Capítulo 1 NÚMEROS COMPLEXOS

Capítulo 2 POLINÔMIOS

Capítulo 3 SEQUÊNCIAS E TOPOLOGIA

Capítulo 4

O TEOREMA FUNDAMENTAL DA ÁLGEBRA E OUTROS RESULTADOS POLINOMIAIS

Capítulo 5 SÉRIES / CRITÉRIOS DE CONVERGÊNCIA

Capítulo 6 SOMAS NÃO ORDENADAS

Capítulo 7

SEQUÊNCIAS E SÉRIES DE FUNÇÕES

Capítulo 8 SÉRIES DE FOURIER

Capítulo 9 FUNÇÕES ANALÍTICAS

Capítulo 10

INTEGRAÇÃO COMPLEXA

10.1 - Introdução

Na seção seguinte provamos a Fórmula Integral de Cauchy e algumas consequências não utilizando as equações de Cauchy-Riemann, não supondo que uma função holomorfa é de classe C^1 e também não usando o Teorema de Green.

Também não utilizaremos que uma função holomorfa é, como uma função definida em um aberto de \mathbb{R}^2 a valores em \mathbb{R}^2 , diferenciável. Entretanto, mostraremos elementarmente este importante fato e a também muito importante interpretação geométrica dada para a derivada, $f'(z_0)$, em um ponto z_0 de uma função f definida em uma variável complexa z a valores no plano complexo.

Na terceira seção aplicamos o Teorema de Green e as equações de Cauchy-Riemann.

10.2 - Resultados Básicos

Neste texto J é sempre um intervalo [a,b] contido em \mathbb{R} .

Dado Ω um subconjunto aberto do plano complexo dizemos que $f:\Omega\to\mathbb{C}$ é holomorfa em Ω se f é derivável em todo os pontos de Ω . Indicamos então,

$$\mathcal{H}(\Omega) = \{f: \Omega \to \mathbb{C}\,, \text{tal que } f \text{ \'e holomorfa em }\Omega \,\}$$
 .

Introduzamos os conceitos de integração e primitivação para funções em uma variável real a valores complexos.

- **10.1 Definição.** Seja $f: J \to \mathbb{C}$, f = u + iv, com u = Re(f) e v = Im(f).
 - (a) A integral definida de f é, se u e v são integráveis,

$$\int_a^b f(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt.$$

(b) A derivada de f é, se existir,

$$f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h} + i \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} = u'(t) + iv'(t) ,$$

- (c) Uma primitiva de $f \notin toda \ função \ F: J \to \mathbb{C} \ tal \ que \ F'(t) = f(t), \ \forall t \in J.$
- **10.2** Proposição. Se $f: J \to \mathbb{C}$ e $g: J \to \mathbb{C}$ são integráveis e $\lambda \in \mathbb{C}$ então,
 - (a) f + g é integrável e $\int_a^b (f+g)dt = \int_a^b f dt + \int_a^b g dt$.
 - (b) $\lambda f \in integrável \ e \int_a^b \lambda f \ dt = \lambda \int_a^b f(t) \ dt$.

Prova. Trivial e a deixamos ao leitor

■

- **10.3 Proposição.** Se $f: J \to \mathbb{C}$ e $g: J \to \mathbb{C}$ são deriváveis e $\lambda \in \mathbb{C}$ então,
 - (a) $f + g \notin deriv \acute{a} vel \ e \ (f + g)'(t) = f'(t) + g'(t)$.
 - (b) λf é derivável e $(\lambda f)'(t) = \lambda f'(t)$.

Prova. Trivial e a deixamos ao leitor

■

10.4 Definição. *Uma* curva suave, ou curva de classe C^1 , $em \mathbb{C}$ é uma aplicação

$$\gamma: J \to \mathbb{C}$$

com derivada $\gamma': J \to \mathbb{C}$ contínua em J. Escrevemos então: $\gamma \in C^1$.

10.5 Definição. Uma curva suave por partes, ou C^1 por partes, $em \ \mathbb{C} \ \acute{e} \ uma$ coleção finita de curvas suaves $\gamma_i : [a_i, b_i] \to \mathbb{C}, \ 1 \le i \le n, \ justapostas; isto \acute{e}, \ com$ $\gamma_i(b_i) = \gamma_{i+1}(a_{i+1}) \ para \ 1 \le i \le n-1.$ Indicamos por $\gamma = \gamma_1 \vee \gamma_2 \vee \cdots \vee \gamma_n \ uma \ curva$ suave por partes, e dizemos que tal curva \acute{e} fechada se $\gamma_1(a_1) = \gamma_n(b_n)$.

10.6 Definição. Um domínio $\Omega \subset \mathbb{C}$ é um conjunto aberto não vazio que é conexo por curvas suaves, isto é, dados z_1 e z_2 em Ω existe uma curva γ suave por partes, com imagem em Ω , com ponto inicial z_1 e ponto final z_2 .

Doravante, a menos que alertado, Ω é um domínio.

10.7 Lema. Se $f \in \mathcal{H}(\Omega)$ e $\gamma: J \to \Omega$ é derivável então, $f \circ \gamma: J \to \mathbb{C}$ é derivável e

$$(f \circ \gamma)'(t) = f'(\gamma(t)) \gamma'(t), \ \forall t \in J.$$

Prova. Seja $t_0 \in J$ e $h: \Omega \to \mathbb{C}$,

$$h(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) &, \text{ se } z \neq z_0, \\ 0 &, \text{ se } z = z_0 = \gamma(t_0). \end{cases}$$

Como $f \in \mathcal{H}(\Omega)$, h é contínua em z_0 . Como $f(z) - f(z_0) = [h(z) + f'(z_0)](z - z_0)$, substituindo $z = \gamma(t)$, $z_0 = \gamma(t_0)$ e dividindo por $t - t_0$, com $t \neq t_0$, obtemos

(10.7.1)
$$\frac{f(\gamma(t)) - f(\gamma(t_0))}{t - t_0} = \left[h(\gamma(t)) + f'(\gamma(t_0))\right] \frac{\gamma(t) - \gamma(t_0)}{t - t_0}, t \neq t_0.$$

Computemos o limite do segundo membro da equação (10.7.1) quando $t \to t_0$. Como γ é derivável em t_0 , γ é contínua em t_0 e, sendo h contínua em $z_0 = \gamma(t_0)$, concluimos que $\lim_{t \to t_0} (h \circ \gamma)(t) = h(\gamma(t_0)) = h(z_0) = 0$. Logo, o citado limite é $f'(\gamma(t_0))\gamma'(t_0)$ que pela referida equação é a derivada $(f \circ \gamma)'(t_0)$

10.8 Lema. Seja $f: \Omega \to \mathbb{C}$. Se f'(z) = 0, $\forall z \in \Omega$, então f é uma constante.

Prova. Se $\gamma: J \to \Omega$ é uma curva derivável então, pelo Lema 10.7,

$$f(\gamma(b)) - f(\gamma(a)) = \int_a^b \frac{d(f \circ \gamma)}{dt}(t) dt = \int_a^b f'(\gamma(t))\gamma'(t) dt = \int_a^b 0 dt = 0.$$

