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Intervention Models in Functional Connectivity
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Recent advances in neuroimaging techniques have provided precise spatial localization of brain activation applied in several neu-
roscience subareas. The development of functional magnetic resonance imaging (fMRI), based on the BOLD signal, is one of the
most popular techniques related to the detection of neuronal activation. However, understanding the interactions between several
neuronal modules is also an important task, providing a better comprehension about brain dynamics. Nevertheless, most con-
nectivity studies in fMRI are based on a simple correlation analysis, which is only an association measure and does not provide
the direction of information flow between brain areas. Other proposed methods like structural equation modeling (SEM) seem to
be attractive alternatives. However, this approach assumes prior information about the causality direction and stationarity condi-
tions, which may not be satisfied in fMRI experiments. Generally, the fMRI experiments are related to an activation task; hence,
the stimulus conditions should also be included in the model. In this paper, we suggest an intervention analysis, which includes
stimulus condition, allowing a nonstationary modeling. Furthermore, an illustrative application to real fMRI dataset from a simple
motor task is presented.

Copyright © 2006 João Ricardo Sato et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) based on
blood oxygenation level-dependent (BOLD) signal has be-
come one of the most prominent and powerful tools in cog-
nitive neuroscience [1]. Most fMRI studies found in the liter-
ature focus on the detection of neuronal activation and brain
mapping via statistical analysis. However, understanding cor-
tical dynamics is a crucial step toward inferring cortical func-
tioning.

Several evidences [2–4] suggest that modeling the inter-
actions between different brain structures is paramount to
understand the mechanisms guiding specific cognitive be-
haviour. However, the determination of parameters involved
in cortical dynamics is still an open question. A number
of techniques are being used to detect patterns of interac-
tion between cortical areas, most using an ad hoc concept.
So far, most connectivity studies have investigated temporal

correlation as a measure of connectivity [3], even though it
is not enough to identify the direction of information flow.
In fact, Pearson correlation coefficient in time series analy-
sis is just a measure of linear association. The connectivity
mapping via correlation analysis is obtained firstly by select-
ing a seed voxel, and then Pearson correlation is calculated
against all the other brain voxels. In most cases, the selection
of the seed voxel is derived from the activation maps. Hence,
as the activation detection is based on the similarity between
the observed BOLD signal in a voxel and an expected haemo-
dynamic curve, the correlation connectivity analysis is close
to an activation mapping considering the seed voxel BOLD
signal as the expected curve. Finally, we conclude that the
correlation connectivity mapping is not sufficient to provide
additional information in relation to the activation analysis
based on general linear model (GLM).

Other statistical methods, such as the structural equa-
tion modeling (SEM), are more attractive to overcome this
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shortcoming. Büchel and Friston [2] modeled the occipi-
toparietofrontal network involved in attention tasks using
structural equation modeling. Zhuang et al. [5] applied SEM
to a bimanual motor coordination experiment. Rowe et al.
[6] modeled the prefrontal cortex in a color selection task.
An improvement of SEM applied to fMRI analysis is the
dynamic causal model (DCM), proposed by Friston et al. [7].
However, these two modeling approaches require a complete
prespecification of the connectivity structure. Additionally,
as DCM is estimated via Bayesian algorithms, it also re-
quires the prior densities of the parameters of interest. In fact,
these models measure the instantaneous connectivity, but re-
quire the direction of information flow. Therefore, these ap-
proaches are not enough to provide a complete identifica-
tion of the connectivity pattern. Furthermore, the autocorre-
lation of BOLD signal is another obstacle for the application
of these models and, in most cases, is simply ignored.

Granger causality [8] is a very prominent concept to de-
scribe information flow and connectivity. Baccalá et al. [9]
and Baccalá and Sameshima [10] introduced a frequency-
domain connectivity identification method for EEG using
partial directed coherence and this causality concept. Goebel
et al. [11] and Roebroeck et al. [12] introduced the concept
of Granger causality in fMRI via vector autoregressive mod-
eling (VAR). They have also shown the applicability of this
approach to BOLD signals using simulations and illustrating
it with real data derived from visuomotor studies. Compared
to other approaches described previously, the main advan-
tage of Granger causality identification via VAR models is the
fact that prior specifications about connectivity structure are
not necessary. Also, if one has prior partial knowledge about
this structure, it can be naturally included in the model as a
restriction in the parameters to be estimated.

