Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV

Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008

SÉRIES

ELEMENTOS

- 1. **Definições** A sequência das somas parciais de $(a_n) \subset \mathbb{K}$, (s_n) , com $s_n = a_1 + a_2 + \dots + a_n$, é a série $\sum_{n=0}^{+\infty} a_n$, associada a (a_n) , com termo geral a_n e s_n sua soma parcial de ordem n. O limite da série, se existir (finito ou infinito), é a soma da série também indicada $\sum_{n=0}^{+\infty} a_n$.
- 2. Notações Se a série inicia em n=p notamos $\sum_{n\geq p} a_n$ ou $\sum_{n=p}^{+\infty} a_n$.
- 3. Se a soma é finita a série é convergente e notamos $\sum_{n\geq 1}a_n<\infty$, senão, ela é divergente.
- 4. **Proposição 1** Seja $a_n \ge 0, \forall n \in \mathbb{N}$. A série $\sum_{n \ge 1} a_n$ converge se, e só se, as somas parciais $s_n = a_1 + \dots + a_n$ formam uma sequência limitada. **Prova** Imediata aplicação do Axioma do Supremo.
- 5. Para séries convergentes de termos positivos notamos também, simplesmente, $\sum a_n$. O motivo surge no estudo de somabilidade (somas) em \mathbb{K} e séries absolutamente e/ou comutativamente convergentes em \mathbb{K} .
- 7. Condição necessária à convergência Se $\sum_{n\geq 1} a_n$ converge em \mathbb{K} então, $\lim_{n\to +\infty} a_n=0$. Prova: É óbvio que $s_{n+1}-s_n=a_n$, $\forall n$, e, por hipótese, existe $\lim_{n\to +\infty} s_n=x\in\mathbb{C}$. É fácil ver que $\lim_{n\to +\infty} s_{n+1}=x$ e, assim,

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (s_{n+1} - s_n) = \lim_{n \to +\infty} s_{n+1} - \lim_{n \to +\infty} s_n = x - x = 0 \blacksquare$$

- 8. Critério de Cauchy para séries A série $\sum_{n\geq 1} a_n$, em \mathbb{K} , é convergente se, e só se, $\forall \epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \epsilon, \forall N > n_0, \forall p \in \mathbb{N}$.

 Prova É claro que $|a_{n+1} + a_{n+2} + \dots + a_{n+p}| = |s_{n+p} s_n|$, s_n a n-ésima soma parcial da série e, a série é convergente se, e só se, (s_n) é uma sequência de Cauchy, donde a tese
- 9. **Definições** A série $\sum_{n\geq 1} a_n$, em \mathbb{K} , é
 - (a) absolutamente convergente se $\sum_{n\geq 1} |a_n| < \infty$.
 - (b) **condicionalmente convergente** se é convergente e $\sum |a_n| = \infty$.

O Teorema a seguir é de extrema importância. Breve abordaremos a teoria elementar de séries e veremos uma prova 'realmente' elementar. Abaixo seguem duas provas simples.

10. **Teorema** Toda série, em K, absolutamente convergente é convergente.

Prova 1 Seja $S_n = |a_1| + \dots + |a_n|$; (S_n) é uma sequência de Cauchy e, $\forall \epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que, $\forall n > n_0$ e $p \in \mathbb{N}$, $S_{n+p} - S_n = |a_{n+1}| + |a_{n+2}| + \dots + |a_{n+p}| < \epsilon$. Logo, se s_n é a n-ésima soma parcial de $\sum a_n$, $|s_{n+p} - s_n| = |a_{n+1} + a_{n+2} + \dots + a_{n+p}| \le |a_{n+1}| + \dots + |a_{n+p}| < \epsilon$. **Prova 2** Uma série em \mathbb{C} origina duas em \mathbb{R} e, converge absolutamente se, e só se, a parte real e a imaginária também (pois, |Re(z)|, $|Im(z)| \le |z| \le |Re(z)| + |Im(z)|$). Assim, podemos supor a série em \mathbb{R} .

Para $\sum |a_n| < +\infty$, $a_n \in \mathbb{R}$, temos, $0 \le a_n + |a_n| \le 2|a_n|$ e, como $\sum 2|a_n|$ converge, pelo critério da comparação, $\sum\limits_{n \ge 1} (a_n + |a_n|)$ converge e portanto, sendo a série $\sum (-|a_n|)$ convergente, $\sum\limits_{n \ge 1} a_n = \sum\limits_{n \ge 1} (a_n + |a_n|) + \sum (-|a_n|)$ também converge \blacksquare

Seguem resultados que desde o abaixo até os critérios da razão e da raíz, não dependem da relação de ordem em \mathbb{R} e sim da função módulo e, portanto, valem em \mathbb{K} .

