma classe comunicante e que j ∈ C seja
recorrente. Então, todos os estados de C são recorrentes.

Prova: Suponha que j seja recorrente, então j é essencial. Segue que todo estado em

C é essencial. Portanto, se i é algum estado de C, então p
(n)
ij > 0, p

(m)
ji > 0, p

(k)
jj > 0,

de onde p
(n+k+m)
ii ≥ p(n)ij p

(k)
jj p

(m)
ji > 0. Considere∑

n≥0

p
(n)
ii ≥

∑
k≥0

p
(n+k+m)
ii = p

(n)
ij p

(m)
ji

∑
k≥0

p
(k)
jj = +∞,

pois j é recorrente. Logo i é recorrente. □

Teorema 10.6. Suponha que X seja uma CM, com espaço de estados I finito.
Então:

(a) o estado i é recorrente se, e somente se, i for essencial;

(b) existe pelo menos um estado essencial.

Note que é sempre verdade que, se i for recorrente, então i é essencial. A parte
(b) do teorema não vale se I for infinito. Veja o Problema 6.

Prova: (a) Pela observação anterior, é suficiente provar a parte (⇐). Suponha que
i seja essencial. Como I é finito, existe um estado j tal que P{Xn = j, i.v |X0 =
i} > 0. Seja Tj = inf{n > 0 : Xn = j}. Então, 0 < P{Xn = j, i.v |X0 = i} =
P{Tj < ∞, XTj = j,XTj+n = j, i.v |X0 = i} = P{XTj+n = j, i.v |XTj = j, Tj <
∞, X0 = i}P{Tj < ∞|X0 = i} = P{Xn = j, i.v |X0 = j}P{Tj < ∞|X0 = i},
pela propriedade forte de Markov. Segue-se que P{Xn = j, i.v |X0 = j} > 0, logo
P{Xn = j, i.v |X0 = j} = 1. Portanto, j é recorrente. Como i se comunica com j
deduzimos que i é recorrente.

(b) Imediata. □

Seja C uma classe comunicante. Então, nós mostramos que ou todos os estados
são recorrentes, ou todos são transitórios. Se todos os estados forem recorrentes,
dizemos que C é uma classe recorrente senão C é uma classe transitória.

10.6 Recorrência positiva

Começamos com os conceitos de estado recorrente positivo e de classe recorrente
positiva. Nesta seção usamos a notação Pi{·} = P{ · | X0 = i} para i ∈ I e Ei é a
esperança correspondente.
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Definição 10.10. Um estado recorrente j é recorrente positivo se Ej(Tj) <∞ e é
recorrente nulo se Ej(Tj) =∞. Uma classe recorrente é chamada recorrente positiva
(resp. nula) se todos os seus estados são recorrentes positivos (resp. nulos).

Teorema 10.7. Seja i recorrente positivo e j ↔ i, então Ei(Tj) <∞.

Prova: Sejam T
(1)
i = inf{n > 0 : Xn = i}, T (2)

i = inf{n > T
(1)
i : Xn = i} e T

(n)
i

definido similarmente para todo n ≥ 3. Defina U1, U2, . . . como segue: Uk = 1 se Xn

está no estado j para algum n tal que T
(1)
i + . . .+ T

(k)
i < n ≤ T (1)

i + . . .+ T
(k+1)
i e

Uk = 0 caso contrário. Pela propriedade forte de Markov, U1, U2, . . . são i.i.d. Seja
S = inf{n : Un = 1}; temos que Ei(S) <∞, pois

Pi{S = k} = Pi{U1 = 0, . . . , Uk−1 = 0, Uk = 1} = Pi{U1 = 0}k−1Pi{U1 = 1}

e Pi{U1 = 1} > 0. Como Tj ≤ T
(1)
i + T

(2)
i + . . . + T

(S)
i , temos que Ei(Tj) ≤

Ei(T
(1)
i + . . .+ T

(S)
i ) = Ei(Ti)Ei(S) <∞, pela identidade de Wald. □

Teorema 10.8. Seja C uma classe recorrente. Então ou todos os seus estados são
recorrentes positivos ou todos são recorrentes nulos.

Prova: Suponha que i seja recorrente positivo e j ↔ i com i ̸= j. Seja p :=
Pi{Tj < Ti}. Como i e j comunicam temos que p > 0. Logo, pela propriedade forte
de Markov notamos que

Ei(Ti) ≥ Ei(TiI{Tj<Ti}) = pEj(Ti)

e portanto deduzimos que Ej(Ti) < ∞. Agora observe que pela propriedade forte
de Markov

Ej(Tj) ≤ Ej(Ti) + Ei(Tj).

Usando o Teorema 10.7, deduzimos que Ej(Tj) <∞. □

Exemplo 10.7. (a) Os estados de um passeio aleatório padrão, com pi,i+1 = pi,i−1 =
1/2 são todos recorrentes nulos.

(b) Seja X uma CM com conjunto de estados I finito. Se o estado j for recorrente,
então j é recorrente positivo. De fato, seja C a classe recorrente contendo j. Temos

que
∑

i∈C p
(n)
ji = 1 para todo n ≥ 0. Supomos que C tem peŕıodo d. Para n → ∞,

pelo Corolário 10.2 a seguir, como essa soma é uma soma finita, existe um estado

i e 0 ≤ r < d, tais que lim p
(nd+r)
ji = d/Ei(Ti) > 0, logo Ei(Ti) < ∞, ou seja, i é

recorrente positivo. Mas como i e j estão na mesma classe, j é recorrente positivo.

10.7 Medidas estacionárias

Lembremos que um processo X = {Xt, t ∈ T} é estritamente estacionário se, para
todo h e todo conjunto t1 < t2 < · · · < tn, temos que (Xt1 , Xt2 , . . . , Xtn) tem a
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mesma distribuição que (Xt1+h, Xt2+h, . . . , Xtn+h) ( sempre que ti ∈ T , para todo i
e ti + h ∈ T , para todo i).

Como consequência temos que, se X for uma CM homogênea, com distribuição

inicial α e distribuição de Xn {p(n)k , k ∈ I}, então X é estritamente estacionária se,

e somente se, αk = p
(n)
k , para todo k e todo n.

Definição 10.11. Seja P = [pij ] a matriz de transição para a CM X = {Xn, n ≥ 0},
com espaço de estados I. Uma medida estacionária µ sobre I é uma medida não
trivial satisfazendo

µj =
∑
i∈I

µipij , para todo j ∈ I.

Em termos de matriz P as equações acima pode ser reescritas µP = µ. Outros
nomes são medida regular ou medida invariante. Por medida não trivial entendemos
uma medida diferente de µ ≡ 0 e µ ≡ ∞.

Teorema 10.9. (a) Suponha que µ seja uma medida de probabilidade estacionária
sobre I. Se X for uma CM com distribuição inicial µ, então X é estritamente
estacionária.

(b) Suponha que X seja uma CM estritamente estacionária. Então, a distribuição
inicial de X é uma medida de probabilidade estacionária.

Prova: (a) µj =
∑

i µipij , pois µ é estacionária. Se X é qualquer CM, p
(n)
k =∑

i αip
(n)
ik =

∑
i µip

(n)
ik , pois αi = µi por hipótese. Agora,

µj =
∑
i

µipij =
∑
i

(
∑
k

µkpki)pij =
∑
k

µk
∑
i

pkipij

=
∑
k

µkp
(2)
kj = · · · =

∑
k

µkp
(n)
kj ,

logo p
(n)
j = µj = αj , ou seja Xn ∼ X0.

(b) Para toda CM temos p
(1)
k =

∑
j αjpjk. Como X é estritamente estacionária,

αk = p
(1)
k , para todo k. Logo αk =

∑
j αjpjk, de modo que α é uma medida

estacionária. □

Teorema 10.10. Seja X uma CM irredut́ıvel então os itens a seguir são equivalen-
tes:
(a) X é recorrente positiva;
(b) P tem uma probabilidade invariante π.
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Em ambos os casos, a probabilidade invariante π é única e

πi =
1

Ei(Ti)
, para todo i ∈ I.

Prova: Provaremos primeiro que (b)⇒ (a). Para isto, vamos começar descartando
o caso transitório. Suponha que X seja transitória. Neste caso pelo Teorema 10.4,

temos que para todo i ∈ I, limn→∞ p
(n)
ii = 0. Por outro lado, como π é invariante

temos ∑
i∈I

πip
(n)
ii = πi, para todo n.

Pelo TCD obtemos que πi = 0, para todo i ∈ I. Como
∑

i∈I πi = 1, temos uma
contradição. Portanto, X não pode ser transitória.

Vamos considerar agora que X é recorrente. Fixe um elemento i ∈ I e considere
a medida

νi(j) = Ei

[
Ti−1∑
n=0

1{Xn=j}

]
, ∀j ∈ I.

Observe que νi(i) = 1 e pela irredutibilidade de X, νi(j) > 0 para todo j ∈ I.
Podemos ver também que νi é invariante para P, de fato temos

νi(j) = Ei

[
Ti∑
n=1

1{Xn=j}

]

=
∑
k∈I

Ei

[
Ti∑
n=1

1{Xn−1=k,Xn=j}

]

=
∑
k∈I

∞∑
n=1

Ei
[
1{n≤Ti,Xn−1=k}1{Xn=j}

]
=
∑
k∈I

∞∑
n=1

Ei
[
1{n≤Ti,Xn−1=k}

]
pkj

=
∑
k∈I

Ei

[
Ti∑
n=1

1{Xn−1=k}

]
pkj

=
∑
k∈I

νi(k)pkj .

Agora suponha que µ é uma medida invariante para P (lembramos que por
definição µ é não trivial). Mostraremos a seguir que µ é proporcional à medida νi.
Podemos provar por indução que para todo p ≥ 0,

µ(j) ≥ µ(i)Ei

p∧(Ti−1)∑
n=0

1{Xn=j}

 . (10.9)
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Basta considerar o caso i ̸= j. Para p = 0, a desigualdade (10.9) é trivial. Agora
vamos supor que (10.9) vale para p e vamos mostrar que ainda vale para p+ 1. De
fato, temos que

µ(j) =
∑
k∈I

µ(k)pkj

≥ µ(i)
∑
k∈I

Ei

p∧(Ti−1)∑
n=0

1{Xn=k}

 pkj
= µ(i)

∑
k∈I

p∑
n=0

Ei
[
1{Xn=k, n≤Ti−1}

]
pkj

= µ(i)
∑
k∈I

p∑
n=0

Ei
[
1{Xn=k, n≤Ti−1}1{Xn+1=j}

]
= µ(i)Ei

p∧(Ti−1)∑
n=0

1{Xn+1=j}


= µ(i)Ei

(p+1)∧(Ti−1)∑
n=0

1{Xn=j}

 .
Tomando p→ +∞ em (10.9) obtemos

µ(j) ≥ µ(i)Ei

[
Ti−1∑
n=0

1{Xn=j}

]
= µ(i)νi(j).

A medida νi é invariante e temos que µ(j) ≥ µ(i)νi(j) para todo j ∈ I. Assim para
todo n ≥ 1,

µ(i) =
∑
k∈I

µ(k)p
(n)
ki ≥

∑
k∈I

µ(i)νi(k)p
(n)
ki = µ(i)νi(i) = µ(i).

Deduzimos que a última desigualdade é na verdade uma igualdade, o que significa

que µ(k) = µ(i)νi(k) para todo k tal que p
(n)
ki > 0. A irredutibilidade de X garante

que, para todo k ∈ I, podemos encontrar um inteiro n tal que p
(n)
ki > 0. Concluimos

que µ = µ(i)νi, isto é, µ é proporcional a νi (como µ é não trivial, necessariamente
µ(i) ∈ (0,∞)).

Finalmente, aplicando o resultado acima a π, obtemos que 1 = π(I) = π(i)νi(I) =
π(i)Ei(Ti). Deduzimos que π(i) = 1/Ei(Ti) e portanto Ej(Tj) < ∞ para algum j.
Assim, por irredutibilidade, X é recorrente positiva.

Falta provar que (a) ⇒ (b). Supomos agora que X seja recorrente positiva e
definimos a medida µ tal que

µ(j) =
1

Ei(Ti)
νi(j) para todo j ∈ I.
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Neste caso, µ é uma probabilidade invariante para P. □

10.8 Limite de Pn

Nesta seção, estudaremos o comportamento limite de p
(n)
ij quando n→∞. Como o

seguinte exemplo mostra, o limite nem sempre existe. Considere a cadeia de Markov
com dois estados e matriz de transição

P =

(
0 1
1 0

)
.

Então P2 = I, portanto P2n = I e P2n+1 = P para todo n. Logo, p
(n)
ij diverge para

todo i, j.
Como veremos, o comportamento da cadeia acima é atrelado à noção de perio-

dicidade. A seguir apresentamos o principal resultado desta seção.

Teorema 10.11. Seja P = [pij ] irredut́ıvel e aperiódica com probabilidade esta-
cionária π. Suponha que {Xn, n ≥ 0} seja uma cadeia de Markov com lei inicial
arbitrária µ e matriz de transição P. Então,

lim
n→∞

P (Xn = j)→ πj , para todo j.

Em particular,

lim
n→∞

p
(n)
ij → πj , para todo i, j.

Prova. Seja {Yn, n ≥ 0} uma CM com lei inicial π, matriz de transição P e
independente de {Xn, n ≥ 0}. Fixe um estado de referência a ∈ I e defina

T = inf{n ≥ 1 : Xn = Yn = a}.

1) Mostramos que P{T <∞} = 1. O processo Wn = (Xn, Yn) é uma CM em I × I
com probabilidades de transição

p̃(i,k)(j,l) = pijpkl

e distribuição inicial
µ̃(i,k) = µiπk.

Como P é aperiódica, para todos os estados i, j, k, l temos que

p̃
(n)
(i,k)(j,l) = p

(n)
ij p

(n)
kl > 0

para todo n suficientemente grande. Deduzimos que P̃ := [p̃(i,k)(j,l)] é irredut́ıvel.

Além disso, P̃ tem uma distribuição invariante dada por

π̃(i,k) = πiπk,
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assim, pelo Teorema 10.10, P̃ é recorrente positiva. Mas T é o primeiro tempo de
passagem de Wn para (a, a) então P{T <∞} = 1.

2) Defina

Zn =

{
Xn, se n < T,

Yn, se n ≥ T.

Mostramos a seguir que {Zn, n ≥ 0} é uma CM com lei inicial µ e matriz de transição
P. A propriedade forte de Markov aplica-se a {Wn, n ≥ 0} no tempo T , então
(XT+n, YT+n)n≥0 é ume CM com lei inicial δ(a, a), matriz de transição P̃ e indepen-
dente de

(X0, Y0), (X1, Y1), . . . , (XT , YT ).

Por simetria, podemos substituir o processo (XT+n, YT+n)n≥0 por (YT+n, XT+n)n≥0

que também é uma CM com lei inicial δ(a, a), matriz de transição P̃ e permanece
independente de (X0, Y0) , . . . , (XT , YT ). Agora seja

Z ′
n =

{
Yn, se n < T,

Xn, se n ≥ T.

Obtemos que W ′
n = (Zn, Z

′
n) é uma CM com mesma lei que Wn. Assim, deduzimos

que {Zn, n ≥ 0} é uma CM com lei inicial µ e matriz de transição P.

3) Temos
P{Zn = j} = P{Xn = j, n < T}+ P{Yn = j, n ≥ T},

assim

|P{Xn = j} − πj | = |P{Zn = j} − P{Yn = j}|
= |P{Xn = j, n < T} − P{Yn = j, n < T}|
≤ P{T > n}

e P{T > n} → 0 quando n→∞. □

Vamos ver agora o que dá errado na prova acima quando P não é aperiódica.
Considere a cadeia de dois estados do ińıcio desta seção que tem (1/2, 1/2) como sua
única distribuição invariante. Começamos {Xn, n ≥ 0} de 0 e {Yn, n ≥ 0} com igual
probabilidades de 0 ou 1. Se Y0 = 1, devido à periodicidade, {Xn} e {Yn} nunca se
encontrarão, e a prova falha. Consideramos agora os casos que foram exclúıdos no
último teorema.

Teorema 10.12. Seja P irredut́ıvel de peŕıodo d ≥ 1 e sejam C0, C1, . . . , Cd−1 as
classes ćıclicas. Seja {Xn, n ≥ 0} uma CM de com lei inicial µ e matriz de transição
P. Suponha que

∑
i∈C0 µi = 1. Então para r ∈ {0, 1, . . . , d− 1} e j ∈ Cr temos

lim
n→∞

P{Xnd+r = j} = d

Ej(Tj)
.
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Em particular, para i ∈ C0 e j ∈ Cr, temos

lim
n→∞

p
(nd+r)
ij =

d

Ej(Tj)
.

Prova. A prova será feita em três passos.

1) Reduzimos o problema ao caso aperiódico. Seja ν = µPr, então temos∑
i∈Cr

νi = 1

pelo fato [7] da Seção 10.4. Seja Yn = Xnd+r, então {Yn, n ≥ 0} é uma CM com
lei inicial ν e matriz de transição Pd. Pelo fato [8] da Seção 10.4, Pd é irredut́ıvel e
aperiódica em Cr. Para j ∈ Cr o tempo de retorno esperado de {Yn} a j é Ej(Tj)/d.
Portanto se o teorema vale no caso aperiódico, então

P{Xnd+r = j} = P{Yn = j} → d

Ej(Tj)
quando n→∞,

e logo o teorema vale no caso periódico.

2) Assume que P é aperiódica. Se P é recorrente positiva então 1/Ej(Tj) = πj , onde
π é a unica probabilidade invariante, portanto o resultado segue do Teorema 10.11.
Senão Ej(Tj) =∞ e temos que mostrar que

P{Xn = j} → 0 quando n→∞.

Se P é transitória o enunciado acima é imediato. Desta forma, só temos que consi-
derar o caso recorrente nulo.

3) Suponha que P seja aperiódica e recorrente nula. Então
∞∑
k=0

Pj {Tj > k} = Ej (Tj) =∞.

Dado ε > 0 escolhe K tal que

K−1∑
k=0

Pj {Tj > k} > 2

ε
.

Então para n ≥ K − 1, temos

1 ≥
n∑

k=n−K+1

P {Xk = j e Xm ̸= j para m = k + 1, . . . , n}

=

n∑
k=n−K+1

P {Xk = j}Pj {Tj > n− k}

=

K−1∑
k=0

P {Xn−k = j}Pj {Tj > k}
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portanto devemos ter P {Xn−k = j} ≤ ε/2 para algum k ∈ {0, 1, . . . ,K − 1}.
Agora, seja {Yn, n ≥ 0} uma CM com lei inicial λ e matriz de transição P, onde

λ será escolhido depois. Seja Wn = (Xn, Yn). Usando um argumento similar a 1)
na prova do Teorema 10.11, a aperiodicidade de {Xn} garante a irredutibilidade de
{Wn, n ≥ 0}. Se {Wn} é transitória, tomando λ = µ, obtemos

P {Xn = j}2 = P {Wn = (j, j)} → 0,

quando n→∞. Suponha agora que {Wn} seja recorrente. Então, usando a notação
da prova do Teorema 10.11, temos P{T < ∞} = 1 e um argumento similar ao
argumento 3) da prova mostra que

|P {Xn = j} − P {Yn = j}| → 0, quando n→∞.

Tome λ = µP k para k ∈ {1, . . . ,K − 1}, de tal maneira que P {Yn = j} =
P {Xn+k = j}. Podemos encontrar N tal que para n ≥ N e k ∈ {1, . . . ,K − 1},

|P {Xn = j} − P {Xn+k = j}| ≤ ε

2
.

Mas para todo n, podemos encontrar k ∈ {0, 1, . . . ,K−1} tal que P {Xn+k = j} ≤
ε/2. Logo, para n ≥ N

P {Xn = j} ≤ ε.
Como ε > 0 é arbitrário, mostramos que P {Xn = j} → 0 quando n→∞. □

Corolário 10.2. Seja X uma CM e j ∈ I.
Se j é transitório ou recorrente nulo, então para todo i ∈ I

lim
n→∞

p
(n)
ij = 0.

Se j é recorrente positivo com peŕıodo d ≥ 1, então para todo i ∈ I e todo r ∈
{0, . . . , d− 1},

lim
n→∞

p
(nd+r)
ij = f∗ij(r)

d

Ej(Tj)
,

onde f∗ij(r) :=
∑∞

n=1 f
(nd+r)
ij .

Prova. Considere o caso j transitório. Se i = j o resultado segue do Teorema 10.4,
parte (b). Se i ̸= j, pela propriedade forte de Markov temos que

Uij ≤ Pi{Tj <∞}Ujj <∞.

Mas Uij =
∑

n≥0 p
(n)
ij , logo p

(n)
ij → 0, quando n→∞.

Agora consideramos o caso j recorrente. Observe que o caso i = j é uma con-
sequência do Teorema 10.12. O caso i ̸= j se trata com a relação elementar

p
(n)
ij =

n∑
m=1

f
(m)
ij p

(n−m)
jj

usando o TCD. □
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10.9 σ-álgebras caudais

Seja X = {Xn, n ≥ 0} um processo estocástico, com espaço de estados I e seja I∞,
munido com a σ-álgebra produto.

Definição 10.12. A σ-álgebra caudal de X é a σ-álgebra F∞ definida por F∞ =
∩n≥0F

′
n, onde F

′
n = F{Xn, Xn+1, . . .}.

Defina ξ = {ξn, n ≥ 0} por meio de ξn(ω) = ωn, com ω = (ω0, ω1, . . .) ∈ I∞. A
σ-álgebra caudal de ξ é a σ-álgebra sobre I∞ gerada da mesma maneira, e denotada
por H.

A σ-álgebra invariante I é a σ-álgebra formada pelos conjuntos mensuráveis
B ∈ I∞ tal que se ω = (ω0, ω1, . . .), então ω ∈ B se e somente se (ω1, ω2, . . .) ∈ B.
A σ-álgebra invariante de X é a σ-álgebra sobre (Ω,F , P ) consistindo de conjuntos
da forma X−1(B), B ∈ I.

Definição 10.13. Defina uma aplicação T : I∞ → I∞ como segue: se ω =
(ω0, ω1, . . .), então T (ω) = (ω1, ω2, . . .). Dizemos que T é uma translação. Defina
Tn+1 = T (Tn), com Tn(ω) = (ωn, ωn+1, . . .).

Segue-se que B ∈ I se, e somente se, T−1B = B, ou seja, conjuntos de I são
invariantes com respeito a translações.

Definição 10.14. A σ-álgebra permutável G é a σ-álgebra sobre I∞ definida como
segue: B ∈ G significa (ω0, ω1, . . .) ∈ B se, e somente se (ωπ0 , ωπ1 , . . .) ∈ B, onde π é
uma permutação finita de {0, 1, 2, . . .}. A σ-álgebra permutável de X é aquela que
contém X−1(B), B ∈ G.

Observações: (a) T é mensurável, quando I∞ é munido da σ-álgebra produto.

(b) I ⊂ H ⊂ G.

(c) Sejam I = Z e B = {ω : ωi = 1, i.v}. Então B ∈ I.

(d) Sejam I = Z e B = {ω : ω2i = 0, i.v}. Então, B ∈ H, mas B /∈ I.

(e) Sejam I = {−1, 1} e B = {ω : ω0+ . . .+ωn = 0, i.v}. Então, B ∈ G, mas B /∈ H.

Veja o Problema 8.

Teorema 10.13. Seja X uma CM e i um estado recorrente. Se A for um conjunto
de H, então Pi(A) = 0 ou Pi(A) = 1.

Prova: Seja B o subconjunto de I∞ consistindo de todos os pontos ω tais que
ω0 = i e ωn = i para infinitas coordenadas. Então, Pi(B) = 1, pois i é recorrente.
Portanto, Pi(A) = Pi(A ∩B), de modo que temos que calcular Pi(A ∩B). Sejam

T1 = inf{n > 0 : Xn = i},
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T2 = inf{n > T1 : Xn = i},

e assim por diante. Sejam

Z1 = (X0, X1, . . . , XT1−1),

Z2 = (XT1 , XT1+1, . . . , XT2−1),

etc. Pela propriedade forte de Markov, as Zi são i.i.d.