Logo, f é constante sobre as curvas suaves em Ω e também sobre as curvas suaves por partes (verifique) e então (v. Def. 10.6) f é constante em Ω

10.9 Definição. A integral de f ao longo de γ , onde $f: \Omega \to \mathbb{C}$ é contínua e $\gamma: [a,b] \to \Omega$ é uma curva suave, é

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \in \mathbb{C}.$$

Tal integral gera duas integrais de linha ao longo de γ : se f(z) = u(x,y) + iv(x,y),

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt =
= \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))] [x'(t) + iy'(t)] dt =
= \int_{a}^{b} [u(x(t), y(t)) x'(t) - v(x(t), y(t)) y'(t)] dt +
+ i \int_{a}^{b} [u(x(t), y(t)) y'(t) + v(x(t), y(t)) x'(t)] dt =
= \int_{\gamma} u dx - v dy + i \int_{\gamma} u dy + v dx.$$

10.10 Nota. Escrevendo dz = dx + idy temos, formalmente, para f = u + iv,

$$\int_{\gamma} f(z)dz = \int_{\gamma} (udx - vdy) + i(udy + vdx) = \int_{\gamma} (u + iv)(dx + idy).$$

Devido à fórmula para o comprimento de uma curva,

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| \, dt = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt$$

e que ao longo de γ temos dx = x'(t)dt e dy = y'(t)dt, com a Notação 7.10 obtemos ao longo de γ a expressão dz = (x'(t) + iy'(t))dt. Justifica-se então o que segue.

10.11 Nota. O "módulo" |dz| ao longo de γ e o comprimento $L(\gamma)$ de γ são,

$$|dz| = \sqrt{x'(t)^2 + y'(t)^2} dt \quad e \quad L(\gamma) = \int_a^b |\gamma'(t)| dt = \int_{\gamma} |dz|.$$

10.12 Definição. Seja $f: \Omega \to \mathbb{C}$, contínua, $e \gamma = \gamma_1 \vee \gamma_2 ... \vee \gamma_n$ uma curva suave por partes em Ω . A integral de f ao longo de γ \acute{e}

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz + \dots + \int_{\gamma_n} f(z) dz.$$

A letra L para o comprimento de γ vem da palavra inglesa "lenght".

- **10.13 Definição.** Seja $f: \Omega \to \mathbb{C}$, com f contínua. Uma função $F: \Omega \to \mathbb{C}$ é uma primitiva de f se F é holomorfa em Ω e F'(z) = f(z) para todo $z \in \Omega$.
- **10.14 Proposição.** Seja $f: \Omega \to \mathbb{C}$ contínua, F uma primitiva de f e γ uma curva suave por partes em Ω unindo o ponto z_0 ao ponto z_1 . Então,

$$\int_{\gamma} f(z) dz = F(z_1) - F(z_0).$$

Em particular, se o caminho é fechado,

$$\int_{\gamma} f(z) \, dz = 0.$$

Prova. Suponhamos $\gamma : [a, b] \to \Omega$ suave (deixamos ao leitor verificar o caso em que γ é suave por partes). Pelo Lema 10.7 segue,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t) dt = \int_{a}^{b} F'(\gamma(t))\gamma'(t) dt =$$

$$= \int_{a}^{b} (F \circ \gamma)'(t) dt = (F \circ \gamma)|_{a}^{b} = F(z_{1}) - F(z_{0}) \quad \blacksquare$$

10.15 Lema. $Seja \varphi : [a, b] \to \mathbb{C}$, contínua. Então,

$$\left| \int_{a}^{b} \varphi(t) dt \right| \leq \int_{a}^{b} |\varphi(t)| dt.$$

Prova. Se $\left| \int_a^b \varphi(t) dt \right| = 0$ nada há a fazer. Senão, existe $\theta \in [0, 2\pi]$ tal que

$$\frac{\int_a^b \varphi(t) \, dt}{\left| \int_a^b \varphi(t) \, dt \right|} = e^{i\theta} \,,$$

e portanto $\left| \int_a^b \varphi(t) dt \right| = e^{-i\theta} \int_a^b \varphi(t) dt = \int_a^b e^{-i\theta} \varphi(t) dt$ é um número real. Logo,

$$\left| \int_a^b \varphi(t) \, dt \right| = \int_a^b \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] dt \le \int_a^b \left| \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] \right| dt \le \int_a^b \left| \varphi(t) \right| dt = \int_a^b \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] dt \le \int_a^b \left| \varphi(t) \right| dt = \int_a^b \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] dt \le \int_a^b \left| \varphi(t) \right| dt = \int_a^b \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] dt \le \int_a^b \left| \varphi(t) \right| dt = \int_a^b \operatorname{Re} \left[e^{-i\theta} \varphi(t) \right] dt \le \int_a^b \left| \varphi(t) \right| dt \le \int_a^b \left| \varphi(t) \right|$$

10.16 Lema (Estimativa M-L). Se $f: \Omega \to \mathbb{C}$ é contínua ao longo de $\gamma: J \to \Omega$, γ suave por partes, e $M \ge 0$ é tal que $|f(\gamma(t))| \le M$, $\forall t \in J$, temos

$$\Big|\int\limits_{\gamma} f(z)\,dz\Big|\,\leq\, ML(\gamma).$$

Prova. Pelo Lema 10.15,

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{a}^{b} |f(\gamma(t))\gamma'(t)| dt \leq M \int_{a}^{b} |\gamma'(t)| dt = ML(\gamma) \blacksquare$$

Se $\gamma:[a,b]\to\Omega$ é uma curva, ou caminho, podemos inverter o sentido de percurso definindo o caminho reverso de γ , que indicamos γ^- , por

$$\gamma^-(t) = \gamma(a+b-t), \ a \le t \le b.$$

Se $f:\Omega\to\mathbb{C}$ é tal que as integrais abaixo citadas existem, é claro que temos

$$\int_{\gamma^{-}} f(z) dz = - \int_{\gamma} f(z) dz.$$

- 10.17 Proposição. Seja $f: \Omega \to \mathbb{C}$ uma função contínua. São equivalentes:
 - (a) f tem uma primitiva em Ω .
 - (b) $\int_{\gamma} f(z) dz = 0$ para toda curva fechada γ suave por partes em Ω .
 - (c) $\int_{\gamma} f(z) dz$ só depende dos pontos inicial e final das curvas γ suaves por partes contidas em Ω .

Prova. Pela Proposição 10.14 temos $(a) \Rightarrow (b)$ e $(a) \Rightarrow (c)$.

