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CHAPTER 1

General spectral theory

The spectrum is the infinite-dimensional analogue of the set of matrix
eigenvalues. Several core results of matrix theory can be extended (usually
in modified form) to linear operators 7" on a Banach or Hilbert space, where
the proofs are typically quite different and one often needs additional as-
sumptions on T'. Besides bounded T', we also treat a class of discontinuous
operators, the ‘closed’ ones, which is relevant for differential operators. We
first discuss this class, and then establish the basic results of spectral theory.

GENERAL NOTATION. X # {0}, Y # {0}, and Z # {0} are Banach spaces
over F € {R,C} with norms ||-|| (or ||-||x etc.). A linear map T': X — Y is
continuous if and only if the operator norm ||T|| = sup,<1/|Tz| is finite.
Endowed with this norm, the set

B(X,Y) = {T X Y ’ T is linear and continuous}

is a Banach space, where we put B(X) = B(X,X). We also set X* =
B(X,F) and write 2*(z) = (z, ") x xx* = {x,x*) for x € X and z* € X*.

Let D(A) be a linear subspace of X and A : D(A) — Y be linear. Then
A, or (A,D(A)), is called linear operator from X to Y (and on X if X =Y)
with domain D(A). Its kernel ar range are denoted by

N(A) = {z € D(A)|Az =0} resp. R(A)={yeY|IzeD(A):y = Az}.

1.1. Closed operators

We recall one of the basic examples of an unbounded operator: Let X =
C([0,1]) be endowed with | - || and consider Af = f’ with domain D(A) =
C1([0,1]). Then A is linear, but not bounded. Indeed, the functions u, €
D(A) given by u,(t) = (1/y/n)sin(nt) for n € N satisty ||uy||o — 0 and

| Aup |l = |ul,(0)] = v/n — 0 as n — oo.
However, if f, € D(A) = C'([0,1]) fulfill f, — f and Af, = f, — g in

n

C([0,1]) as n — oo, then f € D(A) and Af = g (see Analysis 1). This
observation leads us to the following basic definition.

DEFINITION 1.1. Let A be a linear operator from X to Y. The operator A
is called closed if for all x, € D(A), n € N, possessing limits x = lim,_,o T,
in X and y = limy, o, Az, in Y, we have x € D(A) and Az = y.

For closed A, we thus have lim,, o Az, = A(lim, o 2,) if (z,) and
(Azxy,) converge. We discuss some basic examples, where we are a bit sloppy
when working in LP-spaces. In Examples 2.6 b) and 2.12a) of [FA] one can
find a more precise treatment of related issues. Differential operators on
LP-spaces are studied in Section 3.4.
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EXAMPLE 1.2. a) Clearly, every operator A € B(X,Y) is closed (with
D(A) = X). On X = C([0,1]) the operator Af = f’ with D(A) = C([0,1])
is closed, as seen above. Below we equip 4/dz with boundary conditions.

b) Let X = C([0,1]). The operator Af = f" with

D(4) = {f e C'([0,1])| £(0) = 0},

is closed in X. Indeed, let f, € D(A) and f,¢g € X be such that f, — f
and Af, = f/ — g in X as n — o. Again by Analysis 1, the function f
belongs to C*([0,1]) and f' = g. Since 0 = £,(0) — f(0) as n — ©, we
obtain f € D(A) and thus Af = f’ = g. This means that A is closed on X.
In the same way we see that A;f = f/ with

D(A1) = {f e C([0,1]) | f'(0) = 0, f(1) = 0}
is closed in X. There are many more variants.

c) Let X = C([0,1]) and Af = f" with

D(A) = C}((0,1]) = {f € C'([0,1]) | supp f < (0,1]},

where the support supp f of f is the closure of {t € [0,1]| f(t) # 0} in [0, 1].
This operator is not closed. In fact, consider the functions f,, € D(A) and
f e C([0,1]) given by

0, ()<t<1/n7
(t—1n)?, Yn<t<l1,

f&)y=28,  falt) = {

for every n € N. We then have the limits f, — f and f, — f' in X as
n — 00. However, since supp f = [0, 1] the map f does not belong to D(A).

d) Let X = LP(R%), 1 < p < o0, and m : RY — C be measurable. Define

Af =mf with
D(A)={feX|mfe X}

This is the mazimal domain. Then A is closed. Indeed, let f, — f and
Afp, = mf, — g in X as n — o0. Then there is a subsequence such that
fn; (@) = f(z) and m(z)fy, (¥) — g(z) for a.e. z € R, as j — oo. Hence,
mf = g in LP(R?) and we thus obtain f € D(A) and Af = g.

e) Let X = L!([0,1]), Y = C, and Af = f(0) with D(A) = C([0,1]).
Then A is not closed from X to Y. In fact, look at f, € D(A) given by

1—nt, 0<t<n,
0, 1/n<t<1,

for n € N. Here ||f,|l1 = 5= tends to 0 as n — o0, but Af, = f,(0) =1. ¢
To study closed operators, one uses the following concepts.

DEFINITION 1.3. Let A be a linear operator from X to Y. The graph of
A is given by
G(A) = {(z,Az) e X x Y |z € D(A)}.
The graph norm of A is defined by ||z||a = ||z||x + ||Az|ly. We write [D(A)]
if we equip D(A) with ||-|| 4.
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Note that ||| 4 is equivalent to ||-||x if A € B(X,Y). We endow X x Y
with the norm ||(z,y)||xxy = ||z||x +]|y|ly. Recall that a sequence in X xY
converges if and only if its components in X and in Y converge. We collect
basic properties of the above notions, where part c¢) connects them closely.

LEMMA 1.4. Every linear operator A from X to'Y satisfies the following
assertions.

a) G(A) € X xY is a linear subspace.

b) [D(A)] is a normed vector space and A € B([D(A)],Y).

c) A is closed if and only if G(A) is closed in X x Y if and only if [D(A)]
1s a Banach space.

d) Let A be injective and put D(A™!) := R(A). Then, A is closed from X
to Y if and only if A~' is closed from'Y to X.

PROOF. Statements a) and b) follow from the definitions, and asser-
tion ¢) implies d) since

G(Ail) = {(y,Aily) ‘ Y€ R(A)} = {(Ax,:c) ‘a; € D(A)}

is closed in Y x X if and only if G(A) is closed in X x Y. We next show c).

The operator A is closed if and only if for all x,, € D(A), n € N, and
(x,y) € X xY with (zy,Az,) — (z,y) in X xY as n — o0, we have
x € D(A) and Az = y; ie., (x,y) € G(A). This property is equivalent to
the closedness of G(A). Since ||(z, Az)||xxy = ||z]|x + ||Az||y, a Cauchy
sequence or a converging sequence in G(A) corresponds to a Cauchy or a
converging sequence in [D(A)], respectively. So [D(A)] is complete if and
only if (G(A), ||||xxy) is complete. By Corollary 1.13 of [FA], the latter is
equivalent of the closedness of G(A) in X x Y. O

By part ¢), a closed operator A on X can also be viewed as a bounded
one acting from [D(A)] to X. However, in spectral theory one has to treat
A as a map on X. The following closed graph theorem is a variant of the
Open Mapping Theorem 4.28 in [FA].

THEOREM 1.5. Let X andY be Banach spaces and A be a closed operator
from X toY. Then A is bounded (i.e., |Az|ly < c||z|x for some c =0
and all x € D(A)) if and only if D(A) is closed in X. In particular, a closed
operator with D(A) = X belongs to B(X,Y).

PRrROOF. Let D(A) be closed in X. Then D(A) is a Banach space for
Illx (by Analysis 2) and ||-||4a (by Lemma 1.4). Since ||z|x < ||z|/a for all
x € D(A), a corollary to the open mapping theorem (see Corollary 4.29 in
[FA]) shows that there is a constant ¢ > 0 such that ||Az||y < [|z]|a < ¢||z|x
for all x € D(A).

Conversely, let A be bounded and let x,, € D(A) converge to x € X with
respect to ||-|| x. Then [[Az, — Azy,|ly < cl|zn —2m| x, and so the sequence
(Axy)p is Cauchy in Y. There thus exists y = lim, o Az, in Y. The
closedness of A shows that x belongs to D(A); i.e., D(A) is closed in X. O

We next show that Theorem 1.5 is wrong without completeness and give
an example of a non-closed, everywhere defined operator on each infinite-
dimensional Banach space.
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REMARK 1.6. a) Let M be given by (M f)(t) = tf(t), t € R, on C.(R) with
| “|loo- This linear operator is everywhere defined, unbounded and closed. In
fact, take fy, f,g € C.(R) such that f,(t) — f(t) and (M f,,)(t) = tfn(t) —
g(t) uniformly for ¢t € R as n — oo. Then g(t) = tf(t) for all ¢t € R; i.e.,
g = M f and M is closed. Further, pick ¢, € C.(R) with [|ppllc = 1 and
wn(n) = 1. Since |[Mpylleo = |Mep(n)| = n, the operator M is unbounded.

b) Let X be an infinite-dimensional Banach space and let B be an algebraic
basis of X, see Theorem III.5.1 in [La]. (Hence, for each z € X there are
unique ap(x) = oy for b € B with « = Y, ;3 apb, where only finitely many of
the coefficients ay(x) are non-zero.)! We may assume that [|b|| = 1 for all
b e B. Choose a countable subset By = {by | k € N} of B and set

Mpby, = kb, for each by € By, and Mpb = 0 for each b € B\By.

Then Mp can be extended to a linear operator on X which is unbounded,
since || Mpbg|| = k and ||bg|| = 1. Thus Mp is not closed by Theorem 1.5. {

We discuss permanence properties of closed operators, which are more
delicate than for bounded ones. In the proof, one just checks the definition.

PROPOSITION 1.7. Let A be closed from X toY, T € B(X,Y), and S €
B(Z,X). Then the following operators are closed.

a) B=A+T with D(B) = D(A).

b) C = AS with D(C) = {2z € Z| Sz D(A)}.

PrOOF. a) Let z, e D(B), ne N, z € X, and y € Y such that z,, —» =
in X and Bz, = Axp, + Tz, — yin Y as n — o0. Since T is bounded, there
exists Tx = limy, o T'x,, and so Az, — y—Tx as n — 0. The closedness of
A then yields x € D(A) = D(B) and Az =y — Tx; ie., Be = Av + Tx = y.

b) Let z, € D(C), ne N, z € Z, and y € Y such that z, — z in Z and
ASz, —> yinY as n — o0. By the boundedness of .S, the vectors x,, = Sz,
converge to Sz. Since Ax,, — y and A is closed, we obtain Sz € D(A) and
ASz =y;ie., ze D(C) and Cz = y. O

We state simple consequences which are needed in the next section.

COROLLARY 1.8. Let A be linear on X and X\ € F. Then the following
assertions hold.

a) The operator A is closed on X if and only if \I — A is closed on X.

b) Let \XI — A be bijective with (M — A)~' € B(X). Then A is closed.

PROOF. Assertion a) follows from Proposition 1.7 since A = —((A] —
A) — AI). For the second part, Lemma 1.4 proves that A\I — A is closed, and
then assertion a) yields b). O

The following examples show that closedness can be lost when taking sums
or products of closed operators. See the exercises for further related results.

EXAMPLE 1.9. a) Let E = C3(R?) and Ay, = d;, with
D(Ag) = {f eF ‘ the partial derivative 0y f exists and belongs to E},

1This statement was given in the lectures in a somewhat sloppy form.
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for k€ {1,2}. Set B = 01 + 02 on
D(B) = D(A1) nD(A42) = C; (R?) := {f € C'(R?) | f,01f, 02f € E}.

By an exercise, A; and As are closed. However, B is not closed.

Indeed, take ¢, € C}(R) converging uniformly to some ¢ € Cp(R)\C*(R).
Set fu(z,vy) = ¢n(x —y) and f(x,y) = ¢(x — y) for (z,y) € R? and n € N.
We then obtain f € E, f, € D(B), ||fo — fllo = ||¢n — é]lewc — 0 and
Bfn=¢l, — ¢, =0—0asn— oo, but f¢D(B).

b) Let X = C([0,1]), Af = f" with D(A) = C*([0,1]) and m € C([0,1])
with m = 0 on [0, 1/2]. Define T'€ B(X) by T'f = mf for all f € X. Then
the operator T'A with D(T'A) = D(A) is not closed.

To see this, take maps f,, € D(A) with f,, = 1 on [1/2,1] and f, — fin X
with f ¢ C*([0,1]). Then, TAf, = mf, =0 tends to 0, but f ¢ D(A). ¢

1.2. The spectrum

We start with the basic definitions of spectral theory. For deeper in-
vestigations of spectra one has to take complex numbers F = C. However,
several results are also true for the real case F = R. Since this case is needed
sometimes, we develop the theory for F € {R,C} as long as it makes sense.

DEFINITION 1.10. Let A be a closed operator on X. The resolvent set of
A is given by

p(A) = {XeF|A — A:D(A) - X is bijective}, (1.1)

and its spectrum by

o(4) = F\p(A).
We further define the point spectrum of A by

op(A) = {A e F|3v e D(A)\{0} with \v = Av} < o(A),

where we call A € o,(A) an eigenvalue of A and the corresponding v an
eigenvector or eigenfunction of A. For X\ € p(A) the operator

RMA) =M -A)"1: X > X
and the set {R(\, A) |\ € p(A)} are called the resolvent.

Eigenvalues are usually much easier to compute than general A € o(A). So
they may help a lot to determine the spectrum. However, Examples 1.21 and
1.25 yield unbounded and bounded operators with empty point spectrum
and non-void (even ‘large’) spectrum, where dim X = co. Observe that
computing the resolvent amounts to solve the equation Au — Au = f for
each given f € X and a unique v € D(A). In the simple examples below this
can be done explicitely, which is one way to calculate the spectrum. Before
we note that resolvent operators are automatically bounded.

REMARK 1.11. a) Let A be closed on X and A € p(A). Note that the resol-
vent R(A, A) has the range D(A). Corollary 1.8 and Lemma 1.4 further show
that R(\, A) is closed on X, and thus it belongs to B(X) by Theorem 1.5.
In fact, even R(A, A) : X — [D(A)] is bounded, see Theorem 1.13.

b) Let A be a linear operator such that A\l — A : D(A) — X has a bounded
inverse for some A € F. Then A is closed by Corollary 1.8. In this case, the
closedness assumption in Definition 1.10 is redundant. O
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In the literature, the spectrum is sometimes defined for general linear
operators, assuming in addition the boundedness of (Al — A)~! in (1.1).

For unbounded A, the spectrum can be empty or equal to F, as we see
in the next examples which also demonstrate the influence of boundary
conditions. We set ey(t) = e* for A e C, t € J, and any interval J < R.

ExXAMPLE 1.12. a) Let X = C™ and T € B(X). Then o(7T) only consists
of the eigenvalues A1, ..., \; of T, where 1 < k < m. (See linear algebra.)

b) Let X = C([0,1]) and Au = v’ with D(A) = C*([0,1]). Then o(A) =
op(A) = F. Indeed, ey belongs to D(A) and Aey = Aey for each A € F.

c) Let X = C([0,1]) and Au = v’ with D(A) = {u € C*([0,1])|u(0) = 0}.
Then A is closed by Example 1.2. Moreover, o(A) is empty. In fact, let
A€ C and f e X. We then have u € D(A) and (AI — A)u = f if and only
if u e C1([0,1]), v/ (t) = Au(t) — f(t) for t € [0,1], and u(0) = 0, which is
equivalent to

ut) = — f A9 £(s)ds = (Raf) (2),

0
for all 0 <t < 1. Hence, 0(A) = 0 and R(\, A) = Ry. O

Let U < F be open. The derivative of f : U — Y at A e U is given by

if the limit exists in Y. In the next theorem we collect fundamental proper-
ties of the spectrum and the resolvent of closed operators.

THEOREM 1.13. Let A be a closed operator on X and let A € p(A). Then
the following assertions hold.

a) AR(A\A) = AR\ A) — I, AR(N\, A)x = R(\, A)Ax for x € D(A), and
1
w—A
if e p(A\{A\}. The formula in display is called the resolvent equation.
b) The spectrum o(A) is closed, where B(\,1/|R(\A)|) € p(A) and

0
R(u, A) = Y (A= p)"R(N, A" = R,
n=0
if [N\—p] < Y)IR(\A)|| =: r\. This series converges in B(X,[D(A)]), absolutely
and uniformly on B(\,dry) for each § € (0,1). Moreover, we have

c(
| R(1, Al px,[peay) < . (—>6

for all we B(A, dry) and a constant c(\) given by (1.3)
¢) The function p(A) — B(X,[D(A)]); A — R(\, A), is infinitely often
differentiable with
(C%\)n R\ A) = (=1)"n! R(\, AT for every n e N.

d) IR A > ey -
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PRrOOF. a) The first claims follow from the identities
z= (AN —A)R\ Az =R\ A)(N — A)z,

where x € X in the first and = € D(A) in the second one. For p e p(A), we
further have

()‘R()‘v A) - AR(A7 A))R(Ma A) = R(N7 A):
Formula (1.2) follows by subtracting the above equations and also inter-
changing A and pu.
b) Let |u — A| < 9/|r(x,A)| for some 6 € (0,1) and x € X with ||z] < 1.
Also using statement a), we compute

I = )" R(A, A)" ] 4

57” o n+1x
S RO\, A)|| (”AR()HA)R()HA) |+ [[R(A, A) ”)
<" (AR A)| + 1+ |R(A, A)|]) =: 6"c(N). (1.3)

Due to this inequality and Lemma 4.23 in [FA], the series R, converges and
can be estimated as asserted. Part a) yields

(0l = A)R(X, A) = (p = AR, A) + 1.
Employing this fact and that A belongs to B([D(A)], X), we infer

(ul — ARy = — i (A= )" FLR(A, )" i (A=p)"R(NA)" =1,
n=0 n=0

and similarly R, (uf — A)x = « for all € D(A). Hence, p is contained in
p(A) and R, = R(p, A). This means that p(A) is open and o(A) is closed.

Assertion c¢) is a consequence of the power series expansion, as in the
scalar case. Statement b) also implies d). (]

By the next result, the spectrum of a multiplication operator is directly
given via the multiplier. As a by-product we see that each closed set S € F
occurs as the spectrum of a closed operator, complementing Theorem 1.13b).

PROPOSITION 1.14. Let Q@ < R? be non-empty, m € C(Q), E = Cy(Q),
and Af = mf with D(A) = {f € E|mf € E}. Then A is closed,

o(A) = m(),

and R(\, A)g = x2—g for all X € p(A) and g € E.
For every closed (resp., non-empty and compact) subset S < F there is a
closed (resp., bounded) operator B on a Banach space with o(B) = S.

PRrOOF. The closedness of A can be shown as in Remark 1.6. Let g € E.
If w € D(A) satisfies A\u — Au = (A — m)u = g, we obtain u(x) = (A —
m(x))"Lg(z) for all z € Q with X\ # m(zx). So we first take A ¢ m (). Then
the function f := ﬁg belongs to E and satisfies A\f — mf = g so that
mf =M\ —ge E. As aresult, f is an element of D(A) and it is the unique
solution in D(A) of the equation Au — Au = g. This means that A € p(A),
R(\, A)g = +1-g, and 0(A) € m(Q).
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In the case that A = m(x) for some x € £, we compute

(M = A)f)(z) = Af(z) —m(z)f(z) = 0
for every f € D(A). Consequently, A\I — A is not surjective and so A € o(A);
i.e., m(Q2) € o(A). The closedness of the spectrum now yields o(A) = m().
The final assertion follows from Example 1.12¢) if S = ). Otherwise,
consider Q = S and m(x) = 2 where one identifies R? with C if F = C.
Define A and E as above. Then o(A) is equal to S, and A is bounded if S
is compact (where Cy,(S) = C(9)). O

A similar result is valid in LP-spaces, cf. Example 1X.2.6 in [Co2]. We
next study a variant of the first derivative with a non-trivial spectrum. Here
we use the closedness of the spectrum since we can compute eigenvalues only
for a (dense) subset of o(A).

EXAMPLE 1.15. Let X = Cyp(Rx¢) = {f € C(R>p) | lims—o f(t) = 0} with

F = C be endowed with | - |». On X we consider Af = f’ with

D(A) = C3(Rxo) = {f € C'(Rx0) | f. f' € X}.
As in Example 1.2 one sees that A is closed. Moreover, we have o(A) =
{AeC|ReA <0} and op(A) ={AeC|ReA <0} = C_.

PRrOOF. First note that for A € C_ the function ey belongs to D(A)
and Aey = €} = Aey. This means that C_ < o,(A) < o(A), and hence
C_ < o(A) by the closedness of the spectrum.

Next, let ReA > 0 and f € X. We then have u € D(A) and Au — Au = f
if and only if u € X n C'(Rxo) and u'(t) = \u(t) — f(¢) for all £ > 0. This
equation is solved by

u(t) = fo AT f(s)ds =t (Raf)(1), ¢ =0.

We still have to check Ryf € X. Let ¢ > 0. There is a number ¢, > 0 such
that |f(s)| < e for all s > t.. We can now estimate

IRy f(1)] < foo eReNE=9)| £(5)| ds < afoo R
t 0 Re)\’

for all ¢ > t., where we substituted r = s — t. As a result, u is contained in
D(A) and solves \u — Au = f.

Let v € D(A) be another solution. Then w = u — v € D(A) satisfies
w’ = Aw and hence w = cey for some ¢ € C. Because of ReA > 0 the
function ey does not belong to X, implying w = 0 and the uniqueness of
solutions in D(A). We have shown that A € p(A) with Ry = R(\, A), and
hence o(A) = C_.

Finally, assume there is a number A € iR and a function v € C3(Rxo)
with o/ = Av. It follows v(t) = e*Yv(0) and so |v(t)| = |[v(0)| for all ¢ > 0.
Letting t — oo, we infer that |v(0)| = 0 and thus v = 0. Therefore A has no
eigenvalues on iR. |

Complementing Theorem 1.13, we state additional properties of the spec-
trum if the operator is bounded, e.g., it is compact. Using this fact, for
T € B(X) we define the spectral radius

r(T) = max {|A| | A € o(T)}.
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THEOREM 1.16. Let T € B(X). Then o(T) is a compact set and for A € F
with |A| > infen|| T ||/" we have

o0
R(AT) = Y A" 'T" = R).

n=0

Let also F = C. Then o(T) is non-empty and the spectral radius is given by
¥(T) = lim |77 = inf | 7" < |7
n—00 neN

PROOF. 1) Since |[T™T™| < |T™| |T™| for all n,m € N, by an elemen-
tary lemma (see Lemma VI.1.4 in [We]) there exists the limit

pim lim 777 = [T < 7))
n—0 neN
Let |A| > r. We estimate
1 r
lim sup|[A\~"T"||/" = — lim [|T"||"" = — < 1.
msup| AT = 5t 7 =

Lemma 4.23 in [FA] now yields the convergence in B(X) of the series Rj.
Moreover, we have

0¢] o0
M =T)Ry= D A"T" = Y A It =,
n=0 n=0
and similarly Ry\(A —T) = I. Hence, A belongs to p(T') and Ry = R(A,T).
Due to its closedness, the spectrum o(7") < B(0,r) is compact. Therefore
r(T) exists as the maximum of a compact subset of R, and r(7T") < r.

2) Let F = C. Take ® € B(X)* and define fp(\) = P(R(\,T)) for
A e D =C\B(0,r(T)). Note that fo : D — C is complex differentiable and

e @]
foA) = Y ATTIO(T) = Sy if N[>
n=0
By Theorem V.1.11 in [Col], there are unique coeffcients a,, € C with

e ¢]
fo(A) = D> amA™  for AeD.

m=—0o0
The series S, thus converges for all A € D, and so

VieD, deB(X)" : sup [B(ATTIT™)| < oo
neN

A corollary to the uniform boundedness principle (see Corollary 5.12 in [FA])
thus yields that

c(\) = sup [\ < o0

neN

for each A € D. This fact leads to
: mn 1/n — : —n—l mn 1/n : 1/n —
i [|77] Jim [AFCIAIAT )7 < [A] lim ([A]e(A)) Al

for all |A| > r(T"). Together with step 1), we arrive at r = (7).
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3) Suppose that o(T) = (). The functions fg from part 2) are now holo-
morphic on C for every ® € B(X)*. Step 1) implies that

0
B o T _ 2l
0l < e W 33 g <
for all A € C with || = 2||T. Therefore f<1> is bounded and hence constant
by Liouville’s theorem from complex analysis. The above estimate then
shows that ®(R(\,T)) = 0 for all A € C and ® € B(X)*. Employing the
Hahn-Banach theorem (see Corollary 5.10 in [FA]), we obtain R(A\,T) =0
which is impossible since R(\,T) is injective and X # {0}. O

We note that already on X = R? the matrix (? (1)) has empty real spec-
trum, but the complex eigenvalues +i. The next example first shows that the
spectral radius can be much smaller than the norm, and then uses r(7') < |7
for a basic operator. (We let F = C in the example.)

EXAMPLE 1.17. a) We define the Volterra operator V on X =C([0, 1]) by

- Ltf(s)ds

for t € [0,1] and f € X. Then V belongs to B(X) with HV"H 1/(n!) since

Vo ” f 7l dsu- dsi < 1]

for all n € N, ¢t € [0,1], and f € X. Moreover, taking f 1 we obtain
|V = ||V"11||oo = 1/(n1) and so ||V"™]| = V/(n!). Theorem 1.16 thus yields

r(V) = nli_rgo(n!)_l/” —0<1=|V| and o(V)={0}.

Observe that o, (V) = 0 since V f = 0 implies that f = (Vf) =0

b) Let left shift L given by Lz = (2y41) on X € {co, %’ |1 < p < o0} has
the spectrum o (L) = B(0,1). We further obtain o,(L) = B(0,1) if X # (*
and o,(L) = B(0,1) if X = ¢*.