11. Critério da Comparação Sejam $\sum_{n\geq 1} a_n$ e $\sum_{n\geq 1} b_n$ séries em \mathbb{K} . Se existem c>0 e $n_0\in\mathbb{N}$ tais que $|a_n|\leq c\,|b_n|,\,\forall n>n_0,\,$ e $\sum |b_n|<\infty$ então $\sum |a_n|<\infty$.

Prova: Segue da proposição acima.

- 12. Critério do Limite Sejam $\sum_{n\geq 1} a_n \in \sum_{n\geq 1} b_n$, $b_{n's} \neq 0$, séries em \mathbb{K} e $\lim_{n\to +\infty} \frac{|a_n|}{|b_n|} = L \in [0, +\infty]$.
 - (a) Se L=0 e $\sum |b_n|$ é convergente então, $\sum |a_n|$ é convergente.
 - (b) Se $0 < L < +\infty$ então, $\sum |a_n|$ é convergente se, e só se, $\sum_{n \ge 1} b_n$ é convergente.
 - (c) Se $L = +\infty$ e $\sum |b_n|$ é divergente então, $\sum |a_n|$ é divergente.

Prova (a) Se $L=0, \exists n_0 \in \mathbb{N}$ tal que $|a_n| \leq |b_n|, \forall n \geq n_0$. Logo, $\sum_{n=n_0}^{+\infty} |a_n| \leq \sum_{n=n_0}^{+\infty} |b_n| < +\infty$.

- (b) Existe n_0 tal que, se $n \ge n_0$, $|b_n|^{\frac{L}{2}} \le |a_n| \le \frac{3L}{2}|b_n|$. A tese segue da comparação.
- (c) Existe $n_0 \in \mathbb{N}$ tal que, se $n \ge n_0$, $|a_n| \ge |b_n|$. Logo, $\sum |a_n| \ge \sum |b_n| = +\infty$
- 13. Critério da Raíz Seja $\sum_{n>1} a_n$ uma série em \mathbb{K} . Se $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = r \in [0,+\infty]$ temos,
 - (a) Se r < 1, a série $\sum_{n>1} a_n$ é absolutamente convergente.
 - (b) Se r=1, nada se pode afirmar sobre a convergência de $\sum_{n\geq 1}a_n.$
 - (c) Se r > 1 ou $r = +\infty$, a série $\sum_{n \ge 1} a_n$ é divergente.

Prova (a) Basta tomarmos $\lambda > 0$, $r < \lambda < 1$, e n_0 tal que, se $n > n_0$, $\sqrt[n]{|a_n|} < \lambda$ e, $|a_n| < \lambda^n$.

- (c) Basta escolhermos $\lambda > 0$, $1 < \lambda < r$ e n_0 tal que, se $n > n_0$, $\sqrt[n]{|a_n|} > \lambda$ e, $|a_n| > \lambda^n$.
- (b) A série $\sum \frac{1}{n}$ diverge enquanto $\sum \frac{1}{n^2}$ converge. Porém, $\lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$.

- 14. Critério da Razão Dada $\sum_{n>1} a_n$, em \mathbb{K} , $a_n \neq 0 (\forall n)$, se $\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = r \in [0,+\infty]$ temos,
 - (a) Se r < 1, a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
 - (b) Se r=1, nada se pode afirmar sobre a convergência de $\sum_{n=1}^{+\infty} a_n$.
 - (c) Se r > 1 ou $r = +\infty$, a série $\sum_{n=1}^{+\infty} a_n$ é divergente.

Prova (a) Escolhamos $\lambda \in \mathbb{R}$, $r < \lambda < 1$, e $n_0 \in \mathbb{N}$ tal que, para $n > n_0$, $\frac{|a_{n+1}|}{|a_n|} < \lambda$. Então, para $n > n_0$, $|a_n| = \frac{|a_n|}{|a_{n-1}|} \frac{|a_{n-1}|}{|a_{n-2}|} \dots \frac{|a_3|}{|a_2|} \frac{|a_2|}{|a_1|} |a_1| \le |a_1| \lambda^{n-1}$, donde a convergência de $\sum |a_n|$. (c) Neste caso existe n_0 tal que, se $n > n_0$, $\frac{|a_{n+1}|}{|a_n|} > 1$ e portanto, $|a_{n+1}| \ge |a_n|$.