- (b) \Rightarrow (c) Se γ_1 e γ_2 são curvas suaves unindo z_0 e z_1 então $\gamma_1 \vee \gamma_2^-$ é fechada e $0 = \int_{\gamma_1 \vee \gamma_2^-} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2^-} f(z) dz = \int_{\gamma_1} f(z) dz \int_{\gamma_2} f(z) dz.$
- (c) \Rightarrow (a) Fixo $z_0 \in \Omega$, dado $z \in \Omega$ seja γ uma curva suave em Ω unindo z_0 a z. Por (c) a integral abaixo independe de γ e define uma função

$$F(z) = \int_{\gamma} f(w) \, dw.$$

Mostremos F' = f. Sejam R > 0 tal que $D(z; R) \subset \Omega$, $h \in \mathbb{C}$ tal que |h| < R, e o segmento de reta $\sigma : [0,1] \to D(z; R)$, $\sigma(t) = z + th$, unindo z a z + h.

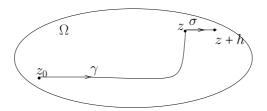


Figura 10.1: Ilustração à Proposição 10.17

Pela definição de F temos,

$$F(z+h) = \int_{\gamma \vee \sigma} f(w) dw = \int_{\gamma} f(w) dw + \int_{\sigma} f(w) dw = F(z) + \int_{\sigma} f(w) dw$$
 e
$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{\sigma} f(w) dw.$$

Por outro lado,

$$\int_{\sigma} dw = \int_{0}^{1} \sigma'(t) dt = \int_{0}^{1} h dt = h \implies 1 = \frac{1}{h} \int_{\sigma} dw \implies f(z) = \frac{1}{h} \int_{\sigma} f(z) dw.$$

Então, como f é contínua em z, dado $\epsilon > 0$ escolhemos r < R, r > 0, tal que $|f(w) - f(z)| < \epsilon$ se |w - z| < r. Assim, para |h| < r, e consequentemente $|f(\sigma(t)) - f(z)| < \epsilon$, aplicando o Lema M-L 10.16 obtemos,

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \int_{\sigma} \frac{f(w) - f(z)}{h} dw \right| \le \frac{\epsilon}{|h|} |h| = \epsilon, \forall |h| < r.$$

Logo,
$$F'(z) = f(z) \blacksquare$$

10.18 Teorema (Cauchy-Goursat). Seja $f: \Omega \to \mathbb{C}$ holomorfa. Suponha que $\Delta \subset \Omega$ é um triângulo que limita uma região inteiramente contida em Ω . Então,

$$\int_{\Delta} f(z) \, dz = 0.$$

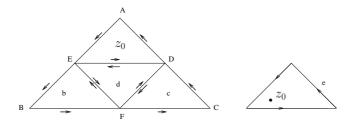


Figura 10.2: Ilustração ao Teorema de Cauchy-Goursat

Prova. Iniciemos (v. figura) orientando Δ no sentido anti-horário e descrevendo Δ pela justaposição dos segmentos $\gamma_1 \vee \gamma_2 \vee \gamma_3$. Selecionando os pontos médios dos lados de Δ e unindo tais pontos por segmentos de reta obtemos quatro triangulos contidos na região limitada por Δ : Δ_1 , Δ_2 , Δ_3 e Δ_4 . Para cada um desses triãngulos adotamos também o sentido de percurso anti-horário. Assim temos,

$$\int_{\Delta} f(z)dz = \int_{\Delta_1} f(z)dz + \int_{\Delta_2} f(z)dz + \int_{\Delta_3} f(z)dz + \int_{\Delta_4} f(z)dz.$$

Destaquemos entre as quatro integrais no segundo membro a de maior valor absoluto e seja $\Delta^{(1)}$ o triângulo correspondente. Para tal triângulo $\Delta^{(1)}$ repetimos a construção acima e expressamos a integral ao longo de $\Delta^{(1)}$ como a soma de quatro integrais sobre quatro triângulos formados a partir dos pontos médios de $\Delta^{(1)}$ e orientados no sentido anti-horário e destacamos $\Delta^{(2)}$, o triângulo cuja integral correspondente tem maior módulo. Iterando, construímos indutivamente uma

sequência de triângulos $(\Delta^{(n)})$, $n \in \mathbb{N}$, com $\Delta^{(0)} = \Delta$. Seja $\delta^{(n)}$ o comprimento do maior lado de $\Delta^{(n)}$, pondo $\delta = \delta^{(0)}$. Temos então, para todo $n \in \mathbb{N}$,

região limitada por $\Delta^{(n+1)} \subset \text{região limitada por}\Delta^{(n)}$,

$$\left| \int_{\Delta} f(z) dz \right| \le 4^n \left| \int_{\Delta^{(n)}} f(z) dz \right|,$$

$$L(\Delta^{(n)}) = \frac{1}{2^n} L(\Delta) e,$$

$$\delta^{(n)} = \frac{1}{2^n} \delta.$$

Como \mathbb{R}^2 é completo e os diâmetros [o diâmetro de um conjunto $X \subset \mathbb{R}^2$ é $\delta(X) = \sup\{|x_1 - x_2| : x_1, x_2 \in X\}$] dos triângulos $\Delta^{(n)}$, $n \in \mathbb{N}$, tendem a zero se $n \to +\infty$, a sequência formada pelas regiões limitadas pelos triângulos $\Delta^{(n)}$ (considerada ordenada pela inclusão) é decrescente, e portanto a intersecção destas regiões é um único ponto z_0 [vide o Princípio dos Intervalos Encaixantes no Capítulo 5].

Assim, dado $\epsilon > 0$, existe $\tau > 0$ tal que:

(a)
$$D(z_0; \tau) \subset \Omega$$

(b)
$$0 < |z - z_0| < \tau \Longrightarrow \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(0) \right| < \epsilon.$$

Sendo que a desigualdade obtida em (b) equivale a

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \epsilon |z - z_0|, \text{ se } 0 < |z - z_0| < \tau.$$

É claro que se n é suficientemente grande tal que $\delta^{(n)} = \frac{\delta}{2^n} < \tau$, a região limitada por $\Delta^{(n)}$ está contida em $D(z_0;\tau)$ e, notando que $\int_{\Delta^{(n)}} dz = 0 = \int_{\Delta^{(n)}} z dz$,

$$\int_{\Delta^{(n)}} [f(z) - f(z_0) - f'(z_0)(z - z_0)] dz = \int_{\Delta^{(n)}} f(z) dz.$$

Logo, pela última equação, pela última inequação, e pelo Lema M-L 10.16, temos

$$\left| \int_{\Delta^{(n)}} f(z) dz \right| \leq \epsilon \int_{\Delta^{(n)}} |z - z_0| |dz| \leq \epsilon \delta^{(n)} L(\Delta^{(n)}) = \frac{\epsilon \delta L(\Delta)}{4^n},$$

e então,

$$\left| \int_{\Delta} f(z) dz \right| \leq 4^{n} \left| \int_{\Delta^{(n)}} f(z) dz \right| \leq \epsilon \delta L(\Delta)$$

e, como ϵ é um número estritamente positivo arbitrário, $\left| \int_{\Delta} f(z) dz \right| = 0$

10.19 Definição. Um domínio $\Omega \subset \mathbb{C}$ é estrelado se existe $z_0 \in \Omega$ tal que para todo $z \in \Omega$ o segmento (orientado) $\overrightarrow{z_0z}$ está contido em Ω ; z_0 é um centro de Ω .