PROOF. The operator L € B(X) has norm 1 (see Example 2.9 in [FA]),
and so o(L) < B(0,1). Clearly, L(1,0,...) = 0. Let 0 < |\] < 1. Observe
that Lv = Av is equivalent to v,+1 = Av, for all n € N and hence to v,, =
A"~1y;. Choosing v1 = 1, we obtain the eigensequences v = (\"),ey in £*
for A, and thus o(L) = 0,(L) = B(0,1) for X = (*. Now, letX # ¢(*. Here
we have v € X if and only if 0 < |[A\| < 1. It follows B(0,1) < op(L) < o(L)
and o(L) = B(0,1) by the closedness of the spectrum. ]

We decompose the spectrum into parts related to eigenvalues, cf. Theo-
rem 1.24. In this context also other definitions are used in the literature.

DEFINITION 1.18. Let A be a linear operator on X. Then
Oap(A) = {A € F|3 z, € D(A) with ||z,| =1 for alln € N and
A, — Az, — 0 asn—»oo}
is the approximate point spectrum of A and
0:(A) = {XeF| (A — A)D(A) is not dense in X}

the residual spectrum of A.



1.2. The spectrum 11

One calls X € 0,,(A) an approzimate eigenvalue and the corresponding z,,
approzimate eigenvectors. If one has A € C and x, € D(A) with ||z,,| = > 0
for all n € N and Az, — Az, — 0 as n — o0, then A belongs to o,,(A) with
approximate eigenvectors ||z, || "1z, since |z,| ™t < Vs.

In the next result we characterize o,,(A) and decompose the spectrum
into o,p(A) and 0,(A). The last statement implies that o,p(A) is non-empty

if o(A) ¢ {0, F}.

PRrROPOSITION 1.19. Let A be closed on X. The following assertions are
true (with possibly non-disjoint unions).

a) oap(A) = 0p(A) U {AeF| (A — A)D(A) is not closed in X}.

b) 0(A) = oap(A) U o (A).

c) 0o(A) S oap(A).

PROOF. 1) Let A ¢ 04,(A). Note that this fact holds if and only if there
is a constant ¢ > 0 with ||[Az — Azx| > ¢||z|| for all z € D(A). This lower
estimate implies that A ¢ o,(A). Moreover, let y, = Az, — Az, — yin X
as n — o for some x, € D(A). Then the lower estimate shows that (x,)
is Cauchy in X, and so x, tends to some x in X. Hence, Az, = Az, — yn
converges to \x — y, so that x belongs to D(A) and Az — Az = y by the
closedness of A. Consequently, (AI — A)D(A) is closed.

Conversely, let (\I — A)D(A) be closed and A ¢ 0,(A). Then the inverse
(M — A)~! exists and is closed on its closed domain (Al — A) D(A) due to
Lemma 1.4. The closed graph theorem 1.5 then yields the boundedness of
(A — A)~L. It follows

lz]| = (A = A)~HA = A)z|| < C[(M — A)z]

for all € D(A) and a constant C' > 0. This means that A ¢ o.p(A). We
thus have shown assertion a), which implies b).

2) Let A € do(A). Then there are points A, in p(A) with A\, — A as
n — 0. By Theorem 1.13d), the norms ||R(\,, A)| tend to 0 as n — o0,
and there thus exist y, € X with ||y,|| = 1 for all n € N and 0 # a,, =
|R(An, A)yn|| — 00 as n — 0. Set z, = éR(/\n,A)yn € D(A). We then

have ||x,|| = 1 for all n € N and \z,, — Az, = (A — \p)zy + iyn converges
to 0 as n — 0. As a result, A is an element of o,,(A). O

In the next result we determine the spectra of certain operators which
(formally) arise as functions f(A) of A, namely the resolvent of A, where
fp) = (A —p)~t for A e p(A) and p € o(A), as well as an affine transfor-
mation of A, where f(u) = ap + f for «, 5 € F. This often useful, as seen
below, and will be generalized in Section 4.2 and Chapter 5.

PROPOSITION 1.20. Let A be closed on X, X € p(A), o € F\{0} and 5 € F.
Then the following assertions hold.

a) o(R(A, A)\{0} = (A —a(A)! = {51 |vea(4)}.

b) o (R(A, A)\{0} = (A —0;(A))~" for j & {p,ap,1}.
¢) If x is an eigenvector for the eigenvalue p # 0 of R(\, A), then y =
uR(X, A)x is an eigenvector for the eigenvalue v = A—1u of A. If y € D(A)
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is an eigenvector for the eigenvalue v = X — Vu of A with p € F\{0}, then
= pu Y (\y — Ay) is an eigenvector for the eigenvalue p of R(\, A).

d) 1(R(A, A)) = Yd(re(4)).

e) If A is unbounded, then 0 € o(R(X, A)).

f)o(aA+BI) = ac(A)+ B and oj(cA+BI) = acj(A)+ 5, j € {p,ap,1}.

PRrOOF. Let pu € F\{0}. Taking out the bijective map uR(\, A) : X —
D(A), we obtain

ul — R(M, A) = (()\— i)I—A),uR()\,A). (1.4)

Hence, the bijectivity of ul — R(A,A) : X — X is equivalent to that of
(A= i)[ —A:D(A) — X. As a result, u belongs to p(R(\, A)) if and only
it A— i belongs to p(A) if and only if u = (A — v)~! for some v € p(A). We
have shown part a).

In the same way, one derives assertion b) for j = p, assertion c¢) and that
ul — R(\, A) and (A — %)I — A have the same range. Using also Proposi-
tion 1.19, we then deduce statement b) also for j = ap and j =r.

Assertion d) is a consequence of a). In part e), the inverse R(\, A)~! =
Al — A is unbounded so that 0 € o(R(A, A)). Similar as a) and b), the last

statement follows from the equality
A — (@A + BI) = o221 - A). O

Approximate eigenvectors are often ‘close’ to an eigenvector of the oper-
ator acting on a ‘larger’ space. Such a fact can be used to construct them,
as in the following basic examples.

EXAMPLE 1.21. a) Let X = LP(R), 1 < p < o0, with F = C and the (left)
translation T'(t) be given by (T'(t)f)(s) = f(s+1t) for s € R, f € X, and
t € R. Then o(T(t)) = 0B(0,1) for t # 0.

PRrROOF. Recall from Example 4.12 in [FA] that T'(¢) is an isometry on
X with inverse (T'(t))~! = T(—t) for every t € R. Using Theorem 1.16,
we deduce o(T'(t)) < B(0,1). Proposition 1.20 further yields o(T'(¢))~! =
o(T(t)™') = o(T(~t)) < B(0,1) so that o(T(t)) < 0B(0,1) for all t € R.
Fix t # 0 and take A € iR. Then ey belongs to Cp(R) < L*(R) and

(T(t)ex)(s) = X = eMey(s)
for all s € R. We infer o(T'(t)) = o,(T'(t)) = 0B(0,1) for p = c0.

If pe [1,00), we use ey to construct approximate eigenfunctions if p < co.
For n € N set f,, = nfl/”ll[om]e,\. We compute || fn|p, = nfl/”H]l[ojn]Hp =1
and, employing the above formula in display,

1T () fr — € fullp = 7 7MLt ne] — Lom)enll, = n~ 772t 777 — 0,
as n — oo. It follows o(T'(t)) = ¢B(0,1) if t # 0. ]

b) Let X = Cp(R) with F = C and Au = v/ with D(A) = CL(R) == {u €
CYR)|u,u’ € Cy(R)}. Then o(A) = iR and op,(A) = 0.

PROOF. As in Example 1.15 one sees that A € p(A) if Re A # 0 with

R\ A)f(t) = Jt " A=) f(s)ds if ReA>0  and
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R\ A)f(t) = — f A9 f(s)ds  if ReA <0

for all t € R and f € X. Let ReA = 0. Then X is not an eigenvalue, cf.
Example 1.15. Choose ¢, € C}(R) with ||¢), |l < Yn and [|pnlee = 1, and
set u, = pney for all n € N. Note that |[uy|| = 1, u, € D(A), and

Auy, = (10;16)\ + ‘pnel)\ = SO;LGA + Ay,
Since ||¢)ex]lo < Yn, we obtain A € oap(R). O

We now introduce the adjoint of a densely defined linear operator in order
to obtain a convenient description of the residual spectrum, for instance.

DEFINITION 1.22. Let A be a linear operator from X to Y with dense
domain. We define its adjoint A* from Y™* to X* by setting

D(A*) ={y* e Y*|32" € X* VaeD(A): (Az,y*) = (x,2")},

* Kk *
Y=z

(1.5)

Observe that for all z € D(A) and y* € D(A*) we obtain
(Azx,y*) = {x, A"y*).
We note that the operator Af = f’ with D(A) = {f € C'([0,1]) | f(0) = 0}
is not densely defined on X = C([0,1]) since D(A) = {f € X | f(0) = 0}.

We first collect basic properties of the adjoint that follow rather directly
from the definition.

REMARK 1.23. Let A be linear from X to Y with D(A) = X.

a) Since D(A) is dense, there is at most one vector z* = A*y* as in (1.5),
so that A* : D(A*) —» X* is a map. It is clear that A* is linear. For
A € B(X,Y), Definition 1.22 coincides with the definition of A* in §5.4 of
[FA], where D(A*) = Y™ .

b) The operator A* is closed from Y™* to X™*.

PROOF. Let y; € D(A*), y* € Y*, and z* € X* such that y; — y* in Y*
and z = A*yr — 2z* in X* as n — . To check that y* € D(A*), take
x € D(A). We derive

(2% = Tim (o, 23 = lim (Aw,g3) = (A, g,
and thus y* belongs to D(A*) and A*y* = z*. O
c) Let T e B(X,Y) and o € F\{0}. Then oA+ 7T with D(eA+T) = D(A)
has the adjoint (0 + T')* = aA* + T with D((aA + T')*) = D(A*).
PROOF. Let x € D(A) and y* € Y*. We obtain
(@A +T)z, 5" = alAz, 5" + (5, T"y").
Hence, y* is contained in D((wA + T')*) if and only if y* belongs to D(A*),
and then (aA + T)*y* = aA*y* + T*y*. O

It is often difficult to treat adjoints of unbounded operators in examples.
This topic will be discussed later on. Here we focus on the connection to
spectral theory, where we can characterize o,(A) by the point spectrum of
A* and show that taking adjoints does not change the spectrum.
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THEOREM 1.24. Let A be a closed operator on X with dense domain.
Then the following assertions hold.

a) ov(A) = op(AY).
b) o(A) = o(A*) and R(\, A)* = R(\, A*) for every X € p(A).

PROOF. a) Due to a corollary of the Hahn-Banach theorem (see Corol-
lary 5.13 in [FA]), the set (A — A)D(A) is not dense in X if and only if
there is a vector y* € X*\{0} such that (Az — Az, y*) = 0 for every z € D(A).
This equation is equivalent to (Az, y*) = (x, A\y*), which in turn means that
y* € D(A*)\{0} and A*y* = A\y*; ie., A€ op(AY).

b) Let A € p(A). To show that R(\, A)* is the resolvent of A*, take
y* € D(A*) and z € X. We compute

(x, RO\ A)Y(M = ANy = (RN, A)z, (A — A%)y*)
= (AL = AR\ A)z,y*) = (2,57,

using Definition 1.22 and that R(A, A)x belongs to D(A). It follows
R(\, A)*(M — A*)y* = y* so that AT — A* is injective. Next, pick z* € X*.
Set y* = R(\, A)*z*. For x € D(A), we obtain

(A= A)z,y*) =R\, A)(N — A)z,z*) = (x,x").

Therefore y* is an element of D(A*) and a* = (M — A)*y* = (A — A*)y*,
where we use Remark 1.23 ¢). Consequently, the operator A\ — A* is surjec-
tive, and thus bijective with inverse R(A, A*) = R(\, A)*.

Conversely, let A € p(A*). Then X does not belong to o,(A*) = o,(A) by
part a). Take x € D(A). Due to a corollary of the Hahn—-Banach theorem
(see Corollary 5.10 in [FA]), there is a functional y* € X* such that ||y*|| = 1
and {(z,y*) = ||z||. As above, we calculate

|z = (z,y7™) = (o, M = A)R(A, A%)y™) = (AL — A)z, R(A, A%)y™)
< [[ROA, AN Az — Az];

i.e., A does not belong to o,,(A). Proposition 1.19 now yields A ¢ o(A). O

We give a typical application of the above results in a case where we know
the adjoint explicitely, so that its eigenvalues can be computed.

ExXAMPLE 1.25. Let X € {cp,?|1 < p < oo} with F = C. Let Rz =
(0,21, x2,...) be the right shift on X. We have o(R) = B(0,1) and o,(R) =
0 for all X, o.(R) = B(0,1) for X = ¢! and o,(R) = B(0,1) for X €
{co, P |1<p<o0}.

PrOOF. First, let X # ¢*. From Example 5.44 of [FA] we know that
R* = L, where the left shift L acts on ¢! if X = ¢y and on ¢ otherwise.
Since o(L) = B(0, 1) by Example 1.17, Theorem 1.24 yields 0(R) = o(R*) =
o(L) = B(0,1). Similarly, oy(R) = op,(L) = B(0,1) if X = ¢y or X = (P
with 1 < p < o, and o,(R) = 0p(L) = B(0,1) if X = (L.

Let X = (*. Here we use R = L* for L on ¢! so that again o(R) = B(0, 1).

Clearly, Rx = 0 yields z = 0. If \x = Rz = (0,21, x9,...) and XA # 0,
then 0 = Az and so x; = 0. Iteratively one sees that x = 0. Hence, R has
no eigenvalues. ]



1.2. The spectrum 15

We show below that the spectrum is stable under ‘small’ perturbations.
(A classic treatment of such questions is given in [Kal.) To this end, we
first introduce an important notion that allows us to compare the ‘size’ of
closed operators, and we discuss it a bit.

Let A be a linear operator from X to Y. Then a linear operator B from
X to Y is called A-bounded (or if relatively bounded with respect to A) if
D(A) € D(B) and B € B(|[D(A4)],Y).

REMARK 1.26. Let A and B be linear from X to Y with D(A) < D(B).

a) The operator B is A-bounded if and only if there are constants a,b > 0
such that

|Bx| < af Az| + b]x] (1.6)

for all x € D(A). Let X =Y and A be closed with A € p(A). Then the
A-boundedness of B is also equivalent to the boundedness of BR(A, A). For
instance, we then have (1.6) with a := |[BR(\, A)| and b := |\ a.

b) Let A be closed and let (1.6) be satisfied with a < 1. Then A + B
with D(A+ B) = D(A) is also closed, by an exercise. In view of a), the next
result also requires that b in (1.6) is sufficiently small. O

THEOREM 1.27. Let A be a closed operator on X and X\ € p(A). Further,
let B be linear on X with D(A) < D(B). Assume that || BR(\, A)|| < 1.
Then A + B with D(A + B) = D(A) is closed, X belongs to p(A + B), and

ROVA+ B) = RO\ A) S (BROA))" = ROLA)(I — BR(, 4))""
n=0
IR, A)|
1A+ B T BR0, A

PRrROOF. By Proposition 4.24 of [FA], the operator I — BR(\, A) has the
inverse

Y (BR(, A))"

n=0
in B(X). Hence, \I — A — B = (I — BR(\, A))(\ — A) : D(A) — X is
bijective with the bounded inverse R(\, A)Sy. Remark 1.11 thus yields the
closedness of A+ B on D(A), and so X\ € p(A + B). The asserted estimate
also follows from Proposition 4.24 of [FA]. O

Sa

The smallness condition in the above theorem is sharp in general: Let
X=C,aeC=B(C),a+#0,and b =a. Then a is invertible, but a —a = 0
is not. Here we have A = 0 and [bR(0,a)| = |2] = 1.



CHAPTER 2

Spectral theory of compact operators

Compact operators often occur in applications since integral operators
are compact in many situations. So it is a crucial fact that their spectral
theory is still close to the matrix case in several respects. We first discuss
the relevant properties of compact operators and then establish the core
spectral results. Subsequently, we extend the theory to closed operators
having a compact resolvent. We also treat a more flexible class of operators
and a related subset of the spectrum that it is invariant under compact
perturbations. Finally, we sketch a typical application to the dynamics of
reaction-diffusion equations.

2.1. Compact operators

We first recall a few facts from, e.g., Section 1.3 of [FA]. A non-empty
subset S € X is compact if each sequence in S has a subsequence with
limit in S. Equivalently, S is compact if every open covering of S has a
finite subcovering. We call S € X relatively compact if S is compact, which
means that each sequence in S has a converging subsequence (with limit in
S). Finally, S € X is relatively compact if and only if it is totally bounded;
i.e., for each € > 0 there are finitely many balls in X with radius ¢ covering
it, where one may chose the centers in S. Compact sets are bounded and
closed. The converse is true if and only if X has finite dimension. A closed
subset of compact set is also compact.

We start with the basic definition for this chapter and state simple facts.

DEFINITION 2.1. A linear map T : X — Y is called compact if TB(0,1)
is relatively compact in'Y . The set of all compact linear operators is denoted
by B() (X, Y) .

REMARK 2.2. Let T': X — Y be linear.

a) If T is compact, then T'B(0, 1) is bounded and thus 7" is bounded; i.e.,
By(X,Y) < B(X,Y).

b) The following assertions are equivalent.

i) T is compact.
ii) T maps bounded sets of X into relatively compact sets of Y.
iii) For every bounded sequence (z,), in X there exists a convergent
subsequence (T2, ); in Y.

ProOOF. Let T be compact. Take a bounded set B < X. Then B is con-
tained in B(0,r) for some 7 > 0 and thus TB in TB(0,7) = rTB(0, 1), which
is compact. Hence, T'B is compact. The other implications ii) = iii) = i)
are clear. 0

16
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c¢) The space of operators of finite rank is defined by
Boo(X,Y) = {T € B(X,Y)| dimTX < oo},

cf. Example 5.16 of [FA]. For T € Byy(X,Y), the set TB(0,1) is relatively

compact by the Bolzano—Weierstrafl theorem; i.e., Bog(X,Y) € By(X,Y).
d) The identity I : X — X is compact if and only if B(0,1) is compact if

and only if dim X < c0. See Theorem 1.42 of [FA]. O

The next result says that By(X,Y) is a closed two-sided ideal in B(X,Y).
The proofs are typical for the area.

PROPOSITION 2.3. The set Bo(X,Y) is a closed linear subspace of
B(X,Y). Let T € B(X,Y) and S € B(Y,Z). If one of the operators T
or S is compact, then ST is compact.

PROOF. Let z3 € X with k € N satisfy ¢ := supgenl|zi|| < 0.

1) Let T, R € By(X,Y) be compact. If a € F, then oT is also compact.
There further exists a converging subsequence (T'xy;);. Since (zy,); is still
bounded, there is another converging subsequence (R, )i. So ((T'+R)zx, )i
has a limit and T+ R belongs to By(X,Y'); which thus is a linear subspace.

2) Let T}, € Bo(X,Y) tend in B(X,Y) tosome T' € B(X,Y) asn — 0. The
compactness of T yields a subsequence (T1z,,(;)); with limit y1. Because of
|z, ()|l < cfor all j, there is a subsubsequence v of vy such that (Taw,,(;));
converges. Note that (T1,,(;)); still tends to y;. Iteratively, we obtain
subsequences v of v;_; such that (T,z,, (j)) ; converges for all n < 1.

We use the diagonal sequence given by w;, = x,,, () for m € N. Then
(T um,)m converges as m — oo for each n € N. Let € > 0. Fix an index N =
N. € N such that ||Ty —T'|| < e. Then fix M € N with |Tn(um —up)| < e
for all m > k > M. For these indices we obtain

[T — Tug|| < [(T' = Tn Yuml| + 1T (um = we) | + [[(Tx = T)uxl]
<

ceE + €+ ce.

Therefore (Tupm,)m is a Cauchy sequence, and we have shown that T is
compact. Hence, By(X,Y) is closed in B(X,Y).

3) Let S € By(X,Y). Since (Tzy)i is bounded, there is a converging
subsequence (ST'xy, )j» so that ST is compact. Instead, let T' € By(X,Y).
We then find a subsequence (T'xy,); with a limit y, and thus STz, tends to
Sy. Again, ST is compact. O

REMARK 2.4. Strong limits of compact operators may fail to be compact.
Consider, e.g., X = (2 and T,z = (v1,...,2,,0,0,...) for all z € X and
n € N. Then T,, belongs to Byo(X) < Byo(X), but T,,x tends to x = Iz as
n — oo for every z € X and I ¢ By(X). O

We next discuss compactness of several integral operators.
ExXAMPLE 2.5. a) Let X € {C([0,1]),LP([0,1])|1 < p < o}, ¥V =
C([0,1]), and k € C([0,1]?). Setting

1

Tf(t) = J k(t,7)f(r)dr

0
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for f e X and ¢ € [0,1], we define the integral operator T': X — Y for the
kernel k. Then T belongs to By(X,Y).

ProOF. By Analysis 2 or 3, the function T'f is continuous for all f e X
and T : X — Y is linear. Since ||T'f|loc < [kl fll1 < ||Ellollf]lp (using
that A([0,1]) = 1), the map T is contained in B(X,Y’). In particular, TB
is bounded in Y where B := Bx(0,1). To show compactness, we use the
Arzela—Ascoli Theorem 1.47 from [FA]. For t,s € [0,1] and f € B we have

() j\k (t.7) — (s, 7)| |f(r)] dr
< sup [k(t,7) — k(s,)| [flli < sup [k(t, ) — k(s, 7).
T€[0,1] T€[0,1]

The right-hand side tends to 0 as |t — s| — 0 uniformly in f € B, because k
is uniformly continuous. Therefore T'B is equicontinuous. Theorem 1.47 in
[FA] then implies that T'B is relatively compact; i.e., T € By(X,Y). 0

b) Let X = C([0,1]) and V f(¢) So s)ds for t € (0,1) and f € X. This
defines a bounded operator V on X Wlth norm 1, see Example 1.17. Let
fe€B(0,1). Then |V f|ow < 1and [|[(Vf)|w = [|flo < 1. The Arzela—Ascoli
theorem (see Corollary 1.48 in [FA]) now yields the compactness of V.

c)! Let X = L2(R). For f e X, we define

Tf(t) =fRe|tsf(s)ds, teR.

By Theorem 2.14 of [FA], the operator T': X — X is linear and bounded.
We claim that T is not compact.
Proor. Take f, = 1y, n41]- For n >m in N, we compute | fp[l2 = 1 and

n+1 m+1
J e tds — f e~ tds
n m

n—+2 9
_ J e—2t (en+1 PN €m+1 + em) dt

2
dt

n+2

HTfn - Tfm“% = f

n+1

n+1
> %(G—Qn—Q _ —2n—4)(en+1 )2
=i ?-eh(e—-2%>0.
Hence, (T f,) has no converging subsequence. OJ

d) Let E = L?(R™) and k € L?(R?*™). For f € E, we set

Tf@) = | Kepf@dn  seR

Rm
As seen in Example 5.44 of [FA], this defines an operator T' € B(E). We
claim that T is compact.
PROOF. There are maps k, € C.(R?™) that converge to k in E. (See
Analysis 3.) Let T, be the corresponding integral operators in B(FE). There
is a closed ball B,, € R™ such that supp k,, € B,, X B,,. We then have

0, z € R™ B,
Tnflx) = {SB )f(y)dy, z € B,.

Iparts c¢) and d) were partly sketched in the lectures.
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for f e E and n e N. Let R,f = flp,. Fix n € N and take a bounded
sequence (fi) in E. Arguing as in part a), one finds a subsequence such
that (R, T}, fx;); has a limit go in C(B,). Since By, has finite measure, this
sequence converges also in L?(B,). The maps T}, fr; then tend in E to the
0-extension g of gg as j — o0, and so T}, is compact. Let f € Bg(0,1).
Holder’s inequality in the inner integral yields

2

s =T = ||| GG = ko)) dy| do
<| (] e =kaen)Pay [ 170)F ) da
< Ik =l

for all n € N. The operators 7T,, thus converge to 7" in B(E) so that T is
compact by Proposition 2.3. n

Summarizing, integral operators are usually compact if the base space
is compact or has finite measure, or if the kernel decays fast enough at
infinity. (In part ¢) we have k(t, s) = e~l*=%| without decay on strips {(t,s) €
R? | [t — 5| < ¢}. The next result due to Schauder will allow us to use duality
in the context of compact operators.

THEOREM 2.6. An operator T € B(X,Y) is compact if and only if its
adjoint T* € B(Y™*, X*) is compact.

PROOF. 1) Let T be compact. Take y € Y* with sup,en||ynll =t ¢ < .
The set K := TBx(0,1) is a compact metric space for the restriction of
the norm of Y. Set f, := y:lx € C(K) for each n € N. Putting x :=
maxyex ||ly|| < o0, we obtain

[ fnlloo = max|{y, yp)| < ek
yeK

for every n € N. Moreover, (f,,)nen is equicontinuous since

[fn(y) = Fa(2)| = Ky = 2,900l < llyalllly — 2l < ¢lly — =]l

for all n € N and ¥,z € K. The Arzela—Ascoli theorem then yields a subse-
quence (fp;); converging in C(K). We further compute

IT*ys, = T lxe = sup Ko, T* (i, —widl = sup KTyt —yi)

llzll<1 llzll<1

< |\ foy; = frulloy — 0

as j,1 — oo. This means that (T*yflj) ; converges and so T™ is compact.

2) Let T be compact. By step 1), the bi-adjoint 7** is compact. Let Jx :
X — X** be the canonical isometric embedding. Proposition 5.45 in [FA]
says that T**Jx = JyT, and hence JyT is compact by Proposition 2.3. Let
(75,) be bounded in X. We then obtain a converging subsequence (Jy Ty, );
which is Cauchy. Since Jy is isometric, also (T'z,,,); is Cauchy and thus has
a limit; i.e., T is compact. O
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2.2. The Fredholm alternative

In this section we establish the main spectral properties of compact oper-
ators K. These follow from the deep Theorem 2.7 due to Riesz (1918) and
Schauder (1930) which describes the mapping properties of I — K in detail.

