$2^{\underline{a}}$ PROVA DE FUNÇÕES ANALÍTICAS- IMEUSP - MAT 5714

31 de outubro, 2014

	1	
Nome : GABARITO	2	
$N^{O}USP : $	3	
Professor : Oswaldo Rio Branco de Oliveira	4	
	5	
	Total	

Q

Ν

Justifique todas as passagens, com uma redação clara e não carregada em simbologia. BOA SORTE!

1. Defina famílias equicontínuas, localmente limitadas e normais (relativamente compactas). Enuncie o Teorema de Montel.

Seja \mathcal{F} uma família em $\mathcal{A}(\Omega)$ e localmente limitada. Prove, usando o Lema de Schwarz, que \mathcal{F} é equicontínua sobre cada compacto K contido em Ω . Sugestões. Mostre as afirmações abaixo.

- (a) Existe r>0 tal que $K(r)=\{z:d(z;K)\leq r\}\subset\Omega$. Ainda, K(r) é compacto.
- (b) Existe M > 0 tal que $|f(z)| \le M$, para toda $f \in \mathcal{F}$ e para todo z em K(r).
- (c) Dados quaisquer $a \in K$ e $f \in \mathcal{F}$, a função

$$\widetilde{f}(z) = \frac{f(a+rz) - f(a)}{2M}$$

aplica o disco D(0;1) em D(0;1) e satisfaz $\widetilde{f}(0) = 0$.

Solução (integration-free).

Seja X um subconjunto de \mathbb{C} e $C(X) = \{f : X \to \mathbb{C}, \text{ onde } f \text{ \'e contínua}\}$. Seja \mathcal{F} uma família de funções em C(X). Dizemos que

• $\mathcal F$ é equicontínua se para todo $\epsilon>0$ existe um $\delta>0$ satisfazendo

$$|f(z) - f(w)| < \epsilon, \ \forall f \in \mathcal{F} \ e \ \forall z \ e \ \forall w, \ ambos \ em \ X, \ tais \ que \ |z - w| < \delta.$$

• \mathcal{F} é localmente limitada se para todo $a \in X$, existem uma bola aberta B(a;r), com r>0, e um $M\geq 0$ satisfazendo

$$|f(z)| \leq M$$
, para toda $f \in \mathcal{F}$ e para todo $z \in B(a; r) \cap X$.

Seja Ω um conjunto aberto e \mathcal{F} uma família de funções em $C(\Omega)$. Dizemos que

• \mathcal{F} é normal (ou relativamente compacta) se toda sequência em \mathcal{F} contém uma subsequência que converge compactamente a alguma função f [claramente, $f \in C(\Omega)$]. Não é exigido que o limite da subsequência pertença a \mathcal{F} .

Teorema de Montel. Seja \mathcal{F} uma família em $\mathcal{A}(\Omega)$ localmente limitada, com Ω um aberto no plano complexo. Então,

- \mathcal{F} é equicontínua sobre cada subconjunto compacto de Ω .
- \mathcal{F} é normal (isto é, relativamente compacta).

A seguir, resolvamos a questão.

(a) Seja $2r = d(K; \Omega^c)$ [se $\Omega = \mathbb{C}$, escolhemos qualquer r > 0]. Como K é compacto e Ω^c é fechado, tal distância é assumida. Isto é, existem um ponto $\alpha \in K$ e um ponto $\beta \in \Omega^c$ tais que

$$|\alpha-\beta|=d(K;\Omega^c)=2r\leq |a-b|, \ \text{ quaisquer que sejam } a\in K \text{ e } b\in \Omega^c.$$

Segue então a inclusão

$$D(a;r) \subset \Omega$$
, para todo $a \in K$.

É claro que

$$\{z: d(z;K) \le r\} = \bigcup_{a \in K} D(a;r).$$

Donde segue

$$K(r) = \{z : d(z; K) \le r\} \subset \Omega.$$

Como K é limitado, segue que K(r) também é limitado. Ainda, a função

$$z \in \mathbb{C} \mapsto d(z; K)$$

é contínua [visto no capítulo 2] e portanto pré-imagem por tal função do intervalo fechado [0, r] é um fechado em \mathbb{C} . Isto é, o conjunto K(r) é fechado. Juntando as informações, segue que

K(r) é um subconjunto compacto de Ω .

(b) Seja $z \in K(r)$. Por hipótese, existe B(z; r(z)) não degenerada tal que \mathcal{F} é uniformemente limitada em B(z; r(z)) por uma constante M(z). Temos

$$K(r) \subset \bigcup_{z \in K(r)} B(z; r(z)).$$

Então, como K(r) é compacto, existem $z_1, \ldots, z_n \in K(r)$ tais que

$$K(r) \subset B(z_1; r(z_1)) \cup \cdots \cup B(z_1; r(z_1)).$$

Seja $M = \max\{M(z_j) : j = 1, ..., n\}$. Encontramos a estimativa

$$|f(z)| \le M$$
, quaisquer que sejam $f \in \mathcal{F}$ e $z \in K(r)$.

Vide próxima página

(c) Seja K um compacto contido em Ω e fixemos um arbitrário a em K. Seja $2r = d(K; \Omega^c)$, como em (a). Seja M = M(K, r) como em (b). Definamos

$$\widetilde{f}(z) = \frac{f(a+rz) - f(a)}{2M}$$
, onde $z \in D(0;1)$.

É claro que $\widetilde{f}(0)=0.$ Ainda mais,

$$|\widetilde{f}(z)| \le \frac{|f(a+rz)| + |f(a)|}{2M} \le \frac{2M}{2M} = 1$$
, para todo $z \in D(0;1)$.

Logo,

$$\widetilde{f}: D(0;1) \to D(0;1) \text{ e } \widetilde{f}(0) = 0.$$

O Lema de Schwarz garante

$$|\widetilde{f}(z)| \leq |z|, \text{ para todo } z \in D(0;1).$$

Isto é,

$$|f(a+rz)-f(a)| \le 2M|z|$$
, para todo $z \in D(0;1)$.

Assim, se ζ pertence a Ke $|\zeta-a| \leq r$ então obtemos

$$|f(\zeta) - f(a)| \le 2M \frac{|\zeta - a|}{r} = \frac{2M}{r} |\zeta - a|.$$

Tal desigualdade vale para quaisquer pontos $a \in K$ e $\zeta \in K$, tais que $|\zeta - a| \le r$, e qualquer $f \in \mathcal{F}$. Logo, \mathcal{F} é equicontínua sobre $K \clubsuit$

2. Consideremos o quadrado Q centrado na origem e de vértices

$$z_0 = z_4 = 1 + i$$
, $z_1 = -1 + i$, $z_2 = -(1 + i)$, $z_3 = 1 - i$.

Consideremos as curvas (esboce os segmentos lineares)

$$\gamma_k(t) = z_k + (t - k)(z_{k+1} - z_k)$$
, onde $t \in [k, k+1]$, para $k = 0, 1, 2, 3$.

Seja $\gamma:[0,4]\to\mathbb{C}$ dada pela justaposição $\gamma=\gamma_0\vee\gamma_1\vee\gamma_2\vee\gamma_3$. Isto é, temos $\gamma(t)=\gamma_k(t)$ se $t\in[k,k+1]$ e γ é a fronteira do quadrado Q. Mostre que

$$Ind(\gamma; 0) = Ind(\gamma_0; 0) + Ind(\gamma_1; 0) + Ind(\gamma_2; 0) + Ind(\gamma_3; 0).$$

Mostre que $\operatorname{Ind}(\gamma_k; 0) = \frac{1}{4}$ para k = 0, 1, 2, 3. Mostre então que $\operatorname{Ind}(\gamma; 0) = 1$.

Solução (integration-free).

♦ Por um teorema provado em sala (Teorema 7.11), existe uma função contínua [chamada ramo] $\phi: [0,4] \to \mathbb{R}$ tal que

$$\gamma(t) = |\gamma(t)|e^{i\phi(t)}.$$

Então, $\phi_k = \phi \Big|_{[k,k+1]} : [k,k+1] \to \mathbb{R}$ são contínuas e satisfazem

$$\gamma_k(t) = |\gamma_k(t)| e^{i\phi_k(t)}.$$

Por definição temos

$$Ind(\gamma;0) = \frac{\phi(4) - \phi(0)}{2\pi}$$

$$= \frac{\phi(4) - \phi(3)}{2\pi} + \frac{\phi(3) - \phi(2)}{2\pi} + \frac{\phi(2) - \phi(1)}{2\pi} + \frac{\phi(1) - \phi(0)}{2\pi}$$

$$= Ind(\gamma_3; 0) + Ind(\gamma_2; 0) + Ind(\gamma_1; 0) + Ind(\gamma_0; 0).$$

 \Rightarrow Ind $(\gamma_3; 0)$. O segmento linear desde $z_3 = 1 - i$ até $z_4 = z_0 = 1 + i$ está contido no semi-plano "à direita"

$$\Omega = \{z : \operatorname{Re}(z) > 0\}.$$

Em tal semi-plano está bem definido o argumento contínuo

$$\theta(z) = \arcsin\left[\operatorname{Im}\left(\frac{z}{|z|}\right)\right] \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Temos então

$$\gamma_3(t) = |\gamma_3(t)|e^{i\theta(\gamma_3(t))}$$
, para todo $t \in [3, 4]$.

Ainda, $\theta \circ \gamma_3 : [3,4] \to \mathbb{R}$ é contínua. Então, por definição temos

$$\operatorname{Ind}(\gamma_3; 0) = \frac{\theta(\gamma_3(4)) - \theta(\gamma_3(3))}{2\pi} = \frac{\theta(1+i) - \theta(1-i)}{2\pi}$$
$$= \frac{\arcsin\left(\frac{\sqrt{2}}{2}\right) - \arcsin\left(-\frac{\sqrt{2}}{2}\right)}{2\pi} = \frac{\frac{\pi}{4} - \frac{-\pi}{4}}{2\pi} = \frac{1}{4}.$$

 \diamond Os demais indíces. Com a rotação de $\pi/2$ rad dada por $R_i(z) = iz$ vemos que, a menos de uma reparametrização, a curva γ_0 unindo $z_0 = 1 + i$ até $z_1 = -1 + i$ é $R_i \circ \gamma_3$, com $R_i(0) = 0$. Pela propriedade I2 segue

$$\operatorname{Ind}(\gamma_0; 0) = \operatorname{Ind}(\gamma_3; 0) = \frac{1}{4}.$$

A menos de uma reparametrização, a curva γ_1 unindo $z_1=-1+i$ até $z_2=-1-i$ é $R_i\circ\gamma_0$. Pela propriedade I2 segue

$$\operatorname{Ind}(\gamma_1;0) = \operatorname{Ind}(\gamma_0;0) = \frac{1}{4}.$$

Por fim, a menos de uma reparametrização, a curva γ_2 unindo $z_2=-1-i$ até $z_3=1-i$ é $R_i\circ\gamma_1$. Pela propriedade I2 segue

$$\operatorname{Ind}(\gamma_2;0) = \operatorname{Ind}(\gamma_1;0) = \frac{1}{4} \clubsuit$$

3. Sejam um raio R>1 e γ a semi-circunferência orientada no sentido anti-horário (esboce) dada por

$$\gamma(t) = \begin{cases} Re^{it}, & \text{se } 0 \le t \le \pi \\ t - (\pi + R), & \text{se } \pi \le t \le \pi + 2R. \end{cases}$$

Mostre que $Ind(\gamma; i) = 1$.

1^a Solução (integration-free).

Seja r > 0 um raio, com a circunferência S(i; r) contida no interior da região compacta limitada por γ . Claramente 0 < r < 1. A curva contínua e fechada

$$\Gamma(t) = r \frac{\gamma(t) - i}{|\gamma(t) - i|}, \text{ onde } t \in [0, \pi + 2R],$$

é tal que $\Gamma([0, \pi + 2R]) = S(0; r)$.

- Toda semi-reta com início no ponto i intersecta Imagem (γ) em um só ponto.
- A função γ restrita ao intervalo aberto $(0, \pi + 2R)$ é injetora.
- Por tais motivos, a função Γ restrita a $(0, \pi + 2R)$ é injetora.
- Por hipótese, γ tem orientação positiva. Logo, Γ tem orientação positiva.

