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Chapter 0

Introduction

This is a work in mathematics. It has no experiments, no data, and almost no pseudocode. It does have a
myriad of propositions, lemmas and theorems. Yet, its unifying feature is an algorithmic problem. To have
one applied question as a goal is often a rewarding setting. The birth of calculus was related with the problem
of describing the laws governing the motion of celestial bodies, and it is but one example in which a problem
in physics resulted in mathematical theory. However, one must acknowledge that an interesting problem may
not fit under a single theory. The ever present human need to label ideas cannot possibly capture the nuances
present in every interesting question. This applies to the labels Mathematics and Computer Science just
as much as it applies to sublabels like Graph Theory and Linear Algebra. An investigation cannot restrict
itself to a given domain of knowledge; it must unreservedly inspect whichever ideas are necessary to reach
the aspired goal. This is the approach in the current study. It does not pursue a theoretical breakthrough —
even though it does have new developments — but it aims at solidifying the foundations on which the results
are based.

In general, a connected graph has an exponential number of spanning trees. Some applications have an
interest in attaching a probability distribution to this set, and then to sample a spanning tree accordingly.
Two compelling applications that need to do this kind of sampling in polynomial time can be found in [9] and
[3] . In the first, Frieze et al. describes an algorithm to generate expander graphs, which have a rich set of
applications, as can be seen in [13]. In the second, Asadpour et al. give an approximation algorithm for the
asymmetric traveling salesman problem.

The problem itself demands the work to be broad. Moreover, since such problem is not only solved once,
but twice, with mostly disjoint theoretical machinery, there is a gigantic amount of definitions to be made
and propositions to be proven, from many distinct areas. Unsurprisingly, probability and measure theory play
an important role. It is not only in the formulation of the problem, however. Chapter 3 defines a random
walk rigorously, and establishes a precise language in which a couple of useful ideas can be inspected. Those
ideas are at the core of the second algorithm we present, first developed by Aldous [1] and Broder [5], which is
described in Chapter 4. Linear algebra, via algebraic combinatorics, is the setting for Chapter 2. It describes
an algorithm, first developed by Kulkarni in [18], whose essence is a result by Kirchhoff [17]. Furthermore, the
phrasing and language used in the text is influenced by the computer science background of the author. The
elegance and expressiveness found in functional programming and category theory make themselves present,
mostly on the prominence of function composition.

In broad terms, this monograph can be described as an attempt to make meaningful ideas, which are
related to a specific problem, precise. Rigour is seen as the technique of the mathematician. Not a crutch,
but a tool. This attitude pays off in a beautiful new development, found in Section 2.1. There is scarce
literature properly defining matrices and common operations in it. This lack of language make unprecise some
of the concepts needed to state and prove the Cauchy-Binet Formula. The solution found, namely, function
matrices, reduce the absent definitions to function composition and simpler matrix operations. Furthermore,
it even gives new insight into matrices defined in algebraic graph theory, relating them in a cleaner way to
the formal definition of a graph.

1



Chapter 1

Preliminaries

1.1 Basic Definitions and Results
We work under the assumption that the reader is familiar with basic set theory concepts. We begin by

describing some notations that will be heavily used in the work. Let A and B be sets. We denote by

BA = { f : f is a function with domain A, taking values on B}.

We also assume that a function f : A→ B has an inverse if and only if it is injective and surjective. Such
inverse will be denoted as f−1. Moreover, for a given set A we denote by P(A) the set of subsets of A. The
set P(A) is the powerset of A. We denote by A \B the set of elements which belong to A but does not belong
to B. Moreover, we define the preimage with respect to f as the function f−1 : P(B)→ P(A) defined by

f−1(S) = { a ∈ A : f(a) ∈ S},

for every S ∈ P(B).

Proposition 1.1. Let A and B be sets. Let f : A→ B be a function. Then

1. For every subset S ⊆ B, we have that f−1(B \ S) = A \ f−1(S).

2. For every collection B ⊆ P(B), we have that f−1(
⋃
B) =

⋃
S∈B f

−1(S).

Let A and B are sets, and f : A→ B is a function. For every subset S ⊆ A, we denote by

f�S : S → B

the function obtained from restricting the domain of A to S. Function composition will be so important in
the current text that we reserve the most important of notations for it. Let A, B and C be sets, and let
f : B → C and g : A→ B. We define the function fg : A→ C as

fg(a) = f(g(a)),

for every a ∈ A. Finally, we denote by N the set of natural numbers, and for every n ∈ N, we denote by [n]
the set {1, . . . , n}. The set of real numbers is denote by R.

We now focus on some concepts that are less common. The reader is invited to take a look at Equation (3.4),
which is used to define a random walk on a graph, as a use case for the notations being introduced.

The first one is the Iverson bracket. Let P be any predicate, i.e., true or false expression. Then

[P ] :=

{
1, if P is true,
0, otherwise.

Moreover, if a given predicate P is false, the whole expression containing [P ] “short-circuits” to zero. This
is helpful since [P ] can multiply an expression which is not defined if P is nonzero. In Equation (3.4), the
function w is only defined on the set A; hence, if ij ∈ V × V is not in A, the expression w(ij) is meaningless.
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We also work with multisets. A multiset is a pair (S, c), where S is a finite set and c : S → N is a function.
For a given s ∈ S, the number c(s) is the multiplicity of s, and represents “how many copies of s are in S ”.
Accordingly, if S ⊆ R, we define ∑

S :=
∑
s∈S

c(s)s,∏
S :=

∏
s∈S

sc(s).

A finite set S can be promoted into a multiset with the function c(s) = 1 for every s ∈ S. Usually a multiset
is denoted as S, whenever the multiplicity can be inferred from the context. Moreover, if (S, c) is a multiset,
and f : S → T is any function, we define a new multiset (f(S), c′) as

f(S) := { f(s) : s ∈ S},

c′(y) :=
∑
s∈S

[f(s) = y]c(s) ∀y ∈ f(S).

Given a finite set S and a function f : S → R, we have that f(S) is a multiset as defined above. It makes
sense then to work with

∑
f(S). The denominator of Equation (3.4) is an example of this notation.

Definition 1.2. A relation ≤ in a set A is a partial order if

(i) the relation ≤ is reflexive, that is, for every a ∈ A it holds that a ≤ a,

(ii) the relation ≤ is antisymmetric, that is, for every a, b ∈ A, if a ≤ b and b ≤ a then a = b,

(iii) the relation ≤ is transitive, that is, for every a, b ∈ A, if a ≤ b and b ≤ c, then a ≤ c.

When ≤ is a partial order on A, we also say that (A,≤) is a partially ordered set.

Definition 1.3. A partially ordered set (A,≤) is totally ordered if the relation ≤ is total, that is, if for every
a, b ∈ A it holds that a ≤ b or b ≤ a.

Partial and total orders will be commonplace throughout the work. When working with the real numbers,
for example, the total order in it is crucial in defining the idea of convergence. In other places, it is merely a
convenience, used mostly as a way to represent a “choice”, as it is the case in Section 2.4.

Proposition 1.4. Let V be a finite set and let µ ∈ RV+ be such that
∑
i∈V µi = 1. Then for every f ∈ RV ,

there exists i ∈ V such that ∑
j∈V

µjfj ≤ fi.

Proof. We proceed to prove the statement by contradiction.
Suppose there exists µ ∈ RV+ such that

∑
i∈V µi = 1 and f ∈ RV such that for every i ∈ V it holds that

fi < α, where α :=
∑
i∈V µifi. Then

α =
∑
i∈V

µifi <
∑
i∈V

µiα = α
∑
i∈V

µi = α.

In other words, α < α, and the proof is done.

1.2 Graph Theory

A graph is an ordered triple (V,E, ψ), where V and E are finite sets and ψ : E →
(
V
1

)
∪
(
V
2

)
. The elements

of the set V are called vertices. The elements of the set E are called edges. The function ψ is called the
incidence function. An edge e ∈ E is said to be incident to the vertices that belong to ψ(e). Two vertices i
and j are said to be adjacent, or, likewise, j is said to be adjacent to i, if {i, j} ∈ ψ(E). Moreover, the sets V
and E are also denoted by V (G) and E(G), respectively.
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A digraph is an ordered triple (V,A, ψ), where V and A are finite sets and ψ : A→ V × V . The elements
of the set V are called vertices and the function ψ is called the incidence function, just like before. However,
the elements of the set A are called arcs, to emphasize their difference in nature from the edges of a graph.
This difference renders the meaning of “adjacent” ambiguous, and its use will be avoided. For an arc a ∈ A,
if ψ(a) = (i, j), the vertex i is said to be the tail of the arc, the vertex j is said to be the head of the arc.
Moreover, if ψ(a) = (i, j), then a is said to be incident on i, and a is said to be incident on j. Moreover, the
sets V and A are also denote by V (D) and A(D), respectively.

Let G = (V,E, ψ) be a graph. For every S ⊆ E, we denote by G[S] the graph (V, S, ψ�S). Likewise, if
D = (V,A, ψ) is a digraph, for every S ⊆ A we denote by D[S] the digraph (V, S, ψ�S).

There is now a need to pause and pay respect to tradition. There are some notations that are widespread
for their simplicity, and should be properly explained according to the definitions.

First of all, even though arcs and edges are different, a notation that masks their differences is widely
adopted. In both contexts, graphs and digraphs, ij will be used, and it is hoped the reader will notice and
correctly parse it as (i, j) when it is an arc, and as {i, j} when it is an edge.

Also, a graph is commonly thought of as a symmetric relation E on a finite set V . This interpretation
usually casts aside the case of parallel edges, i.e., of distinct edges e ∈ E and f ∈ E such that ψ(e) = ψ(f).
To ignore such cases is precisely to require that the incidence function is injective. Note that, in such cases,
the set ψ(E) uniquely determines the graph. When this happens, the incidence function can be omitted, and
the graph can be denoted as G = (V,E), when what is actually meant is G = (V, ψ(E), (x 7→ x)). The same
reasoning should be applied when “a digraph D = (V,A)” is encountered within the text.

Another special case when working with graphs and digraphs are loops. Let G = (V,E, ψ) be a graph. A
loop is an edge e ∈ E such that ψ(e) = {e}. Similarly, if D = (V,A, ψ) is a digraph, a loop is an arc a ∈ A
such that ψ(a) = (a, a). A graph or digraph with no parallel edges and no loops is a simple graph.

Let D = (V,A, ψ) be a digraph. Let π : V × V →
(
V
1

)
∪
(
V
2

)
be defined by

π(i, j) := {i, j}.

The underlying graph of D is the graph G := (V,A, πψ). The function π encodes the idea of “forgetting” the
orientation of an arc. For such a reason, another way of stating that D is a digraph and G is its underlying
graph is to state that D is an orientation of G.

It is also quite convenient to associate more information with a graph. A weighted graph is a pair (G,w),
where G = (V,E, ψ) is a graph and w : E → R. We may also denote a weighted graph as G = (V,E, ψ,w).
Similarly, a weighted digraph is a pair (D,w), where D = (V,A, ψ) is a digraph and w : A→ R. We may also
denoted it as D = (V,A, ψ,w).

It is important to note that all the nomenclature about graphs and digraphs extends itself naturally to
weighted graphs and digraphs. For example, given a weighted digraph (D,w), the weighted graph (G,w),
with G being the underlying graph of D, will be called underlying weighted graph of (D,w).

Let G = (V,E, ψ) be a graph. Let ≤ be a total order in V . The symmetric digraph from G is the digraph
D := (V,A, φ) defined as A := E × 2 and

φ(ij, k) :=

{
min {i, j}, if k = 0,

max {i, j}, if k = 1.

It has an arc in both directions for each edge in the original graph. Moreover, if (G, e) is a weighted graph,
we define ŵ ∈ RA such that

ŵ(ij, 0) = ŵ(ij, 1) = w(ij).

In such a setting, (D, ŵ) is the symmetric weighted digraph from the weighted graph (G,w).
Let D = (V,A, ψ) be a digraph. For every arc a ∈ A, the arc contraction of a is the digraph

D/a := (f(V ), A \ {a}, f̂ψ), where f : V → V ∪ {a0} is defined as

f(k) :=

{
a0, if ∃j ∈ V such that ψ(a0) ∈ {jk, kj}
k, otherwise

,

and f̂ : V × V → (V ∪ {a0})× (V ∪ {a0}) is defined by (i, j) 7→ (f(i), f(j)).

4



A walk in a graph G is a finite alternating sequence (u0, e1, u1, . . . , e`, u`) of vertices and edges such that,
for every 0 < i ≤ `,

ψ(ei) = {ui−1, ui}.

This walk is from u0 to u`. If we have that i = u0 and j = u`, then the walk is an ij-walk. The integer `
is called the length of the walk. Note that ` is precisely the number of edges in it, which is one more than
the number of vertices. Similarly, a walk in a digraph D is a finite alternating sequence of vertices and arcs
(u0, a1, u1, . . . , a`, u`) such that, for every 0 < i ≤ `,

ψ(ai) = (ui−1, ui).

Further down the road, the text will talk about “random walks”. Beware: despite the name, a random
walk on a graph is not a walk as defined above. It is actually a much more interesting mathematical object,
that is connected to walks, but which will demand its own definition and machinery to be dealt with.

There are some concepts related to walks. A trail in a graph G is a walk (u0, e1, . . . , e`, u`) in G such
that the map i 7→ ei, defined on {1, . . . , `}, is injective. In other words, a trail is a walk where no edge
appears twice. A path in a graph G is a walk (u0, e1, . . . , e`, u`) in G such that the map i 7→ ui, defined on
{0, . . . , `+ 1} is injective. In other words, a path is a walk where no vertice appears twice. Finally, a cycle in
a graph G is a trail (u0, e0, . . . , e`, u`) in G such that u0 = u`. A graph that has no cycles is acyclic. Note
that a cycle can have repeated vertices, but no repeated edges. The same terminology applies to digraphs, in
the sense that trail, path, cycle and acyclic can be similarly defined in a digraph.

Two distinct vertices i and j in a graph are said to be connected if there exists a walk (i, e0, . . . , e`, j). A
graph is said to be connected if every pair of vertices is connected.

A subgraph of a graph G = (V,E, ψ) is a graph H = (S, F, φ), with S ⊆ V , F ⊆ E and φ being the
restriction of ψ on F . Likewise, a subdigraph of a digraph D = (V,A, ψ) is a digraph C = (S,B, φ), with
S ⊆ V , B ⊆ A and φ being the restriction of ψ on B. The set of subgraphs of a graph G, when equipped with
the relation “is a subgraph of”, forms a lattice. This observation gives meaning to statements like minimal
subgraph and maximal subgraph. The same idea applies to the set of subdigraphs of a digraph. A graph
H = (S, F, ψ) of G = (V,E, ψ) is spanning if it is a subgraph such that S = V . Let G = (V,E, ψ) be a graph.
Let S ⊆ V . We denote by G [S] the subgraph (V, F, ψ�F ), where

F := { e ∈ E : ψ(e) ⊆ S}.

A component of a graph G is a maximal connected subgraph. It is interesting to note that “is connected
to” defines a equivalence relation in the vertices of a graph, and a component is a equivalence class in it.
Note, then, that a connected graph has only one component.

Definition 1.5. A tree is a connected acyclic graph.

A spanning tree of a graph is a spanning subgraph that is a tree. This is equivalent to say that it is
a minimal connected spanning subgraph, i.e., a subgraph such that every spanning subgraph of it is not
connected. The collection of sets of edges F such that (V, F ) is a spanning tree is denoted as TG.

Let G = (V,E, ψ) be a graph. We denote by δ the function δ : V → P(E) defined by

δ(i) := { e ∈ E : {i} ( ψ(e)},

for every i ∈ V . The integer |δ(i)| is called the degree of the vertex i. When working with digraphs, two such
functions are defined. Let D = (V,A, ψ) be a digraph. We denote by δin the function δin : V → P(A) defined
by

δin(i) := { e ∈ E : ∃j ∈ V ψ(e) = ji},

for every i ∈ V . The integer
∣∣δin(i)

∣∣ is called the in-degree of vertex i. Similarly, we denote by δout the
function δout : V → 2A defined by

δout(i) := { e ∈ E : ∃j ∈ V ψ(e) = ij}

for every i ∈ V . The integer |δout(i)| is called the out-degree of vertex i.
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Definition 1.6. An r-arborescence is a digraph D = (V,A, ψ) such that r ∈ V and

1. its underlying graph G is a tree and

2. for every i ∈ V , ∣∣δin(i)
∣∣ = [i 6= r].

Whenever r is specified, the graph D is said to be an r-arborescence. For a fixed r ∈ V , the collection of sets
of arcs B such that D[B] is a r-arborescence is denoted as TD(r). The set of all arborescences of a graph is
denoted as TD.

Vertices in a tree whose degree equals to 1 are called leafs. Leafs are extremely helpful in proofs by
induction. They are so important that the following statement, that ensures the existance of leafs, will be
used without mention when working with trees.

Proposition 1.7. Let V be a finite set, and let f ∈ RV . There exists k ∈ V such that

f(k) ≤ 1

|V |
∑
i∈V

f(i).

Proof. Define µ ∈ RV+ to be |V |−1 for every vertex. Then Proposition 1.4 ensures that there exists k ∈ V
such that

−
∑
i∈V

1

|V |
f(i) =

∑
i∈V

(−fi)µi ≤ −f(k).

It is enough to multiply both sides by −1.

Theorem 1.8. Let T = (V,E) be a tree with |V | ≥ 2. Then there are at least 2 vertices of T with degreee 1.

Proof. The proposition above will be the main tool on this proof. First, note that if T = (V,A) is a tree,

1

|V |
∑
i∈V
|δ(i)| = 2(|V | − 1)

|V |
= 2− 2

|V |
.

Therefore, there exists a vertex k ∈ V such that |δ(k)| ≤ 2− 2
|V | . Since |δ(k)| must be an integer, we have

that |δ(k)| ≤ 1. Also, since every tree is connected, the degree of every vertex is at least 1, so that |δ(k)| = 1.
To produce the second vertex with degree 1, suffices to repeat the argument, without the already leaf k.

Note that
1

|V | − 1

∑
i∈V \{k}

|δ(i)| = 2(|V | − 1)− 1

|V | − 1
= 2− 1

|V | − 1
.

Therefore, there is a j ∈ V with |δ(j)| ≤ 1, and as before, this implies that |δ(j)| = 1, finishing the
proof.

Theorem 1.9. Let D = (V,A, ψ) be digraph. Let i ∈ V . Suppose D is an i-arborescence, with |V | ≥ 2.
Then there exists j ∈ V \ {i} with outdegree 1.

Proof. The underlying graph of D has at least two leafs, at least one of which is different from i. Let j be it.
Then, since j 6= i, we have that |δ(j)| = 1. Therefore, since∣∣δin(j)

∣∣+
∣∣δout(j)∣∣ = 1,

it follows that δout(j) = ∅.
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1.3 Matrices and Determinant
We hope that the reader is familiar with the concept of a vector space. For every finite set U , we treat

RU as a vector space under the familiar operations.

Definition 1.10. Let U and V be finite sets. A matrix is a function A : V × U → R. The elements of V are
the row indices of A, and the elements of U are the column indices of A.

Definition 1.11. Let U and V be finite sets. Let A ∈ RV×U . The tranpose AT is a matrix in RU×V defined
by

(i, j) 7→ Aji.

For a finite set U , a matrix A ∈ RU×U is symmetric if AT = A.

Definition 1.12. Let U, V, and T be finite sets. Let A ∈ RV×U and B ∈ RU×T . The product AB is the
matrix AB : V × T → R given by

(i, j) 7→
∑
k∈U

AikBkj .

The sets RU and RU×1 will be used interchangeably. Such abuse is both possible and helpful. It is possible
since there is a canonical isomorphism between such sets, and it is helpful since it reduces every matrix-vector
product into a matrix-matrix product. Let x ∈ RU×1, we have that xT ∈ R1×U . Hence, for every y ∈ RU×1,

xTy =
∑
i∈U

xiyi.

Proposition 1.13. Let U be a finite set.

(i) For every x, y, z ∈ RU and α ∈ R, we have that (αx+ y)Tz = αxTz + yTz.

(ii) for every x, y ∈ RU , we have that xTy = yTx.

(iii) for every x ∈ RU , we have that xTx ≥ 0. Moreover, xTx = 0 implies that x = 0.

Let U be a finite set. Then for every i ∈ U , define ei ∈ RU as

ei(j) := [i = j],

for every j ∈ V . This basis is the canonical basis of RU . Moreover, we define 1 ∈ RU as

1 :=
∑
i∈U

ei.

Note that both ei and 1 have no reference of the vector space in which they are defined. However, whenever
they appear in a calculation, the appropriate space is clear, so this raises no problems. Moreover, let w ∈ RU .
The matrix Diag(w) ∈ RU×U is defined as

Diag(w) =
∑
i∈U

w(i)eie
T
i .

If we use the fact that for every i, j ∈ U we have that

eTi ej = [i = j],

we can conclude that 1T Diag(w)1 = wT
1.

Let V be a vector space over the R, and S ⊆ V is a finite subset. We denote by

span(S) =

{∑
s∈S

x(s) s : x ∈ RS
}
.
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Moreover, we use that this is a subspace. It is actually quite interesting how similiar this construction is to
the ideia of σ-algebra generated by a set, which will be dealt in depth in Section 1.9. We assume, however,
the reader is familiar with the current concept. Moreover, let S ⊆ RU . The set

S⊥ = {x ∈ RU : xTs = 0 ∀s ∈ S}

is the orthogonal complement of S. We will also use the fact that(
S⊥
)⊥

= span(S),

so that whenever S is a linear subspace, we have that S =
(
S⊥
)⊥.

Proposition 1.14. Let U be a finite set. Then x ∈ RU is zero if and only if for every y ∈ RU ,

xTy = 0.

Proof. If x = 0, the thesis clearly holds. Suppose then that x ∈ RU is such that for every y ∈ RU it holds
that xTy = 0. In particular, xTx = 0. Proposition 1.13 then ensures that x = 0.

Definition 1.15. Let U and V be finite sets, and let A ∈ RV×U . Given sets S ⊆ U and T ⊆ V , a submatrix
A[T, S] is the matrix obtained from A by restricting its domain from V × U to T × S.

Proposition 1.16. Let U ,V , and T be finite sets. Let A ∈ RV×U and B ∈ RU×T . Let R ⊆ T and S ⊆ V .
Then

(AB)[S,R] = A[S,U ]B[U,R].

Proof. This is precisely what the submatrix definition means, applied to the product of two matrices.

Proposition 1.17. Let U and V be finite sets. Let A,B ∈ RV×U . If i ∈ V is such that either ATei = 0 or
BTei = 0, then

ATB = AT[U, V \ {i}]B[V \ {i}, U ].

Proof. It is enough to expand the definitions:

ATB = AT[U, V \ {i}]B[V \ {i}, U ] +AT[U, {i}]B[{i}, U ]

= AT[U, V \ {i}]B[V \ {i}, U ] +ATeie
T
i B

= AT[U, V \ {i}]B[V \ {i}, U ].

Definitions around group theory can be found on any introductory text. A good reference is the first
chapter of [14]. We use the definition of group homomorphism, the fact that a group isomorphism is a
bijective homomorphism whose inverse is an homomorphism, the fact that composition of homomorphism is
again an homomorphism.

Definition 1.18. Let V be a finite set. The symmetric group of V , denote as Sym(V ) is the group of
permutations of the set V , with composition as product.

Let V be a finite set. Let i, j ∈ V . Then the transposition of i and j is the function (ij) ∈ Sym(V ) that
fixes every element in V \ {i, j}, and swaps i and j. We assume the well-known facts that every permutation
σ ∈ Sym(V ) can be decomposed as a product of transpositions, and that, despite the decomposition not
being unique, every decomposition of σ has length of the same parity. Hence we define sgn: Sym(V )→ {±1}
as

sgn(σ) := (−1)N(σ),

where N(σ) is the length of any decomposition in transpositions of σ. Halmos [11] and Conrad [6] are
interesting references on why this definition works. Most importantly, [6] ensures that the following proposition
holds.

Proposition 1.19. Let V be a finite set. The function sgn: Sym(V )→ {±1} is the only nonconstant group
homomorphism from Sym(V ) into {±1}.
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Lemma 1.20. Let U and V be finite sets. Let f : U → V and g : V → U be bijective functions. Then

sgn(fg) = sgn(gf).

Proof. During this proof, denote by sgnU the sign function defined on Sym(U), and sgnV the sign function
defined on Sym(V ).

Define the function F : Sym(U)→ Sym(V ) as

F (σ) := fσf−1.

Note that for every σ0, σ1 ∈ Sym(U), we have that F (σ0σ1) = F (σ0)F (σ1), so that F is a group homomorphism.
Moreover, the function σ 7→ f−1σf is its inverse, and also is a group homomorphism. Therefore, F is a group
isomorphism.

Since both sgnV and F are group homomorphisms, we have that sgnV F is a group homomorphism.
Moreover, since F is surjective and sgnV is nonconstant, we can then conclude that sgnV F also is nonconstant.
Hence, sgnV F is a nonconstant group homomorphism from Sym(U) into {±1}. However, sgnU is the only
such function. Therefore,

sgn
U

= sgn
V
F.

Since f and g are bijective, we have that gf ∈ Sym(U). Applying the just proven equation, we have that

sgn(gf) = sgn(f gf f−1) = sgn(fg).

Proposition 1.21. Let V be a finite set, and let U ⊆ V . For every σ ∈ Sym(U), define

σ̂(k) :=

{
σ(k), if k ∈ U,
k, otherwise.

Then sgnV (σ̂) = sgnU (σ).

Proof. Since U ⊆ V , any decomposition of σ in transpositions is also a decomposition of σ̂. Hence,
sgnU (σ) = sgnV (σ̂).

It is supposed that the reader is already familiar with the notion of determinant. However, for the
treatment required on this paper, it is necessary to take a longer look on the definitions and properties of
determinants.

Definition 1.22. Let U be a finite set. The determinant of a matrix A ∈ RU×U is

det(A) :=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

Ai,σ(i).

Theorem 1.23. Let U be a finite set, and let A ∈ RU×U . Then

det(A) = det(AT).

Proof. By definition,
det(A) =

∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

Ai,σ(i).

Since σ is invertible and sgn(σ−1) = sgn(σ), then

det(A) =
∑

σ∈Sym(U)

sgn(σ−1)
∏
i∈U

Aσ−1(i),i.

Moreover, by noting that the function σ 7→ σ−1 from Sym(U) to itself is bijective, one can change the
summation range and obtain that

det(A) =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

Aτ(i),i =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

(AT)i,τ(i) = det(AT).
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Proposition 1.24. Let U be a finite set. Let i ∈ U and let A ∈ RU×U be such that Aei = 0. Then for every
α, β ∈ R and x, y ∈ RU ,

det(A+ αxeTi + βyeTi ) = α det(A+ xeTi ) + β det(A+ yeTi ).