Sejam β0, β1, . . . sequências de comprimentos finitos, cada uma começando com
i (todas as coordenadas são pontos de I), contendo somente um i. Existe uma
correspondência entre esses objetos e pontos de B. Se ω ∈ B, seja βω representando
ω vista como uma sequência de sequências (finitas) como descrito acima. Então,

Pi(A ∩B) = Pi{(X0, X1, . . . , Xn, . . .) ∈ A ∩B}

= Pi{(Z1, Z2, . . .) ∈ β(A ∩B)}.

Seja π uma permutação finita dos inteiros não negativos, isto é, π permuta
somente um número finito de inteiros. Sabemos que

(Z1, Z2, . . .) ∈ β(A ∩B) ⇔ (X0, X1, . . .) ∈ A ∩B. (10.10)

Também,

(Zπ1 , Zπ2 , . . .) ∈β(A ∩B) ⇔
alguma permutação finita de (X0, X1, . . .) pertence a A ∩B.

(10.11)

Mas (10.10) é equivalente a (10.11), pois A ∩ B ∈ H. Portanto, (Z1, Z2, . . .) ∈
β(A∩B) se, e somente se, (Zπ1 , Zπ2 , . . .) ∈ β(A∩B). Pela lei 0-1 de Hewitt-Savage
aplicada a (Z1, Z2, . . .) temos que Pi{(Z1, Z2, . . .) ∈ β(A ∩ B)} = 0 ou 1, ou seja,
Pi(A ∩B) = 0 ou 1. □

Corolário 10.3. Se A ∈ G, então Pi(A) = 0 ou Pi(A) = 1.

Prova: Mesma prova, pois a hipótese de que A ∈ H entra somente em (10.10) e
(10.11). □

Teorema 10.14. Seja X uma CM com todos os seus estados recorrentes. Sejam
{Im,m ∈M} a partição de I pelas subclasses movendo-se ciclicamente. Então temos
que

(a) Todo conjunto A ∈ H difere por um conjunto de probabilidade nula de uma
reunião de conjuntos da forma {ω : ω0 ∈ Im}, m ∈M .
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(b) Reciprocamente, todo conjunto {ω : ω0 ∈ Im} difere de um conjunto de H por
um conjunto de probabilidade nula.

Prova: (a) Primeiramente, se i e j estão na mesma classe Im, então Pi(A) = Pj(A),

se A ∈ H. De fato, se i, j ∈ Im, existem k e n tais que p
(n)
ik > 0 e p

(n)
jk > 0.

Suponha Pi(A) > 0 (ou seja, Pi(A) = 1). Mostremos que Pj(A) > 0. Temos que

1 = Pi(A) = p
(n)
ik Pi(A|Xn = k) + [1− p(n)ik ]Pi(A|Xn ̸= k).

Como consequência da propriedade de Markov, temos Pj(A|Xn = k) = Pi(A|Xn =
k) > 0. Como

Pj(A) = p
(n)
jk Pj(A|Xn = k) + [1− p(n)jk ]Pj(A|Xn ̸= k),

vemos que Pj(A) > 0.

Para terminar a prova, sejam M0 = {m ∈ M : i ∈ Im ⇒ Pi(A) = 0}, M1 =
{m ∈ M : i ∈ Im ⇒ Pi(A) = 1}. Seja de Pα a lei da cadeia X (sobre I∞), onde α
é a distribuição inicial. Então, Pα(A, ξ0 ∈ Im) = 0, se m ∈ M0 e Pα(A, ξ0 ∈ Im) =
Pα(ξ0 ∈ Im), se m ∈M1. Segue-se que, a um conjunto de probabilidade nula, A é a
reunião de conjuntos da forma {ω : ξ0(ω) ∈ Im}, com m ∈M1.

(b) Rećıproca: suponha que se i ∈ Im então i tem peŕıodo d. O conjunto {ω :
ξ0(ω) ∈ Im} difere por um conjunto de probabilidade nula do conjunto

{ω : ξnd(ω) ∈ Im, para uma infinidade de valores de n}. □

Exemplo 10.8 Seja X um passeio aleatório, com pi,i+1 = p, pi,i−1 = q, p+ q = 1 e
sejam I0, I1 as classes movendo-se ciclicamente. Suponha que a distribuiçm̃ao inicial
seja P (X0 = 0) = 1/3, P (X0 = 1) = 2/3. Pelo Teorema 10.14, todo conjunto na σ-
álgebra caudal tem probabilidade 0, 1/3, 2/3 ou 1. Cada evento caudal difere por um
conjunto de medida nula de um desses eventos: ∅, {ω : ω0 = 1}, {ω : ω0 = 0}, Ω.

Teorema 10.15. Seja X uma CM com todos os seus estados recorrentes. Seja
{Ic, c ∈ C} o conjunto das classes recorrentes de X. Então temos que

(a) Todo conjunto A ∈ I difere de um conjunto de probabilidade nula, de uma
reunião de conjuntos da forma {ω : ω0 ∈ Ic}, c ∈ C.

(b) Todo conjunto {ω : ω0 ∈ Ic} difere de um conjunto de probabilidade nula de um
conjunto de I.

Prova: (a) Seja A ∈ I, então A ∈ H. Logo, A = ∪m∈M1{ω : ω0 ∈ Im}, q.c,
sendo M1, definido na prova anterior. Afirmamos que A = ∪c∈N{ω : ω0 ∈ Ic}, onde
N = {c ∈ C : Ic ⊃ Im, para algum m ∈ M1}. Claramente A ⊂ ∪c∈N{ω : ω0 ∈ Ic},
q.c. Basta provar a inclusão em sentido contrário. Suponha que ω ∈ {ω : ω0 ∈
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Im} ∩ A, para algum m ∈ M1, logo ω ∈ A. Mas, se ω = (ω0, ω1, . . .) ∈ A, então
(ω1, ω2, . . .) ∈ A. Portanto, como ω0 ∈ Im, ω1 ∈ Im+1 etc. Portanto, A deve conter
q.c a classe recorrente contendo Im.

(b) Rećıproca: O conjunto {ω : ω0 ∈ Ic} difere por um conjunto de probabilidade
nula do conjunto

{ω : ξn(ω) ∈ Ic, para uma infinidade de valores de n}. □

Teorema 10.16. (Blackwell) Seja X uma CM com espaço de estados I e seja
A ∈ I. Então, existe um conjunto Â ⊂ I tal que A difere de um conjunto de
probabilidade nula de cada um dos conjuntos: {ω : ωn ∈ Â, i.v}, {ω : ωn ∈
Â para todo n, com exceção de um número finito deles}. Aqui não supomos que
todos os estados de X sejam recorrentes.

Prova: Temos que

P{(X0, X1, . . .) ∈ A|X0 = i0, . . . , Xn = in} =

P{(Xn+1, Xn+2, . . .) ∈ A|X0 = i0, . . . , Xn = in},

pois A ∈ I. Pela propriedade de Markov, o último termo é igual a

P{(Xn+1, Xn+2, . . .) ∈ A|Xn = in} = P{(X1, X2, . . .) ∈ A|X0 = in},

usando o fato que a CM X é homogênea. Portanto, existe uma função boreliana h
tal que P{(X0, X1, . . .) ∈ A|X0, . . . , Xn} = h(Xn).

Agora, P{(X0, X1, . . .) ∈ A|X0, . . . , Xn} = E(IX−1(A)|X0, . . . , Xn) é um mar-
tingale, que converge q.c para E(IX−1(A)|X0, X1, . . .), quando n → ∞. Mas A ∈
X−1(I) ⊂ F{X0, X1, . . .}, portanto

P{X−1(A)|X0, . . . , Xn} → IX−1(A), q.c.

Segue que h(Xn)→ IX−1(A), q.c. Como podemos re-escrever o precedente em termos
de ξn, temos que

h(ξn)→ IA, PX -q.c. (10.12)

Seja a qualquer número tal que 0 < a < 1 e defina Â = {i ∈ I : h(i) > a} e seja
N o conjunto nulo envolvido em (10.12). Suponha que ω ∈ A−N . Então, h[ξn(ω)]→
IA(ω) = 1, donde ω ∈ {ω : ξn(ω) ∈ Â, para todos os n exceto um número finito deles}.
Suponha que ω /∈ A, ω /∈ N , então h[ξn(ω)] → IA(ω) = 0, logo ω ∈ {ω : ξn(ω) ∈
Â, i.v}c. □

Morettin-Gallesco - dezembro/2025
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Problemas

1. Prove o Corolário 10.1.

2. Prove a afirmação contida no Exemplo 10.3.

3. O passeio aleatório do Exemplo 10.4 (b) tem incrementos independentes?

4. Prove o fato [2]

5. Prove o fato [4].

6. Mostre, por meio de um exemplo, que se I for infinito, a parte (b) do Teorema 10.6
não vale.

[Sugestão: considere a CM com I o conjunto dos inteiros positivos e pi,i+1 = 1.]

7. Prove a afirmação do Exemplo 10.8.

8. Prove as afirmações (a)-(e) das Observações feitas após a Definição 10.14.

9. Suponha que {Xn, n ≥ 0} seja uma CM. Prove que limn→∞E{E(f(X0)|Xn)|X0}
existe, onde f é uma função boreliana limitada.

10. Suponha que {Xn, n ≥ 0} seja uma CM e f uma função boreliana. Mostre, por meio
de um exemplo, que {f(Xn), n ≥ 0} não é, necessariamente, um processo de Markov.
Prove que f(Xn) é um processo de Markov se f for 1-1.

11. Seja X uma CM com I ⊂ R. Suponha que X0 = 0, {Xn+1 −Xn, n ≥ 0} sejam i.i.d.
(a) Prove que ou todos os estados são recorrentes ou nenhum o é.

(b) Se todos os estados forem recorrentes, então I é um grupo aditivo e todos os
pontos de I são da forma {nd, n ∈ Z}, com d > 0 e Z é o conjunto dos inteiros.

12. Seja X um processo estocástico, com espaço de estados I enumerável e suponha que
exista uma função φ tal que, para cada n,

P{Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0} = φ(i, j).

Prove que X é uma CM homogênea.

13. Sabemos que se X0, X1, . . . é um processo de Markov, então Xn, Xn−1, . . . , X1 tem a
propriedade de Markov. Verifique isso diretamente para o caso de uma CM e encontre
as probabilidades de transição. Suponha I enumerável e que a CM é homogênea.

14. Suponha que Pm denote a distribuição de Poisson com parâmetro m. Escolha um
inteiro n1 de acordo com a distribuição P1; depois escolha um segundo inteiro n2 de
acordo com a distribuição Pn1

, e assim por diante. Prove que esse processo de Markov
atinge o estado 0 (e permanece lá).

15. Seja [pij ] uma matriz de transição e I o espaço dos estados. Uma medida µ sobre I é:

(i) invariante à diretita (ID) se
∑

j pijµ(j) = µ(i);

(ii) super-invariante à direita (SID) se
∑

j pijµ(j) ≤ µ(j);
(ii) invariante à esquerda (IE) se

∑
i µ(i)pij = µ(j);
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(iv) super-invariante à esquerda (SIE) se
∑

i µ(i)pij ≤ µ(j).

(a) Suponha que todos os estados sejam transitórios. Prove que existem sempre
(muitas) medidas SID não-constantes.

[Sugestão: fixe j0, tente µ(i) =
∑∞

n=0 p
(n)
i,j0

. Lembre-se que
∑
p
(n)
ij <∞.]

(b) Suponha que todos os estados comunicam-se e são recorrentes. Prove que todas
as medidas SID não negativas são constantes.

[Sugestão: Seja µ uma medida SID, não negativa; seja Xn a CM começando em i,
Mostre que µ(Xn) é um super-martingale não negativo. Conclua usando seu conheci-
mento da álgebra caudal.]

(c) Suponha que que todos os estados sejam comunicantes e que exista uma medida
IE finita. Prove que a a CM é recorrente positiva.

16. Suponha que todos os estados sejam comunicantes e recorrentes positivos. Suponha
que a distribuição inicial seja a distribuição estacionária. Prove que a cadeia reversa
tem transições estacionárias e é recorrente.
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Caṕıtulo 11

Teoria Ergódica

Neste caṕıtulo trataremos dos aspectos principais da teoria ergódica, como
transformações invariantes (ou que preservam a medida), recorrência e os teoremas
ergódicos pontual e médio. As referências principais que serão usadas são Billingsley
(1978), Halmos (2006) e Garsia (1970).

11.1 Transformações invariantes

Definição 11.1. Seja (Ω,F , P ) um espaço de medida (P não precisa ser uma
medida de probabilidade, ou mesmo finita em várias situações). Seja T : Ω → Ω
uma função mensurável sobre Ω, isto é, T−1(B) ∈ F se B ∈ F . Dizemos que T
preserva a medida P se P (T−1(A)) = P (A), para todo A ∈ F .

Exemplo 11.1. (i) Seja Ω = {a1, a2, . . . , an}, F a classe de todos os subconjuntos
de Ω. Defina T por Tak = ak+1, se k < n e Tan = a1 (permutação ćıclica). Então,
T preserva P se, e somente se, P ({ai}) não depende de i.

De modo geral, se T for qualquer permutação de Ω, T pode ser expandida como
um produto de ciclos disjuntos C1, . . . , Ck. Nesse caso, T preserva P se, e somente
se, dentro de cada ciclo, P associa pesos iguais a cada ponto.

(ii) Suponha Ω = R, F = B e P a medida de Lebesgue na reta. Defina T por
Tx = x+ a, sendo a um número real fixo. Então, T preserva P .

(iii) Seja Ω o ćırculo unitário no plano complexo, F a σ-álgebra de Borel sobre Ω e
P a medida de Lebesgue sobre Ω dividida por 2π. Defina T por Teiθ = ei(θ+α), α
fixo. Então, T é uma rotação e preserva P .

(iv) Seja Ω = [0, 1), P a medida de Lebesgue sobre Ω, e F = B([0, 1]). Suponha
Tω = 2ω (mod 1)( ou seja, Tω = 2ω se ω < 1/2 e Tω = 2ω − 1, se 1/2 ≤ ω < 1).
Então, T preserva P . T é chamada transformação diádica. Em outras palavras, se
ω ∈ Ω e tem a expansão diádica ω = 0, ω1ω2 · · · , então Tω = 0, ω2ω3 · · · .
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194 CAPÍTULO 11. TEORIA ERGÓDICA

Definição 11.2. Seja Ω = R∞, ou seja, o conjunto de todas as sequências (ω0, ω1, ω2, · · · )
de números reais, e F a σ-álgebra produto sobre Ω, ou seja, B∞. Seja P uma proba-
bilidade sobre (Ω,F). A medida P diz-se estacionária se, para todo B ∈ F , tivermos
P{ω : (ω0, ω1, · · · ) ∈ B} = P{ω : (ω1, ω2, · · · ) ∈ B}. A translação unilateral T é a
aplicação T : Ω→ Ω definida por T (ω0, ω1, · · · ) = (ω1, ω2, · · · ).

Exemplo 11.2. (a) Considere T e P como na definição 11.2. Então, T preserva P
se, e somente se, P é estacionária. Veja o Problema 2.

(b) São exemplos de medidas estacionárias sobre (R∞,B∞):

(i) Seja X = {Xn, n ≥ 0} um processo estritamente estacionário definido sobre
(Ω,F , P ). Seja PX a probabilidade definida sobre (R∞,B∞) definida por: se
B ∈ B∞, então PX(B) = P{ω : (X0(ω), X1(ω), . . .) ∈ B}. Segue-se que PX
é a distribuição de X. Então, PX é estacionária e a translação T sobre R∞

preserva PX .

Logo, começando com qualquer processo estocástico estritamente estacionário,
podemos construir uma transformação invariante.

Reciprocamente, dada qualquer transformação T que preserva a medida, po-
demos construir um processo estritamente estacionário como segue: consi-
dere T sobre (Ω,F , P ) e seja X uma v.a. sobre esse espaço. O processo
Y = {Yn, n ≥ 0} definido por Yn(ω) = X(Tn(ω)) é estritamente estacionário.
Veja Breiman (1968). T 0 é definida como a identidade.

(2) Seja X = {Xn, n ≥ 0} uma cadeia de Markov com pelo menos uma classe
recorrente positiva. Seja π uma medida estacionária. Considere a distribuição
π como distribuição inicial de X. Então X é estritamente estacionário.

Definição 11.3. Seja (Ω,F , P ) um espaço de probabilidade, e seja T preservando P .
O conjunto A ∈ F é invariante se A = T−1A, isto é, x ∈ A se, e somente se, Tx ∈ A.
Dizemos que A é quase-invariante se A e T−1A diferem q.c. Uma v.a X sobre
(Ω,F , P ) é invariante se, e somente se, X(ω) = X(Tω) e é quase-invariante se, e
somente se, X(ω) = X(Tω) q.c.

Teorema 11.1. (a) Se I é a classe dos conjuntos invariantes e I ′
é a classe dos

conjuntos quase-invariantes, então ambas são σ-álgebras.

(b) Qualquer conjunto quase-invariante difere de um conjunto invariante somente
por um conjunto nulo.

(c) Uma v.a X é invariante se, e somente se X é I-mensurável.

Prova: (a) Imediata.
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(b) Seja A quase-invariante e A1 = lim supn→∞ T−n(A). Então, A1 é invariante e
difere de A por um conjunto nulo.

(c) (⇒) {ω : X(ω) ≤ x} = {ω : X(Tω) ≤ x} = T−1{ω : X(ω) ≤ x}.

(⇐) Suponha que A ∈ I e seja X = IA. Então, X(Tω) = IA(Tω) = IT−1(A)(ω) =
IA(ω), donde o resultado é verdadeiro se X é uma função indicadora em I. Segue
que o resultado é verdadeiro para toda v.a I-mensurável, por um argumento padrão.
□

Definição 11.4. Uma transformação T que preserva uma medida P é ergódica se
para qualquer conjunto invariante A tivermos P (A) = 0 ou P (Ac) = 0. Se P é uma
medida de probabilidade, então T é ergódica se todo conjunto invariante A for tal
que P (A) = 0 ou P (A) = 1.

Exemplo 11.3. Seja X uma CM com pelo menos uma classe recorrente positiva.
Seja π uma medida estacionária concentrada em uma dessas classes. A existência de
tal medida é garantida pela Seção 10.7 do Caṕıtulo 10. Seja Pπ a distribuição esta-
cionária induzida sobre I∞ dando a X a distribuição inicial π. Seja T a translação
sobre I∞ (I é o espaço de estados de X). Então, T preserva a medida Pπ e é
ergódica.

Definição 11.5. Seja T uma transformação que preserva a medida, definida sobre
(Ω,F , P ), um espaço de probabilidade. Dizemos que T é mixing se, para todo
A,B ∈ F , tivermos

lim
n→∞

P (A ∩ T−nB) = P (A)P (B).

Essa é uma forma de independência assintótica. Para uma motivação intuitiva dessa
noção, veja Halmos (2006).

Exemplo 11.4. Seja Pπ como no exemplo anterior. Suponha, ainda, que a classe
recorrente positiva mencionada lá tenha somente uma subclasse movendo-se ciclica-
mente. Então, a translação T sobre I∞ é mixing (veja o Corolário 11.1 a seguir).
Isso segue do fato que a σ-álgebra caudal H aqui é trivial (veja a seção 10.9 do
Caṕıtulo 10).

Teorema 11.2. Suponha que T seja mixing. Então, T é ergódica (a rećıproca não
vale).

Prova: Seja B invariante. Devemos provar que P (B) = 0 ou P (B) = 1. Como
T−n(B) = B, para todo n, temos P (A ∩ B) = P (A ∩ T−nB) → P (A)P (B). Como
isso vale para qualquer A, tome A = B. □

Teorema 11.3. Seja T uma transformação que preserva a medida sobre (Ω,F , P ).
Seja F0 uma álgebra gerando F . Se a condição de mixing vale para todo A,B ∈ F0,
então a condição vale para A,B ∈ F .
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Prova: Sejam A e B conjuntos em F . Tome Ak, Bk em F0 tais que P (A△Ak)→ 0,
P (B△Bk)→ 0 quando k →∞ (posśıvel pelo Problema 16 do Caṕıtulo 1). Agora,

P{(A ∩ T−nB)△(Ak ∩ T−nBk)}

≤ P (A△Ak) + P [T−n(B△Bk)] = P (A△Ak) + P (B△Bk),

que tende a zero, quando k → ∞. Portanto, P (Ak ∩ T−nBk) → P (A ∩ T−nB),
uniformemente em n, logo

lim
n→∞

P (A ∩ T−nB) = lim
n→∞

lim
k→∞

P (Ak ∩ T−nBk) =

lim
k→∞

lim
n→∞

P (Ak ∩ T−nBk) = lim
k→∞

P (Ak)P (Bk) = P (A)P (B),

na qual a mudança dos limites é justificada pela convergência uniforme. □

Exemplo 11.5. Continuação do Exemplo 11.1.

(a) Se T for uma permutação ćıclica, T é ergódica se, e somente se, T tem um só
ciclo. No caso em que P é uma probabilidade, T nunca é mixing.

(b) Seja Ω = R, Tx = x+ a. Então T não é ergódica pois ∪∞n=−∞(na, (n+ 1/2)a) é
um conjunto invariante não trivial.

(c) Se T for uma rotação, Teiθ = ei(θ+α), então T é ergódica se, e somente se α for
irracional. T não é mixing nunca. Veja o Problema 11. Veja, também, Breiman
(1968) e Billingsley (1978).

(d) Seja T uma transformação diádica. Então, T é ergódica e mixing. Veja Billings-
ley (1978) para detalhes.

(e) Seja Ω = Z, F a classe de todos os subconjuntos de Ω e P a medida de contagem
(P (A) dá o número de elementos de A). Seja T tal que Tω = ω + 1. Então, T é
ergódica.

Definição 11.6. Considere Ω = R∞ (ou I∞ como em CM), F a σ-álgebra produto,
P uma medida de probabilidade estacionária sobre (Ω,F) e T a translação (unilate-
ral). Sejam ξ1, ξ2, . . . as funções coordenadas e H a σ-álgebra caudal dos ξi. Dizemos
que T é uma translação de Kolmogorov se H for trivial e que T é uma translação de
Markov se ξn forma uma CM.

Teorema 11.4. Toda translação de Kolmogorov é mixing.

Prova: Seja A ∈ H e seja B um cilindro. Então,

|P (A ∩ T−nB)− P (A)P (B)| = |E(IAIT−nB)− P (A)P (B)| =
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∣∣∣ ∫
T−nB

IAdP − P (A)P (B)
∣∣∣ = ∣∣∣ ∫

T−nB
E(IA|F

′
n)dP − P (A)P (B)

∣∣∣,
onde F ′

n = F{ξn, ξn+1, . . .} e usamos a definição da esperança condicional ao obter
a última igualdade (T−nB ∈ F ′

n).

Como T preserva a medida, o último termo é igual a |
∫
T−nB[E(IA|F

′
n)−P (A)]dP | ≤∫

Ω |E(IA|F
′
n)−P (A)|dP . Mas E(IA|F

′
n)−P (A) é um martingale, que converge para

E[IA|H]−P (A). MasH é trivial, por hipótese, logo, de fato, o martingale em questão
converge para P (A)−P (A) = 0. Segue pelo TCD que P (A∩T−nB)→ P (A)P (B),
se B for um cilindro. Pelo teorema anterior, a convergência vale para todo B. □

Corolário 11.1. A translação de Markov do Exemplo 11.4 é mixing.

Existem translações que são mixing, mas não de Kolmogorov.

O teorema a seguir mostra que, a fim de responder a muitas questões da te-
oria ergódica, podemos restringir atenção, sem perda de generalidade, somente a
translações.

Teorema 11.5. Seja T0 uma transformação que preserva a medida, sobre o espaço
de probabilidade (Ω0,F0, P0). Seja Ω = Ω∞

0 , o conjunto de todas as sequências
(ω0, ω1, . . .), com ωn ∈ Ω0, F a σ-álgebra produto e P a probabilidade sobre (Ω,F)
dada por:

P (B) = P0{x ∈ Ω0 : (x, T0x, T
2
0 x, . . .) ∈ B}, B ∈ F .

Seja T a translação sobre (Ω,F , P ). Então:

(a) T preserva P ;

(b) T0 é ergódica (mixing) ⇔ T é ergódica (mixing);

(c) P{ω ∈ Ω : ωk = T k0 ω0, para todo k ≥ 1} = 1.

Prova: Veja o Problema 10.

11.2 Recorrência

Seja (Ω,F , P ) um espaço de probabilidade e T uma transformação mensurável,
T : Ω→ Ω. Tomemos A ∈ F e ω ∈ Ω. Considere a sequência ω, Tω, T 2ω, · · · . Duas
questões básicas dessa seção: essa sequência entra no conjunto A? Entra infinitas
vezes?