Pelo Teorema 7.11 existe $\theta:[0,\pi+2R]\to\mathbb{R}$ contínua e satisfazendo

$$\Gamma(t) = re^{i\theta(t)}$$
, para todo $t \in [0, \pi + 2R]$.

- Como a curva Γ é positivamente orientada, segue que a função θ é crescente.
- Como θ é crescente e a curva Γ é fechada, concluímos que

$$\theta(\pi + 2R) = \theta(0) + 2n\pi$$
, para algum $n \in \{1, 2, 3, ...\}$.

- Por tais motivos, mais continuidade e conexidade e compacidade, obtemos

$$\theta\Big([0,\pi+2R]\Big) = [\theta(0),\theta(0) + 2n\pi].$$

Como $\Gamma(t)=re^{i\theta(t)}$ restrita ao intervalo $(0,\pi+2R)$ é injetora, não ocorre $n\geq 2$. Pois, caso contrário, existem t_1 e t_2 distintos e no intervalo $(0,\pi+2R)$ e satisfazendo $\theta(t_2)=\theta(t_1)+2\pi$ donde então segue $\Gamma(t_1)=\Gamma(t_2)$, uma contradição.

Desta forma, concluímos que n=1 e

$$\operatorname{Ind}(\gamma; i) = \operatorname{Ind}(\Gamma; 0) = \frac{\theta(\pi + 2R) - \theta(0)}{2\pi} = \frac{2n\pi}{2\pi} = n = 1 \clubsuit$$

2ª Solução (integration-free).

Consideremos a semi-circunferência parametrizada no sentido anti-horário

$$\eta(t) = \begin{cases}
(\pi - t) + 3R, & \text{se } \pi + 2R \le t \le \pi + 4R \\
Re^{i(t - 4R)}, & \text{se } \pi + 4R \le t \le 2\pi + 4R.
\end{cases}$$

O número i pertence à componente ilimitada do complementar de Imagem (η) . Logo, pelo teorema 7.15 segue

$$\operatorname{Ind}(\eta; i) = 0.$$

Consideremos a curva justaposta $\gamma \vee \eta$. Pela definição de índice (7.13) segue

$$\operatorname{Ind}(\gamma \vee \eta; i) = \operatorname{Ind}(\gamma; i) + \operatorname{Ind}(\eta; i).$$

Logo,

$$\operatorname{Ind}(\gamma; i) = \operatorname{Ind}(\gamma \vee \eta; i).$$

Escrevamos $\gamma = \gamma_1 \vee \gamma_2$ com

$$\gamma_1$$
 definida em $[0,\pi]$ e γ_2 definida em $[\pi,\pi+2R]$.

Analogamente, escrevamos $\eta = \eta_1 \vee \eta_2$ com

$$\eta_1$$
 definida em $[\pi + 2R, \pi + 4R]$ e η_2 definida em $[\pi + 4R, 2\pi + 4R]$.

Pela propriedade (I1) [vide Figura 7.7 nas notas de aula] temos

$$\operatorname{Ind}(\gamma_2; i) = -\operatorname{Ind}(\eta_1; i).$$

Então, pela definição de índice (7.13) temos

$$\operatorname{Ind}(\gamma \vee \eta; i) = \operatorname{Ind}(\gamma_1; i) + \operatorname{Ind}(\eta_2; i).$$

Reparametrizemos η_2 no intervalo $[\pi, 2\pi]$. Seja η_3 tal reparametrização.

Pela propriedade (I2) temos

$$\operatorname{Ind}(\eta_2; i) = \operatorname{Ind}(\eta_3; i).$$

Logo [e uma vez mais utilizando a definição (7.13)]

$$\operatorname{Ind}(\gamma \vee \eta; i) = \operatorname{Ind}(\gamma_1; i) + \operatorname{Ind}(\eta_3; i) = \operatorname{Ind}(\gamma_1 \vee \eta_3; i).$$

Seja $\Gamma = \gamma_1 \vee \eta_3$. Evidentemente

$$\Gamma = \gamma_1 \vee \eta_3$$
 é a parametrização anti-horária de $S^1 = \text{Imagem}(\Gamma)$.

Pelo Teorema 7.13 o índice $\operatorname{Ind}_{\Gamma}$ é constante nas componentes de $\mathbb{C}\setminus S^1$. Como 0 e i pertencem à mesma componente de $\mathbb{C}\setminus S^1$, segue que

$$\operatorname{Ind}(\Gamma; i) = \operatorname{Ind}(\Gamma; 0).$$

É bem sabido que

$$\operatorname{Ind}(\Gamma;0)=1$$

- 4. (a) Verifique que $p(z)=z^5+13z^2+15$ tem dois zeros na coroa $\left\{z:1<|z|<2\right\}$ e três zeros na coroa $\left\{z:2<|z|<\frac{5}{2}\right\}$.
 - (b) Seja $a \in \mathbb{C}$, com |a| > e (onde e é o número de Euler). Verifique que a equação

$$e^z - az^n = 0$$

tem exatamente n soluções em B(0;1).

Solução (integration-free).

- (a) \diamond Pelo Teorema Fundamental da Álgebra, p(z) tem exatamente 5 zeros.
 - \diamond Suponhamos $|\zeta| = 5/2$. Temos

$$|13\zeta^2 + 15| \le \frac{325 + 60}{4} = \frac{385}{4} = \frac{3080}{32} < \frac{3125}{32} = |\zeta^5|.$$

Logo, pelo Teorema de Rouché

todos os cinco zeros de
$$p(z)$$
 estão em $B\left(0; \frac{5}{2}\right)$.

 \diamond Seja $\zeta\in D(0;1).$ Seguem $|\zeta^5+13\zeta^2|\leq 14$ e $p(\zeta)=\zeta^5+13\zeta^2+15\neq 0.$ Assim,

todos os cinco zeros de p(z) estão no anel $\left\{z: 1<|z|<\frac{5}{2}\right\}$.

 \diamond Suponhamos $|\zeta| = 2$. Então,

$$|\zeta^5 + 15| \le 32 + 15 = 47 < 52 = |13\zeta^2|.$$

Logo, pelo Teorema de Rouché

$$\left\{\begin{array}{l} p(z)=z^5+13z^2+15 \text{ tem dois zeros em } B(0;2)\\ \mathrm{e}\\ p(z)=z^5+13z^2+15 \text{ não tem zeros na circunferência } S(0;2). \end{array}\right.$$

♦ Combinando as informações acima, concluímos que

$$\left\{ \begin{array}{l} p(z) \text{ tem dois zeros no anel } \{z: 1 < |z| < 2\} \\ \mathrm{e} \\ p(z) \text{ tem três zeros no anel } \left\{z: 2 < |z| < \frac{5}{2}\right\}. \end{array} \right.$$

(b) Suponhamos $|\zeta| = 1$. Então,

$$|e^{\zeta}| = e^{\text{Re}(\zeta)} \le e^1 = e < |a| = |a\zeta^n|.$$

Logo, pelo Teorema de Rouché

$$f(z)=e^z-az^n \;\; {\rm tem} \; n$$
 soluções na bola $B(0;1)$ \clubsuit

5. Suponha que Ω é um aberto conexo e não vazio de \mathbb{C} . Seja f_n , para $n \in \mathbb{N}$, uma sequência de funções holomorfas em Ω e $u_n = Re(f_n)$.

Prove que se (u_n) converge compactamente em Ω e se existe $\alpha \in \Omega$ tal que $(f_n(\alpha))$ converge em \mathbb{C} , então (f_n) converge compactamente em Ω .

Solução.

O conjunto X dos pontos de Ω que admitem uma vizinhança na qual (f_n) converge compactamente é evidentemente aberto em Ω . Um simples raciocínio com sequências mostra que tal conjunto é também fechado em Ω . Então, como Ω é conexo, só falta mostrarmos que X não vazio.

Podemos supor, sem perda de generalidade, $\alpha = 0$.

Lema. Consideremos f holomorfa na bola $B(0; \rho)$, com $\rho > 0$, e sua parte real u = Re(f). Seja r tal que $0 < r < \rho$. Então, para cada ponto $w \in B(0; r)$ temos

$$f(w) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \frac{re^{i\theta} + w}{re^{i\theta} - w} d\theta + i \operatorname{Im}[f(0)].$$

Prova.

Escrevendo

$$f(z) = \sum a_n z^n$$
, para todo $|z| < \rho$,

obtemos

$$u(z) = \frac{1}{2} \sum (a_n z^n + \overline{a_n z^n}).$$

Dado $z = re^{i\theta}$ na circunferência S(0; r), temos

$$u(re^{i\theta}) = \operatorname{Re}(a_0) + \frac{1}{2} \sum_{m>1} r^m (a_m e^{im\theta} + \overline{a_m} e^{-im\theta}).$$

Multiplicando tal identidade por $e^{-in\theta}$, para $n=1,2,3,\ldots$, e integrando obtemos

$$\int_0^{2\pi} u(re^{i\theta})e^{-in\theta}d\theta = r^n a_n \pi.$$

Achamos então fórmulas para os coeficientes que dependem apenas de u = Re f:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} u(re^{i\theta}) \frac{1}{(re^{i\theta})^n} d\theta$$
, so $n \ge 1$.

Observemos que, pela fórmula do valor médio de Gauss,

$$a_0 = f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) d\theta \implies \operatorname{Re}(a_0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta.$$

Dado então $w \in B(0; r)$ temos (pelo Teste-M de Weierstrass, pois $\frac{|w|}{r} < 1$)

$$f(w) = a_0 + \sum_{n \ge 1} \frac{1}{\pi} \int_0^{2\pi} u(re^{i\theta}) \left(\frac{w}{re^{i\theta}}\right)^n d\theta =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \left[1 + 2\sum_{n \ge 1} \left(\frac{w}{re^{i\theta}}\right)^n\right] d\theta + i\operatorname{Im}(a_0)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \left[1 + 2\left(\frac{1}{1 - \frac{w}{re^{i\theta}}} - 1\right)\right] d\theta + i\operatorname{Im}(a_0)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \left(\frac{2re^{i\theta}}{re^{i\theta} - w} - 1\right) d\theta + i\operatorname{Im}(a_0)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \frac{re^{i\theta} + w}{re^{i\theta} - w} d\theta + i\operatorname{Im}(a_0) \blacksquare$$

O lema está provado.

A seguir, suponhamos $0 < \tau < r < \rho$ e

$$B(0;\tau) \subset B(0;r) \subset B(0;\rho) \subset \Omega$$
.

Pelo lema temos

$$f_n(w) - f_m(w) = \frac{1}{2\pi} \int_0^{2\pi} \left[u_n(re^{i\theta}) - u_m(re^{i\theta}) \right] \frac{re^{i\theta} + w}{re^{i\theta} - w} d\theta + i \operatorname{Im}[f_n(0) - f_m(0)].$$

Para w variando em $D(0;\tau)$, existe uma constante M tal que

$$\left| \frac{re^{i\theta} + w}{re^{i\theta} - w} \right| \le M$$
, para todo $w \in D(0; \tau)$.

Dado $\epsilon > 0$, devido às hipóteses segue que existe $N \in \mathbb{N}$ tal que

$$\begin{cases} |f_n(0) - f_m(0)| \le \epsilon, \text{ para quaisquer } n \ge N \text{ e } m \ge N, \\ |u_n(re^{i\theta}) - u_m(re^{i\theta})| \le \epsilon, \text{ para quaisquer } n \ge N \text{ e } m \ge N \text{ e } \theta \in [0, 2\pi]. \end{cases}$$

Desta forma encontramos

$$|f_n(w) - f_m(w)| \le \epsilon M + \epsilon$$
, para quaisquer $n \ge N, m \ge N$ e $w \in D(0; \tau)$.

Logo, (f_n) converge uniformemente em $D(0;\tau)$ e 0 pertence a X \clubsuit

6. Considere circunferências orientadas γ_1 , γ_2 e γ_3 tais que γ_1 é positivamente orientada e γ_2 e γ_3 são negativamente orientadas e contidas no interior de γ_1 , além de que γ_2 e γ_3 são disjuntas e seus interiores também.