We need some facts from functional analysis to study kernels and ranges
by means of duality. To this end, for non-empty sets M < X and N, € X*
we define the annihilators

Mt = {a* e X*|VyeM: (y,a*) =},
N, = {z e X|Vy" € Ny: (z,y*)=0}.

These sets are equal to X* or X if and only if M = {0} or N, = {0},
respectively, see Remark 5.21 in [FA]. Let T € B(X). Proposition 5.46 in
[FA] says that

R(T)" =N(T*),  R(T)="N(T"),

N(T) = *R(T*),  R(T*) = N(T)". @1)

In particular, R(T") is dense if and only if T* is injective; and if R(7™) is
dense, then T is injective.

The following Riesz—Schauder theorem extends fundamental results for
matrices known from linear algebra. The core equivalence of injectivity and
surjectivity of I — K fails for non-compact K. (Take for instance K = — R
for the right shift R on ¢P, which is injective but not surjective, and K = I—L
for the left shift L on ¢P, which is surjective but not injective.)

THEOREM 2.7. Let K € Bo(X) and set T = I — K. Then the following
assertions hold.

a) R(T) is closed.

b) dimN(T') < o0 and codimR(T) := dim X/ R(T) < .

c) T is bijective <= T is surjective <= T is injective <= T* is
bijective <= T™* is surjective <= T* is injective. More precisely, we have

dim N(T") = codimR(T") = dim N(T™) = codim R(T™). (2.2)

Before proving the theorem, we first reformulate it as the Fredholm alter-
native for the solvability of the equation Ax — Lz = y for compact L. For
integral operators this result goes back to Fredholm (1900).

COROLLARY 2.8. Let L € By(X), A € F\{0}, and z,y € X. Then one of
the following alternatives holds.

A) The homogeneous problem \x = Lx has only the trivial solution x = 0.
Then for every y € X there is a unique solution x € X of \x — Lx = y given
by x = R(\, L)y.

B) The equation A\x = Lx has the n-dimensional solution space N(AI — L)
for somen € N. Then there are n linearly independent solutions x7,...,x}, €
X* of A\e* = L*z*. The equation Ax — Lx = y has a solution x € X if and
only if (y,x3) = 0 for all k€ {1,...,n}. Every z € X satisfying \z— Lz =y
is of the form z = x + xo, where \x — Lx =y and xo € N(AI — L).
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PROOF OF COROLLARY 2.8. We set K = +L € By(X) and note that
Az — Lz = y is equivalent to (I — K)z = }y. By Theorem 2.7b), we have
either dimN(J — K) = 0 (case A) or dimN(I — K) = n € N (case B).
In the first case, I — K is bijective due to Theorem 2.7 ¢) which yields A).
In the second case, Theorem 2.7 a) shows that R(I — K) is closed so that
R(I - K)= +N(I - K*) by (2.1). We thus deduce the solvability condition
from case B) noting that dimN(/ — K*) = n due to (2.2). If x — Kz =y
and z — Kz = y, then z — x belongs to N(I — K), as required in case B). [0

We also note that the Fredholm alternative fails for A = 0, and give simple,
but typical application to differential equations.

EXAMPLE 2.9. a) Let X = C([0,1]) and V£(t) = §, f(s)ds for t € [0,1]
and f e X. We then have

R(V) = {g e C'([0,1]) ] g(0) = 0},
which neither closed nor dense in X. In particular, V f = g can not be solved
for all g € X. Nevertheless, V is injective and compact by Examples 1.17
and 2.5, respectively.
b) Let X = C([0,1]) with F = R and ¢, f € X with ¢ = 0. Then there is
a unique function u € C%([0, 1]) solving the boundary value problem

(1) atu) = FO), te[0,1],  u(0)=0=-u).  (23)
It is given by the integral equation
1

1
u(t) - J k(t, $)q(s)u(s) ds — f k(Ls)f(s)ds,  te[0,1],  (2.4)

0 0

with the kernel
t—1)s, 0<s<t<l,
t(s—1), 0<t<s<l.

PROOF. 1) Since we want to deduce solvability from uniqueness by means
of the Fredholm alternative, we first take two solutions u,v € C2([0,1]) of
(2.3). Then w = u— v e C%([0,1]) solves (2.3) with f = 0. We multiply the
latter problem by w, take the integral over [0, 1], and integrate by parts.
The boundary conditions then imply

1 1 1
0 < f qu?dt = f w’wdt = —J (w")? dt,
0 0 0

so that v’ = 0 and w(t) = w(0) = 0 for all £. Problem (2.3) has thus at
most one solution.

2) The operator K given by Kg(t) = Sé k(t,s)q(s)g(s)ds for t € [0,1] and
g € X is compact on X by Example 2.5. It is straightforward to check that
a solution u € C%([0,1]) to (2.4) belongs to C?([0, 1]) and solves (2.3). So
step 1) yields uniqueness of (2.4) with f = 0. Case A) in Corollary 2.8 now
leads to the assertion. ]

PROOF OF THEOREM 2.7. In the first two steps we show dim N(7") < o
and use this fact to establish part a). In a third step, a duality argument
completes the proof of assertion b). The lenghty two final steps then prove
statement c), using properties of kernels and ranges of the powers Tk,
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1) The space N := N(T) = T~1({0}) is closed in X. For x € N we have
Kx = x € N, so that K leaves N invariant and its restriction Ky to NV
coincides with the identity on N. On the other hand, Ky is still compact
so that dim N < oo by Remark 2.2d).

2) Since dim N < o0, there is a closed subspace C' € X such that NnC =
{0} and N +C = X;ie., X = N@®C. See Proposition 5.17 in [FA].

Let T : C — R(T) be the restriction of T to C. We endow C and R(T)
with the norm of X, so that C is a Banach space by its closedness. To show
that R(T) is closed, we want to invert 7.

Let Tz = 0 for some 2 € C. Then z also belongs to N and so x = 0. Let
y € R(T). There is a vector x € X with Tx = y. We can write z = zg + x1
with 2g € V and 21 € C. Hence, Txl =Tx1+Txy =y, and so T is bijective.

A corollary to the open mapping theorem (see Corollary 4.31 in [FA])
now yields that R(T) = R(T) is closed if and only if T~ : R(T) — C
is bounded. Suppose that T~! was unbounded. Then there would exist
elements g, = TZ, of R(T) with z, € C such that g, — 0 as n — o0 and
|Zp|| = [T || = 0 for some § > 0 and all n € N. We set z, = |Z,| ' Zn
and note that |z, =1 for all n € N and that

~ 1 B
yn:ZSUn_Kxn:Txn:myn — 0
n

as n — o0. The compactness of K yields a subsequence (z,,); and a vector
z € X such that Kz,, — 2z as j — . We obtain the limit z,;, = y,; +
Kx,, — z and so ||z|]| = 1. Observe that z belongs to the closed set C. On
the other hand, z is contained in N because of

Tz=z2—Kz=lim Kz,, — K lim z,;, =0

Jj—© Jj—®©

implying that z € C n N = {0}. This fact contradicts ||z|| = 1, and hence
assertion a) is true.

3) Theorem 2.6 provides the compactness of K* so that dim N(/—K*) < o

by step 1). Using (2.1) and Proposition 5.23 in [FA|], we further obtain
N(T*) = R(T)* = (X/R(T))".

Since N(7T™) is finite-dimensional, linear algebra yields that

o0 > dim N(T*) = dim(X/R(T))* = dim X/R(T) = codimR(T"), (2.5)
showing statement b). We next prove in two steps the remaining equalities
in (2.2) which then imply the first part of assertion c).?

4) Claim A: There is a closed linear subspace N with dim N < o0 and a
closed linear subspace R of X such that
X = N(—BR, TN < N, TR R and Ty =Tlg: R— R is bijective.

Assume that Claim A has been shown. Setting T} = T'| 5 € B(N), we
obtain the Afollowing properties.
(i) dim N/R(T1) = dimN(77) (by the dimension formula in C™).

2In the lectures (2.2) was not shown. Instead of steps 4) and 5) below, only the (much
easier) proof of the first part of ¢) was given.
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(i) N(T) = N(T1). In fact, writing = z1 + a2 for v € X, 21 € N and
To € R we deduce that Tx = 0 if and only if Thxe = —T121 € NAnR= {0}.
As T5 is injective, the latter statement i is equivalent to zo = 0 = Tix1. Hence,
x belongs to N(T') if and only if x € N and Thz = 0; i.e., N(T') = N(171).

(iii) We define the map

®: N/R(T1) — X/R(T); z+R(T1) — z+R(T),
for z € N € X. Because of R(T1) < R(T), the map ® is well defined. Of
course, it is linear. We want to show that ® is bijective, which leads to
dim N/R(T}) = dim X/ R(T).

Proof of (iii). Let ®(z + R(T1)) = 0 for some = € N which yields z = Ty
for a vector y € X. By Claim A, we have the decomposition Y=y +ys for
Y1 € N and Yo € R. Hence, Toys = © — Ty is contained in RAN = {0} so
that y2 = 0 by the injectivity of T5. So = belongs to R(77) and ® is injective.
Take x € X. Again there are elements z; € N and x9 € R = TR with
x = x1 + 2. We now conclude that x — 1 = x9 € R(T) and thus
O(x1 +R(T1)) =21 + R(T) = =z + R(T).
Hence, & is bijective. O
Properties (i)—(iii) lead to
dim N(T) = dim N(T}) = dim N/R(T}) = dim X/R(T) = codimR(T). (2.6)
Since also K™ is compact by Theorem 2.6, we further obtain
dim N(T™) = codim R(T™). (2.7)
In view of (2.5)—(2.7), part ¢) follows from Claim A.
5) Proof of Claim A. We set N = N(T*) and Ry = R(T*) for k € Ny.
Observe that
{O}IN()QNlQNQE..., X=Ry2Ri2Ry;2
TN S N1 < N, and TRy = Rpy1 € R (2.8)
for all k € Ng. We also have

k
TF = (I — K)* Z() KT = T — O,

where Cj is compact for each k € N due to Proposition 2.3. Assertions a)
and b) now imply that

Nj, Ry, areclosed and dim N, < oo (2.9)

for every k € N. We need four more claims to establish Claim A.

Claim 1: There is a minimal n € No such that N,, = Nyy; for all j € Ny.
Indeed, suppose that N; & Nj;q for all j € Ng. Then Riesz’ Lemma 1.44

in [FA] would give z; € N; with ||z;|| = 1 and d(z;, Nj—1) = 1/2 for every j €

No. (Here we use that N;j_; is closed.) Take l > k > 0. Since Tx;+xy —Txy,

is contained in N;_; by (2.8), we deduce that

|Kay — Kal) = a1 — (T + 2 — Tap)| > Ve
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As a result, (Kxy)r has no converging subsequence, which contradicts the
compactness of K. So there is a minimal n € Ny with N,, = N,,41. Let
x € Npyo. Then, Tx belongs to N,+1 = N, so that z is an element of Ny 1.
This means that N,11 = Njp19, and Claim 1 follows by induction.

Claim 2: There is a minimal m € Ng such that Ry, = R,,1; for all j € Ny.

In fact, suppose that R; ;1 & R; for all j € Ng. Again from Riesz’ lemma
we obtain vectors x; € R; with |lz;|| = 1 and d(z;, Rj+1) = /2 for every
j € No. (Here we use that R; 1 is closed.) Take [ > k > 0. Since T'zy + z; —
Tz, € Ri11 by (2.8), we deduce that

| Ko — Kol = llow — (Tay + a1 — Tap)| > 1.

This lower bound contradicts the compactness of K. So there exists a mini-
mal m € Ny with R,, = R;,+1. Let y € R,1+1. Then there is a vector z € X
with y = T™*+e = TT™x. Hence, y is contained in TR, = TRym+1 = Rpmio
by (2.8), implying Ry,+1 = Ry,+2. Inductively, we obtain Claim 2.

Claim 3: N, n R,, = {0} and Ny, + R, = X.

Indeed, let x € N, n R,, for the first part. Then 7"z = 0 and we have
a pre-image y € X with 7"y = x. Hence, T?"y = 0 and so y belongs to
Na,, = N,, by Claim 1, which yields x = T"y = 0.

For the second part, let x € X. By Claim 2, the vector T™x is contained
in R, = Rop; ie., T™x = T?"y for some y € X. Therefore, v = (v —
T™y) + T™y is an element of N, + Ry,.

Claim 4: n = m.

In fact, suppose that n > m. Due to Claim 1 and Claim 2, there is a vector
x € N,\Np, and we have R,, = R,,. Claim 3 further gives y € N,,, € N,, and
z € Ry, = R, with x = y + 2. Therefore, z = x — y also belongs to N, so
that z = 0 by Claim 3. We obtain the contradiction z = y € Ny,.

Second, suppose that n < m. Claim 1 and Claim 2 yield N, = N,, and
an element x € R,\R,,. Owing to Claim 3, we have z = y + z for vectors
y € Ny = N, and z € R, © R,,. Therefore, y = x — z is contained in R,, so
that y = 0 by Claim 3. It follows z = z € R,,,, which is impossible.

We can now finish the proof of Claim A, setting N := N, and R := R,,.
By (2.9), the spaces N and R are closed and dim N < co. From Claims 3
and 4 we then infer that X = N @ R. Moreover, (2.8) and Claim 2 yield
TN < N and TR = R. IfT:c:Oforsomew:T”yGRandyeX,then
Y € Nypy1 = Ny by Claim 1. Therefore, x = 0 and T j is bijective. (]

Reformulating the Riesz—Schauder theorem, we next describe the spec-
trum of a compact operator if dim X = oco0. It contains 0 and at most count-
ably many eigenvalues that tend to 0 if they are infinitely many. Moreover,
the eigenspaces N(AI — K) are finite-dimensional. Recall from Example 2.9
that the Voltera operator V' is compact with o(V)) = {0} and o, (V) = 0.

THEOREM 2.10. Let dim X = oo and K € B(X) be compact. Then the
following assertions hold.

a) o(K)={0} U{\;|jeJ}, where Je{D,N,{1,...,n}|neN}.
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lb) g(Kc)i\{O} = op(K)\{0}. For all A € o(K)\{0} the range of \I — K is

dim N(AI — K) = codimR(A] — K) < c0.

c) For each € > 0 the set o(K)\B(0,¢) is finite, so that \; — 0 as j — o0
if J = N.

PROOF. Suppose 0 ¢ o(K); ie., K is invertible. By Proposition 2.3
the identity / = K~'K would be compact, which contradicts dim X = oo.
Observe that assertion a) now follows from c¢) by taking e = 1/n for n € N.

For A € F\{0} we have A — K = A\(I — 1+ K). Since ;K € By(X), Theo-
rem 2.7 implies that either A € p(K) or A € o, (K) with

dimN(AI—K) = dimN(/—3K) = codimR(I—} K) = codim R(AI—K) < .

So we have established part b).

To prove statement c), we suppose that for some €y > 0 we have points
An in o(K)\B(0,g0) with A, # A, for all n # m in N and vectors z,, in
X\{0} with Kz, = Apxy,. In linear algebra it is shown that eigenvectors to
different eigenvalues are linearly independent. Hence, the subspaces

Xy = lin{zy,..., 2.}

satisfy X,, & X, 41 for every n € N. Moreover, K X,, € X,, and X,, is closed
for each n € N (since dim X, < 00). Riesz’ Lemma 1.44 in [FA] gives vectors
yn in Xy, such that ||y,|| = 1 and d(yn, Xn—1) = 12 for each n € N. There
are coefficients o, ; € F with y, = o, 171 + - -+ + oy n®y, and hence

n n—1
At = Kyn = D (A = Aj)anzj = Y (hn = Aj)an iz
j=1 j=1

belongs to X,,_1. For n > m, the vector \,y, — Ky, + Ky, is thus contained
in X,,_1 so that

1 An
Yn — T(Anyn — Kyn + Kym)H = u = Ej

HKyn_KymH = ‘)‘n| 2

This fact contradicts the compactness of K. O

Using this result, we next shown non-compactness of our basic operators.
A true application of the Riesz—Schauder theory is sketched in Example 2.25.

ExaMpPLE 2.11. The following bounded operators are not compact since
their spectra are not finite or a null sequence, where we let F = C:

a) the left and right shifts L and R on ¢y or /%, 1 < p < 0, see Exam-
ples 1.17 and 1.25;

b) the translation T'(¢t)f = f(- + t) for t € R\{0}, on LP(R), 1 < p < 0,
see Example 1.21;

c¢) multiplication operators T'f = mf on Cp(S) for a pathwise connected

S < R? and a given map m € Cy(S)\{0}, see Proposition 1.14. (Observe
that m(S) is pathwise connected in C.) O
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2.3. Closed operators with compact resolvent

We now transfer the results of the previous section to a class of closed
operators introduced in the next definition.

DEFINITION 2.12. A closed operator A on X has a compact resolvent if
there exists a number A € p(A) such that R(\, A) € B(X) is compact.

Besides other properties, we first note that an operator with p(A) # 0 has
compact resolvent if and only if its domain is compactly embedded into X.

REMARK 2.13. Let A be closed on X and A € p(A). Then the following
assertions are true.

a) Let R(A, A) be compact. The resolvent equation (1.2) yields
R(p, A) = R(X, A) + (A = ) R(X, A)R(p, A),
for p € p(A), so that also R(u, A) is compact due to Proposition 2.3.
b) Recall [D(A)] = (D(A), ||||a). The following assertions are equivalent.

i) A has a compact resolvent.
ii) Each bounded sequence in [D(A)] has a subsequence with limit in X.

iii) The inclusion map J : [D(A4)] — X is compact.

PROOF. Let statement i) hold. Take z,, € D(A) with ||z,[|4 < ¢ for n e N.
Set yp = Axp, — Azy. Then |ly,|| < (|A| + 1)c for every n € N so that
xn = R(A\ A)y, has a subsequence which converges in X by i), and so
claim ii) is true. The implication ‘ii) = iii)’ follows from Remark 2.2. Let
part iii) be valid. Define Ry € B(X,[D(A)]) by Ryxz = R(\, A)x for z € X.
Then R(\,A) = JR) : X — X is compact due to Proposition 2.3. O

c) Let T € B(X) have a compact resolvent and A € p(T"). We then have
dim X < oo since I = (AI — T)R(\,T) is compact by Proposition 2.3.

d) Let D(A) be dense in X. Then, A has a compact resolvent if and
only if A* has a compact resolvent. Indeed, first recall from Theorem 1.24
that A € p(4*) and R(\, A*) = R(\, A)*. Theorem 2.6 then yields that the
compactness of R(A, A) and of R(\, A)* are equivalent. O

Results like the Arzela—Ascoli theorem provide compactly embedded func-
tion spaces on bounded spatial domains. Still one has to show that the re-
solvent is non-empty to apply the above characterization. This is indicated
in the following example, where we use the Holder space

[f(y) = f ()]
cY(S) = eC’S’ o = SuUp ——————— < ©
(8) = {4 € Cu(S) [l = sup =0 — 2 < oo
for « € (0,1) and S < R™. It is a Banach space with norm |f|ce =
|fllo + [f]a- For @ = 1 the corresponding (Lipschitz) space is denoted by
C'(S). We have C'=(8S) <« CA(S) « C*(S) — Cy(S) if 0 < a < B < 1,
where the embeddings are given by the inclusion map.

EXAMPLE 2.14. a) Let K < R™ be compact, F be a closed subspace
of C(K), and A be closed on E with A\ € p(A4). Assume that [D(A4)] —
CY(K) for some o € (0,1). A bounded sequence (f,) in [D(A)] is thus
bounded in C*(K). The theorem of Arzela—Ascoli (see Corollary 1.48 in
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[FA]) yields a subsequence with limit in C'(K), and hence in E. According
to Remark 2.13b), the operator A has a compact resolvent in E.

b) Let X = C([0,1]), Au = o/, and D(A) = {u € C1([0,1]) | u(0) = 0}.
The spectrum of A is empty by Example 1.12. So part a) implies that A
has compact resolvent (since C'*([0,1]) — C1=([0, 1])).

c) Let X = C([0,1]), Au =/, and D(A) = C'([0,1]). The resolvent set
of A is empty by Example 1.12. Therefore A has no (compact) resolvent
although [D(A)] is compactly embedded in X by a). O

The next result easily follows from Theorem 2.10. It says that the spec-
trum of an operator with compact resolvent only contains a discrete set of
eigenvalues, having finite-dimensional eigenspaces. Here the spectrum may
be empty in view of the above example.

THEOREM 2.15. Let dim X = o0 and A be a closed operator with compact
resolvent. Then the following assertions are true.

a) The spectrum o(A) is either empty or o(A) = op(A) contains at most
countably many eigenvalues \;.

b) If o(A) is infinite, then |\j| — o0 as j — o0.
c) For all \j € o(A), the range of \jI — A is closed and dim N (\j1 —A) =
codimR(\;I — A) < 0.

Proor. Fix u € p(A). By Theorem 2.10, the spectrum o(R(u,A))
only contains 0 and either no or finitely many eigenvalues p; # 0 or a
nullsequence of eigenvalues p; # 0. Moreover, the range of p;1 — R(p, A) is
closed and dim N (p;1 — R(pt, A)) = codim R(p;1 — R(p, A)) < oo for all j.
Proposition 1.20 yields (u—o(A4))~! = o(R(p, A))\{0} and (u—op(A4))7! =
op(R(p, A))\{0}. These facts imply assertions a) and b), where \; = u—u;l.
Observe that

NI — A = i (I — R(p, A))(ul — A)
on D(A). Since uI — A : D(A) — X is bijective, also part c) follows from
the results of Theorem 2.10 stated above. (]

We use the above theorem to compute the spectra of two basic operators
with compact resolvent.

EXAMPLE 2.16. a) Let X = C([0,1]) with F = C and Au = «' with
D(A) = {u e C([0,1]) |u(0) = u(1)}. Then A is closed, has a compact
resolvent, and o(A) = o,(A) = 27iZ.

ProOOF. The closedness is shown as in Example 1.2. Let f € X. A
function u belongs to D(A) and satisfies u — Au = f if and only if u €
C1([0,1]), u(0) = u(1), and u’ = u — f. These properties are equivalent to

t

u(t) = ce! — f e f(s)ds = R.f(t), te[0,1], and  u(0) = u(1),
0

for some ¢ = ¢(f). Here ¢ has to satisfy

1

¢ = Ref(0) = Ref(1) = co—e | e™*f(s)ds,

0

c= 2 f e~ f(s) ds.

e—1 0



2.3. Closed operators with compact resolvent 28

We derive 1 € p(A) and

(&

R(1,A)f(t) =

t+1 (1 t
J e °f(s)ds — J e 5 f(s)ds, t € [0,1].
e—1 0 0

Due to Example 2.14 a), the operator A thus has a compact resolvent, and
so 0(A) = op(A) by Theorem 2.15. Finally, A € C belongs to o,(A) if and
only if there is v € C*([0,1])\{0} with u(0) = u(1) and «' = Au, which is
equivalent to u = exu(0) # 0 and 1 = e5(0) = ex(1) = &*; i.e., A € 2miZ. []

b) Let X = C([0,1]) with F = C and Au = «” with D(4) = {u €
C%([0,1]) |u(0) = u(1) = 0}. Then A is closed, has a compact resolvent,
and o(A) = op(A) = {—72k? | k € N}.

Proor. 1) Example 2.9b) with ¢ = 0 provides an inverse for A4; i.e., 0
belongs to p(A). So A is closed, and it has a compact resolvent by Exam-
ple 2.14a). To compute the eigenvalues, note that vi(t) = sin(wkt) is an
eigenfunction for A and the eigenvalue A\ = —72k?, where k € N. Conversely,
let A € 0p(A). Then we have a map u € C?([0, 1]) with u(0) = u(1) = 0 and
u” = Au. There thus exist a,b, € C with y?> = X and u = ae,, + be_,, # 0.
The conditions «(0) = 0 and u(1) = 0 then yield a+b = 0 and aet+be™" = 0,
respectively. Hence, e# = 1 and p # 0; i.e., p = irk and A = —72k? for
some k € Z\{0}. Theorem 2.15 now yields the assertion.

2) We also compute the resolvent operators for later use (and to present an
important technique). We take A € p(A)\{0} = C\{—72k? |k € Ny}, as the
case A = 0 was treated in Example 2.9. Then there is a number p € C\{0}
with A = 2. Let f e X. Set

1! I I
N —plt—s| - p(s—t) — p(t—s)
ug(t) o Jo e f(s)ds 2 Jo e f(s)ds + o L e f(s)ds

for t € [0,1]. Then ug € C?([0,1]) satisfies p?ug — ufj = f. (We see in
Example 3.47 how to guess this formula.) We now want to add a function
up € C%([0,1]) with u} = p?u; so that u = ug + vy fulfills the boundary
conditions u(0) = 0 = u(1). Then u will belong to D(A) and solve Au— Au =
f. Uniqueness of solutions was already shown in the first step.

From step 1) we know that u1 = ae,, + be_,, for some numbers a = a(f, p)
and b = b(f, n) in C. We have to fulfill the boundary conditions

1 1
u(0 za—i—b—i-f e M f(s)ds =0,
(0 |, e
et (1
u(l) = aet + be™H + J et f(s)ds =0,
21 Jo
These two equations are equivalent to
(a(f, m) o ( —1) L {Lens f(s) ds
b(f, 1) et —en \—et 1 % Sé et f(s)ds
1 ( e M Sé(e_’“ — el f(s)ds >

2u (et —e=H) Sé(e_“eﬁ‘s —ele M) f(s)ds
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Note that e* # e #. We obtain

RO A)F(E) = alf, et + b(f, et + — f 1 e Mol f(s) ds
21 Jo
for A€ p(A)\{0}, fe X and ¢t € [0,1]. O

We note that one can also compute the resolvents in part a). So the power
of Theorem 2.15 is not really needed here, but it can simplify the reasoning
and gives extra information.