Definição 11.7. (a) Dizemos que T é recorrente se definindo A(r) = {ω ∈ A :
Tnω ∈ A, para algum n ≥ 1}, então P (A−A(r)) = 0, para todo A ∈ F .
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(b) Dizemos que T é infinitamente recorrente se A(i) = {ω ∈ A : Tnω ∈ A i.v},
então P (A−A(i)) = 0, para todo A ∈ F .

(c) B ∈ F diz-se wandering se B, T−1B, T−2B, · · · são disjuntos.

(d) T é conservativa se todos os conjuntos wandering têm medida P zero.

(e) T é incompresśıvel se T−1(A) ⊂ A implica P (A− T−1(A)) = 0.

Teorema 11.6. As seguintes afirmações são equivalentes:

(1) T é incompresśıvel;

(2) T é conservativa;

(3) T é recorrente;

(4) T é infinitamente recorrente.

P
¯
rova: (1) ⇒ (2) Suponha que A seja wandering e seja B = ∪∞n=0T

−nA. Então,
T−1(B) = ∪∞n=1T

−nA é um subconjunto de B, logo por (1) P (B−T−1B) = 0. Mas
B − T−1B = A, pois os T−nA são disjuntos, portanto P (A) = 0.
(2) ⇒ (3) Seja A ∈ F , C = A − Ar. Então, T−nC = {ω : Tnω ∈ A − Ar} = {ω :
Tnω ∈ A mas T kω /∈ A, k > n}. Logo, os T−nC são disjuntos, logo C é wandering e
portanto P (C) = 0.
(3) ⇒ (1) Seja T−1A ⊂ A. Então, T−2A = T−1(T−1A) ⊂ T−1A ⊂ A e, portanto,
T−nA ⊂ T−1A, para n ≥ 1. Segue que T−1A = ∪∞n=1T

−nA, mas A − T−1A =
A− ∪∞n=1T

−nA = A−Ar, e este conjunto tem probabilidade zero.
(4)⇒ (3) Imediato.
(1)⇒ (4). Seja A ∈ F e B = ∪∞n=0T

−nA. Então, T−1B ⊂ B, donde P (B−T−1B) =
0. Similarmente, T−(k+1)B ⊂ T−kB, implicando que P (T−kB−T−(k+1)B) = 0. Mas
T−kB − T−(k+1)B = ∪n=kT−nA−∪∞n=k+1T

−nA, que é igual ao conjunto dos ω tais
que Tnω entra em A pela última vez em n = k. Como A−Ai = A∩∪∞k=0{ω : Tnω ∈
A pela últiva vez em n = k}, temos que P (A−Ai) ≤

∑
k P{T−kB−T−(k+1)B} = 0.

□

Corolário 11.2. (Poincaré) Seja T uma transformação que preserva a medida sobre
um e.p (Ω,F , P ). Então, T é infinitamente recorrente.

Prova: Seja A wandering. Como
∑

n P (A) =
∑

n P (T
−nA) = P (∪T−nA) ≤ 1,

segue-se que P (A) = 0. Logo, T é conservativa, e portanto infinitamente recorrente.
□

Observação: Seja X qualquer processo estocástico que seja estritamente esta-
cionário. Seja T a translação associada. Então, T é infinitamente recorrente, pois
preserva a medida. Em termos do processo X temos: se X for um p.e estritamente
estacionário e se B for um conjunto de Borel, então

Morettin-Gallesco - dezembro/2025



11.2. RECORRÊNCIA 199

P{X0 ∈ B e Xn ∈ B i.v } = P{X0 ∈ B}. (11.1)

Observe que já t́ınhamos notado isso como verdade para CM estritamente esta-
cioária. Ou, se P{X0 ∈ B} > 0, então (11.1) reduz-se a

P{Xn ∈ B i.v |X0 ∈ B} = 1,

para qualquer p.e estritamente estacionário.

Teorema 11.7. (Kac, 1947) Seja T uma transformação que preserva a medida sobre
um e.p (Ω,F , P ). Seja A ∈ F e Ak = {ω ∈ A : Tnω /∈ A, 1 ≤ n ≤ k−1, e T kω ∈ A}.
Seja rA(ω) = k se ω ∈ Ak (rA é o tempo de recorrência, e rA(ω) < ∞ q.c, pelo
Teorema de Poincaré). Então:∫

A
rA(ω)dP (ω) = P{∪∞n=0T

−nA}. (11.2)

Note que Ak é o conjunto no qual o primeiro retorno a A ocorre no tempo
k. Note, também, que a probabilidade do lado direito de (11.2) é a probabilidade
de que Tnω esteja em A para algum n ≥ 0. Veja abaixo exemplos para algumas
interpretações do teorema.

Prova: P{ω ∈ A : rA(ω) = k + 1} = P{ω ∈ A : Tnω /∈ A, 1 ≤ n ≤ k, T k+1ω ∈ A}.
Se Bk = (T−kA)c, Ck = T−kA, então

P{ω ∈ A : rA(ω) = k + 1} = P{C0 ∩B1 ∩ · · · ∩Bk ∩ Ck+1}

= P{C0 ∩B1 ∩ · · · ∩Bk} − P{C0 ∩B1 ∩ · · · ∩Bk+1}

= P{B1 ∩ · · · ∩Bk} − P{B0 ∩B1 ∩ · · · ∩Bk}

−P{B1 ∩ · · · ∩Bk+1}+ P{B0 ∩B1 ∩ · · · ∩Bk+1}

= P{B0 ∩ · · · ∩Bk−1} − 2P{B0 ∩ · · · ∩Bk}+ P{B0 ∩ · · · ∩Bk+1},

pois T preserva P . Logo, podemos escrever

P{ω ∈ A : rA(ω) = k + 1} =: bk − 2bk+1 + bk+2, k ≥ 1,

usando uma notação óbvia. Definindo b0 = 1, isso vale para todo k ≥ 0. Agora,∫
A
rAdP =

∑
k≥0

(k + 1)(bk − 2bk+1 + bk+2)
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= lim
n→∞

n−1∑
k=0

(k + 1)(bk − 2bk+1 + bk+2)

= lim
n→∞

[b0 − (n+ 1)bn + nbn+1].

O limite deve existir (em R̄+), pois temos a n-ésima soma parcial de uma série
não negativa, logo ∫

A
rAdP = 1− lim

n→∞
[n(bn − bn+1) + bn].

Mas bn−bn+1 = P (B0∩· · ·∩Bn−1)−P (B0∩· · ·∩Bn) = P (B0∩· · ·∩Bn−1∩Cn) ≥ 0.
Como B0 ∩ · · · ∩ Bn−1 ∩ Cn, n ≥ 1, são disjuntos,

∑
n(bn − bn+1) < ∞. Como o

limn→∞[n(bn − bn+1) + bn] existe e bn ↓ P (∩kBk), o limn→∞ n(bn − bn+1) existe.
Portanto, se an = bn − bn+1, então an ≥ 0,

∑
an < ∞ e limn→∞ nan existe.

Finalmente, temos que nan → 0, pois se não, nan ≥ ε, para todo n suficientemente
grande, e então

∑
an ≥ ε

∑
1/n, contradizendo o fato que

∑
an <∞. Segue que∫

A
rAdP = 1− lim

n→∞
bn = 1− P (∩∞n=0Bn) = P (∪∞n=0T

−nA). □

Exemplo 11.6. Suponha que T seja também ergódica e que P (A) > 0. Seja
E = ∪∞n=0T

−nA. Se Tω ∈ E, então Tω pertence a algum T−nA, de modo que
ω ∈ T−(n+1)A, logo ω ∈ E. Ou seja, T−1E ⊂ E. Como T é incompresśıvel,
P (E − T−1E) = 0, logo T−1E = E q.c. Segue-se que E é quase invariante e
portanto

∫
A rA(ω)dP (ω) = 1 (P (E) ≥ P (A) > 0, ou seja, P (E) = 1, pois E é

invariante). De outro modo,

1

P (A)

∫
A
rA(ω)dP (ω) =

1

P (A)
.

Ou seja, dado que o ponto inicial está em A, a amplitude média de tempo para
retornar a A é 1/P (A).

Exemplo 11.7. Seja X = {Xn, n ≥ 0} um p.e estritamente estacionário e S =
inf{n ≥ 1 : Xn ∈ A}. Pela observação acima, P{S < ∞|X0 ∈ A} = 1, se P{X0 ∈
A} > 0.

Suponha que X seja ergódico (isto é, a translação associada é ergódica). Então,

E{S|X0 ∈ A} =
1

P{X0 ∈ A}
.

Um caso especial é: se X é uma CM com distribuição inicial concentrada numa
classe recorrente positiva única, então, EiS = 1/πi, um resultado já conhecido.
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Teorema 11.8. SejaX = {Xn, n ≥ 0} estritamente estacionário e ergódico (ou seja,
a σ-álgebra invariante é trivial). Sejam T1, T2, . . . tempos de retornos sucessivos ao
conjunto A. Então, o processo {Tk+1 − Tk, k ≥ 0} (com T0 = 0) é estritamente
estacionário e ergódico, sob P{·|X0 ∈ A}.

Prova: Omitida. Veja Breiman (1968).

Caso especial: TomeX como uma CM com um estado i recorrente. Sejam {Tk, k ≥
1} tempos de sucessivos retornos ao estado i, começando em i. Então, T1, T2 −
T1, T3− T2, . . . são i.i.d, e portanto formam um processo estritamente estacionário e
ergódico.

11.3 Teoremas ergódicos

Nesta seção trataremos do teorema ergódico médio e do teorema ergódico pontual
e a forma de Hopf de ambos. Depois veremos algumas rećıprocas desses teoremas.

Seja (Ω,F , P ) um e.p e, para p ≥ 1, considere o espaço Lp := Lp(Ω,F , P ) (veja o
Apêndice A.3). A seguir apresentamos dois exemplos clássicos de operadores lineares
sobre Lp.

Exemplo 11.8. (a) Seja F0 ⊂ F e Tf = E(f |F0).

(b) Seja S uma transformação que preserva a medida sobre (Ω,F , P ) e defina T por
Tf(ω) = f(Sω). É fácil ver que T é linear. Mostre que ∥f∥p = ∥Tf∥p.

Os dois operadores do Exemplo 11.8 são contrações positivas. Note que, se T é
uma contração, ∥Tnf∥p ≤ ∥f∥p para todo n ≥ 1.

Vamos, agora, enunciar os dois teoremas principais dessa seção.

Teorema 11.9. (Teorema Ergódico Médio - TEM) Seja T um operador linear sobre
Lp, p ≥ 1, sendo (Ω,F , P ) um e.p. Suponha que T seja uma contração positiva tal
que T1=1 e seja f ∈ Lp. Então,

Rn(f) :=
f + Tf + . . .+ Tnf

n+ 1

converge em norma Lp para um limite, denotado por P̂ f .

Teorema 11.10. (Teorema Ergódico Pontual - TEP) Seja T como no Teorema
11.9. Então,

Rn(f)
q.c→ P̂ f.

Antes de provar os teoremas, vamos considerar alguns exemplos.
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Exemplo 11.9. (1) Seja X = {Xn, n ≥ 0} um processo estritamente estacionário.
Seja S a translação sobre (R∞,B∞, PX), sendo PX a distribuição de X. Então, S
preserva PX , de modo que S é uma transformação que preserva a medida sobre esse
espaço. Defina um operador T por Tf = f(Sω). Então, T é um operador linear
positivo (isometria), T1 = 1.

Seja ξ a projeção de ω = (ω0, ω1, . . .) sobre a primeira coordenada. Observe
que X0(ω), X1(ω), . . .) ∼ (ξ(ω), ξ(Sω), . . .). Logo, para provar que (X0 +X1 + . . .+
Xn)/(n+1) converge, é suficiente provar que (ξ(ω)+ξ(Sω)+ . . .+ξ(S(n)(ω))/(n+1)
converge. Mas o último é igual a (ξ + Tξ + . . .+ Tnξ)/(n+ 1).

Suponha, agora, queX0 seja integrável. Então ξ é integrável, logo pelos teoremas
ergódicos, (ξ + Tξ + . . .+ Tnξ)/(n+ 1) converge q.c e em L1.

Ou seja, se X = {Xn, n ≥ 0} é um processo estritamente estacionário, e se X0

for integrável, então (X0 + . . .+Xn)/(n+ 1) converge q.c e em L1.

Como caso especial, se X0, X1, . . . são v.a’s i.i.d, integráveis, então (X0 + . . . +
Xn)/(n+ 1) converge q.c e em L1. Temos, pois, uma outra prova da LFGN. Prova-
remos, também, que o limite acima é E(X0|I), onde I é a σ-álgebra invariante para
X.

(2) Seja I um conjunto enumerável e P = [pij ]i,j uma matriz de transição. Tome
Ω = I,F como a σ-álgebra de todos os subconjuntos de Ω e P qualquer probabilidade
sobre I que coloca massa positiva em cada ponto de I. Defina um operador T por
meio de

Tf(i) =
∑
j∈I

pijf(j).

Esse operador satisfaz todas as hipóteses do teorema ergódico. Escolhamos f
como segue: f = I{j0}, ou seja, o indicador do estado j0. Notemos que

Tf(i) =
∑
j

pijf(j) = pij0 ,

T 2f(i) = T (Tf(i)) =
∑
j

pij(Tf(j)) =
∑
j

pijpij0 = p
(2)
ij0
,

e de modo similar, Tnf(i) = p
(n)
ij0
. Logo, pelo teorema ergódico, (f + Tf + . . . +

Tnf)/(n + 1) converge. Ou seja, isso implica que (pij0 + p
(2)
ij0

+ . . . + p
(n)
ij0

)/(n + 1)
converge.

Antes de provar o TEM, vamos prová-lo para o caso de T em L2.

Teorema 11.11. (TEM para o caso L2) Seja T uma contração linear positiva em
L2.
(a) Se f ∈ L2, então Rn(f) converge em norma L2 para um limite, denotado P̂ f .
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(b) O operador P̂ definido em (a) é linear, positivo e uma contração, com T P̂ = P̂
e P̂ 2 = P̂ .

Prova: (a) Mostraremos que Rn(f) é uma sequência de Cauchy em L2. Defina

µN = inf∑
ri=1,ri≥0

∥r0f + . . .+ rNT
Nf∥2,

e defina µ = infN µN . Vamos provar, primeiramnete, que ∥Rn(f)∥2 → µ.

Tome g = r0f + r1Tf + . . .+ rNT
Nf , tal que ∥g∥2 ≤ µ+ ε. Temos que

Rn(g) =
g + Tg + . . .+ Tng

n+ 1

=
r0(f + Tf + . . .+ Tnf) + . . .+ rN (T

Nf + . . .+ TN+nf)

n+ 1
.

Portanto,

∥Rn(g)−Rn(f)∥2 =
∥∥∥Rn(g)− f + Tf + . . .+ Tnf

n+ 1

∥∥∥
2

=
1

n+ 1

∥∥∥ N∑
i=0

ri

( i+n∑
j=i

T j −
n∑
j=0

T j
)
f
∥∥∥
2
≤ 2N∥f∥2

n+ 1
,

pois ∥T kf∥2 ≤ ∥f∥2.
Segue que

µ ≤ ∥Rn(f)∥2 ≤ ∥Rn(f)−Rn(g)∥2 + ∥Rn(g)∥2

≤ 2N∥f∥2
n+ 1

+ ∥Rn(g)∥2 ≤
2N∥f∥2
n+ 1

+ µ+ ε.

Como N é fixo para ε escolhido, faça n→∞ para obter

µ ≤ lim
n→∞

∥Rn(f)∥2 ≤ µ+ ε,

Isso prova a afirmação feita acima.

Para provar a parte (a) do teorema, observe que pela igualdade do paralelograma

∥Rn(f)−Rm(f)∥22 + ∥Rn(f) +Rm(f)∥22 = 2∥Rn(f)∥22 + 2∥Rm(f)∥22,

e portanto,

∥Rn(f)−Rm(f)∥22 ≤ 2
(
∥Rn(f)∥22 − µ2

)
+ 2

(
∥Rm(f)∥22 − µ2

)
, (11.3)
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pois, por definição de µ ∥∥∥Rn(f) +Rm(f)

2

∥∥∥
2
≥ µ.

Usando (11.3) e o fato que limn→∞ ∥Rn(f)∥2 = µ, provamos que a sequência
{Rn(f), n ≥ 1} é de Cauchy e portanto converge para algum elemento de L2.

(b) P̂ é uma contração linear positiva, pois Rn é, para cada n. Provaremos somente
que T P̂ = P̂ , ou seja, para cada f ∈ L2, mostramos que P̂ f = T (P̂ f). Agora,
Rn(f)→ P̂ f , em L2 e TRn(f) = (Tf + T 2f + . . .+ Tn+1f)/(n+ 1) converge para
P̂ f , pois f/n→ 0. Contudo, TRn(f)→ T (P̂ f), pois

∥T (Rnf)− T (P̂ f)∥2 = ∥T (Rnf − P̂ f)∥2 ≤ ∥Rnf − P̂ f∥2,

dado que T é uma contração, e o último termo tende a zero, pela parte (a). Segue
que TRn(f)→ P̂ f e TRn(f)→ T (P̂ f), logo T P̂ = P̂ . □

Teorema 11.12. (TEM para o caso L1) Seja T uma contração linear positiva em
L1 satisfazendo

se |f | ≤ C, então |Tf | ≤ C. (11.4)

Então, Rn(f) converge em norma L1 para P̂ f , sempre que f ∈ L1. P̂ é a extensão
a L1 do operador obtido no Teorema 11.11.

Para provarmos esse teorema, precisamos do seguinte

Lema 11.1. Suponha que T seja uma contração em L1, satisfazendo (11.4). Então,
T é uma contração em L2.

Prova: Seja g ∈ L2. Mostremos, inicialmente, que se c for uma constante, (Tg −
c)+ ≤ T (g − c)+. Defina gc como segue:

gc =


g, |g| ≤ c,
c, g > c,
−c, g < −c.

Seja hc = g − gc. Note que hc ≤ (g − c)+. Temos, então,

Tg = Tgc + Thc ≤ c+ T (g − c)+,

usando (11.4). Logo Tg − c ≤ T (g − c)+, de modo que (Tg − c)+ ≤ T (g − c)+.
Usando esse resultado, temos que

E((Tg − c)+) ≤ E(T (g − c)+) ≤ E((g − c)+),

pois T é uma contração. Integrando a desigualdade em c, temos que
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∫ ∞

0
E(Tg − c)+dc ≤

∫ ∞

0
E(g − c)+dc.

Pelo teorema de Fubini, o lado direito fica∫
Ω

∫ ∞

0
(g − c)+dcdP =

∫
Ω

∫
{0≤c≤g}

(g − c)dcdP =
1

2

∫
Ω
g2dP.

Por sua vez, novamente usando Fubini, o lado esquerdo fica

∫
Ω

∫ ∞

0
(Tg − c)+dcdP =

∫
Ω

∫
{0≤c≤Tg}

(Tg − c)dcdP =
1

2

∫
Ω
(Tg)2dP.

Portanto, ∫
Ω
(Tg)2dP ≤

∫
Ω
g2dP,

ou seja, ∥Tg∥2 ≤ ∥g∥2, g ∈ L2, logo T é uma contração em L2. □

Prova do Teorema 11.12: Seja ε > 0 e tome fε ∈ L2 tal que ∥f − fε∥1 ≤ ε, o que
é posśıvel pois L2 é denso em L1. Então,

∥Rn(f)−Rm(f)∥1 ≤ ∥Rn(f)−Rn(fε)∥1+∥Rn(fε)−Rm(fε)∥1+∥Rm(fε)−Rm(f)∥1

= ∥Rn(f − fε)∥1 + ∥Rn(fε)−Rm(fε)∥1 + ∥Rm(f − fε)∥1
≤ 2∥f − fε∥1 + ∥Rn(fε)−Rm(fε)∥1 ≤ 2ε,

fazendo n,m → ∞ e usando o Teorema 11.11. (a). Observe que Rn, visto como
um operador, é uma contração em L1, pois T também o é. Como ε é arbitrário,
{Rn(f)} é uma sequência de Cauchy em L1, logo converge em norma L1 a um limite,
P̂ f , digamos. Como P̂ tem as mesmas propriedades dadas no Teorema 11.11. (b),
temos em particular que T P̂ = P̂ e P̂ é a única extensão a L1 do operador obtido
no Teorema 11.11. □

Corolário 11.1 Seja (Ω,F , P ) um e.p e S uma transformação que preserva a me-
dida. Seja T o operador usual associado a S: se f ∈ L1, Tf(ω) = f(Sω). Então,

f + f(Sω) + . . .+ f(Snω))

n+ 1

L1−→ E(f |I),

onde I é a σ-álgebra invariante para S.

Prova: Sabemos que

f + f(Sω) + . . .+ f(Snω)

n+ 1
=
f + Tf + . . .+ Tnf

n+ 1
→ P̂ f,
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a convergência sendo em L1, logo para todo conjunto A ∈ F , teremos∫
A

f + Tf + . . .+ Tnf

n+ 1
→
∫
A
P̂ f.

Seja A ∈ I. Então,∫
A
Tnf =

∫
A
f(Snω) =

∫
S−nA

f =

∫
A
f.

Logo temos ∫
A
f =

∫
A
P̂ f. (11.5)

Também, sabemos que T (P̂ f) = P̂ (f), o que significa P̂ f(Sω) = P̂ f(ω), ou
seja, P̂ f é uma função invariante. Por um resultado anterior, P̂ f é I-mensurável.
Usando este fato e (11.5), temos que P̂ f = E(f |I). □

Corolário 11.2. Suponha que {Xn, n ≥ 0} seja um processo estritamente esta-
cionário. Se X0 é integrável, então

X0 + . . .+Xn

n+ 1

L1−→ E(X0|I),

onde I é a σ-álgebra invariante de {Xn, n ≥ 0}.

Prova: Use o corolário anterior com a translação S apropriada. □

Teorema 11.13. (Teorema ergódico maximal de Hopf) Seja T uma contração linear
positiva em L1. Então, se f ∈ L1,

∫
En
fdP ≥ 0, onde En = {max0≤k≤nRk(f) > 0}.

Prova: Seguimos Garsia (1970) para a prova do teorema. Primeiramente, notemos
que se f1, . . . , fn ∈ L1, então

max
1≤k≤n

Tfk ≤ T
(

max
1≤k≤n

fk

)
.

De fato, para todo 1 ≤ k ≤ n, fk ≤ max1≤k≤n fk, logo Tfk ≤ T (max1≤k≤n fk),
pois T é positiva. Logo, max1≤k≤n(Tfk) ≤ T (max1≤k≤n fk). Observe também que

f + max
1≤k≤n

(Tf + . . .+ T k+1f)+ ≥ max
0≤k≤n

(f + . . .+ T kf)+,

sobre o conjunto En. Usando esses fatos, obtemos

∫
En

fdP ≥
∫
En

max
0≤k≤n

(f + . . .+ T kf)+dP −
∫
En

max
1≤k≤n

(Tf + . . .+ T k+1f)+dP

Morettin-Gallesco - dezembro/2025



11.3. TEOREMAS ERGÓDICOS 207

≥
∫
En

max
0≤k≤n

(f + . . .+ T kf)+dP −
∫
En

T ( max
0≤k≤n

(f + . . .+ T kf)+)dP.

Seja φ = max0≤k≤n(f + Tf + . . .+ T kf)+. Temos, então,∫
En

(φ− Tφ)dP =

∫
{φ>0}

(φ− Tφ)dP ≥
∫
Ω
(φ− Tφ)dP.

De fato, ∫
Ω
(φ− Tφ)dP =

∫
{φ>0}

(φ− Tφ)dP +

∫
{φ=0}

(φ− Tφ)dP

=

∫
{φ>0}

(φ− Tφ)dP −
∫
{φ=0}

TφdP.

Como φ ≥ 0, Tφ ≥ 0 (T é positiva), o último termo da igualdade acima é negativo.
Logo, ∫

En

fdP ≥
∫
Ω
(φ− Tφ)dP ≥ 0,

pois T é uma contração, ou seja
∫
Ω Tφ ≤

∫
Ω φ. □

Corolário 11.3. Seja T uma contração linear positiva e suponha que T1 = 1. Se
Rn(f) = (f + Tf + . . .+ Tnf)/(n+ 1), teremos que

λP
{

max
0≤k≤n

Rk(f) > λ
}
≤
∫
max0≤k≤nRk(f)>λ

fdP.