Como é óbvio, todo aberto convexo é estrelado.

10.20 Corolário. Seja Ω um domínio estrelado e $f: \Omega \to \mathbb{C}$ uma função holomorfa. Então, f admite uma primitiva em Ω .

Prova. Dados $A, B \in \Omega$ e $\sigma(t) = A + t(B - A), t \in [0, 1]$, introduzimos a notação

$$\int_{\overrightarrow{AB}} f(w) \, dw \coloneqq \int_{\sigma} f(w) \, dw.$$

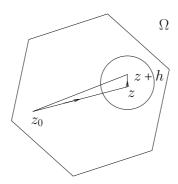


Figura 10.3: Ilustração ao Corolário 10.20

Então, fixado z_0 um centro de Ω definimos para $z \in \Omega$,

$$F(z) = \int_{\overline{z_0}z} f(w) dw.$$

Se |h| < r, r suficientemente pequeno, o triângulo Δ de vértices z_0 , z e z+h está contido em Ω e, pelo Teorema de Cauchy-Goursat,

$$0 = \int_{\Delta} f(w) dw = \int_{\stackrel{z_0;z}{z}} f(w) dw + \int_{\stackrel{z_1;z+h}{z}} f(w) dw - \int_{\stackrel{z_0;z+h}{z}} f(w) dw,$$

e portanto,

$$F(z+h) - F(z) = \int_{\substack{z:z+h}} f(w) dw.$$

e, utilizando que $\frac{1}{h} \int_{\overrightarrow{z;z+h}} 1 dw = 1$,

$$\frac{F(z+h)-F(z)}{h}-f(z)=\frac{1}{h}\int_{\substack{z:z+h}} [f(w)-f(z)]dw.$$

Dado $\epsilon > 0$, seja r > 0 tal que $|f(w) - f(z)| < \epsilon$ se $w \in D(z; r)$. Então, aplicando a Estimativa M-L 10.16, concluímos que

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{1}{h} \int_{z:z+h} \left[f(w) - f(z) \right] dw \right| \le \frac{1}{|h|} \epsilon |h| = \epsilon, \quad \forall |h| < r \blacksquare$$

10.21 Corolário. Seja Ω estrelado, $f \in \mathcal{H}(\Omega)$ e γ uma curva fechada. Então,

$$\int_{\gamma} f(z) \, dz = 0.$$

Prova. Pelo Corolário 10.20 f tem primitiva e pela Prop. 10.17 segue a tese ■

A seguir apresentamos para o Corolário 10.21 um exemplo que será utilizado na demonstração, logo a seguir, da potente Fórmula Integral de Cauchy, da qual derivaremos a analiticidade das funções holomorfas.

10.22 Exemplo. Seja $f \in \mathcal{H}(\Omega)$ e $D(a;R) \subset \Omega$. Se $z_0 \in D(a;R)$, é claro que a função $g(z) = \frac{f(z)}{z-z_0}$ é holomorfa em $D(a;R) \setminus \{z_0\}$. Consideremos um diâmetro de D(a;R) que contém z_0 . O ponto z_0 determina, neste diâmetro, dois segmentos de reta com extremo z_0 , os quais designamos L_1 e L_2 . Veja figura abaixo.

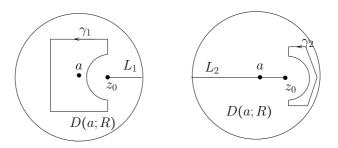


Figura 10.4: Ilustração ao Exemplo 10.22

Evidentemente, $D(a;R) \setminus L_1$ e $D(a;R) \setminus L_2$ são domínios estrelados. Assim, pelo Corolário 10.21, se γ_1 e γ_2 são curvas fechadas suaves por partes contidas em $D(a;R) \setminus L_1$ e $D(a;R) \setminus L_2$, respectivamente, temos

$$\int_{\gamma_1} \frac{f(z)}{z - z_0} dz = 0 \quad \text{e} \quad \int_{\gamma_2} \frac{f(z)}{z - z_0} dz = 0.$$

10.23 Teorema (Fórmula Integral de Cauchy). Seja $f: \Omega \to \mathbb{C}$ uma função holomorfa, $\overline{D}(z_0; r_0) \subset \Omega$ e $\Gamma = \partial \overline{D}(z_0; r_0)$ orientada no sentido anti-horário. Se z é um ponto qualquer no interior de $\overline{D}(z_0; r_0)$ então,

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - z} dw.$$

Prova. Seja R > 0 tal que $\overline{D}(z_0; r_0) \subset D(z_0; R) \subset \Omega$. Então,

$$g(w) = \frac{f(w)}{w - z}$$
 é holomorfa em $D(z_0; R) \setminus \{z\},$

e temos dois domínios estrelados em $\overline{D}(z_0;R)$ nos quais g(w) é holomorfa pois, o

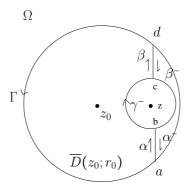


Figura 10.5: Ilustração ao Teorema 10.23

diâmetro de $\overline{D}(z_0; R)$ por z determina dois segmentos, L_1 e L_2 , com extremos em z e, como já visto em 10.22, $D(z_0; R) \setminus L_1$ e, $D(z_0; R) \setminus L_2$ são dois tais domínios.

Em seguida, isolamos o ponto z considerando um círculo γ centrado em z e de raio r > 0 suficientemente pequeno tal que $D(z; r) \subset D(z_0; r_0)$.

Sejam então σ_1 e σ_2 definidas pelas justaposições (v. figura acima):

$$\begin{cases} \sigma_1 = \alpha \lor (\text{ trecho de } \gamma^- \text{ entre } b \in c) \lor \beta \lor (\text{ trecho de } \Gamma \text{ entre } d \in a) \\ \sigma_2 = (\text{ trecho de } \Gamma \text{ entre } a \in d) \lor \beta^- \lor (\text{ trecho de } \gamma^- \text{ entre } c \in b) \lor \alpha^- \end{cases}$$

Como σ_1 e σ_2 são fechadas, cada qual em um domínio estrelado no qual g é holomorfa, temos pelo Corolário 10.21 que

$$\int_{\sigma_1} \frac{f(w)}{w - z} dw = \int_{\sigma_2} \frac{f(w)}{w - z} dw = 0.$$

Logo,

$$0 = \int_{\sigma_1} \frac{f(w)}{w - z} dw + \int_{\sigma_2} \frac{f(w)}{w - z} dw = \int_{\Gamma} \frac{f(w)}{w - z} dw + \int_{\gamma^-} \frac{f(w)}{w - z} dw$$

donde obtemos,

$$\int_{\Gamma} \frac{f(w)}{w-z} dw = \int_{\gamma} \frac{f(w)}{w-z} dw.$$

Dada a curva $\gamma(t) = z + re^{it}$, $t \in [0, 2\pi]$, temos $\int_{\gamma} \frac{f(z)}{w-z} dw = 2\pi i f(z)$. Dado $\epsilon > 0$, seja $\delta > 0$ tal que $|f(w) - f(z)| < \epsilon$ se $|w - z| < \delta$.