Proof. Define the function f : Sym(U)→ R as

f(σ) :=
∏

j∈U\{i}

Aσ(j),j .

Note that for every σ ∈ Sym(U), we have the convient fact that all of the following expressions are the same:

f(σ) =
∏

j∈U\{i}

(A+ αxeTi + βyeTi )σ(j),j =
∏

j∈U\{i}

(A+ xeTi )σ(j),j =
∏

j∈U\{i}

(A+ yeTi )σ(j),j .

Moreover, we have that

det(A+ αxeTi + βyeTi ) = det((A+ αxeTi + βyeTi )T)

=
∑

σ∈Sym(U)

sgn(σ)
∏
j∈U

(A+ αxeTi + βyeTi )σ(j),j

=
∑

σ∈Sym(U)

sgn(σ)(Aσ(i),i + αxσ(i) + βyσ(i))
∏

j∈U\{i}

(A+ αxeTi + βyeTi )σ(j),j

=
∑

σ∈Sym(U)

sgn(σ)(Aσ(i),i + αxσ(i) + βyσ(i))f(σ).

Since Aei = 0, we have that Aσ(i),i = 0 for every σ ∈ Sym(U). We explore this to finish the proof:

det(A+ αxeTi + βyeTi ) =
∑

σ∈Sym(U)

sgn(σ)(αxσ(i) + βyσ(i))f(σ)

= α

 ∑
σ∈Sym(U)

sgn(σ)xσ(i)f(σ)

+ β

 ∑
σ∈Sym(U)

sgn(σ)yσ(i)f(σ)


= α

 ∑
σ∈Sym(U)

sgn(σ)(Aσ(i),i + xσ(i))f(σ)

+ β

 ∑
σ∈Sym(U)

sgn(σ)(Aσ(i),i + yσ(i))f(σ)


= α

 ∑
σ∈Sym(U)

sgn(σ)(A+ xeTi )σ(i),if(σ)

+ β

 ∑
σ∈Sym(U)

sgn(σ)(A+ yeTi )σ(i),if(σ)


= α

 ∑
σ∈Sym(U)

sgn(σ)
∏
j∈U

(A+ xeTi )σ(j),j

+ β

 ∑
σ∈Sym(U)

sgn(σ)
∏
j∈U

(A+ yeTi )σ(j),j


= α det(A+ xeTi ) + β det(A+ yeTi ).

Proposition 1.25. Let U be a finite set, and let A ∈ RU×U . Let σ ∈ Sym(U). Then

det(APσ) = sgn(σ) det(A).

Proof.

det(APσ) =
∑

π∈Sym(U)

sgn(π)
∏
i∈U

(APσ)i,π(i)

=
∑

π∈Sym(U)

sgn(π)
∏
i∈U

Ai,σπ(i).
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We can change the summation indices with the bijection π 7→ σπ, and finish the proof:

det(APσ) =
∑

τ∈Sym(U)

sgn(σ−1τ)
∏
i∈U

Ai,τ(i)

=
∑

τ∈Sym(U)

sgn(σ−1) sgn(τ)
∏
i∈U

Ai,τ(i)

= sgn(σ−1)
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

Ai,τ(i)

= sgn(σ−1) det(A)

= sgn(σ) det(A).

Proposition 1.26. Let U be a finite set. Let A ∈ RU×U . If there exists i and j in U such that Aei = Aej ,
we have that det(A) = 0.

Proof. Let σ ∈ Sym(U) be the transposition (ij). Since Aei = Aej , it follows that A = APσ. Moreover,
sgn(σ) = −1, so that Proposition 1.25 finishes the proof:

det(A) = det(APσ) = −det(A).

Proposition 1.27. Let U be a finite set, and let A ∈ RU×U . If the set {Aei : i ∈ U} is linearly dependent,
then det(A) = 0.

Proof. If {Aei : i ∈ U} is linearly dependent, then there is k ∈ U and α ∈ RU such that

Aek =
∑

i∈U\{k}

αiAei.

Applying Proposition 1.24 to the matrix A−AekeTk ensures that

det(A) = det(A−AekeTk+Aeke
T
k ) = det

(A−AekeTk ) +
∑

i∈U\{k}

αiAei

 =
∑

i∈U\{k}

αi det(A−AekeTk+Aeie
T
k ).

But every term in the summation is zero, since for every i ∈ U \ {k} we have that

(A−AekeTk +Aeie
T
k )ek = Aek −Aek +Aei = Aei,

so that Proposition 1.26 ensures its determinant is zero.

1.4 Projections and Direct Sum
Let U and V be finite sets, and let A ∈ RV×U . The operator defined by A is the function A· : RU → RV

defined as
x 7→ Ax,

where the RHS is the matrix product between A and x. Conversely, given any linear transformation
L : RU → RV , there exists a matrix A ∈ RV×U such that X = A·. Suffices to define, for every i ∈ V and
j ∈ U ,

Aij := (Xej)i.

The definition depends on the basis used for the spaces involved. However, unless otherwise stated, both will
be the canonical basis, so that to define a matrix is enough to define the operator of the desired matrix.

Definition 1.28. Let U and V be finite sets. Let A ∈ RV×U . Then the range of A, denoted by Im(A), is
defined as

Im(A) := {Ax : x ∈ RU}.
Likewise, the nullspace of A, denoted by Null(A), is defined as

Null(A) := {x ∈ RU : Ax = 0}.
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Proposition 1.29. Let U , V and W be finite sets. Let A ∈ RW×V and B ∈ RV×U . Then

(i) Null(B) ⊆ Null(AB), and

(ii) Im(AB) ⊆ Im(A).

Proof. Let x ∈ Null(B). Then Bx = 0, and ABx = 0. This proves (i). For (ii), let y ∈ Im(AB). Then there
exists x ∈ RU such that y = ABx. Therefore, Bx ∈ RV is such that A(Bx) = y. Hence, y ∈ Im(A).

Theorem 1.30. Let U and V be finite sets. Let A ∈ RV×U . Then

(i) Null(AT) = Im(A)⊥, and

(ii) Im(AT) = Null(A)⊥.

Proof. Let x ∈ RU . Proposition 1.14 implies that x ∈ Null(AT) if and only if for every y ∈ RU ,

0 = yTATx = (Ay)Tx.

Hence, x ∈ Null(AT) if and only if x ∈ Im(A)⊥. To prove (ii), note that (i) applied to AT ensures that
Null(A) = Im(AT)⊥. Hence

Im(AT) = (Im(AT)⊥)⊥ = Null(A)⊥.

Proposition 1.31. Let T , U and V be finite sets. Let A ∈ RV×U and B ∈ RU×T . Then AB = 0 if and only
if

Im(B) ⊆ Null(A).

Proof. Let x ∈ RT . Since ABx = 0, we have that Bx ∈ Null(A). Since this holds for every x ∈ RT , we have
that Im(B) ⊆ Null(A).

Suppose then that Im(B) ⊆ Null(A). Therefore, for every x ∈ RT , we have that Bx ∈ Null(A). Hence,
ABx = 0. Since this holds for every x, we have that AB = 0.

Proposition 1.32. Let U be a finite set, and let A ∈ RU×U . If there exists a nonzero x ∈ Null(A), then
det(A) = 0.

Proof. If there exists a nonzero x ∈ RU such that Ax = 0, we have that

0 = Ax = A

(∑
i∈U

eie
T
i

)
x =

∑
i∈U

Aeie
T
i x =

∑
i∈U

xiAei.

Hence, the set {Aei : i ∈ U} is linearly dependent, and Proposition 1.27 finishes the proof.

Corollary 1.33. Let U be a finite set, and let A ∈ RU×U . If det(A) 6= 0, then A is invertible.

Proof. Suppose det(A) 6= 0. The contraposition of Proposition 1.32 implies that Null(A) = {0}. Hence, A is
injective. Likewise, since det(AT) = det(A), we have that AT is injective. Theorem 1.30 then implies that
Im(A) = Null(AT)⊥, so that Im(A) = RU . Hence, A is also surjective, so that it has an inverse.

Definition 1.34. Let S, T ⊆ RU be linear subspaces. If S ∩ T = {0}, and RU = S + T , we say that RU is
the direct sum of S and T , and denote that by

RU = S ⊕ T.

Note that if RU = S ⊕ T , then for every x ∈ RU we have a unique pair (y, z) ∈ S × T such that
x = y + z. To see this, note that if there were two pairs, (y0, z0) and (y1, z1), whose sum is x, we could write
y0 + z0 = y1 + z1 and conclude that

y0 − y1 = z1 − z0

The LHS is in S, and the RHS is in T , so that both sides must be zero.
Since the direct sum gives for every vector x ∈ RU a unique element y ∈ S, this defines a function.
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Definition 1.35. Let S, T ⊆ RU be linear subspaces such that RU = S ⊕ T . For every x ∈ RU , let
(y, z) ∈ S × T be such that x = y + z. The projector on S along T is the matrix PS,T ∈ RV×U such that

PS,T · x = y.

Note that if RU = S ⊕ T , then
I = PS,T + PT,S .

Proposition 1.36. Let P ∈ RU×U . Then P 2 = P if and only if P is the projector on Im(P ) along Null(P ).

Proof. For any P ∈ RU×U , the fact that I = P + (I − P ) ensures that RV = Im(P ) + Im(I − P ). First we
show that P 2 = P if and only if Im(P ) ∩ Im(I − P ) = {0}.

Suppose P 2 = P . Note that this implies that

P (I − P ) = (I − P )P = 0.

Let x ∈ Im(P ) ∩ Im(I − P ). Then there exists y, z ∈ RU such that x = Py and x = (I − P )z. Therefore

x = Py = P 2y = P (I − P )z = 0.

Therefore, Im(P ) ∩ Im(I − P ) = {0}.
To prove the converse, assume then that Im(P ) ∩ Im(I − P ) = {0}. Let x ∈ RU . Then

P (I − P )x = (I − P )Px.

Since the LHS is in Im(P ) and the RHS is in Im(I − P ), it follows that P (I − P )x = (I − P )Px = 0. We
conclude that P 2 = P if and only if RU = Im(P )⊕ Im(I − P ).

To finish the proof, suffices to show that whenever P is a projector, Null(P ) = Im(I − P ). Since P 2 = P ,
it follows that P (I − P ) = 0, so that Im(I − P ) ⊆ Null(P ).

If x ∈ Null(P ), then x = (I −P )x, so that x ∈ Im(I −P ). Therefore Null(P ) = Im(I −P ), and the proof
is finished.

Given a linear subspace S, there are many T such that RU = S ⊕ T . Therefore, in general, there are
several projections on a single space S. This issue can be solved exploring the Euclidean structure of the
vector space.

Definition 1.37. Let S ⊆ RU be a subspace. The orthogonal projection on S, denoted PS , is the projection
on S along S⊥.

Proposition 1.38. Let S ⊆ RU be a subspace. Then P ∈ RU×U is the orthogonal projector on S if and
only if

(i) Im(P ) = S,

(ii) P 2 = P , and

(iii) PT = P .

Proof. If P 2 = P , Proposition 1.36 ensures that P is the projector on Im(P ) along Null(P ). Since PT = P ,
we have that Null(P ) = Null(PT) = Im(P )⊥, so that (i), (ii) and (iii) hold.

Suppose P is the orthogonal projector on S. Proposition 1.36 ensures that (i) and (ii) holds, and also
that Im(P ) = S and Null(P ) = S⊥. Therefore,

Im(PT) = Null(P )⊥ = S,

Null(PT) = Im(P )⊥ = S⊥.

Moreover PT is a projector, since (PT)2 = (P 2)T = PT. Therefore PT is a projector on S along S⊥, so that
(iii) holds.
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1.5 The Moore-Penrose Pseudoinverse
Proposition 1.39. Let U and V be finite sets. Assume A ∈ RV×U and B ∈ RU×V are matrices such that
ABA = A. Then

(i) Null(A) = Null(BA), and

(ii) Im(A) = Im(AB).

Proof. Since A = ABA, item (i) in Proposition 1.29 implies

Null(A) ⊆ Null(BA) ⊆ Null(ABA) = Null(A).

In other words, Null(AB) = Null(A). Similarly item (ii) in Propositon 1.29 implies

Im(A) = Im(ABA) ⊆ Im(AB) ⊆ Im(A).

Hence, Im(A) = Im(AB).

Lemma 1.40. Let U and V be finite sets. Let ARV×U . Then

(i) A = PIm(A)A,

(ii) A = APNull(A)⊥ .

Proof. We first prove (ii). Note that RU = Null(A)⊕Null(A)⊥. Hence, I = PNull(A) + PNull(A)⊥ . Therefore,

A = A
(
PNull(A) + PNull(A)⊥

)
= APNull(A) +APNull(A)⊥ .

Proposition 1.31 ensures that APNull(A) = 0, which implies (ii)
Note that (ii) applied to AT ensures that AT = ATPNull(AT)⊥ . Theorem 1.30 ensures that PNull(AT)⊥ =

PIm(A). Hence
A = (AT)T = (ATPIm(A))

T = PIm(A)A.

Definition 1.41 (Moore-Penrose pseudoinverse). Let U and V be finite sets. Let A ∈ RV×U . A (Moore-
Penrose) pseudoinverse of A is a matrix A† ∈ RU×V such that

(i) AA† = PIm(A), and

(ii) A†A = PIm(A†).

Let A ∈ RV×U , with U and V finite. If there exists a pseudoinverse A† ∈ RU×V , since the definition of
the pseudoinverse is symmetric on A and A†, it holds that A is the pseudoinverse of A†. Moreover, if A has a
inverse, then A−1 is a pseudoinverse of A. Furthermore, properties (i) and (ii) of the definition, together with
Lemma 1.40 imply

AA†A = PIm(A)A = A, (1.42)

A†AA† = PIm(A†)A
† = A†. (1.43)

Proposition 1.44. Let U and V be finite sets. Let A ∈ RV×U , and let A† ∈ RU×V be a pseudoinverse of A.
Then

(i) Null(A†) = Im(A)⊥, and

(ii) Im(A†) = Null(A)⊥.

Proof. Equation (1.43) and item (i) of Proposition 1.39 ensure that Null(A†) = Null(AA†). Since AA† =
PIm(A), we have that Null(A†) = Im(A)⊥. Likewise, Equation (1.42) and the same item (i) of Proposition 1.39
ensure that Null(A) = Null(A†A). Since A†A = PIm(A†), we have that Null(A) = Im(A†)⊥. Theorem 1.30
then implies item (ii).
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Proposition 1.45. Let U and V be finite sets. Let A ∈ RV×U . If A has a pseudoinverse, then it is unique.

Proof. Suppose B and C are two pseudoinverses of A. Proposition 1.44 implies that Im(B) = Im(C). Hence,
Equation (1.43) and Lemma 1.40 imply

B = BAB = BPIm(A) = BAC = PIm(B)C = PIm(C)C = C.

Let U and V be finite sets, and let A ∈ RV×U . A linear transformation is injective if and only if its
nullspace is {0}. Therefore, for the linear transformation A· : RU → RV , its restriction to Null(A)⊥ is injective.
Hence, it has an inverse (

A · �Null(A)⊥

)−1

: Im(A)→ Null(A)⊥.

Since
(
A · �Null(A)⊥

)−1

is the inverse of a linear transformation, it is a linear transformation. Denote by

IIm(A) the identity in the vector space Im(A) ⊆ RV , and by INull(A)⊥ the identity in Null(A)⊥ ⊆ RU . Then(
A · �Null(A)⊥

)(
A · �Null(A)⊥

)−1

= IIm(A),(
A · �Null(A)⊥

)−1(
A · �Null(A)⊥

)
= INull(A)⊥ .

(1.46)

Note that we are no longer dealing with matrices, but with linear operators. However, this procedure
works in general, and with such operators it is possible to define a pseudoinverse matrix for every matrix.

Proposition 1.47. Let U and V be finite sets, and let A ∈ RV×U . Then A has a pseudoinverse A† ∈ RU×V ,
and

A†· =
(
A · �Null(A)⊥

)−1

PIm(A) · .

Proof. Note that the RHS of the equation is defined for every matrix A. Moreover, for every linear
transformation from RU into RV , there is a unique matrix such that its operator is said linear transformation.
Hence, it is enough to show that the operator on the RHS of the statement is the operator of a pseudoinverse
of A.

Denote by B the linear operator
(
A · �Null(A)⊥

)−1

. Since B is surjective in Null(A)⊥ and PIm(A)· is
surjective in Im(A), it holds that Im(BPIm(A)) = Im(B) = Null(A)⊥.

Hence, Lemma 1.40 and Equation (1.46) imply

B
(
PIm(A)A

)
· = B

(
APNull(A)⊥

)
· = B

(
A · �Null(A)⊥

)
PNull(A)⊥ · = INull(A)⊥PNull(A)⊥ · = PNull(A)⊥ · .

Once again, Lemma 1.40 and Equation (1.46) imply

A ·B
(
PIm(A)

)
· =

(
A · �Null(A)⊥

)
BPIm(A)· = IIm(A)PIm(A)· = PIm(A).

Proposition 1.48. Let U and V be finite sets, and let A ∈ RV×U . Then

(AT)† = (A†)T.

Proof. Proposition 1.44 ensures Im(A†) = Im(AT). Also, by definition, A†A = PIm(A†). Hence

AT(A†)T = (A†A)T = PT
Im(A†) = PIm(A†) = PIm(AT).

Moreover, Proposition 1.44 implies Im(A) = Im((A†)T). Also, AA† = PIm(A). Then

(A†)TAT = (AA†)T = PT
Im(A) = PIm(A) = PIm((A†)T).

In other words, (A†)T is the pseudoinverse of AT.
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Corollary 1.49. Let U be a finite set. If A ∈ RU×U is a symmetric matrix, then

AA† = A†A.

Proof. Use that PIm(A) is symmetric and Proposition 1.48:

AA† = PIm(A) = PT
Im(A) = (AA†)T = (A†)TAT = (AT)†AT = A†A.

Unfortunately, it is not always the case that (AB)† = B†A†. One of the notable cases when this holds is
the following.

Proposition 1.50. Let U , V and T be finite sets, and let A ∈ RV×U and B ∈ RU×T . If A is injective and
B is surjective, then

(AB)† = B†A†.

Proof. Since A is injective, Proposition 1.44 and Theorem 1.30 imply

Im(A†) = Im(AT) = Null(A)⊥ = {0}⊥ = RU .

Therefore, A†A = IU . Hence
B†A†AB = B†IUB = B†B = PIm(B†).

Moreover, note that Theorem 1.30 implies that AT is surjective. Furthermore, Proposition 1.44 ensures

Im((AB)†) = Im((AB)T) = Im(BTAT) = Im(BT) = Im(B†).

Theorefore, B†A†AB = PIm((AB)†). It remains to prove that ABB†A† = PIm(AB). Since B is surjective, we
have that Im(AB) = Im(A), and that PIm(B) = IU . Hence

ABB†A† = AIUA
† = AA† = PIm(A) = PIm(AB).

Proposition 1.51. Let U be a finite set. Then for 1 ∈ RU and Pspan(1) ∈ RU×U ,

Pspan(1) =
1

|U |
11

T.

Proof. Suffices to show that the RHS of the statement is the orthogonal projector on span(1). First, note
that (

1

|U |
11

T

)T

=
1

|U |
11

T,

so that (1/ |U |)11T is symmetric. Moreover,(
1

|U |
11

T

)2

=
1
T
1

|U |2
11

T =
1

|U |
11

T.

Hence, (1/ |U |)11T is a projector. To conclude the proof, it remains to show that span(1) = Im(1/ |U |11T).
Let x ∈ span(1). Then there exists α ∈ R such that x = α1. Hence(

1

|U |
11

T

)
x =

1
Tx

|U |
1 =

α1T
1

|U |
1 = α

|U |
|U |

1 = α1 = x.

In other words, span(1) ⊆ Im((1/ |U |)11T). Let y ∈ RU . Then(
1

|U |
11

T

)
y =

(
1
Ty

|U |

)
1.

In other words, Im((1/ |U |)11T) ⊆ span(1), and the proof is done.

16



Example 1.52. Let V be a finite set, and let i ∈ V . Set U := V \ {i}, and let A ∈ RV×U be defined as

A[U,U ] = I,

A[i, U ] = −1T.

In other words, assuming the topmost rows are indexed by U ,

A =

[
I

−1T

]
.

We wish to calculate A†. For y ∈ RV , we have that y ⊥ 1 if and only if there exists x ∈ RU such that

y =

[
x

−1Tx

]
=

[
I

−1T

]
x.

Hence, Im(A) = span(1)⊥. Moreover, since I = Pspan(1) + Pspan(1)⊥ , Proposition 1.51 ensures that

Pspan(1)⊥ = I − 1

|V |
11

T.

Therefore, since AA† = PIm(A), we conclude that[
I

−1T

] [
A†[U,U ] A†[U, i]

]
=

[
A†[U,U ] A†[U, i]

1
TA†[U,U ] 1

TA†[U, i]

]
=

[
I − 1

|V |11
T − 1

|V |1

− 1
|V |1

T 1− 1
|V |

]
.

Therefore, assuming then that the leftmost columns of A† are indexed by U , we conclude that

A† =
[
I − 1

|V |11
T − 1

|V |1
]
.

1.6 The Laplacian
Definition 1.53. Let D = (V,A, ψ) be a digraph. The head matrix of D is the matrix defined as

HD :=
∑
ij∈A

eje
T
ij .

Moreover, the tail matrix of D is the matrix defined as

TD :=
∑
ij∈A

eie
T
ij .

Let D = (V,A, ψ,w) be a digraph. Both matrices HD and TD enable us to define several others interesting
matrices related to D. The incidence matrix of D is the matrix defined as

BD := HD − TD.

The adjencency matrix of D is the matrix defined as

AD := HD Diag(w)TT
D.

The degree matrix of D is the matrix defined as

DD := HD Diag(w)HT
D.

Finally, the Laplacian of D is the matrix defined as

LD := HD Diag(w)BT
D.
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Note that it is quite simple to relate the matrices involving DT with the ones related to D by the following
equalities:

HDT = TD,

TDT = HD.

Hence, we have both that BDT = −BD and the pleasant equality ADT = AT
D.

Proposition 1.54. Let D = (V,A, ψ) be a digraph. Then

HT
D1 = TT

D1 = 1.

Proof. For every k ∈ V , we have that 1 =
∑
i∈V [k = i]. Therefore, using the definitions o HD and 1,

HT
D1 =

∑
jk∈A

eke
T
jk

T(∑
i∈V

ei

)
=
∑
jk∈A

∑
i∈V

ejke
T
kei =

∑
jk∈A

∑
i∈V

[k = i]ejk =
∑
jk∈A

ejk = 1.

Since the above arguments holds for any digraph, and TD = HDT , the proof is finished.

Proposition 1.55. Let D = (V,A, ψ,w) be a weighted digraph. Then DD1 = AD1, and for every i ∈ V ,

eTi AD1 =
∑

w(δin(i)).

Proof. Proposition 1.54 implies

DD1 = HD Diag(w)HT
D1 = HD Diag(w)TT

D1 = AD1.

Moreover, for every i ∈ V , Proposition 1.54 ensures

eTi AD1 = eTi HD Diag(w)TT
D1 = eTi HD Diag(w)1 = eTi HD

∑
jk∈A

w(jk)ejk


=
∑
jk∈A

w(jk)eTi HDejk =
∑
jk∈A

w(jk)eTi ek =
∑
jk∈A

[k = i]w(jk)

=
∑

w(δin(i)).

Let G be a graph. We define the adjacency, degree, incidence and Laplacian of G as the corresponding
matrix for the symmetric digraph of G.

Proposition 1.56. Let G = (V,E, ψ,w) be a weighted graph. Then

(i) If D is the symmetric digraph of G, then AG = AD and DG = DD.

(ii) For any orientation D of G, it holds that AG = HD Diag(w)TT
D + TD Diag(w)HT

D.

(iii) AT
G = AG.

(iv) For any orientation D of G, it holds that DG = HD Diag(w)HT
D + TD Diag(w)TT

D.

(v) For every i, j ∈ V , we have that (AG)ij = [ij ∈ E]w(ij).

Proof. Item (i) is the definition of AG and DG restated.
Suppose then that D = (V,A, φ, w) is an orientation of D. If we index the leftmost columns of E by A,

we have that

HG =
[
HD HDT

]
=
[
HD TD

]
,

TG =
[
TD TDT

]
=
[
TD HD

]
.
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Therefore,

AG = HG Diag(w)TT
G

=
[
HD TD

] [ Diag(w) 0

0 Diag(w)

][
TT
D

HT
D

]
= HD Diag(w)TT

D + TD Diag(w)HT
D.

Hence, item (ii) holds, with item (iii) is a consequence. Item (iv) follows from a similiar argument:

DG = HG Diag(w)HT
G

=
[
HD TD

] [ Diag(w) 0

0 Diag(w)

][
HT
D

TT
D

]
= HD Diag(w)HT

D + TD Diag(w)TT
D.

Finally, to prove (v), let D = (V,A, φ, w) be any orientation of G. Note that

HD Diag(w)TT
D = HD Diag(w)

∑
ij∈A

eije
T
i


=
∑
ij∈A

HD Diag(w)eije
T
i

=
∑
ij∈A

w(ij)HDeije
T
i

=
∑
ij∈A

w(ij)eje
T
i .

Therefore, (HD Diag(w)TT
D)ij = [ij ∈ A]w(ij). Similarly, we have that (TD Diag(w)HT

D)ij = [ji ∈ A]w(ij).
Hence, item (ii) and the fact that D is an orientation of G finish the proof

(AG)ij = [ij ∈ A]w(ij) + [ji ∈ A]w(ij) = [ij ∈ E]w(ij). .

Proposition 1.57. Let G = (V,E, ψ,w) be a graph. Let LG be the Laplacian of G. Then

(i) If D is the symmetric graph of G, then LG = LD.

(ii) LG = DG −AG,

(iii) For any orientation D of G, we have that LG = BD Diag(w)BT
D.

(iv) LT
G = LG.

(v) LG =
∑
ij∈E w(ij)(ej − ei)(ej − ei)T,

Proof. Item (i) is the definition of LG.
Item (ii) follows from the following calculations:

LG = HG Diag(w)BT
G = HG Diag(w)(HG − TG)T = HG Diag(w)HT

G −HG Diag(w)TT
G = DG −AG.