- (b) Os exemplos citados no critério da raíz servem aqui também

Abaixo, uma versão simples do teorema 4 no apêndice de sequências, não utilizando as noções de $\lim \sup$ ou $\lim \inf$.

15. Proposição 3 Se $\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = L$ então $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = L$.

Prova Dado $\epsilon > 0$, seja $0 < \delta < \epsilon$ e n_0 tal que, se $n \ge n_0$, $L - \delta < \frac{|a_{n+1}|}{|a_n|} < L + \delta$. Logo,

$$(L-\delta)^{n-n_0}|a_{n_0}| \le |a_n| = \frac{|a_n|}{|a_{n-1}|} \frac{|a_{n-1}|}{|a_{n-2}|} \dots \frac{|a_{n_0+1}|}{|a_{n_0}|} |a_{n_0}| \le (L+\delta)^{n-n_0} |a_{n_0}|$$

e, ainda para $n > n_0$,

$$\frac{(L-\delta)^n}{(L-\delta)^{n_0}} \le \frac{|a_n|}{|a_{n_0}|} \le \frac{(L+\delta)^n}{(L+\delta)^{n_0}}.$$

Sendo $L - \delta < L < L + \delta$ temos (omitimos o caso L = 0, que é similar)

$$\frac{(L-\delta)^n}{L^{n_0}} \le \frac{|a_n|}{|a_{n_0}|} \le \frac{(L+\delta)^n}{L^{n_0}},$$

e, definindo $\alpha = \frac{|a_{n_0}|}{L^{n_0}}$

$$\sqrt[n]{\alpha}(L-\delta) \le \sqrt[n]{|a_n|} \le \sqrt[n]{\alpha}(L+\delta), \quad \forall n > n_0.$$

 $\text{Como}\ \tfrac{L-\epsilon}{L-\delta} < 1 < \tfrac{L+\epsilon}{L+\delta} \ \text{e}\ \lim_{n\to\infty} \sqrt[n]{\alpha} = 1, \text{ fixamos } N > n_0 \text{ tal que, se } n > N, \ \tfrac{L-\epsilon}{L-\delta} < \sqrt[n]{\alpha} < \tfrac{L+\epsilon}{L+\delta}$ Assim procedendo, concluímos

$$(L-\epsilon) < \sqrt[n]{\alpha}(L-\delta) \le \sqrt[n]{|a_n|} \le \sqrt[n]{\alpha}(L+\delta) < (L+\epsilon), \ \forall \ n > N$$

16. Critério da Integral Seja $\sum_{n\geq 1} a_n, a_n \geq 0$, uma série e $f:[p,+\infty) \longrightarrow [0,+\infty)$, contínua e decrescente, com $a_n = f(n), \forall n \ge p$. Temos,

$$\int_{p}^{+\infty} f(x) \, dx < +\infty \iff \sum_{n=0}^{+\infty} a_n < +\infty$$

Prova Se $k \ge p$ e $x \in [k, k+1]$ então, $a_{k+1} \le f(x) \le a_k$, $a_{k+1} \le \int_k^{k+1} f(x) dx \le a_k$ e,

$$\sum_{n=0}^{n} a_{k+1} \leq \sum_{n=0}^{n} \int_{k}^{k+1} f(x) dx = \int_{p}^{n+1} f(x) dx \leq \sum_{n=0}^{n} a_{k}.$$

Logo, $\sum_{n=1}^{+\infty} a_n < \text{\'e}$ convergente se, e só se, $\lim_{n \to +\infty} \int_p^{n+1} f(x) \, dx = \int_p^{+\infty} f(x) \, dx < \infty$ Uma função como no enunciado do critério acima sempre existe mas, em geral, não é útil. Basta definir f em [n, n+1] tendo por gráfico o segmento unindo (n, a_n) e $(n+1, a_{n+1})$.

17. (Critério de Dirichlet) Em \mathbb{R} , seja $\sum_{n\geq 1} a_n$ uma série (não necessariamente convergente) com sequência das somas parciais, (s_n) , limitada e (b_n) uma sequência decrescente, lim $b_n = 0$. Então, $\sum_{n>1} a_n b_n$ é convergente.