Então, pelo Lema Estimativa M-L 10.26, para r > 0 tal que $r < \delta$ obtemos,

$$\left| \int_{\Gamma} \frac{f(w)}{w - z} dw - 2\pi i f(z) \right| = \left| \int_{\gamma} \frac{f(w) - f(z)}{w - z} dw \right| \leq \frac{\epsilon}{r} 2\pi r = 2\pi \epsilon.$$

Como $\epsilon > 0$ é arbitrário, a tese segue

No que segue usaremos o trivial resultado:

10.24 Lema. Sejam $\gamma: J \to \mathbb{C}$ uma curva suave por partes $e(f_n)$, uma sequência de funções contínuas $f_n: \gamma(J) \to \mathbb{C}$, $n \in \mathbb{N}$, definidas na imagem de γ . Suponhamos que (f_n) converge uniformemente a $f: \gamma(J) \to \mathbb{C}$. Para $n \to +\infty$ temos,

$$\int_{\gamma} f_n(z)dz \longrightarrow \int_{\gamma} f(z)dz.$$

Prova. Suponhamos γ suave e J = [a, b]. Então, dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que $|f_n(\gamma(t)) - f(\gamma(t))| \le \epsilon$, $\forall n \ge N$, $\forall t \in [a, b]$. Logo, pela Estimativa M-L 10.16,

$$\left| \int_{\gamma} f_n(z) dz - \int_{\gamma} f(z) dz \right| = \left| \int_{\gamma} (f_n - f)(z) dz \right| \le \epsilon L(\gamma).$$

Deixamos ao leitor verificar o caso em que γ é suave por partes \blacksquare

10.25 Teorema. Seja $f \in \mathcal{H}(\Omega)$ e z_0 um ponto em Ω .

(a) Seja $R = d(z_0; \partial \Omega) = \min\{|z - \omega| : \omega \in \partial \Omega\}$. Então, $\forall z \in D(z_0; R)$ vale:

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
, com $a_n = \frac{f^{(n)}(z_0)}{n!}$, $\forall n \ge 0$.

- (b) $f \in \mathcal{A}(\Omega)$.
- (c) $Se \ 0 < r < R$, $vale \ a$ Fórmula Integral de Cauchy para as derivadas,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} dw, \quad \forall n \ge 0,$$

 $e, \ definindo \ M = \max_{|z-z_0|=r} |f(z)|, \ valem \ as \ Estimativas \ de \ Cauchy,$

$$|a_n| \le \frac{M}{r^n}, \ \forall n \ge 0.$$

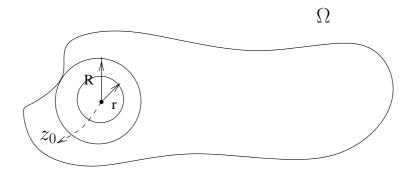


Figura 10.6: Ilustração ao Teorema 10.25

Prova. É claro que R > 0, pois $z_0 \notin \partial \Omega$ e $\partial \Omega$ é fechado.

(a) , (b) e (c). Fixemos r tal que 0 < r < R e z tal que $|z - z_0| < r$. Definindo a curva $\gamma_r(t) = z_0 + re^{it}$, $t \in [0, 2\pi]$ (v. figura), pela fórmula de Cauchy segue

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{w - z} dw.$$

Notando que $\frac{|z-z_0|}{|w-z_0|} < 1$ se $w \in \gamma_r([0,2\pi])$, escrevemos a série geométrica

$$\frac{1}{w-z} = \frac{1}{(w-z_0)-(z-z_0)} = \frac{(w-z_0)^{-1}}{1-\frac{z-z_0}{w-z_0}} = \sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}},$$

cuja convergência é, pelo Teste-M de Weierstrass, uniforme sobre o conjunto Imagem $(\gamma_r) = \{w : w \in \gamma_r([0, 2\pi])\}$. Pelo Lema 10.24 segue,

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{+\infty} \left(\int_{\gamma_r} \frac{f(w)}{(w - z_0)^{n+1}} dw \right) (z - z_0)^n.$$

Portanto, desenvolvemos f como uma série de potências centrada em z_0 e convergente em D(0;r), qualquer que seja r satisfazendo 0 < r < R. Logo, $f \in \mathcal{A}(\Omega)$. Como já sabemos que $a_n = \frac{f^{(n)}(z_0)}{n!}$, $\forall n \in \mathbb{N}$, obtemos também a Fórmula Integral de Cauchy para as Derivadas. As estimativas de Cauchy seguem da Desigualdade de Gutzmer-Parseval em $\mathcal{A}(\Omega)$

10.26 Corolário. $\mathcal{H}(\Omega) = \mathcal{A}(\Omega)$.

Prova. Trivial, pois no capítulo 9 vimos que $\mathcal{A}(\Omega) \subset \mathcal{H}(\Omega)$

Com o Teorema 10.25 estendemos trivialmente às funções holomorfas os resultados obtidos no Capítulo 9 para funções analíticas. Abaixo, tais resultados são enunciados sem prova.

10.27 Corolário (Princípio dos Zeros Isolados). Seja $f \in \mathcal{H}(\Omega)$, Ω um domínio. Então, ou $f \equiv 0$ ou os zeros de f são isolados. Isto \acute{e} , se $z_0 \in \Omega$ \acute{e} tal que $f(z_0) = 0$, existem um natural $n \geq 1$ e $g \in \mathcal{H}(D(z_0; R))$, R > 0, satisfazendo

$$f(z) = (z - z_0)^n g(z), \quad \forall z \in D(z_0; R) \quad e \quad g(z) \neq 0, \forall z \in D(z_0; r).$$

10.28 Princípio de Identidade em $\mathcal{H}(\Omega)$. Seja Ω um domínio no plano complexo. Se $f, g \in \mathcal{H}(\Omega)$ são tais que,

$$f(z_n) = g(z_n), \forall n \in \mathbb{N},$$

para alguma sequência (z_n) em Ω com ponto de acumulação em Ω então $f \equiv g$.

10.29 Princípio do Módulo Máximo. Seja $f \in \mathcal{H}(\Omega)$ e Ω conexo. Então, |f| não tem máximo local a não ser que f seja constante.