2.4. Fredholm operators and the essential spectrum

In this section we briefly study a class of operators which satisfy most
of the assertions of the Riesz—Schauder Theorems 2.7 or 2.15, except for
the restrictive equality dim N(7') = codim R(7"). This class turns out to be
stable under compact perturbations, and it arises in many applications as
we indicate in Example 2.25. We further introduce part of the spectrum
which also does not change under compact perturbations.

DEFINITION 2.17. A map T € B(X,Y') is called a Fredholm operator if
a) its range R(T) is closed in Y,
b) dim N(T') < oo,
¢) codimR(T') = dimY/R(T) < o0.
In this case the index of T is the integer ind(T) = dim N(7T") — codim R(T").

For a closed operator A in Y we use the above definition with X = [D(A)].
One sometimes calls dimN(T") the nullity and codim R(T") the defect of T
We first discuss the above concept.

REMARK 2.18. a) An invertible operator T' € B(X,Y) is Fredholm with
index 0, of course. Loosely speaking, Fredholmity means ‘invertibility except
for finite-dimensional spaces’, cf. Proposition 2.19.

b) Theorem 2.7 says that A\l — K : X — X is Fredholm with index 0 if
K € B(X) is compact and A € F\{0}. The same is true for \[—A : [D(A)] —
X if AeF and A is closed in X with compact resolvent, by Theorem 2.15.

c¢) Each integer can occur as an index of a Fredholm operator. For in-
stance, let T' = L™ for the left shift L on /P, 1 < p < o0, and some n € N;
ie, Tx = (xp4k)x. Because of R(T) = /P and N(T) = lin{ey,...,e,}, the
map T is Fredholm with index n. Moreover, S = R™ has index —n for the
right shift R on 7 and n € N since Sz = (0,...,0,21,x2,...) with n zeros,
so that N(S) = {0} and ¢?/R(S) = lin{ey, ..., en}, cf. Example 2.20 of [FA].

d) The Fredholm operators do not form a linear subspace of B(X) if
dim X = oo. For instance, the identity I is Fredholm, but I — I = 0 not.

e) One can omit condition a) in Definition 2.17, as shown by Kato (1958).

PrROOF.? Let T € B(X,Y) satisfy codimR(T) = n € Ng. If n = 0,
then R(T) = Y and we are done. Hence, take n € N. The operator @Q :
X - X/N(T); Qe = z + N(T) = &, is a surjective contraction with kernel
N(T), see Proposition 2.19 in [FA]. By T(x + N(T)) = T# = Tz, we
define a bijective operator T' € B(X/N(T),R(T)) such that T = TQ, cf.

3This proof and that of the following comment were omitted in the lectures.
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Proposition A.1.3 of [Co2|. Further, there are y1,...,y, € Y such that
Y = R(T)+lin{yi,...,yn} and R(T) nlin{yi, ..., yn} = {0}. On the Banach
space E = (X/N(T)) x F" we define the operator

S:E—Y: S ...,\n)) =T+ Z;;l Ny =T + Z;:I Ajyj.

It straightforward to check that S is linear, bounded and bijective. The
Open Mapping Theorem 4.28 in [FA]) then says that S is an isomorphism.
Consequently, R(T") = S((X/N(T)) x {0}) is closed. O

In context of part e) of the above remark, we stress that for each infinite-
dimensional Banach space X there are non-closed subspaces Z of X with
codimension 1. To see this, take a countable subset By = {by | k € N} of an
algebraic basis B of X as in Remark 1.6. Set ¢(bg) = k and ¢(b) = 0 for
b e B\By. Then ¢ extends to an unbounded linear map ¢ : X — F. Define
¢ as in the proof of Remark 2.18¢). It is a linear bijection from X /N(¢p)
to R(¢) = F; ie., codimN(yp) = 1. However, Z = N(yp) is not closed by
Proposition I11.5.3 of [Co2].

The analysis in this section is based on a characterization of Fredholm
operators with index 0 established in the next result. (See Theorem 3.15.8
in [Si] for a related characterization of Fredholm operators with any index.)

PROPOSITION 2.19. Let T € B(X,Y). Then T is Fredholm with index
ind(7T") = 0 if and only if there exists an invertible operator J € B(Y, X) and
a finite rank operator K € Byo(X) such that JT = Ix — K.

PROOF. 1) Let T be Fredholm with index 0. We first modify 7" and X
to obtain an invertible map ’close’ to T. To this end, by means of Fred-
holmity we can choose closed subspaces X; of X and Yy of Y such that
X=NDT)®X1,Y =Yy ®R(T) and dimYy = codimR(T") = dim N(T).
(Use Proposition 5.17 of [FA].) We set

Ty : X1 xYy—Y; Ti(z1,y0) = Tz1 + o,

replacing N(T") by the complement of R(7T'). Clearly, 77 is linear and contin-
uous. If T1(z1,y0) = 0 for some (z1,y0) in X1 x Yy, then yo = —Tx; € R(T)
so that yo = 0. Hence, x; belongs to N(T') n X; = {0}; i.e., T} is injective.
Let y € Y. Then y = yo + y1 for some yo € Yy and y; = Tz; with 1 € X.
As a result, y = yo + Tx1 = Ti(x1,y0) and T} is bijective. The inverse
T1_1 1Y — X xYp is then bounded by the Open Mapping Theorem 4.28 in
[FA]. Observe that Tflyl = (z1,0) if Txz; = y; for some z; € X;.

There exists an isomorphism S : Yy — N(7') since these spaces have the
same finite dimension. To relate X; x Yy with X, we define

Sl:Xl XYE)—>X; Sl(.%'l,yo):.f(}l-i-syo.

As above, one checks that S is invertible. We now introduce the invertible
operator J = S;T; ' : Y — X and the map K = Ix — JT € B(X). For
r1 € X1 we compute

Kri =21 — SlelTxl =T — Sl(xl,O) =z —x1 =0.

Since X = N(T') @ X, we derive KX < K N(T), and hence dimR(K) <
dim N(T") < oo as asserted.
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2) Conversely, let JT = Ix — K for some K € By(X) and invertible
J € B(Y,X). Then JT is Fredholm with index 0 by Theorem 2.7. Since
J is invertible, also TX is closed and we have dim N(7) = dim N(JT) =
n < 0. Moreover, as above we obtain a closed subspace Xy of X such that
X = JTX ® X, and dim Xy = n. It follows Y = TX & J ' X( and thus
codimnTX = dimJ 'Xy = n, using Example 2.20 of [FA]. Hence, T is
Fredholm with index 0. O

We can now show an important perturbation result for Fredholmity and
the index. The quantitative smallness condition from Theorem 1.27 (on
invertibility) is replaced by compactness; i.e., by ‘topological’ smallness.

THEOREM 2.20. Let T € B(X,Y') be Fredholm and K € B(X,Y) be com-
pact. Then the sum T+ K € B(X,Y) is Fredholm with ind(T'+ K) = ind(7T).

PROOF. Set n = ind(T) € Z.

1) Let n = 0. Proposition 2.19 yields an invertible operator J € B(Y, X)
and a map K € Byy(X) with JT = Ix — K;. The product JK is compact
by Proposition 2.3. We thus deduce from Theorem 2.7 that J(T + K) =
Ix — (K; — JK) is Fredholm with index 0. As in step 2) of the proof of
Proposition 2.19, it follows that also T'+ K is Fredholm with index 0.

2) Let n > 0. Set Y =Y x F", and define

T:X>Y; Ta::(Tx,O), K:X->Y; Rx:(Km,O).
It is straightforward to check that R(T) is closed, N(T') = N(T), Y/ R(T) =
(Y/R(T)) x F™. In particular, codimR(T") = codimR(T") + n and so T is
Fredholm with index 0. Since K is still compact, b}: step 1) the sum 7'+ K
is also Fredholm with index 0. Noting that (T'+ K)z = (Tz + Kz,0), we
infer that 7'+ K is Fredholm with index n.
3) Let n < 0. Set X = X x FI"l and define the maps
T:X->Y; T(m,ﬁ):T:U, K:X>Y; K(x,ﬁ)sz
Starting from dim N(7') = dim N(T') + |n| and R(T") = R(T), one derives the
assertion as in part 2). O
To exploit the above result in spectral theory, we need another definition.
DEFINITION 2.21. For T € B(X) we define the essential spectrum by
Oess(T) = {)\ eF ‘ M —T is not Fredholm}.

We also set

o (T) = {Ne F| X —T is not Fredholm of index 0}.

€ess

For a closed operator A on X we analogously introduce
Oess(A) = {A e F| X[ — A: [D(A)] - X is not Fredholm},
00s(A) = {AeF| X — A: [D(A)] — X is not Fredholm of index 0}.

ess

os(B) € o(B) and that A € U(B)\aégg(B) is an
eigenvalue with finite-dimensional eigenspace since Al — B is then Fredholm.
(Here B € B(X) or B is closed on X.)

Observe that oegs(B) < 02
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There are various differing concepts of the essential spectrum in the liter-
ature. Typically, they lead to the same essential spectral radius

Tess(T) = sup {])\| ‘ A€E oess(T)},

if T'e B(X). The next concept and the following lemma are used below in
our perturbation result Theorem 2.24 for gess(A).

DEFINITION 2.22. Let A and B be linear from X toY with D(A) < D(B).
Then B is called A—compact (or, relatively compact with respect to A) if
B :[D(A)] - Y is compact.

Note that an A-compact operator is automatically A-bounded (but it
does not need to be closed from X to Y'). Moreover, A—compactness is just
compactness if A € B(X,Y). Relative compactness is further discussed in
the excercises.

LEMMA 2.23. Let A be closed from X toY and B be A—compact. Then
A+ B with D(A + B) = D(A) is closed and B is relatively compact with
respect to A + B.

PROOF. 1) We first check that B is (A + B)—compact. Let (z,) < D(A)
be bounded for || - |44+ p. In particular, (z,) is bounded in X.

We want to use the A-boundedness of B. To this end, suppose that
ay = |Az,| tends to infinity as n — o. Set &, = 'z, for n € N. (We
may assume that Ax, # 0 for all n.) We then have the limits Z,, — 0 in X
and (A + B)Z, = a,'(A + B)z, —» 0in Y as n — oo, whereas |AZ,| = 1
for all n. Since B is A-compact, there is a subsequence (B%y,); converging
to some z in Y. Hence, AZ,, tends to —z. The closedness of A then yields
z = 0, which is impossible since 1 = [AZ,;| — |z| as j — co.

We conclude that there exists a subsequence such that (Azy, )y is bounded
in Y. Employing again the A—compactness of B, we obtain another subse-
quence (Bxzy,,); with a limit in Y7 i.e., B is (A + B)-compact.

2) Let z,, € D(A) tend to some z in X and (A + B)z, to some y in Y
as n — 00. By part 1), there is subsequence and a vector z € Y such that
Bz,;, — zinY as j — o0. As a result, Az,, tends to y — z. Since A is
closed, we infer that x € D(A) = D(A + B) and Ax = y — z. This means
that z,,, — x in [D(A)], and hence Bx,,; — Bz = z by continuity. It follows
(A+ B)x =y and so A + B is closed. O

By means of Theorem 2.20 we show that essential spectra are not changed
by compact perturbations. They can thus affect only eigenvalues with finite-
dimensional eigenspaces.

THEOREM 2.24. Let A be closed on X, B be A—compact, and D(A+ B) =
D(A). Then

Uess(A + B) = Uess(A) and Jgss(A + B) = USSS(A)'

PRrROOF. Let A\I — A: [D(A)] — be Fredholm (with index 0). Since —B
is A—compact, Theorem 2.20 shows that also A\ — A — B is Fredholm (with
index 0). Conversely, let A\ — A — B : [D(A + B)] — be Fredholm (with
index 0). By Lemma 2.23, the operator B is (A + B)—compact, so that again
Theorem 2.20 yields the Fredholmity (with index 0) of AI — A. O
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We apply the above result to a typical situation arising in partial differ-
ential equations. However, we can only give a rough sketch.

ExaMpPLE 2.25. We study the asymptotic stability of stationary solutions
to the reaction-convection-diffusion equation

oru(t, s) = adssu(t, s) + bosu(t,s) + f(u(t,s)), t=>0, seR,

u(0,5) = ug(s),  seR, (2.10)

for diffusion and convection constants a > 0 and b € R, a given initial state
up € X = Cyp(R) = {v € Cp(R) | v is uniformly continuous}, and a function
f e CY(C) with f(R) < R describing (auto-)reaction (where we mean real
differentiability). We interpret wu(t,s) = 0 as the density of a species.

It is known that there is a maximal existence time ¢ = t(ug) € (0, 0]
and a unique solution u of (2.10) in the space C([0,), X) n C1((0,%), X) n
C((0,%),C2,(R)). Moreover, if ug = 0 and f(0) > 0, we have u > 0. (See
Proposition 7.3.1 in [Lu] and Theorem 3.8 in [nEE].)

Let us € C% (R,R) = {v e C*(R,R) | v,v',v" € X} be a stationary solution
of (2.10); i.e., u(t, s) = ux(s) solves (2.10), which is equivalent to

0 = aul + bul, + f(us) on R.

One now asks whether such special solutions describe well the behavior of
(2.10), at least locally near uy. One possible answer is the principle of
linearized stability. Here one proceeds similar as for ordinary differential
equations in Analysis 4. In X = C3(R) define the maps A and F by

Av=a" + ' with D(A) =C%(R), F(v)=fow.
One can then check that F € C'(X,X) with derivative F'(v) € B(X) at
v e X given by F'(v)w = f'(v)w for w € X. (One defines differentiability in
Banach spaces as in R", and the formula for F’(v) has to be modified a bit
for C-valued v or w.) We introduce the linearized operator at u, by setting

Awv = Av + F'(us)v = av” + b’ + f'(us)v  with D(A,) = C%(R).

The principle of linearized stability now says the following. If s(Ax) =
sup{ReA| A € 0(A)} < —§ < 0, then there are constants ¢,r > 0 such that

Vup € Bx(ug,7): t(ug) =00 and |u(t) — usfow < cef‘StHuo — U]l oo

for all t > 0, where u solves (2.10). (See Theorem 3.13 in [nEE].) We note
that such results fail for certain partial differential equations. Here it works
since (2.10) is of ‘parabolic type’.

Of course, one now has to compute the sign of the spectral bound s(Ay) (or
different properties of o(A) for more refined versions of the above result).
We sketch a partial answer for the important special case that u.(s) has
limits &4 in R as s — +00. Then the limit operators

Ay = A+ F'(&41) with D(AL) = C%(R)
have constant coefficients which simplifies the computation of their spectral

properties. We now follow the survey article [Sa].
Let A e C. We rewrite A+u — Au = g as the first order system by

L(\) Cj;) = <Zi> - (i(k—?f’(&)) —12> <Z;) B (i09>’
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where (v1,v2) 2 (u,u’). We set

M (V) = (;u—[}’(&)) —12)'

We denote by XY (A) the linear span of all (generalized) eigenvectors of
M4 (\) for eigenvalues p with Rep > 0. Theorems 3.2 and 3.3 and Re-
mark 3.3 in [Sa] then yield

A — Ay is Fredholm <= A ¢ 0es(Ay) = o(Mi (M) niR = 0,
ind( A\ — Ay) = dim X“(\) — dim X% (\),
A od(Ay) = o(Mi(\)niR=0 and dimX“()\) = dim X{(\).

ess

Note that here non-zero indices naturally occur. The proofs of these re-
sults use Theorems 2.20 and 2.24 and properties of the ordinary differential
equation governed by the matrices

0 1
M(s) = <zlz()‘_f/(u*(3)>) _Z) ) seR.

One thus has to study the eigenvalues of M4 () (which is easy) to deter-
mine the location of the essential spectrum. It then remains the (difficult)
task to locate the eigenvalues of A, to verify s(A,) < 0. In particular for
one spatial dimension, corresponding tools are discussed in [Sa]. O

2.5. Appendix: The Dirichlet problem and boundary integrals

In* this section, we discuss a principal application of Theorem 2.7 to
partial differential equations. Here we work with real-valued functions for
simplicity. Let D < R? be open, bounded and connected with 0D € C? and
outer unit normal v at dD (see part 3) below). Let ¢ € C(0D) be given.

Claim. There is a unique solution u in C?(D)nC(D) := {u e C(D) |ulp €
C?(D)} of the Dirichlet problem

Au(z) =0, x €D,

u(z) = p(z), xedD. (2.11)

1) Tools from partial differential equations and uniqueness.
We first state the strong maximum principle for the Laplacian, see The-
orem 2.2.4 in [Ev].

(MP) Let u € C*(D) n C(D) satisfy Au = 0 on D. Then maxpu =
maxpp u. If there is a point xg € D such that u(zg) = maxpyu,
then w is constant.

Hence, if u,v € C?(D)nC(D) solve (2.11), then w = u—v € C?(D)nC(D)
satisfies Aw = 0 on D and w = 0 on ¢D. The maximum principle (MP)
thus yields that maxpzw = 0. Similarly, the maximum of —w is 0, so that
w = 0. This means that the problem (2.11) has at most one solution.

Theorem 2.7 of [PW] implies the following version of Hopf’s lemma.

(HL) Let u € C%(D) n C(D) satisfy Au > 0 on D. Assume that there
is a point xg € 0D such that u(xg) = maxpu, d,u(zg) exists, and
0yu is continuous at zg. Then either u is constant or d,u(xg) > 0.

4This section was not part of the lectures.
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2) The double layer potential. We want to reformulate (2.11) using
an integral operator. To this aim, we first consider the Newton potential on
R3 given by y(z) = m for x € R3\{0}. It satisfies Ay = 0 on R3\{0}. We
define
(x—y)-vly)

(2.12)
Arlz —y|3

ka) = 257 =) = ~(V)la =) -vly) =

for all x € R3 and y € 0D with x # y, where the dot denotes the Euclidean
scalar product in R3. One introduces the double layer potential by setting

Sg(z) = L  K)aly) doty) (2.13)

for all x € R3\0D and g € C(0D), where the surface integral is recalled

below in part 3). Standard results from Analysis 3 then imply that Sg €

C*(R3\0D) and ASg = 0 on R*\@D. For each ¢ € C(dD), one thus obtains

the solution u = (Sg)!p of (2.11) if one can find a map g € C(0D) satisfying
lim Sg(x) = ¢(z) for all ze€ dD. (2.14)
zeD

3) The surface integral. A compact boundary 02 of an open subset
Q < R™ belongs to C*, k € N, if there are open subsets Uj and f/j of R™ and
C*diffeomorphisms o f/j — Uj, j€{l,...,1}, such that the functions ¥;
and \IJ;1 and their derivatives up to order k have continuous extensions to
5‘7]- and 8Uj, respectively, Q2 < Vi U --- U V}, and U, maps V; = ‘7] N 082
onto Uj = Uj N (R™1 x {0}). We set F; = \I'j_l fu;- Below we use these
notions for k = 2 and D = €. We also identify U; with a subset of R?
writing ¢ € R? instead of (t,0) € R3.
We recall that the surface integral for a (Borel) measurable function h :
0D — R is given by

L h(y)do(y) - 2 ij o3 (F3 (0)h(F; () Jdet F/(8)T F/(¢) dt,

if the right hand side exists. Here, 0 < ¢; € C(R3) satisfy supp ¢, = V, and
Z;"Zl ¢j = 1. This definition does not depend on the choice of ¥; : f/] - U i
and ;. Moreover, 0(B) = {,,, 1 pdo defines a (finite) measure on the Borel
sets of dD. In particular, the above integral has the usual properties of
integrals. We mostly omit the index j € {1,...,1}.

Recall that for y = F(t) € V and t € U < R?] the tangent plane of 0D
at y is spanned by 01 F(t) and 02 F(t), where t € U € R2. Taylor’s formula
applied to U1 e CZ(U) at (t,0) yields that

z=U"1(s,0) =y + (T 1 (0) <8 6 t) +O(]s — t|2)

=y+F't)(s—t)+0(s—t]3).
for s € U. Using that v(y) is orthogonal to 0;F(t), we deduce that
(@ —y) v(y) =v(y) FO)s—t) + O(ls = t[3) = O(ls — t]3). ~ (2.15)
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On the other hand, ¥~! and ¥ are globally Lipschitz so that
cls—tla < |z —yla < Cls—tla (2.16)

forallz = F(s) e V,y = F(t) € V with s,t € U and some constants C, ¢ > 0.
In the following we denote by ¢ various, possibly differing constants.

4) Compactness of a version of S on dD. Using (2.12), (2.15) and
(2.16), we obtain

[(x —y) - v(y)| c c
k(z,y)| = < < 2.17
el = "o g <—ah < -th (2.17)

for all z = F(s) and y = F(t) in V with x # y. As a result, the integrands

P(F(t)k(F(s), F(t))g(F(t))4/det F"(t)TF'()

of Sg are bounded by a constant times |s — t|5 '] g|l» for all z = F(s) and
y = F(t) in 0D with x # y. We next set k(z,z) = 0 for x € 0D and

k(xz,y), x — > 1/p,
ke (,y) = g y)_l [z —yl2 1/
n?(4m) (@ —y) - v(y), |z —yla < Yn,
for n € N. By means of (2.15) and (2.16), we estimate
()| < s — 13 < els — (2.13)

if |x — yl2 < 1/n because then |s — t|2 < ¢/n.
Since k, is continuous on 0D x 0D, we can define an operator T, €
B(C(0D)) by

Thy(z) = LD kn(z,y)g(y) do

for x € dD and g € C(0D). As in Example 2.5a), one shows that 7T,, is
compact thanks to the Arzela-Ascoli theorem. For g € C'(0D) and x € 0D,
we set D(z,n) = D n B(z, 1) and calculate

f (e, ) — 1)) 9(w)] do(y) = f k() — kn(a9)] 19()] do ()
oD D(z,n)
< lgllo fD (k(z,9)| + [kn (2, )]) do (y)

v

c||g||oo2 j B |s_t,2

dv
< cllglleo
B(0,£ ’U’2

n rdr c
< cllglle f rdr gl (549)
0 T n

employing (2.16), (2.17), (2.18), and polar coordinates in R2.
Hence, for each = € D the function y — k(z,y)g(y) is integrable for the
surface measure o on ¢dD. So we can define

Ty(x) = L  Ka9)a0) o),
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for x € 0D and g € C(0D). By (2.19), the functions T,,g converge uniformly
on 0D to Tg as n — oo so that T'g € C(0D). Estimate (2.19) actually
implies that the differences T,, — T' belong to B(C(¢D)) and converge to
0 in this space. Hence, T is contained in B(C(¢D)) and it is compact by
Proposition 2.3 since all 7T}, are compact.

5) Facts from potential theory. In Theorems VIII and IX in Chap-
ter VI of [Ke] it is shown that

lim Sg(z) = Tg(z) — 1g(z) and  lim Sg(x) = Tg(z) + Lg(2), (2.20)

z€D zeR3\D
for all z € 0D and g € C(0D). We set

| Sg(z), zeRN\D,
vie) = g(z), xe€dD.

If v = 0 on D, then there exists d,v(y) = 0 for y € 0D due to Theorem X in
Chapter VI of [Ke].

6) Conclusion. Let ¢ € (0D). In view of (2.14) and (2.20), the function
Sg e C%*(D) has an extension u € C?(D)nC(D) solving (2.11) provided that
g € C(0D) satisfies %g —Tg=—p.

Since T is compact, thanks to the Fredholm alternative Corollary 2.8 it
remains to establish the injectivity of 21 — 7. So let gy € C(dD) satisfy
%go = Tgo. By the previous paragraph, the extension of Sgy to D then
solves (2.11) with ¢ = 0. This problem has also the trivial solution u = 0.
The uniqueness of (2.11) thus yields Sgo = 0 on D.

Define vy by (2.21) with go instead of g. Then d,ug = 0 on dD due to
the result mentioned after (2.21). We are now looking for a contradiction
with Hopf’s lemma (HL), employing Sgo on R*\D. Fix rg > 0 such that
D < B(0,r9). Forr =79+ 1, 2z € dB(0,r) and y € 0D, from (2.13) and
(2.12) we deduce that

(2.21)

C C C
‘k(l‘,yﬂ < 2 < 2 < NOR)
[z =yl ~ (r—ro)? 7

C
Saa)| < [ Glaolodo <

Suppose that gy # 0. We can thus fix a radius r = rg + 1 such that

ﬁw‘ IS

> S .
lgolloo zéf%%’é)’ go(7)]

In particular, vg is not constant on B(r)\D. Since Avg = 0 on B(r)\D, the
strong maximum principle (MP) says that vy does not attain its maximum
on B(r)\D. Since the maximum exists on B(r)\D, it must be attained at
a point yo € 0D, and hence vo(yo) > vo(z) for all z € B(r)\D. Noting that
—v(yo) is the outer unit normal of B(r)\D at o, we infer from (HL) that
d,v0(yo) < 0 contradicting d,v9 = 0 on dD. As a result, 11 — T is injective
and we have established the claim on (2.11).




CHAPTER 3

Fourier transform, Sobolev spaces, and weak
derivatives

The Fourier transform is a fundamental tool in many branches of math-
ematics and its applications. In the first section of this chapter we study
its basic properties in an L?-context. If one wants to treat partial differ-
ential equations in L?- (or LP-) spaces, one needs weak derivatives and the
Sobolev spaces W¥*P. The second section gives a brief introduction to these
topics and it establishes important links between the Fourier transform and
the spaces W*2(R™). We then discuss deeper properties of Sobolev spaces,
mostly without proof. The last section is devoted to differential operators
using Sobolev spaces and the Fourier transform.