Prova: Observe que{
ω : max

0≤k≤n
(f + Tf + . . .+ T kf) > 0

}
=
{
ω : max

0≤k≤n
Rk(f) > 0

}
.

Também note que, como T1 = 1, teremos

Rn(f − λ) = Rn(f)− λ, (11.6)

se λ for uma constante. Logo, chamando

Fn =
{

max
0≤k≤n

(
(f − λ) + . . .+ T k(f − λ)

)
> 0
}
,

teremos pelo teorema anterior

0 ≤
∫
Fn

(f − λ)dP =

∫
{max0≤k≤nRk(f−λ)>0}

(f − λ)dP
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=

∫
{max0≤k≤nRk(f)>λ}

(f − λ)dP,

por (11.6). Ou seja, temos

0 ≤
∫
{max0≤k≤nRk(f)>λ}

fdP − λP
{

max
0≤k≤n

Rk(f) > λ
}
. □

Observação: Seja {Xn, n ≥ 1} um submartingale. Sabemos que

λP
{

max
1≤k≤n

Xk > λ
}
≤
∫
max1≤k≤nXk>λ

XndP.

Essa é uma desigualdade do mesmo tipo daquela do corolário.

Teorema 11.14. Sejam X ≥ 0, Y ≥ 0 variáveis aleatórias. Suponha que λP{Y >
λ} ≤

∫
{Y >λ}XdP. Se p > 1, então,

E(Y p) ≤
(

p

p− 1

)p
E(Xp).

Prova: Basta considerar o caso X ∈ Lp. Para começar, supomos também que
Y ∈ Lp. Então,

λP{Y > λ} ≤
∫
{Y >λ}

XdP,

multiplicando por λp−2,

λp−1P{Y > λ} ≤ λp−2

∫
{Y >λ}

XdP,

e integrando em λ obtemos∫ ∞

0
λp−1P{Y > λ}dλ ≤

∫ ∞

0
λp−2

(∫
{Y >λ}

XdP
)
dλ.

Usando Fubini, o lado direito fica∫
X
(∫

{0≤λ<Y }
λp−2dλ

)
dP ≤ 1

p− 1

∫
XY p−1dP

≤ 1

p− 1

(∫
XpdP

)1/p(∫
Y pdP

)(p−1)/p

,

por Hölder. Por outro lado, o lado esquerdo é igual a∫ (∫
{0≤λ<Y }

λp−1dλ
)
dP =

1

p

∫
Y pdP.
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Logo,

1

p

∫
Y pdP ≤ 1

p− 1

(∫
XpdP

)1/p(∫
Y pdP

)(p−1)/p

,

do que segue ∫
Y pdP ≤

(
p

p− 1

)p ∫
XpdP.

Se Y /∈ Lp, substitua Y por Yr, ond Yr = Y , se Y ≤ r e Yr = r, se Y > r. Logo,
como Yr satisfaz as mesmas desigualdades do que Y , obtemos

E(Y p
r ) ≤

(
p

p− 1

)p
E(Xp).

Basta fazer r →∞. □

Aplicação: Seja {Xn, n ≥ 1} um martingale, que seja limitado em Lp, p > 1, isto
é, supnE(|Xn|p) <∞. Sabemos que vale a desigualdade da observação feita acima,
logo pelo teorema, se p > 1,

E
(

sup
1≤k≤n

|Xk|p
)
≤
(

p

p− 1

)p
E(|Xn|p).

Para n→∞, obtemos

E
(
sup
n≥1
|Xn|p

)
≤
(

p

p− 1

)p
sup
n≥1

E(|Xn|p) <∞.

Segue que o martingale {Xn} converge em norma Lp (e também q.c), pois |Xn|p ≤
supn |Xn|p, que é integrável, logo {|Xn|p} é uniformemente integrável.

Corolário 11.4. Seja T uma contração linear positiva em L1, com T1 = 1 e seja
R∗(f) = supn≥0 |Rn(f)|. Então, se p > 1,

E (R∗(f)p) ≤ E (R∗(|f |)p) ≤
(

p

p− 1

)p
E(|f |p).

Prova: Sabemos que para λ > 0,

λP{ max
0≤k≤n

Rk(|f |) > λ} ≤
∫
max0≤k≤nRk(|f |)>λ

|f |dP,

logo pelo teorema anterior

E
(

max
0≤k≤n

Rk(|f |)p
)
≤
(

p

p− 1

)p
E(|f |p).
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Logo, para n→∞ e pelo TCM,

E(R∗(|f |)p) ≤
(

p

p− 1

)p
E(|f |p). □

Teorema 11.15. (TEP - forma de Hopf) Seja T uma contração linear positiva em
L1, com T1 = 1. Então, Rn(f)→ P̂ f q.c, onde P̂ f é definida pelo TEM.

Prova: Suponha, inicialmente, que f ∈ L2 e sejam g(f) := lim supn→∞Rn(f), h(f) :=
lim infn→∞Rn(f). Então, usando T P̂ = P̂ , é fácil verificar que para todo k ≥ 0

g

(
f + Tf + . . .+ T kf

k + 1
− P̂ f

)
= g(f)− P̂ f,

h

(
f + Tf + . . .+ T kf

k + 1
− P̂ f

)
= h(f)− P̂ f.

Considere

E
(
|g(f)− P̂ f |2

)
= E

(∣∣∣∣g(f + Tf + . . .+ T kf

k + 1
− P̂ f

)∣∣∣∣2
)

≤ E

(∣∣∣∣R∗
(
f + Tf + . . .+ T kf

k + 1
− P̂ f

)∣∣∣∣2
)
≤ 4E

(∣∣∣∣f + Tf + . . .+ T kf

k + 1
− P̂ f

∣∣∣∣2
)
,

pelo Corolário 11.4, com p = 2. Isso é verdade para todo k. Para k → ∞, o lado
direito da última desigualdade converge para zero, pelo TEM, logo g(f) = P̂ f , q.c,
isto é, lim supnRn(f) = P̂ f q.c. Uma prova similar resulta em lim infnRn(f) = P̂ f
q.c. Logo, Rn(f) converge para P̂ f q.c.

Para o caso geral, suponha f ∈ L1. Seja ε > 0 e tome fε ∈ L2 tal que ∥f−fε∥1 ≤
ε2. Considere

f + Tf + . . .+ Tnf

n+ 1
− P̂ f =

(f − fε) + . . .+ Tn(f − fε)
n+ 1

− P̂ (f − fε)

−P̂ fε +
fε + . . .+ Tnfε

n+ 1
.

Então,

lim
n

sup

∣∣∣∣f + Tf + . . .+ Tnf

n+ 1
− P̂ f

∣∣∣∣ =
lim
n

sup

∣∣∣∣(f − fε) + . . .+ Tn(f − fε)
n+ 1

− P̂ (f − fε)
∣∣∣∣
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≤ R∗(f − fε) + P̂ (|f − fε|),

pelo caso L2. Segue que

P

{
lim
n

sup

∣∣∣∣f + Tf + . . .+ Tnf

n+ 1
− P̂ f

∣∣∣∣ > ε

}
≤ P{R∗(f − fε) + P̂ (|f − fε|) > ε}

≤ P{R∗(f − fε) > ε/2}+ P{P̂ (|f − fε|) > ε/2}

≤ 2

ε

∫
|f − fε|dP +

2

ε
EP̂ (|f − fε|),

usando o Corolário 11.3 e a desigualdade de Markov. Finalmente, o último termo é

≤ 2

ε
∥f − fε∥1 +

2

ε
∥f − fε∥1 ≤

2

ε
ε2 +

2

ε
ε2 ≤ 4ε,

Portanto,

lim sup
n

∣∣∣∣f + Tf + . . .+ Tnf

n+ 1
− P̂ f

∣∣∣∣ = 0, q.c. □

Corolário 11.5. (Versão final do TEM) Seja f ∈ Lp, p ≥ 1 e T uma contração
linear positiva em L1, com T1 = 1. Então, Rn(f)→ P̂ f em norma Lp.

Prova: Sabemos que o corolário vale para p = 1. Se f ∈ Lp, p > 1, então f ∈ L1,
pois (Ω,F , P ) é um e.p. Pelo TEP, Rn(f)→ P̂ f q.c. Contudo, pelo Corolário 11.4,
temos que E(supn |Rn(f)|p) <∞, logo a famı́lia {|Rn(f)|p, n ≥ 1} é uniformemente
integrável. Portanto, Rn(f)→ P̂ f em Lp. □

11.4 Rećıprocas dos teoremas ergódicos

Sabemos que, se T for uma transformação que preserva a medida sobre um e.p
(Ω,F , P ) e se T for ergódica, então se f ∈ L1, teremos

f + Tf + . . .+ Tnf

n+ 1

q.c−→ constante. (11.7)

Teorema 11.16. (Rećıproca) Suponha que T seja uma transformação preservando
a medida e, para toda f ∈ L1, tenhamos (11.7). Então, T é ergódica.

Prova: Seja A ∈ I e f = IA. Sabemos que

f + Tf + . . .+ Tnf

n+ 1

q.c−→ E(f |I).
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Nesse caso, E(f |I) = IA. Por hipótese, todos os limites são constantes q.c, portanto
IA é constante q.c, logo P (A) = 0 ou P (A) = 1, ou seja S é ergódica. □

Teorema 11.17. Seja (Ω,F , P ) um e.p e T uma transformação que preserva a
medida e ergódica. Suponha que f ≥ 0 e limn→∞(f +Tf + . . .+Tnf)/(n+1) exista
e seja finito q.c. Então f é integrável.

Prova: Se limn→∞(f + Tf + . . .+ Tnf)/(n+ 1) converge q.c para f̂ , então

Tf + T 2f + . . .+ Tn+1f

n+ 1
→ T f̂ = f̂ ,

de modo que o limite f̂ é invariante. Como T é ergódica, f̂ é constante, digamos
f̂ = d. Defina fr = f , se f ≤ r e fr = r, se f > r. Então, f ∈ L1 e portanto

fr + Tfr + . . .+ Tnfr
n+ 1

→ E(fr|I) = E(fr),

pois T é ergódica. Além disso, como fr ≤ f , Tfr ≤ Tf , etc, de modo que

lim
n

fr + Tfr + . . .+ Tnfr
n+ 1

≤ lim
n

f + Tf + . . .+ Tnf

n+ 1
= d,

ou seja, E(fr) ≤ d <∞. Mas fr ↑ f , logo E(f) = limr↑∞E(fr) ≤ d, pelo TCM, ou
seja E(f) <∞. □

Observação: Lembremos a LFGN: se Xi, i ≥ 1 são i.id, se E(X1) existe, então
(X1 + . . . +Xn)/n converge q.c. Também provamos que, se Xi, i ≥ 1 são i.i.d e se
(X1 + . . .+Xn)/n converge para um limite finito, então E(X1) existe.

Problemas

1. Prove que a aplicação T da definição 11.2 é mensurável.

2. Prove a afirmação do Exemplo 11.2 (a).

3. Seja Ω o conjunto de todas as sequências da forma (· · · , ω−1, ω0, ω1, · · · ), com ωi real, e
F a menor σ-álgebra contendo todos os conjuntos da forma {ω : (ωk, ωk+1, . . . , ωk+n−1) ∈
Bn}, onde Bn é um conjunto de Borel do espaço Euclidiano n-dimensional, k =
0,±1,±2, . . . . Uma translação bilateral T é definida por T (· · · , ω−1, ω0, ω1, · · · ) =
(· · · , ω0, ω1, · · · ), ou seja, se ξ1, ξ2, . . . são as funções coordenadas, temos ξk(Tω) =
ξk+1(ω). Mostre que T preserva a medida se, e somente se P é estacionária. A
definição de estacionária aqui é análoga à dada no texto, exceto que agora temos
sequência bilateral.

4. Prove a afirmação do Exemplo 11.5 (a).

5. Encontre uma translação T que seja ergódica mas não de Kolmogorov (de fato, T
pode ser escolhida como uma translação de Markov).
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6. Mostre que, se Tx = x+1, sobre a reta real, então qualquer intervalo de comprimento
menor do que um é um conjunto wandering não trivial.

7. Para o Exemplo 11.8 (b), prove que T é linear, que T transforma funções de Lp em
funções de Lp e portanto ∥f∥p = ∥Tf∥p.

8. Sejam (Ω,F , P1) e (Ω,F , P2) dois e.p com P1 ̸= P2 e S uma transformação ergódica
sobre (Ω,F , P1) e (Ω,F , P2). Mostre que P1 ⊥ P2.

9. Prove o Teorema 11.5.

10. Mostre que as transformações a seguir são mensuráveis e preservam a medida. Depois,
decida se são ergódicas ou mixing.

(a) Ω é o ćırculo unitário no plano complexo, F é a σ-álgebra de Borel no ćırculo e P
é dada pela medida de Lebesgue no ćırculo dividida por 2π. Seja Teiθ = ei(θ+α), α
irracional. O que acontece se α for racional?

(b) Ω = [0, 1], P é a medida de Lesbesgue, F a σ-álgebra de Borel e Tω = 2ω (mod1).
O que acontece se Tω = kω (mod1), k inteiro, k > 2?

11. Provamos que, se S é ergódica, e se f ≥ 0,
∑n

k=1 f(S
kω)/n converge q.c para um

limite finito, então f ∈ L1. Mostre que isso pode não ser verdade se: (a) f ≥ 0 não
valer; ou (b) se S não for ergódica.

12. Sejam X = {Xn, n ≥ 0} e Y = {Yn, n ≥ 0} dois processos estacionários, ergódicos.
Lance uma moeda independentemente de X e Y . Se ocorrer cara, observe o processo
X e se ocorrer coroa, observe o processo Y .

(a) O processo resultante é estritamente estacionário?

(b) O processo resultante é ergódico?

13. Seja X = {Xn, n ≥ 0} um processo tal que (X1, . . . , Xn) seja normal, para cada n,
E(Xi) = 0, Cov(Xi, Xj) = R(i, j):

(a) Prove que X é estacionário se e somente se R(i, j) depende somente de |i− j|;
(b) Suponha que R(i, j) = r(|i − j|). Prove que limn r(n) = 0 implica que X seja
ergódico.
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Caṕıtulo 12

Introdução ao Cálculo
Estocástico

O objetivo deste caṕıtulo é apresentar uma construção da integral estocástica
de Itô,

I(f)(ω) =

∫ T

0
f(ω, t)dW (ω, t),

na qual W é o Movimento Browniano (MB) e f é uma função satisfazendo certos
critérios. Como as trajetórias de W não tem variação finita em intervalos compac-
tos, não é possivel usar a integral de Riemann-Stieltjes para integrar com respeito
ao MB. Em vez disto vamos usar técnicas de extensão de isometrias em espaços de
Hilbert para definir a integral estocástica. Veremos em seguida a fórmua de Itô, o
equivalente do teorema fundamental do cálculo para o cálculo estocástico. Final-
mente, provaremos a fórmula de Girsanov e daremos alguns exemplos de aplicação
deste resultado. Indicamos como referências para este caṕıtulo os livros de Comets
e Meyre (2015) e Le Gall (2016).

12.1 Integral estocástica

Nesta seção, vamos definir a integral estocástica em várias etapas, começando com
a definição da integral para a classe das funções em escada até chegar na classe de
funções H loc

2 (veja a Definição 12.5).
Iniciamos com o cálculo da variação quadrática do MBW nos intervalos da forma

[0, T ]. Esta propriedade será fundamental na construção da integral estocástica.

Proposição 12.1 (Variação quadrática do MB). Seja T ≥ 0, t0 = 0 < t1 < · · · <
tn = T uma partição do intervalo [0, T ] e δ = maxi{ti − ti−1}. Temos que

lim
δ→0

∥∥∥ n∑
i=1

(W (ti)−W (ti−1))
2 − T

∥∥∥
2
= 0.
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Prova: Lembramos para começar que se X ∼ N(0, σ2), E(X2) = σ2, V ar(X2) =
2σ4. Aplicando estes resultados aos termos da soma

V :=
n∑
i=1

(W (ti)−W (ti−1))
2,

obtemos

E(V ) = T, V ar(V ) = 2
n∑
i=1

(ti − ti−1)
2 ≤ 2Tδ.

Deduzimos que ∥V − T∥2 = V ar(V )→ 0, quando δ → 0. □

Seja (Ω,F , P ) um e.p e {Ft, t ≥ 0} uma sequência não decrescente de σ-álgebras
tais que Ft ⊂ F para todo t ≥ 0. A sequência {Ft, t ≥ 0} é também chamada de
filtração sobre (Ω,F , P ).

Definição 12.1. Um MB W definido sobre (Ω,F , P ) é um {Ft}-MB se ele é adap-
tado a {Ft, t ≥ 0} e se W (t) − W (s) é independente de Fs, para todo s ≥ 0 e
t ≥ s.

Neste caṕıtulo sempre iremos supor que a filtração {Ft, t ≥ 0} é completa, i.e,
F0 contém todos os conjuntos nulos de F .

Definição 12.2. Uma função ϕ : R+ × Ω → R é progressivamente mensurável se
para todo t ∈ R+, a aplicação (ω, t) 7→ f(ω, t) de [0, t] × Ω → R é B[0, t] ⊗ Ft-
mensurável.

Proposição 12.2. Uma função ϕ de R+ × Ω → R adaptada e cont́ınua é progres-
sivamente mensurável.

Prova: Para todo n ≥ 1, definimos

ϕn(s, ω) = ϕ(kT/n, ω), para
kT

n
< s ≤ (k + 1)T

n
.

É fácil ver que ϕn é progressivamente mensurável, e, por continuidade, ϕn converge
para ϕ em todo ponto (s, ω) ∈ [0, T ] × Ω quando n → ∞. Isto mostra que ϕ é
progressiamente mensurável. □

Definição 12.3. Denotamos por H2(R+) (resp. H2([0, T ]), T > 0), o espaço das
funções ϕ progressivamente mensuráveis tais que

E
(∫

R+

ϕ2(t, ω)dt
)
<∞ (resp. E

(∫
[0,T ]

ϕ2(t, ω)dt
)
<∞).

Também introduzimos H2 =
⋂
T>0H2([0, T ]).
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Identificando duas funções iguais fora de um conjunto de P ⊗ λ+-medida nula,
obtemos que H2(R+) (resp. H2([0, T ])) é um espaços de Hilbert com norma

∥ϕ∥H2(R+) := E
(∫

R+

ϕ2(t, ω)dt
)

(resp. ∥ϕ∥H2([0,T ]) := E
( ∫

[0,T ] ϕ
2(t, ω)dt

)
).

Integral de funções em escada

Uma função em escada é uma função real da forma

ϕ(t, ω) =

n−1∑
k=0

Xi(ω)1(ti,ti+1](t)

com 0 = t0 < t1 < t2 < · · · < tn e Xi ∈ L2(Ω,Fti , P ). Uma função deste tipo é
progressivamente mensurável. Observamos que as funções em escada pertencem a
H2(R+) pois

E
(∫

R+

ϕ(t)2dt
)
=

n−1∑
i=0

E(X2
i )(ti+1 − ti) <∞.

Para estas funções, definimos a integral de Itô com respeito a um {Ft}-MB W por∫
R+

ϕ dW =
n−1∑
i=0

Xi(ω)(W (ti+1, ω)−W (ti, ω)).

A aplicação ϕ 7→
∫
R+
ϕ dW é linear sobre o espaço vetorial E das funções em escada

e tem valores em L2(Ω,F , P ) pois

E
[( ∫

R+

ϕ dW
)2]

=
n−1∑
i=0

E(X2
i E([W (ti+1)−W (ti)]

2 | Fti))

+ 2
∑

0≤i<j<n
E(XiXj [W (ti+1)−W (ti)]E([W (tj+1)−W (tj)] | Ftj ))

= E
(∫

R+

ϕ(t)2dt
)
= ∥ϕ∥2H2(R+).

Integral de funções em H2(R+)

O espaço vetorial E das funções em escadas é denso em H2(R+) (veja Problema
1). Pelo teorema de extensão de isometrias (veja o Apêndice A.3), ϕ ∈ E 7→∫
R+
ϕ dW ∈ L2(Ω,F , P ), pode ser estendida de maneira única à aderência de E ,

ou seja H2(R+).
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Definição 12.4. A variável aleatória
∫
R+
ϕ dW ∈ L2(Ω,F , P ) é chamada integral

estocástica de ϕ.

Como consequência imediata da propriedade de isometria temos o

Teorema 12.1. Para ϕ e ψ ∈ H2(R+) temos que

E
(∫

R+

ϕ dW
)
= 0, E

[
(

∫
R+

ϕ dW )2
]
= E

(∫
R+

ϕ2dt
)
,

E
[
(

∫
R+

ϕ dW )(

∫
R+

ψ dW )
]
= E

(∫
R+

ϕψ dt
)
.

Integral de funções em H2

Vamos, agora, estender a integral estocástica ao espaço H2. Quando ϕ ∈ H2,
definimos para todo t ≥ 0, ∫ t

0
ϕ dW =

∫
R+

1(0,t]ϕ dW.

A integral acima está bem definida para todo t ≥ 0, pois podemos observar que
1(0,t]ϕ é progressivamente mensurável (como produto de funções progressivamente

mensuráveis) e pertence a H2(R+). Definimos
∫ t
s ϕ dW =

∫
R+

1(s,t]ϕ dW e deduzi-
mos imediatamente a relação de Chasles∫ t

0
ϕ dW =

∫ s

0
ϕ dW +

∫ t

s
ϕ dW

por linearidade. A próxima proposição mostra que a integral estocástica é uma
função cont́ınua do seu limite superior.

Proposição 12.3. A aplicação de R+ → L2, t 7→
∫ t
0 ϕ dW é cont́ınua em todo

ponto t0 ≥ 0 e ela possui uma versão cont́ınua sobre R+.

Prova: A continuidade em L2 é uma consequência imediata da propriedade de
isometria. Vamos mostrar que existe uma versão cont́ınua desta aplicação. Podemos
usar a sequência (Πn)n do Problema 1. Neste caso , Mn(t) :=

∫ t
0 Pnϕ dW é cont́ınua

para quase todo ω. Como a filtração {Ft, t ≥ 0} contém os conjuntos nulos de
F , podemos modificar Mn para que todas as suas trajetórias sejam cont́ınuas para
todo n. A desigualdade de Doob aplicada à martingale cont́ınua Mm −Mn (veja a
Proposição 12.4 abaixo) com T <∞ dá, para todo ε > 0,

P
(

max
t∈[0,T ]

|Mn(t)−Mm(t)| > ε
)
≤ ε−2∥Pnϕ− Pmϕ∥2H2([0,T ])

.
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Assim, em probabilidade, a sequência (Mn)n é de Cauchy no espaço das funções
cont́ınuas sobre [0, T ] com a norma da convergência uniforme. Podemos portanto
encontrar uma subsequência (Mnk

)k tal que, quase certamente, esta subsequência
converge uniformemente sobre os compactos de R+. O limite M∞ pode ser tomado
cont́ınuo como limite (quase certamente) uniforme de funções cont́ınuas. Como
Mn(t) →

∫ t
0 ϕ dW em L2, temos que M∞(t) =

∫ t
0 ϕ dW q.c., para todo t ≥ 0, e

portanto M∞ é uma versão cont́ınua da integral estocástica. □

Proposição 12.4. Para ϕ ∈ H2, o processo estocástico M(t) =
∫ t
0 ϕ dW é um

martingale de quadrado integrável tal que

M2(t)−
∫ t

0
ϕ2ds

é um martingale.

Observação: o processo {
∫ t
0 ϕ

2ds, t ≥ 0}, é tradicionalmente chamado de “col-
chete”do martingale M e é denotado por ⟨M⟩.

Prova: Em primeiro lugar, vamos mostrar que M é um martingale com respeito à
filtração {Ft, t ≥ 0}. Se ϕ ∈ E , obtemos para s = t0 < t1 < · · · < tn = t,

E
(∫ t

s
ϕ dW | Fs

)
=

n−1∑
i=0

E(Xi[W (ti+1)−W (ti)] | Fs)

=
n−1∑
i=0

E(XiE([W (ti+1)−W (ti)] | Fti) | Fs)

= 0.