10.30 Definição. A função $f: \Omega \to \mathbb{C}$, Ω aberto em \mathbb{C} , pertence a $C(\overline{\Omega})$ se f admite uma extensão \overline{f} contínua em $\overline{\Omega}$. Isto \acute{e} , a função $\overline{f}: \overline{\Omega} \to \mathbb{C}$ \acute{e} contínua e satisfaz $\overline{f}(\omega) = f(\omega)$, $\forall \omega \in \Omega$.

10.31 Corolário. Seja Ω um aberto limitado e $f \in \mathcal{H}(\Omega) \cap C(\overline{\Omega})$. Então,

$$\max_{z \in \overline{\Omega}} |f(z)| = \max_{z \in \partial\Omega} |f(z)|.$$

Prova. Como $\overline{\Omega}$ e $\partial\Omega$ são compactos e f é contínua, existem os dois máximos citados e, obviamente, $\max_{z \in \overline{\Omega}} |f(z)| \ge \max_{z \in \partial\Omega} |f(z)|$. Seja $z_0 \in \overline{\Omega}$ tal que $|f(z_0)| = \max_{z \in \overline{\Omega}} |f(z)|$. Se $z_0 \in \partial\Omega$, nada mais há a fazer. Se $z_0 \in \Omega$, pelo Princípio do

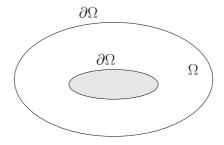


Figura 10.7: Ilustração ao Corolário 10.31

Módulo Máximo f é constante na componente conexa (um conjunto aberto) de Ω contendo z_0 e também na fronteira desta componente. Como tal fronteira está contida na fronteira de Ω , concluímos a igualdade enunciada \blacksquare

- 10.32 Princípio do Módulo Mínimo. Seja $f \in \mathcal{H}(\Omega)$, f não constante e Ω conexo. Então, |f| não tem mínimo local, a menos que f se anule.
- 10.33 Teorema (Liouville). Se $f \in \mathcal{H}(\mathbb{C})$ e f é limitada então f é constante.
- 10.34 Teorema da Aplicação Aberta. Seja $f \in \mathcal{H}(\Omega)$ não constante e Ω conexo. Então, f é uma aplicação aberta.
- 10.35 Fórmula para o Valor Médio de Gauss. Seja $f \in \mathcal{H}(\Omega)$ e consideremos $\overline{D}(z_0;r) \subset \Omega$. Então,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Prova. Consequência trivial da Propriedade Poligonal do Valor Médio e do Teorema 10.25. Verifique ■

10.3 - Teorema de Green

10.36 Definição. Uma curva (suave por partes) fechada $\gamma : [a,b] \to \mathbb{C}$ é simples se $\gamma(t_1) = \gamma(t_2)$ somente se $t_1, t_2 \in \{a,b\}$. Uma curva de Jordan suave por partes é uma curva suave por partes fechada e simples.

Nesta seção faremos uso, sem apresentar a prova, do célebre resultado abaixo.

10.37 Teorema de Green. Seja Ω um domínio limitado no plano cuja fronteira, $\partial\Omega$, consiste de um número finito de curvas de Jordan. Sejam $P,Q \in C^1(\overline{\Omega})$. Então,

$$\int_{\partial Q} P dx + Q dy = \iint_{\partial Q} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

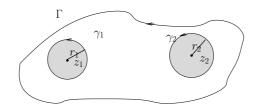


Figura 10.8: Ilustração para o Teorema de Green.

10.38 Teorema (Cauchy). Seja Ω um domínio limitado cuja fronteira é uma união finita de curvas de Jordan suaves por partes. Se f = u + iv é analítica em Ω , com f e f' em $C(\overline{\Omega})$, então,

$$\int_{\partial\Omega} f(z)\,dz = 0.$$

Prova.

Figura 10.9: Ilustração ao Teorema 10.38 (duas das possibilidades para Ω)

Escrevendo f(z)dz = (u+iv)(dx+idy) temos, pelo Teorema de Green e pelas equações de Cauchy-Riemann,

$$\int_{\partial\Omega} f(z) dz = \int_{\partial\Omega} (u+iv)(dx+idy) = \int_{\partial\Omega} (udx-vdy) + i \int_{\partial\Omega} (udy+vdx)$$
$$= \iint_{\Omega} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dxdy + i \iint_{\Omega} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dxdy = 0 \blacksquare$$

Reparafraseando o Teorema de Cauchy 10.38 e sua demonstração apresentamos a seguir o Corolário 10.39, para o qual mostramos uma prova equivalente a acima dada, porém utilizando o conceito de rotacional de um campo vetorial.

10.39 Corolário. Seja $\gamma_0, \gamma_1, \ldots, \gamma_n$ curvas de Jordan (fechadas simples) tais que

- (a) $\gamma_1, \gamma_2, \ldots, \gamma_n$ estão todas em int (γ_0) , o interior da região limitada por γ_0 .
- (b) $\overline{Int(\gamma_i)} \cap \overline{Int(\gamma_j)} \neq \emptyset$ se $1 \le i < j \le n$ e $int(\gamma_i)$ o interior da região limitada por γ_i

Seja $\mathcal{R} = int(\gamma_0) \setminus \bigcup_{i=1}^n \overline{int(\gamma_i)} \ e \ f(z) \in \mathcal{H}(\Omega), \ \Omega \ um \ aberto \ contendo \ \mathcal{R}. \ Então,$

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz + \dots + \int_{\gamma_n} f(z) dz.$$

Prova.

Escrevendo f(z) = u(x,y) + iv(x,y) e considerando os campos

$$\begin{cases}
\overrightarrow{F_1}(x,y) = (u(x,y), -v(x,y)) \\
\overrightarrow{F_2}(x,y) = (v(x,y), u(x,y)),
\end{cases}$$

dada uma curva γ arbitrária temos

$$\int_{\gamma} f(z) dz = \oint_{\gamma} \overrightarrow{F}_{1} \cdot d\gamma + i \oint_{\gamma} \overrightarrow{F}_{2} \cdot d\gamma.$$

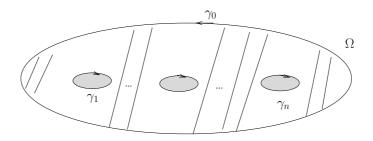


Figura 10.10: Ilustração ao Corolário 10.39

Pelas equações de Cauchy-Riemann é trivial verificar que $\operatorname{rot}(\vec{F}_1) = \operatorname{rot}(\vec{F}_2) = \vec{0}$. Logo, pelo Teorema de Green (onde utilizamos que u_x , u_y , v_x e v_y são contínuas),

$$0 = \iint_{\mathcal{R}} \operatorname{rot}(\vec{F}_i) \cdot \vec{k} \, dx dy = \oint_{\gamma_0} \vec{F}_i \cdot d\gamma_1 + \oint_{\gamma_1^-} \vec{F}_i \cdot d\gamma_1 + \cdots + \oint_{\gamma_n^-} \vec{F}_i \cdot d\gamma_n \,, i = 1, 2.$$

Consequentemente,

$$0 \ = \ \Big[\ \oint_{\gamma_0} \vec{F}_1 \cdot d\gamma + \oint_{\gamma_1^-} \vec{F}_1 \cdot d\gamma + \dots + \oint_{\gamma_n^-} \vec{F}_1 \cdot d\gamma \Big] \\ + \ i \Big[\ \oint_{\gamma_0} \vec{F}_2 \cdot d\gamma + \oint_{\gamma_1^-} \vec{F}_2 \cdot d\gamma + \dots + \oint_{\gamma_n^-} \vec{F}_2 \cdot d\gamma \Big],$$

е

$$0 = \int_{\gamma_0} f(z) dz - \int_{\gamma_1} f(z) dz - \dots - \int_{\gamma_n} f(z) dz \blacksquare$$

Com o Corolário 10.39 melhoramos a Fórmula Integral de Cauchy.