3.1. The Fourier transform

In this section we let F = C. We start with the definition of the Fourier
transform for integrable f : R™ — C, where we write

Ew= ) &
k=1
for the (real) scalar product of & = (§)r € C™ and = = (zx)r € C™. Note
that |z|3 = z - x for x € R™.

DEFINITION 3.1. Let f € L'(R™). The Fourier transform of f is

FiRm G fO = (F© = 0¥ e @ (3)
In the literature several variants of the constants in (3.1) are used. These
choices affect the constants of many results of the theory, so that one has
to be careful when using different sources. In Theorem 3.11b) we see that
f can be expressed as the superposition
f@) = @0)7F [ oifede  aeRm,
of ‘plane waves’ z — ei(z) = €®¢ with coefficients £(€), provided that
f e L2R™) and f e L' (R™), see also (3.7). So f(£) can be view as the
component of f at ‘frequency’ &, noting that ej¢(z) = cos(x - §) +isin(z - §).
Set o(z,£) = e €% f(x) for f € L*(R™). Observe that |p(z,&)| = |f(z)]
is integrable in x € R™ for every £ € R™ and that R™ 3 & — (£, ) is
continuous for a.e. x € R™. By means of a corollary to the theorem of
dominated convergence, we thus conclude

f is continuous on R™ and | f|e < (27)72 |f|l1 for fe LY(R™). (3.2)

38
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We discuss some basic and instructive examples.

ExaMPLE 3.2. a) Let m = 1 and f = T, We then have f(0) =
(b —a)/v/2m and
X 1 . (o—ibE _ o —iag
fo = o= [ etrar= 1),
V2T Jg V2w €
b) Let m = 1 and f(x) = (1 + 22)~!. Using complex curve integrals, one
can show f(€) = /7/2e ¢l for € € R, see Analysis 4 and the next example.

In these two examples (non-)rapid decay and (non-)smoothness on f cor-

£#0.

respond to (non-)smoothness and (non-)rapid decay of f, respectively, cf.
Lemma 3.7. In the next part, both f and f are smooth and decay rapidly.

c) Let v(z) = exp(—3|z[3) for z € R™ be the standard Gaussian. We show
that ~ is a fixed vector of the Fourier transform; i.e., ¥ = v. Let £ € R™.
Observe that 1(z +i&) - (z + 1) = &|z|3 +i¢ - = — 1|¢|3. We then obtain

(&) = (27r)’§f o~ (€at5lal3) g0 — (Qﬂ)’gf o 3 1€3 o~ 3 (@+i€)-(2+i6) g,

2

_ o 2le3 f L (wp+ige)? _ —3le 1 j -3z
—e 2 dr, = e 252 e 2% dz
,!_[ \ 2T H \/27r i€+ R

_ BT f 3 g
=e 2 e 2" dt =~(§),
1E3! ©

employing the formula SR e 2t dt = v/2m from Analysis 3. In the penulti-
mate equality we shifted the path of integration within C. To justify this
shift, we fix n € R\{0} and use the rectangular path I';, with vertices —n, n

n +in, and —n + in. Cauchy’s integral theorem yields SFn e=27 dz = 0. The
two vertical lines S& in T, have length ||, and on S it holds

1.2 1 )2 1,2 1.2
’efiz ‘ _ e*gRe(i’rkFlT) <e 2" e2 In]

for 0 < |7| < |n|. Hence, {q+ e~2%" dz tends to 0 as n — o0, and the above
shift is justified. O

Let f e LP(R™), 1 < p < o, and t,x € R™. To describe important
mapping properties of F, we set
eit(x) = e't®
and introduce the translation operator T; by

(Tef)(2) = [z +1).
As in Example 4.12 of [FA] one sees that T; : LP(R™) — LP(R™) is an

isometric isomorphism with inverse T_;. For a > 0 we further define the
dilation operator D, by

(Daf)(x) = f(az).
Observe that Dy, D, = D,Dy, = I, and that the substitution y = az yields

Pufly = | 1r@Pde = | a i@l ay—a sl (33)
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for p < oo (and analogously for p = ). As a result, a"?D, : LP(R™) —
LP(R™) is an isometric isomorphism. Finally, also the reflection operator
R:LP(R™) —» LP(R™);  Rf(z) = f(—=),

is an isometric isomorphism with inverse R~! = R, since we have R? = I.
Recall that Holder’s inequality implies the continuity of the bilinear map

17(B) x IV (B) > F; (f.9) — fB fgda, (3.4)

for all 1 < p < o0 and Borel sets B < R™, where % + ]% = 1. Moreover,

let 1 < p,g,r < 0 with 14+ 5 = 3+ 1, fe LP(R™), and g € LI(R™).
Theorem 2.14 of [FA] shows that the convolution

frg(@) = (f=g)(x) = . flz—ygly)dy,  ae zeR™,
belongs to L"(R™) and satisfies Young’s inequality
1f = gllr < [flplgllq- (3.5)

The bilinear map (f,g) — f * g is thus continuous from LP(R™) x LI(R™)
to L"(R™). We only need the case ¢ = 1, where one has r = p € [1,0]. We
now prove basic operational properties of the Fourier transform on L!(R™).

PROPOSITION 3.3. Let f,g € LY(R™), teR™, and a > 0. The following
formulas hold.

a) f(th) = eitf.

b) Flewf) =T_f.

¢) F(Dof) =a~™ Dy, f.

d) F(f+g) = (2m)7% fg.

PROOF. Let f,g € L'(R™), ¢,£ € R™, and a > 0. Using the substitutions
y =+t and z = az, we check assertions a), b) and c¢) by calculating
FOH© = @n) % [ e parde=@nE | o0 )
= o1 f(8),

Fleaf)(€) = (2% | et (o) do = (g 1),

m

I3

F(Daf)(€) = (2m)~

— (e
To prove part d), we first recall from the proof of Theorem 2.14 in [FA]
that the map R?*™ 5 (w,y) = f(y — x)g(x) is integrable. Hence, also the
function (z,y) — e €Y f(y — x)g(x) belongs to L'(R?>™). Fubini’s theorem
then yields

F(rra)© = @0 % [ | sy -y dody

J T flax) da = (2m) 72 f a ™ ef%g'zf(z) dz

m

- (2m) % f f TEW) fy — p)e g (z) dy da
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—enE | [ ) ds e gl do = (2m)F (a6,

where we also employed the subtitution z = y — x in one of y—integrals. [

We illustrate the above properties by computing the Fourier transform of
a general Gaussian.

EXAMPLE 3.4. We set f(z) = exp(—%|z — v|3) for all z € R™ and some
a > 0 and v € R™. The Fourier transform of this Gaussian function is
given by f(€) = a=™? exp(—iv - €) exp(—i\f@) for £ € R™. In fact, we have
J =T-4D s. Proposition 3.3 and Example 3.2 thus yield

m

f = efiv}-(D\/E’Y) = €e_jpa 2 Dl/\/a’AY = a_%efile/\/a’%

as asserted. O

As one of its main properties, the Fourier transform maps derivatives into
multiplication by polynomials, and vice versa. To state this fact concisely,

we use the multi-index notation: For o« = (ai,...,q,) € NJ' and z =
(x1,...,2m) € R™, we set

o N olel
la| = a1+ Fapy,, %=z ayr, 0 =00"... 00" =

0§t - oxy
We further write 2 f for the function R 35 z +— 2% f(x), etc. Observe that

R L P P R P (3.6)

2% = [
for z € R™ and |af < k.
To relate the Fourier transform with derivatives, we need a space of
smooth functions. Unfortunately, C2°(R") is not invariant under the Fourier
transform. Instead one uses the (somewhat less convenient) ‘Schwartz space’

on which F becomes a bijection, as seen below.
DEFINITION 3.5. For fe C*®(R™), ke Ny and a € N', we set
Pralf) = sup |z[5[0°f(x)|.
zeR™

We define the Schwartz space S, by
Sm ={f € CP(R™)|pra(f) <o forall keNy, aecNg}.

Notice that S,, is a vector space and that all derivatives of f in S, decay
faster than |$|27}C for every k € N, as |z|y — 00. One thus calls f € S, rapidly
decreasing. Clearly, the map y(z) = e lel3/2 belongs to S,,,. Moreover, one
can replace py o (f) by pak,o(f) in the definition of S, without changing Sp,.
We discuss further basic properties of this space.

REMARK 3.6. a) Let f € S, k € Ny, and o € Nj'. We estimate
o m — k+m+1 o
jf5 10°F(2)] = (1+ |23 7 (ol + |2ls ™™ ) |02 f ()]
< (1 + |x|5n+1)—1 (pk,a(f) +pk+m+1,o¢(f))

for all z € R™. Since the function = — (1 + |=|5**1)~! is integrable on R™

(see Analysis 3), we deduce that g = |2[50%f is in L'(R™) n Co(R™), and
hence |z|50 f belongs to LP(R™) for all p € [1, 0] in view of |g[? < |g| |lg[% "
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b) Because of CP(R™) € S,,, € LP(R™), Proposition 4.13 in [FA] yields
that S, is dense in LP(R™) for every p € [1,00).

c) Observe that py, is a seminorm on S, for all £ € Ny and a € N,
where pgg is the supnorm. We order these seminorms as a sequence (p;) jen.
Due to Proposition 1.8 in [FA], the Schwartz space S,, has the metric

v, pilf—9)
o) = L2 T T

and d(fn, f) = 0 as n — oo if and only if py o(f — fn) — 0 as n — oo for all
k€ Ng and o € Ni*.

Moreover, S, is complete for this metric.! Indeed, let (f,) be Cauchy in
(Sm,d). Then (|z|50f,,)n is Cauchy in Cp(R™) and thus has a limit fx, in
Cp(R™) for each (k,a) € Ny x Njj. Letting & = 0, we deduce that f := fo
belongs to C*(R™) and 0%f = foa. So the products |z|50%f, also tend to

|z|50 f pointwise, and hence this function coincides with fi . This means
that f is contained in S, and d(f,, f) — 0 as n — . O

The next lemma deals with the announced relation between Fourier trans-
form and derivatives. We use the Laplace operator given by A = 02 +- - -+02,
and the space of smooth, polynomially bounded functions

Em ={feCPR™)|Vae Ny In,eNy: ‘S|up 2|37 [0 f ()] < o0}
zlo=1

Note that Schwartz functions and polynomials belong to &,,.

LEMMA 3.7. Let f € Sy, g € En, and o € Ni*. Then the following
assertions hold.

o) feCP®R™), 0°f = ()l Faof), F(oof) =illeof.

b) FAf = FOif + -+ Fopf =6 + -+ &) Ff = —[EF .

¢) The maps f— gf, f — 0“f, and R are continuous from S, to Sp,.
d) The Fourier transform is continuous from Sy, to Sp,.

Proor. Let £,z e R™, f, f, e Sy, forne N, ge &, a e N[, and keNy.
We show a) for a = e, the assertion then follows by induction. There exists

(92 _lgxf( ) = _137 i€ e xf( ) = (Pj(gax)7

and R™ sz — |p;(&, )| = |z f(x)] is integrable by Remark 3.6. A corollary
to the theorem of dominated convergence thus shows that

32 fO = m) [ e (@) da = i )(6)

For the second part of a) we write [—n,n]' = C!, for ,n € Nand z = (2, 7;)
with 2’ = (21,...,2j-1,%j41,...,2Tm) € R™1. Using that d;f and f are
integrable and integrating by parts in x;, we compute

FEif)(E) = 2n) 7 Jim [ [ om0 )

n—00

IThe proof was omitted in the lectures.
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— (2#)*% lim [J - igje*if,-:rf(g:) dx + J e T f (g xj)

n—0o0 Cm—l
n

~

=i&; ().

Here the second integral J, in the second line tends to 0 as n — oo since
A< S [ V@ N )] da’ < 2 o),
N=+4n""n

Assertion b) is a consequence of a). For part c), note that the function

|z|50%(fg) is a linear combination of terms |x|l2§+n”85f 2|, " 07g for B, €
Ng* with 8 + v = . Since g € &,,, also employing (3.6) we obtain

Pral(f9) <c Y. (Prsrs(f) + prs(f)),

B<a

where [ = max|,|<|o| 7y and c only depends on k, o, m and g. Hence, fg
belongs to S,,. The asserted continuity of f — fg follows by replacing f
with f — f,,. Similarly, one checks the second and third part of c).

By means of claims a) and b), we further compute

€130 F = (—)glFF @ f) = ()l (—)FF(Ak @ ).
Due to part ¢) and Remark 3.6, the function A*(z®f) belongs to S,, <

LY(R™) so that its Fourier transform can be estimated by means of (3.2).
This means that f is contained in S,,, and we also obtain

P2l F(f = fn)) < | AF@(f = fo)l1-

Using again Leibniz’ rule and Remark 3.6, the term on the right-hand side
can be bounded by a linear combination of certain seminorms p; g(f — fn);
i.e., Fm : S — Sy is continuous. O

We infer the Riemann-Lebesgue Lemma, which improves on (3.2).

COROLLARY 3.8. If f € L'(R™), then f € Co(R™). Hence, F belongs to
B(LY(R™), Co(R™)).

PROOF. Let f € L'(R™). Remark 3.6 provides functions f,, € S, con-

verging to f in L'(R™). Lemma 3.7 shows that f,, belongs to S,, € Co(R™).

By (3.2), the functions f, tend to f in supnorm so that f is contained in
Co(R™). The second assertion then follows from (3.2). O

The next lemma is the crucial step towards the main results of this sec-
tion. Observe that in its second part a double integral disappears due to
cancellations of the highly oscillating integrands.

LEMMA 3.9. The following assertions hold.
a) SRm fgdx = S]Rm fgdx for all f,g€ Sp.
b) F2 = R;i.e., (FFf)(x) = f(—x) for all f € Sy, and v € R™,

PROOF. Let f,g € Sy Since (z,9) — e 2 f(z)g(y) is integrable on
R?™ Fubini’s theorem yields

F)g(y) dy = f . (2m)~ % f e f(2)g(y) de dy

Rm™
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- [ r@en [ ergayds - | f@ie) ds
- .,

Rm
In the second assertion one is led to the integrand e'¥€e™¢% f () which is
not integrable for (&, x) € R?*™. So Fubini’s theorem does not apply directly,
and one has to use a regularization. To that purpose, fix £ € R™ and a > 0.
Set hg = e_igDgy € Sm; i.e., ha(y) = e 16V exp(—§|y|g) for y € R™. Due to
the theorem of dominated convergence with the majorant | f |, the integral

Jo = f(y)ha(y) dy=| fy)e ¥y (ay) dy

converges to (27)2 (ff)(ﬁ) as a — 0. On the other hand, part a), Proposi-
tion 3.3 and Example 3.2 imply that

Jo= | F@) FleweDay)(@)de = | f(x)a™"(TeDy.y)(w) du

= f( )a "y (G +€)) da = o flaz = &)v(2) dz,

where we also substitute z = %(az + £). By means of the theorem of dom-
inated convergence with the majorant | f|lsy we conclude that J, tends to
F(=O|vl = (2m)™2f(—€) as a — 0, which shows assertion b). O

We now establish the asserted bijectity of F on S, and compute its in-
verse. We further complement Proposition 3.3d) on convolutions. Equation
(3.8) will be crucial to extend our results to L?(R™).

PRrROPOSITION 3.10. The Fourier transform F : Sy, — Sy is a homeomor-
phism with F* = I and F~' = F3 = RF. Moreover, for all f,g € S,, and
z € R™ we have

Flgw) = (2m)F [ etge)de, (37)
FF = (foe = | f@ato e (33)
f*geSn, (3.9)
F(fg)=@m) % f+g. (3.10)

PROOF. Lemma 3.9 shows that I = R2 = Fi = FF3 = F3F on S,, so
that F : S,, — S, has the continuous inverse 72 = RF. This fact already
gives (3.7). Let f,g€ Sy, and x,£ € R™. Equation (3.7) then yields

FED© = @)% [ =G de = 2m)F [ eneglea
= (F~1Fg)(z) = g().
So we can deduce from Lemma 3.9a) that
(oo = | Fade= | srFoae=| fade=(flos
Rm

For the final two assertions, Proposition 3.3 and Lemma 3.7 imply that
F(f#g) = (2n)"?f§ = ¢ belongs to S,,. Hence, the convolution f % g =

Rm
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F Ly is an element S,,. Replacing f and g by f and g, we further infer

F(f+9) = @m)2F())F(9) = 2m)2 R(fg) = (2m)2 F*(fg)
since R = F2. We apply F~! and arrive at (3.10). O

The equality (3.8) yields |F f|2 = | f|2 for all f € S,,. Since Sy, is dense in
L?(R™) by Remark 3.6, we can extend F to a linear isometry 3 : L?(R™) —
L?(R™) which is also called Fourier transform (use Lemma 2.13 of [FA]).
Let f € L?(R™) n L'(R™). By Theorem 4.21 in [FA], we have functions
fn € CP(R™) < S, which tend to f in L?(R™) and in L'(R™). Since
Ffn — Fof in L2(R™), there is a subsequence F fn; converging to Fo f a.e. as
J — oo due to Riesz—Fischer. On the other hand, F f,; converges uniformly
to Ff by (3.2). Thus, Fof = Ff a.e.. We now write F : L2(R™) — L?(R™)
instead of Fa, and also Fof = f

Warning: Ff is not given by the formula (3.1) if f € L2(R™)\L*(R™).

In the next theorem we collect the main properties of F on L?(R™), except
for its behavior under derivatives which will be dealt with in Theorem 3.25.
Unitary operators are introduced in Definition 5.43 in [FA] or in Section 4.1.

THEOREM 3.11. The Fourier transform on Sy, extends to a unitary oper-
ator F : L*>(R™) — L?(R™) which is given by (3.1) on L?>(R™) n L'(R™).
Let f,g € L>(R™), h € LY(R™) n L?2(R™), t € R™, and a > 0. Then the
following assertions hold.

a) F2=R, Fi=1, F'=F=RF.

b) Frh(z) = (2m) "2 (g €ER(€) A€ forz € R™  (inversion formula).

c) (FfIFg)r2 = (flg)rz  (Plancherel identity).

d) Sgm fodz = (g, fgda.

e) F(Tif) = ewf, Flewf) =T-1f, F(Daf)=a"™Dy,f.

f) Let x,v € LYR™) with ¢ :== RFv € Co(R™) and write p = ). Then

Flx=f)=02m2%xf, Flof)=2r)"2 ¢+ f (convolution theorem).

PROOF. As seen above, F is an isometry on L?(R™). The equations
F2 = R, F* = I, and those in assertions c)-e) hold on the dense subspace
S, as shown in Proposition 3.3, Lemma 3.9 and Proposition 3.10. Since
the maps F, R, Ty, Dy, f — eirf and the scalar product (cf. (3.4)) are
continuous from L?(R™), resp. from L?(R™) x L?(R™), to L*(R™), these
identities can be extended to L?(R™) by approximation.

From F* = [ we infer [ = FF3 = F3F so that F : L(R™) — L?(R™) has
the inverse F ! = F3 = RF, and parts a) and b) are shown. As a bijective
isometry on a Hilbert space, F is unitary by Proposition 5.52 in [FA].

The first part of claim f) follows from Proposition 3.3 by approximation,
using (3.5). For the second part, take f,, 1, € Sy, with f, — f in L?(R™)
and 1, — 1 in L*(R™) as n — o0. Then ¢, := F 14, = RF1) tends to ¢ =
RFv in L*(R™) by (3.2). Hence, ¢, f, converges to ¢ f and @*ﬁ = wn*ﬁ
to ¢+ f = ¢+ f in L2(R™) due to (3.4) and (3.5), respectively. Equation
(3.10) and the continuity of F now imply the second part of f). O

In Theorem 3.25 we complement the above result. In the appendix Sec-
tion 3.6 we treat the Fourier transform in a more general framework.
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3.2. Basic properties of Sobolev spaces

In the remainder of the chapter U < R™ is open and non-empty. We are
looking for properties of C''-functions which can be generalized to a theory
of derivatives suited to LP-spaces. Looking at the theorem of dominated
convergence, for instance, one sees that here the basic concepts should not
be based on pointwise limits. It turns out that integration by parts is an
excellent starting point for such a theory.

Let f e CY(U) and ¢ € CX(U). Extend ¢of € C}(U) by 0 to a function
g € CHR™). Then 019 = 01 f + w01 f on U. Take a number a > 0 such
that suppg € (—a,a)™ =: C™ and write x = (z1,2’). We then derive

f 01fg0dx:—f fﬁlgodx—i-J o01gdx
U U U

= _J fﬁlSde"i'J 819(.%1,1‘/) dxq da’
U cm-1

—a

_ f Jorpda + f (9(a,a") — g(—a,2)) da’
U cm=1

=—J for1pdx.
U

Inductively one shows that

f 0“f pdx = (—1)O‘|J fo%pde, (3.11)
U U

for all f e CK(U), p € CX(U), and a € NJ* with |a| < k. Throughout
derivatives like 0% only act on the following map (if there are no parentheses).
To imitate (3.11) in a definition, we set

LP

loc

U) = {f U — F’f measurable, flxeLP(K) for all compact K < U}

for p € [1,0]. Note LP(U) < LY (U) < L{ (U). Weextend f € L (U) by 0

loc loc loc
to a measurable function f : R™ — F without further notice. Convergence in

L7 .(U) means that the restrictions to K converge in LF(K) for all compact

K < U. This limit concept can be described by a complete metric as in
Example 1.9 of [FA]. We introduce a new notion of derivative.

DEFINITION 3.12. Let f € L] (U) and a € NJ'. Let g€ L (U) satisfy

f gpdx = (—1)'“[ fo“pdx (3.12)

U U

for all p € CX(U). Then g =: 0“f is called weak derivative of f. We set
WO&(U) = {f € Llloc(U) | 3 aaf € Llloc(U)}

For ke N and p € [1,0], one defines the Sobolev spaces by

WEP(U) = {f e LP(U)| f € Wa(U), 0*f € LP(U) for all a| < k}
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and endows them with

l/p
3 ||0°“f\|,’§> L 1<p<o,
0<|o|<k

1A llkp =

max |0 f||o0, p = 00,
o<|al<k

where °f == f. We set Wg(’)pc)(U) = L%OC)(U), 0% =05, 0=01 if m=1, and

whp {feLp (U)‘feWa(U), o“feL? (U) for all |a] < k}

loc loc loc

As usual, Li) (U), Wo(U), W'IIZ’C:"(U), and W¥*P(U) are spaces of equiva-
lence classes modulo N' = {f : U — F| f measurable, f = 0 a.e.}. After
recalling an important fact from Lemma 4.15 in [FA] (se also Lemma 3.50

in the appendix), we list basic properties of weak derivatives.

LEMMA 3.13. Let g € L} (U) satisfy §,;gpdz =0 for all o € CP(U).
Then g =0 a.e..

REMARK 3.14. Let o, 5 € NJ*, p € [1,0], and k € N.

a) Lemma 3.13 implies that 0“f is uniquely determined for a.e. z € U.
From (3.11) we then infer that C*(U) + A is contained in W, (U) for |a| < k
and that weak and classical derivatives coincide for f e C*(U).

b) Wo(U) is a vector space and the map 0% : W, (U) — Li (U) is linear.
c¢) Let f € Wo(U) " Waip(U). Then 0% f belongs to Wg(U) and 0°0%f =
0°+Bf. Ifalso f € Ws(U), then 0° f € W, (U) and 0%0° f = 0°+P f = 9% f.
For f € Wllgcl’l(U) we obtain 0¢f = 07! ... 2% f and may change the order.
PRrROOF. Let p € CX(U) and f € Wo(U) n Woyp(U). We just check the
definition of 0%(8“f), where put é* on ¢ by means of (3.12) and then use

Schwarz’ theorem from Analysis 2. So we compute

(—1)|ﬁlj aafa%dxz(—nlaﬂﬁlf f&"‘(?ﬁgpdxz(—l)|a+5|f footPoda
U U U

= f ooth fpdx;
U
ie., 0°f € Wg(U) and 0Boaf = 0**tB f. The second claim follows by inter-
changing « and f3; the last one is clear. O

d) (WEP(U), || ||xp) is a normed vector space. A sequence (f,), converges
in W*P(U) if and only if (0 f,), converges in LP(U) for each a with |a| < k.
Note that | fI£, = |15+ |97}y [§ for f € WP(U) and p < .

e) The map J : WkP(U) — LP(U)N; f— (0%f)|aj<k » is alinear isometry,
where N is the number of a in NJ* with |a| < k and LP(U)" has the norm
1(£)1 = (I £i]);p- Since the p-norm and the 1-norm on R are equivalent,
there is a constant ¢y > 0 such that

en Dy N0 fly < Mfllkp < D5 10%fly

0<|al<k 0<|a|<k

for all f e WFP(U). O
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We continue with simple, but instructive one-dimensional examples.

EXAMPLE 3.15. a) Let f € C(R) be such that fy := flgr.o belong to
C'(Rz). We then have f € W (R) with

_ f-,&- on RZ(M .

of = { f onR_=(—,0) [ 7

For f(x) = |x|, we thus obtain 0f = Ir_, — 1gr_.
PRrROOF. For every ¢ € CP(R), we compute

0 o0
ffso/dt=f f_go'de fog dt
R —0 0

0 o0
0
= —J frodt+ fog|_ - L fipdt + froly
—00

R

since f4(0) = f—(0) by the continuity of f. O
b) The function f = Lg., does not belong to W11 (R).
PROOF. Assume there would exist g = df € LL (R). Then we obtain

loc

o0
J gpdt = —f 111&;0@’ dt = —f ¢/ () dt = p(0)
R R 0

for all ¢ € C(R). Taking ¢ with suppp € Ry = (0,0), from Lemma 3.13
we deduce g = 0 on R . Similarly, it follows that g = 0 on R_. The equation
in display then yields ¢(0) = 0 for all ¢ € C(R), which is wrong. O

¢) Set f(x,y) = Lr.,(z) for (z,y) € R%. Observe that {3 0%p(z,y)dy = 0
for all p € CP(R?) and o € NZ with ag # 0. As a result, the weak derivatives
0% f = 0 exist for such o, e.g., dof = 0= 01 f = 0. However, as in part b)
one sees that the weak derivative 01 f does not exist. O

So far we have just used the definition of weak derivatives by duality. For
further examples and deeper results one needs mollifiers, which we recall
and discuss next.