 $Sejam \ \Gamma = \gamma_1 + \gamma_2 + \gamma_3 \ e \ o \ conjunto \ V = \{z \in \mathbb{C} : Ind_{\Gamma}(z) = 1\}. \ Suponha \ 0 \in V.$

(a) Se Ω é um aberto conexo contendo \overline{V} e $g \in \mathcal{H}(\Omega)$, determine $f \in \mathcal{H}(\Omega)$ sabendo que

$$f(z) = \int_{\Gamma} \frac{g(\xi)(1 - \cos \xi)}{\xi^2(\xi - z)} d\xi, \text{ para todo } z \in V.$$

(b) Seja $a \in V$ tal que $a \neq 0$ e $g(a)(1 - \cos a) \neq 0$. Calcule

$$\lambda(a) = \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz.$$

Sugestão. Teorema de Cauchy homológico.

Solução.

Como Ω contém \overline{V} , segue que Γ é homóloga a 0 em Ω .

(a) Consideremos a função

$$\varphi(\xi) = \begin{cases} \frac{1 - \cos \xi}{\xi^2}, & \text{se } \xi \in \mathbb{C} \setminus \{0\}, \\ \frac{1}{2}, & \text{se } \xi = 0. \end{cases}$$

Dado $\xi \neq 0$, obtemos

$$\frac{1-\cos\xi}{\xi^2} = \frac{\frac{\xi^2}{2!} - \frac{\xi^4}{4!} + \frac{\xi^6}{6!} - \dots}{\xi^2} = \frac{1}{2} - \frac{\xi^2}{4!} + \frac{\xi^4}{6!} - \dots$$

Donde segue,

$$\varphi(\xi) = \frac{1}{2} - \frac{\xi^2}{4!} + \frac{\xi^4}{6!} - \cdots$$
, para todo $\xi \in \mathbb{C}$.

Assim, φ é inteira. Encontramos então

$$f(z) = \int_{\Gamma} \frac{g(\xi)\varphi(\xi)}{\xi - z} d\xi$$
, para todo $z \in V$.

A função $g\varphi$ é holomorfa em Ω . Pelo teorema de Cauchy homológico temos

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{g(\xi)\varphi(\xi)}{\xi - z} d\xi = \operatorname{Ind}_{\Gamma}(z)g(z)\varphi(z) = g(z)\varphi(z), \text{ para todo } z \in V.$$

Logo,

(6.1)
$$f(z) = 2\pi i g(z) \varphi(z) = \begin{cases} 2\pi i \frac{g(z)(1-\cos z)}{z^2}, \text{ se } z \in V \setminus \{0\}, \\ \pi i g(0), \text{ se } z = 0. \end{cases}$$

(b) Lema. Seja $F: O \to \mathbb{C}$ contínua com O um aberto em \mathbb{C} . Seja $\gamma: [0,1] \to O$ uma curva de classe C^1 por partes. Seja w um ponto arbitrário no aberto $W = O \setminus \operatorname{Imagem}(\gamma)$. Sob tais hipóteses, a função

$$\Phi(w) = \int_{\gamma} \frac{F(z)}{z - w} dz$$

é holomorfa no aberto W e

$$\Phi'(w) = \int_{\gamma} \frac{F(z)}{(z-w)^2} dz.$$

Verificação.

Desenvolvendo a integral encontramos

$$\Phi(w) = \int_0^1 \frac{F(\gamma(t))\gamma'(t)}{\gamma(t) - w} dt.$$

Sendo que a função

$$h(w,t) = \frac{F(\gamma(t))\gamma'(t)}{\gamma(t) - w}, \text{ onde } (w,t) \in W \times [0,1],$$

é contínua em cada $W \times [t_j, t_{j+1}]$, onde $\{t_0 = 0 < t_1 < \dots < t_n = 1\}$ é uma partição de [0, 1], e holomorfa na primeira variável. Ainda,

$$\frac{\partial h}{\partial w}(w,t) = \frac{F(\gamma(t))\gamma'(t)}{(\gamma(t) - w)^2}$$

é contínua em $W \times [0,1]$. Pela regra de Leibnitz complexa, Φ é derivável e

$$\Phi'(w) = \int_0^1 \frac{\partial h}{\partial w}(w, t) dt = \int_0^1 \frac{F(\gamma(t))\gamma'(t)}{\left(\gamma(t) - w\right)^2} dt = \int_\gamma \frac{F(z)}{(z - w)^2} dz \blacksquare$$

Retornemos ao problema original.

Pelas hipóteses sobre Γ e V e pelo teorema de Cauchy homológico segue

$$f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - a} dz = \sum_{j=1}^{3} \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{z - a} dz, \text{ para todo } a \in V.$$

Assim, pelo lema provado acima temos

$$f'(a) = \sum_{i=1}^{3} \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{(z-a)^2} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz$$
, para todo $a \in V$.

Logo,

$$\lambda(a) = \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz = 2\pi i f'(a).$$

Por (6.1) encontramos

$$f'(a) = 2\pi i \left[g'(a)\varphi(a) + g(a)\varphi'(a) \right]$$
$$= 2\pi i \left[g'(a)\frac{1 - \cos a}{a^2} + g(a)\frac{a^2 \sin a - 2a(1 - \cos a)}{a^4} \right].$$

Para encerrar,

$$\lambda = -\frac{4\pi^2}{a^3} \Big\{ g'(a)a(1 - \cos a) + g(a)[a\sin a - 2(1 - \cos a)] \Big\} \, \clubsuit$$

7. Sejam Ω um aberto não vazio de \mathbb{C} e [a,b] um intervalo compacto de \mathbb{R} . Consideremos duas funções Riemann-integráveis $\varphi:[a,b]\to\mathbb{C}$ e $\psi:[a,b]\to\mathbb{C}$. Suponhamos que $\varphi(t)\notin\Omega$ para todo $t\in[a,b]$.

Prove que a função $F:\Omega\to\mathbb{C}$ definida por

$$F(z) = \int_{a}^{b} \frac{\psi(t)}{\varphi(t) - z} dt$$

é analítica.

Dica. Considere um ponto $\zeta \in \Omega$ e desenvolva F(z) em uma série de potências em um disco $D(\zeta;r)$ com um raio r conveniente.

Determine então o maior aberto conexo de $\mathbb C$ no qual é analítica a função

$$G(z) = \int_0^1 \frac{\sin t}{t^2 - e^z} dt.$$

Solução.

 \diamond Fixemos um arbitrário $\zeta \in \Omega$. Seja r > 0 tal que $D(\zeta; r) \subset \Omega$. Observemos que $r < d(\zeta; \Omega^c)$ [a igualdade é impossível]. Valem as desigualdades

 $|z - \zeta| \le r < d(\zeta; \Omega^c) \le |\varphi(t) - \zeta|$, para quaisquer $z \in D(\zeta; r)$ e $t \in [a, b]$.

Logo,

$$\frac{|z-\zeta|}{|\varphi(t)-\zeta|} \ \leq \ \frac{r}{d(\zeta;\Omega^c)} = \lambda < 1.$$

A série geométrica

$$\sum_{n>0} \lambda^n$$

converge. Então, pelo teste-M de Weierstrass concluímos que a série

$$\begin{split} \frac{1}{\varphi(t)-z} &= \frac{1}{\varphi(t)-\zeta-(z-\zeta)} \\ &= \frac{1/[\varphi(t)-\zeta]}{1-\frac{z-\zeta}{\varphi(t)-\zeta}} \\ &= \frac{1}{[\varphi(t)-\zeta]} \sum_{n=0}^{+\infty} \left(\frac{z-\zeta}{\varphi(t)-\zeta}\right)^n, \end{split}$$

converge uniformemente conforme t varia em [a,b] e z varia em $D(\zeta;r)$.

A função $\psi(t)$ é limitada, pois Riemann-integrável. Temos então

$$\frac{\psi(t)}{\varphi(t) - z} = \frac{\psi(t)}{[\varphi(t) - \zeta]} \sum_{n=0}^{+\infty} \left(\frac{z - \zeta}{\varphi(t) - \zeta} \right)^n,$$

com convergência uniforme para t percorrendo [a,b] e z percorrendo $D(\zeta;r)$.

Desta forma, integrando em [a, b] temos

$$F(z) = \int_{a}^{b} \frac{\psi(t)}{\varphi(t) - z} dt$$

$$= \sum_{n=0}^{+\infty} \left[\int_{a}^{b} \frac{\psi(t)}{[\varphi(t) - \zeta]^{n+1}} dt \right] (z - \zeta)^{n}, \text{ para todo } z \in D(\zeta; r).$$

Logo, F é analítica em Ω .

Aplicando o resultado provado acima para

$$\psi(t) = \sin t$$
, $\varphi(t) = t^2$ e $[a, b] = [0, 1]$

temos que

$$F(z) = \int_0^1 \frac{\sin tt}{t^2 - z} dt$$

é analítica em $[0,1]^c$ pois Imagem $(\varphi) = [0,1]$.

Seja então o conjunto

$$X = \{z \in \mathbb{C} : e^z \in [0,1]\} = \exp^{-1}([0,1]).$$

Evidentemente X é fechado.

Escrevendo z=x+yi temos $e^z=e^xe^{iy}\in[0,1].$ Logo,

$$e^x \in [0,1]$$
 e $y \in 2\pi \mathbb{Z}$.

Assim,

$$x \in (-\infty, 0]$$
 e $y \in 2\pi \mathbb{Z}$.

Logo,

$$X=\{z=x+iy:x\in(-\infty,0]\ \text{e}\ y\in2\pi\mathbb{Z}\}.$$

O conjunto

$$Q = X^c$$

é aberto e

$$\exp(O) \subset [0,1]^c.$$

Portanto,

$$(F \circ \exp)(z)$$
 á analítica no aberto O .

Notemos que O é conexo por caminhos e portanto conexo.

Notemos também que

$$(F \circ \exp)(z) = \int_0^1 \frac{\sin t}{t^2 - e^z} dt = G(z)$$
, para todo $z \in O$.

Por fim, não podemos adicionar pontos z, pertencentes ao conjunto X, ao domínio de G(z) pois caso contrário temos $t^2-e^z=0$ para algum $t\in[0,1]$.

8. Compute as integrais

(a)
$$\int_{|z|=\frac{3}{2}} \frac{1}{z^2 - 3z + 2} dz.$$
(b)
$$\int_{|z|=\frac{3}{2}} \frac{3z^2 - 6z + 2}{z^3 - 3z^2 + 2z} dz.$$

Sugestão. Desenvolva os integrandos pelo método de frações parciais.

Solução.

Seja

$$\gamma(\theta) = \frac{3}{2}e^{i\theta}$$
, onde $\theta \in [0, 2\pi]$.

(a) Temos,

$$\begin{split} \int_{\gamma} \frac{1}{z^2 - 3z + 2} dz &= \int_{\gamma} \frac{1}{(z - 1)(z - 2)} dz \\ &= \int_{\gamma} \frac{1}{z - 2} dz - \int_{\gamma} \frac{1}{z - 1} dz \\ &= \operatorname{Ind}(\gamma; 2) 2\pi i - \operatorname{Ind}(\gamma; 1) 2\pi i \\ &= 0 - 2\pi i. \end{split}$$

(b) Temos

$$\frac{3z^2 - 6z + 2}{z^3 - 3z^2 + 2z} = \frac{3z^2 - 6z + 2}{z(z - 1)(z - 2)} = \frac{1}{z} + \frac{1}{z - 1} + \frac{1}{z - 2}.$$

Logo,

$$\int_{\gamma} \frac{3z^2 - 6z + 2}{z^3 - 3z^2 + 2z} dz = \int_{\gamma} \left(\frac{1}{z} + \frac{1}{z - 1} + \frac{1}{z - 2} \right) dz$$

$$= [\operatorname{Ind}(\gamma; 0) + \operatorname{Ind}(\gamma; 1) + \operatorname{Ind}(\gamma; 2)] 2\pi i$$

$$= (1 + 1 + 0) 2\pi i$$

$$= 4\pi i \clubsuit$$

- 9. Seja Ω um aberto não vazio e arbitrário em \mathbb{C} . Seja (f_n) uma sequência de funções analíticas em Ω que converge compactamente a uma função $f:\Omega\to\mathbb{C}$. Mostre que:
 - (a) f é analítica em Ω .
 - (b) a sequência $(f_n^{(k)})$ converge compactamente a $f^{(k)}$ para todo $k \in \mathbb{N}$.