10.40 Fórmula Integral de Cauchy (bis). Seja Ω um domínio limitado com fronteira dada por curvas de Jordan suaves por partes. Se $f \in \mathcal{H}(\Omega)$ e $f, f' \in C(\overline{\Omega})$ então,

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(w)}{w - z_0} dz$$
, qualquer que seja z_0 em Ω .

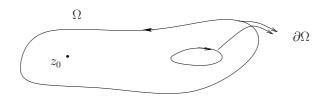


Figura 10.11: Ilustração ao Teorema 10.40

Prova. Consideremos um disco $\overline{D(z_0;r)} \subset \Omega$, r > 0. Então, $\Omega_r = \Omega \setminus \overline{D(z_0;r)}$ é tal que $\partial \Omega_r$ é a união de $\partial \Omega$ e o círculo $\{|z - z_0| = r\}$, este orientado no sentido horário. A função $g(w) = \frac{f(w)}{w-z_0}$ é holomorfa em $\Omega \setminus \{z_0\}$ e portanto,

$$0 = \int_{\partial \Omega_r} \frac{f(w)}{w - z_0} dw = \int_{\partial \Omega} \frac{f(w)}{w - z_0} dw + \int_{\partial D(z_0; r)^-} \frac{f(w)}{w - z_0} dw$$

e assim,

$$\int_{\partial\Omega} \frac{f(w)}{w - z_0} dw = \int_{\partial D(z_0; r)} \frac{f(w)}{w - z_0} dw = 2\pi i f(z_0) \blacksquare$$

10.41 Corolário. Se Ω é um aberto em \mathbb{C} e $f \in \mathcal{H}(\Omega)$, f = u + iv, então

$$\Delta u = \Delta v = 0$$
.

Prova. Pelas equações de Cauchy-Riemann temos $u_x = v_y$ e $u_y = -v_x$. Logo, $u_{xx} = v_{yx}$ e $u_{yy} = -v_{xy}$ e, como $f \in \mathcal{A}(\Omega)$ temos que $u, v \in C^{\infty}(\Omega)$ e então, pelo Teorema de Schwarz, as derivadas mistas comutam e portanto,

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0.$$

Assim, para v = Re(-if) temos $-if \in \mathcal{H}(\Omega)$ e portanto também temos $\Delta v = 0$

10.42 Definição. Uma função $u = u(x,y) : \Omega \to \mathbb{R}$, Ω aberto em \mathbb{R}^2 , é harmônica se admite todas as derivadas de segunda ordem e

$$\Delta u(x,y) = 0, \ \forall (x,y) \in \Omega.$$

EXERCÍCIOS - CAPÍTULO 10

- Para cada um dos conjunto abaixo, sua fronteira é descrita por uma curva suave por partes. Esboce o conjunto, sua fronteira e dê uma aplicação que a descreva.
 - (a) $V = \{z \in \mathbb{C} : |z| \le 1, \text{Re}(z) \ge \frac{1}{2}.$
 - (b) $V = \{z \in \mathbb{C} : \frac{1}{2} \le |z| \le 1, \operatorname{Re}(z) \ge \operatorname{Im}(z) \ge 0\}.$
 - (c) $V = \{z \in \mathbb{C} : \frac{1}{3} \le |z| \le 1, \operatorname{Re}(z) \ge \operatorname{Im}(z) \ge 0\}.$
- 2. Calcule $\int_{\partial V} f$, com V cada um dos conjuntos do exer. 2 (V e ∂V positiva/e orientados) e

$$f(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$
, $f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$

3. Seja V como no enunciado do Teorema de Green. Mostre que a área de V é dada por

$$\int_{\partial V} x dy .$$

4. Use (3) para calcular a área de

$$V = \left\{ (x,y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \quad \text{e} \quad V = \left\{ (x,y) : 1 \le x^2 - y^2 \le 9, \ 1 \le xy \le 4 \right\}.$$

5. Calcule ($V \in \partial V$ positiva/e orientados)

$$\int_{\partial V} (x^2 - y^2) dx + 2xy dy \quad e \quad \int_{\partial V} 2xy dx + (y^2 - x^2) dy ,$$

onde V é

- (i) O retângulo delimitado pelas retas y = x, y = -x + 4, y = x + 2 e y = -x.
- (ii) $V = \{(x,y): 1 \le x^2 y^2 \le 9, 1 \le xy \le 4\}$.
- 6. Se $f: \Omega \to \mathbb{C}$, $\Omega \subset \mathbb{C}$ é derivável em z_0 e se $\tilde{f} = (u(x,y), v(x,y))$ é a identificação usual com f através do isomorfismo natural entre \mathbb{C} e \mathbb{R}^2 mostramos

$$J(\tilde{f}) = \begin{bmatrix} \frac{\partial u}{\partial x}(x_0, y_0) & \frac{\partial u}{\partial y}(x_0, y_0) \\ \frac{\partial v}{\partial x}(x_0, y_0) & \frac{\partial v}{\partial y}(x_0, y_0) \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x}(x_0, y_0) & -\frac{\partial v}{\partial x}(x_0, y_0) \\ \frac{\partial v}{\partial x}(x_0, y_0) & \frac{\partial u}{\partial x}(x_0, y_0) \end{bmatrix},$$

a forma matricial das equações C-R . Lembe que já vimos que

$$z = a + bi \equiv \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] .$$

- 7. Dada $f: \Omega \to \mathbb{C}$, Ω aberto em \mathbb{C} , seja $\tilde{f}(x,y) = (u(x,y),v(x,y))$ com a notação acima e suponhamos \tilde{f} diferenciável [logo, existem $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}]$.
 - (a) Escrevendo,

$$x = \frac{z + \overline{z}}{2} \quad , \quad y = \frac{z - \overline{z}}{2i} \, ,$$

$$f = u(x, y) + iv(x, y) = u\left(\frac{z + \overline{z}}{2}, \frac{z - \overline{z}}{2i}\right) + iv\left(\frac{z + \overline{z}}{2}, \frac{z - \overline{z}}{2i}\right),$$

desenvolva, usando a regra da cadeia, as fórmulas (memorize-as) para

$$\frac{\partial f}{\partial z}$$
 e $\frac{\partial f}{\partial \overline{z}}$,

em termos das derivadas parciais das funções a valores reais u e v, em relação às variáveis reais x e y.