Let D be an orientation of G. Proposition 1.56 ensures

LG = DG −AG
= HD Diag(w)HT

D + TD Diag(w)TT
D −

(
HD Diag(w)TT

D + TD Diag(w)HT
D

)
= HD Diag(w)

(
HT
D − TT

D

)
+ TD Diag(w)

(
TT
D −HT

D

)
= HD Diag(w)BT

D − TD Diag(w)BT
D

= BD Diag(w)BT
D.
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Hence, item (iii) holds, and item (iv) is a consequence.
For item (v), let D be any orientation of G. Then item (iii) ensures that LG = BD Diag(w)BT

D. Hence

LG = BD Diag(w)

∑
ij∈E

(ej − ei)eTij

T

= BD Diag(w)

∑
ij∈E

eij(ej − ei)T


=
∑
ij∈E

BD Diag(w)eij(ej − ei)T

=
∑
ij∈E

w(ij)BDeij(ej − ei)T

=
∑
ij∈E

w(ij)(ej − ei)(ej − ei)T.

Proposition 1.58. Let G = (V,E,w) be a connected graph, with w ∈ RV++. Then

LGL
†
G = L†GLG = Pspan(1)⊥ .

Proof. Let D be an orientation of G. Proposition 1.57 ensures LG = BDWBT
D. Hence, LG is symmetric.

Corollary 1.49, Proposition 1.44 and Theorem 1.30 imply that

LGL
†
G = L†GLG = PIm(L†G) = PIm(LT

G) = PNull(LG)⊥ .

It suffices to show that Null(LG) = span(1). Since G is connected, Proposition 2.25 ensures Null(BT
D) =

span(1). It is then enough to prove that Null(LG) = Null(BT
D).

Note that since LG = BDWBT
D, Proposition 1.29 ensures that Null(BT

D) ⊆ Null(LG). Let then x ∈
Null(LG). Then xTLGx = 0. Therefore,

0 = xTLGx = xTBDWBT
Dx =

(
BT
Dx
)
W
(
BT
Dx
)

=
∑
ij∈E

w(ij)
(
BT
Dx
)2
ij
.

Since w(ij) > 0 for every ij ∈ E, this implies that (BT
Dx)ij = 0 for every ij ∈ E. Hence, x ∈ Null(BT

D).

1.7 Harmonic Functions
Definition 1.59. Let D = (V,A,w) be a weighted digraph, with w ∈ RA++. A function f ∈ RV is harmonic,
with respect to D, at i ∈ V if

f(i) =
∑
ik∈A

w(ik)

w(i)
f(k).

The function f is said to be harmonic in a set S ⊆ V if it is harmonic in every vertex in S.

Proposition 1.60. Let D = (V,A,w) be a weighted digraph, with w ∈ RA++. Let f ∈ RV be harmonic in
S ⊆ V . Suppose further that f reaches its maximum in a vertex i ∈ S. Then, if there is an ij-walk in D such
that either every vertex is in S, or every vertex but j is in S, we have that

f(i) = f(j).

Proof. The proof is by induction on the lenght of the walk. Let (u0, . . . , um) be an ij-walk, with u0 = i,
um = j, and ui ∈ S for every i ∈ [m].

If m = 0, then i = j and the thesis holds.
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If m > 0, denote by k the vertex u1. Suppose f(k) < f(i). Since ik ∈ A and f(i) is a maximum of f , we
have that ∑

ij∈A

w(ij)

w(i)
f(j) <

∑
ij∈A

w(ij)

w(i)
f(i) =

(∑
i∈A

w(ij)

w(i)

)
f(i) = 1 · f(i) = f(i).

This contradicts the fact that f is harmonic at i. Hence, f(i) ≤ f(k). Since f(i) is maximum, we have that
f(i) = f(k). This, in turns ensures that the induction hypothesis apply to the kj-walk, so that

f(i) = f(k) = f(j).

Definition 1.61. Let G = (V,E,w) be a weighted graph, with w ∈ RA++. A function f ∈ RV is harmonic at
i ∈ V if it is hamornic in the symmetric digraph of G. The function f is said to be harmonic in a set S ⊆ V
if it is harmonic in every vertex in S.

Proposition 1.62. Let D = (V,A,w) be a weighted digraph, with w ∈ RA++. Suppose D is strongly
connected. A function f : V → R that is harmonic in at least |V | − 1 vertices is constant.

Proof. If |V | ≤ 1, there is nothing to prove. Let i ∈ V be the vertex in which f(i) is maximum. Denote by
r ∈ V the vertex in which f is not harmonic. For every vertex j ∈ V there is an ij-walk such that every
internal vertex is in V \ {r}. Proposition 1.60 then ensures that f(i) = f(j).

Proposition 1.63. Let G = (V,E,w) be a weighted graph, with w ∈ RA++. Suppose G is connected. Then
a function f that is harmonic in every vertex of G is constant.

Proof. Since G is connected, its symmetric digraph is strongly connected. Proposition 1.62 finishes the
proof.

1.8 Extended Positive Reals
The main point of the current section is to justify the manipulations on series of numbers in R+ ∪ {∞}

that will be used in the work. It is not an attempt to develop a whole theory of convergence on the real line.
The work in this section is based on the first remarks made by Tao in [19].

The real numbers, denote by R, are assumed to have a total order ≤, such that for all real numbers
α, β, γ ∈ R it holds that

1. if α ≤ β, then α+ γ ≤ β + γ, and

2. if 0 ≤ α and 0 ≤ β, then 0 ≤ αβ.

Given a subset S ⊆ R, a real number α ∈ R is said to be an upper bound of S if for every s ∈ S it holds
that s ≤ α. Similarly, a real number α ∈ R is said to be a lower bound of S if for every s ∈ S it holds that
α ≤ s. The real numbers are assumed to be complete, meaning that for every nonempty subset S ⊆ R, if S
has a lower bound, then S has a greatest lower bound, denoted by inf S. Similarly, if S is nonempty and has
an upper bound, it has a least upper bound, denoted by supS. For a given subset S ⊆ R, the numbers inf S
and supS are said to be the infimum of S and supremum of S, respectively.

Let S ⊆ R be nonempty. Suppose S has an upper bound. Then α = supS if and only if for every ε > 0
there exists s ∈ S such that

α− ε < s ≤ α.

The fact that s ≤ α is a consequence of α being an upper bound of S, and the existence of s ∈ S such that
α− ε < s is a consequence of α being the least upper bound. If for every s ∈ S this inequality did not hold,
then α− ε would be an upper bound for S, which is smaller than α.

A real sequence is a function α : N→ R. It is usually denoted as (αn)n∈N. Moreover, for a given n ∈ N,
the value α(n) is usually denoted as αn. For a given α ∈ R, a real sequence is said to converge to α if for
every real ε > 0 there exists N ∈ N such that n ≥ N implies |αn − α| < ε. This is denoted as

lim
n→∞

αn = α.
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If (αn)n∈N converges to α ∈ R, then α is said to be the limit of (αn)n∈N. A sequence that converges to some
value α ∈ R is said to be convergent. A real sequence (αn)n∈N is said to be increasing if i ≤ j implies that
αi ≤ αj . Moreover, the sequence is said to be bounded if there exists β ∈ R such that for every n ∈ N we
have that |αn| ≤ β.

Theorem 1.64. Let (αn)n∈N be a bounded and increasing real sequence. Then (αn)n∈N is convergent, and

lim
n→∞

αn = sup {αn : n ∈ N}.

Proof. Set α := sup {αn : n ∈ N}, and let ε > 0. Since α is the supremum of {αn : n ∈ N}, it holds that
there exists N ∈ N such that

α− ε < αN .

In other words, α − αN < ε. Moreover, since (αn)n∈N is increasing, for every n ∈ N with N ≤ n we have
that αN ≤ αn. Hence α− αn ≤ α− αN . However, we also have that 0 ≤ α− αn, since α was defined as the
supremum of the values of the sequence. Therefore, for every n ∈ N such that N ≤ n,

|α− αn| = α− αn ≤ α− αN < ε.

Since ε > 0 was arbitrary, the proof is done.

The extended positive reals is the set R+ ∪ {∞}. We extend the order, the addition and the multiplication
on R+ to R+ ∪ {∞} by defining addition, multiplication and order for ∞. For every α ∈ R+ ∪ {∞}, define

α ≤ ∞,
α+∞ :=∞,
∞+ α :=∞.

Moreover, for every nonzero β ∈ R+ define

β∞ :=∞,
∞β :=∞.

Also, 0∞ := 0, and ∞0 := 0. Note that many operations are not defined in R+ ∪ {∞} as a whole; mainly
substraction and division by ∞. However, the elements of R+ ∪ {∞} that are not ∞ — called the finite
elements of R+ ∪ {∞} – are in R, so that every result about real numbers applies to them.

Let (αn)n∈N be a sequence in R+ ∪ {∞}, i.e., α : N→ R+ ∪ {∞}. If there exists N ∈ N such that N ≤ n
implies that αn ∈ R+, and such that the real sequence (βn)n∈N, defined as βn := αn+N converges to α, we
say that (αn)n∈N converges to α. This is denoted as

lim
n→∞

αn = α.

Moreover, if for every β ∈ R+ there exists N ∈ N such that N ≤ n implies that β ≤ αn, we say that αn
converges to infinity. This is denoted as

lim
n→∞

αn =∞.

The most useful property of the extended positive reals is the fact that every series in it converges. Let
(αn)n∈N be a sequence in R+ ∪ {∞}. Define the sequence (βn)n∈N as

βn :=

n∑
i=0

αi,

for every n ∈ N. Since for every n we have that 0 ≤ αn, it holds that βn is a increasing sequence. If it is
bounded, Theorem 1.64 ensures that βn converges to a real number. If it is not bounded, then by definition
limn→∞ βn =∞. Hence, the limit is always defined, and is always an element in R+ ∪ {∞}. Therefore, for a
given sequence of extended real numbers (αn)n∈N, define∑

n∈N
αn := lim

k→∞

k∑
n=0

αn.
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This definition has a couple more convenient equivalences. First, note that when
∑
n∈N αn = α, for some

α ∈ R, this definition is equivalent with the statement that for every ε > 0, there exists K ∈ N such that
k > K implies that

k∑
n=0

αn > α− ε.

Moreover, if
∑
n∈N αn =∞, then for every L ∈ R there exists k ∈ N such that k > K implies that

k∑
n=0

αk > L.

Another convenient equivalence of the series summation definition is that, for every (αn)n∈N,

∑
n∈N

αn = sup

{
k∑

n=0

αn : k ∈ N

}
. (1.65)

In particular, this implies the fact that αn ≤
∑
n∈N αn for every n ∈ N.

Proposition 1.66. Let (αn)n∈N and (βn)n∈N be sequences in R+ ∪ {∞}. Suppose that αn ≤ βn for every
n ∈ N. Then ∑

n∈N
αn ≤

∑
n∈N

βn.

Proof. If
∑
n∈N βn = ∞, there is nothing to prove. Suppose then that

∑
n∈N βn = β, for β ∈ R. Then for

every k ∈ N,
k∑

n=0

αn ≤
k∑

n=0

βn ≤ β.

Therefore,
∑
n∈N αn is bounded, so there exists α ∈ R such that

∑
n∈N αn = α. It is enough to show that

α ≤ β. Suppose that β < α. Then there exists K ∈ N such that k > K implies that

k∑
n=0

αn > α− α− β
2

= β +
α− β

2
≥

k∑
n=0

βn.

But this implies that there exists i ∈ N, with i ≤ n, such that αi > βi.

Proposition 1.67. Let (αn)n∈N be a sequence in R+ ∪ {∞}. Let β ∈ R+ ∪ {∞}. Then∑
n∈N

βαn = β
∑
n∈N

αn.

Proof. Set α :=
∑
n∈N αn. Since the product in R+ ∪ {∞} was divided into cases, this proof will have to

treat each separetely.
If α = 0, we have that αn = 0 for every n ∈ N. Therefore, if either α or β are zero, it holds that βαn = 0

for every natural n. Hence ∑
n∈N

βαn = 0 = β
∑
n∈N

αn.

Suppose that β =∞ and α is nonzero. In this case, βαn =∞ for every n ∈ N. Therefore
∑
n∈N βαn =∞.

Suppose than that β is a nonzero real number, and α = ∞. Let L ∈ R be any. Since β is nonzero,
β−1 ∈ R. Since α =∞, there exists K ∈ N such that k > K implies that

∑k
n=0 αn > Lβ−1. Therefore, for

every k > K we have that
k∑

n=0

βαn > L.

Hence,
∑
n∈N βαN =∞, which is equal to βα.
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Finally, suppose both α and β are nonzero real numbers. Let ε > 0. Since
∑
n∈N αn = α, we have that

there exists K ∈ N such that k > K implies that
∑k
n=0 αn > α− εβ−1. Hence, for every k ≥ K,

k∑
n=0

βαn > βα− ε.

Theorem 1.68. Let V be a finite set. For every i ∈ V , let ((αi)n)n∈N be a sequence in R+ ∪ {∞}. Then∑
n∈N

∑
i∈V

(αi)n =
∑
i∈V

∑
n∈N

(αi)n.

Proof. Suppose there exists j ∈ V such that
∑
n∈N(αj)n = ∞. Since for every n ∈ N we have that∑

i∈V (αi)n ≥ (αj)n, Proposition 1.66 ensures∑
n∈N

∑
i∈V

(αi)n ≥
∑
n∈N

(αj)n =∞.

Hence, the LHS of the statement is equal to ∞, just like the RHS.
Suppose then that for every i ∈ V , the series

∑
n∈N(αi)n is bounded. Then, for every i ∈ V , there exists a

real number βi such that
∑
n∈N(αi)n = βi. Let ε > 0. For every i ∈ V , there exists Ni ∈ N such that Ni ≤ n

implies that
n∑
k=0

(αi)k > βi − ε/ |V | .

Set N := maxi∈V Ni. Then for every n ∈ N such that N ≤ n we have that
n∑
k=0

∑
i∈V

(αi)k =
∑
i∈V

n∑
k=0

(αi)k ≥
∑
i∈V

(βi − ε/ |V |) =
∑
i∈V

βi − ε.

Hence,
∑
n∈N

∑
i∈V (αi)n =

∑
i∈V βi, and the proof is finished.

We restate the fact that this section is not going to develop a theory of convergence on the real numbers.
As such, Proposition 1.69 will be simply stated without proof, and the proof of Theorem 1.70 uses the fact
that “the limit of a sum is the sum of limits”. We assume such results are no surprise to the reader. We
remark that Theorem 1.70, in particular, can be understood in a deeper sense once one understands some
basic facts about power series.

Proposition 1.69. Let α ∈ R be such that |α| < 1. Then

1. limn→∞ αn = 0.

2. limn→∞ nαn = 0

Theorem 1.70. Let α ∈ R be such that |α| < 1. Then∑
n∈N

nαn−1 =
1

(1− α)2
.

Proof. For every n ∈ N, define Sk :=
∑k
n=0 nα

n. Some careful index handling ensures the following equalities:

Sk =

k−1∑
t=2

(t+ 1)αt + 1 + 2α

α2Sk =

k−1∑
t=2

(t− 1)αt + (k − 1)αk + kαk+1

2αSk =

k=1∑
t=2

2tαt + 2α+ 2kαk
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Since (1− α)2 = 1 + α2 − 2α, we have that

(1− α)2Sk = 1− αk(1− α)k − αk.

Therefore

lim
k→∞

Sk = lim
k→∞

1− αk(1− α)k − αk

(1− α)2
=

1

(1− α)2
− 1

(1− α)

(
lim
k→∞

kαk
)
− 1

(1− α)2

(
lim
k→∞

αk
)
.

Proposition 1.69 then finishes the proof.

1.9 Measure and Probability Theory
A σ-algebra on a set X is a collection Σ ⊆ P(X) such that

(i) ∅ ∈ Σ;

(ii) the collection Σ is closed under complementation, i.e., if E ∈ Σ, then X \ E ∈ Σ;

(iii) the collection Σ is closed under countable unions, that is, if F ⊆ Σ is countable, then⋃
F ∈ Σ.

For convenience, the set X \ E is denoted by Ec when X is clear from the context.

Theorem 1.71. Let X and I be sets, and let {Σi : i ∈ I} be a family of σ-algebras on X. The collection⋂
i∈I Σi is a σ-algebra on X.

Proof. Set ΣI :=
⋂
i∈I ΣI . By the definition of σ-algebra, ∅ ∈ Σi for every i ∈ I. Therefore, it also belongs to

ΣI . Suppose then that E ∈ ΣI . Hence, for every i ∈ I, the set E belongs to Σi, which implies that Ec ∈ Σi.
Since this holds for every i ∈ I, it follows that Ec ∈ ΣI . Finally, let F ⊆ ΣI be countable. For every i ∈ I,
we have that F ⊆ Σi, which implies that

⋃
F ∈ Σi. Hence,

⋃
F ∈ ΣI .

Let X be a set, and let O ⊆ P(X). Define the σ-algebra generated by O as

σ(O) :=
⋂
{Σ ⊆ P(X) : Σ is a σ-algebra on X,O ⊆ Σ}.

Theorem 1.71 ensures that σ(O) is a σ-algebra. We say that the collection O generates σ(O). Note that the
power set of X itself is always a σ-algebra on X. Therefore, there is at least one σ-algebra in the intersection
when σ(O) is being considered. Also, every σ-algebra Σ on X such that O ⊆ Σ will be a superset of σ(O).
For this reason, σ(O) is sometimes refered to as “the smallest σ-algebra containing O”.

Theorem 1.72. Let X be a set. Let σ : P(P(X))→ P(P(X)) be the function defined, for every O ∈
P(P(X)), as σ(O). Then for every O and Q in P(P(X)), we have that

(i) O ⊆ σ(O),

(ii) Q ⊆ O =⇒ σ(Q) ⊆ σ(O), and

(iii) If O is a σ-algebra on X, then σ(O) = O. In particular, σ(σ(O)) = σ(O).

Proof. For every O ⊆ P(X), define

ΣO := {Σ : Σ is a σ-algebra,O ⊆ Σ},

so that σ(O) =
⋂

ΣO. By definition, O ⊆ Σ for every Σ ∈ ΣO. Hence, O ⊆
⋂

ΣO, and (i) holds.
If Q ⊆ P(X) and O ⊆ P(X) are such that Q ⊆ O, then for every Σ ∈ ΣO we have that Σ ∈ ΣQ. In other

words, ΣO ⊆ ΣQ, which implies (ii).
Item (i) ensures that O ⊆ σ(O). Moreover, if O is a σ-algebra, then O ∈ ΣO. Therefore, if O is a

σ-algebra,
σ(O) =

⋂
ΣO ⊆ O,

so that (iii) holds.
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It is important to contemplate the tool just defined. Given an arbitrary collection O of subsets of a set X,
it is possible to associate it to a σ-algebra on X such that Theorem 1.72 holds. This connection will provide
us not only with a tool to define new σ-algebras, but also to conclude things about a given one by looking at
a collection that generates it.

A measurable space is an ordered pair (X,Σ) where Σ is a σ-algebra on X. Let (X,Σ) be a measurable
space. Whenever Σ is clear, the elements E ∈ Σ are simply called measurable sets of X.

Let (X,ΣX) and (Y,ΣY ) be measurable spaces. A function f : X → Y is measurable with respect to
(w.r.t.) ΣX and ΣY if the preimage of every measurable set in ΣY is measurable in ΣX , that is, if for every
E ∈ ΣY ,

f−1(E) ∈ ΣX .

Once again, whenever ΣY and ΣX can be inferred from context, they are omitted, and f is simply said to be
measurable.

Theorem 1.73. Let (X,ΣX) and (Y,ΣY ) be measurable spaces. Let O ∈ P(Y ) be such that ΣY = σ(O).
Then a function f : X → Y is measurable if and only if for every E ∈ O, we have that f−1(E) ∈ ΣX .

Proof. Since O ⊆ ΣY , if f is measurable then every set in O is measurable.
Assume then that for every E ∈ O, we have that f−1(E) ∈ ΣX . Define

Σ := {E ∈ ΣY : f−1(E) ∈ ΣX}.

Note that the hypothesis ensures that O ⊆ Σ. Hence, item (ii) in Theorem 1.72 implies that σ(O) ⊆ σ(Σ).
Moreover, item (iii) in the same theorem reduces the problem in proving that Σ is a σ-algebra, since in such
case

ΣY = σ(O) ⊆ σ(Σ) = Σ.

We proceed in this direction. First note that ∅ ∈ Σ, since ∅ ∈ ΣY and f−1(∅) = ∅ ∈ ΣX . Suppose
E ∈ Σ. Then E ∈ ΣY and, therefore, Ec ∈ ΣY . Moreover, Proposition 1.1 ensures f−1(Ec) = f−1(E)c,
so that Ec ∈ Σ. Finally, let F ⊆ Σ be countable. By definition, we have that

⋃
F ∈ ΣY . Proposition 1.1

ensures that f−1(
⋃
F) =

⋃
F∈F f

−1(F ). Hence,
⋃
F ∈ Σ, and the proof is done.

Definition 1.74. Let (X,Σ) be a measurable space. A function µ : X → R+ ∪ {∞} is a measure on (X,Σ)
if

(i) µ(∅) = 0,

(ii) µ is countably additive, that is, if (Ei)i∈N is a sequence of pairwise disjoint elements in Σ, then

µ

(⋃
i∈N

Ei

)
=
∑
i∈N

µ(Ei).

When µ is a measure on the measurable space (X,Σ), we say that (X,Σ, µ) is a measure space.

Let (X,ΣX , µ) be a measure space, and (Y,ΣY ) be a measurable space. A measurable function f : X → Y
hints at a measure for Y . For every E ∈ ΣY , define ν : ΣY → R+ ∪ {∞} as

ν(E) := µ(f−1(E)).

Note that the fact that f is measurable ensures that µ is defined on every set of the form f−1(E), with
E ∈ ΣY . This and Proposition 1.1 ensure that ν is a measure on (Y,Σy). This construction will play a central
role in the arguments on section 3.3, most notably in Proposition 3.19 and in Proposition 3.28.

We now focus on the probability theory concepts that will be used in the text. A measure space (Ω,F ,P)
is a probability space if P(Ω) = 1. In this case, P is said to be a probability measure or a probability distribution.
Whenever working with a probability space, the elements E ∈ F are called events. Also, a random variable is
any measurable function whose domain is a probability space.

Let S and T be sets, and let f : S → T be any function. For every U ⊆ T , define

{f ∈ U}
S

:= { s ∈ S : f(s) ∈ U}.
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This notation will be used throughout the text, mostly when working with measurable functions. To
understand why, let (Ω,F ,P) be a probability space, let (V,G) be a measure space, and let X : Ω→ V be a
random variable. We have that, for every measurable set E ∈ G, the set

X−1(E) = {ω ∈ Ω : X(ω) ∈ E} = {X ∈ E}
Ω

is an element of F , i.e., an event. For this reason, this notation will be abundant in our demonstrations.
Furthermore, for any events F,G ∈ F , we define

P(F,G) := P(F ∩G).

Note that the above notations can be combined. If, for example, (W,H) is any measurable space — maybe
even (V,G) again — and Y : Ω→W is a random variable, we have that for any E ∈ G and F ∈ H,

P(X ∈ E, Y ∈ F ) = P({X ∈ E, y ∈ F}
Ω
) = P({X ∈ E}

Ω
∩ {Y ∈ F}

Ω
).

Whenever V is a finite or countable set, we simply reffer to V as a measurable space, and have, by
definition, P(V ) as its σ-algebra. In other words, if V is at most countable, then the measurable space
(V,P(V )) will be reffered to as the measurable space V . Note that, in this case,

σ({ {i} : i ∈ V }) = P(V ).

Hence, if (Ω,F ,P) is a probability space, then Theorem 1.73 implies that to prove that a function X : Ω→ V
is a random variable suffices to prove that for every i ∈ V we have that {X = i}

Ω
is an event.

On a similar note, when working with the set of real numbers R, the σ-algebra defined in it will always be

σ({ (α, β) ⊆ R : α ∈ R, β ∈ R}).

Therefore, if (Ω,F ,P) is a probability space and we say that a function X : Ω→ R is measurable, we are
saying that for every α, β ∈ R, the set

{X ∈ (α, β)}
Ω

= {α < X,X < β}
Ω

is measurable.

Definition 1.75. Let (Ω,F ,P) be a probability space. Let X : Ω→ R be a random variable. Suppose that
there exists a countable set I ⊆ R such that∑

x∈I
P(X = x) = 1.

Then the expected value of X is defined as

E[X] :=
∑
x∈I

xP(X = x).

It is possible to define the expected value of any random variable. This is actually the main goal of
measure theory, and is done by defining the integral of a measurable function. However, for the purposes of
this work, the above definition will be much more convenient, and, for this reason, will be the one adopted.

Definition 1.76. Let (Ω,F ,P) be a probability space. Let E ∈ F be an event such that P(E) > 0. For
every event A ∈ F , the conditional probability of A given E is defined as

P(A | E) :=
P(A,E)

P(E)
.

Note that (Ω,F ,P(· | E)) is also a probability space.
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The definition of conditional probability provides a natural definition of conditional expectation. Suppose
(Ω,F ,P) is a probability space and X : Ω→ R is a random variable. Suppose that there exists a countable
set I ⊆ R such that

∑
x∈I P(X = x) = 1. Let E ∈ F be any event such that P(E) > 0. Then the conditional

expectation of X with respect to E is defined as

E[X | E] :=
∑
x∈I

xP(X = x | E).

Another simple way to extend the idea of conditional probability is to “nest” it. Suppose then that F ∈ F is
such that P(E,F ) > 0. Note that this implies that P(F ) > 0. Then for every A ∈ F ,

P(A | E,F ) =
P(A,E, F )

P(E,F )
=

P(A,E | F )P(F )

P(E | F )P(F )
=

P(A,E | F )

P(E | F )
.

Hence, to condition on F , and use this new probability measure to condition on E is equivalent to conditioning
on the event E ∩ F .

Definition 1.77. Let (Ω,F ,P) be a probability space. A set of events I ⊆ F is said to be independent if for
every finite subset S of it, it holds that

P
(⋂
S
)

=
∏

P(S).

Definition 1.78. Let (Ω,F ,P) be a probability space. Let I be a set, and { (Mt,Σt) : t ∈ I} be a collection
of measurable spaces. A set of random variables {Xt ∈MΩ

t : t ∈ I} is said to be independent if for every
finite subset S of it and for every collection of events {Et ∈ Σt : t ∈ S},

P

(⋂
t∈S
{Xt = Et}Ω

)
=
∏
t∈S

P(Xt = Et).
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Chapter 2

The Naive Algorithm

The naive algorithm relies on Tutte’s Matrix Tree Theorem, which relies on the Cauchy-Binet Formula.
This is the roadmap for this chapter. The naive algorithm was first described by Kulkarni [18], in a more
general setting, more focused on sampling than on spanning trees. The approach here is quite different,
focusing on the underlying theory — most importantly, on Kirchhoff’s Matrix Tree Theorem [17] and Tutte’s
generalization.