Duas Soluções.

Seja $z_0 \in \Omega$ e um disco não degenerado $D(z_0; r) \subset \Omega$. Devido às hipóteses, temos que $f_n \in \mathcal{A}(B(z_0; r)) \cap C(D(z_0; r))$, para cada n, e também que

 f_n converge uniformemente a f em $D(z_0; r)$.

1^a Solução (integration-free).

- (a) Pelo corolário [6.20(b)] ao teorema da convergência de Weierstrass segue que f é analítica em $B(z_0; r)$. Variando z_0 vemos que f é analítica em Ω .
- (b) Pelo corolário [Corolário 6.20(c)] ao teorema da convergência de Weierstrass segue que $(f_n^{(k)})$ converge uniformemente a $f^{(k)}$ nos compactos de $B(z_0; r)$. Seja K um compacto em Ω . Dado $z \in K$, seja um raio r = r(z) > 0 tal que

$$z \in B(z; r(z)) \subset D(z; 2r(z)) \subset \Omega.$$

Devido à compacidade de K, existem z_1, \ldots, z_N em K tais que

$$K \subset \bigcup_{j=1}^{N} B(z_j; r(z_j)) \subset \bigcup_{j=1}^{N} D(z_j; 2r(z_j)) \subset \Omega.$$

Fixemos j em $\{1, \ldots, N\}$.

Cada função f_n é analítica em $B(z_j; 2r(z_j))$ e contínua em $D(z_j; 2r(z_j))$. Ainda mais, por hipótese $(f_n)_{\mathbb{N}}$ converge uniformemente a f em $D(z_j; 2r(z_j))$.

Portanto, pelo citado corolário [Corolário 6.20(c)] concluímos que

 $\begin{cases} (f_n^{(k)})_{\mathbb{N}} \text{ converge uniformemente a } f^{(k)} \text{ nos compactos de } B(z_j; 2r(z_j)), \\ \text{para cada } k = 0, 1, 2, 3, \dots. \end{cases}$

Segue então que

$$\begin{cases} (f_n^{(k)})_{\mathbb{N}} \text{ converge uniformemente a } f^{(k)} \text{ no disco } D(z_j; r(z_j)), \\ \text{para cada } k = 0, 1, 2, 3, \dots \end{cases}$$

A seguir, variemos j no conjunto $\{1, \ldots, N\}$.

Então, devido à inclusão $K \subset D(z_1; r(z_1)) \cup \cdots \cup D(z_N; r(z_N))$ obtemos que

 $\left\{ (f_n^{(k)})_{\mathbb{N}} \text{ converge uniformemente a } f^{(k)} \text{ no compacto } K, \text{ para cada } k \geq 0 \right\}$

2ª Solução.

Mantenhamos a notação já introduzida.

(a) Pela fórmula integral de Cauchy [Teorema 10.11] temos

(9.2.1)
$$f_n(w) = \frac{1}{2\pi i} \int_{S(z_0; r)} \frac{f_n(z)}{z - w} dz, \text{ para todo } w \in B(z_0; r),$$

com $S(z_0; r)$ a circunferência compacta $\{z : |z - z_0| = r\}$.

Fixemos um ponto $w \in B(z_0; r)$. Devido às hipóteses segue que

$$\frac{f_n(z)}{z-w} \longrightarrow \frac{f(z)}{z-w}$$
 uniformemente, para z variando em $S(z_0;r)$.

Também por hipótese, $f_n(w) \to f(w)$. Impondo $n \to \infty$ em (9.2.1) acima temos

$$f(w) = \frac{1}{2\pi i} \int_{S(z_0;r)} \frac{f(z)}{z - w} dz, \text{ para todo } w \in B(z_0;r).$$

Pelo Teorema da derivação sob o sinal de integração [10.4] segue que f é derivável e então analítica.

(b) É trivial ver que basta mostrarmos que f'_n converge compactamente a f'. Sejam z_0 e r como acima e ρ tal que $0 < \rho < r$. Consideremos um arbitrário

$$w \text{ em } D(z_0; \rho).$$

Pela fórmula integral de Cauchy temos

$$f'(w) - f'_n(w) = \frac{1}{2\pi i} \int_{S(z_0;r)} \frac{f(z) - f_n(z)}{(z-w)^2} dz.$$

Então, pela estimativa M-L encontramos

$$|f'(w) - f'_n(w)| \le \frac{1}{2\pi} \left(\sup_{z \in S(z_0; r)} |f(z) - f_n(z)| \right) \frac{1}{(r - \rho)^2} 2\pi r.$$

Donde segue que

 f'_n converge uniformemente a f', sobre $D(z_0; \rho)$, para todo $0 < \rho < r$.

Consideremos a seguir o maior raio R > 0 tal que

$$B(z_0; R) \subset \Omega$$
.

Pelo já provado concluímos que $f_n \to f$ uniformemente nos subconjuntos compactos de $B(z_0; R)$, onde z_0 é um ponto arbbitrário de Ω .

Para encerrar, seja K um compacto qualquer em Ω . Cada ponto de K é o centro de um disco não degenerado, compacto e contido em Ω . Em cada um destes discos, f'_n converge uniformemente a f. Por compacidade, uma quantidade finita destes discos recobrem K. Segue então que

$$f'_n \longrightarrow f'$$
 uniformemente sobre o compacto $K \clubsuit$

10. (a) Seja $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$. Consideremos a transformação de Möbius

$$\varphi(z) = \frac{az+b}{cz+d}.$$

Mostre que temos $\varphi(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ se e só se podemos escolher a, b, c e d em \mathbb{R} .

(b) Seja Γ uma circunferência (generalizada) por z_2, z_3 e z_4 em $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. Dois pontos z e z^* , ambos em \mathbb{C}_{∞} , são ditos simétricos com relação a Γ se

$$[z^*, z_2, z_3, z_4] = \overline{[z, z_2, z_3, z_4]}.$$

Mostre que a definição de simetria independe dos pontos escolhidos em Γ . [Isto é, se w_2, w_3, w_4 são outros três pontos em Γ , então a equação destacada acima é satisfeita se e somente se $[z^*, w_2, w_3, w_4] = \overline{[z, w_2, w_3, w_4]}$.]

Conclua que, dada uma aplicação de Möbius φ e duas circunferências (generalizadas) Γ_1 e Γ_2 onde $\varphi(\Gamma_1) = \Gamma_2$, então a aplicação φ mapeia um par de pontos (α, β) simétrico em relação a Γ_1 no par $(\varphi(\alpha), \varphi(\beta))$ simétrico em relação a Γ_2 .

Solução (integration-free).

(a) (\Leftarrow) Se a, b, c, e d são reais então é claro que $\varphi(\mathbb{R}_{\infty}) \subset \mathbb{R}_{\infty}$. Analogamente,

$$\varphi^{-1}(w) = \frac{dw - b}{-cw + a}$$

satisfaz $\varphi^{-1}(\mathbb{R}_{\infty}) \subset \mathbb{R}_{\infty}$. Logo, $\varphi(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$.

 (\Rightarrow) [Se $\varphi(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$, mostremos que podemos escolher a, b, c e d reais.]

1ª Solução. Solução de Ana Kelly de Oliveira.

Por hipótese, existem z_1, z_2 e z_3 , todos em \mathbb{R}_{∞} , tais que φ aplica a terna z_1, z_2, z_3 ordenadamente na terna $0, 1, \infty$.

 \diamond Se z_1, z_2 e z_3 são todos reais, a transformação é dada por

$$\varphi(z) = \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$$
, com coeficientes reais.

 \diamond Se $z_1 = \infty$, então φ é dada por

$$\varphi(z) = \frac{z_2 - z_3}{z - z_3}$$
, com coeficientes reais.

 \diamond Se $z_2 = \infty$, então φ é dada por

$$\varphi(z) = \frac{z - z_1}{z - z_3}$$
, com coeficientes reais.

 \diamond Se $z_3 = \infty$, então φ é dada por

$$\varphi(z) = \frac{z - z_1}{z_2 - z_1}$$
, com coeficientes reais.

2ª Solução.

(1) Se $\varphi(\infty) = \infty$, então temos c = 0. Logo, $a \neq 0$ e $d \neq 0$. Escrevemos

$$\varphi(z) = \frac{az+b}{0.z+d} = a'z+b' = \frac{a'z+b'}{0.z+1}, \quad \text{com } a' = \frac{a}{d} \in b' = \frac{b}{d}.$$

Então, $b' = \varphi(0)$ e $\varphi(1) = a' + b'$ são reais. Logo, a' é real e $a'.1 \neq 0$.

(2) A inversão

$$Inv(z) = \frac{1}{z} = \frac{0z+1}{1z+0}$$
, satisfaz $Inv(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$.

(3) Se $\varphi(0)=\infty$, então temos d=0. Logo, $b\neq 0$ e $c\neq 0$. Escrevemos

$$\varphi(z) = \frac{az+b}{cz+0} = (a/c) + \frac{(b/c)}{z} = \frac{a'z+b'}{1.z+0}, \text{ com } a' = (a/c) \text{ e } b' = (b/c).$$

Então, $b' = \varphi(0)$ e $\varphi(1) = a' + b'$ são reais. Logo, a' é real e $b'.1 \neq 0$.

(4) Se $\varphi(0) = r \in \mathbb{R}$, a aplicação de Möbius com coeficientes reais

$$T(z) = z - r = \frac{1z - r}{0z + 1}$$
 satisfaz $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ e $T(r) = 0$.

Então, por (2) e (3) a bijeção de Möbius

$$\psi(z) = \frac{1}{(T \circ \varphi)(z)}$$
 satisfaz $\psi(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty} \ \mathrm{e} \ \psi(0) = \infty.$

Por (3), a aplicação ψ é dada por uma matriz com coeficientes reais. Temos

$$\varphi = T^{-1} \circ Inv \circ \psi.$$

As aplicações T^{-1} [vide acima], Inv(z) e ψ [vide (2) e (3)] são representáveis por matrizes inversíveis com coeficientes reais. Por fim, sabemos que φ é representável pelo produto destas três matrizes.

(b) Lema 1. Se φ é uma transformação de Möbius, então

$$[\varphi(\zeta), \varphi(\zeta_2), \varphi(\zeta_3), \varphi(\zeta_4)] = [\zeta, \zeta_2, \zeta_3, \zeta_4],$$

quaisquer que sejam ζ_2, ζ_3 e ζ_4 distintos em \mathbb{C}_{∞} e ζ arbitrário em \mathbb{C}_{∞} .

Verificação.

Seja T a aplicação de Möbius mapeando $\zeta_2, \zeta_3, \zeta_4$ em $1, 0, \infty$, em ordem. Então, $T \circ \varphi^{-1}$ mapeia $\varphi(\zeta_2), \varphi(\zeta_3), \varphi(\zeta_4)$ em $1, 0, \infty$ e temos

$$[\varphi(\zeta), \varphi(\zeta_2), \varphi(\zeta_3), \varphi(\zeta_4)] = (T \circ \varphi^{-1})(\varphi(\zeta)) = T(\zeta) = [\zeta, \zeta_2, \zeta_3, \zeta_4] \blacksquare$$

Vide próxima página

1ª Prova da primeira afirmação dada no item (b). Solução baseada na de Jeovanny de J. M. Acevedo e na de Marcelo K. Inagaki (para a questão 17).

Comecemos com um resultado "trivial".

Lema 2. Sejam ζ_2, ζ_3 e ζ_4 distintos em \mathbb{C}_{∞} e ζ_1 arbitrário em \mathbb{C}_{∞} . Então,

$$\overline{\left[\zeta_1,\zeta_2,\zeta_3,\zeta_4\right]} = \left[\overline{\zeta_1},\overline{\zeta_2},\overline{\zeta_3},\overline{\zeta_4}\right].$$

Verificação.

Seja S a aplicação de Möbius mapeando $\zeta_2, \zeta_3, \zeta_4$ ordenadamente em $1, 0, \infty$. Por definição, existem a, b, c, e d em \mathbb{C} (com $ad - bc \neq 0$) tais que

$$S(\zeta) = \frac{a\zeta + b}{c\zeta + d}$$
, para todo $\zeta \in \mathbb{C}_{\infty}$.

