Determinante 2 × 2 - Aplicação Algébrica e Interpretação Geométrica-Bacharelado Oceanografia

 $2^{\rm o}$ semestre de 2014

Professor Oswaldo Rio Branco de Oliveira

Distância de ponto a reta A equação geral de uma reta no plano cartesiano é: D: ax + by + c = 0; a ou b não nulo. Dado um ponto $P_o = (x_o, y_o) \in \mathbb{R}^2$, a distância de P_o à reta D é :

$$|PD| = \frac{|ax_o + by_o + c|}{\sqrt{a^2 + b^2}}.$$

Prova Seja m_r o coeficiente angular de uma reta r qualquer. As retas, designadas por S, perpendiculares à reta D, tem coeficiente angular m_S tal que $m_S.m_D = -1$. Logo, utilizando o parametro d, uma equação geral de tais retas é:

$$S: -bx + ay + d = 0, d \in \mathbb{R}.$$

Entre tais retas perpendiculares a D queremos a que passe por $P_o = (x_o, y_o)$. Isto é, $-bx_o + ay_o + d = 0$ e, portanto, determinamos $d = bx_o - ay_o$. Temos então a reta

$$S_{P_0}: -bx + ay + (bx_0 - ay_0) = 0$$

Para determinarmos o ponto $P_1=(x_1,y_1)=D\cap S_{P_o}$ resolvemos o sistema:

$$(*) \begin{cases} ax + by = -c \\ -bx + ay = ay_o - bx_o \end{cases}$$

Multiplicando a primeira equação por a, a segunda por -b, e então somando-as temos :

$$x_1 = \frac{1}{a^2 + b^2} (b^2 x_o - aby_o - ac) e,$$

agora, multiplicando a primeira por b e a segunda por a e somando-as concluímos :

$$y_1 = \frac{1}{a^2 + b^2} (-abx_o + a^2y_o - bc).$$

Computemos agora o quadrado da distância de $P_o = (x_o, y_o)$ a $P_1 = (x_1, y_1)$: $|P_o P_1|^2 = (x_o - x_1)^2 + (y_o - y_1)^2 =$ $= [x_o - \frac{1}{a^2 + b^2}(b^2 x_o - aby_o - ac)]^2 + [y_o - \frac{1}{a^2 + b^2}(-abx_o + a^2 y_o - bc)]^2 =$

$$= \frac{1}{(a^2+b^2)^2} [(a^2x_o + aby_o + ac)^2 + (abx_o + b^2y_o + bc)^2] =$$

$$= \frac{1}{(a^2+b^2)^2} [a^2(ax_o + by_o + c)^2 + b^2(ax_o + by_o + c)^2] =$$

$$= \frac{1}{(a^2+b^2)^2} [(a^2+b^2)(ax_o + by_o + c)^2] =$$

$$= \frac{(ax_o + by_o + c)^2}{a^2+b^2}, \text{ donde segue a tese.}$$

segunda prova Reescrevendo (*) na notação matricial temos:

$$(**) \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} -c \\ ay_o - bx_o \end{array} \right].$$

É fácil constatar que dada uma matriz inversível,

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

sua inversa é dada por

$$M^{-1} = \frac{1}{AD - BC} \begin{bmatrix} D & -B \\ -C & A \end{bmatrix}.$$

Assim, a solução de (*) é

$$\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] = \frac{1}{a^2 + b^2} \left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] \left[\begin{array}{c} -c \\ ay_o - bx_o \end{array}\right].$$

Logo, $x_1 = \frac{1}{a^2+b^2}(-ac-aby_o+b^2x_o)$ e $y_1 = \frac{1}{a^2+b^2}(-bc+a^2y_o-abx_o)$ e a demonstração segue como a anterior

Área de um Paralelogramo

Nesta seção, \vec{u} denota um vetor em \mathbb{R}^2 . Dado (a,b) no plano cartesiano, indicamos o vetor representado pelo segmento com extremidade inicial a origem deste plano e final (a,b) por $\langle a,b\rangle$. Dois vetores $\vec{u}=\langle a,b\rangle$ e $\vec{v}=\langle c,d\rangle$, não paralelos e em \mathbb{R}^2 , determinam um paralelogramo Ω que supomos, inicialmente, no primeiro quadrante. Seja $\vec{w}=\vec{u}+\vec{v}=\langle a+b,c+d\rangle$. Consideremos a representação de Ω [numa segunda e última representação as posições de \vec{u} e \vec{v} são trocadas],

Considerendo os pontos P_i , $1 \le i \le 7$, a área delimitada por Ω , $A(\Omega)$, é dada por,

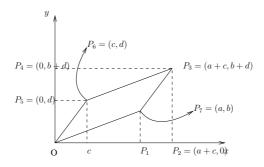


Figura 1: Determinante/Área

$$A(\Omega) = A(OP_2P_3P_4) - A(OP_1P_7) - A(P_1P_2P_3P_7) - A(P_3P_4P_5P_6) - A(P_5OP_6),$$

$$A(P_5OP_6),$$

$$A(P_1P_2P_3P_7) = \frac{(b+b+d)c}{2} = bc + \frac{cd}{2}, \quad A(P_3P_4P_5P_6) = \frac{(c+a+c)b}{2} = bc + \frac{ab}{2},$$

$$A(OP_2P_3P_4) = (a+c)(b+d) = ab + ad + bc + cd,$$

$$A(OP_1P_7) = \frac{ab}{2} \quad e \quad A(P_5OP_6) = \frac{cd}{2}.$$

$$Logo,$$

$$A(\Omega) = ab + ad + bc + cd - \frac{ab}{2} - bc - \frac{cd}{2} - bc - \frac{ab}{2} - \frac{cd}{2} = ad - bc =$$

$$D = \begin{vmatrix} a & c \\ b & d \end{vmatrix}.$$

A seguir, associamos uma área ou ao determinante D se seu valor (também dito determinante) é positivo ou a D', obtido trocando as colunas de D uma pela outra, se D é negativo.