Prova Temos.

$$a_1b_1 + a_2b_2 = a_1(b_1 - b_2) + (a_1 + a_2)b_2 = s_1(b_1 - b_2) + s_2b_2,$$

 $a_1b_1 + a_2b_2 + a_3b_3 = s_1(b_1 - b_2) + s_2b_2 + a_3b_3 = s_1(b_1 - b_2) + s_2(b_2 - b_3) + s_3b_3,$
e, de forma geral (exercício: verifique, a indução é simples),

$$a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{i=2}^n s_{i-1}(b_{i-1} - b_i) + s_nb_n$$
.

Para $M \in \mathbb{R}$ tal que $|s_n| \le M$ temos, $\sum_{n=2}^{+\infty} |s_{i-1}(b_{i-1} - b_i)| \le M \sum_{n=2}^{+\infty} (b_{i-1} - b_i) = Mb_1$ e portanto, $\sum_{n=2}^{+\infty} s_{i-1}(b_{i-1} - b_i)$ é absolutamente convergente, logo convergente e, como lim $s_n b_n = 0$, a série $\sum_{n\geq 1} a_n b_n$ é convergente \blacksquare

No resultado abaixo enfraquecemos a hipótese sobre (b_n) porém, exigimos mais de $\sum a_n$.

- 18. Critério de Abel Se $\sum_{n=1}^{+\infty} a_n$ é convergente e (b_n) é uma sequência decrescente de números positivos (não necessariamente tendendo para zero) então, a série $\sum_{n=1}^{+\infty} a_n b_n$ é convergente. Prova Para $c = \lim b_n$, $(b_n - c) \searrow 0$. Logo, pelo Critério de Dirichlet $\sum_{n=1}^{+\infty} a_n (b_n - c)$ é convergente e, devido à hipótese, $\sum_{n=1}^{+\infty} ca_n = c \sum_{n=1}^{+\infty} a_n$ também e assim $\sum_{n=1}^{+\infty} a_n b_n$
- 19. Critério de Leibiniz Se (b_n) é decrescente e $\lim b_n = 0$, a série $\sum_{n=1}^{+\infty} (-1)^n b_n$ é convergente. Prova Consequência direta do critério de Dirichlet

Os critérios a seguir são um refinamento do critério da razão.

20. Critério de Comparação de Razões Sejam $\sum_{k=1}^{+\infty} a_k$ e $\sum_{k=1}^{+\infty} b_k$ duas séries em $\mathbb{C}^* = \mathbb{C} - \{0\}$. Suponhamos que exista $p \in \mathbb{N}$ tal que

$$\left| \frac{a_{k+1}}{a_k} \right| \le \left| \frac{b_{k+1}}{b_k} \right|, \ \forall \ k \ge p.$$

Temos, se $\sum |b_k|$ converge então $\sum |a_k|$ converge. Isto é, $\sum |a_k| = +\infty \Rightarrow \sum |b_k| = +\infty$. **Prova** Da hipótese temos, para $k \geq p$, $|\frac{a_{k+1}}{b_{k+1}}| \leq |\frac{a_k}{b_k}|$. Logo, para $k \geq p$ a sequência $\frac{|a_k|}{|b_k|}$ decresce, $\frac{|a_k|}{|b_k|} \leq \frac{|a_p|}{|b_p|}$, e então, $|a_k| \leq \frac{|a_p|}{|b_p|} |b_k|$. Pelo critério da comparação, segue a tese

21. Critério de Raabe Seja $\sum_{n=1}^{+\infty} a_n$, uma série em \mathbb{K} , $|a_n| \neq 0$, $\forall n$, tal que

$$\lim_{n\to +\infty} n\big(1-\big|\frac{a_{n+1}}{a_n}\big|\big) = L \in \left[-\infty, +\infty\right]$$

- (a) Se L > 1, $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- (b) Se L < 1, $\sum_{n=1}^{+\infty} a_n$ diverge.
- (c) Se L=1 o critério nada revela.

Prova (a) Seja α tal que 1 < α < L. Então, existe $N \in \mathbb{N}$ para o qual

$$k\left(1-\big|\frac{a_{k+1}}{a_k}\big|\right) \ > \ \alpha \ , \ \forall k \ \geq \ N \ .$$

Logo, para tais valores de k, $\left|\frac{a_{k+1}}{a_k}\right| < 1 - \frac{\alpha}{k}$. Para continuarmos façamos uma observação.