Então, a aplicação de Möbius

$$S^*(\zeta) = \frac{\overline{a}\zeta + \overline{b}}{\overline{c}z + \overline{d}}, \text{ onde } \zeta \in \mathbb{C}_{\infty},$$

satisfaz

$$S^*(\overline{\zeta}) = \overline{S(\zeta)}$$
 e mapeia $\overline{\zeta_2}, \overline{\zeta_3}, \overline{\zeta_4}$ em $1, 0, \infty$ em ordem.

Pela esta última identidade e a definição de produto cruzado segue

$$\overline{[\zeta_1,\zeta_2,\zeta_3,\zeta_4]} = \overline{S(\zeta_1)} = S^*(\overline{\zeta_1}) = [\overline{\zeta_1},\overline{\zeta_2},\overline{\zeta_3},\overline{\zeta_4}] \clubsuit$$

A seguir, sejam z_2, z_3 e z_4 em \mathbb{C}_{∞} e determinando Γ . Sejam z e z^* tais que

$$[z^*, z_2, z_3, z_4] = \overline{[z, z_2, z_3, z_4]}.$$

Seja T a aplicação de Möbius mapeando ordenadamente z_2, z_3, z_4 em $1, 0, \infty$ (os quais determinam \mathbb{R}_{∞}). Devido à última identidade acima encontramos

$$T(z^*) = \overline{T(z)}$$
 ou, equivalentemente, $\overline{T(z^*)} = T(z)$.

Como T estabelece bijeções entre circunferências generalizadas, temos

$$T(\Gamma) = \mathbb{R}_{\infty}.$$

Sejam w_2, w_3 e w_4 outra terna de pontos determinando Γ . Destaquemos que os pontos $T(w_2), T(w_3)$ e $T(w_4)$ estão todos em \mathbb{R}_{∞} .

Com tal destaque, o Lema 1, o Lema 2 e a identidade $\overline{T(z^*)} = T(z)$ obtemos

$$[z^*, w_2, w_3, w_4] = [T(z^*), T(w_2), T(w_3), T(w_4)]$$

$$= \overline{\left[T(z^*), \overline{T(w_2)}, \overline{T(w_3)}, \overline{T(w_4)}\right]}$$

$$= \overline{\left[T(z), T(w_2), T(w_3), T(w_4)\right]}$$

$$= \overline{\left[z, w_2, w_3, w_4\right]}$$

Vide próxima página

2ª Prova da primeira afirmação dada em (b). Prova da conclusão.

Lema 3. Seja Γ como dada, Λ uma outra circunferência generalizada e φ uma aplicação de Möbius, com $\varphi(\Gamma) = \Lambda$. Então, z e z^* são simétricos em relação a Γ se e somente se $\varphi(z)$ e $\varphi(z^*)$ são simétricos em relação a Λ .

Verificação.

Sejam z_2, z_3 e z_4 determinando Γ . Pelo Lema 1, temos

$$[z, z_2, z_3, z_4] = \overline{[z^*, z_2, z_3, z_4]}$$

se e somente se

$$[\varphi(z), \varphi(z_2), \varphi(z_3), \varphi(z_4)] = \overline{[\varphi(z^*), \varphi(z_2), \varphi(z_3), \varphi(z_4)]} \blacksquare$$

Devido ao Lema 3, a definição de simetria em relação a Γ , para os pontos z e z^* , independe da particular escolha de pontos determinando Γ se e somente se a definição de simetria em relação a Λ , para os pontos $\varphi(z)$ e $\varphi(z^*)$, independe da particular escolha de três pontos determinando Λ .

Desta forma, e como existe uma aplicação de Möbius estabelecendo uma bijeção entre Γ e \mathbb{R}_{∞} , podemos supor sem perda de generalidade que

$$\Gamma = \mathbb{R}_{\infty}$$
.

Consideremos então x_2, x_3 e x_4 distintos em \mathbb{R}_{∞} e z e z^* tais que

(Eq.10.1)
$$[z^*, x_2, x_3, x_4] = \overline{[z, x_2, x_3, x_4]}.$$

A aplicação de Möbius T que mapeia x_2, x_3, x_4 em $1, 0, \infty$ satisfaz

$$T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}.$$

Logo, pela parte (a) temos

$$T(z) = \frac{az+b}{cz+d}$$
, com a,b,c e d reais e $ad-bc \neq 0$.

Devido à equação (Eq. 10.1) temos

$$T(z^*) = \overline{T(z)}.$$

Logo, como $a, b, c \in d$ são reais,

$$\frac{az^* + b}{cz^* + d} = \frac{a\overline{z} + b}{c\overline{z} + d}.$$

Donde segue

$$acz^*\overline{z} + adz^* + bc\overline{z} + bd = acz^*\overline{z} + ad\overline{z} + bcz^* + bd$$

e portanto

$$(ad - bc)z^* = (ad - bc)\overline{z}.$$

Consequentemente (pois $ad - bc \neq 0$).

$$z^* = \overline{z}$$
.

Logo, z^* independe da escolha de pontos x_2, x_3 e x_4 determinando \mathbb{R}_{∞} .

Concluímos entao que a definição de pontos simétricos em relação a Γ independe da escolha dos pontos z_2, z_3 e z_4 determinando Γ .

A conclusão. A última afirmação dada em (b) foi provada no Lema 3. 🌲

11. Defina produto cruzado.

No que segue, considere z_1, z_2, z_3 e z_4 números distintos em \mathbb{C} .

(a) Prove a fórmula para o produto cruzado

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}$$

e prove que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência ou a uma mesma reta se e somente se seu produto cruzado é um número real.

(b) Suponha que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência, e nesta ordem (suponha ou o sentido anti-horário ou o horário). Mostre que

$$|z_1 - z_3||z_2 - z_4| = |z_1 - z_2||z_3 - z_4| + |z_2 - z_3||z_4 - z_1|.$$

Solução (integration-free).

Consideremos ζ_2, ζ_3 e ζ_4 distintos em \mathbb{C}_{∞} e ζ_1 arbitrário em \mathbb{C}_{∞} . Seja T a (única) aplicação de Möbius que mapeia ζ_2, ζ_3 e ζ_4 ordenadamente em $1, 0, \infty$. Definimos o produto cruzado

$$[\zeta_1,\zeta_2,\zeta_3,\zeta_4]$$

como o elemento $T(\zeta_1) \in \mathbb{C}_{\infty}$. Isto é,

$$[\zeta_1, \zeta_2, \zeta_3, \zeta_4] = T(\zeta_1).$$

(a) Sejam z_1, z_2, z_3 e z_4 números complexos distintos. Seja w = T(z) a aplicação de Möbius mapeando z_2, z_3 e z_4 ordenadamente em 1, 0 e ∞ . Então, temos

$$T(z) = \frac{(z - z_3)(z_2 - z_4)}{(z - z_4)(z_2 - z_3)}.$$

Donde segue,

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}.$$

A seguir, observemos que os pontos distintos z_2, z_3, z_4 determinam uma circunferência generalizada Γ . Então, como T é uma **bijeção** entre circunferências generalizadas, concluímos que

$$T(\Gamma) = \mathbb{R}_{\infty}$$
.

Donde segue que (notemos que $z_1 \neq z_4$ e que $T(z_1)$ é um número)

$$z_1 \in \Gamma \iff T(z_1) = [z_1, z_2, z_3, z_4] \in \mathbb{R}.$$

Isto mostra que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência generalizada se e somente se $[z_1, z_2, z_3, z_4]$ é um número real.

(b) Suponhamos que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência Γ. Suponhamos que tais pontos estão ordenados no sentido anti-horário. Seja T a aplicação de Möbius mapeando z_2, z_3 e z_4 ordenadamente em $1, 0, \infty$. Pelo item (a) segue

(Eq.11.1)
$$T(z_1) = [z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = r \in \mathbb{R}.$$

Como T é uma bijeção entre circunferências generalizadas e \mathbb{R}_{∞} é a circunferência generalizada determinada por 1, 0 e ∞ , concluímos que

$$T(\Gamma) = \mathbb{R}_{\infty}.$$

A seguir, consideremos o seguinte arco de circunferência em Γ : o arco orientado no sentido anti-horário com início no ponto z_2 , passando pelo ponto z_3 e com final no ponto z_4 . As extremidades z_2 e z_4 pertencem ao arco. Indiquemos tal arco por γ .

Observemos que $z_1 \in \Gamma \setminus \gamma$. Ainda mais, $\Gamma \setminus \gamma$ também é um arco (um arco na circunferência Γ e não contendo as extremidades z_2 e z_4) e portanto $\Gamma \setminus \gamma$ é conexo por caminhos e conexo. Pela continuidade de T segue que

$$T(\Gamma \setminus \gamma)$$
 é um conexo na reta real.

Assim, $T(\Gamma \setminus \gamma)$ é um intervalo em \mathbb{R} .

Afirmação.
$$T(\Gamma \setminus \gamma) = (1, +\infty)$$
.

Verificação. Pela continuidade de T temos:

$$\begin{cases} \text{ se } z_1 \to z_2, \text{ com } z_1 \text{ em } \Gamma \setminus \gamma, \text{ então } T(z_1) \to T(z_2) = 1, \\ \text{ se } z_1 \to z_4, \text{ com } z_1 \text{ em } \Gamma \setminus \gamma, \text{ então } T(z_1) \to T(z_4) = \infty. \end{cases}$$

Ainda mais, os elementos $1 = T(z_2)$ e $\infty = T(z_4)$ não pertencem a $T(\Gamma \setminus \gamma)$. Concluímos então que

$$T(\Gamma \setminus \gamma) = (1, \infty) \blacksquare$$

A seguir, observemos a identidade

$$(z_1-z_2)(z_3-z_4)+(z_1-z_4)(z_2-z_3)=(z_1-z_3)(z_2-z_4).$$

Donde segue

(Eq. 11.2)
$$\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_3)} + 1 = r.$$

Pela equação (Eq. 11.1) e pela afirmação acima, temos r > 1. Logo, a fração no lado esquerdo de (Eq. 11.2) é um número real estritamente positivo.

Vide próxima página

Temos então

$$\left| \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_3)} \right| = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_3)}$$

е

$$\left| \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} \right| = r.$$

Sustituindo estas duas últimas identidades na equação (Eq.2) encontramos

$$\left| \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_3)} \right| + 1 = \left| \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} \right|.$$

Donde segue,

$$|z_1 - z_2| |z_3 - z_4| + |z_1 - z_4| |z_2 - z_3| = |z_1 - z_3| |z_2 - z_4| \clubsuit$$

12. Prove o teorema fundamental da álgebra como um corolário do teorema de Rouché.

Solução (integration-free).

Teorema Fundamental da Álgebra. Seja p(z) um polinômio complexo de grau $n \geq 1$. Então, p(z) tem n zeros (contados com suas multiplicidades) em \mathbb{C} . Prova.

Escrevamos $p(z) = a_n z^n + \dots + a_1 z + a_0$. Seja $M = \max\{|a_0|, |a_1|, \dots, |a_{n-1}|\}$. Temos,

$$|a_0 + a_1 z + \dots + a_{n-1} z^{n-1}| \le M(1 + |z| + \dots + |z|^{n-1}).$$

Claramente, existe r > 0 tal que

$$M(1+r+\cdots+r^{n-1}) < |a_n|r^n.$$

Donde segue

$$|a_0 + a_1 z + \dots + a_{n-1} z^{n-1}| < |a_n z^n|$$
, para todo $|z| = r$.

Pelo teorema de Rouché, os polinômios

$$p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n$$
 e $a_n z^n$

tem o mesmo número de zeros (contadas as multiplicidades) na bola B(0;r).

Notemos que z = 0 é um zero de ordem n do polinômio $a_n z^n$.

Logo, p(z) tem n zeros na bola B(0;r). Portanto, p(z) tem n zeros em \mathbb{C} \clubsuit

13. Sejam f e f_n , para n = 1, 2, ..., analíticas e não constantes em um aberto e conexo Ω . Suponhamos que

$$f_n$$
 converge compactamente a f .