The stationarity condition is one of the main obstacles
to VAR modeling application in fMRI analysis. This assump-
tion requires the connectivity structure to be the same during
all acquisition times. Although acceptable in resting state or
one-condition experiments, it may not be valid in paradigms
with more than one condition. In that matter, as the con-
nectivity structure may change according to the stimulus,
comparisons between these structures are also an interesting
point.

In this paper, we propose the use of a generalization of
VAR models via intervention analysis (structural break mod-
els), which allows a natural modeling of connectivity and also
statistical comparisons of the connectivity structures in ex-
periments with different stimulus conditions.

2. GRANGER CAUSALITY AND CONNECTIVITY

In fMRI analysis, the definition of connectivity can be di-
vided into two concepts: functional and effective connectiv-
ity. The first is defined as “correlations between spatially re-
mote neurophysiological events” [4]. In contrast, effective con-
nectivity is related to the “influence of one neural system over
another” [4]. Note that effective connectivity implies in func-
tional one, but the reciprocal may not be valid. The activ-
ity correlations or synchronisms may be observed due to ex-

ternal factors, not only due to synaptic interactions between
the areas involved. An illustrative example involving differ-
ences between these two concepts of connectivity could be a
paradigm with simultaneous stimulation of visual and au-
ditory cortex. The neuronal activity in these areas will be
correlated (functional), but not related to neural interactions
(effective). However, the simplicity of functional connectiv-
ity concept makes it very useful, mainly in cases where the
neural activity is measured indirectly, as in fMRI time series.

Granger causality is a very useful concept for the descrip-
tion of brain areas connectivity and direction of informa-
tion flow identification [10, 13]. In the context of time series,
Granger [8] defined causality in terms of predictability. This
concept was originated in econometrics, focusing the under-
standing of relationships between financial time series such
as prices, indexes, interest rates, and so forth. The basis of
this concept is that effect cannot precede cause, suggesting
that causality can be detected toward past and future rela-
tionships. A signal xt is said to Granger-cause a signal yt if
the past values of xt help the prediction of present values of
yt. In other words, if the variance of the prediction error of yt,
considering all the information until the time t, is less than
the one obtained excluding the information of past values of
xt, then xt is said to Granger-cause yt.

Goebel et al. [11] introduced Granger causality identifi-
cation between BOLD time series using VAR models, show-
ing the applicability of this approach in simulated and real
fMRI data. Note that Granger causality aims to identify in-
teractions and relationships between signals via precedence
and prediction. However, it is more related to functional con-
nectivity than effective one, because it cannot distinguish real
influences from prediction power.

Let a k-dimensional multivariate time series

Yt =
[
y1t y2t · · · ykt

]′
, t = 1, 2, . . .,T , (1)

composed by k signals measured on time t. In order to mea-
sure the prediction improvement of Yt using a collection of
p past values of the series (Yt−1, Yt−2, . . ., Yt−p), assume a k-
dimensional vector autoregressive model (VAR) of order p,

Yt = v + A1Yt−1 + A2Yt−2 + · · · + ApYt−p + ut , (2)

where v is the intercept vector (related to the process aver-
age), ut is an error vector of random variables with zero mean
and covariance matrix Σ given by

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
11 σ12 · · · σk1

σ21 σ2
22 · · · σk2

σ31 σ32 · · · σk3
...

...
. . .

...
σk1 σk2 · · · σ2

kk

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3)

v and Ai are coefficient matrices given by

v =

⎡
⎢⎢⎢⎢⎣

v1

v2
...
vk

⎤
⎥⎥⎥⎥⎦

, Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11i a12i · · · a1ki

a21i a22i · · · a2ki

a31i a32i · · · a3ki
...

...
. . .

...
ak1i ak2i · · · akki

⎤
⎥⎥⎥⎥⎥⎥⎦

, i= 1, 2, . . ., p.

(4)
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As the error term ut has zero mean, the predicted values of
Yt conditional to the past values are given by

∧
Yt = v + A1Yt−1 + A2Yt−2 + · · · + ApYt−p. (5)

The VAR model allows an easy way to identify Granger
causality. If the coefficient ajli for some i is nonzero, we say
that signal ylt Granger-causes the signal yjt. In other words,
the past values of the signal ylt help the prediction of the
present and future values of the signal yjt. It is important to
mention that this kind of relationship is not reciprocal, for
example, ylt may Granger-cause the signal yjt, but not nec-
essarily yjt causes ylt, indicating the direction of information
flow.

