MAT 1352 - Cálculo II - IFUSP Segundo semestre de 2023

Prof. Oswaldo Rio Branco de Oliveira

Critérios de Convergência para Séries

Seja $\sum_{n=1}^{+\infty} a_n$ uma série de números reais tais que $a_n \ge 0$, para todo n.

• A série é convergente se e somente se a sequência das somas parciais

$$s_n = a_1 + \dots + a_n$$

é limitada superiormente.

• Critério da Integral. Seja $f:[1,+\infty)\to[0,+\infty)$ uma função positiva, contínua e decrescente. Então,

$$\sum_{n=1}^{+\infty} a_n \text{ \'e convergente } \iff \int_1^{+\infty} f(x) dx \text{ \'e convergente.}$$

Atenção. O valor da série e o da integral podem ser diferentes.

• Critério de Leibniz (para séries alternadas). Suponhamos que (a_n) é uma sequência (real) decrescente a 0. Isto é, $a_n \searrow 0$. Então,

$$\sum_{n=1}^{+\infty} (-1)^n a_n \text{ \'e convergente.}$$

Definições Básicas. Seja $\sum_{n=0}^{+\infty} a_n$ uma série complexa.

- o A série é absolutamente convergente se $\sum_{n=0}^{+\infty} |a_n|$ converge.
- o A série é condicionalmente convergente se

$$\sum_{n=0}^{+\infty} a_n \text{ converge entretanto } \sum_{n=0}^{+\infty} |a_n| \text{ diverge.}$$

o Um rearranjo da série $\sum_{n=0}^{\infty} a_n$ é uma reordenação dos termos $a_{n's}$ da série. Isto é, dada uma bijeção $\sigma: \mathbb{N} \to \mathbb{N}$, a série

$$\sum_{j=0}^{+\infty} a_{\sigma(j)} \text{ \'e um rearranjo (reordenação) da série } \sum_{n=0}^{+\infty} a_n.$$

o A série é comutativamente convergente se todo rearranjo $\sum_{j=0}^{+\infty}a_{\sigma(j)}$ converge.

Sejam $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ duas séries complexas e c > 0 uma constante.

- Critério do termo geral. Se $\sum_{n=0}^{+\infty} a_n$ converge, então $a_n \to 0$ se $n \to +\infty$.
- Se $\sum_{n=0}^{+\infty} |a_n|$ converge, então $\sum_{n=0}^{+\infty} a_n$ converge.
- Critério da comparação. Suponhamos $|a_n| \leq c|b_n|$ para todo n. Então,

$$\sum_{n=0}^{+\infty} |b_n| \text{ convergente } \implies \sum_{n=0}^{+\infty} |a_n| \text{ convergente.}$$

• Critério da comparação no limite. Suponhamos $b_n \neq 0$ para todo n e

$$\lim_{n \to +\infty} \frac{|a_n|}{|b_n|} = L \in [0, +\infty].$$

- (a) Se L=0 e $\sum_{n=0}^{+\infty} |b_n|$ converge, então $\sum_{n=0}^{+\infty} |a_n|$ converge.
- (b) Se $0 < L < \infty$, então $\sum_{n=0}^{+\infty} |a_n|$ converge se e só se $\sum_{n=0}^{+\infty} |b_n|$ converge.
- (c) Se $L = \infty$ e $\sum_{n=0}^{+\infty} |b_n|$ diverge, então $\sum_{n=0}^{+\infty} |a_n|$ diverge.
- Teste da raiz. Suponhamos que

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = r \in [0, +\infty].$$

- (a) Se r < 1, então $\sum_{n=0}^{+\infty} |a_n|$ converge.
- (b) Se r > 1, então $\sum_{n=0}^{+\infty} |a_n|$ diverge.
- (c) Se r=1, o teste é inconclusivo.
- \bullet Teste da razão. Suponhamos $a_n \neq 0$ para todo ne

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = r \in [0, +\infty].$$

- (a) Se r < 1, então $\sum_{n=0}^{+\infty} |a_n|$ converge.
- (b) Se r > 1, então $\sum_{n=0}^{+\infty} |a_n|$ diverge.
- (c) Se r = 1, o teste é inconclusivo.