Seja $\alpha \in \Omega$ e r > 0, $com\ D(\alpha; r) \subset \Omega$. Seja $\gamma(\theta) = \alpha + re^{i\theta}$, onde $\theta \in [0, 2\pi]$. Suponhamos que f não se anula na imagem de γ . Então, para todo n grande o suficiente, f_n e f tem o mesmo número de zeros no interior de γ .

Solução (integration-free).

♦ Contra-exemplo de Jeovanny de J. M. Acevedo.

O resultado acima é falso se f se anula na circunferência $S(\alpha; r)$. Tomemos

$$f(z)=z+1$$
 e $f_n(z)=z+1-\frac{1}{n}$, para quaisquer $n\geq 1$ e $z\in\mathbb{C}$.

Então, f não se anula em B(0;1) e (f_n) converge uniformemente a f em \mathbb{C} . Entretanto, cada f_n tem um zero no ponto

$$-1 + \frac{1}{n}$$
 que pertence à bola $B(0; 1)$.

A seguir, resolvemos a questão.

Seja

$$m = \min_{z \in S(\alpha; r)} |f(z)| > 0.$$

Como f_n converge compactamente a f, existe N satisfazendo

$$|f_n(z) - f(z)| < m$$
, para quaisquer $n \in \mathbb{N}$ e $z \in S(\alpha; r)$.

Donde segue

$$|f_n(z) - f(z)| < m \le |f(z)|$$
, para quaisquer $n \ge N$ e $z \in S(\alpha; r)$.

Pelo teorema de Rouché concluímos que

$$f_n = (f_n - f) + f$$
 e f

tem a mesma quantidade de zeros em $B(\alpha; \rho)$, para todo $n \geq N$.

14. (a) Seja p(z) um polinômio não nulo com coeficientes reais não negativos, com

$$p(z) = a_0 + a_1 z + \dots + a_n z^n$$
, onde $0 \le a_0 \le a_1 \le \dots \le a_n$.

Mostre que todos os zeros de p(z) estão dentro do disco unitário D(0;1). Sugestão. Aplique o teorema de Rouché à função (1-z)p(z).

(b) Prove que, para todo $0 < \rho < 1$, o polinômio

$$P_n(z) = 1 + 2z + 3z^2 + \dots + (n+1)z^n$$

não tem zeros na bola $B(0; \rho)$, se n é grande o suficiente.

Solução (integration-free).

Evidentemente, podemos supor $a_n \neq 0$.

(a) Temos

$$(1-z)p(z) = a_0 + (a_1 - a_0)z + (a_2 - a_1)z^2 + \dots + (a_n - a_{n-1})z^n - a_nz^{n+1}.$$

Fixemos r > 1. Consideremos ζ tal que $|\zeta| = r$. Encontramos

$$|(1-\zeta)p(\zeta) + a_n\zeta^{n+1}| \le a_0 + (a_1 - a_0)r + (a_2 - a_1)r^2 + \dots + (a_n - a_{n-1})r^n$$

$$= a_0(1-r) + a_1r(1-r) + a_2r^2(1-r) + \dots + a_{n-1}r^{n-1}(1-r) + a_nr^n$$

$$< a_nr^{n+1}$$

$$= |a_n\zeta^{n+1}|.$$

Então, pelo Teorema de Rouché segue que

$$(1-z)p(z)$$
 e $a_n z^{n+1}$

tem n+1 zeros em B(0;r), para todo raio r>1. É então claro que

$$p(z)$$
 tem n zeros em $B(0;r)$, para todo raio $r>1$.

Portanto, todos os n zeros de p(z) estão no disco D(0;1).

Vide próxima página

(b) Sabidamente,

$$\sum_{m=0}^{+\infty} z^m = \frac{1}{1-z} \text{ converge uniformemente em } D(0;\rho), \text{ para cada } 0 < \rho < 1.$$

Então, pelo teorema de derivação de séries de potências,

$$\sum_{n=0}^{+\infty} (n+1)z^n = \frac{1}{(1-z)^2}$$
 converge uniformemente em $D(0;\rho)$, se $0 < \rho < 1$.

Fixemos ρ com $0 < \rho < 1$. Seja

$$m = \min_{|z| \le \rho} \left| \frac{1}{(1-z)^2} \right| > 0$$
 [\(\epsilon\) claro que $m > 0$].

Sejam $P_n(z) = 1 + 2z + 3z^2 + \cdots + (n+1)z^n$ os polinômios enunciados.

Por definição de convergência uniforme, existe um $N\in\mathbb{N}$ tal que

$$\left| P_n(z) - \frac{1}{(1-z)^2} \right| \le \frac{m}{2}$$
, para quaisquer $n \ge N$ e $z \in D(0; \rho)$.

Donde segue

$$|P_n(z)| \ge \left|\frac{1}{(1-z)^2}\right| - \frac{m}{2} \ge m - \frac{m}{2} = \frac{m}{2}$$
, para quaisquer $n \ge N$ e $z \in D(0; \rho)$.

Assim, $P_n(z)$ não se anula em $B(0; \rho)$ se $n \geq N$ \clubsuit

15. Sejam Ω um aberto no plano complexo e [a,b] um intervalo compacto na reta. Seja $f: \Omega \times [a,b] \to \mathbb{C}$ uma função contínua. Suponha f holomorfa na primeira variável, para cada t fixado em [a,b]. Considere a função

$$F(z) = \int_a^b f(z,t)dt$$
, onde $z \in \Omega$.

Mostre que

- (a) F é contínua.
- (b) F é holomorfa.
- (c) Vale a fórmula,

$$F'(z) = \int_a^b \frac{\partial f}{\partial z}(z,t)dt$$
, para todo $z \in \Omega$.

Solução. Fixemos z_0 em Ω e um disco não degenerado $D(z_0; r) \subset \Omega$.

(a) Então, f é uniformemente contínua no compacto $D(z_0; r) \times [a, b]$. Logo, dado $\epsilon > 0$, existe um δ , com $0 < \delta < r$, satisfazendo: qualquer que seja $|h| < \delta$ temos $|f(z_0 + h, t) - f(z_0, t)| < \epsilon$ para todo $t \in [a, b]$. Donde segue

$$|F(z_0+h)-F(z_0)| \leq \int_a^b \epsilon \, dt = \epsilon(b-a)$$
 [i.e., F é contínua em z_0].

(b) Sejam Δ um triângulo fechado e convexo contido em Ω e uma parametrização $\gamma = \gamma(s) : [0,1] \to \Omega$ de $\partial \Delta$. Pelo teorema de Fubini para funções contínuas na variável $(s,t) \in [0,1] \times [a,b]$ e a valores complexos temos

$$\begin{split} \int_{\partial\Delta} F(z)dz &= \int_0^1 \int_a^b f(\gamma(s),t) \gamma'(s) dt ds \\ &= \int_a^b \int_0^1 f(\gamma(s),t) \gamma'(s) ds dt \\ &= \int_a^b \left(\int_{\partial\Delta} f(z,t) dz \right) dt. \end{split}$$

Como f(z,t) (com t fixo) é holomorfa, por Cauchy-Goursat segue que o integrando na última integral imediatamente acima é zero. Donde segue

$$\int_{\partial \Delta} F(z)dz = 0.$$

Sendo f contínua [item (a)], pelo teorema de Morera temos $F \in \mathcal{H}(\Omega)$.

(c) Seja $\sigma(s)=z_0+re^{2\pi is},\ s\in[0,1].$ Pela fórmula integral de Cauchy para

$$z \mapsto F'(z)$$
 e $z \mapsto \frac{\partial f}{\partial z}(z,t)$ [com t fixado]

e pelo teorema de Fubini, sob as mesmas hipóteses que em (a), temos

$$F'(z_0) = \frac{1}{2\pi i} \int_{\sigma} \frac{F(z)}{(z - z_0)^2} dz$$

$$= \frac{1}{2\pi i} \int_0^1 \int_a^b \frac{f(\sigma(s), t) \sigma'(s)}{(\sigma(s) - z_0)^2} dt ds$$

$$= \frac{1}{2\pi i} \int_a^b \int_0^1 \frac{f(\sigma(s), t) \sigma'(s)}{(\sigma(s) - z_0)^2} ds dt$$

$$= \int_a^b \left(\frac{1}{2\pi i} \int_{\sigma} \frac{f(z, t)}{(z - z_0)^2} dz\right) dt$$

$$= \int_a^b \frac{\partial f}{\partial z} (z_0, t) dt \, .$$

16. Seja $f: \mathbb{C} \times [0, +\infty) \to \mathbb{C}$ contínua. Suponha que para cada z_0 em \mathbb{C} , existem um disco $D(z_0; r)$ não degenerado e uma função $M: [0, +\infty) \to [0, +\infty)$ satisfazendo

$$|f(z,t)| \le M(t)$$
, para todos $z \in D(z_0;r)$ e $t \in [0,+\infty)$, e $\int_0^\infty M(t)dt < \infty$.

Verifique as afirmações abaixo.

(a) Está bem definida a função $\varphi : \mathbb{C} \to \mathbb{C}$ dada por

$$\varphi(z) = \int_0^\infty f(z, t) dt.$$

- (b) A função φ é contínua.
- (c) Suponha que $\frac{\partial f}{\partial z}(z,t)$ existe e é contínua em $\mathbb{C} \times [0,+\infty)$. Suponha também que para cada ponto z_0 no plano existem uma vizinhança compacta K do ponto z_0 e uma função $N:[0,+\infty) \to [0,+\infty)$ satisfazendo

$$\left| \frac{\partial f}{\partial z}(z,t) \right| \le N(t)$$
, para todos $z \in K$ e $t \in [0,+\infty)$, e $\int_0^\infty N(t)dt < \infty$.

Então, φ é holomorfa e

$$\varphi'(z) = \int_0^\infty \frac{\partial f}{\partial z}(z, t) dt.$$

Solução.

(a) Fixemos $z \in \Omega$. Por hipótese, temos

$$0 \le |f(z,t)| + \operatorname{Re}(f)(z,t) \le 2M(t),$$

para alguma função não negativa M = M(t) tal que

$$\int_0^\infty M(t)dt < \infty.$$

Logo, as integrais de Riemann (com integrando maior ou igual a zero)

$$\int_0^r [|f(z,t)| + \operatorname{Re}(f)(z,t)]dt, \text{ com } 0 \le r < +\infty,$$

são limitadas e convergem (e crescendo), se $r \to +\infty$, à integral imprópria

$$\int_0^\infty [|f(z,t)| + \operatorname{Re}(f)(z,t)]dt \le 2 \int_0^\infty M(t)dt < \infty.$$

Logo, está bem definida a integral imprópria

$$\int_0^\infty \operatorname{Re}(f)(z,t)dt.$$

Analogamente para Im(f)(z,t) [basta trocar f por if]. Segue então que

$$\int_0^\infty f(z,t)dt \text{ converge.}$$

Observemos que [verifique]

$$\left| \int_0^\infty f(z,t)dt \right| \leq \int_0^\infty |f(z,t)|dt \text{ para todo } z \in \mathbb{C}.$$

(b) Fixemos um ponto z_0 em Ω , um disco $D(z_0; r)$ e uma função M = M(t) como no enunciado. Dado $\epsilon > 0$, é simples ver que existe m > 0 tal que

$$\int_{m}^{\infty} M(t)dt < \epsilon \text{ [verifique]}.$$

Seja $h \in \mathbb{C}$ com |h| < r. Temos então

$$\begin{aligned} |\varphi(z_0+h) - \varphi(z_0)| &= \left| \int_0^\infty [f(z_0+h,t) - f(z_0,t)] dt \right| \\ &\leq \int_0^m |f(z_0+h,t) - f(z_0,t)| dt + \int_m^\infty |f(z_0+h,t) - f(z_0,t)| dt. \end{aligned}$$

A última integral acima é (pela desigualdade triangular) menor ou igual a

$$2\int_{m}^{\infty} M(t)dt < 2\epsilon.$$

Quanto à penúltima integral, pela continuidade uniforme de f(z,t) no compacto $D(z_0;r)\times [0,m]$ segue que existe um δ , com $0<\delta< r$, tal que

para todo
$$|h| < \delta$$
 temos $|f(z_0 + h, t) - f(z_0, t)| \le \frac{\epsilon}{m}$ para todo $t \in [0, m]$.

Concluímos então que

para todo
$$|h| < \delta$$
 temos $|\varphi(z_0 + h) - \varphi(z_0)| < 3\epsilon$.