(b) Temos $\frac{\partial f}{\partial \overline{z}}$ = 0 se e só se valem as equações de Cauchy-Riemann:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 e $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

- (c) Valem as equações C-R (de Cauchy-Riemann) se e somente se $\frac{\partial f}{\partial \overline{z}}=0.$
- (d) Interprete o resultado em (c).
- (e) Se existe $f'(z_0)$, $z_0 = x_0 + iy_0$, então \tilde{f} é diferenciável em (x_0, y_0) .
- 8. Verifique se se cumprem as condições C-R para as seguinte funções

(i)
$$f(z) = x^3 - 3xy^2 + i(3x^2y - y^3)$$

(ii)
$$f(z) = e^{-y}(\cos x + i\sin x)$$
.

(iii)
$$f(z) = e^{-x}(\cos y - i\sin y)$$

(iv)
$$f(z) = e^y(\cos x + i\sin x)$$
.

- 9. Seja f(z) uma função inteira (holomorfa em todo o plano complexo). Mostre que a função $g(z) = \overline{f(\overline{z})}$ também é inteira. Mostre, ainda, que a função $h(z) = \overline{f(z)}$ é derivável em $z_0 = 0$ se e somente se f'(0) = 0.
- 10. Compute as derivadas e expresse na forma u + iv o seno e o co-seno hiperbólicos:

$$\cosh z = \frac{1}{2}(e^z + e^{-z})$$
, $\sinh z = \frac{1}{2}(e^z - e^{-z})$.

11. Identifique o erro no Paradoxo de Bernoulli:

$$(-z)^2 = z^2 \Rightarrow 2\log(-z) = 2\log z \Rightarrow \log(-z) = \log z .$$

- 12. Usando o ramo principal de z^{λ} calcule $2^{\sqrt{2}}$, $(5i)^{1+i}$ e 1^{i} e 1^{-i} .
- 13. Determine o ramo principal da função $\sqrt{z-1}$.
- 14. Prove o Teorema de Liouville para $f \in \mathcal{H}(\mathbb{C})$, utilizando a Fórmula Integral de Cauchy.
- 15. Se f é uma função inteira (holomorfa em \mathbb{C}) e existem $M \ge 0$, R > 0 e $n \ge 1$ tais que $|f(z)| \le M|z|^n$ para $|z| \ge R$, mostre que f é um polinômio de grau menor ou igual a n.
- 16. Compute $\int_{\gamma} f(z) dz$ onde $f \in \gamma$ são dados.
 - (a) $f(z) = z\overline{z} e \gamma(t) = e^{it}, 0 \le t \le 2\pi$.
 - (b) $f(z) = \frac{z+1}{z} e^{\gamma}(t) = 3e^{it}, 0 \le t \le 2\pi$.
 - (c) $f(z) = \frac{z+1}{z} e^{-\gamma} \gamma(t) = 5i + e^{it}, \ 0 \le t \le 2\pi$.
 - (d) $f(z) = \frac{1}{z^2-2} e^{-\gamma} \gamma(t) = 2 + e^{it}, \ 0 \le t \le 2\pi$.
 - (e) $f(z) = \frac{1}{z^2-2} e^{-\gamma} \gamma(t) = 2e^{it}, 0 \le t \le 2\pi$.
 - (f) $f(z) = \pi e^{\pi \overline{z}}$ e γ é o quadrado de vértices 0, 1, 1 + i e i, positivamente orientado.
 - (g) $f(z) = \frac{1}{z-z_0} e^{\gamma(t)} = z_0 + re^{it}, 0 \le t \le 2\pi, r > 0.$
 - (h) $f(z) = \frac{1}{(z-z_0)^n} e^{-\gamma} \gamma(t) = z_0 + re^{it}, \ 0 \le t \le 2\pi, \ r > 0, \ n \ge 2.$

(i)
$$f(z) = \frac{e^{iz}}{z^2} e^{iz} \gamma(t) = e^{it}, 0 \le t \le 2\pi.$$

(j)
$$f(z) = \frac{\sin z}{z^4} e^{\gamma} \gamma(t) = e^{it}, 0 \le t \le 2\pi$$
.

(k)
$$f(z) = \frac{\log z}{z^n} e^{\gamma(t)} = 1 + \frac{1}{4}e^{it}, 0 \le t \le 2\pi$$
.

(1)
$$f(z) = \frac{e^z - e^{-z}}{z^n} e^{-x} \gamma(t) = e^{it}, \ 0 \le t \le 2\pi, \ n \ge 1.$$

(m)
$$f(z) = \frac{1}{z^2+1} e^{\gamma}(t) = 2e^{it}, 0 \le t \le 2\pi$$
.

17. Mostre que $\int_{\gamma} \frac{e^{kz}}{z} dz = 2\pi i$, onde k é uma constante real e $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$. Use esse resultado para mostrar que

$$\int_0^{\pi} e^{k\cos t} \cos(k\sin t) \, dt = \pi \ .$$

- 18. Prove o Princípio do Módulo Máximo, para $f \in \mathcal{H}(\Omega)$, com a Fórmula Integral de Cauchy. Deduza então o Princípio do Módulo Mínimo.
- 19. Seja f holomorfa num domínio Ω contendo a região fechada e limitada determinada por uma curva de Jordan suave por partes γ e z um ponto interior a esta região. Se K é o máximo de |f| ao longo de γ e δ é a distância mínima de z a γ então,

$$|f(z)| \le K\left(\frac{L(\gamma)}{2\pi\delta}\right)^{\frac{1}{n}}$$
, $L(\gamma)$ o comprimento de γ , $\forall n \ge 1$.

Aplique tal desigualdade para provar o Princípio do Módulo Máximo.

20. (Parseval) Se
$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
, $\forall z \in D_{\rho}(z_0)$, e se $r < \rho$, então
$$\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})|^2 d\theta = \sum |a_n|^2 r^{2n} .$$

Aplicando tal identidade, dê uma outra prova do Princípio do Módulo Máximo.

- 21. (Princípio da Identidade). Sejam $f, g \in \mathcal{H}(\Omega)$, Ω um dominio. Suponha que $X = \{z \in \Omega : f(z) = g(z)\}$ tem ponto de acumulação em Ω . Então, $f \equiv g$.
- 22. Seja $f: \mathbb{C} \to \mathbb{C}$ holomorfa e tal que existe $\lim_{z \to \infty} f(z)$. Então, f é constante.

23. Seja
$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
, $z \in D(z_0; \rho)$, $\rho > 0$. Então,

$$F(z) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (z-z_0)^{n+1},$$

é uma primitiva de f em $D(z_0; \rho)$.