It is interesting to note that the algorithm developed in this chapter will actually sample r-arborescences.
We begin then by showing this is equivalent to the problem of sampling spanning trees.

Proposition 2.1. For every T ∈ TG and for every r ∈ V , there is a unique F ∈ TD(r) such that the
underlying graph of D[F ] is G[T ].

Proof. This can be done by induction on |V |.
If |V | = 0, the thesis vacuously holds. If |V | = 1, then both TG and TD(r) are equal to {∅}.
Let then |V | > 1. Let T ∈ TG and let j be a leaf of G[T ] which is distinct from r. Let k be the only vertex

adjacent to j in G[T ]. Note that T \ {kj} is a spanning tree of G− j. Therefore, the induction hypothesis
applies, and there is a unique F ′ ∈ TD−j(r) such that (G− j)[T \ {kj}] is the underlying graph of (D− j)[F ′].

Define F := {kj} ∪ F ′. Note then that D[F ] is an r-arborescence of D whose underlying graph is G[T ].
Note that, since r 6= j, then we have that kj ∈ F in every r-arborescence F of D, to ensure that

∣∣δin(j)
∣∣ = 1.

This, along with the fact that F ′ is unique, implies the uniqueness of F .

2.1 The Cauchy-Binet Formula
The main issue we address here is the fact that the determinant is defined on matrices with the same set

of row and column indices. We need to extend such definition, not only to apply it to incidence matrices,
but even to work with the determinant of submatrices. Bourbaki [4] defines matrices as we do, namely, as a
function whose domain is the product of two finite sets. We work with his definition, and use the idea of
function matrix, to define the determinant of a matrix when the set of row indices and column indices is not
the same, but of the same size.

Such definitions and developments are new. They arose from necessity; even to just state the Cauchy-Binet
Formula precisely, it is necessary to develop new concepts. A function matrix is a meaningful and precise way
of relating the new concepts that must be approached with the definitions already present in Chapter 1.

Lemma 2.2. Let U and V be finite sets. Let A : U × V → R be any function. Then∏
i∈U

∑
j∈V

A(i, j) =
∑

f : U→V

∏
i∈U

A(i, f(i)).

Proof. This proof can be done by induction on |U |.
If |U | = 0, then U = ∅. It is a (curious) vacuous truth that there is a unique function f : ∅→ V . Denying

either its existence or its uniqueness require an element in the empty set. Therefore, the RHS is the sum of
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only one product, and this product is empty. Since the LHS is also an empty product, it follows that both
sides are equal to 1, and the base case holds.

Suppose that |U | > 0. Take any k ∈ U , and set U ′ := U \ {k}. Since for any function f : U → V it is true
that

1 =
∑
j∈V

[f(k) = j],

we can multiply the summation over functions by 1, factor the term with k, and obtain that

∑
f : U→V

∏
i∈U

A(i, f(i)) =
∑

f : U→V

∑
j∈V

[f(k) = j]

∏
i∈U

A(i, f(i))

=
∑
j∈V

A(k, j)

 ∑
f : U→V

[f(k) = j]
∏
i∈U ′

A(i, f(i))

.
This restricts the sum over all the functions g : U ′ → V , and the induction hypothesis completes the proof:

∑
j∈V

A(k, j)

 ∑
g : U ′→V

∏
i∈U ′

A(i, g(i))

 =

∑
j∈V

A(k, j)

∏
i∈U ′

∑
j∈V

A(i, j)

 =
∏
i∈U

∑
j∈V

A(i, j).

Definition 2.3. Let U and V be finite sets. Let f : U → V be a function. The function matrix Pf ∈ RV×U
is defined as

Pf :=
∑
i∈U

ef(i)e
T
i .

The usefulness of a function matrix comes from the fact that it is an algebraic object that encodes the
operation of applying a function to the indices of a matrix. More formally, let U and V be finite sets, and
f : U → V be a function. For any i ∈ U ,

Pfei =

∑
j∈U

ef(j)e
T
j

ei =
∑
j∈U

[i = j]ef(j) = ef(i).

We have already worked with an example of function matrix, and obtained several interesting results.
Let D = (V,A, ψ) be a digraph. Moreover, let λ : V × V → V and ρ : V × V → V be defined as, for every
i, j ∈ V ,

λ(i, j) := i,

ρ(i, j) := j.

Furthermore, let a ∈ A be such that ψ(a) = ij. Then

HDea = ej = eρψ(a) = Pρψea.

Since this argument holds for every a ∈ A, we conclude that HD = Pρψ. Similarly, we have that TD = Pλψ.
Hence, the computations involving the head and tail matrices are an example of how convenient it is to
compute with function matrices, since the matrix product reduces into function application.

Proposition 2.4. Let T , U and V be finite sets. Let f : U → V and g : T → U . Then

PfPg = Pfg.

Proof. Note that, for every i ∈ T ,

PfPgei = Pfeg(i) = efg(i) = Pfgei.

Since the set {ei ∈ RT : i ∈ T} generates RV , this suffices to prove the desired equation.
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Proposition 2.5. Let U and V be finite sets. Let f : U → V be a bijective function. Then

Pf−1 = PT
f .

Proof. For every i ∈ V , note that

(Pf )Tei =

∑
j∈U

ef(j)e
T
j

T

ei

=
∑
j∈U

[f(j) = i]ej

= ef−1(i) = Pf−1ei.

Since the set {ei ∈ RV : i ∈ V } generates RV , this completes the proof.

Function matrices represent a simple linear transformation between vector spaces, which uses the given
function to associate elements from the canonical basis. As a result, it is possible to simplify the products
quite easily. Let A ∈ RV×U and φ : V → U . Then

(APφ)i,j = eTi APφej = eTi Aeφ(j) = Ai,φ(j). (2.6)

Moreover, if φ is bijective,

(PφA)i,j = eTi PφAej = (PT
φ ei)

TAej = Aφ−1(i),j . (2.7)

Note that given a matrix A ∈ RV×U and a bijective function φ : V → U , there are actually two ways to have
a matrix with the same row and column set — APφ and PφA. The former describes an operator on RV , and
the latter an operator on RU . It is then possible to calculate both determinants, both of which somehow
compete for the (yet to come) definition of “determinant of A with respect to φ”. The next proposition will
avoid such a crisis, by ensuring that both calculations lead to the same result.

Proposition 2.8. Let U and V be finite sets. Let φ : V → U be a bijective function. If A ∈ RV×U , then

det(APφ) = det(PφA).

Proof. Lemma 1.20 implies that for any σ ∈ Sym(V ),

sgn(σ) = sgn(σφ−1φ) = sgn(φσφ−1).

Therefore, equation (2.6) ensures that

det(APφ) =
∑

σ∈Sym(V )

sgn(σ)
∏
i∈V

Ai,φσ(i)

=
∑

σ∈Sym(V )

sgn(φσφ−1)
∏
i∈V

Ai,φσ(i).

Since the mapping (σ 7→ φσφ−1) is a bijection from Sym(V ) to Sym(U), we can change the summation index
and apply equation (2.7), to conclude that

det(APφ) =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈V

Ai,τφ(i)

=
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

Aφ−1(i),τ(i)

=
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

(PφA)i,τ(i)

= det(PφA).
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The proof above demands a remark. Let f, g : U → V be bijective functions. Lemma 1.20 implies that

sgn(gf−1) = sgn(f−1g).

The LHS is the sign of a permutation on V , and the RHS is the sign of a permutation on U . Proposition 2.8
translates this result to a different concept, since for A ∈ RV×U and φ : V → U bijective, we just proved that

det(APφ) = det(PφA).

The LHS is the determinant of a matrix on RV×V , and the RHS is the determinant of a matrix on RU×U .

Definition 2.9. Let U and V be finite sets. Let φ : V → U be a bijective function. Let A ∈ RV×U . The
determinant (with respect to φ) of A is defined as

det
φ

(A) := det(APφ).

Theorem 2.10. Let U and V be finite sets. Let φ : V → U be a bijective function. If A ∈ RV×U , then

det
φ

(A) = det
φ−1

(AT).

Proof. Several previous results come into play. Applying successively, Theorem 1.23, Proposition 2.5, and
Proposition 2.8, we have that

det
φ

(A) = det(APφ) = det(PT
φA

T) = det(Pφ−1AT) = det(ATPφ−1) = det
φ−1

(AT).

Theorem 2.11. Let U and V be finite sets. Let f : U → V and g : U → V be functions. Then

det(PT
f Pg) = [f, g injective][Im(f) = Im(g)] sgn(f−1g).

Proof. We will prove:

(1) If det(PT
f Pg) is nonzero, then both f and g are injective.

(2) If det(PT
f Pg) is nonzero, then Im(f) = Im(g).

(3) If det(PT
f Pg) is nonzero, then it is equal to sgn(f−1g).

First, note that if f is not injective, then for any A ∈ RV×U , we have that det(PT
f A) = 0. To see why,

assume there are distinct i and j in U such that f(i) = f(j). Then

Pfei = ef(i) = ef(j) = Pfej ,

so that Pf (ei − ej) = 0. It follows that ei − ej is a nonzero vector in Null(Pf ), and, therefore, in Null(ATPf ).
This implies that det(ATPf ) = 0, and Theorem 1.23 ensures that det(PT

f A) = 0.
The contrapositive of this result applied to both PT

f Pg and PT
g Pf implies (1).

Now the second step. Assume that Im(g) 6⊆ Im(f). Then there exists i ∈ U such that for every j ∈ U we
have that f(j) 6= g(i). Therefore, for every j ∈ U ,

0 = eTf(j)eg(i) = eTj P
T
f Pgei.

In other words, ei ∈ Null(PT
f Pg), so that det(PT

f Pg) must be zero. Therefore, Im(g) 6⊆ Im(f) implies that
det(PT

f Pg) is zero.
The contrapositive of this result applied to both PT

f Pg and PT
g Pf implies step (2).

Now the final step. Let f, g : U → V be such that det(PT
f Pg) is nonzero. Results (1) and (2) imply that

there is S ⊆ V such that Im(f) = Im(g) = S and that there exists g−1 : S → U , inverse of g.
For every i, j ∈ U ,

(PT
f Pg)ij = eTi P

T
f Pgej = eTf(i)eg(j) = [f(i) = g(j)].
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Hence,

det(PT
f Pg) =

∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

(PT
f Pg)i,σ(i)

=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

[f(i) = gσ(i)]

=
∑

σ∈Sym(U)

sgn(σ)[f = gσ].

Given the conditions on f and g, it holds that f = gσ if and only if σ = g−1f , so that

det(PT
f Pg) = [f, g injective][Im(f) = Im(g)]

∑
σ∈Sym(U)

sgn(σ)[σ = g−1f ]

= [f, g injective][Im(f) = Im(g)] sgn(g−1f).

The proof is complete since, if f and g are injective and have the same image, the function g−1f is invertible
and its inverse is f−1g, so that sgn(g−1f) = sgn(f−1g).

The theorem just proved goes further into the direction of relating determinants of matrices and signs
of permutations. Let f, g : U → V be functions. Note that Proposition 2.5 hints that PT

f is a “substitute”
for f−1, and the result just proved says that det(PT

f Pg) is a good generalization for sgn(f−1g), since both
are equal whenever the expression sgn(f−1g) makes sense, i.e., f−1g exists and is invertible.

Proposition 2.12. Let U and V be finite sets. Let S ⊆ V . Let f : U → V . Let φ : S → U be a bijective
function. Then

det
φ

(Pf [S,U ]) = [f injective][Im(f) = S] sgn(φf).

Proof. Proposition 2.5 and Proposition 2.8 ensure that

det
φ

(Pf [S,U ]) = det(Pf [S,U ]Pφ) = det(PφPf [S,U ]) = det(PT
φ−1Pf [S,U ]).

Moreover, note that
Pf [S,U ]ei = [f(i) ∈ S]ef(i).

Hence, if Im(f) 6⊆ S, we have that there exists i ∈ U such that Pf [S,U ]ei = 0. This implies that both sides
of the statement are zero. We can then assume that Im(f) ⊆ S. In this case, we have that Pf [S,U ] is a
function matrix in RS×U . Furthermore, φ is bijective, Im(φ−1) = S, so that Theorem 2.11 ensures

det
φ

(Pf [S,U ]) = [f injective][Im(f) = S] sgn(φf).

Proposition 2.13 (Cauchy-Binet, restricted version). Let U and V be finite sets. Let f, g : U → V be
functions. For every set S ∈

(
V
|U |
)
, let φS : S → U be a bijective function. Then

det(PT
f Pg) =

∑
S∈( V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U ]).

Proof. Theorem 2.10 and Proposition 2.12 ensure that∑
S∈( V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U ]) =
∑

S∈( V
|U|)

det
φS

(Pf [S,U ]) det
φS

(Pg[S,U ])

=
∑

S∈( V
|U|)

[f injective][Im(f) = S] sgn(φSf)[g injective][Im(g) = S] sgn(φSg)

= [f, g injective][Im(f) = Im(g)]
∑

S∈( V
|U|)

[Im(f) = S] sgn(φSf) sgn(φSg)

= [f, g injective][Im(f) = Im(g)] sgn(φIm(f)f) sgn(φIm(g)g).
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Let S := Im(f). If f is injective, we have that sgn(φSf) = sgn(f−1φ−1
S ), and it is possible to simplify the

expression on the nonzero case to

sgn(φSg) sgn(φSf) = sgn(f−1φ−1
S ) sgn(φSg) = sgn(f−1g).

Note that Theorem 2.11 finishes the proof:∑
S∈( V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U ]) = [f, g injective][Im(f) = Im(g)] sgn(f−1g) = det(PT
f Pg).

For given functions f, g : U → V , the summation on the statement of Proposition 2.13 is precisely to “try
all” candidates for Im(f) and Im(g). This will generalize into the Cauchy-Binet Formula, but it remains to
relate the determinant of arbitrary matrices with the determinant of function matrices.

Proposition 2.14. Let U and V be finite sets. Let A,B ∈ RV×U . Then

det(ATB) =
∑

f : U→V

det(PT
f B)

∏
i∈U

Af(i),i.

Proof. After applying the definition of the determinant, matrix product, and transpose, we obtain

det(ATB) =
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

(ATB)i,σ(i)

=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

∑
j∈V

AT
i,jBj,σ(i)

=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

∑
j∈V

Aj,iBj,σ(i).

Now Lemma 2.2 produces the summation over functions needed. Then some factoring and collecting
finishes the proof:

det(ATB) =
∑

σ∈Sym(U)

sgn(σ)
∑

f : U→V

∏
i∈U

Af(i),iBf(i),σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

) ∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

Bf(i),σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

) ∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

(PT
f B)i,σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(PT

f B).

Corollary 2.15. Let U and V be finite sets. Let A,B ∈ RV×U . Then

det(ATB) =
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg).
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Proof. Apply, in this order, Proposition 2.14, Theorem 1.23, Proposition 2.14, and Theorem 1.23.

det(ATB) =
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(PT

f B)

=
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(BTPf )

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

g Pf )

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg).

Theorem 2.16 (The Cauchy-Binet Formula). Let U and V be finite sets. For every set S ∈
(
V
|U |
)
, let

φS : S → U be a bijective function. Let A,B ∈ RV×U . Then

det(ATB) =
∑

S∈( V
|U|)

det
φ−1
S

(AT[U, S]) det
φS

(B[S,U ]).

Proof. First, it is useful to give an alternate expression for detφS
(B[S,U ]).

Let S ∈
(
V
|U |
)
. Theorem 1.23 and Proposition 2.8 allow the manipulations of the matrices, and Proposi-

tion 2.5 states the relation between PφS
and its transpose, so that

det
φS

(B[S,U ]) = det(B[S,U ]PφS
) = det(Pφ−1

S
BT[U, S]) = det(BT[U, S]Pφ−1

S
).

Corollary 2.15 provides the sum over functions, and once again Theorem 1.23, Proposition 2.8, and Proposi-
tion 2.5 simplify the determinant, so that

det
φS

(B[S,U ]) = det(BT[U, S]Pφ−1
S

) =
∑

g : U→S

(∏
i∈U

Bg(i),i

)
det(PT

g Pφ−1
S

) =
∑

g : U→S

(∏
i∈U

Bg(i),i

)
det
φS

(Pg).

Finally, Proposition 2.12 ensures that the summation range can be extended over every function g : U → V ,
with detφS

(Pg[S,U ]) selecting the ones whose image is S, so that

det
φS

(B[S,U ]) =
∑

g : U→V

(∏
i∈U

Bg(i),i

)
det
φS

(Pg[S,U ]).

The path here is clear. Use Corollary 2.15 to write the product in terms of function matrices, then use
Proposition 2.13 and the equality just proved to finish the proof:

det(ATB) =
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg)

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

) ∑
S∈( V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U ])

=
∑

S∈( V
|U|)

∑
f : U→V

(∏
i∈U

Af(i),i

)
det
φS

(Pf [S,U ])
∑

g : U→V

(∏
i∈U

Bg(i),i

)
det
φS

(Pg[S,U ])

=
∑

S∈( V
|U|)

∑
f : U→V

(∏
i∈U

Af(i),i

)
det
φS

(Pf [S,U ]) det
φS

(B[S,U ])

=
∑

S∈( V
|U|)

det
φS

(A[S,U ]) det
φS

(B[S,U ]) =
∑

S∈( V
|U|)

det
φ−1
S

(AT[U, S]) det
φS

(B[S,U ]).
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From a computational perspective, Theorem 2.16 is interesting because it reduces the sum of an exponential
amount of determinants into a single one. This will be used first to give a determinant formula for counting
spanning trees of a graph. Then, since determinants can be calculated in polynomial time, this will be
fundamental to describe the first of the two algorithms in this text for sampling spanning trees.

2.2 Calculating Determinants
The results developed so far can be exploited further into tools to calculate determinants. The main

results on this section are the Matrix Determinant Lemma 2.23 and the Laplace Expansion 2.21. However,
the next section will mainly use Proposition 2.20, which can be seen as a “weaker version” of the Laplace
Expansion. We begin with a remarkable first application of the Cauchy-Binet Formula.

Proposition 2.17. Let U be a finite set, and A,B ∈ RU×U . Then

det(AB) = det(A) det(B).

Proof. Note that S :=
(
U
|U |
)
is actually equal to {U}. Let φ : U → U denote the identity function in U . Then

Theorem 2.16 ensures

det(AB) = det
φ−1

(A[U,U ]) det
φ

(B[U,U ]) = det
φ−1

(A) det
φ

(B) = det(AI) det(BI) = det(A) det(B).

Proposition 2.18. Let U and V be finite sets. Let A ∈ RV×U . For every σ ∈ Sym(U) and for every
bijection φ : V → U ,

det
σφ

(A) = sgn(σ) det
φ

(A).

Proof. Apply Proposition 2.4, Proposition 2.8, Proposition 1.25, and Proposition 2.8 again

det
σφ

(A) = det(APσφ) = det(APσPφ) = det(PφAPσ) = sgn(σ) det(PφA) = sgn(σ) det
φ

(A).

Lemma 2.19. Let U be a finite set, and A ∈ RU×U . If there is i ∈ U such that Aei = αei for some α ∈ R,
then

det(A) = α det(A[{i}c, {i}c]).

Proof. Let i ∈ U be such that Aei = αei. For every σ ∈ Sym(U), it holds that Aσ(i),i = [σ(i) = i]α.
Theorem 1.23 and the definition of determinant imply that

det(A) = det(AT) =
∑

σ∈Sym(U)

sgn(σ)
∏
k∈U

Aσ(k),k = α
∑

σ∈Sym(U)

[σ(i) = i] sgn(σ)
∏

k∈U\{i}

Aσ(k),k.

Let S := {σ ∈ Sym(u) : σ(i) = i}. The map (σ 7→ σ�U\{i}) from S into Sym(U \ {i}) is bijective. Moreover,

Proposition 1.21 ensures that for every σ ∈ S we have that sgnU\{i}

(
σ�U\{i}

)
= sgnU (σ). Theorem 1.23

then finishes the proof:

det(A) = α

 ∑
τ∈Sym(U\{i})

sgn(τ)
∏

k∈U\{i}

Aτ(k),k

 = α det(AT[{i}c, {i}c]) = α det(A[{i}c, {i}c]).

Let U and V be finite sets, let φ : V → U be a bijective function, and let i ∈ V . If we denote j := φ(i),
note that since φ is bijective, we have that φ�V \{i} is a bijection from V \ {i} to U \ {j}. Moreover, note
that for any k ∈ U , we can define σ ∈ Sym(U) as the transposition (jk), and have that σφ(i) = k. Such
manipulations will become important when relating determinants with respect to φ with determinants of
submatrices.
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Proposition 2.20. Let U and V be finite sets. Let A ∈ RV×U , and i ∈ V and j ∈ U be such that Aej = αei,
for some α ∈ R. Then for every bijective function φ : V → U and σ ∈ Sym(U) such that σφ(i) = j, we have
that

det
φ

(A) = α sgn(σ) det
ψ

(A[{i}c, {j}c]),

with ψ := (σφ)�V \{i}.

Proof. Note that APσφ ∈ RV×V is such that (APσφ)ei = αei. Hence Proposition 2.18 and Lemma 2.19
ensure that

det
φ

(A) = sgn(σ) det
σφ

(A) = sgn(σ) det(APσφ) = sgn(σ)α det((APσφ)[{i}c, {i}c]).

Moreover, note that since Aej = αei, we have that A[{i}c, U ]ej = 0. Proposition 1.17 ensures

(APσφ)[{i}c, {i}c] = A[{i}c, U ]Pσφ[U, {i}c] = A[{i}c, {j}c]Pσφ[{j}c, {i}c] = A[{i}c, {j}c]Pψ,

so that
det
φ

(A) = α sgn(σ) det(APσφ[{i}c, {i}c]) = α sgn(σ) det
ψ

(A[{i}c, {j}c]).

Theorem 2.21 (Laplace Expansion). Let U and V be finite sets, and let i ∈ V . Let A ∈ RV×U , and let
φ : V → U be a bijective function. For every j ∈ U , let σj ∈ Sym(V ) be such that σjφ−1(j) = i. Moreover,
for every j ∈ U set ψj := (σjφ

−1)�U\{j}. Then

det
φ

(A) =
∑
j∈U

Aij sgn(σj) det
ψ−1

j

(A[{i}c, {j}c]).

Proof. Set B := A− eieTi A. Note that
A = B +

∑
j∈U

Aijeie
T
j .

Theorem 1.23 implies that detφ(A) = det(APφ) = det(PT
φA

T). Moreover, since BTei = 0, we have that
PT
φB

Tei = 0. Furthermore,

det
φ

(A) = det(PT
φA

T) = det

PT
φ

B +
∑
j∈U

Aijeie
T
j

T
 = det

PT
φB

T +
∑
j∈U

AijP
T
φ eje

T
i

.
Finally, Proposition 1.24 and Theorem 1.23 imply

det
φ

(A) =
∑
j∈U

Aij det(PT
φB

T + PT
φ eje

T
i ) =

∑
j∈U

Aij det(PT
φ (BT + eje

T
i )) =

∑
j∈U

Aij det((B + eie
T
j )Pφ).

For every j ∈ U , note both that (B+ eie
T
j )Tei = ej and that (B + eie

T
j )[{i}c, {j}c] = A[{i}c, {j}c]. Hence

det
φ

(A) =
∑
j∈U

Aij det
φ

(B + eie
T
j )

=
∑
j∈U

Aij det
φ−1

((B + eie
T
j )T)

=
∑
j∈U

Aij sgn(σj) det
ψj

(
(B + eie

T
j )T[{j}c, {i}c]

)
by Proposition 2.20,

=
∑
j∈U

Aij sgn(σj) det
ψ−1

j

(
(B + eie

T
j )[{i}c, {j}c]

)
by Theorem 2.10,

=
∑
j∈U

Aij sgn(σj) det
ψ−1

j

(A[{i}c, {j}c]).
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Let V be a finite set. Let ≤ be a total order on V . A matrix in RV×V is said to be upper triangular
(with respect to ≤) if j > i implies that Aij = 0. Moreover, a matrix in RV×V is said to be lower triangular
(with respect to ≤) if its transpose is upper triangular with respect to ≤. A triangular matrix is any matrix
that is either lower or upper triangular. Note that if A is upper triangular and i := minV , we have that

Aei =
∑
j∈V

Aijej =
∑
j∈V

[j ≤ i]Aijei = Aiiei

This can be used, with Lemma 2.19, to give a simple formula for the determinant of triangular matrices.

Proposition 2.22. Let V be a finite set. Let A ∈ RV×V be a triangular matrix. Then

det(A) =
∏
i∈V

Aii.

Proof. The proof is by induction on |V |.
If |V | = 0, the thesis vacuously holds. Suppose then that |V | > 0. Let A be a upper triangular matrix in

RV×V with respect to ≤. Set i := minV . Note that Aei = Aiiei. Them Lemma 2.19 ensures

det(A) = Aii det(A[{i}c, {i}c]).

Note that A[{i}c, {i}c] is a triangular matrix with respect to ≤ restricted to V \ {i}. Therefore, the induction
hypothesis ensures

det(A) = Aii det(A[{i}c, {i}c]) = Aii
∏

j∈{i}c
Ajj =

∏
j∈V

Ajj .

Hence, the statement holds for upper triangular matrices. The proof is done, since if L ∈ RV×V is a lower
triangular matrix with respect to ≤, we have that Theorem 1.23 implies that det(L) = det(LT), so that
suffices to apply the result proved above to LT.

Lemma 2.23 (Matrix Determinant Lemma). Let V be a finite set. Let A ∈ RV×V be an invertible matrix,
and let x, y ∈ RV . Then

det(A+ xyT) = det(A)(1 + yTA−1x).

Proof. Let U := V ∪ {k}, for some k 6∈ V . Consider the following expression as a product of matrices in
RU×U , and written such that the first rows are indexed by V . Computation of the matrix product ensures
that [

I x

0 1 + yTx

]
=

[
I 0

yT 1

][
I + xyT x

0 1

][
I 0

−yT 1

]
Proposition 2.22 ensures the determinant of the LHS is 1 + yTx. Proposition 2.17 ensures the determinant
of the RHS is the product of the determinant of each matrix. Moreover, the first and the third matrices
are triangular, so that Proposition 2.22 applies once again, and ensure both determinants are 1. For the
determinant of the matrix in the middle, note that[

I + xyT x

0 1

]
ek =

[
I + xyT x

0 1

][
0

1

]
=

[
0

1

]
= ek.