Fix a function 0 < y € C®(R™) with support B(0,1) and xy > 0 on
B(0,1). For z € R™ and ¢ > 0, we set

1
k(x) = 7=X
Il
Note that 0 < k. € C*(R™), ko(x) > 0 if and only if |z|2 < &, and ||k:||1 = 1.
Let fe LL (U) and ¢ > 0. We now introduce the mollifier G. by

loc
G.f(z) = j ke — ) f(y) dy = j k() f(x—2)dzs, (313)
B(0,¢)

B(z,e)

forz e U ={xeU|0<e <d(z,dU)}. If the 0-extension of f belongs to
LL (R™), the above definition works for z € R™ or z € U and all € > 0, and
we have G.f = k. = f for this extension. For a subset S of a Banach space

and € > 0, we define

(z) and ke(z) = e ™k(ix).

€

S. =S+ B(0,¢).
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From Proposition 4.13 in [FA] and its proof we recall that

G.fe CP(U®) and G.feC®R™) if fe L, (R™), (3.14)
suppGef € S for S :=supp f, S: is compact if S is compact, (3.15)
HG fHLp U) HG fHLp R™) Hpr if f € LP(U) and 1 < p < 00, (316)
Gef > fin LP(U) ase -0 if fe LP(U) and 1 < p < o, (3.17)

orif p=o0and fe Cyu(U).

The next lemma is the key to many properties of weak derivatives. Abus-
ing notation, we write G- f — f in L}, (U) as ¢ — 0 if we have (G- f)lx —
fli in LP(K) as € — 0 for all compact K € U and 0 < e < d(K, dU).

LEMMA 3.16. Let a€ Ni*, pe [1,0], and € > 0.
a) Let f e Wo(U). If U = R™, we have 0°G.f = G:0*f, and otherwise
(0“G:f)(x) = (G0%f)(x)  for x €U withe < d(x,dU).

b) Let f € Wo(U). Then the functions G.f converge to f and 0*G.f tend
to 0%f in Li (U) as e — 0. If, in addition, f and 0*f belong to LF (U)

loc
for some p € (1,00), then we have convergence in LY, (U).

loc

c) Let f e Wg(U) for some multi-indices 3 € Ni*. For each null sequence
(ej) in Ry, we obtain a subsequence €, = ¢j, — 0 such that Ge,f — f
and 0°G., f — 0°f a.e. on U for all these B as n — oo, where n = Nk for
z e K, some Ng € N and any compact K < U.

d) Let f,ge LL (U) and f, € Wo(U) such that fn, — f and 0“f, — g in
LL (U) as n — o0. Then f is contained in Wo(U) and 0°f = g. If these
limits exist in LP(U) (or L}, (U)) and for all a with || < k, then f is an

element of WEP(U) (or WP(U) ). Moreover, 0 with domain

loc
D(0%) = {f e Wa(U) n LP(U) | 0°f € LP(U)}
is closed in LP(U).
PROOF. a) Let f € W,(U), ¢ > 0, and x € U®. Then the map y —

0ex(y) = ke(z — y) belongs to CX(U) since supp p., = B(x,e). Using a
corollary to Lebesgue’s theorem and (3.12), we can thus deduce

G f(x faa z—y)f(y)dy = (— laf “pe2) (W) f(y) dy
- fU e ()2 f(y) dy = G0 f (z)

If U = R™ this argument works for all z.

b) Let f € Wo(U) with f,0*f € L{ (U) for some p < c0. Choose a
compact subset K < U and fix § > 0 with K5 < U. Take € € (0,6]. Note
that the integrand of G.g(x) is then supported in Kj for all x € K and
ge L (U), see (3.13). Hence, part a) and (3.17) imply the limit

1g0“Gef = 1gkG0°f = 1xkG (1, 0°f) — L1glg, 0% f = Lgd*f
in LP(K) as € — 0. So the asserted convergence in L (U) is true.

c) Let f e W,(U). For k € N, we define

Ky ={zeU|d(z,dU) > 1 and |z[; < k}
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These sets are compact and | .y Kr = U. Let €; — 0. For each k € N there
is a null set N € K} and a subsequence vy in vg_; (with (i) = i) such
that GEUk(i)f(x) tends to f(x) and 6O‘Geuk(i)f(:):) to 0% f(z) for all x € Kj\N
as ¢ — o0. We find a ‘diagonal’ subsequence ¢, = ¢;, — 0 such that
Ge, f(x) = f(z) and 0°G., f(x) — 0“f(z) for & € U\(Upey Ni) as n — o0
where €, < % for x € Kj and |Jgey Vi is a null set. By another diagonal
sequence, we can achieve this for countably many 0°f at the same time.

d) Let ¢ € CP(U) and S = supp . Since S is compact, the assumptions
of assertion d) yield f, — f and 0%f,, — g in L'(S) as n — o. From (3.4)
on S and (3.12) we then infer

f fo“pdx = lim f fad%pdz = (=1)1° lim J 0% fn pdx
U n—o Jy

n—o0
1ﬂa.[ gy du;
U

i.e., f belongs to W, (U) and 0 f =g. The remaining claims follow easily. [

In the next examples we also argue by approximation, but using a differ-
ent, more explicit regularisation method.

EXAMPLE 3.17. Let U = B(0,1).
a) Let m > 2,1 < p < m, and f(z) = In|z|y for z € U\{0}. Then f
belongs to W1P(U) with

0if(x) = 5 =

for z # 0 and j € {1,...,m}. Moreover, f € LI{(U)\L*®(U) for all g € [1,0).
PROOF. Using polar coordinates and |z;| < r, we obtain

1
=c nr|iir’” T dr < o
17 ju|qmw ,

1
oy < [ Trn=tar=e [ rortar <o,
0
since p < m. Hence, f is contained in LY(U) and g; in LP(U). Define
up € C°(U) < Wl’p(U) by un(z) = In(n=2+|z|3)"* for n € N. Observe that
djun(x) = (072 + |2[3) '), un(w) — f(2), and Qjun(z) — gj(z) as n — o
for all z € U\{0}. We have the pointwise bounds

[f@)], n72+ 23 <1,
< a n S ] 5 S U
|un ()] < {ln\f w4 | > 1, |0jun(z)| < gj(z), =
Lebesgue’s theorem thus yields that w, — f and dju, — f; in LP(U) as
n — 0. The assertion then follows from Lemma 3.16d). O]
b) Let p € [1,00) and 8 € (1—2,1]. Set u(z) = |z|5 and f;(x) = Ba;|x|y >
for z € U\{0} and j € {1,... ,m} As in part a) one shows that u e WhP(U)
and dju = fj. (See Example 4.18 in [FA].) O

We now obtain the basic functional analytic properties of Sobolev spaces.
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PROPOSITION 3.18. Let 1 < p < o0 and k € N. Then W*P(U) is a Banach
space which is isometrically isomorphic to a closed subspace of a LP(U)N for
some N € N. It is separable if p < o0 and reflexive if 1 < p < c0. Moreover,
WFk2(U) is a Hilbert space endowed with the scalar product

(s = 3 L o f g da.

la|<k

PROOF. Let (f,)n be a Cauchy sequence in W*P(U). Then (0%f,)n
is a Cauchy sequence in LP(U) for every a € N with |a| < k and thus
0%fn — go in LP(U) for some g, € LP(U) as n — o0, where we set f := go.
Lemma 3.16 d) implies that f belongs to WP (U) with 0% f = g, for |a| < k.
Hence, f, tends to f for | - |, and WHP(U) is a Banach space. We then
deduce from Remark 3.14¢) that W*P(U) is isometrically isomorphic to a
subspace of LP(U)" which is closed by Remark 2.11 in [FA]. The remaining
assertion now follow by isomorphy from known results of functional analysis,
cf. Proposition 4.19 of [FA]. O

We next establish product and chain rules by approximation, using core
arguments of the area. One can derive many variants by modifications of
the proofs. Typically such identities can be shown by approximation if
the functions involved belong to the desired LP-spaces because of Holder’s
inequality, for instance, though the case p = 00 may cause additional trouble.

PROPOSITION 3.19. a) Let f,g € I/Vli’cl(U) N L*®(U). Then, fg belongs to
WENU) A L®(U) and has the derivatives

loc
0i(fg) = d;f g+ fo;g, je{l,...,m}. (3.18)

b) Let 1 < p< oo, fe WP(U) and g e WY (U). Then, fg is contained
in WHL(U) and satisfies (3.18).

PRrROOF. We approximate first g and then f to make the arguments more
transparent.

1) Let f,g € Wh(U). Set f, = G, f € CP(U) and g,, = G,g € CP(U)
with €, — 0 as in Lemma 3.16¢). Fix k € N and take ¢ € CX(U) and
j e {l,...,m}. Choose an open and bounded set V' such that supp¢ <
V cV cU. Since f, — f and 0 f, — 0;f on L'(V) by Lemma 3.16 a),
formulas (3.4) and (3.11) yield

f fouosode = im [ fugrdjede = — lim f (03 fu g1 + fudjgn) 0 da
U n—o0 Vv n—oo v
=— L (0if gk + [Oi9K)da,

so that fgr € Wli)cl(U) and 0;(fgr) = 0;f gk + OG-
2) Let f,g € W2 (U) n L®(U) and g, as in 1). Note that g — ¢ and

loc
djgr — 0jg in Li _(U) as k — 0. Since f is bounded, we obtain

J fgdjpdx = lim J fordjpdr = lim — [J 6jfgk<pdx+f fajgkcpdzv]
U k—0o0 U k—o0 U U
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using step 1). The last integral converges to SU f0jg ¢ dx, again because of
f e L*(U). For the penultimate integral we use that g — g a.e. on supp ¢
by Lemma 3.16¢) and that ||gk|lc < ||g]lec by (3.16). Lebesgue’s theorem
(with the majorant |0; f]|gllool/¢]loo Lsupp ) then implies

f fgojodx = —J (5jfg + fajg)godx.

The map d;f g + f0;g is contained in L
tion a) is shown

3) Let f e WhP(U) and g € WY (U). If p e (1, oo] we show (3.18) as in
step 2), using (3.4) and that g, 09, converge in LIOC(U) by Lemma 3.16 b).

If p = 1, we replace the roles of f and g. Holder’s inequality and (3.18)
finally yield that fg and 9;(fg) are contained in L'(U). O

L (U) by our assumptions. Asser-

PROPOSITION 3.20. Let 1 < p< 0, je{l,...,m}, and f € Wé’f(U).
a) Let f be real-valued and h € C1(R) with h' € Cy(R). Then ho f belongs
to W-P(U) with derivatives
dj(ho f) = (I o f)o;f
b) Let V< R™ be open and ® = (Py,...,P,,) : V — U be a diffeomor-
phism such that ® and (®~1) are bounded. Then f o ® belongs to Wlf)’f(V)

with derivatives

Z ((Of) 0 @)0; Py
k=1

In both results we can replace VVIOC (U) by WEHP(U), where in part a) we
then also assume h(0) =0 if A(U) = o0 and p < 0.

ProOF.? By Lemma 3.16, there are mapsf,, € C*(U) such that f, — f
and 0;f, — 0;f in L _(U) and a.e. as n — o0.
a) The function h o f belongs to LV (U) since
B (f (@) < (£ () = hO)] + [R(0)] < 1|0l f ()] + [ (0)]
for all x € U. It is contained in LP(U) if f € LP(U) and if h(0) = 0 in the

case that A(U) = o0 and p # o. Note that h o f,, belongs to C*(U) and
i(ho fn) = (W o fn)d;fn. Let K < U be compact. We compute

f Ih(fa(@)) — h(f @) dz < 7]l fK\fn@;) — J(@)| dz — 0,
fKW(fn(a:))ajfn(x) W (f(2))0;f (2)] da
< %[l mejfn(x) —0f (@) da + th'<fn<x>> R (F(@)]|3s f ()] de — 0

as n — oo where we also used Lebesgue’s theorem and the majorant
2||h/ |1 k|0 f] in the last integral. Since (B’ o f)0;f belongs to L} (U),
Lemma 3.16 d) yields assertion a). If f € WIP(U), then (W o f)d;f € LP(U)
and so ho f is an element W1P(U).

2Not shown in the lectures.
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b) Let B = ®~!(A) for an open set A € U and g € LP(A). For p < o,
from the transformation rule we deduce

f 9(® ()PP dx = j l9()[P | det[(@Y (0)]| dy < clgl,,

An analogous estimate is also true for p = c0. Hence, f o ® is contained in

L (V) and f, o ® converges to fo® in L{ (V). We further have
0j(fno®) = ((Ohfn) o ) 3Py
k=1

The above estimate also implies that (0 f,,) o ® tends to (0 f) o® in L (V)

as n — o0, where this map is an element of LfOC(V). Since 0;®y, is bounded,

Lemma 3.16 d) now yields that fo® belongs to I/Vl P(U) and has the asserted
derivative. If f € LP(U), we can replace throughout L (V) by LP(V). O

loc
We extend the chain rule for Ao f to certain Lipschitz functions, using an
adapted regularization of h.

COROLLARY 3.21. Let f € Y/Vlzcl(U) be real-valued. Then the maps [,
f=, and |f| belong to I/VI})Cl(U) with
Ojf+ = £li520y0;f and 05|f] = (Il{f>0} — Il{f<0}) o; f
forall j € {1,...,m}. Here one can replace I/VloC by WLP forall1 < p <
PROOF.? We employ the map h. € C1(R) given by he(t) :== V12 + €2 —

e <tfort>0andh(t) :=0fort <0, wheree > 0. Observe that ||h.|s =1
for e > 0 and that h.(t) — 1r, (t)t for t € R as ¢ — 0. Proposition 3.20

shows that h.o f € I/Vlicl(U) and

fU he(£)o da = ‘L W(F)eif pde = — f - \/W

for each ¢ € CF(U). Using the majorants ||0j¢|«1ls|f| and ||¢|lLs|0; f]
with S = supp ¢, we deduce from Lebesgue’s convergence theorem that

| retspar=—|  Lopeds——| 1maredn
U (=op 1F177

There thus exists d;fy = 10105 f € LL (U). Clearly, 0;f+ belongs to
LP(U) if f € WYP(U). The other claims follow from f_ = (—f); and
|fl=f++ f- O

We discuss three special cases, namely m=1, p=o00, and p=2 for U =R"™.

———0;f pdx

THEOREM 3.22. Let J < R be an open interval, 1 < p < o, and f €
LP (J). Then f belongs to W,-P(J) if and only if there is a map g € L¥. (J)

loc
and a continuous representative of f which satisfy

F(t) = f(s) + j g(r) dr (3.19)

s

for all s,t € J. In this case, we have g = 0f a.e.. Let also 0f € L*(J). Then
f extends to J continuously and (3.19) is true fort,s € J.

3Not shown in the lectures.
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PROOF. 1) Let f € Wli’f(.]). Take the functions f, = G., f € C*(J)
from Lemma 3.16 ¢). Then for a.e. t € J and for a.e. tp € J we have

F(0) = (1) = lim (£(0) = fulto)) = Yy | fi(m)ar = | ap(r)dr

to

Fix one ty. Since t — S:O df(7)dr is continuous, we obtain a continuous rep-
resentative of f which fulfills (3.19) for teJ, s=ty and g=0f. Subtracting
the above equation with ¢y and s € J instead of ¢, we deduce (3.19) with
g = 0f for all t,s € J. The addendum with df € L'(.J) follows easily.

2) Let (3.19) be satisfied by some f,g € L (J). As in the proof of
Lemma 3.16 b) we find maps g, € C*(J) with g, — g in LlOC(J) as n — oo.

For every s € J and n € N, the function J 3t — f,(t) :== f(s) + S gn(T)dT
belongs to C*(J) with f] = g,. For [a,b] < J with s € [a,b], we estlmate

b t p
1= MWgasy = | || (o) = atryar

dt
P/p
f|t N (f on(r) ~ )P dr)

)1+p/p Hgn

g H L2 ([a,b]) *
using (3.19) and Holder’s inequality. Hence, f, tends to f in L} (J) as

n — 0. Lemma 3.16d) then yields f € W,2"(J) and of = g. O
We discuss the relationship of the weak and pointwise derivatives if m = 1.

REMARK 3.23. a) Let J = (a,b) for some a <bin R and f:J — F. We
then have f € WLI(J) if and only if f is absolutely continuous; i.e., for all
€ > 0 there is a number § > 0 such that for all points a < a3 < f1 < ag <

c<ap < By <bwithneNand 37 (8 — a;) < J we obtain

PRI CHEIEHIES

(Note that a Lipschitz continuous function is absolutely continuous and that
an absolutely continuous function is uniformly continuous.) In this case, f
is differentiable for a.e. t € J and the pointwise derivative f’ is equal a.e. to
the weak derivative of € L1(J).

Proor.* Let f e Wl’l(J). Then formula (3.19) yields

Zw] o)l = 3 faf f L Jer@ar =S,

Where S —0as A(Uj- 1(aj,,8])) — 0.
The converse implication and the last assertion is shown in Theorem 7.20
of [Rul] (combined with our Theorem 3.22). O

b) There is a continuous increasing map f : [O, 1] - R with f(0) = 0 and
f(1) = 1 such that f’(¢) = 0 exists for a.e. ¢t € [0,1]. This function satisfies

1= ff Jdr =

4The proof was omitted in the lectures.
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and so f violates (3.19), does not belong to W11((0,1)), and is not absolutely
continuous. (See §7.16 in [Rul].)

c) Let f e I/Vllocl (J) and df be continuous. Then f is continuously differ-
entiable, since then

- s 1 f
I [ oreyar — of
as t — s in J, thanks to Theorem 3.22. O

We now characterize W1 (U) at least for convex U, other domains are
treated in the Corollary 3.29.

PROPOSITION 3.24. a) The space C'~(U) = {f € Cy(U)| f Lipschitz} is
embedded into WH*(U), and one has

< M lloo + [fleip = [ fller-

for f e C1=(U), where [f]Lip is the Lipschitz constant of f.
b) Let U be convex. Then WH*(U) is embedded into C*~(U) and one has

Ifler- < vVmlflie, — feWh ().

Proor.? a) Let f € C'=(U). Take p € C*(U) with support S, j €
1,...,m}, and § > 0 with Ss < U. For ¢ € (0,6] the difference quotient
(p (95 + cej) — ¢(x)) converges umformly on supp ¢ as € — 0, and hence

U fojpdx| = ff o(x +eej) — p(x)) dx

{1,
1

= hm

< lim flf(y—ﬁej)—f(y)l\sO(y)ldy
e— S 3
< [fluipllella-

Since CX(U) is dense in L' (U), the map ¢ — — §; f0;¢ dz has a continuous
linear extension F}; : L}(U) — F. By Theorem 5.4 of [FA] there thus exists
a function g; in L®(U) = L'(U)* with ||g;ll = [[Fjll(z1)+ < [f]Lip such that

—f fojpdz = Fj(p) =J gjepdx

U U

for all ¢ € CP(U). This means that f has the weak derivative d;f = g; €
L®(U). As a result, f belongs to WL (U) and || f|l1,00 < || fllo + [f]Lip-

b) Let f € WL®(U) and U be convex. Take ¢, — 0 from Lemma 3.16¢)
and fix a compact K < U. For sufficiently large n € N, Lemma 3.16 and
(3.16) yield

10iGe, f(2)] = 1Ge, 05/ (2)| < 110 fllo < [[f 1,00,
for all j e {1,...,m} and z € K. Using that G, f(z) — f(x) as n — oo for
all z € U\N and a null set N, for all z,y € U\N we thus estimate

£() ~ ()| = lim [Ge, f(2) ~ G, f(0)]

= lim
n—o0

(y+7(x—y) (xr—y)dr

En

5Not shown in the lectures.
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< vVm max; 0; flloo |2 = yla -
Hence, f has a representative with Lipschitz constant /m max; |0; f|. O

In the spirit of Remark 3.23, we mention Rademacher’s theorem which
says that a Lipschitz function f is differentiable for a.e. x € U and that the
weak derivative 0; f coincides with the pointwise one. Actually, it is enough
to assume f € VV&)’?(U} for some p € (m, 0], see Theorem 5.8.5 in [Ev].

The next important result describes the space W*2(R™) via the Fourier
transform F in a very convenient way and complements Theorem 3.11. Re-
call that F is a bijective isometry on L?(R™) by this theorem.

THEOREM 3.25. Let F = C, k e N, and aeN* with || <k. We then have
WE2(R™) = {ue L*(R™) | |¢|5a e L2(R™)} =: HF,
and the norm of WH2(R™) is equivalent to (|u|3 + |||§|’2“2'Z||%)% For u €
WH2(R™) it further holds
F(0%u) = i ¢vq. (3.20)

PROOF. 1) We first show the asserted norm equivalence for Schwartz
functions u € S,,. They satisfy (3.20) by Lemma 3.7. We thus obtain

lulfe= D, IFoul3 =} IE‘*@%:me D, lEPlal de

lo|<k || <k || <k
< eu(Jul3 + Il5al3), .
> ¢ (Jul3 + [1[5al3)

for some ¢, ¢j, > 0 and all u € Sp,, using (3.6) for ‘<’ and o = ke; for ‘>,

2) Let u € WH2(R™). By an extension of Proposition 4.13 of [FA] (see
Theorem 3.27 below), there are u, € S,,, which converge to u in W*2(R™)
as m — o0. Since F is continuous on L?*(R™), the functions w, tend to
in L2(R™) and (possibly after passing to a subsequence) pointwise a.e., as
n — . Hence, the products |£|5%, converge pointwise a.e. to |¢|54. On
the other hand, equation (3.21) yields that the sequence (|¢|5%y ), is Cauchy
in L?(R™), and thus it has the limit [£]5% in L2(R™). We conclude that
WF2(R™) is contained in H* and that (3.21) is true for u € W*2(R™).

3) Conversely, take u € H*. Let ¢ € C*°(R™) and |a| < k. Then £°4 is
an element of L?(R™). From Theorem 3.11 and Lemma 3.7 we deduce

| wotpds = wovp) = (FuiFep) - @HIEP) = (-)ealre)

= FHE D) = (DF [ F s dr.
Rm
Therefore u belongs to W, (R™) and %u = F-(il*l¢2a) e L2(R™); ie.,
u is contained in W*2(R™). Hence, W*2(R™) = H* and their norms are
equivalent by (3.21). Applying F to the above equation for 0%u, we also
derive (3.20) for all u € WH2(R™). O

We use the above characterization and F to solve a basic partial differen-
tial equation on R™.
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ExXAMPLE 3.26. We consider the diffusion equation
oru(t, ) = Au(t,x), t>0, reR™,

u(0, ) = uo(z), xeR™, (3.22)

for a given initial value ug € L%(R™). We find a unique solution of (3.22);
i.e., amap uin C(Rxg, L*(R™))nCY(Ry, L2 (R™))nC(R4, W22(R™)) which
satisfies (3.22) as equations in L%(R™).

To that purpose, we first assume that we have such a solution u. We set
@(t) = Fu(t) for all t > 0 which defines a function @ € C(Rsq, L?(R™)) since
F is continuous on L?(R™). We further compute

Ful(t) = F lim & (u(t + h) = u(t)) = lim (@l + ) - ()

for all t > 0, so that 2 € C*(Ry, L?(R™)) and 6,4 = Fou. Applying F to
(3.22), we then deduce from (3.20) the equations

dr(t) = Foul(t) = FAu(t) = —|€[2a(t),  a(0) = ap. (3.23)

If we insert into 4(t) the arguments £ € R™, for each £ we obtain the
ordinary differential equation ¢ (t) = —|¢ 3¢¢(t), t = 0, with initial value

o (€), which is solved by e (t) = e t1EB75(£). We thus define
u(t) = FH(mymg)  with  my(€) = e 165 (3.24)

for t > 0 and £ € R™. Theorem 3.11 and Example 3.4 yield [Ju(t)|2 < |luoll2
for all t > 0 and

u(t) = F (D gy tia) = (2m) 2 (F (D yz7)) * o
= (2w)—%(2t)—%(pl/ aY) # Uo, (3.25)

lz—yI3

u(t,z) = (u(t))(x) = (4m)—?fme— 2 o) dy, £>0, zeR™

Since |¢[5a(t) = [¢|5myug € L*(R™), Theorem 3.25 implies that u(t) be-

)
longs to W*2(R™) for all k€ N and ¢ > 0. From (3.20) we then infer

FAu(t) = —[€3a(t) = —|€3memn,  Au(t) = =F 1 (|€[3mqto).

Let v(t) = Fu(t) = myug for t > 0. Clearly, +(v(t + h) — v(t)) tends
pointwise to —|&|3mug as h — 0. Moreover, |+ (v(t+h)—v(t))| is bounded by
|€13muup € L*(R™) if |h| < t/2. Dominated convergence then implies that v
has the derivative /() = —|¢|3mug in L2(R™) for t > 0. Similarly one sees
the continuity of t — |£|3my from Ry to L2(R™). Theorem 3.25 and the
continuity of F~! on L?(R™) thus yield that u belongs to C*(R,, L>(R™)) n
C(R,,W?22(R™)) and satisfies

u'(t) = —F([€3mitio) = Au(t)

for t > 0. Finally, mug tends to ug in L?(R™) as t — 0 by Lebesgue’s
theorem with majorant |ug|. Hence, u is also contained in C(Rxsq, L?(R™))
with u(0) = up. In view of (3.23) one sees that every solution of (3.22) is
given by (3.24) so that solutions are unique. O
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3.3. Main results on Sobolev spaces

In this section we discuss main theorems on Sobolev spaces, which are
used throughout analysis and other parts of mathematics. Many of the
proofs are rather long and technical. They are mostly omitted since they do
not fit to this lecture. (The proofs are presented in the appendix Section 3.5,
though often in special cases only.)