Logo, φ é contínua em z_0 . Portanto, $\varphi: \mathbb{C} \to \mathbb{C}$ é contínua.

(c) Pelos itens (a) e (b), está bem definida e é contínua a função

$$\Omega \ni z \mapsto \int_0^\infty \frac{\partial f}{\partial z}(z,t)dt.$$

A seguir, sejam z_0 em Ω , uma vizinhança compacta K e um função N(t) como enunciados em (c). Podemos supor $K = D(z_0; r)$.

Escrevamos então, para 0 < |h| < r,

$$D(h) = \frac{\varphi(z_0 + h) - \varphi(z_0)}{h} - \int_0^\infty \frac{\partial f}{\partial z}(z_0, t) dt =$$

$$= \int_0^\infty \left[\frac{f(z_0 + h, t) - f(z_0, t)}{h} - \frac{\partial f}{\partial z}(z_0, t) \right] dt =$$

$$= \int_0^\infty \int_0^1 \left[\frac{\partial f}{\partial z}(z_0 + sh, t) - \frac{\partial f}{\partial z}(z_0, t) \right] ds dt.$$

Dado $\epsilon > 0$, devido às hipóteses, existe m > 0 grande o suficiente tal que

$$\left\{ \begin{array}{l} \left| \frac{\partial f}{\partial z}(z,t) \right| \leq N(t), \text{ para todos } t > m \text{ e } z \in D(z_0;r), \\ \text{e} \\ \int_m^\infty N(t) dt < \epsilon. \end{array} \right.$$

Temos então, para 0 < |h| < r,

$$|D(h)| \le \int_0^m \int_0^1 \left| \frac{\partial f}{\partial z}(z_0 + sh, t) - \frac{\partial f}{\partial z}(z_0, t) \right| ds dt + 2\epsilon.$$

Como $D(z_0;r) \times [0,m]$ é compacto, por continuidade uniforme segue que existe um δ , com $0 < \delta < r$, tal que para todo $0 < |h| < \delta$ temos que a integral iterada imediatamente acima é tal que obtemos

$$|D(h)| < 3\epsilon.$$

Concluímos então que

$$D(h) \to 0 \text{ se } h \to 0 \clubsuit$$

17. Seja Ω um aberto conexo tal que $0 \notin \Omega$. Seja Ω^* o simétrico de Ω em relação à circunferência S^1 . Isto é,

 $\Omega^* = \{z^* : z \in \Omega\}, \text{ com } z^* \text{ o simétrico de } z \text{ em relação a } S^1.$

(a) Mostre que

$$\Omega^* = \left\{ z^* = \frac{1}{\overline{z}} : z \in \Omega \right\}.$$

(b) Se $f \in \mathcal{H}(\Omega)$, defina $f^* : \Omega^* \to \mathbb{C}$ por

$$f^*(z) = \overline{f\left(\frac{1}{\overline{z}}\right)}.$$

Mostre que f^* é holomorfa.

(c) Suponha que Ω é simétrico em relação a S^1 . Isto é, $\Omega^* = \Omega$. Suponha que f é holomorfa em Ω e que $f(z) \in \mathbb{R}$, para todo $z \in \Omega \cap S^1 \neq \emptyset$. Mostre que

$$f^* = f$$
.

(d) Enuncie e prove uma versão do Princípio da Reflexão de Schwarz (visto na aula) em que a reta real é substituída por S^1 .

Solução.

(a) 1^a Prova de (a).

Consideremos os pontos 1, i e -1 que determinam S^1 . Por definição temos

$$[z^*, 1, i, -1] = \overline{[z, 1, i, -1]}.$$

Isto é,

$$\frac{(z^*-i)(1+1)}{(z^*+1)(1-i)} = \overline{\left[\frac{(z-i)(1+1)}{(z+1)(1-i)}\right]}.$$

Donde segue

$$(z^* - i)(\overline{z} + 1)(1 + i) = (z^* + 1)(\overline{z} + i)(1 - i)$$

e então

$$(z^* - i)(\overline{z} + 1)2i = (z^* + 1)(\overline{z} + i)2.$$

Logo, cancelando "2" e desenvolvendo,

$$i(z^*\overline{z} + z^* - i\overline{z} - i) = z^*\overline{z} + iz^* + \overline{z} + i$$

e então

$$iz^*\overline{z} + 1 = z^*\overline{z} + i$$
.

Assim, encontramos

$$(1-i)z^*\overline{z} = 1-i.$$

Por fim, cancelando 1-i obtemos

$$z^* = \frac{1}{z},$$

o que mostra que

$$\Omega^* = \left\{ \frac{1}{\overline{z}} : z \in \Omega \right\}.$$

Fim da 1^a prova de (a).

2ª Prova de (a). Baseada na solução de Marcelo K. Inagaki.

Lema. Sejam ζ_2, ζ_3 e ζ_4 distintos em \mathbb{C}_{∞} e ζ_1 arbitrário em \mathbb{C}_{∞} . Então,

$$\overline{[\zeta_1,\zeta_2,\zeta_3,\zeta_4]} = [\overline{\zeta_1},\overline{\zeta_2},\overline{\zeta_3},\overline{\zeta_4}]$$

Verificação.

Seja S a aplicação de Möbius mapeando $\zeta_2, \zeta_3, \zeta_4$ ordenadamente em $1, 0, \infty$. Por definição, existem a, b, c, e d em \mathbb{C} (com $ad - bc \neq 0$) tais que

$$S(\zeta) = \frac{a\zeta + b}{c\zeta + d}$$
, para todo $\zeta \in \mathbb{C}_{\infty}$.

Então, a aplicação de Möbius

$$S^*(\zeta) = \frac{\overline{a}\zeta + \overline{b}}{\overline{c}z + \overline{d}}, \text{ onde } \zeta \in \mathbb{C}_{\infty},$$

satisfaz

$$S^*(\overline{\zeta}) = \overline{S(\zeta)}$$
 e mapeia $\overline{\zeta_2}, \overline{\zeta_3}, \overline{\zeta_4}$ em $1, 0, \infty$ ordenadamente.

Por esta última identidade e a definição de produto cruzado, segue

$$\overline{[\zeta_1,\zeta_2,\zeta_3,\zeta_4]} = \overline{S(\zeta_1)} = S^*(\overline{\zeta_1}) = [\overline{\zeta_1},\overline{\zeta_2},\overline{\zeta_3},\overline{\zeta_4}] \clubsuit$$

A seguir, utilizamos a propriedade

 $[\zeta_1, \zeta_2, \zeta_3, \zeta_4] = [\varphi(\zeta_1), \varphi(\zeta_2), \varphi(\zeta_3), \varphi(\zeta_4)],$ para toda aplicação de Möbius φ .

Também utilizamos que a inversão Inv(z) é uma aplicação de Möbius, onde

$$\operatorname{Inv}(z) = \frac{1}{z} \operatorname{para cada} z \in \mathbb{C}_{\infty}.$$

Consideremos os pontos 1, i e -1, os quais determinam a circunferência S^1 . Então, utilizando que z^* e z são simétrico em relação a S^1 , o Lema acima, a aplicação Inv(z) e a propriedade enunciada e destacada acima encontramos

$$\begin{split} [z^*,1,i,-1] &= \overline{[z,1,i,-1]} \\ &= [\overline{z},1-i,-1] \\ &= \left[\frac{1}{\overline{z}},1,\frac{1}{-i},-1\right] \\ &= \left[\frac{1}{\overline{z}},1,i,-1\right]. \end{split}$$

Logo, se T é a aplicação de Möbius mapeando 1,i,-1 em $1,0,\infty,$ em ordem, temos

$$T(z^*) = T\left(\frac{1}{\overline{z}}\right)$$
 e $(T \text{ \'e bijetora})$ $z^* = \frac{1}{\overline{z}}.$

Isto mostra que

$$\Omega^* = \left\{ \frac{1}{\overline{z}} : z \in \Omega \right\}.$$

Fim da 2^a (e última) prova de (a).

(b) 1^a Prova de (b).

Analisemos o limite, para $h \to 0$, de

$$\frac{f^*(z+h) - f^*(z)}{h} = \frac{\overline{f\left(\frac{1}{z+h}\right)} - \overline{f\left(\frac{1}{z}\right)}}{h}$$
$$= \overline{\left[\frac{f\left(\frac{1}{z+h}\right) - f\left(\frac{1}{z}\right)}{\overline{h}}\right]}.$$

Analisando o limite do conjugado para $h \to 0$ obtemos

$$\begin{split} \overline{\left[\frac{f^*(z+h)-f^*(z)}{h}\right]} &= \frac{f\left(\frac{1}{\overline{z}+\overline{h}}\right)-f\left(\frac{1}{\overline{z}}\right)}{\overline{h}} \\ &= \frac{f\left(\frac{1}{\overline{z}+\overline{h}}\right)-f\left(\frac{1}{\overline{z}}\right)}{\frac{1}{\overline{z}+\overline{h}}-\frac{1}{\overline{z}}} \left[\frac{\frac{1}{\overline{z}+\overline{h}}-\frac{1}{\overline{z}}}{\overline{h}}\right] \longrightarrow f'\left(\frac{1}{\overline{z}}\right)\frac{(-1)}{\overline{z}^2}. \end{split}$$

Isto mostra que f^* é derivável e

$$(f^*)'(z) = -\overline{\left(\frac{f'\left(\frac{1}{\overline{z}}\right)}{\overline{z}^2}\right)}$$
 ou, ainda, $(f^*)'(z^*) = -\overline{z^2 f'(z)}$.

Fim da 1^a prova de (b).

2ª Prova de (b). Solução de Marcelo K. Inagaki.

Notemos que a função inversão Inv : $\mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$, dada por

$$\operatorname{Inv}(z) = \left(\frac{1}{z}\right), \text{ onde } z \in \mathbb{C} \setminus \{0\},$$

é holomorfa (e bijetora).

Sabidamente, a função definida no aberto $\{\overline{z}:z\in\Omega\}$ e dada por

$$g(\zeta) = \overline{f(\overline{\zeta})}$$
, para todo $\zeta \in \{\overline{z} : z \in \Omega\}$,

é holomorfa.

Pelo item (a) temos que

$$\operatorname{Inv}(\Omega^*) = \left\{ \frac{1}{z^*} : z \in \Omega \right\} = \{ \overline{z} : z \in \Omega \}.$$

Seja z^* arbitrário em Ω^* . Pelas definições e por (a), temos

$$f^*(z^*) = \overline{f\left(\frac{1}{\overline{z^*}}\right)} = g\left(\frac{1}{z^*}\right) = (g \circ \operatorname{Inv})(z^*).$$

Donde segue $f^* = (g \circ \text{Inv})$ e portanto f^* é holomorfa.

Fim da 2^a prova de (b).

(c) Por hipótese, $\Omega^* = \Omega$ e fé holomorfa. Pelo item (b) segue que

$$f^*: \Omega \to \mathbb{C}$$
 é holomorfa.

Seja $\omega \in \Omega \cap S^1$. Então, $1 = |\omega|^2 = \omega \overline{\omega}$. Pelo item (a) encontramos

$$\omega^* = \frac{1}{\overline{\omega}}.$$

Logo, se $\omega \in S^1$ então temos

$$\omega^* = \frac{1}{\omega} = \omega.$$

Donde segue,

$$f^*(\omega) = \overline{f\left(\frac{1}{\overline{\omega}}\right)} = \overline{f(\omega)}.$$

Por hipótese temos que $f(\omega)$ é um real. Logo,

$$f^*(\omega) = \overline{f(\omega)} = f(\omega)$$
, para todo $\omega \in \Omega \cap S^1$ [que é não vazio].

Então, f^* e f concidem em um conjunto com ponto de acumulação em seu domínio comum, o abeto conexo Ω . Pelo princípio de identidade concluímos que

$$f^*(z) = f(z)$$
, para todo $z \in \Omega$.