Therefore, Lemma 2.19 ensures its determinant is equal to det(I+xyT). Therefore, the equality above implies
that det(I + xyT) = 1 + yTx. Proposition 2.17 then finishes the proof

det
(
A+ xyT

)
= det(A) det

(
I +A−1xyT

)
= det(A)

(
1 + yTA−1x

)
.
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2.3 Matrix Tree Theorems
This section aims to prove Tutte’s Matrix Tree Theorem 2.34, and use it to prove Kirchhoff’s result 2.35

as a corollary. Both results arise from an interplay between linear algebra and combinatorics. Therefore,
to properly understand the material, we must observe how properties from one world manifest themselves in
another. For this reason, most theorems in this section are algebraic conclusions made from combinatorial
hypothesis. The results build up into Proposition 2.29 and Proposition 2.32, which reverse the logic and give
combinatorial conclusions from algebraic hypotesis. These results, along with Theorem 2.16, are the tools to
prove Tutte’s Matrix Tree Theorem.

Proposition 2.24. Let D = (V,A, ψ) be a digraph, and denote by G be the underlying graph of D. If i ∈ V
and j ∈ V are in the same component in G, then there exists x ∈ RA such that

BDx = ej − ei.

Proof. Since i and j are in the same component in G, there exists an ij-walk (in G). Let then (i, f1, . . . , f`, j)
be one such walk, and denote by ` its length. We proceed by induction on `.

If ` = 0, then x := 0 suffices.
If ` > 0, denote by k the vertex u1 and apply the induction hypothesis to (k, f2, . . . , f`, j). Therefore,

there is y ∈ RA such that BDy = ej − ek. At least one of ik or ki is in A. In the former case, take x := y+ eik.
In the latter case, take x := y − eki.

The proposition just proved is the connection from linear algebra and combinatorics that will be exploited
into the bigger results in this section.

Let G = (V,E) be a graph. A function f ∈ RV is said to be constant in every component of G if, for
every component C of G, there exists a value αC ∈ R such that f�C = αC . This is equivalent to say that
i ∈ V and j ∈ V connected in G implies that f(i) = f(j). Moreover, if C ⊆ P(V ) is the set of components of
V , we have that

f =
∑
C∈C

αC1C .

Hence, f is constant in every component of C if and only if it belongs to the space spanned by the vectors
{1C : C ∈ C}.

Proposition 2.25. Let D = (V,A, ψ) be a digraph, and let G be the underlying graph of D. Then

Null
(
BT
D

)
= span({1C : C is a component of G.}).

Proof. Suppose BT
Df = 0. Let i ∈ V and j ∈ V be vertices in the same component of G. Proposition 2.24

then ensures that there exists x ∈ RA such that BDx = ej − ei. Therefore

f(j)− f(i) = (ej − ei)Tf = (BDx)Tf = xTBT
Df = 0.

Hence f is constant in every component of G. Therefore, f ∈ span({1C : C is a component of G}).
Conversely, suppose f ∈ span({1C : C is a component of G}). For every ij ∈ A, we have that i and j

are vertices in the same component in G. Hence, f(j)− f(i) = 0. Therefore, for every ij ∈ A,

eTij(B
T
Df) = (ej − ei)Tf = f(j)− f(i) = 0.

Hence, f ∈ Null
(
BT
D

)
.

Proposition 2.26. Let D = (V,A, ψ) be a digraph with |V | − 1 arcs. Let G be the underlying graph of D,
let r ∈ V , and let φ : V \ {r} → A be a bijective function. If G is not connected, then

det
φ

(BD[{r}c, A]) = 0.

39



Proof. Theorem 2.10 and Proposition 2.8 ensure

det
φ

(BD[{r}c, A]) = det
φ−1

(BT
D[A, {r}c]) = det(BT

D[A, {r}c]Pφ−1) = det(Pφ−1BT
D[A, {r}c]).

Proposition 1.32 reduces the statement into finding a nonzero element in Null(Pφ−1BT
D[A, {r}c]). It

suffices to find a nonzero element in Null(BT
D[A, {r}c]). Let C ⊆ V be the component of G containing r.

Proposition 2.25 ensures that BT
D1V \C = 0.

Since r 6∈ V \ C, we have that 1V \C(r) = 0, so that Propositon 1.17 ensures

0 = BT
D1V \C = BT

D[A, {r}c]1V \C .

Note that 1V \C is nonzero because C 6⊆ V . Hence, the proof is done.

Let D = (V,A, ψ) be an r-arborescence with at least 2 vertices. Let i ∈ V be a leaf in D, and denote by
ji be the only arc incident on i. Note then that

HD[V \ {r, i}, A− ji] = HD−i[{r}c, A(D − i)]
TD[V \ {r, i}, A− ji] = TD−i[{r}c, A(D − i)].

(2.27)

Since the incidence, adjacency, and Laplacian matrices are defined using the head and tail matrices, this
equation relates all of them in a similar manner. Also, since D − i is an r-arborescence with 1 vertex fewer
than D, these relations are quite useful in inductive proofs.

Proposition 2.28. Let D = (V,A, ψ) be a digraph with |V | − 1 arcs. Let G be the underlying graph of D,
let r ∈ V , and let φ : V \ {r} → A be a bijective function. If G is a tree, then

det
φ

(BD[{r}c, A])2 = 1.

Proof. The proof is by induction on |V |.
If |V | = 1, the matrix BD[{r}c, A] is empty, and has determinant 1. Therefore, the statement holds, since

the single vertex with empty set of edges is a tree.
Let |V | > 1. Theorem 1.8 ensures there exists i ∈ V \ {r} with degree 1 in G. Let ij ∈ E be the only

edge adjacent to i. Suppose ij ∈ A — the case in which ji ∈ A is analogous.
Note that BT

D[A, {r}c]ei = eij . Let σ ∈ Sym(V ) be any permutation such that σφ−1(ij) = i, and denote
by ϕ := (σφ−1)�A\{ij}. Then

det
φ

(BD[{r}c, A]) = det
φ−1

(BT
D[A, {r}c]) by Theorem 2.10,

= sgn(σ) det
ϕ

(BT
D[A− ij, V \ {r, i}]) by Proposition 2.20,

= sgn(σ) det
ϕ

(BT
D−i[A(D − i), {r}c]) by Equation (2.27),

= sgn(σ) det
ϕ−1

(BD−i[{r}c, A(D − i)]) by Theorem 2.10.

Since i is a leaf in G, the graph G − i is a tree, and D − i is an orientation of it. Hence, the induction
hypothesis applied to D − i and ϕ−1 completes the proof:(

det
φ

(BD[{r}c, A])

)2

=

(
sgn(σ) det

ϕ−1
(BD−i[{r}c, A(D − i)])

)2

= sgn(σ)2 det
ϕ−1

(BD−i[{r}c, A(D − i)])2 = 1.

Proposition 2.29. Let D = (V,A, ψ) be a digraph with |V | − 1 arcs. Let G be the underlying graph of D,
let r ∈ V , and let φ : V \ {r} → A be a bijective function. Then

det
φ

(BD[{r}c, A])2 = [G is a tree].
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Proof. Proposition 2.28 ensures that if G is a tree, then detφ(BD[{r}c, A])2 = 1. It remains to show that if
G is not a tree, then detφ(BD[{r}c, A])

2
= 0.

We proceed to prove the contrapositive of this statement. Suppose then that det(BD[{r}c, A])2 6= 0.
The contrapositive of Proposition 2.26 ensures that G is connected. Since G has |V | − 1 edges, then G is a
tree.

Proposition 2.29 is an algebraic criterion to determine if the underlying graph of a digraph is a tree. It
bring us close to algebraically characterizing arborescences. We continue on this path with the following
theorem.

Proposition 2.30. Let D = (V,A, ψ) be a digraph with |V | − 1 arcs. Let r ∈ V , and let φ : V \ {r} → A be
a bijective function. Then detφ(HD[{r}c, A]) 6= 0 implies that for every i ∈ V ,∣∣δin(i)

∣∣ = [r 6= i].

Proof. Theorem 2.10 and Proposition 2.8 ensure

det
φ

(HD[{r}c, A]) = det
φ−1

(HT
D[A, {r}c]) = det(HT

D[A, {r}c]Pφ−1) = det(Pφ−1HT
D[A, {r}c]).

If i 6= r is a vertex with indegree zero, then ei is a nonzero vector in Null(HT
D[A, {r}c]), which ensures the

determinant is zero. Therefore, if the determinant is nonzero, every vertex different from r has indegree at
least 1. But since there are |V | − 1 arcs, every vertex different from r has indegree precisely 1.

Proposition 2.31. Let D = (V,A, ψ) be an r-arborescence. Let φ : V \ {r} → A be a bijective function.
Then

det
φ

(HD[{r}c, A]) = det
φ

(BD[{r}c, A]).

Proof. Suppose D = (V,A, ψ) and φ are a minimal counterexample, i.e., a minimal r-arborescence such that
both determinants differ. It is impossible for |V | to be one, since in such case BD = HD = 0.

Hence, we have that |V | ≥ 2. Theorem 1.9 ensures there is a vertex distinct from r with outdegree
zero. Let i be one such vertex. Denote by ji the only arc incident on i. Note that HT

D[A, {r}c]ei = eji.
Let σ ∈ Sym(V ) be any permutation such that σφ−1(ji) = i, and denote by ϕ := (σφ−1)�A\{ji}. Then

det
φ

(HD[{r}c, A]) = det
φ−1

(HT
D[A, {r}c]) by Theorem 2.10,

= sgn(σ) det
ϕ

(HT
D[A− ji, V \ {r, i}]) by Proposition 2.20,

= sgn(σ) det
ϕ

(HT
D−i[A(D − i), {r}c]) by Equation (2.27),

= sgn(σ) det
ϕ−1

(HD−i[{r}c, A(D − i)]) by Theorem 2.10.

The same reasoning, with the same parameters σ and ϕ, ensures that

det
φ

(BD[{r}c, A]) = sgn(σ) det
ϕ−1

(BD−i[{r}c, A(D − i)]).

Since the statement holds for D − i and ϕ−1, we can conclude that

det
φ

(BD[{r}c, A]) = sgn(σ) det
ϕ−1

(BD−i[{r}c, A(D − i)])

= sgn(σ) det
ϕ−1

(HD−1[{r}c, A(D − i)])

= det
φ

(HD[{r}c, A]).

But this contradicts the fact that D is a counterexample, and the proof is finished.
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Proposition 2.32. Let D = (V,A, ψ) be a digraph with |V | − 1 arcs. Let r ∈ V , and let φ : V \ {r} → A be
a bijective function. Then

det
φ

(HD[{r}c, A]) det
φ

(BD[{r}c, A]) = [D is an i-arborescence].

Proof. If D is an r-arborescence, Proposition 2.29 and Proposition 2.31 ensures that the product of determi-
nants is one.

If D is not an r-arborescence, then either its underlying graph is not a tree, or the indegrees are not
correct. If the underlying graph of D is not a tree, Proposition 2.29 ensures that detφ(BD[{r}c, A])

2
= 0.

This implies that detφ(BD[{r}c, A]) = 0. If the degrees are not correct, then Proposition 2.30 implies that
det(HD[{r}c, A]) = 0. Either way, if D is not an r-arborescence, detφ(HD[{r}c, A]) detφ(BD[{r}c, A]) = 0,
which concludes the proof.

Proposition 2.33. Let V be a finite set, and suppose S ⊆ V . For every matrix A ∈ RV×V and w ∈ RA,

det((Diag(w)A)[S, S]) = det(Diag(w)[S, S]) det(A[S, S]).

Proof. Set T :=

(
V

|S|

)
. For every T ∈ T \ {S}, let φT : T → S be any bijective function. Moreover, define

φS to be the identity function on S. Theorem 2.16 ensures

det((Diag(w)A)[S, S]) = det(Diag(w)[S, V ]A[V, S])

=
∑
T∈T

det
φ−1
T

(Diag(w)[S, T ]) det
φT

(A[T, S])

=
∑
T∈T

det
φT

(Diag(w)[T, S]) det
φT

(A[T, S]).

Hence, it is enough to show that for every T ∈ T , if T 6= S then detφT
(Diag(w)[T, S]) = 0. Note first that

|T | = |S|. Therefore, S = T holds if and only if S ⊆ T .
Suppose S 6⊆ T . Let i ∈ T \ S, and set j := φ−1

T (i). Then

Diag(w)[T, S]PφT
ej = Diag(w)[T, S]ei = w(i)ei[T, 1] = 0.

Therefore, ej is a nonzero vector in Null(Diagw[T, S]). Proposition 1.32 implies the determinant is zero.
Hence

det((Diag(w)A)[S, S]) = det
φS

(Diag(w)[S, S]) det
φS

(A[S, S]).

Since φS was chosen to be the identity, the proof is finished.

Theorem 2.34 (Tutte’s Matrix Tree Theorem). Let D = (V,A, ψ,w) be a weighted digraph. Let r ∈ V .
Then

det(LD[{r}c, {r}c]) =
∑

S∈TD(r)

∏
w(S).

Proof. For every S ∈
(

A
|V |−1

)
, let φS : S → V \ {i} be a bijective function. For every S ∈

(
A
|V |−1

)
, note that

(Diag(w)BT
D)[S, {r}c]PφS

= (Diag(w)BT
DPφS

)[S, S].

Hence, Proposition 2.33 ensures that

det
φS

((Diag(w)BT
D)[S, {r}c]) = det(Diag(w)[S, S]) det(BT

DPφS
[S, S]) = det(Diag(w)[S, S]) det

φS

(BT
D[S, {r}c]).
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Apply this result, with both Proposition 1.16 and Theorem 2.16, to conclude that

det(LD[{r}c, {r}c]) = det((HD Diag(w)BT
D)[{r}c, {r}c])

=
∑

S∈( A
|V |−1)

det
φ−1
S

(HD[{r}c, S]) det
φS

((Diag(w)BT
D)[S, {r}c])

=
∑

S∈( A
|V |−1)

det
φ−1
S

(HD[{r}c, S]) det(Diag(w)[S, S]) det
φS

(BT
D[S, {r}c])

=
∑

S∈( A
|V |−1)

det
φ−1
S

(HD[{r}c, S]) det
φ−1
S

(BD[{r}c, S]) det(Diag(w)[S, S])

=
∑

S∈TD(i)

det(Diag(w)[S, S])

=
∑

S∈TD(i)

∏
e∈S

w(e) =
∑

S∈TD(i)

∏
w(S).

Proposition 2.32 is used in the change of summation index.

Theorem 2.35 (Kirchhoff’s Matrix Tree Theorem). Let G = (V,E, ψ,w) be a weighted graph. Let r ∈ V .
Then

det(LG[{r}c, {r}c]) =
∑
S∈TG

∏
w(S).

Proof. LetD be the symmetric digraph ofG. Proposition 1.57 ensures that LG = LD. Therefore, Theorem 2.34
and Proposition 2.1 finish the proof.

det(LG[{r}c, {r}c]) = det(LD[{r}c, {r}c]) =
∑

S∈TD(r)

∏
w(S) =

∑
S∈TG

∏
w(S).

2.4 The Algorithm
Definition 2.36. Let D = (V,A, ψ,w) be a weighted digraph, and let r ∈ V . Define

Φ(D, r) :=
∑

T∈TD(r)

∏
w(T ).

Likewise, if G = (V,A, ψ,w) is a weighted graph, define

Φ(G) :=
∑
T∈TD

∏
w(T ).

Proposition 2.37. Let D = (V,A, ψ,w) be a weighted digraph, and let r ∈ V . Then

Φ(D, r) = det(LD[{r}c, {r}c]).

Proof. Apply Theorem 2.34.

The following propositions relate the problem of sampling an arborescence in a digraph with the same
problem in a smaller digraph. They hint at both the recursive definition of the Naive Algorithm and its
inductive proof of correctness.

Proposition 2.38. Let D = (V,A, ψ,w) be a weighted digraph, let r ∈ V and let a0 ∈ δout(r) be a nonloop.
Then for every F ⊆ A \ {a0}, ∣∣δin

D[F∪{a0}](k)
∣∣ = [k 6= r]

holds for every k ∈ V if and only if for every k ∈ V (D/a0)∣∣δin
D/a0

(k)
∣∣ = [k 6= a0].
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Proof. Since a0 is not a loop, let i ∈ V be such that ψ(a0) = ri. For every k ∈ V \ {r, i}, the set of arcs
incident on k is the same on D[F ∪ {a0}] and D/a0[F ]. Hence, for every k ∈ V \ {r, i},

δin
D[F∪{a0}](k) = δin

D/a0[F ](k), (2.39)

Suppose then that for every k ∈ V , it holds that
∣∣δin

D[F∪{a0}](k)
∣∣ = [k 6= r]. For every k ∈ V \ {r, i},

Equation (2.39) ensures that
∣∣δin

D/a0[F ](k) = 1
∣∣. Suffices then to show that δin

D/a0[F ](a0) = ∅. However, we
have that

δin
D/a0[F ](a0) = { a ∈ F : ψ(a) ∈ {jr, ji} for some j ∈ V }.

Since a0, which is not in F , is the only arc pointing to either r or i, we conclude the first half of the proof.
Supose now that for every k ∈ V (D/a0), it holds that

∣∣δin
D/a0[F ](k)

∣∣ = [k 6= a0]. Equation (2.39)
ensures the thesis holds for every vertex in V \ {r, i}, and the proof is done since a0 is incident on i, so that
δin

D[F∪{a0}](i) = 1 and δin
D[F∪{a0}](r) = 0.

Proposition 2.40. Let D = (V,A, ψ,w) be a weighted digraph, let r ∈ V and let a0 ∈ δout(r) be a nonloop.
For every F ⊆ A \ {a0}, the underlying graph of D[F ∪ {a0}] is connected if and only if the underlying graph
of D/a0[F ] is connected.

Proof. First, note that if D[F ] has a connected underlying graph, then so do both D[F ∪ {a0}] and D/a0[F ],
and the thesis holds.

If F ⊆ A\{a0} is such that the underlying graph of D[F ] is not connected, but at least one of D[F ∪{a0}]
or D/a0[F ] is connected, it holds that the underlying graph of D[F ] has two components, one with r and one
with i. In this case, both D[F ∪ {a0}] and D/a0[F ] are connected.

Proposition 2.41. Let D = (V,A, ψ,w) be a weighted digraph, let r ∈ V and let a0 ∈ δout(r) be a nonloop.
Let S := {T ∈ TD(r) : a0 ∈ T}. Then φ : TD/a0

(a0)→ S defined on every T ∈ TD/a0
(a0) as

φ(T ) := T ∪ {a0}

is bijective.

Proof. Apply Proposition 2.40 and Proposition 2.38 to conclude that a set T ⊆ A \ {a0} is in TD/a0
(r) if and

only if it is in S.

Proposition 2.42. Let D = (V,A, ψ,w) be a weighted digraph, let r ∈ V , and let a ∈ δout(r) be a nonloop.
Then

Φ(D, r) = w(a) Φ(D/a, a) + Φ(D − a, r).

Proof. Theorem 2.35 and Proposition 2.41 ensure that

Φ(D, r) =
∑

T∈TD(r)

∏
w(T )

=
∑

T∈TD(r)

([a ∈ T ] + [a 6∈ T ])
∏

w(T )

=
∑

T∈TD(r)

[a ∈ T ]
∏

w(T ) +
∑

T∈TD(r)

[a 6∈ T ]
∏

w(T )

= w(a)

 ∑
T∈TD(r)

[a ∈ T ]
∏

w(T \ {a})

+

 ∑
T∈TD−a(r)

∏
w(T )


= w(a)

 ∑
T∈TD/a(a)

w(T )

+

 ∑
T∈TD−a(a)

w(T )

.
Note that we have also used the obvious fact that a does not belong to an r-arborescence of D if and only if
it is an r-arborescence of D − a.
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Loops are indeed a special case. Given a weighted digraph D = (V,A, ψ,w), for any vertex r ∈ V and
loop a0 ∈ δout(r), the function that maps r into a0 and fixes every other vertex is a graph isomorphism
between D − a0 and D/a0. Moreover, no arborescence contains a0. Therefore,

Φ(D, r) = Φ(D − a0, r) = Φ(D/a0, a0),

so Proposition 2.42 could not possibly include this case.
Loops aside, Proposition 2.42 gives the probability for an edge to belong to a random arborescence. This is

the key idea in our first algorithm. However, to proper formalize the argument, we must handle a technicality
and a question about the nature of randomness itself.

First things first. It is impossible for a computer, a deterministic tool, to produce randomness. The
approach will be to embrace such a limitation, not to fight against it. The algorithm will actually be defined
as a random variable, whose definition relies on a suitable “randomness source”. This source fits the role of a
rand function in a programming language standard library. When programming, there is little interest on
what rand does. Likewise, in defining our algorithm, there is no immediate interest on the random variable
that poses as “randomness source”, since it is a purely measure-theoretical structure.

To define a random variable is to define a function. In order to do so, it will be convenient to have
aditional information on the arcs of the input digraph. That aditional information is a total order. Note that
to require an arbitrary total order on the set of arcs is by no means a limitation.

Finally, before going to the definition, a final remark is in place. For clarity, the cases should be read like
a if-else chain. More precisely, the order of the cases is relevant, and the algorithm chooses the first option
which satisfies the corresponding condition.

Definition 2.43. Let D := (V,A, ψ,w) be a weighted graph. Let r ∈ V . Let ≤ be a total order on A. Let
{Xa : a ∈ A} be a collection of independent random variables on a probability space (Ω,F ,P), each with
uniform distribution in [0, 1]. The naive algorithm is the function A(X,D, r) : Ω→ TD(r) ∪ {⊥} defined as

A(X,D, r)(ω) :=


⊥, if Φ(D, r) = 0, (error case)
∅, if δout(r) = ∅, (base case)
A(X�A\{a}, D − a, r), if Xa(ω) ≤ Φ(D−a,r)

Φ(D,r) , (drop case)

A(X�A\{a}, D/a, a) ∪ {a}, otherwise. (take case)

where a := min δout(r). To simplify notation, whenever X is clear from context, it will be ommited, and the
algorithm will be denoted as A(D, r) := A

(
X�A(D), D, r

)
.

The appearence of ⊥ in the definition reflects the fact that it is possible for the algorithm to receive a
digraph with many arborescences and fail to output one of them. This will not actually be a problem, but for
now, ⊥ must be carried around.

Proposition 2.44. Let D = (V,A, ψ,w) be a weighted graph. Let r ∈ V . Let ≤ be a total order on A.
Let a = min δout(r). Let {Xa : a ∈ A} be a collection of independent random variables on a probability
space (Ω,F ,P), each with uniform distribution in [0, 1]. Suppose

(i) if S ∈ TD/a(a), then
{
A
(
X�A\{a}, D/a, a

)
= S

}
Ω

∈ F , and

(ii) P
(
A
(
X�A\{a}, D/a, a

)
= S

)
= (
∏
w(S))/Φ(D/a, a).

Then for every T ∈ TD(r) such that a ∈ T ,

(1) {A(X,D, r) = T}
Ω
∈ F , and

(2) P(A(X,D, r) = T ) = (
∏
w(T ))/Φ(D, r).

Proof. If a ∈ T , then the set {A(D, r) = T}
Ω
is a subset of {a ∈ A(D, r)}

Ω
. But for every ω ∈ Ω such that

a ∈ A(D, r)(ω), we are dealing with (take case), so that

{A(D, r) = T}
Ω

= {A(D, r) = T, a ∈ A(D, r)}
Ω

=

{
A(D/a, a) = T \ {a}, Φ(D − a, r)

Φ(D, r)
< Xa

}
Ω

.
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Proposition 2.41 ensures T \ {a} is an a-arborescence in D/a. Therefore, the last set in the above equation
is measurable, as it is the intersection of two measurable sets. The first has its measurability ensured by
hypothesis (i), and the second, by the fact that Xa : Ω→ [0, 1] is measurable. Therefore

P(A(D, r) = T ) = P
(
A(D/a, a) = T \ {a}, Φ(D − a, r)

Φ(D, r)
< Xa

)
= P(A(D/a, a) = T \ {a})P

(
Φ(D − a, r)

Φ(D, r)
< Xa

)
since the Xa’s are independent,

= P(A(D/a, a) = T \ {a})
(

1− Φ(D − a, r)
Φ(D, r)

)
,

= P(A(D/a, a) = T \ {a})w(a)
Φ(D/a, a)

Φ(D, r)
by Proposition 2.42,

=

(∏
w(T \ {a})

Φ(D/a, a)

)
w(a)

Φ(D/a, a)

Φ(D, r)
by hypothesis (ii),

=

∏
w(T )

Φ(D, r)
.

Proposition 2.45. Let D = (V,A, ψ,w) be a weighted graph. Let r ∈ V . Let ≤ be a total order on A.
Let a = min δout(r). Let {Xa : a ∈ A} be a collection of independent random variables on a probability
space (Ω,F ,P), each with uniform distribution in [0, 1]. Suppose

(i) if S ∈ TD−a(r), then
{
A
(
X�A\{a}, D − a, r

)
= S

}
Ω

∈ F , and

(ii) P
(
A
(
X�A\{a}, D − a, r

)
= S

)
= (
∏
w(S))/Φ(D − a, r).

Then for every T ∈ TD(r) such that a 6∈ T ,

(1) {A(X,D, r) = T}
Ω
∈ F , and

(2) P(A(X,D, r) = T ) = (
∏
w(T ))/Φ(D, r).

Proof. If a 6∈ T , then the set {A(D, r) = T}
Ω
is a subset of {a 6∈ A(D, r)}

Ω
. But for every ω ∈ Ω such that

a 6∈ A(D, i)(ω), we are dealing with (drop case), so that

{A(D, r) = T}
Ω

= {A(D, r) = T, a 6∈ A(D, r)}
Ω

=

{
A(D − a, r) = T,Xa ≤

Φ(D − a, r)
Φ(D, r)

}
Ω

.

The last set on the above equation is the intersection of two measurable sets, the first with its measurability
assured by hypothesis (i), and the second because Xa : Ω→ [0, 1] is a measurable.Therefore,

P(A(D, r) = T ) = P
(
A(D − a, r) = T,Xa ≤

Φ(D − a, r)
Φ(D, r)

)
= P(A(D − a, r) = T )P

(
Xa ≤

Φ(D − a, r)
Φ(D, r)

)
since the Xa’s are independent

= P(A(D − a, r) = T )
Φ(D − a, r)

Φ(D, r)

=

( ∏
w(T )

Φ(D − a, r)

)
Φ(D − a, r)

Φ(D, r)
by hypothesis (ii)

=

∏
w(T )

Φ(D, r)
.