O resultado geral para ϕ ∈ H2 é obtido por continuidade da esperança condicional
em L2 e a densidade de E em H2([0, T ]) para todo T > 0. A seguir, mostramos que
M(t)2 −

∫ t
0 ϕ(s)

2ds é um martingale. Como E(M(t)2 −M(s)2 | Fs) = E((M(t) −
M(s))2 | Fs), é suficiente verificar que

E
(
(

∫ t

s
ϕ dW )2 | Fs

)
= E

(∫ t

s
ϕ(u)2du | Fs

)
. (12.1)

Mas esta última igualdade é facilmente obtida por um argumento similar a aquele
usado para provar que M é um martingale (veja Problema 2). □

Localização

Para certas aplicações o espaço H2 não é suficiente, assim é necessário estender
a integral estocástica a um espaço maior.
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Definição 12.5. Denotamos por H loc
2 o conjunto das funções progressivamente men-

suráveis ϕ : R+ × Ω→ R tais que, para todo T > 0,

P
(∫ T

0
ϕ(t, ω)2dt <∞

)
= 1.

Observamos que H2 ⊂ H loc
2 . Se ϕ é progressivamente mensurável, o tempo

aleatório

τn = inf
{
t ≥ 0 :

∫ t

0
ϕ(s)2ds ≥ n

}
∈ [0,∞]

é um tempo de parada da filtração {Ft, t ≥ 0}. Além disto se ϕ ∈ H loc
2 , a sequência

τn diverge q.c. para ∞ e 1[0,τn]ϕ ∈ H2 para todo n. Isto sugere a seguinte extensão

da integral estocástica ao espaço H loc
2 .

Definição 12.6. A integral estocástica para ϕ ∈ H loc
2 é definida para todo t ≥ 0 pelo

limite quase certo ∫ t

0
ϕ dW = lim

n→∞

∫ t

0
1[0,τn]ϕ dW.

A integral estocástica em H loc
2 não é, em geral, um martingale mas somente uma

versão mais fraca, chamada martingale local (veja o Problema 3).

Definição 12.7 (Martingale local). Um processo estocástico X = {X(t), t ≥ 0},
adaptado a uma filtração {Ft, t ≥ 0}, é um martingale local, se existe uma sequência
de tempos de parada τn, tal que limn→∞ τn = ∞, q.c., e tal que {X(t ∧ τn), t ≥ 0}
seja um martingale para todo n.

Para concluir, podemos observar que a integral estocástica em H loc
2 permanece,

quase certamente, com trajetórias cont́ınuas. Com respeito à propriedade de isome-
tria, ela é substituida pela desigualdade trivial

E
(
(

∫ t

0
ϕ dW )2

)
≤ E

(∫ t

0
ϕ2ds

)
.

12.2 Fórmula de Itô

A fórmula de Itô é, para o cálculo estocástico, o análogo do Teorema Fundamen-
tal do Cálculo (TFC). Em primeiro lugar veremos que o TFC é falso no contexto
do cáclulo estocástico. Começamos considerando f, g ∈ C1, o espaço das funções
continuamente diferenciáveis. Temos que o TFC implica que

g(f(t)) = g(f(0)) +

∫ t

0
g′(f(s))f ′(s)ds = g(f(0)) +

∫ t

0
g′(f(s))df(s). (12.2)
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Vamos verificar se esta fórmula ainda vale no contexto do cálculo estocástico.
Para isto, tomamos g(x) = x2. Com 0 = t0 < · · · < tn = t, temos que

W 2(t) =
n∑
i=1

W 2(ti)−W 2(ti−1)

= 2
n∑
i=1

W (ti−1)(W (ti)−W (ti−1)) +
n∑
i=1

(W (ti)−W (ti−1))
2.

Quando n→∞, o primeiro termo converge para 2
∫ t
0 WdW e o segundo para a

variação quadrática t do movimento browniano. Portanto obtemos,

W (t)2 = 2

∫ t

0
WdW + t.

Isto mostra que a fórmula (12.2) não se aplica neste caso.

Começamos para enunciar a fórmula de Itô no caso mais simples a seguir. Seja
C2 o espaço das funções duas vezes continuamente diferenciáveis e C2

b o espaço das
funções f ∈ C2 tais que f, f ′ e f ′′ são limitadas.

Proposição 12.5. Para f ∈ C2
b , temos q.c,

f(W (t)) = f(W (0)) +

∫ t

0
f ′(W )dW +

1

2

∫ t

0
f ′′(W )ds, (12.3)

para todo t ≥ 0.

Prova: Aplicando a fórmula de Taylor de ordem dois, obtemos que

f(W (t)) = f(W (0)) +
n∑
i=1

[f(W (ti))− f(W (ti−1))]

= f(W (0)) +
n∑
i=1

f ′(W (ti−1))[W (ti)−W (ti−1)]

+
1

2

n∑
i=1

f ′′(W (θi))[W (ti)−W (ti−1)]
2,

onde θi = θi(ω) ∈ (ti−1, ti). O segundo termo do membro da direita converge,
quando n → ∞, para a integral estocástica

∫ t
0 f

′(W )dW . Vamos mostar que o

terceiro termo converge para 1
2

∫ t
0 f

′′(W )ds. Para isto, denotemos por

An =

n∑
i=1

f ′′(W (θi))[W (ti)−W (ti−1)]
2,
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Bn =

n∑
i=1

f ′′(W (ti−1))[W (ti)−W (ti−1)]
2

e

Cn =
n∑
i=1

f ′′(W (ti−1))[ti − ti−1].

Quando n → ∞, Cn →
∫ t
0 f

′′(W )ds q.c. e em L1. Vamos mostrar que An converge
em L1 para o mesmo limite. Pela desigualdade triangular temos,

E(|An − Cn|) ≤ E(|An −Bn|) + E(|Bn − Cn|).

Pela desigualdade de Cauchy-Schwarz, obtemos

E(|An −Bn|) ≤ E
(
sup
i
|f ′′(W (ti−1))− f ′′(W (θi))| ×

∑
i

[W (ti)−W (ti−1)]
2
)

≤
[
E(sup

i
|f ′′(W (ti−1))− f ′′(W (θi))|2)

× E
((∑

i

[W (ti)−W (ti−1)]
2
)2)]1/2

que tende a 0, quando n→∞, usando o TCD e a Proposição 12.1. Por outro lado,

E(|Bn − Cn|2) = E

[∣∣∣ n∑
i=1

f ′′(W (ti−1))([W (ti)−W (ti−1)]
2 − (ti − ti−1))

∣∣∣2]

≤
n∑
i=1

E
[
|f ′′(W (ti−1))([W (ti)−W (ti−1)]

2 − (ti − ti−1))|2
]

≤ sup(f ′′)2 ×
n∑
i=1

E
[
|[W (ti)−W (ti−1)]

2 − (ti − ti−1)|2
]

= sup(f ′′)2 × 2
n∑
i=1

(ti − ti−1)
2,

que tende a 0, o que implica que E(|Bn − Cn|) → 0, quando n → ∞. Assim, para
todo t ≥ 0, a igualdade (12.3) ocorre em L1 e portanto q.c. Usando a continuidade
das trajetorias, podemos inverter as expressões “para todo t ≥ 0” e “q.c.” na frase
anterior. □
Exemplo 12.1. Considere a integral estocástica∫ t

0
sen(W ) dW.
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Usando a Proposição 12.5, podemos obter uma expressão para a integral acima que
não involve nenhuma integral estocástica. Para isto, basta aplicar a proposição com
f(x) = − cosx. Usando que W (0) = 0, obtemos que∫ t

0
sen(W ) dW = 1− cos(W (t))− 1

2

∫ t

0
cos(W (s)) ds.

Notação diferencial: Tradicionalmente (12.3) é escrita sob a “forma diferencial”
mais compacta a seguir:

df(W ) = f ′(W )dW +
1

2
f ′′(W )dt,

embora apenas a forma integral (12.3) tem um sentido matemático rigoroso.
Todo processo estocástico da forma

X(t) = X(0) +

∫ t

0
ϕ dW +

∫ t

0
ψ ds,

com ϕ, ψ ∈ H2 e X(0) ∈ L2(Ω,F0, P ) é chamado de processo de Itô e denotaremos
por

dX = ϕdW + ψds

a sua forma diferencial. Os mesmos argumentos que na prova da proposição anterior
podem ser usados para provar que os processos de Itô satisfazem: para f ∈ C2

b ,

f(X(t)) = f(X(0)) +

∫ t

0
f ′(X)ϕ dW +

∫ t

0
f ′(X)ψ ds+

1

2

∫ t

0
f ′′(X)ϕ2ds,

ou seja, em notação diferencial,

df(X) = f ′(X)dX +
1

2
f ′′(X)d⟨X⟩,

com

⟨X⟩(t) :=
∫ t

0
ϕ2ds.

Exemplo 12.2. Considere o processo dado por X(t) = exp{W (t)}, para todo t ≥ 0.
Usando a Proposição 12.5 com f(x) = ex obtemos que

dX = XdW +
X

2
dt.

Assim, X é um processo de Itô pois X ∈ H2.

Para terminar este paragrafo, enunciamos uma generalização da fórmula de Itô
anterior para os espaços H loc

2 , H loc
1 e C2 (veja Karatzas and Schreve (1988)). Intro-

duzimos em primeiro lugar o espaço H loc
1 das funções f : R+ × Ω→ R progressiva-

mente mensuráveis tais que
∫ T
0 |f(t, ω)|dt seja finito q.c. para todo T > 0.
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Teorema 12.2. Se X(t) = X(0) +
∫ t
0 ϕ dW +

∫ t
0 ψ ds é um processo de Itô com

ϕ ∈ H loc
2 , ψ ∈ H loc

1 e f ∈ C2, então, q.c., para todo t ≥ 0,

f(X(t)) = f(X(0)) +

∫ t

0
f ′(X)ϕ dW +

∫ t

0
f ′(X)ψ ds+

1

2

∫ t

0
f ′′(X)ϕ2ds.

12.3 Transformação de Girsanov

Seja (Ω,F , P ) um e.p com uma filtração completa {Ft, t ≥ 0}, em que está definido
um {Ft}-MB W .

A densidade gaussiana g(x) = (2π)−1/2 exp−{x2/2} possui a propriedade g(x−
a) = g(x)eax−a

2/2, para todo a ∈ R. Assim, se V é uma variável aleatória com lei
normal padrão, temos para toda f mensurável e limitada

E(f(V + a)) = E
(
f(V ) exp {aV − a2/2}

)
.

Isto significa que a lei de V + a é a mesma que a lei de V sob a nova probabilidade
dQ(ω) = exp {aV (ω)− a2/2}dP (ω). Esta fórmula foi generalizada para o MB por
Cameron e Martin em 1944, e de novo estendida em 1960 por Girsanov.

Sejam ϕ ∈ H loc
2 e para todo t ≥ 0,

Vϕ(t) := exp
{∫ t

0
ϕ dW − 1

2

∫ t

0
ϕ2ds

}
.

Teorema 12.3 (Fórmula de Girsanov). Suponha que

E(Vϕ(t)) = 1, para todo t ≥ 0.

Então existe uma única probabilidade Q sobre F∞ :=
∨
t≥0Ft, definida por

Q(A) = E(Vϕ(t)1A), A ∈ Ft, t ≥ 0.

Além disto, o processo estocástico W definido por

W (t) =W (t)−
∫ t

0
ϕ ds

é um {Ft}-MB sob Q.

No resto desta seção daremos uma prova da fórmula de Girsanov. Começamos
com a prova do seguinte
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Lema 12.1. Seja ϕ ∈ H loc
2 com valores complexos, se existe uma constante finita

C tal que a condição ∫ t

0
|ϕ(s)|2ds ≤ C, q.c,

então Vϕ(t) ∈ L2 e E(Vϕ(t)) = 1.

Prova: Começamos com a prova do resultado no caso ϕ real. A provar será feito em
duas etapas. Na primeira etapa, consideramos que ϕ é limitada no intervalo [0, t],
ou seja existe K tal que sups∈[0,t] |ϕ(s)| ≤ K. Aplicando a fórmula de Itô obtemos

Vϕ(t) = 1 +

∫ t

0
ϕVϕ dW. (12.4)

Vamos mostrar que ϕVϕ ∈ H2([0, t]) para obter que a integral estocástica Vϕ(t) acima
é um martingal e que portanto E(Vϕ(t)) = 1. Para isto, usando a desigualdade
(a+ b)2 ≤ 2a2 + 2b2, temos que

Vϕ(u)
2 ≤ 2

(
1 +

[ ∫ u

0
ϕVϕ dW

]2)
,

para todo u ≤ t. Usando o Problema 5, obtemos que Vϕ(s) ∈ L2 e é limitado em
L2 para s ∈ [0, t]. Deduzimos que ϕVϕ ∈ H2([0, t]) e, finalmente, E(Vϕ(t)) = 1. Na
segunda etapa, consideramos ϕ real sem a hipótese de limitação. Neste caso, usamos
o truncamento ϕn := ϕ1[−n,n] para n ≥ 1. Obtemos

E(Vϕn(t)
2) ≤

(
E
[
exp

{
4

∫ t

0
ϕn dW − 8

∫ t

0
ϕ2nds

}]
× E

[
exp

{
6

∫ t

0
ϕ2nds

}])1/2
≤ 1× exp{3C},

usando a desigualdade de Cauchy-Schwarz e a primeira etapa. Além disto,

Vϕn(t)→ Vϕ(t),

em probabilidade pois
∫ t
0 ϕ

2
ndu →

∫ t
0 ϕ

2du pelo TCM e
∫ t
0 ϕn dW converge em L2

para
∫ t
0 ϕ dW . Usando o Problema 6 item (ii), obtemos que

E(Vϕ(t)) = lim
n→∞

E(Vϕn(t)) = 1.

Consideramos, para terminar, um integrando com valores complexos ϕ = ρ+ iθ.

Morettin-Gallesco - dezembro/2025
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Temos que

E(|Vϕ(t)|2) = E
[∣∣∣ exp{∫ t

0
(ρ+ iθ)dW − 1

2

∫ t

0
(ρ+ iθ)2ds

}∣∣∣]
≤ E

[
Vρ(t)

2 × exp{1
2

∫ t

0
θ2ds}

]
≤ E(Vρ(t)

2)× exp{C},

usando a versão real do lema provada acima. Da mesma forma, temos que∫ t

0
E(|Vϕ|2|ϕ|2)ds ≤ exp{C}

∫ t

0
E(V 2

ρ |ϕ|2)ds

≤ exp{C}
∫ t

0
E(E(Vρ(t)

2 | Fs)|ϕ(s)|2)ds

= exp{C}
∫ t

0
E(Vρ(t)

2|ϕ(s)|2)ds

= exp{C}E
(
Vρ(t)

2

∫ t

0
|ϕ(s)|2ds

)
≤ C exp{C}E(Vρ(t)

2) <∞.

Deduzimos que o integrando da equação (12.4) pertence a H2([0, t]) e portanto que
E(Vϕ(t)) = 1. □

Prova do Teorema 12.3:
Em primeiro lugar, a fórmula Qt(A) = E(Vϕ(t)1A) para A ∈ Ft e t ≥ 0, define

uma famı́lia de probabilidades consistente (veja o Problema 7). Pelo teorema de
extensão de Kolmogorov, existe uma única probabilidade Q sobre F∞ cuja restrição
à Ft seja Qt. Vamos mostrar que W é um movimento browniano sob Q, ou seja
para todo 0 ≤ t1 < · · · < tp = t

E
(
Vϕ(t) exp

{
i

p∑
j=1

ujW (tj)
})

= exp
{
− 1

2

p∑
j,k=1

ujuk(tj ∧ tk)
}
, (12.5)

para todo u1, . . . , up.

Inicialmente, provaremos (12.5) sob a condição
∫ t
0 ϕ

2ds ≤ C, q.c. A função

ψ(s, ω) = ϕ(s, ω)+i
∑p

j=1 uj1[0,tj ](s) com valores complexos é tal que
∫ t
0 |ψ|

2ds ≤ C ′

para uma constante finita C ′. Usando o Lema 12.1, obtemos que E(Vψ(t)) = 1.
Assim, expandindo ψ2 temos

E
(
Vϕ(t) exp

{
i

p∑
j=1

ujW (tj)
})

exp
{1
2

p∑
j,k=1

ujuk(tj ∧ tk)
}
= 1 (12.6)
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o que prova (12.5).
No caso geral, usamos um argumento de localização com os tempos de parada

τn = inf{t ≥ 0 :
∫ t
0 ϕ

2ds ≥ n}. As funções ϕn(s, ω) = ϕ(s, ω)1[0,τn](s) verificam:

�

∫ t
0 ϕ

2
nds ≤ n e pelo Lema 12.1, E(Vϕn(t)) = 1;

� q.c.,
∫ t
0 ϕn dW →

∫ t
0 ϕ dW e

∫ t
0 ϕ

2
nds→

∫ t
0 ϕ

2ds.

Assim, pelo Problema 6, item (i), obtemos que

Eϕn(t)→ Vϕ(t) em L1. (12.7)

Como (12.6) vale para ϕn, temos para todo n ≥ 1,

E
(
Vϕn(t) exp

{
i

p∑
j=1

uj

(
W (tj)−

∫ tj

0
ϕnds

)})
= exp

{
− 1

2

p∑
j,k=1

ujuk(tj ∧ tk)
}
.

(12.8)
Agora, usando a decomposição

Vϕn(t) exp
{
i

p∑
j=1

uj

(
W (tj)−

∫ tj

0
ϕnds

)}
− Vϕ(t) exp

{
i

p∑
j=1

ujW (tj)
}

= (Vϕn(t)− Vϕ(t)) exp
{
i

p∑
j=1

uj

(
W (tj)−

∫ tj

0
ϕnds

)}
+ Vϕ(t)

(
exp

{
i

p∑
j=1

uj

(
W (tj)−

∫ tj

0
ϕnds

)}
− exp

{
i

p∑
j=1

ujW (tj)
})

concluimos por (12.7) e pelo TCD que

Vϕn(t) exp
{
i

p∑
j=1

uj

(
W (tj)−

∫ tj

0
ϕnds

)}
→

Vϕ(t) exp
{
i

p∑
j=1

ujW (tj)
}

em L1, o que implica a convergência das esperanças e portanto, por (12.8) o resultado
desejado. □

A seguir, daremos algumas aplicações clássicas da fórmula de Girsanov.
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Continuidade absoluta de funcionais aditivos do MB

Seja f : [0, T ]→ R uma função de quadrado integrável e d(t) :=
∫ t
0 f(s)ds, t ≤ T .

Consideramos a lei ν de W + d no intervalo [0, T ], isto é, a probabilidade no espaço
C([0, T ]) definida por,

ν(A) = P (W + d ∈ A), A boreliano de C([0, T ]).

Denotaremos a seguir por µ a lei do MB W sobre C([0, T ]). A proposição a seguir
mostra que ν e µ são equivalentes.

Proposição 12.6. A lei ν é absolutamente cont́ınua com respeito a µ e a sua
derivada de Radon-Nikodym é dada por

dν

dµ
(x) = exp

{∫ T

0
f(t)dx(t)− 1

2

∫ T

0
f(t)2dt

}
.

Observação: A primeira integral aparecendo na exponencial é simplesmente a in-
tegral estocástica com respeito ao MB sobre C([0, T ]).

Prova: Seja Q a probabilidade definida por dQ = Z(T )dP , com

Z(T ) = exp
{∫ T

0
f dW − 1

2

∫ T

0
f2dt

}
.

Pela fórmula de Girsanov, sob Q, W − d é um MB, isto implique que Q(W ∈ ·) =
P (W + d ∈ ·). Assim, obtemos para todo boreliano A de C([0, T ]),

ν(A) = P (W + d ∈ A)
= Q(W ∈ A)
= E(1A(W )Z(T ))

=

∫
1A(x) exp

{∫ T

0
f(t)dx(t)− 1

2

∫ T

0
f(t)2dt

}
dµ(x). □

Exemplo 12.3. Sejam a ∈ R e X(t) = W (t) + at para t ∈ R+. X é um MB
com drift linear. Aplicando a Proposição 12.6 com f = a, obtemos que, para todo
T ∈ R+, a lei de X no intervalo [0, T ] é absolutamente cont́ınua com respeito à lei
de W no mesmo intervalo com densidade dada por

exp
{
µW (T )− µ2

2
T
}
.
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Fórmula de Black-Scholes

A fórmula de Black-Scholes é uma famosa fórmula em finanças que permite
calcular o preço teórico de uma opção europeia. Consideramos, a seguir, que temos
um mercado com dois tipos de ativos financeiros. Um ativo sem risco com taxa de
juros r. Matematicamente, temos que o preço ao longo do tempo deste ativo sem
risco S satisfaz a equação diferencial a seguir

dS = rSdt, (12.9)

ou seja
S(t) = S(0) exp {rt}.

Além disto, temos um ativo com risco R, com tendência (drift) µ e volatilidade σ.
Isto significa que R é um processo de Itô que pode ser representado em notação
diferencial por

dR = R(µdt+ σdW ).

Consideramos aqui a filtração canônica (completa) {Ft, t ≥ 0} do MB W . Usando
a fórmula de Itô, podemos verificar que

R(t) = R(0) exp
{
σW (t) +

(
µ− σ2

2

)
t
}
. (12.10)

A seguir consideramos um produto finaceiro comum chamado opção de compra eu-
ropeia. Esta opção permite comprar o ativo com risco em algum momento posterior
T a um preço K. Portanto, o detentor da opção aposta que, no momento T , o ativo
valerá mais do que K. Nesse caso, o detentor pode comprar o ativo pelo preço K
e vende-lo imediatamente para obter um lucro R(T ) −K. Se o ativo está com um
preço inferior a K, o detentor da opção tem a possibilidade de não exercer a sua
opção de compra. Assim, temos que o preço Ψ(T ) da opção no tempo T é dado por
Ψ(T ) = (RT −K)+.

A questão central aqui é determinar o preço de venda da opção para cada t < T .
No desenvolvimento a seguir, vamos supor a ausência de arbitragem, ou seja, em
nenhum momento é possivel comprar o ativo com risco e vendo-lo em seguida a um
preço mais alto. Assim, supomos que existe um preço justo para a opção europeia.

Para responder à questão central, consideramos uma carteira da forma

dV = αdR+ βdS,

na qual α e β são dois processos estocásticos em H2([0, T ]), representando, respec-
tivamente, a quantitidade de ações e t́ıtulos da carteira. Este tipo de carteira é
chamado de auto-financiadora. Isto significa que somente é posśıvel comprar ações
e t́ıtulos com o dinheiro dispońıvel na carteira. Para calular o preço da opção, su-
pomos que exista uma carteira deste tipo que replica o preço da opção, ou seja, tal
que V (T ) = Ψ(T ).
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Lema 12.2. O preço Ψ(t) da opção europeia no tempo t é igual a V (t).

Prova: Como V (T ) = Ψ(T ) por hipótese, investindo V (t) no tempo t na carteira
podemos obter o mesmo lucro da opção. Assim, se vendessemos a opção a um valor
x > V (t) no tempo t, ninguém a compraria pois seria posśıvel investir a (menor)
quantidade V (t) na carteira e obter o mesmo lucro da opção no tempo T . Por outro
lado, se x < V (t) no tempo t, todo mundo compraria a opção, pois seria posśıvel
obter o mesmo lucro Ψ(T ) com um menor investimento. □

Com o lema acima, a questão central se reduz agora ao cálculo de V (t) para
t < T . Pela fórmula de Itô, temos

d(e−rtV (t)) = −re−rtV (t)dt+ e−rtdV

= e−rt(−rV (t)dt+ α(t)dR+ β(t)dS)

= e−rt(−r(α(t)R(t) + β(t)S(t))dt+ α(t)R(t)(µdt+ σdW ) + β(t)dS

= α(t)S(t)e−rt(−rdt+ µdt+ σdW ) + e−rtβ(t)(−rP (t)dt+ dS).

Por (12.9), o segundo termo é nulo e obtemos

d(e−rtV (t)) = σα(t)S(t)e−rt
(µ− r

σ
dt+ dW

)
.

Devido à presença do termo em “dt”, o processo e−rtV (t), não é um martingale
(se µ ̸= r). No entanto, usando a fórmula de Girsanov, sob a nova probabilidade
dQ =M(T )dP , sendo

M(T ) = exp
{r − µ

σ
W (t)− (r − µ)2

2σ2
t
}
,

obtemos que e−rtV (t) é um martingale com respeito à filtração {Ft, t ≥ 0}. Em
particular, temos que

V (t) = erte−rtV (t)

= ertEQ(e
−rTV (T ) | Ft) = er(t−T )EQ((R(T )−K)+ | Ft). (12.11)

Agora, usando (12.10) obtemos

R(t) = R(0) exp
(
σW (t) + (µ− σ2

2
)t
)

= R(0) exp
(
σW (t) + (r − σ2

2
)t
)
.