Definição: O **ângulo entre dois segmentos** \overline{AB} e \overline{AC} no plano é o menor ângulo θ , $0 \le \theta \le \pi$, unindo B e C.

Definição: O ângulo entre dois vetores $\vec{u}, \vec{v} \in \mathbb{R}^2$ é o ângulo entre dois segmentos \overline{AB} e \overline{AC} , representantes de \vec{u} e \vec{v} , respectivamente. Fixas tais representações, o (menor) ângulo entre \vec{u} e \vec{v} , orientado de \vec{u} para \vec{v} , é o ângulo entre \overline{AB} e \overline{AC} , orientado de B para C.

Mantendo a notação acima temos então o importante resultado abaixo.

Proposição 0.1 Se \vec{u} corresponde à 1^a coluna do determinante, \vec{v} à 2^a , \vec{u} e \vec{v} não paralelos, e θ , o menor ângulo entre \vec{u} e \vec{v} , orientado de \vec{u} para \vec{v} , tem sentido anti-horário,

$$D = \left| \begin{array}{cc} a & c \\ b & d \end{array} \right| = ad - bc > 0 .$$

Caso contrário, se a orientação de θ é no sentido horário, ad -bc < 0.

Prova: Lembremos que medimos ângulos em \mathbb{R}^2 no sentido anti-horário e a partir do eixo Ox. Suponhamos, primeiro, que θ esteja orientado no senti anti-horário.

Se α é o ângulo de Ox a \vec{u} e β o ângulo de Ox a $\vec{v}, a, c \neq 0$, temos $\tan \alpha = \frac{b}{a}$ e $\tan \beta = \tan \frac{d}{c}$.

Caso 1: \vec{u} no primeiro quadrante.

(1a) Para \vec{v} no primeiro quadrante temos (vide figura anterior),

$$0 < \tan \alpha = \frac{b}{a} < \frac{d}{c} = \tan \beta , \quad bc < ad , \quad ad - bc > 0 ,$$

onde na segunda afirmação utilizamos ac > 0.

(1b) Para \vec{v} no segundo quadrante temos c < 0, d > 0, ac < 0 e,

$$\tan \beta = \frac{d}{c} < 0 < \frac{b}{a} = \tan \alpha , \quad ad > bc .$$

(1c) Para \vec{v} no terceiro quadrante, com $0<\beta-\alpha<\pi$, temos $c<0,\,d<0,$ ac<0 e observando o valor da tangente no círculo trigonométrico (faça um esboço),

$$0 < \tan \beta = \frac{d}{c} < \frac{b}{a} = \tan \alpha$$
, $ad > bc$.

Caso 2: \vec{u} no segundo quadrante logo, a < 0 e b > 0.

(2a) Para \vec{v} no segundo quadrante temos, $c<0,\ d>0,\ ac>0$ e (faça um esboço),

$$\tan \alpha = \frac{b}{a} < \frac{d}{c} = \tan \beta < 0 , bc < ad .$$

(2b) Para \vec{v} no terceiro quadrante então $c<0,\ d<0,\ ac>0$ e,

$$\tan \alpha = \frac{b}{a} < 0 < \frac{d}{c} = \tan \beta , \quad bc < ad .$$

(2c) Para \vec{v} no quarto quadrante, com $0 < \beta - \alpha < \pi$, temos c > 0, d > 0, ac < 0 e observando o valor da tangente no círculo trigonométrico (faça um esboço),

$$\tan \beta = \frac{d}{c} < \frac{b}{a} = \tan \alpha < 0 , \quad ad > bc .$$

Casos 3 e 4: Para \vec{u} no 3° [4°] quadrante, os sub-casos com \vec{v} no 3°, 4° e 1° [4°, 1° e 2°] quadrantes são análogos a (1a), (1b) e (1c) [(2a), (2b) e (2c)], respectivamente.

Po fim, se θ tem o sentido horário, trocando as colunas de D recaímos na suposição anterior e obtemos um determinante D' > 0. Logo, D = -D' < 0

Definição: O par ordenado de vetores $\{\vec{u}, \vec{v}\}$ é positivamente (negativa/e) orientado se o menor ângulo entre eles, orientado de \vec{u} para \vec{v} , tem sentido anti-horário (horário).

Definição: O paralelogramo determinado pelo par ordenado $\{\vec{u}, \vec{v}\}$ é positivamente orientado ou negativamente orientado segundo a orientação do par (ordenado) $\{\vec{u}, \vec{v}\}$.

Corolário 0.1 Na prop. 1.8, se θ tem sentido anti-horário [horário], D é a área [o oposto da área] do paralelogramo positiva/e [negativa/e] orientado determinado pelo par ordenado $\{\vec{u}, \vec{v}\}$.

Prova: É deixada ao leitor ■