Proposition 2.46. Let D = (V,A, ψ,w) be a weighted graph, with w ∈ RA++. Let r ∈ V . Let ≤ be a total
order on A. Let a = min δout(r). Let {Xa : a ∈ A} be a collection of independent random variables on a
probability space (Ω,F ,P), each with uniform distribution in [0, 1]. Then for every T ∈ TD(r)
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(i) {A(X,D, r) = T}
Ω
∈ F , and

(ii) P(A(X,D, r) = T ) = w(T )/Φ(D, r).

Proof. We proceed by induction on |A|.
If A = ∅, since TD(r) is nonempty, it follows that TD(r) = {∅}. In such a case,

Ω = {A(D, i) = ∅}
Ω
,

since the naive algorithm will output ∅ regardless of the input ω ∈ Ω. Since Ω ∈ F , we have that
{A(D, r) = ∅}

Ω
is measurable. Moreover, since it is a probability space, its measure must be 1, which is

equal to the RHS of (i), since Φ(D, r) = 1 and the empty product is 1.
Let then A be nonempty, and let T ∈ TD(r) be any r-arborescence. Since T ∈ TD(r) and w > 0, it follows

that
Φ(D, r) =

∑
S∈TD(r)

∏
w(S) ≥ w(T ) > 0.

Moreover, δout(r) is nonempty. In such a case, let a be the minimum element of δout(r).
Observe that we can now assume that the algorithm is not on (error case), since Φ(D, r) > 0, nor on

(base case), since δout(r) 6= ∅.
There are two cases to consider, depending on whether a is in T or not. Note that the respective hypothesis

in Proposition 2.44 or Proposition 2.45 are assured by the induction hypothesis. Hence, either Proposition 2.44
or Proposition 2.45 ensures (i) and (ii) holds, depending on whether a ∈ T or a 6∈ T , respectively.

Theorem 2.47. Let D = (V,A, ψ,w) be a weighted graph, with w ∈ RA++. Let r ∈ V . Let ≤ be a total
order on A. Let a = min δout(r). Let {Xa : a ∈ A} be a collection of independent random variables on a
probability space (Ω,F ,P), each with uniform distribution in [0, 1]. Then

(i) The function A(D, r) is a random variable;

(ii) For every T ∈ TD(r), it holds that

P(A(D, r) = T ) =

∏
w(T )

Φ(D, r)
;

(iii) If D has at least one r-arborescence, then P(A(D, r) = ⊥) = 0.

Proof. First, note that if D has no r-arborescences, then Φ(D, r) = 0. Therefore,

Ω = {A(D, r) = ⊥}
Ω
,

since the algorithm will always go through (error case), regardless of the input ω ∈ Ω. Since Ω ∈ F , it
follows that {A(D, i) = ⊥}

Ω
is measurable. In such a case, (i), (ii), and (iii) hold.

If D has at least one r-arborescence, Proposition 2.46 applies and ensures (ii). It remains to show that
A(D, r) is indeed a random variable, and that (iii) holds.

To show that A(D, r) is a random variable, it remains only to show that the preimage of ⊥ is measurable.
Note then that

{A(D, r) = ⊥}
Ω

= Ω \

 ⋃
T∈TD(r)

{A(D, r) = T}
Ω

,
and the RHS is the complement of a finite union of measurable sets, so that it is indeed measurable.
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Finally, using Proposition 2.37, we have that

P(A(D, r) = ⊥) = 1−
∑

T∈TD(r)

P(A(D, r) = T )

= 1−

 ∑
T∈TD(r)

∏
w(T )

Φ(D, r)


= 1− 1

Φ(D, r)

 ∑
T∈TD(r)

∏
w(T )


= 1−

(
Φ(D, r)

Φ(D, r)

)
= 0,

which demonstrates (iii) and finishes the proof.

If we let ⊥ represent a division by zero error, the pseudocode for the algorithm writes itself. Aside from
being a recusive method, it is still remarkably similar to algorithm A described by Kulkarni in [18].
function Sample(D, r)

Let D = (V,A, ψ,w).
if δout(r) = ∅ then return ∅.
Let a ∈ δout(r), and let p← Φ(D − a, r)/Φ(D, r).
Let x be a uniform random variable in the interval [0, 1].
if x ≤ p then return Sample(D − a, r).
else return {a} ∪ Sample(D/a, a).

2.5 Effective Resistances as Marginal Probabilities
We now use the theory developed so far to give an alternate formula for the marginal probabilities of an

edge belonging to the output of the naive algorithm.

Proposition 2.48. Let G = (V,E, ψ,w) be a connected and weighted graph, with w ∈ RE++. Let e0 ∈ E be
a nonloop. Denote by i and j the elements of ψ(e0). Then

(ei − ej)TL†G(ei − ej) = (LG[{i}c, {i}c]−1)jj .

Proof. First, note that by indexing the first rows and the first columns by V \ {i}, the equality LG1 = 0
turns into [

LG[{i}c, {i}c] LG[{i}c, {i}c]ei
−eTi LG[{i}c, {i}c] (LG)ii

][
1

1

]
=

[
0

0

]
.

Solving for both LGei and (LG)ii, we conclude

LG[{i}c, {i}c]ei = −LG[{i}c, {i}c]1
(LG)ii = 1

TLG[{i}c, {i}c]1.

Hence,

LG =

[
LG[{i}c, {i}c] −LG[{i}c, {i}c]1
−1TLG[{i}c, {i}c] 1

TLG[{i}c, {i}c]1

]
=

[
I

−1T

]
LG[{i}c, {i}c]

[
I −1

]
.

Since G is connected, it has at least a spanning tree. Moreover, since w is positive, we conclude that
det(LG[{i}c, {i}c]) is nonzero, and, therefore, LG[{i}c, {i}c] is invertible. Hence, it is injective and surjective.
Moreover, note that [

I

−1

]
x = 0 =⇒ x = 0.

48



Therefore, this matrix is injective, and its transpose is surjective. Proposition 1.50 applied twice implies

L†G =
[
I −1

]†
LG[{i}c, {i}c]−1

[
I

−1T

]†
.

From Example 1.52, we have that[
I

−1T

]†
(ei − ej) =

[
I − 1

n11
T − 1

n11
T
] [−ej

1

]
= −ej .

Therefore,

(ei − ej)L†G(ei − ej) =

[ I

−1T

]†
(ei − ej)

T

LG[{i}c, {i}c]−1

[ I

−1T

]†
(ei − ej)


= (−ej)T(LG[{i}c, {i}c]−1)(−ej) = (LG[{i}c, {i}c]−1)jj .

Proposition 2.49. Let G = (V,E, ψ,w) be a weighted, connected graph, with w ∈ RE++. Let e0 ∈ E be a
nonloop. Denote by i and j the elements of ψ(e0). Then

Φ(G/e0)

Φ(G)
= (LG[{i}c, {i}c]−1)jj .

Proof. Proposition 1.57 implies that

LG = LG−e0 + w(e0)(ei − ej)(ei − ej)T.

Therefore,
LG−e0 [{i}c, {i}c] = LG[{i}c, {i}c]− w(e0)eje

T
j .

Since G is connected and w ∈ RV++, we have that LG[{i}c, {i}c] is invertible. Hence, Lemma 2.23 ensures that

det(LG−e0 [{i}c, {i}c]) = det(LG[{i}c, {i}c])
(
1− w(e0)eTj LG[{i}c, {i}c]−1ej

)
.

Since w(e0) > 0,

(LG[{i}c, {i}c])−1
jj =

1

w(e0)

(
1− Φ(G− e0)

Φ(G)

)
=

Φ(G)− Φ(G− e0)

w(e0) Φ(G)

=
w(e0) Φ(G/e0) + Φ(G− e0)− Φ(G− e0)

w(e0) Φ(G)
by Proposition 2.42

=
Φ(G/e0)

Φ(G)
.

Both propositions just proved describe a formula to calculate the probability of an edge to belong to the
output of a sampling algorithm using the pseudoinverse of the Laplacian instead of its determinant. This is
interesting because it only demands 4 entries of the pseudoinverse matrix to be known.

Theorem 2.50. Let G = (V,E, ψ,w) be a weighted connected graph. Let e0 ∈ E be such that |ψ(e0)| = 2.
Denote by i and j the elements of ψ(e0). Let A(G) : Ω→ TG be a random variable such that for every
T ∈ TG,

P(A(G) = T ) =

∏
c(T )

Φ(G)
.

Then
P(e0 ∈ A(G)) = w(e0)(ei − ej)TL†G(ei − ej).

Proof. Apply both propositions just proved:

P(e0 ∈ A(G)) = w(e0)
Φ(G/e0)

Φ(G)
= w(e0)(LG[{i}c, {i}c]−1)jj = w(e0)(ei − ej)TL†G(ei − ej).
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Chapter 3

Markov Chains

3.1 Markov Chains and Random Walks
A stochastic process in a probability space (Ω,F ,P) is a function X on a totally ordered set T such

that Xk is a random variable on Ω for every k ∈ T , all of which take on values in the same measurable
space (V,M). Call V the state space of the stochastic process. A stochastic process X with T = N is said to
be discrete time. A discrete time stochastic process X is a Markov chain if

P(Xk+1 = sk+1 |Xk = sk, . . . , X0 = s0) = P(Xk+1 = sk+1 |Xk = sk) (3.1)

for every k ∈ N and s : ([k + 2]− 1)→ V such that both conditional probabilities are defined, i.e., such that
P(Xk = sk, . . . , X0 = s0) > 0. Condition (3.1) is called the Markov property.

As mentioned in Section 1.9, if V is at most countable, the measurable space we are interested in is
(V,P(V )). Hence, whenever we state that X is a Markov chain in a probability space (Ω,F ,P), with finite
state space V , we are saying that for every t ∈ N we have that Xt : Ω→ V is a measurable function with
respect to F and P(V ).

Let X be a Markov chain in a probability space (Ω,F ,P), with finite state space V . The trajectory of X
is the function TrajX : Ω→ V N defined as, for every ω ∈ Ω and t ∈ N,

(TrajX(ω))t := Xt(ω).

First, note that for every n ∈ N and s ∈ V [n]−1,{
TrajX�[n]−1 = s

}
Ω

= {ω ∈ Ω : TrajX(ω)�[n]−1 = s} =
⋂

t∈[n]−1

{Xt = st}Ω. (3.2)

For now, TrajX is mostly a concise way of describing a sequence of states being observed in a Markov chain.
Section 3.3 will show it is much more important than that. By now, suffices to note that the definitions of
stochastic process and σ-algebra ensure that every event as described above is measurable.

Let X be a Markov chain, and suppose its state space V is finite. For each k ∈ N, the transition matrix
of X at time k is the matrix Pk : V × V → R defined by (Pk)ij := P(Xk+1 = j |Xk = i) for each i, j ∈ V . If
Pk = P` for every k, ` ∈ N, the Markov chain is time-homogeneous, and the common value P : V × V → R is
the transition matrix. In this work, every Markov chain is assumed time-homogeneous, so that it suffices to
define a single P ∈ RV×V such that Pij = P(X1 = j |X0 = i), for every i, j ∈ V .

Transition matrices have many interesting properties. For such reason, matrices that could be transition
matrices of some Markov chain are given a special name. Let V be a finite set. A matrix P ∈ RV×V is
stochastic if

1. Pij ≥ 0 for every i and j in V ,

2. eTi P1 = 1 for every i ∈ V .
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Theorem 3.15 will actually prove that for every stochastic matrix P there is a Markov chain whose transition
matrix is P .

Let X be a time-homogeneous Markov chain in a probability space (Ω,F ,P), with finite state space V .
Let P ∈ RV×V be its transiton matrix, and define x ∈ RV as xi := P(X0 = i) for every i ∈ V . Note that, for
every i ∈ V ,

eTi P
Tx =

∑
j∈V

Pjixj

=
∑
j∈V

P(X1 = i |X0 = j)P(X0 = j)

=
∑
j∈V

P(X1 = i,X0 = j)

= P(X1 = i).

Hence, the ith coordinate of PTx is the probability that X1 is i. An inductive argument generalizes this
observation to the fact that for every t ∈ N and i ∈ V ,

eTi
(
PT
)t
x = P(Xt = i). (3.3)

Let X be a time-homogeneous Markov chain in a probability space (Ω,F ,P), with finite state space V . If
X is such that for every t ∈ N and i ∈ V it holds that P(Xt = i) = P(X0 = i), then X is said to be stationary.
Let P ∈ RV×V be the transiton matrix of X. Equation (3.3) ensures that X is stationary if and only if the
vector π ∈ RV , defined for every i ∈ V by πi := P(X0 = i), satisfies

PTπ = π.

If this is the case, the vector π is also referred to as a stationary distribution of X.
Let D = (V,A,w) be a weighted simple digraph, with w ∈ RA++. A random walk on D is a Markov chain

X, in a probability space (Ω,F ,P), with finite state space V , such that for every t ∈ N and i, j ∈ V ,

P(Xt+1 = j |Xt = i) = [ij ∈ A]
w(ij)∑
w(δout(i))

. (3.4)

Note that a random walk on a graph is always a time-homogeneous Markov chain. If G = (V,E,w) is a
weighted simple graph, with w ∈ RA++, a random walk on G is a random walk on its symmetric digraph. If G
is not only simple and weighted, but also connected, the matrices defined on Section 1.6 make it possible
to write Equation (3.4) as a matrix equation. If G = (V,E,w) is simple, weighted, and connected, then to
state that X is a random walk on G is to state that X is a time-homogeneous Markov chain, with finite state
space V , and such that its transition matrix P ∈ RV×V satisfies

P = D−1
G AG.

Actually, it is possible to drop the hypothesis that G is connected and state the above equality as P = D†GAG.
We do not do so, however, because it would demand more proofs to be made, and it would not improve the
exposition. However, the remarks above justify the following definition.

Definition 3.5. Let G be a simple, weighted and connected graph. The transition matrix of G is the matrix
P ∈ RV×V given by

P = D−1
G AG.

A vector π ∈ RV+ is a stationary distribution of G if 1Tπ = 1 and PTπ = π.

Observe that Equation (3.3) ensures that a stationary distribution of a graph G is a stationary distribution
of any random walk on G.
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Let X be a time-homogeneous Markov chain in a probability space (Ω,F ,P), with finite state space V .
Its transition digraph is the digraph D := (V,A,w), where

A := { ij ∈ V × V : P(X1 = j |X0 = i) > 0},
w(ij) := P(X1 = j |X0 = i) ∀ij ∈ A.

It is no surprise that a Markov chain is a random walk on its transition digraph. The interesting consequence
of the above definition is that every time-homogeneous Markov chain with a finite state space can be seen as
a random walk on a digraph.

Definition 3.6. A time-homogeneous Markov chain with finite state space is irreducible if its transition
digraph is strongly connected.

Definition 3.7. Let X be a time-homogeneous Markov chain with a finite state space V . Let P ∈ RV×V
be its transition matrix. The Markov chain X is time-reversible if there exists π ∈ RV++ such that for every
i, j ∈ V ,

πiPij = πjPji.

Proposition 3.8. Let X be a time-homogeneous and time-reversible Markov chain with finite state space.
There exists a simple graph G such that X is a random walk on G.

Proof. Let V be the state space of X. Since X is time-reversible, let π ∈ RV++ such that for every i, j ∈ V we
have that πiPij = πjPji. Note that Pij > 0 implies that Pji > 0, for every i and j in V .

Define G := (V,E,w), where

E :=

{
ij ∈

(
V

2

)
: Pij > 0

}
,

and w : E → R is given by w(ij) := πiPij for every ij ∈ E. Note that time-reversibility is used to ensure that
w is well defined. Moreover,

πi = πi · 1 = πi

∑
j∈V

Pij

 =
∑
j∈V

πiPij =
∑
j∈V

w(ij) =
∑

w(δ(i)),

Hence, for every i, j ∈ V ,

Pij = [ij ∈ E]
w(ij)

πi
= [ij ∈ E]

w(ij)∑
w(δ(i))

,

so that X is a random walk on G.

Proposition 3.9. Let G = (V,E,w) be a connected, weighted, and simple graph. Then

π :=
1

2wT1
DG1

is the only stationary distribution of G.

Proof. Let D = (V,A,w) be any orientation of G. Proposition 1.56 and Proposition 1.54 imply

1
TDG1 = 1

T
(
HD Diag(w)HT

D + TD Diag(w)TT
D

)
1

= 1
THD Diag(w)HT

D1 + 1
TTD Diag(w)TT

D1

= 2 1T Diag(w)1

= 2wT
1.

Therefore, 1Tπ = 1. Moreover, for every i ∈ V , Proposition 1.55 implies eTi DG1 =
∑
w(δ(i)). Since G is

connected, δ(i) 6= ∅. Furthermore, since w ∈ RE++, we have that w(δ(i)) > 0. Hence, for every i ∈ V , we
have that eTi π > 0.
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Let P ∈ RV×V be the transition matrix of G. To conclude that π ∈ RV is a stationary distribution of G,
it remains only to show that PTπ = π. Proposition 1.56 and Proposition 1.55 imply

PTπ =
1

2wT1

(
D−1
G AG

)T
DG1 =

1

2wT1
AGD

−1
G DG1 =

1

2wT1
AG1 =

1

2wT1
DG1 = π.

Therefore, π as defined on the statement is a stationary distribution. Suppose now that x ∈ RV is a
stationary distribution of G. By definition, PTx = x, or, equivalently, (I − P )Tx = 0. Hence Proposition 1.57
ensures that

0 = (I − P )Tx

= (I − P )T(DGD
−1
G )x

= (DG(I − P ))T
(
D−1
G x

)
= (DG(I −D−1

G AG))T
(
D−1
G x

)
= (DG −AG)T

(
D−1
G x

)
= LG(D−1

G x).

Proposition 1.58 and the fact that G is connected then ensure that D−1
G x ∈ span(1). In other words, there

exists α ∈ R such that x = αDG1. Moreover, 1Tx = 1, so that

1 = 1
T(αDG1) = α1TDG1 = α2wT

1.

Hence α = (2wT
1)−1, so that x = π.

Corollary 3.10. Let X be time-homogeneous, irreducible, time-reversible Markov chain, with finite state
space. Then X has a unique stationary distribution.

Proof. Proposition 3.8 ensures there exists G such that X is a random walk on G. Since X is irreducible,
G is connected. Morover, since X is a random walk on G, Proposition 3.9 ensures that this distribution is
unique.

Note how the statement of Corollary 3.10 is purely about Markov chains, with no random walks on graphs
involved.

3.2 Markov Chain Construction
We now focus on the construction of Markov chains. As in the case with the naive algorithm, it is only

possible to adapt a “randomness source” into a more useful format. Therefore, once again, composition will
serve as the main tool, by describing how to alter the randomness into a Markov chain. A similar construction
is made in [10].

We have, however, to start somewhere. For this reason, we assume the existence of a discrete time
stochastic process X, in a probability space (Ω,F ,P), given by independent, uniformly distributed random
variables taking values in [0, 1]. Whenever this stochastic process exists, the space (Ω,F ,P) is chainable.
Furthermore, let V be a finite set, let µ : [0, 1]→ V be a measurable function, and let T be a function on V
such that Ti : [0, 1]→ V is measurable for every i ∈ V . Then (X,V, T, µ) is a chain specification in (Ω,F ,P).
As the name suggests, (X,V, T, µ) can be used to create a time-homogeneous Markov chain, since it encodes
the randomness source, the state space, the transitions and the initial probability. Before going into that,
though, this small result will prove itself laborsaving for the task at hand.

Proposition 3.11. Let V be a finite set. Let x ∈ RV+ be such that 1Tx = 1. Then there exists a measurable
function ν : [0, 1]→ V such that

1. for every i ∈ V , the preimage ν−1(i) is an interval,

2. for every i ∈ V , it holds that |ν−1(i)| = xi.
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Proof. Let ≤ be a total order on V . Define

ν(0) := inf V,(
ν�(0,1]

)−1

(i) :=

∑
j<i

xj ,
∑
j≤i

xj

 .
Definition 3.12. Let (X,V, T, µ) be a chain specification in (Ω,F ,P). The Markov chain M defined by
(X,V, T, µ) is the function whose domain is N, defined as

Mt(ω) :=

{
µX0(ω), if t = 0,

TMt−1(ω)Xt(ω), otherwise,

for every t ∈ N and ω ∈ Ω.

Proposition 3.13. Let (X,V, T, µ) be a chain specification in (Ω,F ,P). Let M be the Markov chain defined
by it, and let t ∈ N. If P(Mt = i) > 0, then

P(Mt+1 = j |Mt = i) = P(TiXt+1 = j).

Proof. Let St be {µ} if t = 0, and {Ti : i ∈ V } otherwise. For every t ∈ N,

{Mt = i}
Ω

=
⋃
ν∈St

{νXt = i}
Ω
.

Let then t ∈ N. Then

{Mt+1 = j,Mt = i}
Ω

= {TiXt+1 = j,Mt = i}
Ω

= {TiXt+1 = j}
Ω
∩ {Mt = i}

Ω

= {TiXt+1 = j}
Ω

⋂( ⋃
ν∈St

{νXt = i}
Ω

)
=
⋃
ν∈St

{TiXt+1 = j}
Ω
∩ {νXt = i}

Ω

=
⋃
ν∈St

{
Xt+1 ∈ T−1

i (j)
}

Ω
∩
{
Xt ∈ ν−1(i)

}
Ω

Since {Xt : t ∈ N} is an independent family of functions, and St is finite,

P(Mt+1 = j,Mt = i) =
∑
ν∈St

P
(
Xt+1 ∈ T−1

i (j)
)
P
(
Xt ∈ ν−1(i)

)
= P(TiXt+1 = j)

(∑
ν∈St

P(νXt = i)

)

= P(TiXt+1 = j)P

( ⋃
ν∈St

{νXt = i}
Ω

)
= P(TiXt+1 = j)P(Mt = i).

Therefore, if P(Mt = i) > 0,
P(Mt+1 = j |Mt = i) = P(TiXt+1 = j).

Up until this point, the expression Markov chain defined by the chain specification (X,V, T, µ) is merely
foreshadowing. We proceed in showing it is not a misnomer.

Proposition 3.14. Let (X,V, T, µ) be a chain specification in (Ω,F ,P). Let M be the Markov chain defined
by it. Then M is indeed a Markov chain. Moreover, it is time-homogeneous and has a finite state space.
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Proof. For every t ∈ N, the function Mt is a composition of measurable functions, and, as such, is itself
measurable. Remains to prove the Markov property (3.1). Note that for every k ∈ N and for every
x ∈ V [k+2]−1 {

TrajM�[k+2]−1 = x
}

Ω

=
⋂

t∈[k+2]−1

{Mt = xt}Ω

= {M0 = x0}Ω
⋂(k+1⋂

t=1

{Mt = xt}Ω

)

= {µX0 = x0}Ω
⋂(k+1⋂

t=1

{
Txt−1

Xt = xt
}

Ω

)

=
{
X0 ∈ µ−1(x0)

}
Ω

⋂(k+1⋂
t=1

{
Xt ∈ T−1

xt−1
(xt)

}
Ω

)
.

Proposition 3.13 and the fact that {Xt} is an independent family of random variables then imply

P
(

TrajM�[k+2]−1 = x
)

= P
(
X0 ∈ µ−1(x0)

) k+1∏
t=1

P
(
Xt ∈ T−1

xt−1
(xt)

)
= P(M0 = x0)

k+1∏
t=1

P(Txt−1
Xt = xt)

= P(M0 = x0)

k+1∏
t=1

P(Mt = xt |Mt−1 = xt−1),

as long as P(TrajM�[k+1]−1 = x�[k+1]−1) > 0 — so that all the conditional probabilities are well defined.
To finish the proof, suffices to apply this equality twice. Let k ∈ N. Then

P
(

TrajM�[k+2]−1 = x
)

= P(M0 = x0)

k+1∏
t=1

P(Mt = xt |Mt−1 = xt−1)

= P(Mk+1 = xk+1 |Mk = xk)P(M0 = x0)

k∏
t=1

P(Mt = xt |Mt−1 = xt−1)

= P(Mk+1 = xk+1 |Mk = xk)P(TrajM�[k+1]−1 = x�[k+1]−1),

so that whenever P(TrajM�[k+1]−1 = s�[k+1]−1) > 0, the conditional probabilities are well defined and (3.1)
holds. This is precisely the Markov property. The fact that M has a finite state space holds since its state
space is V , which is assumed to be finite. Moreover, Proposition 3.13 ensures that for every t ∈ N and
i, j ∈ V ,

P(Xt+1 = j |Xt = i) = P(TiXt = j) = P
(
Xt ∈ T−1

i (j)
)
,

whenever the conditional probability is defined. Since the last probability is precisely the measure of T−1
i (j)

in [0, 1], we have that it is independent of t, and that X is time-homogeneous.

Note that given the chain specification (X,V, T, µ), it is possible to calculate the transition matrix and
the initial probability of the Markov chain M defined by it. It is enough to inspect T and µ, respectively.
Suppose that for every i, j ∈ V , the set T−1

i (j) is an interval. Proposition 3.13, then ensures

P(M1 = j |M0 = i) = P(TiX1 = j)

= P(X1 ∈ T−1
i (j))

= |T−1
i (j)|.

Similarly, if for every i ∈ V , the set µ−1(i) is an interval, then P(X0 = i) = |µ−1(i)|. These equalits hints at
the role of Proposition 3.11 in the construction of Markov chains.

55



Theorem 3.15. Let (Ω,F ,P) be a chainable probability space. Let V be a finite set. Let Y : Ω→ V be a
random variable, and let P ∈ RV×V be a stochastic matrix. Then there exists a time-homogeneous Markov
chain M in (Ω,F ,P), with finite state space V , and such that for every i ∈ V ,

P(M0 = i) = P(Y = i),

and for every i and j in V , and t ∈ N,

P(Mt+1 = j |Mt = i) = Pij ,

whenever the transition probability is defined.

Proof. Using Proposition 3.11 it is possible to ensure that there exists µ and T such that

1. For every i ∈ V , the set µ−1(i) is and interval, and |µ−1(i)| = P(Y = i),

2. For every i, j ∈ V , the set T−1
i (j) is an interval, and |T−1

i (j)| = Pij .

Since (Ω,F ,P) is chainable, there exists a stochastic process X such that (X,V, T, µ) is a chain specification.
The Markov chain M defined by it is precisely the object in the theorem statement, so that Proposition 3.14
completes the proof.

Corollary 3.16. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let (Ω,F ,P)
be a chainable probability space, and let Y : Ω→ V be a random variable. Then there exists a random walk
on G such that for every i ∈ V ,

P(X0 = i) = P(Y = i)

Proof. Let P be the transition matrix of G. If we show that PT is a stochastic matrix, then Theorem 3.15
finishes the proof. Let i, j ∈ V . Proposition 1.54 ensures that DGei = (

∑
w(δ(i))) ei. Since DG is diagonal,

this implies that

D−1
G ei =

1∑
w(δ(i))

.