Podemos agora usar esta última expressão em (12.11) para calcular V (t) para
t < T . Em seguida, apresentamos somente a expressão de V (0) deixando ao leitor o
cálculo de V (t) (veja Problema 8).
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12.3. TRANSFORMAÇÃO DE GIRSANOV 231

Teorema 12.4 (Fórmula de Black-Scholes para t = 0). O preço da opção europeia
no tempo t = 0 é dado por

Ψ(0) = R(0)Φ(d1)−Ke−rTΦ(d2),

na qual

d1 =
− ln(K/R(0)) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T ,

e Φ é função de distribuição acumulada da lei normal padrão.

Prova: Como F0 é trivial, temos que

V (0) = e−rTEQ[(R(T )−K)+]

= e−rT (EQ[R(T )1{R(T )≥K}]−KEQ[1{R(T )≥K}]). (12.12)

Como W (t) + µ−r
σ t é um MB sob Q, W (T ) tem mesma lei que

√
TN , em que N é

uma v.a. com lei normal padrão. Assim, a lei de R(T ) é a mesma que

R(0) exp
(
σ
√
TN + (r − σ2

2
)T
)
= R(0)eγN+δ, (12.13)

em que γ = σ
√
T e δ = (r − σ2/2)T . Assim, temos que

EQ[1{R(T )≥K}] = Q(R(T ) ≥ K)

= P (R(0)eγN+δ ≥ K)

= P
(
N ≥ ln(K/R(0))− δ

γ

)
= P

(
N ≤ − ln(K/R(0)) + δ

γ

)
= Φ(d2).

De maneira análoga obtemos

EQ[R(T )1{R(T )≥K}] = R(0)E(eγN+δ1{R(0)eγN+δ≥K})

= R(0)E(e−γN+δ1{N≤d2})

= R(0)eδ
1√
2π

∫ d2

−∞
e−γx−x

2/2dx

= R(0)eδ+γ
2/2Φ(d2 + γ)

= R(0)erTΦ(d1).

Colocando as duas últimas expressões em (12.12), obtemos o resultado desejado.
□

Morettin-Gallesco - dezembro/2025
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Problemas

1. Para todo n ≥ 1, considere o operador linear Πn sobre H2(R+) definido para P -
q.t. ω ∈ Ω e todo t ≥ 0 por

Πnf(t, ω) = n

n2∑
i=1

(∫ i/n

(i−1)/n

f(u, ω)du
)
1(i/n, (i+1)/n](t),

Mostrar que Πnf ∈ E e que Πnf → f em H2(R+). Concluir que E é denso em H2(R+)
e em H2([0, T ]) par todo T > 0.

2. Provar (12.1).

3. Dar um exemplo de um martingale local que não é um martingale.

4. Seja W um {Ft}-MB. Usando a fórmula de Itô, verificar se os processos a seguir são
martingales.
(i) X(t) =W (t)2;

(ii) X(t) = t2W (t)− 2
∫ t

0
sW (s)ds.

5. (Lema de Gronwall) Seja f uma função não negativa localmente integrável definida
sobre R+ tal que

f(t) ≤ a+ b

∫ t

0

f(s)ds, t ≥ 0, (12.14)

com a, b constantes não negativas. Mostrar que

f(t) ≤ a exp{bt}.

6. Seja (Xn)n≥1 uma sequência de variáveis aleatórias e X uma variável aleatória defi-
nidas no mesmo espaço de probabilidade. Mostrar as seguintes implicações
(i) Se Xn ≥ 0, E(Xn)→ E(X) <∞ e Xn → X q.c. então Xn → X em L1.
(ii) Se supnE(X2

n) <∞ e Xn → X em probabilidade então Xn → X em L1.

7. Mostrar que a famı́lia {Qt, t ≥ 0} é consistente.

8. (Fórmula de Black-Scholes) Seja λ = (r − µ)/σ e Y (t) = W (t) − λt. Usando a
decomposição Y (T ) = (Y (T )− Y (t)) + Y (t), calcular V (t) para todo t ∈ [0, T ].
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Apêndice
Alguns conceitos matemáticos

A.1 Medida

Seja Ω um conjunto não vazio e {An, n ≥ 1} uma sequência de subconjuntos de
Ω. Dizemos que esta sequência é crescente se An ⊂ An+1, para todo n ≥ 1 e que ela
é decrescente se An+1 ⊂ An, para todo n ≥ 1. Dizemos que An ↑ A se a sequência
é crescente e A = ∪nAn. Analogamente, An ↓ A se a sequência é decrescente e
A = ∩nAn. Definimos o lim supnAn como o conjunto de todos os elementos de
Ω que pertencem a um número infinito de conjuntos An, e o lim infnAn como o
conjunto dos elementos de Ω que pertencem a todos os conjuntos An com exceção
de um número finito deles. Obviamente, lim infnAn ⊂ lim supnAn e vale a seguinte
proposição.

Proposição A.1.1 Temos as seguintes propriedades

(i) lim supnAn =
⋂∞
m=1

⋃∞
n=mAn;

(ii) lim infnAn =
⋃∞
m=1

⋂∞
n=mAn;

(iii) (lim supnA
c
n)
c = lim infnAn.

A seguir, denotemos por ∅ o conjunto vazio.

Definição A.1.1. Uma classe F de subconjuntos de Ω é uma álgebra se:

(i) Ω pertence a F ;

(ii) se A ∈ F , então Ac ∈ F ;

(iii) se A,B ∈ F , então A ∪B ∈ F .

Como consequências temos:

(a) ∅ ∈ F ;
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(b) uma álgebra é fechada sob reuniões finitas;

(c) uma álgebra é fechada sob intersecções finitas;

(d) uma álgebra é fechada sob todas as operações finitas com conjuntos.

Exemplo A.1.1. São exemplos de álgebras:

(i) Dado qualquer Ω dado, seja F = 2Ω o conjunto de todos os subconjuntos de
Ω.

(ii) Seja Ω = R e F a classe contendo todas as reuniões finitas disjuntas de inter-
valos da forma (a, b], (−∞, a] ou (b,+∞), a, b ∈ R.

(iii) Seja Ω = Rp, p > 1, e F a classe contendo todas as reuniões finitas disjuntas
dos retângulos

∏p
i=1 Ii, onde para todo i, Ii é um intervalo da forma descrita

em (ii).

Definição A.1.2. Uma classe F de subconjuntos de Ω é uma σ-álgebra se:

(i) Ω pertence a F ;

(ii) se A ∈ F , então Ac ∈ F ;

(iii) se An ∈ F , n ≥ 1, então
⋃∞
n=1An ∈ F .

Como consequências da definição acima temos:

(a) ∅ ∈ F ;

(b) (iii) e (a) implicam que se An ∈ F , n = 1, . . . , p, então ∪pn=1An ∈ F ;

(c) uma σ-álgebra é uma álgebra fechada sob reuniões enumeráveis;

(d) a reunião em (iii) pode ser substitúıda por intersecção;

(e) uma σ-álgebra é fechada sob todas as operações enumeráveis de conjuntos;

(f) uma σ-álgebra é uma álgebra.

Exemplo A.1.2. São exemplos de σ-álgebras:

(i) Para qualquer Ω dado, F∅ = {∅,Ω} é uma σ-álgebra; é a menor σ-álgebra de
subconjuntos de Ω, chamada σ-álgebra trivial;

(ii) Para qualquer Ω dado, o conjunto 2Ω é uma σ-álgebra; é a maior σ-álgebra de
subconjuntos de Ω. Para qualquer σ-álgebra F sobre Ω, teremos F∅ ⊂ F ⊂ 2Ω;
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(iii) A menor σ-álgebra contendo uma classe A de subconjuntos de Ω é chamada a
σ-álgebra gerada por A, e a denotamos por F = F [A];

(iv) Seja Ω = Rp, p ≥ 1, e consideremos a σ-álgebra gerada pelos retângulos
p-dimensionais da forma

∏p
i=1(ai, bi], ai, bi ∈ R. Esta σ-álgebra é chamada

σ-álgebra de Borel e é denotada por Bp. Esta também é a σ-álgebra gerada
pela classe dos conjuntos abertos de Rp; B1, ou simplesmente B, é a σ-álgebra
de Borel de R.

A intersecção de uma famı́lia arbitrária de σ-álgebras {Fα, α ∈ Γ}, onde Γ é um
conjunto de ı́ndices, é uma σ-álgebra denotada por

⋂
α∈ΓFα ou

∧
α∈ΓFα. Contudo,⋃

α∈ΓFα não precisa ser uma σ-álgebra em geral. Pelo item (iii) do Exemplo A.1.2,
existe uma σ-álgebra minimal contendo todas elas, denotada

∨
α∈ΓFα.

A seguir, apresentamos outros sistemas de conjuntos importantes.

Sistema-π e sistema de Dynkin. Dizemos que F é um sistema-π se A,B ∈ F ,
então A ∩B ∈ F . Dizemos que F é uma sistema de Dynkin se:

(i) Ω ∈ F ;

(ii) A,B ∈ F , B ⊂ A, então A−B = A ∩Bc ∈ F ;

(iii) Se An ∈ F e An ⊂ An+1 para todo n ≥ 1, então ∪∞n=1An ∈ F .

Um sistema de Dynkin é também chamado sistema-λ. Temos as seguintes propri-
edades:

(a) Dada qualquer coleção de conjuntos, existe um sistema de Dynkin minimal
contendo esses conjuntos, a saber, a intersecção de todos os sistemas de Dynkin
contendo a coleção. Esse sistema de Dynkin minimal é dito ser gerado pela
coleção de conjuntos.

(b) Toda σ-álgebra é um sistema de Dynkin;

(c) Um sistema de Dynkin é uma σ-álgebra se, e somente se, é um sistema-π.

Classes monotônicas. Uma coleção de conjuntos C é uma classe monotônica se:

(i) En ↑ E, En ∈ C ⇒ E ∈ C;

(ii) En ↓ E, En ∈ C ⇒ E ∈ C.

Alguns fatos sobre classes monotônicas são:

(a) Dada qualquer coleção de conjuntos, existe uma classe monotônica minimal
contendo esses conjuntos, a saber, a intersecção de todas as classes monotônicas
contendo a coleção. Essa classe monotônica minimal é dita ser gerada pela
coleção de conjuntos.
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(b) Uma álgebra é uma σ-álgebra se e somente for uma classe monotônica.

(c) Seja F0 uma álgebra e F a σ-álgebra gerada por F0. Seja C a classe monotônica
gerada por F0. Então C = F .

Para mais detalhes, veja Chung (1974).

Para introduzir o conceito de medida consideremos um exemplo. Seja Ω ar-
bitrário e F = 2Ω. Seja n uma função definida em F com valores em [0,∞], ou seja,
uma função de conjunto, tal que n(A) seja o número de elementos de A ∈ F , se A
for finito e n(A) =∞ se A for infinito. Então n tem as propriedades:

(i) n(∅) = 0;

(ii) Se A,B ∈ F , A ∩B = ∅, então n(A ∪B) = n(A) + n(B);

(iii) Se Ai ∈ F , i ≥ 1, disjuntos, então n(
⋃∞
i=1Ai) =

∑∞
i=1 n(Ai).

Observe que a propriedade (iii) implica a propridade (ii). A função n é uma medida
sobre F . Precisamente, temos a seguinte definição no caso em que F é somente uma
álgebra.

Definição A.1.3. Seja F uma álgebra de subconjuntos de Ω. Uma função de
conjuntos µ : F → [0,∞] é uma medida sobre F se:

(i) µ(∅) = 0;

(ii) Sejam Ai ∈ F , i ≥ 1, disjuntos e a reunião deles pertence a F , então
µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

Uma medida µ é finita se µ(Ω) < ∞. No caso em que µ(Ω) = 1, µ é chamadada
de medida de probabilidade ou simplesmente de probabilidade. Uma medida µ é σ-
finita se existir uma sequência de conjuntos {An, n ≥ 1} de F com Ω =

⋃
nAn e

µ(An) < ∞, para todo n ≥ 1. Sempre podemos tomar a sequência {An, n ≥ 1}
como constitúıda de conjuntos disjuntos. Uma propriedade é verdadeira em µ-quase
todo ponto (µ-q.t.p) se existe um conjunto mensurável A com µ(Ac) = 0 tal que a
propriedade vala para todo x ∈ A.

Da definição de uma medida seguem as seguintes propriedades elementares:

(a) Se A,B ∈ F , A ⊂ B, então µ(A) ≤ µ(B);

(b) Se A,B ∈ F , A ⊂ B, µ(A) <∞, então µ(B −A) = µ(B)− µ(A).

Exemplo A.1.3. Seja Ω = R e F a classe de todas as reuniões finitas e disjuntas
de intervalos do tipo (a, b], (−∞, a] ou (b,+∞), a, b ∈ R. Defina λ : F → [0,∞] tal
que:
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(i) λ((a, b]) = b− a, a ≤ b;

(ii) λ(I) =∞, se I for um intervalo não limitado;

(iii) Seja A ∈ F ; então, A =
⋃n
r=1 Ir, onde os Ir são disjuntos e do tipo acima

descrito. Coloque λ(A) =
∑n

r=1 λ(Ir).

Então, λ é uma medida sobre F .

Exemplo A.1.4. De maneira geral, dada uma função F uma função crescente,
cont́ınua à direita tal que limx→∞ F (x) = 1, limx→−∞ F (x) = 0, defina uma função
de conjunto µF sobre a álgebra F da seguinte maneira:

µF ((a, b]) = F (b)− F (a), a ≤ b,
µF ((−∞, a]) = F (a),

µF ((b,+∞)) = 1− F (b),
µF (R) = 1.

Se A ∈ F , então A = ∪mr=1Ir, e defina µF (A) =
∑m

r=1 µF (Ir). Temos que µF é uma
medida de probabilidade sobre F .

Consideremos, agora, uma medida sobre uma σ-álgebra.

Definição A.1.4. Por um espaço mensurável entendemos o par (Ω,F), consistindo
de um conjunto Ω e de uma σ-álgebra F de subconjuntos de Ω. Um subconjunto A
de Ω é chamado mensurável (com respeito a F) se A ∈ F .

Definição A.1.5. Por uma medida µ sobre um espaço mensurável (Ω,F) entende-
mos uma função de conjunto com valores em [0,∞] definida sobre todos os conjuntos
de F e satisfazendo:

(i) µ(∅) = 0;

(ii) µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei), para toda sequência {Ei, i ≥ 1} de conjuntos men-

suráveis e disjuntos.

Um espaço de medida (Ω,F , µ) é um espaço mensurável (Ω,F) munido de uma
medida µ definida sobre F .

Exemplo A.1.5. A medida λ do Exemplo A.1.3 pode ser estendida à σ-álgebra
B. Esta extensão é chamada de medida de Lebesgue sobre R. A prova deste fato
não é simples e pode ser encontrada em Billingsley (1995). Este é um exemplo
de medida σ-finita (basta tomar An = (n, n + 1], n = 0,±1, . . .). A restrição da
medida de Lebesgue aos borelianos do intervalo [−1, 1] é um exemplo de medida
finita. De maneira análoga, as medidas de probabilidade do Exemplo A.1.4. podem
ser estendidas à B. Enfim, seja Ω um conjunto não enumerável e F = 2Ω. Seja µ a
medida definida por µ({x}) = 1, para todo x ∈ Ω. Então, µ não é σ-finita.
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A.2 Integral com respeito a uma medida

A noção de integral estende as noções de comprimento, área e volume e os
trabalhos mais importantes remontam a Borel, 1898 e Lebesgue, 1902. A extensão
a σ-álgebras sobre espaços abstratos foi feita por Fréchet, em 1915. A integral é
definida, sucessivamente, para uma função simples, positiva e arbitrária.

Dado um espaço mensurável (Ω,F), uma função simples f : Ω → R é uma
combinação linear finita de indicadores de subconjuntos mensuráveis A1, . . . , Ak de
Ω, isto é,

f =

k∑
i=1

ciIAi , ci ∈ R.

Evidentemente, f admite mais de uma representação como aquela acima, mas
podemos associar a f uma representação canônica,

f =

p∑
j=1

ajIBj , (A.2.1)

tal que:

(i) os Bj são não vazios e dois a dois disjuntos, Bj = f−1(aj);

(ii) Ω = ∪pj=1Bj (e portanto algum dos aj pode ser nulo).

Indicamos por S+(Ω) o conjunto das funções simples f : Ω → R+. Seja f ∈
S+(Ω) com representação canônica (A.2.1). Definimos a integral de f com respeito
à medida µ como sendo∫

fdµ =

∫
f(ω)dµ(ω) =

p∑
j=1

ajµ(Bj)

onde usamos a convenção 0×∞ = 0.

Sejam f, g ∈ S+(Ω) então:

(a) se f ≤ g, segue-se
∫
fdµ ≤

∫
gdµ;

(b) se a, b ≥ 0, temos
∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ.

Seja agora g : Ω→ [0,∞] uma função mensurável positiva com valores possivelmente
infinitos. Então a integral de g com respeito á µ é definida por∫

gdµ =

∫
g(ω)dµ(ω) = sup

{∫
fdµ : f ∈ S+(Ω), f ≤ g

}
.

Os seguintes fatos são válidos:
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(a) Se g ≥ 0 e h ≥ 0 e g = h, em µ-q.t.p então
∫
gdµ =

∫
hdµ;

(b) se g ≥ 0, então g = 0 em µ-q.t.p implica que
∫
gdµ = 0;

(c) se g ≥ 0 e
∫
gdµ <∞, então g <∞ em µ-quase todo ponto;

(d) se g ≥ 0, h ≥ 0 e g ≤ h, então
∫
gdµ ≤

∫
hdµ.

Para toda g ≥ 0 e A conjunto mensurável, definimos∫
A
gdµ =

∫
IAgdµ.

Os dois teoremas a seguir são fundamentais. Para provas, veja Barttle (2001).

Teorema A.2.1. [Lema de Fatou] Seja fk : Ω → [0,∞], k ≥ 1, uma sequência de
funções mensuráveis. Então,∫

lim inf
k→∞

fk dµ ≤ lim inf
k→∞

∫
fk dµ ≤ ∞.

Teorema A.2.2. [da Convergência Monótona] Seja fk : Ω → [0,∞], k ≥ 1, uma
sequência crescente de funções mensuráveis. Então,∫

lim
k→∞

fk dµ = lim
k→∞

∫
fk dµ ≤ ∞.

Consequências importantes desses teoremas são:

(e) g ≥ 0, h ≥ 0 ⇒
∫
(g + h)dµ =

∫
gdµ+

∫
hdµ;

(f) Dada uma sequência de funções positivas {fk, k ≥ 1}, temos que

∫ ( ∞∑
k=1

fk

)
dµ =

∞∑
k=1

∫
fk dµ.

(g) Seja g ≥ 0 e sejam {Ak, k ≥ 1} uma sequência de subconjuntos mensuráveis
de Ω, dois a dois disjuntos e cuja reunião é Ω. Então,

∫
g dµ =

∞∑
k=1

∫
Ak

g dµ.
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Consideremos, agora, uma função mensurável g : Ω → R. Como essa função
pode ser escrita como a diferença entre sua parte positiva, f+, e sua parte negativa,
f−, ou seja, f = f+ − f−, definamos∫

fdµ =

∫
f+dµ−

∫
f−dµ,

desde que tenhamos
∫
f+dµ <∞ ou

∫
f−dµ <∞. No caso em que as duas integrais

são finitas, dizemos que f é integrável com respeito à µ.

Os seguintes fatos podem ser facilmente provados.

(a) Se g, h são funções integráveis, então
∫
(ag + bh)dµ = a

∫
gdµ + b

∫
hdµ, com

a e b reais;

(b) se h é uma função mensurável tal que |h| ≤ g em µ-q.t.p e g é integrável, então
h é integrável;

(c) se g, h são funções integráveis e g ≤ h em µ-q.t.p, então
∫
gdµ ≤

∫
hdµ;

(d) se g é integrável, então |g| é integrável e |
∫
gdµ| ≤

∫
|g|dµ. A rećıproca

também vale.

O teorema seguinte é importante em muitas aplicações.

Teorema A.2.3. [da Convergência Dominada] Sejam f e {fk, k ≥ 1} funções
mensuráveis, tal que fk → f , em µ-q.t.p. Suponha que |fk| ≤ g em µ-q.t.p com g
integrável. Então

lim
k→∞

∫
fkdµ =

∫
fdµ.

Terminamos esta seção observando que quando (Ω,F , µ) = (R,B, λ) onde λ é a
medidade de Lebesgue, é comum escrever (por analogia com a integral de Riemann)∫
fdx em vez de

∫
fdλ.

A.3 Análise funcional

A seguir todos os espaços vetoriais considerados serão sobre o corpo R.

Um espaço de Banach é um espaço vetorial normado completo, isto é

Definição A.3.1. Um espaço vetorial normado (X, ∥ · ∥) é chamado de espaço de
Banach se toda sequência de Cauchy em X converge para um elemento de X, ou
seja: se {xn}n≥1 ⊂ X e

∀ε > 0,∃N ≥ 1 tal que ∥xn − xm∥ < ε, ∀n,m ≥ N,
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então existe x ∈ X tal que limn→∞ ∥xn − x∥ = 0.

Um espaço de Hilbert é um espaço de Banach cuja norma é induzida por um produto
interno.

Definição A.3.2. Um espaço vetorial H é um espaço de Hilbert se ele é equipado
de um produto interno

⟨·, ·⟩ : H ×H → R,

isto é:

1. ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩,

2. ⟨x, y⟩ = ⟨y, x⟩,

3. ⟨x, x⟩ ≥ 0, com igualdade somente se x = 0,

tal que H é completo considerando a norma induzida

∥x∥ :=
√
⟨x, x⟩.

Definição A.3.3. Sejam X e Y espaços vetoriais. Uma aplicação T : X → Y é um
operador linear (ou transformação linear) se satisfaz:

T (αx+ βy) = αT (x) + βT (y), para todos x, y ∈ X e α, β ∈ R.

Se X e Y são espaços normados, o operador linear T é cont́ınuo se existe uma
constante C > 0 tal que

∥T (x)∥Y ≤ C∥x∥X , ∀x ∈ X.

Um operador linear T é chamado de isometria se ∥T (x)∥Y = ∥x∥X para todo
x ∈ X. T é chamado de contração se ∥T (x)∥Y ≤ ∥x∥X para todo x ∈ X.

Proposição A.3.1. Seja H um espaço de Hilbert e S um subespaço fechado de H.
Existe um operador linear Π : H → H tal que

∥x−Πx∥ = min
y∈S
∥x− y∥.

Π é chamada de projeção ortogonal sobre S. Em particular Π é uma contração.

Teorema A.3.1. (Extensão de Isometrias em Espaços de Hilbert) Sejam H e H ′

espaços de Hilbert e V ⊆ H um subespaço vetorial denso em H. Seja uma isometria
T : V → H ′. Então, existe um único operador linear T̃ : H → H ′ tal que:
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1. T̃ é uma isometria de H em H ′.

2. T̃ estende T , isto é,
T̃ (x) = T (x), ∀x ∈ V.

Espaços Lp

Seja (Ω,F , µ) um espaço de medida. Definiremos os espaços Lp(Ω,F , µ) para
p ∈ [1,∞). Para começar definimos, para p ∈ [1,∞), o espaço vetorial

Lp(Ω,F , µ) =
{
f : Ω→ R, f mensurável tal que

∫
|f |pdµ <∞

}
.

Observe que o espaço L1(Ω,F , µ) corresponde ao espaço das funções integráveis
com respeito à µ. Consideramos a relação ∼ em Lp(Ω,F , µ) definida por: f ∼ g se
f = g em µ-quase todo ponto. É fácil mostrar que esta relação é uma relação de
equivalência em Lp(Ω,F , µ) e portanto podemos definir o espaço quociente

Lp(Ω,F , µ) := Lp(Ω,F , µ)/ ∼ .

Intuitivamente, no espaço Lp(Ω,F , µ) identificamos funções iguais em µ-q.t.p. As-
sim, é comum identificar uma função mensurável f com a sua classe de equi-
valência e escrever simplesmente f ∈ Lp(Ω,F , µ). Agora, considere a aplicação,
∥ · ∥p : Lp(Ω,F , µ)→ R+,

f 7→
(∫
|f |pdµ

)1/p
.