Consider a functional magnetic resonance dataset. Select
k voxels in the volume, obtaining a BOLD k-dimensional
signal. Using the concept of Granger causality and the VAR
modeling, it is possible to verify if the BOLD signal of certain
brain areas Granger-causes another areas’ BOLD signal, by
testing the significance of the estimates of matrix At. There-
fore, we are able to test the functional connectivity and direc-
tion of the information flow.

However, VAR modeling is only suitable in cases of sta-
tionary time series with coefficients and error covariance ma-
trix invariant on time. Hence, considering fMRI studies, a
weakness of this approach is the assumption that both acti-
vation and connectivity functions are constant in the whole
scanning interval. Let an epoch functional magnetic reso-
nance image experiment with two conditions A and B. It is
reasonable to expect functional connectivity under A, but it
may not be the same under B. Therefore, we propose the use
of intervention VAR (structural breaks model) focusing on
the identification of changes in functional connectivity. The
intervention VAR model is defined by

Yt = v(C) + A(C)
1 Yt−1 + A(C)

2 Yt−2 + · · · + A(C)
k Yt−k + ut ,

(6)

where the coefficient matrices are given by

v(C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 + δ(C)
1

v2 + δ(C)
2

...

vk + δ(C)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= v + δ(C),

A(C)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11i + ∂(C)
11i a12i + ∂(C)

12i · · · a1ki + ∂(C)
1ki

a21i + ∂(C)
21i a22i + ∂(C)

22i · · · a2ki + ∂(C)
2ki

a31i + ∂(C)
31i a32i + ∂(C)

32i · · · a3ki + ∂(C)
3ki

...
...

. . .
...

ak1i + ∂(C)
k1i ak2i + ∂(C)

k2i · · · akki + ∂(C)
kki

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Ai + ∂(C)
i ,

(7)

ut is an error vector of random variables with zero mean and
covariance matrix Σ(C) defined by

Σ(C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
11 + ψ(C)

11 σ12 + ψ(C)
12 · · · σ1k + ψ(C)

1k

σ21 + ψ(C)
21 σ2

22 + ψ(C)
22 · · · σ2k + ψ(C)

2k

σ31 + ψ(C)
31 σ32 + ψ(C)

32 · · · σ3k + ψ(C)
3k

...
...

. . .
...

σk1 + ψ(C)
k1 σk2 + ψ(C)

k2 · · · σ2
kk + ψ(C)

kk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Σ + Ψ(C),

(8)

and C indicates the block condition (A or B). For simplicity,
assume that

δ(A)
j = 0, ∂(A)

jli = 0, ψ(A)
jl = 0 (9)

for j = 1, 2, . . ., k, l = 1, 2, . . ., k, i = 1, 2, . . ., and δ(B)
j , ∂(B)

jli ,

and ψ(B)
jl are the increments on the coefficients during B con-

dition. If at least one of the coefficients δ(B)
j , ∂(B)

jli , and ψ(B)
jl

is nonzero, it implies the existence of structural changes. In
other words, we have different coefficient matrices for each
condition. Thus, we have a VAR structure for each block, but
all the parameters are globally estimated, allowing a statistical
test to the connectivity changes. The intervention VAR model
can be estimated using an interactive generalized least-square
estimator. Consider the following vector and matrices:

y = vec
(

Yt
)
,

X =
[

1 Yt−1 Yt−2 · · · Yt−p
]

,

Z = Ik ⊗
(
[1 Δ]⊗R X

)
,

(10)

where vec is an operator that concatenates all the columns of
a matrix in a column vector, Δ is a vector of zeros and ones
indicating the stimulus condition at time t (the tth element
of Δ is zero/one if the acquisition at time t occurs during A/B
condition), 1 is a column vector of ones, and ⊗R is the row-
Kronecker product, which is defined as the Kronecker prod-
uct applied separately for each row, that is,

⎡
⎢⎢⎢⎢⎣

a1

a2
...
ak

⎤
⎥⎥⎥⎥⎦
⊗R

⎡
⎢⎢⎢⎢⎣

b1

b2
...
bk

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 ⊗ b1

a2 ⊗ b2

...