Hence, we have that

Pij = eTi D
−1
G AGej = (D−1

G ei)
TAGej =

1∑
w(δ(i))

(AG)ij .

Proposition 1.56 then ensures that

PT
ij = [ij ∈ E]

w(ij)∑
w(δ(i))

.

This implies that PT is stochastic; every entry is nonnegative, and

eTi P
T
1 =

∑
w(δ(i))∑
w(δ(i))

= 1.

Theorem 3.15 then concludes the proof.

3.3 Sequences of Vertices and Markov Chain Shifting
Let X be a time-homogeneous Markov chain with finite state space V set. Let t ∈ N be nonzero, and let

s ∈ V [t]−1. A simple inductive argument proves that

P
(

TrajX�[t]−1 = s
)

= P(X0 = s0)

t−1∏
i=1

P(Xi = si |Xi−1 = si−1). (3.17)

An interesting consequence of (3.17) is the fact that one can shift the focus from the probability space in
which a Markov chain is defined to the set of sequences of elements in the state space of the chain. Let V
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be a finite set. To work with this idea, we start by endowing V N with an appropriate σ-algebra. A good
reference for this construction is [12].

Let V be a finite set. Define a σ-algebra on V N as σ(OV ), where

OV :=
⋃
t∈N

⋃
r∈V [t]

{
s ∈ V N : s�[t] = r

}
.

Let X be a time-homogeneous Markov chain in a probability space (Ω,F ,P), with a finite state space V .
The fact that Equation (3.2) holds for every n ∈ N and for every t ∈ V [n]−1 can now be stated as the fact
that for every event E ∈ OV , we have that {TrajX ∈ E}Ω ∈ F . Theorem 1.73 then ensures that TrajX is
actually a measurable function with respect to F and σ(OV ). Moreover, define

σ[TrajX ] := σ({Traj−1
X (E) : E ∈ OV }).

Since TrajX is measurable, we have that σ[TrajX ] ⊆ F . This is helpful, since it is enough to show that a set
is in σ[TrajX ] to ensure that it is measurable — and this can be quite easier. Moreover, some statements in
this section will only apply to events in σ[TrajX ]. Those are precisely the results obtained from the structure
of V N.

Proposition 3.18. Let (Ω,F ,P) be a probability space such that F = σ(O), for some O ⊆ P(Ω). Suppose
µ : F → R+ ∪ {∞} is a probability measure on (Ω,F) such that µ(E) = P(E) for every event E ∈ O. Then
µ = P.

Proof. Define
G := {E ∈ F : µ(E) = P(E)}.

Since both P and µ are measures, we have that P(∅) = 0 = µ(∅). Therefore, ∅ ∈ G. Moreover, suppose
E ∈ G. Then

P(Ec) = 1− P(E) = 1− µ(E) = µ(Ec).

Hence, Ec ∈ G.
Let (Ei)i∈N be a sequence of pairwise disjoint events in G. Then

P

(⋃
i∈N

Ei

)
=
∑
i∈N

P(Ei) =
∑
i∈N

µ(Ei) = µ

(⋃
i∈N

Ei

)
.

This does not quite ensures that G is a σ-algebra, since the family of events had to be pairwise disjoint. Let
then (Fi)i∈N be any sequence of events in G. Define, for every i ∈ N,

Ei := Fi \

(
i−1⋃
k=0

Fk

)
.

Note that the events (Ei)i∈N are pairwise disjoint, and that
⋃
i∈N Fi =

⋃
i∈NEi. Hence, the previous

argument ensures
⋃
i∈N Fi ∈ G. Therefore, G is a σ-algebra. Furthermore, the statement ensures that O ⊆ G.

Theorem 1.72 then concludes the proof, since it implies that

F = σ(O) ⊆ σ(G) = G ⊆ F .

Proposition 3.19. Let X be a time-homoegeneous Markov chain in a probability space (Ω,F ,P), with a
finite state space V . Let Y be a time-homogeneous Markov chain in a probability space (Ω′,G,PY ), with
the same state space as X. Let i ∈ V . If X and Y have the same transition matrix, then for every event
E ∈ σ(OV ),

P(TrajX ∈ E |X0 = i) = PY (TrajY ∈ E | Y0 = i),

whenever both conditional probabilities are defined.
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Proof. Suppose i ∈ V is such that P(X0 = i) and PY (Y0 = i) are both positive. Define µ : σ(OV )→ [0, 1]
and ν : σ(OV )→ [0, 1] as, for every E ∈ σ(OV ),

µ(E) := P(TrajX ∈ E |X0 = i),

ν(E) := PY (TrajY ∈ E | Y0 = i).

Since TrajX and TrajY are measurable, both µ and ν are probability measures on the measurable space
(V N, σ(OV )). Proposition 3.18 reduces the statement into proving that for every E ∈ OV , it holds that
µ(E) = ν(E). Let P ∈ RV×V be the common transition matrix. Let then n ∈ N, and s ∈ V [n]−1.
Equation (3.17) implies that

P
(

TrajX�[n]−1 = s
∣∣∣X0 = i

)
= [s0 = i]

n−1∏
t=1

Pst,st−1 .

Since Y has the same transition matrix, the same Equation (3.17) finishes the proof:

P
(

TrajX�[n]−1 = s
∣∣∣X0 = i

)
= [s0 = i]

n−1∏
t=1

Pst,st−1
= PY

(
TrajY�[n]−1 = s

∣∣∣ Y0 = i
)
.

As a first application of the results and definitions just discussed, we proceed to define the random
variables that will be used in our demonstrations.

Definition 3.20. Let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V . Let
i ∈ V . The arrival time at i is the function ArrX,i : Ω→ N ∪ {∞} defined as

ArrX,i(ω) := inf{ t ∈ N : Xt(ω) = i},

for every ω ∈ Ω. If ω ∈ Ω is such that Xt(ω) 6= i for every t ∈ N, then ArrX,i(ω) =∞ by convention.

Proposition 3.21. Let X be a Markov chain in a probability space (Ω,F ,P), with finite state space V . For
every i ∈ V ,

(i) ArrX,i is a random variable, and

(ii) for every t ∈ N we have that {ArrX,i = t}
Ω
∈ σ[TrajX ].

Proof. Note that (ii) implies (i), since σ[TrajX ] ⊆ F and

{ArrX,i =∞}
Ω

= Ω \

(⋃
t∈N
{ArrX,i = t}

Ω

)
.

Let then T ∈ N. Define

Si,T := { s ∈ V [T+1]−1 : sT = i, st 6= i ∀t ∈ [T ]− 1}.

For a given ω ∈ Ω, it holds that ArrX,i(ω) = T if and only if XT (ω) = i and, for every t ∈ N with t < T we
have that Xt(ω) 6= i. Therefore, {ArrX,i = T}

Ω
=
{

TrajX�T+1]−1 ∈ Si,T
}

Ω

, and (ii) holds.

Let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V . If all the vertices
have a finite arrival time, they have to be distinct, since the Markov chain can only have one value for each
ω ∈ Ω and t ∈ N. This modest remark is actually quite important in the following definition.

Definition 3.22. Let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V . The
last vertex is the function LastX : Ω→ V ∪ {⊥} defined as, for every ω ∈ Ω,

LastX(ω) :=

{
⊥, if maxi∈V ArrX,i(ω) =∞,
arg maxi∈V ArrX,i(ω), otherwise,

where arg maxi∈V ArrX,i(ω) denotes the vertex i ∈ V such that ArrX,i(ω) is maximum.
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Proposition 3.23. Let X be a Markov chain in a probability space (Ω,F ,P), with finite state space V .
Then

(i) LastX is a random variable, and

(ii) for every i ∈ V we have that {LastX = i}
Ω
∈ σ[TrajX ].

Proof. Note that (ii) implies (i), since σ[TrajX ] ⊆ F and

{LastX = ⊥}
Ω

= Ω \

(⋃
i∈V
{LastX = i}

Ω

)
.

For every i ∈ V and T ∈ N, it is clear that

{ArrX,i < T}
Ω

=

T−1⋃
t=0

{ArrX,i = t}
Ω
.

Proposition 3.21 ensures that every event in the RHS is in σ[TrajX ]. Hence {ArrX,i < t}
Ω
∈ σ[TrajX ]. This

finishes the proof, since for every i ∈ V ,

{LastX = i}
Ω

=
⋃
t∈N

{ArrX,i = t}
Ω
∩

⋂
j∈V \{i}

{ArrX,j < t}
Ω

.
Definition 3.24. Let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V . The
cover time is the function CovX : Ω→ N ∪ {∞} defined as

CovX(ω) := max
i∈V

ArrX,i(ω),

for every ω ∈ Ω.

Proposition 3.25. Let X be a Markov chain in a probability space (Ω,F ,P), with finite state space V .
Then

(i) CovX is a random variable, and

(ii) for every t ∈ N we have that {CovX = t}
Ω
∈ σ[TrajX ].

Proof. Once again, note that (ii) implies (i), since

{CovX =∞}
Ω

=
⋃
i∈V
{ArrX,i =∞}

Ω
,

so that {CovX =∞}
Ω
is measurable. Proposition 3.21 and Proposition 3.23 then conclude the proof, since

{CovX = t}
Ω

=
⋃
i∈V

(
{LastX = i}

Ω
∩ {ArrX,i = t}

Ω

)
.

We now focus on a second application of Proposition 3.18. Too often, arguments about time-homogeneous
Markov chains work with the idea that, if you only consider a random walk from a specific point forward, the
random walk is still the same, only with distinct initial distribution. This kind of reasoning usually produces
recurrence relations involving random variables being considered, which can then produce further results.
Unfortunately, these arguments tend to be as imprecise as they are useful. We proceed in establishing a solid
language to work with this meaningful idea.

Definition 3.26. Let X be a Markov chain. The shift of X is the Markov chain Y defined as

Yi := Xi+1.
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There are several remarks in place. First, the shift of random walk just “drops” its first random variable.
This can easily be fixed via inductive arguments, by defining the nth shift. We do not do so, however, because
this generality will not be necessary.

Now, let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V . Let Y be the
shift of X. By definition, Y is in the same probability space (Ω,F ,P), and it has the same state space as X.
Moreover, if X is time-homogeneous, then so is Y . Furthermore, for every i, j ∈ V

P(Y1 = j | Y0 = i) = P(X2 = j |X1 = i) = P(X1 = j |X0 = i).

Hence,both Markov chains have the same transition matrix. This implies that both Markov chains have the
same transition digraph and the same stationary distributions. Hence, if X is irreducible, then so is Y , and if
X is time-reversible, then so is Y . Moreover, if X is a random walk on a graph G, then Y also is a random
walk on G.

Proposition 3.27. Let X be a Markov chain in a probability space (Ω,F ,P), with finite state space V . Let
Y be the shift of X. Then for every ω ∈ Ω, and for every i ∈ V \ {X0(ω)},

ArrY,i(ω) = ArrX,i(ω).

Proof. Let ω ∈ Ω, and i ∈ V \ {X0(ω)}. Then

ArrY,i(ω) = inf{ t ∈ N : Yt(ω) = i}
= inf{ t ∈ N : Xt+1(ω) = i}
= inf{ t− 1 ∈ N : Xt(ω) = i}
= inf{ t ∈ N \ {0} : Xt(ω) = i} − 1

= ArrX,i(ω)− 1.

Note that the last equality relies on the fact that the state X0(ω) ∈ V is the only one with arrival time 0.

Proposition 3.28. Let X be a Markov chain in a probability space (Ω,F ,P), with a finite state space V .
Let i, j ∈ V . Let Y be the shift of X. For every event E ∈ σ[TrajY ],

P(E | Y0 = j,X0 = i) = P(E | Y0 = j),

whenever both conditional probabilities are defined.

Proof. Suppose i ∈ V and j ∈ V are such that P(Y0 = j,X0 = i) > 0, so that both conditional probabilities
are defined. Define µ : σ(OV )→ [0, 1] and ν : σ(OV )→ [0, 1] as, for every E ∈ σ(OV ),

µ(E) := P(TrajY ∈ E | Y0 = j,X0 = i),

ν(E) := P(TrajY ∈ E | Y0 = j).

Since TrajY is measurable, both ν and µ are probability measures on the measurable space (V N, σ(OV )).
Proposition 3.18 reduces the statement into proving that for every E ∈ OV , it holds that µ(E) = ν(E).
However, the Markov property (3.1) is precisely this statement, since it implies that for every n ∈ N and
s ∈ V [n]−1,

P
(

TrajY�[n]−1 = s
∣∣∣ Y0 = j,X0 = i

)
= P

(
TrajY�[n]−1 = s

∣∣∣ Y0 = j
)
.

We close this section with an argument using the shift of a random walk. It serves both as an application
of the theory just developed, and as a preview of the proof of correctness of the Aldous-Broder algorithm.

Proposition 3.29. Let X be a time-homogeneous Markov chain in a probability space (Ω,F ,P), with a
finite state space V . If X is irreducible, then for every r ∈ V ,

P(ArrX,r =∞) = 0.

Moreover, P(CovX =∞) = 0.
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Proof. Note that
{CovX =∞}

Ω
=
⋃
r∈V
{ArrX,r =∞}

Ω
.

Suffices then to show that for every r ∈ V , we have that P(ArrX,r =∞) = 0. We first prove this statement
assuming that X is a Markov chain such that, for every i ∈ V , it holds that P(X0 = i) > 0.

Let r ∈ V . For every i ∈ V \ {r}, we have that

{ArrX,r =∞, X0 = i}
Ω

=
⋃
j∈V
{ArrX,r =∞, Y0 = j,X0 = i}

Ω

=
⋃
j∈V
{ArrY,r =∞, Y0 = j,X0 = i}

Ω
.

Moreover, Proposition 3.21 ensures that both Proposition 3.19 and Proposition 3.28 apply. Therefore, for
every i ∈ V \ {r},

P(ArrX,r =∞ |X0 = i) =
∑
j∈V

P(ArrY,r =∞, Y0 = j |X0 = i)

=
∑
j∈V

P(ArrY,r =∞ | Y0 = j,X0 = i)P(Y0 = j |X0 = i)

=
∑
j∈V

P(ArrY,r =∞ | Y0 = j)P(X1 = j |X0 = i)

=
∑
j∈V

P(ArrX,r =∞ |X0 = j)P(X1 = j |X0 = i).

Denote then fr(i) := P(ArrX,r = ∞ | X0 = i). We have just proved that function fr is harmonic, with
respect to the transition digraph of X, at every vertex in V \ {r}. Since this digraph is strongly connected,
Proposition 1.62 ensures that fr is constant. Furthermore, since fr(r) = 0, we have that fr = 0. Therefore,
for every r ∈ V , we have that P(ArrX,r =∞) = 0.

Let Y be any time-homogeneous Markov chain with finite state space V . Theorem 3.15 ensures that there
exists a Markov chain X with the same transition matrix as Y and such that for every i ∈ V we have that
P(X0 = i) = 1/ |V |. We have just proved that for every r ∈ V , we have that P(ArrX,r =∞ |X0 = i) = 0.
Proposition 3.21 and Proposition 3.19 then finish the proof, since for every r ∈ V ,

P(ArrY,r =∞) =
∑
i∈V

[P(Y0 = i) > 0]P(ArrY,r =∞ | Y0 = i)P(Y0 = i)

=
∑
i∈V

[P(Y0 = i) > 0]P(ArrX,r =∞ |X0 = i)P(Y0 = i)

= 0.

Proposition 3.29 has the important consequence of ensuring that our crass definition of expected value
of random variables apply to both the arrival and cover time. Let X be a time-homogeneous, irreducible
Markov chain, in a probability space (Ω,F ,P), with a finite state space V . Proposition 3.29 then ensures
that P(CovX =∞) = 0. Therefore, 1 =

∑
t∈N P(CovX = t). Hence, according to Definition 1.75, we have

E[CovX ] =
∑
t∈N

t P(CovX = t). (3.30)

Likewise, let i ∈ V . Proposition 3.29 ensures that P(ArrX,i =∞) = 0. Therefore, 1 =
∑
t∈N P(ArrX,i = t).

Hence, according to Definition 1.75, we have

E[ArrX,i] =
∑
t∈N

t P(ArrX,i = t). (3.31)
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Chapter 4

The Aldous-Broder Algorithm

This chapter is about the result first proved by Aldous [1] and Broder [5] — hence the section name.
The algorithm described is well defined on every Markov chain. However, further hypothesis are needed
to ensure its correctness. Broder requires the Markov chain to be irreducible and time-reversible, whereas
Aldous define the algorithm for random walks on graphs. As was already established in the previous chapter,
both approaches are equivalent; to work with irreducible, time-reversible Markov chains is to work with a
random walk in a connected weighted graph.

Since only connected graphs have spanning trees, every graph mentioned in a statement in this chapter
will be connected. A convenient consequence is that every random walk we deal with is an irreducible Markov
chain. Hence, we can (and will) simply use Equation (3.30) and Equation (3.31) to calculate the expected
values of the random variables we are working with.

Moreover, we assume the graphs we are dealing are simple. To remove loops is clearly not a limitation,
since loops cannot be in a spanning tree. The case for parallel edges is more interesting, and for such reason
we proceed to sketch how one could use an algorithm that samples in simple graphs to sample in graphs with
parallel edges.

Suppose G = (V,E, ψ,w) is a weighted graph, with w ∈ RE++ and e, f ∈ E are such that ψ(e) = ψ(f). For
simplicity, suppose e and f are the only such pair. Define the graph H := (V,E − f, ψ�E−f , w′), where w′ is
equal to w in every edge but e, where it is defined as w′(e) := w(e) + w(f). The graph H is simple. Suppose
we sampled a spanning tree T in G. If e 6= T , we just output T as a spanning tree of G. However, if e ∈ T , we
can output T with probability w(e)/(w(e) +w(f)), and T − e+ f with probability w(f)/(w(e) +w(f)). It is
then possible to use fact that the algorithm was correct for G to conclude that the algorithm is correct for H.

4.1 The Algorithm
Definition 4.1. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X
be a random walk on G, in a probability space (Ω,F ,P). The Aldous-Broder algorithm is the function
A(X) : Ω→ P(E) ∪ {⊥} defined, for every ω ∈ Ω, as

A(X)(ω) :=

{
⊥, if CovX(ω) =∞,⋃
i∈V \{X0(ω)}{{XArrX,i(ω)−1, XArrX,i(ω)}}, otherwise.

Proposition 4.2. Let G be a simple, connected and weighted graph, with w ∈ RE++. Let X be a random
walk on G, in a probability space (Ω,F ,P). For every ω ∈ Ω, if A(X)(ω) 6= ⊥, then A(X)(ω) ∈ TG.

Proof. Let G = (V,E,w). Let ω ∈ Ω be such that A(X)(ω) 6= ⊥. The definition of the algorithm then
ensures that CovX(ω) <∞. Therefore, ArrX,i(ω) <∞ for every i ∈ V (G). Hence, the set

F := A(X)(ω) =
⋃

i∈V \{X0(ω)}

{{XArrX,i(ω)−1, XArrX,i(ω)}}

has |V | − 1 edges in it. Suffices to show that the graph G[F ] is connected.
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Set i := X0(ω). We proceed to show that every vertex in V is connected to i. This can be done by
induction on ArrX,j(ω), for every vertex j. If ArrX,j(ω) = 0, then j = i and the thesis holds. Otherwise, let
j ∈ V be such that t := ArrX,j(ω) is nonzero. Set k := Xt−1(ω). Since ArrX,k(ω) ≤ t− 1 < t, the induction
hypothesis ensures that k is connected to i. Moreover, kj ∈ F . Hence, j is connected to i.

Definition 4.3. Let G be a simple, connected and weighted graph, with w ∈ RE++. Let T ∈ TG. Define
ST,0 := ∅. Moreover, for every nonzero t ∈ N, define ST,t as the set of sequences s ∈ V [t]−1 such that for
every random walk X on G, in a probability space (Ω,F ,P), it holds that{

TrajX�[t]−1 = s
}

Ω

⊆ {A(X) = T,CovX = t− 1}
Ω
.

Proposition 4.4. Let G be a simple, connected and weighted graph, with w ∈ RE++. Let X be a random
walk on G, in a probability space (Ω,F ,P). For every T ∈ TG,

{A(X) = T}
Ω

=
⋃
t∈N

{
TrajX�[t]−1 ∈ ST,t

}
Ω

.

Proof. Note that, by definition, {A(X) = T}
Ω
⊆ {CovX <∞}

Ω
. Hence

{A(X) = T}
Ω

= {A(X) = T,CovX <∞}
Ω

=
⋃
t∈N
{A(X) = T,CovX = t}

Ω
.

Using this equality and the definition of ST,t, we have that⋃
t∈N

{
TrajX�[t]−1 ∈ ST,t

}
Ω

=

∞⋃
t=1

{
TrajX�[t]−1 ∈ ST,t

}
Ω

⊆
∞⋃
t=1

{A(X) = T,CovX = t− 1}
Ω

= {A(X) = T}
Ω
.

It remains to show that {A(X) = T}
Ω
⊆
⋃
t∈N

{
TrajX�[t]−1 ∈ ST,t

}
Ω

. Let then ω ∈ {A(X) = T}
Ω
. Since

A(X)(ω) 6= ⊥, it holds that CovX(ω) <∞. Define t := CovX(ω)+1. Let s ∈ V [t]−1 be defined as si := Xi(ω),
for every i ∈ [t]− 1. Since ω ∈

{
TrajX�[t]−1 = s

}
Ω

, suffices to show that s ∈ ST,t. Suppose then that Y is a
random walk on G, in a probability space (Ω′,G,PY ). We wish to show that{

TrajY�[t]−1 = s
}

Ω′
⊆ {A(Y ) = T,CovY = t− 1}

Ω′ .

Suppose ω′ ∈
{

TrajY�[t]−1 = s
}

Ω′
. Note that this implies that Yk(ω′) = sk = Xk(ω) for every k ∈ [t] − 1.

Therefore, for every i ∈ V , we have that ArrX,i(ω) = ArrY,i(ω
′). Moreover, CovY (ω′) = CovX(ω) = t − 1.

Hence
ω′ ∈ {A(Y ) = T,CovY = t− 1}

Ω′ .

Since Y was an arbitrary random walk on G, it follows that s ∈ ST,t.

Corollary 4.5. Let G be a simple, connected and weighted graph, with w ∈ RE++. Let X be a random walk
on G. The Aldous-Broder algorithm A(X) is a random variable.

Proof. Suppose X is a random walk in a probability space (Ω,F ,P). Proposition 4.4 ensures that for every
T ∈ TG, the event {A(X) = T}

Ω
∈ σ[TrajX ]. The proof is done, since

{A(X) = ⊥}
Ω

= Ω \ {A(X) ∈ TG}Ω,

so that {A(X) = ⊥}
Ω
∈ σ[TrajX ].

Proposition 4.6. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a random walk on G, in a probability space (Ω,F ,P). Let Y be the shift of X. For every T ∈ TG and for
every i ∈ V ,

{A(X) = T,X0 = i,A(Y ) 6= ⊥}
Ω

=
⋃

j∈ΓT (i)

⋃
k∈Cj

{A(Y ) = T − ij + ki, Y0 = j,X0 = i}
Ω
,

where Cj is the component of j in G[T ]− i intersected with Γ(i).
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Proof. Let ω ∈ {A(X) = T,X0 = i,A(Y ) 6= ⊥}
Ω
. The fact that A(Y )(ω) 6= ⊥ implies ArrY,i(ω) <∞. Set

t := ArrY,i(ω) and k := Yt−1(ω), so that ki ∈ A(Y )(ω). Set j := X1(ω) = Y0(ω). Proposition 3.27 ensures

A(Y )(ω) =
⋃

`∈V \{j}

{{
YArrY,`(ω)−1, YArrY,`(ω)

}}
= {ki} ∪

⋃
`∈V \{i,j}

{{
YArrY,`(ω)−1, YArrY,`(ω)

}}
= {ki} ∪

⋃
`∈V \{i,j}

{{
YArrX,`(ω)−2, YArrX,`(ω)−1

}}
= {ki} ∪

⋃
`∈V \{i,j}

{{
XArrX,`(ω)−1, XArrX,`(ω)

}}
,

so that A(Y )(ω) = T − ij + ki. This ensures that the set in the LHS of the statement is a subset of the one
in the RHS.

Let j ∈ ΓT (i), and k ∈ Cj . Suppose then that ω ∈ {A(Y ) = T − ij + ki, Y0 = j,X0 = i}
Ω
. Since A(Y )(ω)

is a tree, we have that ω ∈ {A(Y ) 6= ⊥}
Ω
. Suffices to show that A(X)(ω) = T . Proposition 3.27 ensures that

A(X)(ω) =
⋃

`∈V \{i}

{{
XArrX,`(ω)−1, XArrX,`(ω)

}}
= {ij} ∪

⋃
`∈V \{i,j}

{{
XArrX,`(ω)−1, XArrX,`(ω)

}}
= {ij} ∪

⋃
`∈V \{i,j}

{{
YArrY,`(ω)−1, YArrY,`(ω)

}}
.

Therefore A(X)(ω) = (T − ij + ki)− ki+ ij = T , and the proof is finished.

Proposition 4.7. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X
be a random walk on G, in a probability space (Ω,F ,P). Let i ∈ V be such that P(X0 = i) > 0. For every
T ∈ TG, denote by jk be the first vertex in the ik-path in G[T ]. Then

P(A(X) = T |X0 = i) =
∑
k∈Γ(i)

P(X1 = jk |X0 = i)P(A(X) = T − ijk + ik |X0 = jk).

Proof. Let Y be the shift of X. Since X is irreducible, so is Y . Proposition 3.29 then ensures that
P(A(Y ) = ⊥) = 0. Hence P(A(X) = T |X0 = i) = P(A(X) = T,A(Y ) 6= ⊥ |X0 = i). Moreover, since
P(X0 = i) > 0, for every j ∈ ΓT (i) we have that

P(Y0 = j) ≥ P(Y0 = j,X0 = i) = P(Y0 = j |X0 = i)P(X0 = i) =
w(ij)∑
w(δ(i))

P(X0 = i) > 0.

Hence, for every j ∈ ΓT (i), the conditional probabilities P(· | Y0 = j) and P(· | Y0 = j,X0 = i) are defined.
Proposition 4.6 and Proposition 3.28 then ensure

P(A(X) = T |X0 = i) =
∑

j∈ΓT (i)

∑
k∈Cj

P(A(Y ) = T − ij + ik, Y0 = j |X0 = i)

=
∑

j∈ΓT (i)

∑
k∈Cj

P(A(Y ) = T − ij + ik | Y0 = j,X0 = i)P(Y0 = j |X0 = i)

=
∑

j∈ΓT (i)

∑
k∈Cj

P(A(Y ) = T − ij + ik | Y0 = j)P(X1 = j |X0 = i),

where Cj is the component of j in G[T ]− i intersected with Γ(i).
To finish the proof, remains only to change the summation order. Since G is simple, Γ(i) ⊆ V \ {i}.