Vide próxima página

(d) Um Princípio da Reflexão de Schwarz. Seja Ω um aberto conexo tal que $0 \notin \Omega$. Suponhamos $S^1 \subset \Omega$ e que Ω é simétrico em relação ao S^1 . Sejam

$$\Omega^+ = \{ z \in \Omega : |z| > 1 \} \quad e \quad \Omega^- = \{ z \in \Omega : |z| < 1 \}.$$

Seja f uma função contínua em $\Omega^+ \cup S^1$, holomorfa em Ω^+ e assumindo valores reais em S^1 . Então,

$$F(z) = \begin{cases} f(z), \text{ se } z \in \Omega^+ \cup S^1 \\ \frac{f(\frac{1}{z})}{f(\frac{1}{z})}, \text{ se } z \in \Omega^- \cup S^1, \end{cases}$$

é uma extensão holomorfa de f ao aberto Ω . Tal extensão é única.

Prova.

♦ Se $z \in S^1$, então $z = 1/\overline{z}$ e $f(1/\overline{z}) = f(z)$ é real. Logo, F é bem posta. Como f é holomorfa em Ω^+ , por (b) segue que F é holomorfa em Ω^- . A função F é contínua. Vejamos. Consideremos um ponto $\omega \in S^1$ e uma sequência $(\zeta_n) \subset \Omega^-$ tal que $\zeta_n \to \omega$. Então,

$$\frac{1}{\overline{\zeta_n}} \to \frac{1}{\overline{\omega}} = \omega.$$

Desta forma, devido à continuidade de f em $\Omega^+ \cup S^1$ deduzimos que

$$f\left(\frac{1}{\overline{\zeta_n}}\right) \to f(\omega).$$

Por hipótese, $f(\omega)$ é real. Assim, concluímos que

$$F(\zeta_n) = \overline{f\left(\frac{1}{\overline{\zeta_n}}\right)} \to \overline{f(\omega)} = f(\omega) = F(\omega).$$

 \diamond A seguir, seja φ uma transformação de Möbius tal que

$$\varphi(\mathbb{R}) = S^1$$
, com $t \mapsto \varphi(t)$ orientada no **sentido horário**.

Com tal escolha de orientação, temos

$$\begin{cases} \varphi\Big(H^+ = \{z: \mathrm{Im}(z) > 0\}\Big) = \{z: |z| > 1\}, \\ \varphi\Big(H^- = \{z: \mathrm{Im}(z) < 0\}\Big) = \{z: |z| < 1\}. \end{cases}$$

Pelo exercício 6(d) Lista 9, a aplicação φ mapeia (pontos) simétricos em relação a $\mathbb R$ em simétricos em relação ao S^1 . Já φ^{-1} faz o inverso. O aberto $\varphi^{-1}(\Omega)$ é conexo e simétrico em relação ao eixo real e o contém. A composição

$$F \circ \varphi : O \to \mathbb{C}$$
, onde $O = \varphi^{-1}(\Omega)$,

é contínua, holomorfa em $O \setminus \mathbb{R}$ e satisfaz $(F \circ \varphi)(\mathbb{R}) \subset \mathbb{R}$. Pelo princípio da reflexão de Schwarz visto em aula [Teorema 10.21] segue que $F \circ \varphi$ é holomorfa em $\varphi^{-1}(\Omega)$. Logo, F é holomorfa em Ω .

- 18. (a) Existe ou não uma sequência de polinômios que converge uniformemente em D(0;1) para $g(z) = \overline{z}$? Justifique a sua resposta.
 - (b) Seja $f: D(0;1) \to \mathbb{C}$ contínua, com f holomorfa na bola B(0;1). Mostre que existe uma sequência de polinômios que converge uniformemente no disco D(0;1) para f.

Solução (integration-free).

(a) A resposta é não. Justifiquemos.

Suponhamos que exista uma sequência de polinômios (p_n) tal que $p_n \to g$ uniformementente em D(0;1). Obviamente, os polinômios estão em

$$\mathcal{A}(B(0;1)) \cap C(D(0;1)),$$

com B(0;1) um aberto limitado. Por corolário do teorema da convergência de Weierstrass, $g(z) = \overline{z}$ é analítica e derivável em B(0;1). Contradição!

(b) Solução de Arcelino B. L. do Nascimento.

Como f é uniformemente contínua em D(0;1), dado $\epsilon > 0$ existe $\delta > 0$, que escrevemos como $\delta = 1 - r$ com $r \in (0,1)$, satisfazendo

$$(18.1) |f(z)-f(w)| \le \epsilon, \text{ para todos } z, w \text{ em } D(0;1) \text{ tais que } |z-w| \le 1-r.$$

Em particular, temos

$$|z - rz| = |z| |1 - r| \le 1 - r \text{ para todo } z \text{ em } D(0; 1).$$

Sabemos que a série de Taylor para f e na origem,

$$f(z) = \sum a_n z^n, \text{ onde } z \in B(0; 1),$$

converge uniformente em $D(0;r) \subset B(0;1)$. Logo, para algum $N \geq 1$ temos

(18.3)
$$\left| \sum_{n=0}^{N} a_n (rz)^n - f(rz) \right| \le \epsilon, \text{ para todo } z \in D(0;1).$$

Seja

$$P_N(z) = \sum_{n=0}^{N} a_n z^n$$
, onde $z \in \mathbb{C}$.

Por (18.3), (18.2) e (18.1), valem as desigualdades

$$|P_N(rz) - f(z)| < |P_N(rz) - f(rz)| + |f(rz) - f(z)| < \epsilon + \epsilon, \ \forall z \in D(0;1).$$

Definamos o polinômio

$$P(\zeta) = \sum_{n=0}^{N} a_n r^n \zeta^n$$
, onde $\zeta \in \mathbb{C}$.

Temos $P(z) = P_N(rz)$. Pelas últimas desigualdades segue

$$|P(z) - f(z)| < 2\epsilon$$
, para todo $z \in D(;1)$

19. Seja f holomorfa em B(a; R), onde R > 0, com desenvolvimento $\sum c_n(z - a)^n$. Dado r tal que 0 < r < R, mostre que

$$\frac{1}{2\pi} \int_0^{2\pi} |f(a+re^{i\theta})|^2 d\theta = \sum |c_n|^2 r^{2n}.$$

Solução.

Fixado r tal que $0 \le r < R$, sabidamente temos

$$f(a+re^{i\theta})=\sum_n c_n r^n e^{in\theta}$$
, para todo $\theta\in[0,2\pi]$, com convergência uniforme.

Donde segue

$$\overline{f(a+re^{i\theta})} = \sum_{n} \overline{c_n} r^n e^{-in\theta}$$
, para todo $\theta \in [0,2\pi]$, com convergência uniforme.

E então, multiplicando pela função contínua e limitada $f(a+re^{i\theta})$ em $[0,2\pi],$

$$|f(a+re^{i\theta})|^2 = \sum_n f(a+re^{i\theta})\overline{c_n}r^ne^{-in\theta}$$
, com convergência uniforme em $[0,2\pi]$.

Logo, podemos integrar termo a termo e obtemos

$$\int_0^{2\pi} |f(a+re^{i\theta})|^2 d\theta = \sum_n \int_0^{2\pi} f(a+re^{i\theta}) \overline{c_n} r^n e^{-in\theta} d\theta$$

$$= \sum_n \left(\sum_m \int_0^{2\pi} c_m r^m e^{im\theta} \overline{c_n} r^n e^{-in\theta} d\theta \right)$$

$$= \sum_n |c_n|^2 r^{2n} 2\pi$$

20. Seja $f: \Omega \to O$ um bi-holomorfismo, denotado por w = f(z), com inversa $f^{-1}: O \to \Omega$ denotada por $z = f^{-1}(w)$. Consideremos um disco compacto $D = D(a; r) \subset \Omega$, com r > 0, e a bola aberta B = B(a; r).

Mostre que a aplicação $f^{-1}\Big|_{f(B)}: f(B) \to B$ é dada pela fórmula

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\partial B} \frac{\zeta f'(\zeta)}{f(\zeta) - w} d\zeta$$
, onde $w \in f(B)$.

Solução.

Como f é inversível, já sabemos que f' não se anula. Ainda, f' é contínua.

Fixemos $w \text{ em } f(B) \text{ e } z = f^{-1}(w) \text{ em } B. \text{ Logo}, f(z) = w. \text{ Notemos que}$

(20.1)
$$\int_{\partial B} \frac{\zeta f'(\zeta)}{f(\zeta) - w} d\zeta = \int_{\partial B} \frac{\frac{\zeta f'(\zeta)(\zeta - z)}{f(\zeta) - w}}{\zeta - z} d\zeta = \int_{\partial B} \frac{\varphi(\zeta)}{\zeta - z} d\zeta,$$

onde

$$\varphi(\zeta) = \frac{\zeta f'(\zeta)(\zeta - z)}{f(\zeta) - w}, \text{ se } \zeta \neq z.$$

A função φ é claramente holomorfa em $B \setminus \{z\}$. Ainda, φ satisfaz

$$\lim_{\zeta \to z} \varphi(\zeta) = \lim_{\zeta \to z} \frac{\zeta f'(\zeta)}{\frac{f(\zeta) - f(z)}{\zeta - z}} = \frac{z f'(z)}{f'(z)} = z.$$

Definindo $\varphi(z) = z$, vemos que φ é contínua em B e holomorfa em $B \setminus \{z\}$. Pela fórmula integral de Cauchy, só nos falta mostrar que φ é holomorfa no ponto z. Pois, tendo provado este fato, a integral em (20.1) vale

$$2\pi i\varphi(z) = 2\pi iz = 2\pi i f^{-1}(w).$$

- \diamond A função φ é holomorfa no ponto $\zeta=z$. Verificação. Pelo teorema de Morera, basta mostrar que a integral de φ em $\partial \Delta$ para cada triângulo fechado e convexo Δ contido em B é zero. Analisemos os possíveis casos.
 - ((I) Δ degenerado. Isto é, os vértices de Δ estão alinhados. É claro que

$$\int_{\partial \Delta} f = 0.$$

A seguir, Δ é não degenerado e os triângulos tem orientação anti-horária.

- (II) $\mathbf{z} \notin \Delta$. Como f é holomorfa em $B \setminus \{z\}$ e Δ está contido em $B \setminus \{z\}$, pelo teorema de Cauchy-Goursat a integral de f em $\partial \Delta$ é zero.
- (III) **z** um vértice de $\partial \Delta$. Seja $\{z, b, c\}$ o conjunto de vértices de $\partial \Delta$. Sejam b_1 e c_1 os respectivos pontos médios dos lados [z, b] e [z, c]. Divida Δ em um triângulo Δ_1 de vértices $\{z, b_1, c_1\}$ e um quadrilátero Q de vértices $\{b_1, b, c, c_1\}$. Divida Q em dois sub-triângulos. Pelo caso (II) temos

$$\int_{\partial \Delta} f = \int_{\partial \Delta_1} f + \int_{\partial Q} f = \int_{\partial \Delta_1} f + 0 = \int_{\partial \Delta_1} f.$$

Iterando construímos uma sequência decrescente (Δ_n) tal que

$$\begin{cases} \bigcap_{n=1}^{\infty} \Delta_n = \{z\}, \\ L(\partial \Delta_n) = \text{comprimento de } \partial \Delta_n = \frac{L(\partial \Delta)}{2^n}, \\ \int_{\partial \Delta} f = \int_{\partial \Delta_n} f, \text{ para todo } n \ge 1. \end{cases}$$

Como f é contínua no ponto z, pela estimativa M-L temos

$$\lim_{n\to\infty}\int_{\partial\Delta_n}f=0\ \ [\text{cheque}]\ \ \text{e então}\quad \int_{\partial\Delta}f=0.$$

(IV) $\mathbf{z} \in \operatorname{int}(\boldsymbol{\Delta})$. Seja Δ de vértices $\{b,c,d\}$, e os sub-triângulos Δ_1 , Δ_2 e Δ_3 de vértices $\{z,c,d\}$, $\{b,z,d\}$ e $\{b,c,z\}$, respectivamente. Por (III),

$$\int_{\Delta} f = \int_{\Delta_1} f + \int_{\Delta_2} f + \int_{\Delta_3} f = 0 + 0 + 0 = 0.$$

(V) **z** no lado [**b**, **c**] e Δ de vértices {**b**, **c**, **d**}. Dividimos Δ nos triângulos: Δ_1 de vértices {b, z, d} e Δ_2 de vértices {c, z, d} e aplicamos (III) \clubsuit