These arguments often involve density and extensions arguments, which
mostly require assumptions on the boundary dU. To this end, we define
locally Lipschitz, resp. C*, boundaries (or domains), where k € N: For each
y € 0U, we assume that there are open sets Uz/; < R™ !, an open interval
J, and a bounded Lipschitz function h : U] — J (vesp. h € CF(U},J)) such
that y e Uy := U; x J and we have, possibly after rotation,

UnUy={z=(2,2m) € Uy|xm > h(a')},
U NUy ={z = (2, 2m) € Uy | zn = h(z")},

If one can cover oU by finitely many such Uy, we call 0U a Lipschitz- (or
C'~-), resp. C*-, boundary, and we write U € C'~, resp. oU € C*.5

A compact locally Lipschitz boundary is Lipschitz. Unbounded examples
are the ‘upper’ halfspace R} = {z € R™ |z, > 0} or, more generally,
the bent upper halfspace U = {(2/,z,,) € R™|x,, > h(a’)} for a map
h € C'=(R™ 1 R). Bounded examples are polyhedra, cylinders, cones, or
balls. We note that a local Lipschitz domain is locally given by the chart
Y(z) = (2, 2 —h(2')) with (U nU,) < R™ and 4 (0U nU,) < R™ 1 x {0}.
For C'-boundaries this description is equivalent to our definition, but not
for Lipschitz domains, in general. (Compare Analysis 3.)

We can now state a crucial density theorem, which can be modified to
cover p = o, too, cf. the exercises. We write C2°(U) for the set of restrictions
[l of f e CX(R™). These functions have bounded support and they and
their derivatives extend continuously to oU.

THEOREM 3.27. Let k€ N and p € [1,00). Then the set C®(U) nW*P(U)
is dense in WFP(U). Moreover, C*(R™) is dense in WFP(R™). Let also
oU € C'=. Then C*(U) is dense in WEP(U).

The second result is shown in Theorem 4.21 of [FA] for k = 1. General
k can be handled similarly, cf. Corollary 3.23 in [AF]. A refinement of this
argument yields the first result, see Theorem 5.3.2 in [Ev]. The last part is
more difficult and proven in Theorem 3.22 of [AF] under weaker assumptions
on oU (and in Theorem 5.3.3 in [Ev] for 0U € C! and bounded U).

Many theorems are much easier to tackle on U = R". One thus wants to
reduce results for (more or less) general U to the full space case. This can
be done via so-called extension operators. Let k € Ny and p € [1,0). The
casiest case are maps f € C¥(U). These can simply be extended by 0 to the
function Eof = f € C¥(R™), where we often omit the tilde. Clearly, one
has Ey(0%f) = 0“Eyf for the classical derivative and |a| < k, so that Ej is

OThis is a bit stronger than the standard definition if oU is unbounded; see [AF] for
a thorough discussion of boundary regularity in the context of Sobolev spaces.
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an isometry for | - |5 . To extend Ey, we set
W) = CE@)” (3.26)
with closure in WP (U). Theorem 3.27 says that I/VéC P(R™) = WFP(R™).
By Remark 3.40 below, the space T/VéC P(U) is strictly smaller than W*P(U)
if 0U € C! (and U # R™). Further note that LP(U) = Wg’p(U) since CL(U)
is dense in LP(U) for p < oo and every open U.

We can thus extend Ej to an isometry Ej : Wé“’p(U) — WkP(R™). Since
also 0% : W(f’p(U) — LP(U) and 0¢ : Wg’p(Rm) — LP(R™) are continuous,
we have Fy0% = 0*Fy on Wok P(U) by approximation, where |a| < k.

In this context also restriction operators occur. Let V' < U be open and
define Ry f = fly for maps f: U — F. Let f € W,(U) and ¢ € CL(V)
with O-extension ¢ € CF(U). We then compute

(—1)l vavf pda = (—1) foa% de = fU(?“f@dfc _ vavwaf)so dz,

so that Ry f € W, (V) and 0“Ry f = Ry 0® f. Hence, Ry induces a contrac-
tion Ry : WkP(U) — WHP(V), and we have RyEqg = I on Wéc’p(U).

The extension result for W¥*P(U) requires assumptions on 0U. We state a
core extension theorem for Lipschitz domains due to Stein. A more general
version is proven in Theorem VIL.5 of [St], and a sketch is given in §5.25 of
[AF]. The proof uses also harmonic analysis.

THEOREM 3.28. Let 0U € C'~, ke N, and p € [1,0]. Then there exists
an operator Ey, in BWFP(U), WEP(R™)) with Expyu = u on U. These
operators coincide on intersections of the respective spaces. We thus write
Ey for all of them.

Note that Ry Ey is the identity on W*P(U). If 0U € C', U is bounded,
k = 1 and p < oo, we indicate how construct an extension operator for
WLP(U) in a simpler way (see Theorem 5.4.1 in [Ev]). By the density
result from Theorem 3.27, we may restrict ourselves to f € C*(U). One
then reduces the problem to the halfspace R’!'. Using the definition of a
C! domain, we cover U by open sets U; = U, with j € {0,1,..., N} such
that Uy < U, Ui,...,Un cover oU, and there are charts v Uy =V
for j € {1,...,N}. Let {¢;|j € {0,1,...,N}} be a smooth partition of
unity subject to {U;}. The part Ry,(¢of) can be treated by means of Ej.
The other parts are studied via the functions g; := (Ry;~v(p;f)) © wj.*l on
V; nR'. We extend these functions to maps Fg; on R™ by first setting
them 0 on R"\V; and then extending them to z,, = 0 by continuity and to
zeR™ = {z e R"™|x, <0} by defining
Egj(z) = =3g;(z', —zm) + 49 (2’ , —2,/2). (3.27)
Observe that Eg; belongs to C'(R™). Using Propositions 3.19 and 3.20 one
can check
| Eg;lwie@m) < clgjlwregmy < el flwiew-

Using further cut-off functions and composing with 1);, one can then glue
together the pieces Eg; to the desired operator Eyg.
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One can generalize this procedure to the spaces W*P?(U) assuming that
oU e Ck and modifying the formula in (3.27). The resulting operator only
works for W7P(U) for 0 < j < k, in contrast to the Stein extension operator.

As an illustration, we use Ey to extend the characterization of W1®(U)
from Proposition 3.24 to Lipschitz domains.

COROLLARY 3.29. Let 0UeC'~. Then WH*(U) is isomorphic to C*=(U).

PROOF. Proposition 3.24 yields the embedding C1~(U) — W1*(U),
and the converse one for convex U, e.g., for U = R™. To show W1 ®(U) —
C1=(U), take f € WH®(U). By Theorem 3.27 and Proposition 3.24, the
extension Ey f belongs to C17(R™) with norm bounded by ¢| f |y 1.(1)-

Hence, f = Ry Ey f is contained in C'~(U) with the same norm bound. [J

Another important topic are embeddings of Sobolev spaces. We first note
the easy ones

Wk’p(U)HWj’p(U) and  WFP(U) — WH(U) if NU) < 0, (3.28)

for k> j>0and 1 < ¢ <p < w. By a ‘scaling argument’, we next see
which 1ntegrab1hty exponentb may occur in such embeddings for U = R™,
where we restrict ourselves to k = 1.

REMARK 3.30. Assume that || f|,; < c[/f[l1, for some p,q € [1, 0], a con-
stant ¢, and all f € C}H(R™). We take f € C}(R™)\{0} and a > 0. Standard
substitutions yield |Dyf[, = a~™4|fl, and |0;Daflp = a'="(0;f|lp, see
(3.3). So the assumed estimate implies

7m/q”f”q IDq qu cl|Dafll1 1p = C( 7m/p”f”p + alim/pwvf‘pﬂp)

We then obtain p < ¢ in the limit @ — 0, and 1 — % —% as a — o0. If we
only assume that [ f|lg < c[[Vf[pp, it even follows 1 — 7 = —=¢. O

For j € Ny and 3 € (0,1), we use the spaces
C’j {fU‘feC'] R™), VO < |a| <j: 0*f(z )—>0as|x]2—>oo},
CIPPU) = {feCiO)|VO<|a| <j: “ue COT)}.

Note that functions in C’(J)(U ) or C(j)+6 (U) and their derivatives up to order
j have bounded and continuous extensions to oU.

We now state the Sobolev embedding theorem, where the CP-part is called
Morrey embedding. In cases a) and b) the injection is given by inclusion, in
c¢) by picking the continuous representative. So case a), for instance, just
g < s flkp for all fe WEP(U).

THEOREM 3.31. Let k € N, j € Ny, p € [1,0), und either U = R™ or
oU € C'~. We have the following embeddings.

a) If g € [p, 0) and k — 5t = j — 2, then

WEP(U) — WH(U).
b) If g € [p,0) and k — % = j, then
WHEP(U) — WH(U).
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c) If Be (0,1) andk—% =j+ 3, then
WkP(U) — Cit8 (D).
These embeddings are true for every open U if one replaces W by Wy.

A more general version of this result is shown in Theorem 4.12 of [AF],
see also Section 5.6 of [Ev]. We note that it is enough to treat U = R™ by
extension (Theorem 3.28) and to consider f € C°(R™) due to density (The-
orem 3.27). Iteratively one can reduce to the case k = 1. On this level the
desired estimates can be shown by elementary, but tricky arguments involv-
ing the fundamental theorem of calculus, Holder’s inequality, and lengthy
calculations. The addendum follows by the definition (3.26) of W(f P0).

For p = 2 we can show the core estimates also using the Fourier transform.
We present the easiest case. Let k > m/2 and f € CP(R™) so that Ff €
S Using the Fourier inversion formula from Theorem 3.11, estimate (3.2),
Holder’s inequality, Theorem 3.25 and polar coordinates, we compute

[fllso = 1F 7 F flloo < (2m) 7" (14 €15) (1 + [€15) 11
< (2m) (1 + 1€l5) M2 1L + [€15) e

0 T'm_l %
<clfla( | Grmzdr)” < clflhs

for constants ¢ > 0, since 2k > m.

We reformulate Theorem 3.31 modifying the statement for the borderline
cases k — m/p € N a bit.

COROLLARY 3.32. Letp e [1,0), k € N, and either U = R™ or oU € C'~.

a) Let kp<m. Then p*:= mp—n;bcp >p and WHEP(U) — LI(U) for qe[p,p*].

b) Let kp = m. Then WHFP(U) < LY(U) for all qe€ [p,0).

¢) Let kp > m. Then eitherk—%eN ork—% = j+ 8 for some j € Ny
and B € (0,1). In the first case, set j = k — % — 1 € Ny and take any

B e (0,1). We obtain WHP(U) «— Cé”@)-

For k — % € Ny in b) and ¢) the supnorm embeddings fail in general, but

not always; as we discuss next.
REMARK 3.33. a) Let m > 2, a € (0,1 — 1), and U = B(0,1). Set
f(x) = (—In|z|2)® for z € U\{0} and f(0) = 0. Then f e WH™(U)\L®(U).
PROOF. Arguing as in Example 3.17, one sees that f € LP(U) for all
p <o, f ¢ L2(U), and

0if (@) = —a(~Infa]s)° ™ =55
b
for z # 0 and j € {1,...,m}. Using polar coordinates, we further estimate

1 1
z |Inp|le-bm _1 " 2 dr o
. < == r @ ,m < -
105 Flon < f ) c(fo ) <

for some constants ¢ > 0, since (1 — a)m > 1. OJ
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b) However, we have the embedding W™Y(U) — Cy(U) if U € C1~. Tt
is enough to prove it for U = R™ (with a constant cg) since then

| fleo@) < IEufloo@my < eslBuflwmigmy < es|Eulllflwmw)

for all f € W™L(U). By density, we only have to treat f € C*(R™). We
restrict to m = 2, as the other cases are similar. Then the fundamental
theorem of calculus yield

fz,y) = foo J_yoo 00y f(s,t) dt ds.

for (x,y) € R2, so that || f|e < [fl2.1- O

For a bounded Lipschitz domain U, the Morrey embedding and the
Arzela—Ascoli theorem imply that the embedding W*P?(U) < C(U) is com-
pact if kp > m. (One says that W*P(U) compactly embedded into C(U).)
The Rellich—-Kondrachov theorem extends this fact to the case kp < m.
Recall that a compact embedding J : ¥ — X means that any bounded
sequence (y,) in Y has a subsequence (Jyp;); with limit in X.

THEOREM 3.34. Let U be bounded with 0U € C'~, ke N and 1 < p < 0.
Then the following assertions hold.

a) Let kp < m and 1 < ¢ < p* = m”j’,ip € (p,o]. Then WFP(U) is

compactly embedded in LI1(U). (For instance, let ¢ = p.)
b) Let k — % > j € No. Then WHkP(U) is compactly embedded in CI(U).

The second part can be shown as indicated above, for the first one we
refer to Theorem 5.7.1 of [Ev]. We discuss the sharpness of claim a) above.

REMARK 3.35. a) Theorem 3.34 is wrong for unbounded domains, in gen-
eral. In fact, let k € N, p € [1,00), and define f,, = f(- — n) in W*P(R) for
any function 0 # f € C*(R) with supp f < (—1/2,1/2). Then || fy|x, and
|| f = fmllg > 0 do not depend on n # m in N so that (f,,) is bounded in
W¥P(R) and has no subsequence with limit in L9 for 1 < ¢ < p*.

b) The embedding WP (U) < LP"(U) is never compact, see Example 6.12
in [AF]. O

As we see in Example 5.11, it is often important to control a function
by its derivative. Such results are provided by the Poincaré inequalities
in the next theorem. By its part a), we can omit the term |f|, in the
norm of Wol’p(U) if, e.g., U is bounded. Here we say that U has finite

width if is located between two parallel hyperplanes. Moreover, we write
av(f) = MU)~*§, f dz for the average of f e L*(U).

THEOREM 3.36. a) Let U have finite width and p € [1,00). We then have
1£lp < cllVflplly for all f € WyP(U) and some ¢ > 0.

b) Let U be bounded and pathwise connected with 0U € C1~ and p € [1, ).
We then have | f—ay (f)1l, < c| |V flpllp for all feWLP(U) and some ¢>0.

The first part is shown in the exercises by a direct calculation and the
second in Theorem 5.8.1 in [Ev] using Rellich’s theorem in a contradiction
argument.
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By the next result, first-order derivatives are small perturbations of
second-order ones (cf. Remark 1.26). We can even omit [|0; f|, in the def-
inition of W2P(U). The following estimate can be extended to derivatives
of higher order and is the starting point for a large family of ‘interpolative
inequalities’, see e.g. Sections 5.1-5.3 of [AF].

PROPOSITION 3.37. Let 1 < p < o0 and U € C*~. Let f € LP(U) n
Njaj=2 Wa with 0%f € LP(U) for |a| = 2. We then have f € W2P(U) and
there are constants C,eo > 0 (depending only on ||Ey| and m) such that

m p m p C
(Ziossip) " <e( Siessiz) + S0 e
j=1

ij=1
fore € (0,e0]. This estimate is true for all open U ande > 0 if f € Wg’p(U).

For f e W2P(U) or f € W02’p(U) one can reduce the result to f € CX(R™)
by extension and density. In this case (3.29) is shown using the fundamen-
tal theorem of calculus, Hélder’s inequality and further computations, see
Theorem 5.2 of [AF]. The first part of the theorem can then be proven by
approximation at least for certain domains, see Corollary 1.1.11 in [Ma] for
the general case.

For p > m and Lipschitz domains, we have W'P(U) — C(U) by the
Sobolev Theorem 3.31 so that the ‘trace map’ f — flsy is well defined from
WLP(U) to C(dU). Also, Remark 3.33 says that Wl (a,b) — C([a,b]) for
m = 1. In other cases it is not clear at all how to give a meaning to the
mapping f — flou on WP (U) as for reasonable open sets oU is a null set.
The following trace theorem solves this problem, and it very conveniently
describes WO1 P(U) as the space of maps in WP(U) with trace 0.

THEOREM 3.38. Let p € [1,0) and oU € C! (or U be bounded and oU €
C1=). Then the trace map f — flov from WYP(U) n C(U) to LP(0U, o)
has a bounded linear extension tr : WYP(U) — LP(0U, o) whose kernel is

Wol’p(U), where o is the surface measure on oU .

For C'-boundaries these results are proved in Theorems 5.36 and 5.37 of
[AF]; the case of bounded Lipschitz domains is treated in Sections 2.4.2 and
2.4.3 of [Ne]. We add a proof for a stronger statement if p = 2 and U = R}
using the Fourier transform.

REMARK 3.39. We write RT = {(x,y) |z € R™"L y > 0} with m > 2.

1) Let u € CLRT) and F, be the Fourier transform with respect to
r € R™ L. The map y — (F,u)(&,y) then belongs to C(Rsg) for each
¢ e R™1. Since we deal with C}-functions, we can calculate

f €2 | (Fa) (€, 0)? dé = — j €l j oy |(Fu) (€, dy dé
Rm—1 Rm—1 0

o0
— 2Re f f €] o 0y (Fou) de dy
0 Jrm-1

<2 UOOO Jle | Fpul3 A& dyr UOOO mel |0y (Fow) | d¢ dy]é
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[J me 1 Fo(Vau |2d§dy] {J me 1 (0 u)!Qdédy}
ZQUO me_l ]V;,;u@dmdyr UO me_l |5yu’2dxdy}z

< f \qu]%dz + f |0y ul2dz < ||u||W1 2(Rm)
m R™
+

+

also using Holder’s inequality and Theorems 3.25 and 3.11.
2) For s > 0 we define the Bessel potential space

H¥(R") ={ve L*(R")||¢50 € L*(R™)}
endowed with the (Hilbertian) norm given by

ol = |+ 1€B)* O de.

(Theorem 3.25 yields H¥(R™) = W*2(R") for k € N.) We have thus shown
that the trace map is continuous from (C}(R™), | -[12) to H? (R™~1). Since
CHRT) is dense in WH2(RT) Theorem 3.27, the trace map is continuous
from WH2(RT) to H/?>(R™™1).

3) It is possible to show that tr : WH2(R?) — H%(Rmfl) is surjective.
One can show analogous boundedness and surjectivity results on bounded
U with oU € C'~ and for p € (1,0) — employing somewhat different spaces
of functions on oU. See e.g. Theorem 5.7 in [Ne]. 0

We also not an intersting consequence of the characterization of I/VO1 PU).

REMARK 3.40. The above theorem implies that W& P(U) differs from
WIP(U) if U # R™ has a C'-boundary (where p < o). Indeed, the re-
striction to U of a map ¢ € C(R™) with ¢(x) # 0 for some x € U belongs
to WLP(U), but has non-zero trace. For less regular oU it my happen that
Wol’p(U) = WLP(U), see Theorem 3.33 in [AF)]. O

Having the continuous trace map, we can now prove Gauf’ divergence
theorem and Green’s formulas in Sobolev spaces. They are crucial tools in
many applications to partial differential operators.

THEOREM 3.41. Let U = R™ or let 0U € C'~ be bounded with the outer
unit normal v, p € [1,0], F € W'"2(U)™, and ¢ € W' (U). We obtain

f diV(F)godxz—J F-Vgodx—f-f pv-Fdo. (3.30)
U U oU

If ue W2P(U) and v e WP (U), we obtain

L(Au)udx - - L Vu - Voda + LU(ﬁyu)vda .

= f uAvdx + J ((Gpu)v — udyv) do.
U oU

If U = R™, these formulas hold without the boundary integrals. (We omit
tr in the boundary integrals and set O,u = 375" | vjtr dju.)
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Proor.” We first observe that Green’s formulas (3.31) are a straight-
forward consequence of (3.30) with F' = Vu.

1) Let U be bounded. Gauf’ formula (3.30) is shown in analysis courses
for F e CYU)™ and ¢ € C1(U).

a) Let p € (1,0). For F e W'"2(U)™ and ¢ € WH'(U), Theorem 3.27
provides functions F,, € C1(U)™ and ¢, € C'(U) that converge to F and
@ in WLP(U)™ and Wl’p/(U) as m — 00, respectively, since p,p’ < oo.
Theorem 3.38 then yields that F,l sy — tr F in LP(U,0)™ and .oy — tre
in L¥(U,0) as n — . Since 9; : W4(U) — L4(U) is continuous for
q € {p,p'}, we further obtain that the terms with derivatives converge in L?,
resp. in LP'. Formula (3.30) now follows by approximation, using (3.4).

b) Next, let p = 1 and thus p’ = 0. As above, div F,, and F,, converge
to div F and F in LY(U) and L'(U)™, respectively, as well as F,loy — tr F
in L'(oU,o)™. By Corollary 3.29, the function ¢ belongs to C(U) and
one can thus be extended to a map ¢ € C.(R™), e.g., by G1Epp. Set

on = G1p e CP(R™). Properties (3.17) and (3.16) as well as Lemma 3.16

imply that ¢, — ¢ in C(U), |Ven|w < [[Ve|w and Ve, — Ve pointwise
a.e., as n — o0, where we possibly pass to a subsequence also denoted by
(¢n)n- We can now take the limit n — o0 in the first and the third integral of
equation (3.30) for F,, and ¢,. For the second integral we use the estimate

| P Vonda | P pda| < 1B =Pl [Vonlo+ | 1FII900- il da
U U U

and Lebesgue’s theorem for the last integral above. So (3.30) holds for F'
and (. The case p = o0 is treated analogously.

2) Let U be unbounded. There is a radius r > 0 with oU < B(0,r). Let
k € N with £ > r. We define cut-off functions x, € CF(R™) by xr(z) =
o(|z|2/k) for some ¢ € C*(R) with 0 < ¢ <1,¢ =1o0n [0,1] and ¢ =0 on
[2,00). Note that 0 < xi < 1, supp xx < B(0,2k), xx = 1 on B(0,k) 2 oU,
IX; |0 < ¢/k, and x; — 1 pointwise as k — o0.

For Fy = xiF and ¢ := xxp, formula (3.30) follows from step 1) re-
placing U by Vi, := U n B(0,2k). Note that oV = oU v dB(0,2k). The
properties of xi then yield that Fj, = F and ¢ = ¢ on dU and that they
vanish on R™\B(0, 2k), and so we have

f div(Fy)pr dz = —J Fy -V de ~|—f pv- Fdo.

U U oU

Next, observe that

div(Fy)er = X3 div(F)o+xxeF VX,  Fr-Vor = XiF - Vo+ xeoF - V.

The terms with Vy; are bounded by %|<,0F |, so that the corresponding
integrals vanish as k — o0 since ¢ F is integrable on U by Hoélder’s inequality.
The terms with x2 tend pointwise to div(F)¢ and F - Vi, respectively, and
are majorized by these L'-functions. The theorem of dominated convergence
thus implies (3.30) for F' and ¢. This proof also works for U = R™. O

"The proof was omitted in the lectures.
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3.4. Differential operators in L? spaces

We now use some of above results to study differential operators in LP
spaces and discuss their closedness, spectra and the compactness of their
resolvents. The study of these (and related) examples will be continued in
Example 4.8 and in Chapter 5.

We first recall that A = 0% with D(A) = {ue Wo(U) |u,0%u e LP(U)} is
closed in LP(U) by Lemma 3.16, where 1 < p < o0 and a € Nj*. Observe
that D(A) = WHP(U) if m = 1 = |a|]. We next extend this result to 0.

ExAMPLE 3.42. Let J € R be an open interval, 1 < p < o0, and X =
LP(J). Then A = 0? with D(A) = W?2P(J) is closed.

PROOF. As noted above, A is closed on D := {u € Wa(J) | u, 0*u € LP(J)}.
Proposition 3.37 then implies the remaining inclusion D(A) < D. O

We note that in the one-dimensional case 0% is closed on W*P(.J) for all
k € N by similar proofs based on higher-order versions of Proposition 3.37.
This property relies on the fact that the domain W*?(.J) does not contain
derivatives in other directions. In contrast, d; on W1P((0,1)?) is not closed
in LP((0,1)?). This can be shown by functions u,(z,y) = ©n(y), where
on € C1([0,1]) converges in LP(0,1) to a map ¢ ¢ W1P(0,1).

We next study the first derivative in more detail, first on R. Since WP (R)
is embedded in Cp(R) by Theorem 3.31, the following domain D(A) exhibits
‘boundary conditions’ at +oco.

EXAMPLE 3.43. Let 1 < p < o0, X = LP(R), and A = ¢ with D(A) =
WLP(R). Then o(A) = iR, o,(A) = 0 and

Stoo A(t— s)f( ) ds Re X > 0,
(R(A, A))(t) = { [ A=) f( )ds, Re ) < 0,

for t e R and f € X, cf. Example 1.21 for X = Cy(R).

PRrROOF. 1) Let ReA > 0 and ¢y = erealr.,- We denote the integral
in the assertion by Ryf(t). Since |Rx(f(t))] < (ox = |f])(t) for all t € R,
Young’s inequality (3.5) yields that

1Bl < lloal 151l = 55 171

and hence Ry belongs to B(X). Let f, € CP(R) converge to f in X. We
then compute %R;jn = AR\ fn — fn € X, which tends to ARy f — f in X
by the above estimate. Moreover, R) f, is an element of D(A). Since A is
closed, also Ry f is contained in D(A) and AR)f = AR\f — f; ie, A\[— A
is surjective.