Hence, every k ∈ Γ(i) belongs to a single component in G[T ] − i. Therefore, for every k ∈ Γ(i) there is a
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single j ∈ ΓT (i) such that (j, k) appear as indices in the double summation. Moreover, since k belongs to the
component of j in G[T ]− i, there is a unique ik-path in G[T ], and ij ∈ T , we have that j is the first vertex
in such path. Hence

P(A(X) = T |X0 = i) =
∑
k∈Γ(i)

P(X1 = jk |X0 = i)P(A(Y ) = T − ijk + ik | Y0 = jk),

and Proposition 3.19 finishes the proof.

Definition 4.8. Let G = (V,E) be a simple, connected graph. Define H(G) := (TG × V, F ) to be such that
for every T ∈ TG and i ∈ V ,

ΓH(G)(T, i) :=
⋃

k∈Γ(i)

{(T − ijk + ik, jk)},

where jk is the first vertex in the ik-path in T .

Let G be a simple, connected graph. It will be an important step to prove the correctness of the
Aldous-Broder algorithm to show that H(G) is connected. The next 3 propositions prove that this is the
case. The main proof will follow easily from Proposition 4.9 and Proposition 4.10, both propositions which
will be proved via equivalent techniques. However, it is remarkable how the first is as simple as an inductive
argument gets, and the second is a full of parameters minimal counterexample demonstration.

Proposition 4.9. Let G = (V,E) be a simple, connected graph. For every T ∈ TG and i, j ∈ V , we have
that (T, i) and (T, j) are connected in H(G).

Proof. Since T is a spanning tree, for every vertices i, j ∈ V there exists an ij-walk in G[T ]. Let (i, e1, . . . , e`, j)
be this walk. We proceed by induction on `, the length of the walk.

If ` = 0, then i = j, and there is nothing to prove. Assume ` > 0, and let k be the first vertex in the
ij-walk under consideration. The induction hypothesis implies that (T, k) and (T, j) are connected, since the
kj-walk (k, e2, . . . , j) has length `− 1. Moreover, since k is the first vertex in the unique ik-walk in G[T ], we
have that (T, i) is adjacent to

(T − ik + ik, k) = (T, k)

in H(G), and the proof is finished.

Proposition 4.10. Let G = (V,E, ψ) be a simple, connected graph. Let r ∈ V , let T ∈ TG, and e0 ∈ E \ T .
Denote by ik := ψ(e0). Then for every edge e in the only ik-path in G[T ], the pair (T, r) is connected to
(T − e+ e0, r) in H(G).

Proof. For every T ∈ TG and for every i, j ∈ V , there is a unique ij-path in G[T ]. Denote by `T (i, j) the
length of this walk. For every T ∈ TG and e, e0 ∈ E, define

dT (e, e0) := min{ `T (i, j) : i ∈ ψ(e), j ∈ ψ(e0)}.

Suppose that the graph G = (V,E, ψ), the vertex r ∈ V , the spanning tree T ∈ TG, and the edges e ∈ T
and e0 ∈ E \ T are a counterexample that minimizes dT (e, e0). We first prove that dT (e, e0) > 0.

If dT (e, e0) = 0, then |ψ(e) ∩ ψ(e0)| > 0. Let i ∈ ψ(e) ∩ ψ(e0), and let j, k ∈ V be such that ψ(e0) = ik
and ψ(e) = ij. Proposition 4.9 ensures that (T, r) is connected to (T, i), and since

T − e+ e0 = T − ij + ik,

we have that (T, i) and (T−e+e0, j) are adjacent in H(G). Proposition 4.9 then ensures that (T−e+e0, j) and
(T − e+ e0, r) are connected in H(G), which contradicts the fact that we were dealing with a counterexample.

Set t := dT (e, e0). We have just proved that t > 0. Without loss of generality, assume that i, k ∈ V are
such that `T (i, k) = dT (e, e0). Let (i, e1, j, . . . , et, k) be the only ik-walk in G[T ]. Proposition 4.9 ensures
that (T, r) is connected to (T, i), and the definition of H(G) implies that (T, i) is adjacent to (T − e1 + e0, j).
Moreover, note that

dT−e1+e0(e1, e) = t− 1,
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and that e1 ∈ E \ (T − e1 + e0). Hence, we have that (T − e1 + e0, r) is connected to (T − e+ e0, r). Therefore,
we have that (T, r) is connected to (T, i), which is adjacent to (T − e1 + e0, j), which is then connected to
(T − e+ e0, r). In other words, (T, r) is connected to (T − e+ e0, r). This contradicts the choice of parameters
as a counterexample.

Proposition 4.11. Let G be a simple, connected graph. The graph H(G) is connected.

Proof. Let G = (V,E, ψ). For every S, T ∈ TG, define

d(S, T ) := |V | − 1− |S ∩ T | .

Let r ∈ V . We proceed to prove that for every S, T ∈ TG, the pairs (T, r) and (S, r) are connected in H(G).
This proof will be by induction on d(S, T ). Note that this and Proposition 4.9 imply the statement.

If d(S, T ) = 0, then S = T , and there is nothing to prove. Let then T and S be spanning trees such that
d(S, T ) > 0. Since d(S, T ) 6= 0, there exists e0 ∈ S \ T . Set ik := ψ(e0). Since G is simple, we have that
i 6= k. Moreover, since S is a tree, it is acyclic. Hence, there exists an edge e in the ik-walk in G[T ] that is
not in S. In other words, there exists an edge e in the ik-walk in G[T ] such that e ∈ T \ S. Proposition 4.10
then ensures that (T, r) is connected to (T − e + e0, r). But since e0 ∈ S \ T and e ∈ T \ S, we have that
d(T − e+ e0, S) = d(T, S)− 1. The induction hypothesis then finishes the proof.

Theorem 4.12. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be a
random walk on G, in a probability space (Ω,F ,P). For every T ∈ TG,

P(A(X) = T ) =

∏
w(T )

Φ(G)
.

Proof. As we did in Proposition 3.29, we first prove the statement assuming that for every i ∈ V we have
that P(X0 = i) > 0. Define the function Z : TG × V → R as

Z(T, i) :=
P(A(X) = T |X0 = i)∏

w(T )
.

If we denote by jk the first vertex in the ik-walk in G[T ], Proposition 4.7 ensures

Z(T, i) =
P(A(X) = T |X0 = i)∏

w(T )

=
1∏
w(T )

∑
k∈Γ(i)

P(X1 = jk |X0 = i)P(A(X) = T − ijk + ik |X0 = jk)

=
1∏
w(T )

∑
k∈Γ(i)

w(ijk)∑
w(δ(i))

w(ik)

w(ik)
P(A(X) = T − ijk + ik |X0 = jk)

=
∑
k∈Γ(i)

w(ik)∑
w(δ(i))

P(A(X) = T − ijk + ik |X0 = jk)∏
w(T − ijk + ik)

=
∑
k∈Γ(i)

w(ik)∑
w(δ(i))

Z(T − ijk + ik, jk)

=
∑
k∈Γ(i)

P(X1 = k |X0 = i)Z(T − ijk + ik, jk).

Therefore, the function Z : TG × V → R is harmonic at every vertex of H(G). Proposition 4.11 ensures that
H(G) is connected, so that Proposition 1.63 implies that Z is constant. In other words, there exists α ∈ R
such that for every T ∈ TG and for every i ∈ V ,

P(A(X) = T |X0 = i) = α
∏

w(T ).
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Therefore,

P(A(X) = T ) =
∑
i∈V

P(A(X) = T |X0 = i)P(X0 = i) = α
∏

w(T )
∑
i∈V

P(X0 = i) = α
∏

w(T ).

Since G is connected, the Markov chain X is irreducible. Proposition 3.29 ensures that P(A(X) = ⊥) = 0.
Proposition 2.37 allow us to conclude that

1 =
∑
T∈TG

P(A(X) = T ) =
∑
T∈TG

α
∏

w(T ) = α
∑
T∈TG

∏
w(T ) = αΦ(G).

Thus, α = Φ(G)−1.
Let Y be any random walk on G. Theorem 3.15 ensures that there exists a random walk X on G such

that P(X0 = i) = 1/ |V | for every i ∈ V . We have just proved that PA(X) = TX0 = i = (
∏
w(T ))/Φ(G).

Since X and Y have the same transition matrix, Proposition 4.4 ensures {A(X) = T}
Ω
∈ σ[TrajX ], so that

Proposition 3.19 finishes the proof:

P(A(Y ) = T ) =
∑
i∈V

[P(Y0 = i) > 0]P(A(Y ) = T | Y0 = i)P(Y0 = i)

=
∑
i∈V

[P(Y0 = i) > 0]P(A(X) = T |X0 = i)P(Y0 = i)

=

∏
w(T )

Φ(G)

∑
i∈V

[P(Y0 = i) > 0]P(Y0 = i)

=

∏
w(T )

Φ(G)
.

4.2 Bounds on the Cover Time
The Aldous-Broder algorithm terminates as soon as every vertex has been visited. In other words, the

cover time captures the running time of the algorithm. For this reason, we are interested in bounding the
expected cover time of a random walk in a graph.

Bounds on the expected cover time of a graph were known before the Aldous-Broder algorithm was
developed. Aleliunas et al. [2] gave the first proof of Proposition 4.27 in 1979, the end goal of this section.
However, the argument here is different from theirs for two reasons. First, it uses a result first proved by
Chandra et al. [15] in 1989 that relates the expected hitting time with the pseudoinverse of the Laplacian of
a graph. Second, Proposition 4.25 is a different take on relating the expected cover time with the expected
hitting time, which is simpler than the one found in [2] and subsequently used in [15]. An unexpected
consequence of such approach is a hint that the cover time can be lower for regular graphs, in Corollary 4.26.
The first proof that the expected cover time on regular graphs on n vertices is O(n2) was given by Kahn et
al. in [16], and Feige [8] lowered the constant.

The main idea in this section is to “transport” results about stationary random walks into arbitrary ones.
It is not hard to imagine that some properties of random walks are simpler to study when one is dealing with
the stationary distribution. It is more interesting to understand how to exploit this special case to prove
results about random walks with no hypothesis on the initial distribution. We will do such a thing with the
next results, up until Corollary 4.19.

Proposition 4.13. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a random walk on G, and let Y be a stationary walk on G. For every E ∈ σ(OV ),

P(TrajX ∈ E |X0 = i) = P(TrajY ∈ E | Y0 = i),

whenever i ∈ V is such that both conditional probabilities are defined.

Proof. Since X and Y are random walks on the same graph, by definition both have the same transition
probabilities. It is enough to apply Proposition 3.19.
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Proposition 4.14. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a stationary walk on G. Denote by π ∈ RV++ the stationary distribution of G. For every i ∈ V ,

E[ArrX,i] = 1/πi.

Proof. Let (Ω,F ,P) be the probability space in which X is defined. Since X is stationary, for every t ∈ N,

P(ArrX,i = t) = P(Xt = i)

t−1∏
k=0

P(Xk 6= i) = P(Xt = i)

t−1∏
k=0

(1− P(Xk = i)) = πi(1− πi)t−1.

Therefore

E[ArrX,i] =
∑
t∈N

t P(ArrX,i = t)

=
∑
t∈N

t πi(1− πi)t−1

= πi
∑
t∈N

t (1− πi)t−1 by Proposition 1.67

= πi
1

π2
i

=
1

πi
by Theorem 1.70.

Proposition 4.15 (Law of Total Expectation). Let X be random variable in (Ω,F ,P), taking values with
nonzero probabilities only on N. Let E ⊆ F be a partition of Ω in events, with |E| finite. Then

E[X] =
∑
E∈E

[P(E) > 0]P(E)E [X|E] .

Proof. Expand the summation, condition the probabilities on the events of the statement, and manipulate
the series accordingly:

E[X] =
∑
t∈N

t P(X = t)

=
∑
t∈N

t

(∑
E∈E

P(X = t, E)

)

=
∑
t∈N

t

(∑
E∈E

[P(E) > 0]P(X = t | E)P(E)

)
=
∑
E∈E

∑
t∈N

[P(E) > 0] t P(X = t | E)P(E) by Theorem 1.68

=
∑
E∈E

[P(E) > 0]P(E)
∑
t∈N

t P(X = t | E) by Proposition 1.67

=
∑
E∈E

[P(E) > 0]P(E)E [X|E] .

Corollary 4.16. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be a
random walk on G. Let i ∈ V be such that P(X0 = i) > 0. For every j ∈ V ,

E [ArrX,j |X0 = i] <∞.

Proof. Let (Ω,F ,P) be the probability space in which X is defined. Let Y be a stationary walk on G, in a
probability space (Ω′,G,PY ). Proposition 4.13 ensures that for every t ∈ N,

PY (ArrY,j = t | Y0 = i) = P(ArrX,j = t |X0 = i).
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Therefore

E [ArrY,j |Y0 = i] =
∑
t∈N

t PY (ArrY,j = t | Y0 = i) =
∑
t∈N

t P(ArrX,j = t |X0 = i) = E [ArrX,j |X0 = i] .

Since G is connected, Proposition 3.29 ensures that for every i ∈ V , the random variables ArrY,i and ArrX,i
take only values in N with nonzero probability. Therefore, Proposition 4.15 applied to the events {Y0 = i}

Ω′

ensures that

E[ArrY,j ] =
∑
i∈V

P(Y0 = i)E [ArrY,j |Y0 = i] ≥ πiE [ArrY,j |Y0 = i] = πi E [ArrX,j |X0 = i] .

Since πi > 0, the fact that E [ArrX,j |X0 = i] = ∞, would then imply that E[ArrY,j ] = ∞, contrary to
Propositon 4.14. Hence, E [ArrX,j |X0 = i] is finite.

The corollary just proved is important, since it ensures that when working with arrival times, we are
actually working with real numbers. It motivates the following definition.

Definition 4.17. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be a
stationary walk on G. The hitting time matrix of G, denoted HG ∈ RV×V , is defined as

(HG)ij := E[ArrX,j |X0 = i],

for every i, j ∈ V .

Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be a random walk
on G. Proposition 4.13 ensures that, whenever i ∈ V is such that the conditional probability is defined,

E [ArrX,j |X0 = i] = (HG)ij ,

for every j ∈ V . Hence, the hitting time matrix of G captures the expected hitting time of any random walk
on G.

Corollary 4.18. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let π ∈ RV++

be the stationary distribution of G. Then

HT
Gπ = 2wT

1D−1
G 1.

Proof. Let X be a stationary walk on G, in a probability space (Ω,F ,P). For every i ∈ V , Proposition 4.13,
Proposition 4.14, and Proposition 3.9 ensure that

eTi H
T
Gπ =

∑
j∈V

E[ArrX,i |X0 = j] πj = E[ArrX,i] = 1/πi = eTi
(
2wT

1D−1
G 1

)
.

Hence, HT
Gπ = 2wT

1D−1
G 1.

Corollary 4.19. Let G = (V,E) be a simple, connected and k-regular graph. Then

HT
G1 = |V |2 1.

Proof. Let π ∈ RV++ be the stationary distribution of G. Since G is k-regular, we have that 1 = |V |π, that
2 |E| = k |V |, and that DG = kI. Corollary 4.18, applied with w = 1, then finishes the proof:

HG1 = |V |HT
G

(
1

|V |
1

)
= |V |HT

Gπ = |V |
(
21T

1D−1
G 1

)
= |V |

(
2 |E|D−1

G 1
)

= |V |
(
k |V |
k

1

)
= |V |2 1.

Proposition 4.20. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a random walk on G in a probability space (Ω,F ,P). Then for every k, j ∈ V ,∑

t∈N
t P(ArrX,j = t− 1 |X0 = k) =

∑
t∈N

(1 + t)P(ArrX,j = t |X0 = k).
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Proof. Define (αt)t∈N and (βt)t∈N as

αt := t P(ArrX,j = t− 1 |X0 = k)

βt := (1 + t)P(ArrX,j = t, |X0 = k).

Note that, for every T ∈ N,
T∑
t=0

αt =

T∑
t=0

t P(ArrX,j = t− 1 |X0 = k) =

T−1∑
t=0

(1 + t)P(ArrX,j = t |X0 = k) =

T−1∑
t=0

βk.

Therefore, {
T∑
t=0

αt : T ∈ N

}
=

{
T∑
t=0

βt : T ∈ N

}
.

Equation (1.65) then finishes the proof.

Proposition 4.21. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a stationary walk on G. For every i ∈ V and for every j ∈ V \ {i},

E [ArrX,j |X0 = i] = 1 +
∑
k∈V

P(X1 = k |X0 = i)E [ArrX,j |X0 = k] .

Proof. Let P ∈ RV×V be the transition matrix of X. For every t ∈ N, Proposition 3.21 ensures that
{ArrX,j = t}

Ω
∈ σ[TrajX ]. Moreover, Proposition 3.27 implies

{ArrX,j = t,X0 = i}
Ω

=
⋃
k∈V

{ArrX,j = t, Y0 = k,X0 = i}
Ω

=
⋃
k∈V

{ArrY,j = t− 1, Y0 = k,X0 = i}
Ω
.

Furthermore, note that Proposition 3.19 and Proposition 3.28 ensure that for every k ∈ V ,

P(ArrX,j = t, Y0 = k |X0 = i) = [Pik > 0] Pik P(ArrY,j = t | Y0 = k,X0 = i)

= [Pik > 0] Pik P(ArrY,j = t | Y0 = k)

= [Pik > 0] Pik P(ArrX,j = t− 1 |X0 = k)

= Pik P(ArrX,j = t− 1 |X0 = k).

In the last equality we used the fact that X is stationary, which implies that P(ArrX,j = t− 1 |X0 = k) is
always defined. Therefore,

E [ArrX,j |X0 = i] =
∑
t∈N

t P(ArrX,j = t |X0 = k) =
∑
t∈N

t

(∑
k∈V

P(ArrX,j = t, Y0 = k |X0 = i)

)

=
∑
t∈N

t

(∑
k∈V

Pik P(ArrX,j = t− 1 |X0 = k)

)
=
∑
k∈V

∑
t∈N

Pik t P(ArrX,j = t− 1 |X0 = k) by Theorem 1.68

=
∑
k∈V

Pik
∑
t∈N

t P(ArrX,j = t− 1 |X0 = k) by Proposition 1.67

=
∑
k∈V

Pik
∑
t∈N

(1 + t)P(ArrX,j = t |X0 = k) by Proposition 4.20

=
∑
k∈V

Pik

(∑
t∈N

P(ArrX,j = t |X0 = i) +
∑
t∈N

t P(ArrX,j = t |X0 = i)

)
by Theorem 1.68

=
∑
k∈V

Pik(1 + E [ArrX,j |X0 = k]) = 1 +
∑
k∈V

PikE [ArrX,j |X0 = k] .
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Proposition 4.22. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let P be
the transition matrix of G. Then

(I − P )HG = 11
T − 2wT

1D−1
G .

Proof. Define A ∈ RV×V as A := (I − P )HG − 11
T. Suffices then to show that A = −2wT

1D−1
G . Proposi-

tion 4.21 ensures that for every i, j ∈ V ,

(HG)ij = 1 +
∑
k∈V

Pik(HG)kj .

Hence, A is diagonal. Let π ∈ RV++ be the stationary distribution of G. Since π = PTπ, we have that
π ∈ Null((I − P )T). Therefore

ATπ = ((I − P )HG − 11T)Tπ

= HT
G(I − P )Tπ − 11Tπ

= −1.

Since A is diagonal, we conclude that for every i ∈ V ,

Aii = −1/πi = −
(
2wT

1D−1
G

)
ii
.

Therefore, A = −2wT
1D−1

G .

The next two results were first proved in [15] with a slightly different language. For every graph, the
authors define an electric circuit related to it, and reason about the voltages and currents in it. Here, every
argument about voltage and current of such circuits is made via algebraic manipulations of the Laplacian
and its pseudoinverse. Doyle and Snells [7] and Wagner [20] have interesting texts on the relation between
electric circuits and the Laplacian of a graph.

Proposition 4.23. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Then for
every i, j ∈ V ,

(HG)ij = (ei − ej)TL†G
(
DG1− 2wT

1ej
)
.

Proof. Let P ∈ RV×V be the transition matrix of G. Proposition 1.57 ensures that

LG = DG −AG = DG(I −D−1
G A) = DG(I − P ).

Moreover, Proposition 4.22 ensures that

(I − P )HG = 11
T − 2wT

1D−1
G .

Left multiply both sides by L†GDG to conclude that

L†GLGHG = L†G
(
DG11

T − 2wT
1
)
.

Proposition 1.58 ensures that L†GLG = Pspan(1)⊥ . Since ei − ej ∈ span(1)⊥, and Pspan(1)⊥ is orthogonal,

(ei − ej)TPspan(1)⊥ =
(
PT

span(1)⊥(ei − ej)
)T

=
(
Pspan(1)⊥(ei − ej)

)T
= (ei − ej)T.

Hence,
(ei − ej)TPspan(1)⊥HGej = (ei − ej)THGej = (ei − ej)TL†G(DG1− 2wT

1ej).

However, since (HG)jj = 0,

(ei − ej)TPspan(1)⊥HGej = (ei − ej)THGej = (HG)ij − (HG)jj = (HG)ij .

The next proposition relates the entries in the hitting time matrix with a more familiar quantity.
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Theorem 4.24. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Then for
every i, j ∈ V ,

(HG)ij + (HG)ji = 2wT
1(ej − ei)TL†G(ej − ei).

Proof. Proposition 4.23 ensures that

(HG)ji = (ej − ei)TL†G(d− 2wT
1ei) = (ei − ej)TL†G(2wT

1ei − d).

Therefore,

(HG)ij + (HG)ji = (ei − ej)TL†G(d− 2wT
1ej)

+ (ei − ej)TL†G(2wT
1ei − d)

= (ei − ej)TL†G(2wT
1ei − 2wT

1ej)

= 2wT
1(ei − ej)TL†G(ei − ej).

Proposition 4.25. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a random walk on G, in a probability space (Ω,F ,P). Let i ∈ V be such that P(X0 = i) > 0. Then

E [CovX |X0 = i] ≤ eTi HG1.

Proof. Define
S := { j ∈ V : P(LastX = j,X0 = i) > 0}.

Note that {X0 = i}
Ω

=
⋃
j∈S{LastX = j,X0 = i}

Ω
. In other words, the events {LastX = j,X0 = i}

Ω
, for

j ∈ S, are a partition in events of {X0 = i}
Ω
. Hence, Proposition 4.15 implies

E [CovX |X0 = i] =
∑
j∈S

P(LastX = j |X0 = i)E [CovX |LastX = j,X0 = i]

=
∑
j∈S

P(LastX = j |X0 = i)

(∑
t∈N

t P(CovX = t | LastX = j,X0 = i)

)
=
∑
j∈S

∑
t∈N

t P(CovX = t | LastX = j,X0 = i)P(LastX = j |X0 = i) by Proposition 1.67

=
∑
j∈S

∑
t∈N

t P(CovX = t,LastX = j |X0 = i)

Moreover, for every j ∈ S and t ∈ N, we have that

{CovX = t,LastX = j,X0 = i}
Ω

= {ArrX,j = t,LastX = j,X0 = i}
Ω
⊆ {ArrX,j = t,X0 = i}

Ω
,

Hence, P(CovX = t,LastX = j |X0 = i) ≤ P(ArrX,j = t |X0 = i). Therefore,

E [CovX |X0 = i] =
∑
j∈S

∑
t∈N

t P(CovX = t,LastX = j |X0 = i)

≤
∑
j∈S

∑
t∈N

t P(ArrX,j = t |X0 = i) by Proposition 1.66

≤
∑
j∈S

E [ArrX,j |X0 = i] ≤ eTi HG1.

Corollary 4.26. Let G = (V,E) be a connected, k-regular graph, and let X be a random walk on G. There
exists i ∈ V such that

E[CovX |X0 = i] ≤ |V |2 .
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Proof. Let (Ω,F ,P) be the probability space in which X is defined. Proposition 4.25 and Corollary 4.19
ensure ∑

i∈V
E[CovX |X0 = i] ≤

∑
i∈V

eTi HG1 =
(
1
THG

)
1 =

(
|V |2 1

)T
1 = |V |3 .

In other words, ∑
i∈V

(
1

|V |
E[CovX |X0 = i]

)
≤ |V |2 .

Hence, Proposition 1.4 finishes the proof.

Proposition 4.27. Let G = (V,E,w) be a simple, connected and weighted graph, with w ∈ RE++. Let X be
a random walk on G. Denote by W := minij∈E w(ij). For every i ∈ V such that P(X0 = i) > 0,

E [CovX |X0 = i] ≤ 2wT
1

W
(|V | − 1).

Proof. Let j ∈ V be such that (HG)ij is maximal. Then Proposition 4.25 and the fact that (HG)ii = 0 ensure

E [CovX |X0 = i] ≤ eTi HG1 =
∑

k∈V \{i}

(HG)ik ≤
∑

k∈V \{i}

(HG)ij = (|V | − 1)(HG)ij .

Since (HG)ji ≥ 0, Theorem 4.24 implies

E [CovX |X0 = i] ≤ (|V | − 1)((HG)ij + (HG)ji) = (|V | − 1)2wT
1(ei − ej)TL†G(ei − ej).

If ij 6∈ E, define the graph G′ := (V,E ∪ {ij}, w′), with w′ equal to w in every edge in E, and with
w′(ij) := W . If ij ∈ E, define G′ := G. Note that A(G′), as defined in Section 2.4, is a random variable as
required in the statement of Theorem 2.50, and that this theorem implies that

E [CovX |X0 = i] ≤ (|V | − 1)2wT
1
P(ij ∈ A(G′))

w′(ij)
≤ 2wT

1

W
(|V | − 1).

Corollary 4.28. Let G = (V,E) be a simple graph. For every random walk X on G,

E[CovX ] ≤ 2 |E| (|V | − 1).

Proof. Let (Ω,F ,P) be the probability space in which X is defined. Define

S := { i ∈ V : P(X0 = i) > 0}.

We have that
∑
i∈S P(X0 = i) = 1, and that the events {X0 = i}

Ω
, for every i ∈ S, are a partition Ω. Hence,

Proposition 4.15 and Proposition 4.27 imply

E[CovX ] =
∑
i∈S

P(X0 = i)E [CovX |X0 = i] ≤
∑
i∈S

P(X0 = i)2 |E| (|V | − 1) = 2 |E| (|V | − 1).
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