ak ⊗ bk

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

The error covariance matrix is given by Γ. The general-
ized least-square estimator of the coefficients of the interven-
tion VAR model is given by [14, 15]

β̂ = (Z′Γ−1Z
)−1

Z′Γ−1y. (12)

However, as the covariance matrix Γ is unknown, we pro-
pose the use of an interactive two-stage least-square estima-
tor. The residuals are estimated on the first step and the co-
variance matrix Γ on the second one, as an extension of the
Cochrane-Orcutt procedure. The variances/covariances in Γ
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Figure 1: Group activation and connectivity changes maps for six subjects in a rest-fingertap block design paradigm. The connectivity
changes map shows the voxels with significant changes in the information flow intensity from SMA, between rest and fingertap condition.
The maps are presented on radiological convention.

may be consistently estimated considering the fits of an or-
dinary regression of squares/cross residuals as response and
[1 Δ] as model matrix. The Wald test statistic of linear com-
binations of parameter in β is given by

W =
(

Cβ̂ −m
)′[

C
(

Z′Γ−1Z
)

C′
]−1(

Cβ̂ −m
)

σ̂2
, (13)

where σ̂2 is the estimated residual variance, m is a vector, and
C is a contrast matrix corresponding to the following test:

H0 : Cβ = m,

HA : Cβ �= m.
(14)

Under the null hypothesis, W has an asymptotic chi-
square distribution with rank (C) degrees of freedom [14].
Basically, this procedure performs simultaneous tests of the
equality between m and linear combinations (C) of parame-
ters in β. Note that the connectivity parameters can be easily
tested considering the W statistic. Further, in case of non-
Gaussian errors distribution, the martingales central limit
theorem [16] implies that the classic asymptotic properties
of the generalized least-square estimator are valid.

To finish this section, it is important to highlight some
points about the application of the intervention VAR models
to connectivity analysis in fMRI. Firstly, although Granger
causality identification via VAR models is closely related to
interactions, it cannot make a distinction between real influ-
ences or predictive power. Secondly, it is important to men-
tion that this approach depends on sampling frequency. As
Granger causality identification is based on information con-
tained in past values, low sampling rates result in aliasing and
data aggregation. In fact, sampling frequency represents a
challenge for connectivity modeling in fMRI, as short acqui-
sition time implies in low signal-to-noise ratio. On the other
hand, neural interactions occur in a frequency much higher
than fMRI acquisitions (TR). Thus, the connectivity struc-
ture identified via VAR models is only related to very low fre-
quencies information, and fast interactions are not detected.
Additionally, we would like to emphasize the point that al-
though intervention model does not require the assumption

of global stationarity, it depends on this assumption to be
valid during each paradigm condition. The validity of this
assumption is reasonable in block design paradigms, but it
may not be true in event-related ones. The application of the
proposed approach to fMRI data with event-related designs
could result in an imprecise estimation, such as an average
of the information flow intensity across the activation time-
points.

3. APPLICATION TO REAL DATA

In order to illustrate the usefulness of the proposed approach,
the intervention VAR modeling was applied to real fMRI data
derived from a motor task study.

Six normal right-handed subjects performed a simple
right hand fingertapping task, in an AB periodic block de-
sign experiment. The functional magnetic resonance im-
ages were acquired in a GE 1.5 T Signa LX MR system
equipped with a 23 mT/m gradient, (TE: 40 milliseconds,
TR: 2000 milliseconds, FA: 90◦, FOV: 240 mm, 64 × 64 ma-
trix; 15 slices, thickness: 7.0 mm, gap: 0.7 mm) oriented in
the AC-PC plane in a single run. There were one hundred
volumes collected during five cycles of rest-task performance.
Each cycle had the duration of 40 seconds corresponding to
20 volumes, 10 volumes acquired during rest, and 10 vol-
umes during the activation task. The subjects were in the
dark room with noise-reducing headphones customized for
functional MR. Instructions to begin and finish movements
were given via auditory stimuli.

