$2^{\underline{\mathbf{a}}}$ PROVA DE CÁLCULO III - MAT216 - IFUSP

5 de maio de 2014

Nome :	Q	N
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	Total	

Escolha 5 questões. Justifique todas as passagens BOA SORTE!

1. Consideremos o retângulo $R=\{(x,y): 0\leq x\leq \frac{\pi}{2} \text{ e } 0\leq y\leq 1\}.$ Calcule

$$\iint\limits_R \frac{xy\sin x}{1+4y^2} dx dy.$$

2. Inverta a ordem de integração.

$$\int_0^1 \left[\int_{\sqrt{x-x^2}}^{\sqrt{2x}} f(x,y) dy \right] dx.$$

3. Seja a > 0. Calcule

$$\int_0^a \left[\int_0^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2 - y^2} dy \right] dx.$$

4. Calcule o volume do conjunto

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \text{ e } x^2 + z^2 \le 1\}.$$

5. Seja
$$B=\Big\{(x,y,z):1\leq x+y\leq 2\,,\ 0\leq x+2y-z\leq 1\ \mathrm{e}\ 0\leq z\leq 1\Big\}.$$
 Calcule
$$\iiint_B\sqrt{x+y}\sqrt[3]{x+2y-z}\,dxdydz.$$

6. Calcule

$$\int\limits_{\gamma} 2ydx + zdy + xdz\,,$$

onde γ é a intersecção das superfícies [em $\mathbb{R}^3]$

$$x^2 + 4y^2 = 1 e x^2 + z^2 = 1$$
, com $y \ge 0 e z \ge 0$,

sendo o sentido de percurso do ponto (1,0,0) para o ponto (-1,0,0). Faça um esboço das superfícies e da intersecção.

7. Sejam $f, g: [a, b] \to \mathbb{R}$ duas funções de classe C^1 . Suponha que f(x) < g(x) para todo x em [a, b]. Seja

$$B = \{(x, y) : a \le x \le b \text{ e } f(x) \le y \le g(x)\}.$$

Seja γ a fronteira de Borientada no sentido anti-horário. Mostre que

$$\int\limits_{\gamma}Pdx=\iint\limits_{B}-\frac{\partial P}{\partial y}dxdy,$$

onde P é de classe C^1 em um aberto contendo a região B.

8. Seja Ω o interior do conjunto hachurado.

Seja $\gamma:[0,1]\to\mathbb{R}^2$ uma curva de classe C^1 por partes com imagem contida em Ω , com ponto inicial $\gamma(0)=(1,1)$ e ponto final $\gamma(1)=(2,2)$. Calcule

$$\int_{\gamma} \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$