Temos a seguinte

Proposição A.3.2. Para todo p ∈ [1,∞), (Lp(Ω,F , µ), ∥ · ∥p) é um espaço de
Banach.

No caso p = 2, a norma ∥ · ∥2 é induzida pelo produto interno

⟨f, g⟩ :=
∫
fg dµ,

isto é, ∥f∥2 =
√
⟨f, f⟩. Como consequência imediata da proposição anterior temos a

Proposição A.3.3. (L2(Ω,F , µ), ⟨·, ·⟩) é um espaço de Hilbert.

No caso em que µ é uma medida finita temos a seguinte

Proposição A.3.4. Se µ é uma medida finita temos que se p > p′, Lp(Ω,F , µ) ⊂
Lp′(Ω,F , µ). No caso em que µ é uma probabilidade, se f ∈ Lp(Ω,F , µ), ∥f∥p′ ≤
∥f∥p.

Definição A.3.4. Seja T um operador linear de Lp(Ω,F , µ) → Lq(Ω,F , µ), para
p, q ≥ 1. Dizemos que T é um operador positivo se, para f ≥ 0, tivermos Tf ≥ 0.
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Soluções de Problemas
Selecionados

Caṕıtulo 1

3) Note que f(X) pode ser vista como f ◦X : ω → f(X(ω)), logo (f ◦X)−1 =
X−1 ◦ f−1 e, portanto, para todo B ∈ B, (f ◦X)−1(B) = (X−1 ◦ f−1)(B) =
X−1(f−1(B)) ∈ F , pois f−1(B) ∈ B.

4) (i) Se x1 ≤ x2, então (−∞, x1] ⊆ (−∞, x2], donde FX(x1) ≤ FX(x2).

(ii) Se xn → −∞, então An = (−∞, xn] são encaixados e de intersecção vazia.
Pelo Corolário 1.1, temos que P (An)→ 0. Similarmente, para xn →∞.

(iii) Se xn ↓ x, então An = (−∞, xn] ↓ (−∞, x], logo FX(xn)→ FX(x).

10) Considere a classe A = {A ∈ F : ∀ε > 0, existeAε tal queP (A∆Aε) < ε} e
mostre que F ⊂ A. Primeiramente, note que A é não vazia, pois ∅ ∈ A e
A contém F0, pois é suficiente tomar A = Aε. Em segundo lugar, A é uma
classe monotônica (Prove!). Pelo teorema das CM, A contém F e portanto
todo conjunto de F pertence a A, e o resultado segue.

11) Devemos provar que existe uma sequência de constantes bn tais que

lim
m→∞

P [∪∞n=m|Xn/bn − 0| > ϵ] = 0,

para todo ϵ > 0. Mas, para cada inteiro n, podemos encontrar bn tal que
P (|Xn| > bn/n) ≤ 1/2n. Logo,

P (∪∞n=m|
Xn

bn
| > 1

n
) ≤

∞∑
n=m

P (|Xn

bn
| > 1

n
) ≤

∞∑
n=m

1

2n

e quando m→∞, esta é a cauda de uma série convergente, logo tende a zero
e o resultado segue com ϵ = 1/n.
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15) Para (a), tome An = [0, 1/n] sobre [0, 1] com medida uniforme; P (An) =
1/n,

∑
1/n =∞ e P (An i.v.) = 0 < 1.

Para (b) tome An = [0, 1− 1/n] sobre [0, 1], com medida uniforme ; P (An) =
1− 1/n,

∑
(1− 1/n) =∞ e P (An i.v.) = 1.

16) Depois de n passos, removemos 2n − 1 intervalos abertos disjuntos e ficamos
com 2n intervalos fechados disjuntos. Chamemos de Bn a reunião dos removi-
dos. Então,

P (Bn) =
1

3
+

2

32
+

4

33
+ . . .+

2n−1

3n
= 1−

(
2

3

)n
.

Quando n → ∞, Bn → B, aberto, e P (Bn) → P (B) = 1, logo P (C) =
1− P (B) = 0.

18) (1) Prove que F é uma σ-álgebra sobre Ω; para isso mostre que Ω ∈ F , F é
fechada sob complementos e é fechada sob reuniões enumeráveis.

(2) Prove que P é uma medida de probabilidade sobre (Ω,F). Para isso,
mostre que P (Ω) = 1, P (∅) = 0 e é enumeravelmente aditiva.

Caṕıtulo 2

2) Cada ω ∈ [0, 1] tem expansão binária ω = 0.a1a2a3 · · · , com ai ∈ {0, 1} e
Xn(ω) = an. Temos que provar que

P (Xn1 = b1, . . . , Xnk
= bk) =

k∏
j=1

P (Xnj = bj),

para qualquer conjunto de ı́ndices n1, . . . , nk e valores b1, . . . , bk. Calcule
P (Xn = b) para um n fixo e b ∈ {0, 1}. {Xn = b} é o conjunto de números
cujo n-ésimo d́ıgito binário é b, logo a reunião de intervalos de comprimento
2−n. Verifique que a probabilidade do primeiro termo acima é 2−k. Mostre
que o segundo termo é

∏k
j=1(1/2) = 1/2k.

6) Se Sn/n→ Y q.c, então para quase todo ω, Sn(ω)/n→ Y (ω). Use a Lei 0-1 de
Kolmogorov; pela independência, todo evento caudal tem probabilidade zero
ou um. Mostre que Y é uma variável mensuravel relativamente à σ-álgebra
caudal. Isso implicará que Y é constante em q.t.p.

8) Temos que A = {ω : Xn(ω) ∈ Bn iv}. Tome B ∈ B∞ como segue: B=
conjunto de todas as sequências (x1, x2, . . .) tal que xn ∈ Bn i.v. Então,
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A = X−1(B), onde X = (X1, X2, . . .). Seja σ uma permutação de 1, 2, . . . , N
e seja Y = (Xσ1 , Xσ)2, . . .). Note que Xn = Xσn , para todo n > N . Então,

Y −1(B) = {ω : Xσn(ω) ∈ Bn i.v} = X−1(B). De fato, seja ω ∈ X−1(B), que
vale se, e somente se, Xn(ω) ∈ Bn, se e somente se Xn ∈ Bn para um número
infinito de n, se e somente se Xn(ω) pertence a algum dos Bn, Bn+1, . . .,não
importa quão grande seja n - a cauda da sequência Bn, se e somente Xσn(ω) ∈
Bn i.v, se e somente se ω ∈ Y −1(B), com a escolha de n > N .

10) Suponha Λ = {ω : Xn(ω)converge}. Por Kolmogorov, ou P (Λ) = 0 ou P (Λ) =
1. Suponha P (Λ) = 1. Então, o valor limite deve ser uma constante c. Então,
limn→∞ P (|Xn−c| > ε) = 0, para todo ε > 0. ComoX1 ∼ Xn, P (X1 = c) = 1,
uma contradição com a hipótese que a distribuição deX não esteja concentrada
num único ponto.

11) (a) Temos

P

(
Xn

logn
> 2

)
= P (Xn > logn2) =

1− P (Xn ≤ logn2) = 1− F (logn2) = e− logn2
=

1

n2
.

Logo,

∑
n≥2

P

(
Xn

log n

)
=
∑
n≥2

1

n2
,

e por Borel-Cantelli, P ( Xn
logn > 2 i.v) = 0.

b) Tome

P

(
Xn

log n
> 1

)
= P (Xn > logn) = 1− p(Xn ≤ logn)

= 1− F (log n) = e− logn =
1

n
.

Logo,

∞∑
n=2

P

(
Xn

log n
> 1

)
=
∑
n≥2

1

n
=∞,

e lembrando que os Xi são independentes, por Borel-Cantelli o resultado segue.
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16)

E(|X + Y |) =
∫ ∫

|x+ y|dFX(x)dFY (y),

=

∫
R
[

∫
R
|x+ y|dFX(x)]dFY (y)

a primeira igualdade pela indepenência e a segunda por Fubini.

Portanto, para pelo menos um y0,
∫
|x+ y0|dFX(x) <∞. Segue que

∫
|x|dFX(x) ≤

∫
|x+ y0|dFX(x) + |y0| <∞.

19) (a) V ar(X1 + . . . +Xn) =
∑n

i=1Var(Xi) + 2
∑∑

i<j Cov(Xi, Xj), mas como
as Xi são não correlacionadas, Cov(Xi, Xj) = 0, para todo i, j e o resultado
segue.

(b) Seja Yn =
∑
Xi/n; pela desigualdade de Chebyshev,

P (|Yn − E(Yn)| ≥ ε) ≤
Var(Yn
ε2

=

1

n2ε2

n∑
k=1

σ2k.

Logo, pela hipótese que
∑n

k=1 σ
2
k/n

2 → 0, para n→∞, obtemos que
limn→∞ P (|Yn − E(Yn)| ≥ ε) → 0, ou seja, Yn − (µ1 + . . . + µn)/n → 0 em
probabilidade. Também, por hipótese de (b), E(|Yn−E(Yn)|2 → 0, se n→∞,
ou seja, Yn − E(Yn)→ 0 em L2.

22) Para F1, os átomos são A = A1 = {1, 3, 5, 7} and Ac = A2, logo F1 =
{∅, {1, 3, 5, 7}, {2, 4, 6, 8},Ω}. Faça o mesmo para F2 e chame os átomos de B1

e B2. Calcule P (A1 ∩B1) = 1/4 = P (A1)P (B1), etc, até P (A2 ∩B2) = 1/4 =
P (A2)P (B2). Verificar que ∅ and Ω satisfazem P (∅∩B) = 0 = P (∅)P (B) etc.

Caṕıtulo 3

2) A σ-álgebra F é finita com átomos Λ1, . . . , ,Λn. Y é uma função tomando
valores ci em cada Λi. Logo, Y é mensurável com respeito a F e, de fato,
σ(Y ) = F (Prove!). Por definição, E(X|Y ) = E(X|σ(Y )) = E(X|F .
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6) Seja o e.p. (Ω,G, P ) e F ⊂ G. (a) Chamemos Z = E(X|F); por definição,
E(X|F) é F-mensurável e integrável. Então, como ZY é integrável e Z é
F-mensurável, teremos

E(ZY ) = E[E(ZY |F)] = E[ZE(Y |F)] = E[E(X|F)E(Y |F)].

(b) De modo análogo, seja W = E(Y |F), que é F-mensurável e integrável, de
modo que

E(XW ) = E[E(XW |F)] = E[WE(X|F)] = E[E(Y |F)E(X|F)].

de (a) e (b), E(ZY ) = E(XW ), e o resultado segue.

7) Suponha, por absurdo, que E(X|F) seja não negativa q.c. Então existe B ∈ F
tal que E(X|F) < 0 sobre B. Defina B = {ω ∈ Ω : E(X|F)(ω) < 0}. Então
B ∈ F . Considere

∫
B E(X|F)dP =

∫
BXdP. Pela definição de B a primeira

integral é negativa. Como X ≥ 0 q.c., a segunda integral é não-negativa, uma
contradição.

9)

Var[E(Y |F)] = E[E(Y |F)]2 − [E(E(Y |F))]2

≤ E[E(Y 2)|F)]− ([E(Y )]2,

pela desigualdade de Jensen, e o lado direito da desigualdade é igual a E(Y 2)−
[E(Y )]2 = Var(Y ).

12) Temos que PY (B−X) é F(X)-mensurável, logo é suficiente verificar que P (X+
Y ∈ B|X) satisfaz a definição de esperança condicional. Seja Λ ∈ F(X), então
Λ = X−1(A), para algum A ∈ B1. Segue que∫

Λ
PY (B −X)dP =

∫
A
PY (B −X)PX(dx).

Seja λ = PXPY e use o teorema de Fubini no lado direito:∫
A
PX(dx)

∫
{x+y∈B}

PY (dy) =

∫ ∫
{x∈A,x+y∈B}

λ(dx, dy) =

∫
{X∈A,X+Y ∈B}

dP = P (X ∈ A,X + Y ∈ B)

e o resultado segue.
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15) Tome E(Sn|Sn, Sn+1, . . .); como Sn é mensurável relativamente a F(Sn, Sn+1, . . .),
segue que E(Sn|Sn, Sn+1, . . .) = Sn. Mas

Sn = E(Sn|Sn, Sn+1, . . .) = E(X1 + . . .+Xn|Sn, . . .)

= E(X1|Sn, . . .) + . . .+ E(Xn|Sn, . . .) = nE(X1|Sn, . . .),

por simetria, e o resultado segue.

17) Observe que por simetria, (X,Y ) tem mesma lei que (−X,−Y ). Portanto,
temos que para toda função g boreliana e limitada,

E(g((X + Y )2)X) = −E(g((X + Y )2)X).

Assim, E(g((X + Y )2)X) = 0 o que implica que E(X | (X + Y )2) = 0.

19) O lado esquerdo da igualdade fica E(X2) − 2E[XE(X|F)] + E[E(X|F)2].
Como E(X|F) é mensurável relativamente a F , mostre que E[XE(X|F)] =
E[E(X|F)2], usando a lei de esperanças iteradas. A igualdade segue.

Caṕıtulo 4

4) Provemos para o caso de um submartingale. Nesse caso, E(Xn+1) ≥ E(Xn),
para todo n. Como E(Xn) = E(X1), para todo n, então E(Xn+1) = E(Xn),
para todo n. Defina Yn = Xn+1−Xn. Segue que E(Yn|Fn) ≥ 0 e que E(Yn) ≥
0 (Por que?). Como E(Xn+1) = E(Xn), obtemos E(Yn) = 0 = E[E(Yn|Fn)],
de onde segue E(Yn|Fn) = 0 e, portanto, E(Xn+1|Fn) = Xn q.c.

10) (a) F é gerada por reuniões de conjuntos da forma {n} e Ω−{1, 2, . . . , n}, logo
é suficiente verificar que E(X|Fn−1) = Xn−1 para tais conjuntos. Claramente
vale para Λ = {n} e para Λ = Ω− {1, 2, . . . , n− 1} temos

∫
Λ
XndP =

∫
Ω−{1,2,...,n

XndP +

∫
{n}

XndP = nP (k > n)− P (k = n) =

n

n+ 1
− (

1

n
− 1

n+ 1
) =

n− 1

n
=

∫
Ω−{1,...,n−1}

Xn−1dP = (n− 1)P (k > n− 1) =
n− 1

n
.

Agora limn→∞Xn = −1 e o resultado segue.
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(b) Seja lima lim supn
∫
|Xn|>a |Xn|dP ; tome k > n > a (a→ +∞). Temos que

essa expressão é igual a

lim
a

lim sup
n

[nP (k > n)] = lim
a

lim sup
n

n

n+ 1
= 1

logo Xn não é u.i. por que o limite deveria ser zero.

(c) Mostre que P (supn |Xn| ≥ λ) = 1/(λ+ 1). Pelo teorema,

P ( max
1≤k≤n

|Xk| ≥ λ) ≤
1

λ
E(|Xn|).

Mas E(|Xn|) = 2n/(n+ 1) (prove!), portanto

P ( max
1≤k≤n

|Xk| > λ) ≤ 1

λ

2n

n+ 1
.

Para n → ∞, P (supk |Xk| ≥ λ) ≤ 2/(λ) e este limite superior é maior que
1/(λ+ 1), para λ > −1.

11) (a) Considere os martingales {Y1, Y1 + Y2} e {Y2, Y2}. Então Y1 e Y2 são i.i.d,
média zero (Prove!). A soma é {Y1 + Y2, Y1 + 2Y2}, que não é um martingale
pois

E(Y1 + 2Y2|Y1 + Y2) = Y1 + Y2 + E(Y2|Y1 + Y2) = (3/2)(Y1 + Y2).

Por exemplo, podemos tomar Y1 e Y2 iid, resultantes do lançamento de duas
modedas honestas.

(b) Tome X1 = −1, X2 = 0, F1 = F2 = {∅,Ω}. Então, E(X2|F1) = 0 > −1 =
X1 e E(|X2||F1) = 0 < 1 = |X1|.

13) Primeiro, observe que |E(X|B)| ≤ E(|X||B). Logo,∫
{|E(X|B)|>λ}

|E(X|B)|dP ≤
∫
{|E(X|B)|>λ}

E(|X||B)dP. (12.15)

Pela definição de EC, notando que o conjunto {ω : |E(X|B)|λ} é B-mensurável,
temos que ∫

{|E(X|B)|>λ}
|E(X|B)|dP =

∫
{|E(X|B)|>λ}

|X|dP (12.16)

Por Chebyshev,
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P{|E(X|B)| > λ} ≤ E(|E(X|B)|)
λ

≤ E(|X|)
λ

. (12.17)

Usando (12.19) e (12.20) temos∫
{|E(X|B)|>λ}

|E(X|B)|dP ≤
∫
{|E(X|B)|>λ}

|X|dP, (12.18)

sujeitos a (12.17). Mas X é integrável, então dado ε > 0, existe δ > 0 tal

que se P (A) < δ,
∫
A |X|dP < ε. Logo, para λ → ∞, λ > E(|X|)

δ , temos que
P{|E(X|B)| > λ} < δ e, portanto,∫

{|E(X|B)|>λ}
|X|dP < ε

e ∫
{|E(X|B)|>λ}

|E(X|B)|dP < ε,

logo {E(X|B)} é uniformemente integrável.

18) Temos que

E(XT |Fs) = E[E(X∞|FT )|Fs] = E(X∞|Fs) = Xs.

Logo, é suficiente provar que E(X∞|FT ) = XT

Seja A ∈ FT . É suficiente provar que
∫
A∩{T<∞}XT =

∫
A∩{T<∞}X∞, porque

XT = X∞ sobre {T =∞}.
Seja tk = T ∧k, então A∩{T ≤ k} ∈ FTk , porque A∩{T ≤ k}∩{Tk ≤ j} ∈ Fj ,
para todo j. Usando o TAO,∫

A∩{T≤k}
XTk =

∫
A∩{T≤k}

Xk, pois Tk ≤ k. (12.19)

Também, XTk = XT∧k → XT , q.c. quando k →∞ e E(X∞|FTk) = XTk . Isso
é verdade porque ∫

Λ
XTk =

∫
Λ
Xk =

∫
Λ
Xk+n =

∫
Λ
X∞,

para todo Λ ∈ FTk . A segunda igualdade segue pela definição de martingale e
a terceira pela i.u.
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Agora, a equação (12.19) pode ser escrita∫
A∩{T≤k}

XTk =

∫
A∩{T≤k}

Xk+n =

∫
A∩{T≤k}

X∞, (12.20)

para todo n, usando propriedades de martingales, pois A ∩ {T ≤ k} ∈ FTk .
Agora, pelo Problema 13, {XTk , k ≥ 1} é u.i. Para k →∞ em (12.20) obtemos∫

A∩{T<∞}
XT =

∫
A∩{T<∞}

X∞.

Caṕıtulo 5

7) Seja U
(∗)
ab o número de cruzamentos de (a, b) por X

s
(n)
1

, . . . , X
s
(n)
n

. Pelo resul-

tado do caso discreto, temos que

E(U
(n)
ab ) ≤ sup

1≤k≤n

E(X+

s
(n)
k

) + a

b− a
≤ sup

t

E(X∗
t ) + a

b− a

Agora, para n→∞, U
(n)
ab → Uab (cresce) portanto

E(Uab) ≤ sup
t

E(X+
t ) + a

b− a
.

9) O processo de Poisson é um processo de Lévy porque:

(a) tem trajetórias cont́ınuas à direita com limites à esquerda (cadlag);

(b) tem incrementos independentes;

(c) tem incrementos estacionários;

(d) é cont́ınuo em probabilidade.

Argumento similar para o Movimento Browniano.

12) Temos que
E(Xt) = E(Wt)− tE(Wt) = 0− t · 0 = 0.

Para a função de autocovariância, obtemos

γ(t, s) = Cov(Xt, Xs)

= E(XtXs)

= E(WtWs)− sE(WtW1)− tE(WsW1) + tsE(W 2
1 )

= min{t, s} − st− ts+ ts · 1
= min{t, s} − ts.
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14) Um processo de Poisson Nt é cont́ınuo em probabilidade pois:

(a) Para cada t, Nt é finito quase certamente;

(b) Nt é cadlag;

(c) Para cada t > 0, Nt− = Nt com probabilidade 1;

(d) O resultado segue de (c) pois convergência q.c implica convergência em
probabilidade.

Caṕıtulo 6

1) (i) Sejam Fn e F as f.d. de Xn e X, respectivamente, e Gn(x), G as f.d. de
Xn + Yn e de X + c, respectivamente. Seja An = {ω : |Yn(ω)− c|} ≤ ε}, logo
P (Acn) ≤ ε, para n ≥ n0(ε), porque Yn → c. Seja En = {ω : Xn ≤ x − Yn},
para n ≥ n0(ε), então,

P (Xn ≤ x− Yn) ≤ P (Xn ≤ x− Yn, Yn ≥ c− ε) + ε ≤ P (Xn ≤ x− c+ ε) + ε.

Seja E
′
n = {ω : Xn ≤ x− c− ε}, para n ≥ n0(ε) , donde segue

P (E
′
n) = P (Xn ≤ x−c−ε) ≤ P (Xn ≤ x−c−ε, Yn ≤ c+ε)+ε ≤ P (Xn ≤ x−Yn)+ε.

Segue-se que

Fn(x− c− ε)− ε ≤ P (Xn + Yn ≤ x) ≤ Fn(x− c+ ε) + ε,

logo

Fn(x− c− ε)− ε ≤ Gn(x) ≤ Fn(x− c− ε) + ε.

Quando n→∞ e para todo δ > 0, temos

G(x− δ) = F (x− c− δ) ≤ limGn(x) ≤ F (x− c+ δ) = G(x+ δ).

Como δ é arbitrário, Gn(x) converge para F (x− c).

(iii) ConsidereXn = 0, com probabilidade (cp) 1/2 eXn = 1, cp 1/2. Também,
seja X = 0, cp 1/2 e X = 1, cp 1/2. Então, |Xn − X| = 1, mas FXn = FX ,
logo Xn → X em distribuição, mas Xn não converge para X em probabilidade,

Morettin-Gallesco - dezembro/2025



258 RESPOSTAS

pois deveŕıamos ter P (|Xn −X| > ε) → 0, para todo ε > 0. Para a segunda
parte, seja ε > 0 e escolha δ talque 0 < δ < ε. Então,

P (|Xn−c| ≥ ε) ≤ P (Xn > c+ε)+P (Xn ≤ c−δ) = 1−FXn(c+ε)+FXn(c−δ).

Como F é cont́ınua em c+ ε e c− δ e F (c+ ε) = 1 e F (c− δ) = 0, vemos que
limn P (|Xn − c| ≥)→ 0.

4) (b) Se π é fechada, para todo ε > 0, existe K compacto tal que P (K) ≥ 1− ε
e Q(K) ≥ 1−ε, para quaisquer P e Q de π. Considere P ∗Q,P,Q ∈ π. Então,

P∗Q(K) =

∫
S
1K(x)dP∗Q(x) =

∫
S

∫
S
1K(x+y)dP (x)dQ(y) =

∫
K×K

dP (x)dQ(y) =

= P ×Q(K ×K) = P (K)Q(K) ≥ (1− ε)2 ≥ 1− 2ε,

logo π∗ é fechada.

9) π∗ = {Pnπ−1
k , n ≥ 1} é uma famı́lia de medidas de probabilidade definidas

sobre (Rk,Bk), tal que Pnπ−1
k (B) = Pn{π−1

k (B)}, para todo B ∈ Bk.
π∗ é fechada (tight) por hipótese, logo pelo teorma de Prokhorov, π∗ é relati-
vamente compacta. Então, π∗ tem uma subsequência que converge fracamente
para alguma medida de probabilidade. Esta subsequência pode ser escolhida
por um processo diagonal (conhecido) logo temos que Pnπ1

k ⇒ Qk, para cada
k e as medidas Qk são consistentes, de tal sorte que existe uma medida de
probabilidade Q sobre R∞ tal que Qπ−1

k = Qk, pelo teorema da extensão
de Kolmogorov, portanto Pnπ

−1
k ⇒ Qπ−1

k , para cada k. Isso mostra que
π = {Pn, n ≥ 1} é relativamente compacta. Mas R∞ é completo e separável,
logo, de novo, pelo teorema de Prokhorov, π é fechada (tight).