The images were preprocessed considering motion cor-
rection and spatial smoothing. The activation brain mapping
was obtained using the XBAM software [17]. Spatial normal-
ization transformation to the stereotatic space of Talairach
and Tournoux [18] was performed using SPM2 [4]. Since the
main interest was the study of motor function, the analyses
were limited to the superior slices, reducing the number of
multiple comparisons and consequently increasing the sen-
sitivity of the statistical tests.

The group activation maps (cluster P value < .01) are
presented in Figure 1 (top). Note that there are significant
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activations found on the left primary and contralateral mo-
tor cortex (BA 4), supplementary and premotor areas (BA 6),
and primary sensitive areas (BA 3, 2, 1), which are classically
involved in motor control.

Taking into account a significant activation in the sup-
plementary motor area (SMA), the intervention VAR analy-
sis was performed in a bivariate fashion considering a seed in
the activation local maxima of SMA against all other voxels
in the whole brain. As changes in BOLD signal are not in-
stantaneous, we considered a delay of 2 seconds in the condi-
tion specification. Statistical tests for differences in the infor-
mation flow intensity from SMA to the voxel of interest, be-
tween rest and task, were performed in each individual sepa-
rately. The individual W statistics were mapped to Gaussian
quantiles, and the group analysis was performed in SPM2
(on-tailed t test, which is similar to a random effects analysis
[4]). The connectivity changes map (voxel P value < .005)
is presented in Figure 1 (bottom). The areas with significant
changes in the information flow intensity from SMA were the
premotor cortex, presupplementary motor area, and primary
sensitive cortex.

The intervention VAR model was also applied in a trivari-
ate analysis, considering the selected seed in SMA, and voxels
(connectivity changes minimum P value) in the pre-motor
cortex (PM) and pre-supplementary motor area (PSMA). In
Figure 2 (top), diagrams (arrow P value < .05) describing
the connectivity structure during rest and fingertap and also
differences in information flow intensity are presented. The
BOLD signals derived from selected ROI of one subject are
presented in Figure 2 (bottom).

When contrasting fingertapping with rest we found sig-
nificant changes in PM cortex, primary sensitive areas, and
PSMA. All these areas are classically involved in movement
control [19]. The current understanding of motor control in
the literature suggests that PSMA provides the main input
to SMA, which is possibly responsible for providing internal
representation of movement sequences, and is involved in
learning process of new movements. SMA is believed to send
information to the PM and primary motor cortices, and is
also associated with complex calculation to achieve max-
imum performance, based on feedback information from
sensitive areas.

During the rest, we observed increased connectivity be-
tween the SMA and PM with pre-SMA. Some studies demon-
strated that PSMA plays an important role in cognitive motor
control, which involves sensory discrimination and move-
ment decision making (go/nongo) or motor selection for the
action after stimuli [20, 21]. In order to start the sequence of
fingertapping, a motor decision must be made, based on the
instruction previously given to the participant. All areas (pre-
SMA, PM, and SMA) are involved in the initiation of move-
ment and modification in their connectivity pattern might
be explained by the attention to stimulus presentation and
monitoring during the task.

4. CONCLUSION

Most connectivity studies results rely on analyzing second-
order correlations that do not give additional information

PSMA

SMA PM

0.0410.023

Resting

PSMA PSMA

SMA PM
0.017

0.020 0.027
Fingertap Contrast

SMA PM

0.001

0.003
0.005

(a)

P
SM

A
P

M
SM

A

0 20 40 60 80 100

Time (TR)

(b)

Figure 2: Group connectivity structure during resting, fingertap-
ping, and information flow changes between these two conditions
(top). The numbers in the arrows describe the information flow cor-
respondent P value. An illustrative chart of ROI’s BOLD signals of
one subject is also presented.

about neural interactions. Other advanced methods like
structural equation modeling (SEM) or dynamic causal
models (DCM) could be an attractive alternative. However,
they heavily depend on a prior knowledge about involved
neural circuitry.

Granger causality concept, in its most general form, is
a flexible definition of relationship and temporal order. It
could be tested by a simple VAR modeling without any con-
nectivity prespecification. In this paper, we introduced a
new approach for connectivity modeling based on Granger
causality and intervention VAR models, which enabled us to
compare differences in connectivity structures as a statisti-
cal hypothesis test. An initial application of intervention VAR
models to fMRI data produced biologically plausible results,
but further experiments are necessary to reveal its potential
as a new tool to investigate neural systems.
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