Obs Para $\alpha > 1$, $x \ge -1$ e $f(x) = (1+x)^{\alpha}$ temos $f'' \ge 0$, $f'(0) = \alpha$, concavidade voltada para cima e reta tangente em (0,1) dada por $y = 1 + \alpha x$. Logo, $(1+x)^{\alpha} \ge 1 + \alpha x$.

Assim, utilizando tal desigualdade para $x = -\frac{1}{k}$, obtemos

$$\left|\frac{a_{k+1}}{a_k}\right| < 1 - \frac{\alpha}{k} \le \left(1 - \frac{1}{k}\right)^{\alpha} = \frac{\frac{1}{k^{\alpha}}}{\frac{1}{(k-1)^{\alpha}}} = \frac{b_{k+1}}{b_k}, \quad b_k = \frac{1}{(k-1)^{\alpha}}.$$

Como $\sum \frac{1}{k^{\alpha}} < \infty$ ($\alpha > 1$), pelo critério da comparação entre razões $\sum |a_k|$ é convergente.

(b) Seja $N \in \mathbb{N}$ tal que, se $k \geq N$, $k\left(1-\left|\frac{a_{k+1}}{a_k}\right|\right) \leq 1$. Assim,

$$\left| \frac{a_{k+1}}{a_k} \right| \ge 1 - \frac{1}{k} = \frac{k-1}{k} = \frac{\frac{1}{k}}{\frac{1}{k-1}} = \frac{b_{k+1}}{b_k}, \quad b_{k+1} = \frac{1}{k}$$

Como a série harmônica diverge, pelo critério de comparações de razões, $\sum\limits_{k=1}^{+\infty}a_k$ diverge.

(c) A série $\sum_{k=2}^{+\infty} \frac{1}{k \ln k}$ diverge pois $\int_2^{\infty} \frac{1}{x \ln x} dx = \ln (\ln x) \Big|_2^{+\infty} = +\infty$. Simplificando a expressão na condição no teste de Raabe para tal série obtemos,

$$k\left(1-\frac{k\ln k}{(k+1)\ln(k+1)}\right) = \frac{k}{k+1}\left[\frac{(k+1)\ln(k+1)-k\ln k}{\ln(k+1)}\right].$$

Se $k \to +\infty$, $\frac{k}{k+1}$ tende a 1 e, também, a fração entre colchetes pois,

$$\frac{(k+1)ln(k+1)-kln\,k}{ln(k+1)} = 1 + \frac{kln(k+1)-kln\,k}{ln(k+1)} = 1 + \frac{ln\,(1+\frac{1}{k})^k}{ln\,(k+1)} \longrightarrow 1+0=1.$$

A série $\sum_{k=2}^{+\infty} \frac{1}{k(\log k)^2}$ é convergente pois $\int_2^{+\infty} \frac{1}{x(\log x)^2} dx = \int_{\log 2}^{+\infty} \frac{1}{y^2} dy < \infty$. Simplificando a expressão na condição no teste de Raabe para tal série obtemos,

$$I(k) = k \left(1 - \frac{k \log^2 k}{(k+1) \log^2 (k+1)} \right) = \frac{k}{k+1} \left[\frac{(k+1) \log^2 (k+1) - k \log^2 k}{\log^2 (k+1)} \right].$$

$$= \frac{k}{k+1} \left[1 + \frac{k \log^2(k+1) - k \log^2 k}{\log^2(k+1)} \right] .$$

Como $\lim_{k \to +\infty} \frac{k}{k+1}$ = 1, simplificamos a análise de I(k) estudando,

$$\frac{k \log^2(k+1) - k \log^2 k}{\log^2(k+1)} = k \frac{\log(k+1) - \log k}{\log(k+1)} \frac{\log(k+1) + \log k}{\log(k+1)}.$$

Pela regra de L'Hospital, $\lim_{x \to +\infty} \frac{\log x}{\log(x+1)} = 1$ e deduzimos que $\lim_{k \to +\infty} \frac{\log(k+1) + \log k}{\log(k+1)} = 2$. Finalmente, como $\lim_{k \to +\infty} k \frac{\log(k+1) - \log k}{\log(k+1)} = \lim_{k \to +\infty} \frac{\log(1+\frac{1}{k})^k}{\log(k+1)} = 0$ concluímos $\lim I(k) = 1$