12) Em geral, a classe dos conjuntos P -cont́ınuos não é uma σ-álgebra. De fato,
considere o espaço de probabilidade (Ω,F , P ), onde:

– Ω = [0, 1],

– F é a σ-álgebra de Borel em [0, 1],

– P é a medida de Lebesgue restrita a [0, 1] (ou seja, a probabilidade uni-
forme).

Denote por A a classe dos subconjuntos mensuráveis de Ω que são P -cont́ınuos,
isto é:

A = {A ∈ F : P (∂A) = 0} ,
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onde ∂A é a fronteira topológica de A.
Vamos mostrar que A não é uma σ-álgebra. Considere os números racionais
em [0, 1], que podem ser enumerados como:

Q ∩ [0, 1] = {q1, q2, q3, . . . }.

Para cada n ∈ N, defina:
An = {qn}.

– Temos que ∂An = {qn}.
– Como P é a medida de Lebesgue, temos: P (∂An) = P ({qn}) = 0.

– Logo, An ∈ A para todo n ∈ N.

Agora, considere a união enumerável:

A =

∞⋃
n=1

An = Q ∩ [0, 1].

Este conjunto contém todos os racionais em [0, 1]. Vamos examinar sua fron-
teira.

– Como os racionais são densos em [0, 1], e o conjunto Q∩ [0, 1] não contém
nenhum aberto, sua fronteira é todo o intervalo:

∂A = [0, 1].

– Portanto:

P (∂A) = P ([0, 1]) = 1.

– Assim, A /∈ A.

Concluimos que A não é uma σ-álgebra.

Caṕıtulo 7

3) Para a normal padrão,

φ(t) =
1√
2π

∫
eitx−x

2/2dx =
1√
2π
e−t

2/2

∫
e−

1
2
(x−it)2dx.

Considere a integral
∫
R e

−z2/2dz, sobre retângulos cujos vértices são ±k + 0i,

±k − it. A exponencial e−z
2/2 é uma função inteira, logo
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∫
R
e−z

2/2dz =

∫ k

−k
e−x

2/2dx+

∫ −k

k
e−(x−it)2/2dx+

∫ t

0
e−(k+iu)2/2du

+

∫ 0

−t
e−(k+iu)2/2du = 0.

As duas últimas integrasi são limitadas por |t|e−k2/2 e ambas tendem a zero,
quando k → ∞; obtemos que a primeira integral multiplicada por 1√

2π
tende

a 1 e φ(t) = e−t
2/2.

5) Temos que f(x) = 1/[π(1 + x2)], for x ∈ R. Então,

φ(t) =
1

π

∫
eitx

1 + x2
dx.

Considere a densidade f1(x) = e−|x|/2 e seja φ1(t) sua f.c. Não é dif́ıcil ver
que

φ1(t) =
1

1 + t2
,

que é absolutamente integrável sobre R e da inversa obtemos que

e−|x| =
1

π

∫
e−itx

1 + t2
dt.

Mudando o sinal da exponencial dentro da integral (que não altera o resultado)
e trocando os papéis de t e x obtemos

e−|t| =
1

π

∫
eitx

1 + x2
dx.

Comparando a primeira e última integral obtemos o resultado.

8) (a) Se Φ é equicont́ınua no zero, então existem ε > 0, δ > 0 tais que, para
|t− 0| < δ temos |φn(t)− φn(0)| < ε, para todo n. Mas φn(t) é uma f.c., logo
φn(0) = 1, para todo n, logo |1− φn(t)| < ε, para todo n.

Se Pn é a distribuição de probabilidades cuja f.c. é φn(t), temos que

Pn{|X| > 2/a} ≤ 1

a

∫ a

−a
[1− φn(t)]dt ≤

1

a

∫ a

−a
εdt = 2ε.

logo, Pn{|X| > 2/a} ≤ 2ε, para todo n, ou seja {Pn, n ≥ 1} é fechada.

(b) Para a solução de (b), use os seguintes resultados e o teorema da continu-
idade para f.c.:
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(i) Se φn → g em (−T, T ) e g é cont́ınua no zero, então as φn são equi-
cont́ınuas e a convergência é uniforme.

(ii) Teorema de Arzela-Ascoli: Seja φn uma sequência equicont́ınua de funções,
|φn| ≤ 1. Então existe uma subsequência {φnk} convergindo a um limite
cont́ınuo f e a convergência é uniforme em todo intervalo finito.

(iii) Se {φn} é uma sequência de funções cont́ınuas definidas num conjunto E
e se φn converge uniformemente para f em E, então f é cont́ınua em E.

15) Por hipótese,
∫
|φ(t)|2dt <∞, ou φ(t) ∈ L2. Seja X com f.c. φ(t) e considere

X − X ′
, com X

′
independente de X e com a mesma distribuição de X. A

distribuição de X −X ′
é G = F ∗ F−, sendo F− a f.d. de −X ′

e F a f.d. de
X(ou de X

′
). Usando a propriedade G(x) = 1−G(−x), temos

G(x) =

∫
F (x+ y)dF (y).

A f.c. de −X ′
é φ(−t) = φ(t) e a f.c. de G é φ(t)φ(t) = |φ(t)|2.

Se φ ∈ L2, segue-se que a densidade de G, digamoes g(x) =
∫
f(y− x)f(y)dy,

é limitada e cont́ınua e

1

2π

∫
|φ(t)|2e−itxdx =

∫
f(y − x)f(y)dy = G

′
(x).

Faça x = 0 para obter a igualdade desejada e sendo o primeiro membro finito,
segue que f ∈ L2.

Caṕıtulo 8

1) Como os {Xn,k, k ≤ n} são i.i.d. para cada n, temos:

P(|Xn,k| > ε) = P(|Xn,1| > ε), para todo k = 1, . . . , n.

Portanto,
max
1≤k≤n

P(|Xn,k| > ε) = P(|Xn,1| > ε),

e basta mostrar que P(|Xn,1| > ε)→ 0.

Com Sn := Xn,1+ · · ·+Xn,n temos que φSn converge para φX uniformemente
sobre compactos de R. Além disto sabemos pelo Teorema 8.6 que X tem lei
infinitamente diviśıvel e portanto φX(t) ̸= 0 para todo t ∈ R. Logo, para todo
t0 > 0 existe N tal que para todo n ≥ N , φSn(t) ̸= 0 para todo t ∈ [−t0, t0].
Assim para todo n ≥ N , existe um único logaritmo cont́ınuo Ln : [−t0, t0] →
C tal que Ln(0) = 0. Analogamente, como φSn = [φXn,1 ]

n, obtemos que
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φXn,1(t) ̸= 0 sobre [−t0, t0] e portanto para todo n ≥ N , existe um único
logaritmo cont́ınuo gn : [−t0, t0] → C tal que gn(0) = 0. Pela unicidade do
logaritmo, obtemos que Ln = ngn. Finalmente, como φX(t) ̸= 0, existe um
único logaritmo cont́ınuo L : [−t0, t0]→ C tal que L(0) = 0.

Agora, a convergência de φSn para φX sobre [−t0, t0] implica a convergência
pontual de Ln para L. Assim, para todo t ∈ [−t0, t0],

Ln(t) = ngn(t)→ L(t), quando n→∞,

e portanto gn(t)→ 0 sobre [−t0, t0], ou seja φXn,1 → 1 sobre [−t0, t0] . Como
t0 é arbitrário, deduzimos que φXn,1(t)→ 1 para todo t ∈ R, ou seja Xn,1 → 0
em probabilidade.

4) (a) X é infinitamente diviśıvel se, para cada n, existe uma f.c. φn tal que
φ(t) = [φn(t)]

n, onde φ é a f.c. de X. Aqui, φ(t) = (1 − it)−α e, portanto,
φn(t) = (1− it)−α/n e essa é a f.c. da v.a. Γ(α/n).

(b) Se φn é como acima, a v.a cuja f.c. é essa é uma v.a. Γ(α/n) com densidade

g(x) =

{
0, se x ≤ 0,

1
Γ(α/n)x

α/n−1e−x, se x > 0.

(c) Temos que

Gn(u) = n

∫ u

−∞

x2

1 + x2
dFn(x) =

n

Γ(α/n)

∫ u

0

x2

1 + x2
xα/n−1e−xdx =

n

Γ(α/n)

∫ u

0

xα/n−1

1 + x2
e−xdx.

Agora,

n

Γ(α/n)
=

α

(α/n)Γ(α/n)
=

α

Γ(1 + α/n)
→ α

quando n → ∞ e, portanto, pelo TCD, Gn(u) → G(u) = α
∫ u
0 (x/(1 +

x2)e−xdx, de modo que a medida dG(x) é dada pelo integrando, dG(x) =
x

1+x2
e−xdx.

Morettin-Gallesco - dezembro/2025



RESPOSTAS 263

9) Temos que provar que a f.c. de X é da forma φ(t) = e−c|t|
α
c > 0 e aqui

α = 1/2. Seja φn(t) a f.c. de Yn e ψ(t) a f.c. de
sinal(Xni )

X2
ni

. Então,

ψ(t) = E

[
exp{itsinal(Xni)

X2
ni

}
]
=

∫ n

−n

exp{itsinal(x)
x2

}
2n

dx =
1

n

∫ n

0
cos(

t

x2
)dx.

Pela independência, φn(t) = [ψ(t)]n, ou seja,

φn(t) = E{eitYn} =
[
1

n

∫ n

0
cos(t/x2)dx

]n
=

[
1− 1 +

1

n

∫ n

0
cos(t/x2)dx

]n

=

[
1− 1

n

∫ n

0
[1− cos(t/x2)dx

]n

=

[
1− 1

n

∫ ∞

0
[1− cos(t/x2)]dx+ o(n−1)

]n
.

Para n→∞, (1− λ/n)n → e−λ logo

φn(t)→ φ(t) = exp{−
∫ ∞

0
[1− cos(t/x2)]dx}.

Considere a transformação t/x2 = u. Segue que∫ ∞

0
[1− cos(t/x2)]dx = 2

∫ ∞

0

1− cos(tu)

u1/2+1
du.

Fazendo tu = z obtemos que a integral é igual a |t|1/2[2
∫∞
0 (1−cos z)/(z3/2)dz]

e a integral é uma constante c > 0. Logo φ(t) = −e−c|t|1/2 e o resultado segue.

10) (a) Devido à simetria dos valores posśıveis de Xj , temos

E[Xj ] = 0.

e
Var(Xj) = E[X2

j ]

= (j2)2 · 2 · 1

12j2
+ j2 · 2 · 1

12
+ 0

= j4 · 2

12j2
+ j2 · 2

12

=
j2

6
+
j2

6
=
j2

3
.
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Portanto, como os Xj são independentes,

Var(Sn) =

n∑
j=1

Var(Xj) =

n∑
j=1

j2

3
∼ n3

9
.

A condição de Lindeberg requer que, para todo ε > 0,

1

Var(Sn)

n∑
j=1

E
[
X2
j 1{|Xj |>ε

√
Var(Sn)}

]
→ 0 quando n→∞.

Observe que os termos Xj podem assumir valores grandes ±j2 com probabili-
dade 1/(12j2), e:

E
[
X2
j 1{|Xj |=j2}

]
= j4 · 2

12j2
=
j2

6
.

Para n grande, ε
√

Var(Sn) ∼ εn
3/2

3 . Somando os termos para os quais j2 >

ε
√

Var(Sn), ou seja, para j > cn3/4, temos:

∑
j>cn3/4

E[X2
j 1|Xj |=j2 ] ∼

∫ n

cn3/4

x2

6
dx ∼ n3

18
.

O termo dominante é n3, portanto

1

Var(Sn)

n∑
j=1

E[X2
j 1|Xj |>ε

√
Var(Sn)

]→ constante ̸= 0.

Logo, a condição de Lindeberg não é satisfeita.

Agora definimos

Yj = Xj1{|Xj |≤j}, Rj = Xj − Yj = Xj1{|Xj |=j2}.

As Yj ’s são variáveis truncadas que satisfazem a condição de Lindeberg. Por-
tanto, obtemos que

3
√
2
∑n

j=1 Yj

n3/2
d−→ N (0, 1).

Por outro lado, pelo lemma de Borel-Cantelli, obtemos que∑n
j=1Rj

n3/2
P−→ 0.
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Assim, conclui-se que
3
√
2Sn

n3/2
d−→ N (0, 1).

Caṕıtulo 9

1) Observe que |πt(f)| = |f(t)| ≤ maxt∈[0,1] |f(t)| = ∥f∥∞.

3) Vamos começar com o cálculo da transformada de Laplace de X distribúıda de
acordo com a lei de Lévy, L(t) = E(e−tX), t ≥ 0.

L(t) =

∫ ∞

0

a√
2π

1

x3/2
exp

(
− a2

2x
− tx

)
dx

=
2√
π

∫ ∞

0
exp

(
− u2 − a2t

2u2

)
du

=
1√
π

∫ ∞

−∞
exp

(
−

(
u− a

u

√
t

2

)2

− a
√
2t

)
du

usando a mudança de variável x = a2/(2u2). Usando o teorema mestre de Glasser
obtemos que

L(t) = exp(−a
√
2t).

Pelo teorema de extensão anaĺıtica, obtemos que L(z) = exp(−a
√
2z) para z com-

plexo tal que Re(z) ≥ 0. Finalmente, deduzimos que a f.c φ de X é dada por

φ(t) = exp(−a
√
−2it), t ∈ R.

Usando Teorema 8.13, deduzimos que a lei de Lévy é estável com ı́ndice α = 1/2.

7) Observe que max0≤t≤1Xn(t) = maxk≤n
Sk

σ
√
n
. Por outro lado, a função h :

C([0, 1])→ R, x 7→ max0≤t≤1 x(t) é cont́ınua pois

|h(x)| ≤ max
0≤t≤1

|x(t)| = ∥x∥∞.

Usando o Teorema 9.4 e o Corolário 9.1, obtemos que

max
0≤t≤1

Xn(t)→ max
0≤t≤1

W (t)

em lei quando n→∞. Finalmente, para todo x ≥ 0, temos que

P
{

max
0≤t≤1

W (t) ≤ x
}
=

2√
2π

∫ x

0
e−t

2/2dt.
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9) (a) Temos que

W
{

sup
0≤t≤1/2

x(t) ≤ 1
}
=

2√
2π

∫ √
2

0
e−t

2/2dt.

(b) Em primeiro lugar, observe que

W{0 ≤ x(t) ≤ 1, t ∈ [0, 1]} ≤W{x(t) ≥ 0, t ∈ [0, 1]}.

Agora, considere ε > 0 e seja Aε = {x(t) ≥ −ε, t ∈ [0, 1]}. Por simetria, temos que

W (Aε) =W
{

sup
0≤t≤1

x(t) ≤ ε
}
=

2√
2π

∫ ε

0
e−t

2/2dt.

Assim, obtemos que

W{x(t) ≥ 0, t ∈ [0, 1]} = lim
ε→0

W (Aε) = 0.

Caṕıtulo 10

10) (a) Seja {Xn, n ≥ 0} uma C.M. Seja a matriz

P =

 0 1/2 1/2
1/3 1/4 5/12
2/3 1/4 1/12


e seja p = (1/3, 1/3, 1/3) = (p1, p2, p3), pk = P (X0 = k), k ∈ {1, 2, 3} = I.

Considere Xn com valores 1,2 e 3 e f(Xn) com valores a, a, b, ou seja, f(1) =
f(2) ̸= f(3).

Então, {f(Xn), n ≥ 0} não é uma C.M. porque, por exemplo,

P{f(X2) = b|f(X0) = b, f(X1) = a} =

P (X0 = 3, X1 = 1, X2 = 3) + P (X0 = 3, X1 = 2, X2 = 3)

P (X0 = 3, X1 = 1) + (P (X0 = 3, X1 = 2)

=
p3 · p31 · p13 + p3 · p32 · p23

p3 · p31 + p3 · p32
=

1/3 · 2/3 · 1/2 + 1/3 · 1/4 · 5/12
1/3 · 2/3 + 1/3 · 1/4

=
21

44
,
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pois Xn é C.M.

Por outro lado, se {f(Xn), n ≥ 0} fosse uma C.M. deveŕıamos ter

P{f(X2) = b|f(X0) = b, f(X1) = a} = P{f(X2) = b|f(X1) = a} =

P (X1 = 1, X2 = 3) + P (X1 = 2, X2 = 3)

P (X1 = 1) + P (X1 = 2)
=

1/3 · 1/2 + 1/3 · 5/12
1/3 + 1/3

=
11

24
,

pois P (X1 = 1) = P (X1 = 2) = 1/3 (verifique!)

(b) Suponha que f seja 1-1. Então f : {1, 2, 3} → {f(1), f(2), f(3)} =
{a1, a2, a3}, com ai distintos. Logo

P (f(Xn+1) = jn+1|f(X0) = j0, . . . , f(Xn) = jn} = (f : ik → jk)

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in} = P (Xn+1 = in+1|Xn = in} =

P (f(Xn+1) = jn+1|f(Xn) = jn

e {f(Xn)} é uma C.M.

12) Considere

P (Xn+1 = j|Xn = i) =

∑
P (Xn+1 = j,Xn = i, . . . , X0 = i0)∑

P (Xn = i, . . . , X0 = i0)
,

onde as somas são sobre i0, . . . , in−1. Agora, o termo genérico do numerador
é igual a

φ(i, j)P (Xn = i, . . . , X0 = i0) = φ(i, j)φ(in−1, i) · · ·φ(i1, i0)P (X0 = i0).

De modo similar, o termo genérico do denominador é igual a

φ(in−1, i)φ(in−2, in−1) · · ·φ(i1, i0)P (X0 = i0).

logo, P (Xn+1 = j|Xn = i) = φ(i, j) e X é uma C.M. Como, para cada n, isso
é uma função de i, j, a cadeia tem transições estacionárias.
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14) Defina T = inf{n : Xn = 0}. Mostre que P (T < ∞) = 1. Para isso, seja
Ak = {Xk = 0} e escreva P (T < ∞) = P (∪∞k=1Ak). Use o fato que P (Ak) =∑
P (Xk = 0, Xk−1 = ik−1, . . . , X0 = i0) e que Xk é uma C.M.

16) As probabilidades de transição a um passo da cadeia reversa são

Qij = P (Xn = j|Xn+1 = i) =
P (Xn = j,Xn+1 = i)

P (Xn = j)P (Xn+1 = i)
P (Xn = j)

=
P (Xn = j)

P (Xn+1 = i)
pji.

Se pi é a distribuição estacionária, temos

p
(n)
j = P (Xn = j) =

∑
i

pip
(n−1)
ij = pj =

∑
i

pipij .

Logo,,

Qij =
pj
pi
pji.

Mas, sabemos que pj = [
∑

i pi]πj = πj , logo

Qij =
πj
πi
pji,

que é estacionária (não depende de n).

É fácil ver que

Q
(2)
ij =

πj
πi
p
(2)
ji ,

e, em geral, por indução,

Q
(n)
ij =

πj
πi
p
(n)
ji .

Portanto,

∑
n

Q
(n)
ii =

∑
n

πi
πi
p
(n)
ii =

∑
i

p
(n)
ii =∞,

logo a cadeia é recorrente.
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Caṕıtulo 11

6) Observe que se I é um intervalo de comprimento menor do que 1, então os
intervalos I, T−1I, T−2I, . . . são disjuntos.

8) Pelo TEP, para todo A ∈ F ,

lim
n→∞

1

n

n∑
k=1

1A(S
kω)→ P1(A), P1 − q.c,

e

lim
n→∞

1

n

n∑
k=1

1A(S
kω)→ P2(A), P2 − q.c.

Se P1 e P2 não forem mutualmente singulares, obtemos que P1(A) = P2(A),
ou seja uma contadição com o fato P1 ̸= P2.

11) (a) No caso em que α é irracional, T é ergódica mas não é mixing. Para
mostrar que T não é mixing, considere o caso de dois intervalos abertos dis-
juntos A e B e mostre que neste caso P (A ∩ T−nB) não tem limite quando
n→∞. No caso em que α é racional, T não é ergódica.
(b) Para k ≥ 2, a transformação T : ω 7→ kω (mod 1) é ergódica e mixing.

12) (a) Sim, usar a fórmula da probabilidade total.
(b) Não necessariamente, usar o Problema 8.

13) (a) Seja X = {Xn, n ≥ 0} um processo gaussiano tal que E(Xi) = 0 para
todo i, e função de covariância R(i, j) := Cov(Xi, Xj).

Queremos mostrar que o processo X é estacionário se, e somente se, R(i, j)
depende apenas de |i− j|.
(⇒) Suponha que X é estacionário (em sentido estrito). Como o processo
é gaussiano, a estacionariedade em sentido amplo implica estacionariedade
estrita. Logo, para todos i, j, h ∈ Z+, temos:

Cov(Xi, Xj) = Cov(Xi+h, Xj+h).
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Portanto,

R(i, j) = R(i+ h, j + h),

o que mostra que R(i, j) depende apenas da diferença i − j. Como R(i, j) =
R(j, i) (simetria da covariância), conclúımos que existe uma função r : Z+ → R
tal que:

R(i, j) = r(|i− j|).

(⇐) Suponha agora que R(i, j) = r(|i − j|). Queremos mostrar que X é
estacionário.

Como o processo é gaussiano com média zero, sua distribuição é completamente
determinada pela função de covariância R. Para qualquer h ∈ Z+, temos:

R(i+ h, j + h) = r(|(i+ h)− (j + h)|) = r(|i− j|) = R(i, j),

o que mostra que a função de covariância é invariante por translação. Assim, as
distribuições conjuntas de vetores do tipo (Xt1 , . . . , Xtn) e (Xt1+h, . . . , Xtn+h)
coincidem para todo h, o que implica que X é estritamente estacionário.

Caṕıtulo 12

3) É importante notar que, se (X(t))t≥0 é um martingale local, a variável
aleatória X(t) não é necessariamente integrável. Em particular, não temos
nenhuma informação sobre X(0) além de ser F0-mensurável. Isto nos dá uma
maneira simples de construir martingales locais que não são martingales. Con-
sidere por exemplo um martingale (M(t))t≥0 e uma v.a. Z F0-mensurável tal
que E(|Z|) = ∞. Então X(t) = Z + M(t), t ≥ 0, é um martingale local
mas não é um martingale. Para verificar que (X(t))t≥0 é um martingale local
pode-se considerar a sequência localizante τn = n1{|Z|≤n}, n ≥ 1.

4) Ao multiplicar por e−bt a desigualdade (12.14), obtemos

d

dt

(
e−bt

∫ t

0
f(s)ds

)
≤ ae−bt.
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Integrando a desigualdade acima deduzimos que

e−bt
∫ t

0
f(s)ds ≤ a

b
(1− e−bt).

Finalmente, usando esta última desigualdade em (12.14) obtemos o resultado
desejado.

5) (i) Como Xn ≥ 0 temos que X ≥ 0, q.c e portanto

(X −Xn)
+ ≤ X+ = X, q.c.

Como X ∈ L1, pelo teorema de convergência dominada, obtemos que E((X −
Xn)

+)→ 0 quando n→∞. Por outro lado,

|Xn −X| = 2(X −Xn)
+ − (X −Xn).

Tomando a esperança desta última desiguadade e usando fato que por hipótese
E(X −Xn)→ 0, as n→∞, obtemos que E(|X −Xn|)→ 0 também.
(ii) Como Xn → X em probabilidade, existe uma subsequência (Xnk

)k tal que
Xnk

→ X, q.c. Por outro lado, usando o lema de Fatou, obtemos que

E(X2) ≤ lim inf
k→∞

E(X2
nk
) ≤ sup

n
E((X −Xn)

2) <∞.

Agora, para todo a > 0, usando as desigualdades de Cauchy-Schwarz e Markov,
obtemos que

E(|X −Xn|) ≤ E(|X −Xn| ∧ a) + a−1E(|X −Xn|2).

Devido a convergência em probabilidade de Xn para X, o primeiro termo da
desigualdade acima tende a 0 quando n → ∞, para todo a > 0. O segundo
termo pode se tornar arbitrariamente pequeno escolhando a grande o sufici-
ente. Assim, concluimos que E(|X −Xn|)→ 0 quando n→∞.
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fórmula, 224

Independência, 23
de p.e’s, 24
de vetores aleatórios, 24
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de Lévy-Khintchine, 132
de Lindeberg-Feller, 122
limite central, 121

Teorema de Donsker
aplicações, 156

Teorema ergódico
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