2) Let Au = pu for some u € D(A) and p € C. Theorem 3.22 says that u
is continuous so that Remark 3.23 ¢) implies the continuous differentiability
of u and thus v/ = pu. Consequently, v is equal to a multiple of e,. As
ey ¢ X, we obtain v = 0 and the injectivity of ulI — A. We have shown that
op(A) = 0 and that X € p(A) with R(\, A) = Ry if ReA > 0. In the same
way, one sees that A belongs to p(A) if Re A < 0, with the asserted resolvent.

3) Let A € iR. Take ¢, € C}(R) with ¢, = n="? on [—n,n], ¢, (t) = 0 for
[t} = n+ 1 and ||| < 2n~ 7 for every n € N. Then the map u, = @nex
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is contained in W1P(R) and satisfies Au,, = A\u, + ppen,

n p
llunllp, = <J lon (t)ex(t) P dt> = n—l/p(Qn)l/p - 21/10’

Y
I = Aually = ligherll = (| ehertnar)” < 2n
{n<t|<n+1}

Consequently, A is an element of g,,(A) and so o(A) = iR. O

We next study the first derivative on subintervals of R. These examples
indicate that boundary conditions in D(A) can remove point spectrum (i.e.,
enhance injectivity), but may be an obstacle for surjectivity. Also their
specific form heavily influences the solvability of the equation Au — Au = f
(for given f € X) and thus the spectrum.

EXAMPLE 3.44. Let 1 < p < 0.

a) Let X = LP(0,1) and A = ¢ with D(A) = W1?(0,1). Then o(4) =
op(A) = C since ey belongs to D(A) with Aey = Aey for all A e C.

b) Let X = LP(0,1) and A = 0 with D(A) = {u e W'(0,1) |u(0) = 0}.
Here we use the continuous representative of u € W17p(0 1) from Theo-
rem 3.22. Then A is closed, o(4) = 0, R(\, A) f St AMt=5) f(s) ds for

€ (0,1), fe X and Ae C, and A has a compact resolvent

PrOOF. As in Example 3.43 one sees that the above integral defines a
bounded inverse of A\ — A for all A € C. In particular, A is closed by
Remark 1.11. (Alternatively, take u, in D(A) such that u, — w and Au,, —
gin X asn — 0. Lemma 3.16 yields that uw € W'?(0,1) and du = g. Using
Theorem 3.22, we further infer that 0 = u,(0) — «(0). Hence, u € D(A)
and Au = du = g.) Finally, Remark 2.13 and Theorem 3.34 imply that A

has a compact resolvent. ]
c) Let X = LP(R,) and A 0 with D(A) WLP(R,). Then o(A) = C_,
op(A)=C_,and R(\, A) f SOO At=9) f(s) ds for t >0, fe X and Re A> 0.

PROOF. The operator is closed due to Lemma 3.16. As in Example 3.43,
one computes the resolvent for Re A > 0 and checks that iR does not contain
eigenvalues. If Re A\ < 0, then e} is an eigenfunction. Because o(A) is closed,
it is equal to C_. |

d) Let X = LP(R;) and A = —0 with D(A) = W, “P(R,). Then A is
closed, o(A) = C_, o,(A) = 0, and R(\, A)f(t) = é “At=9) f(s)ds for
t>0, f€ X and ReX > 0. (Observe that A = —@ with D(A) = WP(R,)
has o(A) = C; and o,(A) = C4 := —C_ by part c¢) and Proposition 1.20.)

Proor. If Re A > 0, the formula for the resolvent is verified as in Exam-
ple 3.43, so that A is closed. The point spectrum is empty since the only

possible eigenfunctions ey do not fulfill the boundary condition in D(A).
Take ReA < 0 and f = 1j1). Let u € D(A) satisfy Au — Au = f. Then

u(0) = 0 and du = —Au + f is continuous except at t = 1. Since u is
piecewise C! by Remark 3.23 c), we obtain u(1) = Sé e~ 21-5) ds and
u(t) = e ANy (1) = ¢ )‘tsl A5 ds, t>1.

So u does not belong to X, and thus f not to the range of A\l — A4; i.e.,
A€ o(A). The result then follows from the closedness of the spectrum. []
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e) Let X = LP(0,1) and A = 0 with D(A) = {u e WP(0,1) |u(0) = u(1)}.
Then A is closed, 0(A) = 0p(A) = 27iZ, and A has a compact resolvent.
These facts can be proved as in Example 2.16 for X = C([0,1]), using now
Theorem 3.34 for the compactness.

We now turn our attention to the second derivative.

EXAMPLE 3.45. Let X = LP(R), 1 < p < o, and A = 02 with D(A) =
W2P(R). Then o(A) = Rg.

PROOF. 1) Set A} = 0@ and D(A;) = W'P(R). Let p € C\Rgg. There
exists a number A € C, such that u = A2. Observe that

(il — Au = (A — A} + A = —(M — A (=M — A)u (3.32)

for all w € D(A). Example 3.43 implies that A + A; are invertible. Hence,
ul — A is injective. Next, for v € WHP(R) the function

O +A) =AM+ A) o ==2XAM+A)v+w
belongs to W1P(IR). This means that (Al + A1)~! maps WHP(R) into D(A).
Given f € X, the map u := (A + A1) "1 (A — A1)~Lf thus is an element of
D(A) and pu — Au = f in view of the factorization (3.32). We have shown
that € p(A) and R(p, A) = (M + Ay) YN — Ay)~ L
2) For p < 0, we have p = A% for some A € iR and (3.32) is still true. The
operator A\ —A; is not surjective since its range is not closed by Example 3.43

and Proposition 1.19. Equation (3.32) thus implies that ul — A is not
surjective, and hence o(A) = Rxy. O

EXAMPLE 3.46. Let X = LP(0,1), 1 < p < o0, and A = ¢ with D(4) =
W2P(0,1) N Wol’p((), 1). Then A is closed, 0(A) = 0,(A) = {—72k*| k € N},
and A has a compact resolvent. These facts can be proved as in Example 2.16
for X = C([0,1]), using now Theorem 3.34 for the compactness. O

The situation is much more complicated for m > 2. Here the core example
is the Laplacian A = 011 + ... + Omm. It is not clear at all that A is closed
on W2P(U) since the derivatives in Au may exhibit cancellations and d;,u
for j # k do not appear. For p = 2 and U = R we can prove closedness
using the Fourier transform.

EXAMPLE 3.47. Let X = L?(R™) and A = A with D(4) = W22(R™).
Then A is closed and o(A) = Rgp.

ProoOF. We employ the Fourier transform F which is unitary on X by
Theorem 3.11. Theorem 3.25 yields

Au=F 1 (—|¢30) for ueD(A) ={ueX||¢ae X}

1) Let A € C\Rgp. Set my(€) = (A + [€]3)7! for £ € R™. Observe that
|mallee < cx where ¢y = 1/|Im A| if ReA < 0 and ¢y = 1/|A] if Re A > 0. Let
f € X. Then myf belongs to X so that Ryf := F~!(myf) € X and

IRflz = [mafla < el fla = exl £z

Since |£]3m, is bounded on R™, also the function |£|32FRyf = |§|%m,\fis
an element of X, and so Ry maps into D(A). Similarly we see that

(M = ARy f = F YA+ [€R)FF'maf = f,
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RAN — Ayu = F'mpy FF YA+ |€3)a =u, wueD(A).
Thus, Aep(A) and R(\, A) = R). In particular, A is closed and o(A) < Ro.

It can be seen that m) is the Fourier transform of an integrable func-
tion ky, see Proposition 6.1.5 in [Gr], so that Ryf = (2r) "2k * f by
Theorem 3.11. For m = 1, the kernel k, is given as in Example 3.2.

2) Let A < 0. Define my(€) = (A+£]3) ! for € € R™ with |¢]g # V=X = ¢
and my(§) = 0 if [£]2 = £. Set g = L e41) € X. Then h = F~1g belongs
to X and myh not. If there was an element u of D(A) with A\u—Au = h, we
would obtain as above \u + [£|50 = h and the contradiction myh = 4 € X.
As a result, A belongs to 0(A) and o(A) = Rgo. O

The above result can be extended to exponents p € (1,00) and, imposing
boundary conditions, to domains U # R™, but core parts of the corre-
sponding proofs are beyond the scope of this lecture. We briefly discuss two
examples and come back to this issue in Example 5.11.

EXAMPLE 3.48. Let 1 < p < o0, X = LP(R™), and A = A with D(A) =
W2P(R™). Then A is closed.

PrOOF. The Calderon—Zygmund estimate says that the graph norm of
A is equivalent to ||-||2,, on C(R™), see Corollary 9.10 in [GT]. Let u €
W2P(R™). By Theorem 3.27, there are u, € C*(R™) converging to u in
W2P(R™) as n — oo, and hence u,, — u and Au, — Au in X. We derive

lullzp= lim flunlap < Nim c(lunlp + [Aunlp) = c(fuly + [Auly) < fulzp,
so that | - ||4 is equivalent to a complete one and thus A is closed. 0

ExaMPLE 3.49. Let 1 < p < o0, U € R™ be bounded and open with
U € C?, X = [P(U), and A = A with D(A) = W22(U) ~n Wy P(U). Then
the Dirichlet—Laplacian A is closed, invertible and has a compact resolvent.
We thus have o(A) = o,(A).

PRrOOF. The closedness of A follows from Theorem 9.14 in [GT]. Its
bijectivity is shown in Theorem 9.15 of [GT]. Remark 2.13, Theorem 3.34
and Theorem 2.15 then imply the other assertions. O

There are variants of Examples 3.48 and 3.49 for X = LY(U), X = L®(U)
and in other sup-norm spaces (with m > 2), see Theorem 5.8 in [Ta] as well
as Sections 3.1.2 and 3.1.5 in [Lu]. Here the descriptions of the domains
are much more complicated, and they are not just (subspaces of) Sobolev

(or C2%-) spaces. To indicate the difficulties, we note that there is a function
u ¢ W22(B(0,1)) with B(0,1) in R? such that Au e L®(B(0,1)), namely

u(z,y) = (2% —y*)In(2* +y%), (z,y) # (0,0),
and u(0,0) = 0. Then the second derivative

4z (622 — 2y%) (2% + y?) — 422(2% — y?)

Orzufw, y) = 2In(2” +y°) + —— 2T (22 + y2)2

is unbounded around (0, 0), but Au(z,y) = 8

224”1 bounded
21,2 18 bounded.
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3.5. Appendix: Density, embedding and trace theorems

We® provide proofs for the results from Section 3.3, though often in a sim-
plified setting and partly sketched. The material is presented in a somewhat
different way as in Section 3.3. We start with a technical result that we use
a few times.

LEMMA 3.50. Let K < U be compact. Then there is a function ¢ € CF(U)
such that 0 < <1 onU and =1 on K. Let g€ L} (U) satisfy

f gpdr =0
U

for all p € CX(U). Then g =0 a.e..

PROOF. 1) Let 0 < § < 3d(0K,0U). Then Kos = K + B(0,26) is
compact and Ky5 € U. The function ¢ := Gslg, thus belongs to CF(U)
by (3.14) and (3.15). Moreover, (3.13) and (3.16) imply that 0 < ¥ (z) <
1¥]lco < [[1K;lloo = 1 for all z € U and

(x) = j Fa(x — y)Lig, () dy = [kl = 1
B(z,9)

for all z € K. The first claim is shown.

2) Assume that g # 0 on a Borel set B < U with A(B) > 0. Theorem 2.20
of [Rul] yields a compact set K € B € U with A(K) > 0. Since vg € L*(U),
the functions Ge(g) converge to g in L*(U) as e — 0 due to (3.17).
Hence, there is a nullset N and a sequence €; — 0 with ¢; < 6 such that
(Ge; (¥g))(w) — g(x) # 0 as j — oo for each x € K\N. For every x € K\N
and j € N, we also deduce

(Ge, (19))() = L e, (@ — 9)0(y) 9(y) dy = 0

from the assumption, since the function y — ke, (z — y)i(y) belongs to
CP(U). This is a contradiction. O

In the first density result, we do not have smoothness up to dU. The first
part of the result is essentially taken from Theorem 4.21 from [FA].

THEOREM 3.51. Let k € N and p € [1,0). We then have Wok’p(Rm) =
WHP(R™). Moreover, the set C*(U) n WkP(U) is dense in WFP(U).

ProOF. We prove the theorem only for £ = 1, the general case can be
treated similarly.

1) Let f € WIP(R™). Take any ¢ € C*(R) with 0 < ¢ <1, ¢ = 1 on
[0,1], and ¢ = 0 on [2,90). Set p,(z) = d(L|z]2) for n € N and z € R™.
We then have ¢, € CX(R™), 0 < ¢, < 1 and ||0j¢n]0 < [|¢/[|w for all
n e N, as well as ¢, () — 1 for all x € R™ as n — 00. Thus |[¢nf— f|l, = 0
as n — o by Lebesgue’s convergence theorem. Further, Proposition 3.19
implies that

105 (onf = Hllp = (endi f = 05f) + (50n) fllp
< llendif = 0ifllp + 51 ol £l

8This section was not part of the lectures.
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and the right hand side tends to 0 as n — oo for each j € {1,...,m}. Given
e > 0, we can thus fix an index N € N such that ||onf — f]l1p < &. Due to
(3.14) and (3.15), the functions G 1 (¢n f) belong to CL(R™) for all n € N.

Equation (3.17) and Lemma 3.16 further yield that
Gi(pnf) = onf and 0;Gi(pnf) = G1di(onf) = 0j(pnf)
in LP(R™) as n — oo, for j € {1,...,m}. So there is an index n € N with

||G%(90Nf) —onfllip <e

and thus
1G1(pnf) = fllip < 26

2) For the second assertion, we only have to consider the case U # ().
Let f e WIP(U). Set

Up={zeUl|lzl; <n and d(z,0U) > 1}

for all n € N. We obtain U, < U, < U,.1 < U, U, is compact, and
Ur_, U, = U. Observe that U = | J;"_; Up11\U,—1, where Uy, U_1 = 0.
There are functions ¢, in C%(U) such that supp ¢, S Up+1\Un_1, ¢n =0,
and >0, ¢n(z) = 1 for all z € U. (Compare Theorem 3.15 in [AF].)

Fix ¢ > 0. As in step 1), for each n € N there is a number 4,, > 0 such
that g, == Gs, (pnf) € CX(U), suppgn < (supp pnf)s, S Unt1\Un—1 and
lgn — @nfllip < 27". Define g(z) = X7 gn(z) for all z € U. Observe
that on each ball B(z,r) < U this sum is finite, so that g belongs to C*(U).
Since f = Z _1 ¢nf, we further have

o0

9(x) = f(x) = ) (gn(@) = pul@) f(2)),

n=1

for all x € U and n € N. Due to ||gn — ¢nfll1p < 27", this series converges
absolutely in W1P(U), and

o0
1F = gllp < D llgn — enflhp < e O
n=1

For ‘not too bad’ dU one can replace in C*(U) by C*(U) in Theorem 3.51,
see Theorem 3.60 below.
We now want to study embeddings of Sobolev spaces. We clearly have

WEP(U) — WIP(U), (3.33)
WEP(U) — WH(U)  if AU) < o, (3.34)
fork>j>0and 1 <q<p<o0. (Recall that we set WOP(U) = LP(U) for

1<p< oo.) The embedding X — Y means that there is an injective map
J € B(X,Y). Writing ¢ = ||J||, one obtains || f|y < ¢||f]|x if one identifies
Jf with f. We next prove the Sobolev—Morrey embeddings on R™.
THEOREM 3.52. Let keN and pe[l,). The following embeddings hold.
a) If kp < m, then
* pm

P i € (p,0) and WHFP(R™) < LYR™) for all qe€ [p,p*].
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b) If kp = m, then
WHEP(R™) < LI(R™) for all q € [p,0).
c) If kp > m, then there are either j € Ny and 5 € (0,1) such that

k—%=j+,8 orkz—%eN. Inthelattercasewesetj:zk—%—leNo

and take any € (0,1). Then
WEP(R™) — CIHF(R™).

In parts a) and b), the embedding J is just the inclusion map, and in part
c) the function Jf is the continuous representative of f.

Beore proving them, we rephrase the above results in a slightly modified
way using the ‘effective regularity index’ k — % of Wk,

COROLLARY 3.53. Let k € N, j € Ny, and p € [1,00). We have the
following embeddings.

a) If g € [p,0) and k — 7 > j — 7, then
WHEP(R™) < WHIUR™).

b) If q € [p,0) and k — % = j, then
WHEP(R™) — WH(R™).

c) If Be (0,1) andk—% =7+ 3, then
WEP(R™) — CIHF(R™).

PROOF OF COROLLARY 3.53. a) Let (k — j)p = m. The embedding

WE=IP(R™) — LI(R™) (3.35)

then follows from Theorem 3.52b) for all g € [p, ). Let (k — j)p > m. We
then have W*=7?(R™) — LP(R™) by (3.33) and W*=3P(R™) «— L*(R™)
by Theorem 3.52¢). Hence the interpolation inequality (3.36) below implies
(3.35) for all g € [p, 0] in this case. Let (k — j)p < m. By assumption, we
have p < ¢ < pm(m — (k— j)p)~! and thus for these ¢ the embedding (3.35)
is a consequence of Theorem 3.52a). Applying (3.35) to 0% f € WF=3P(R™)
for |a| < j and f e WHP(R™), we deduce

10%fllg < el 0* flla—jp < el f

So claim a) is true. Part b) follows from a), and ¢) from Theorem 3.52¢). O

k,p+

For the proof of Theorem 3.52 we set 2/ = (T1,...,Zj_1,Tj11,...,Tm) €
R™ ! for all z € R™, j e {1,...,m}, and m > 2. We start with a lemma.

LEMMA 3.54. Let m = 2 and fi,..., fm € L™ Y R™ ) A C(R™1). Set
f(x) = fr(@) ... frn(2™) for x € R™. We then have f € L'(R™) and

1l wmy < Ifillpm—1@m-1y - -« | fmll L1 @m—1)-

PRrROOF. If m = 2, then Fubini’s theorem shows that

f (@) dz = j j @)l falen) dar des = ([ i1y | ol
R2 R JR

as asserted. Assume that the assertion holds for some m € N with m > 2.
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Take f1,..., fm+1 € L™(R™) n C(R™). Write y = (z1,...,2Zmn) € R™ and
T = (Y, Tms1) € R™TL For ae. 41 € R, the maps §7 — | f5(§7, pms1)|™
are integrable on R™~! for each j € {1,...,m} due to Fubini’s theorem. Fix
such a x,,1+1 € R and write

m
y7 xm+1 H

Using Holder’s inequality, we obtain

| 1 ansnldn = [ 1)l s ]

< | fm1llom mmy (me|f(y,$m+1)\ dy>

We set g;(47) = |£;(57, zms1)|™ for j € {1,...,m} and = € R™*!. Since
m'(m — 1) = m, the maps g; belong to L™ 1(R™™1) and the induction
hypothesis yields

. |F(y, Zme1)|™ dy =f g(@) g (@™ dy < [|g1llm—1 - |gmllm—1
1

—H(j 5@ ™)

Integrating over x,,11 € R, we thus arrive at

[ H(f nenran) T

Applying the m-fold Holder inequality to the x,,,1-integral, we conclude

1

JRm |fldz < ’fm+1||mH<jR(JRm1|fj(3§j)|mdy>m. dxmﬂ)

7j=1
= [lfallm - [t llm- 0

Recall from Analysis 3 that for f € LP(U) n LY(U) and r € [p,q] with
1 <p<q< oo, we have

Ll < WA 1A1E < Ol + (2= 0)II £, (3.36)

9_|_1

» =% and we also used Young’s inequality

where 6 € [0, 1] is given by %
from Analysis 1.

ProOOF OF THEOREM 3.52. We only prove the case k = 1, the rest can
be done by induction, see e.g. §5.6.3 in [Ev]. Since W1P(R™) < LP(R™),
in view of (3.36) for assertion a) it suffices to show

WhP(R™) — LP"(R™).
1) Let f e CHR™). Let first p = 1 < m, whence p* = -™;. For z € R™
and j € {1,...,m}, we then obtain

Ty
|f(a:)| = ‘f ajf<$1, RPN P 2 ) IS PR ,mm) dt‘ < JR‘ajf(l'ﬂ da;j,
—o0
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<[] [ sz,
j=17%
Setting g;(27) = ({310, f(z ]dxj)ﬁ, we deduce

mL Hg] ).

After integration over z € R, Lemma 3.54 yields

1 e gy < |, 1Y) gale™) o < [l
m ]_%
STI([ [orsnas asr) ™
=1 WJrRm-1JR
m 1
1], 722 gomy < Hlllajfllfl(Rm) < IVl < [l (3.37)
2) Next, let p € (1,m) and p* = —mp. Set t, = T_lp* = z—:;p > 1. An
elementary calculation shows that (¢, —1)p’ = t. "7 = p*. Set

9= =10
for t > 1. We compute
59 = O fIfI"~ 1+f (ff)if1 ((055)F + (i F))
= OfIfI (- )f|f|t_3 Re(f0;f),
gl = If1" 19591 < tlo; fIIFIF T
Applying (3.37) to g, we estimate

m—1 m

1 = (ij,f,mdx>m . Um’g”“m >m

<TTiowli <[]t ( [ !f\“dx>
=1 "

-

3
3=

<tf[1(JRm|ajf|de)”i” (J ||t dx)

m 1 =1 1
<t LTIV 170y = LNV flolls 171,
j=1

3‘“

where we used Holder’s inequality. For ¢ = t,, we use the properties of ¢
stated above and obtain

[fllpr <p

m —

”p <p p* (3-38)

This estimate can be extended to all f € WHP(R™) by density (see Theo-
rem 3.51). Hence, the inclusion map is the required embedding in part a).
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3) Let p=m, fe CY(R™), and t > 1. Then p' = and step 2) yields

ml’

1 lhezy < AT N9l < e (1 lmnyos + 119 lpllm) - (3:39)

m2
using Young’s inequality. For ¢ = m, this estimate gives f € Lm-1(R™) and

1Al 2 < el llam:

Here and below the constants ¢ > 0 do not depend on f. For ¢ € (m,m-"7),
inequality (3.36) further yields

1Fllg < el Fllm + 11 m2 ) < ellFllm.

Now, we can apply (3.39) with ¢ = m + 1 and obtain
1l m2sm < €Ul 2 + M1V Slpllm) < €llflf1m-

As above, we see that f € LY(R™) for m < g < mm—ﬂ We can then iterate
this procedure with ¢, = m + n and obtain

1fllg < c@lfll1p

for all ¢ < 00. As above, assertion b) follows by approximation.

4) Let p > m, f € C}R™), Q(r) = [-%,5]™ for some r > 0, and
zg € Q(r). We set M(r) = r~"§,, fdzand B =1— 7 € (0,1). Using

|x — x0|lew < r for x € Q(r), the transformation y = t(x — xg) and Holder’s
inequality, we compute

|f (o) = M(r)| =

mf (f(x0) — f(x)) dx
Q(r)

fQ(T J 3 /(@0 + 1z — w)) dt da

< r—mf J IV (o + t(z — 20)) - (& — w0)| dt d
0
1
< rlmf J |V f(xo + t(x — z0))[1 de dt
0 Jo
1
_ rl—mj J IV f (o + )l dy ™ dt
0 Jt(Q(r)—wo)

o [ [ vrs y)l’fdy]; MEHQ(r) = a0)) ¥t dt

0

m m
/

1
- muwwpupf S an

= Cr' V|V £l

for constants C, ¢ > 0 only depending on m and p, using also that % -m >
—1 due to p > m. A translation then gives

fror)=r | o] <OV,
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for all z € R™. Taking z = 2z, o = 0 and r = 1, by means of Holder’s

inequality we thus obtain
ragl ]| raf
) z+Q(1)

@) < |1 - [
< NIVl + 171 < el (3.40)

z+Q(1
for all x € R™, where ¢ only depends on m and p. Given z,y € R™, we find
a cube @ of side length |x — y|o, =: r such that z,y € @ and @ is parallel to
the axes. Hence,

@)~ I < @ = | e por | pay - s

<2C||V flpllp [# = yl% < 2C[[V flplly |z — yl5-

Let f € WYP(R™). Then there are f, € CY(R™) converging to f in
WLP(R™). By (3.40), fn is a Cauchy sequence in Co(R™). Hence, f has a
representative f € Cy(R™) such that f,, — f uniformly as n — . So the
above estimates imply that

; fle) = Fly
1l +sup LD =IO gy
THY ’x - y|2
The map f — f is the required embedding. O

REMARK 3.55. Theorem 3.52 remains valied on any open set U instead
of R™ if we replace WP by WéC P In fact, we obtain the desired estimate
for f € CL(U) if we apply Theorem 3.52 to the O—extension of f. The result

for f e I/Véc P(U) then follows by density. O

COROLLARY 3.56. Let U < R™ be open and bounded. We then have
Poincare’s inequality

f VulP dz > (5J |ul? dz (3.41)
U U

for some § > 0 and all u e Wy (U) and p € [1,0).

PROOF. For p € [1,m), the estimate (3.41) follows from (3.38) since
LP*(U) — LP(U). Let p € [m,0). The case p = m = 1 easily follows from
(3.19). For the other cases, fix r € (p,0) and u € Wol’p(U). Then (3.36),
(3.37) and Wy P(U) < L"(U) imply

lullp < cellully +eljullr < e[ Vuli]y + cefu

1,p
< ¢ |[Vulpllp + cglulp + ce[Vulp|p

for all ¢ > 0 and some constants c¢.,c > 0 independent of u, where ¢ does
not depend on € > 0. Choosing a small ¢, we derive (3.41). O

REMARK 3.57. We show a part of Theorem 3.52a) for the case p = 2 by
means of the Fourier transform. We use the Hausdorff—Young inequality

|Fflg <clfly — for ge[2,e] fe L ®R™), (3.42)

see e.g. Satz V.2.10 in [We]. Let f € C*(R™) and k € N. Then f belongs
to Sy © LY(R™). The case k > m/2 was already treated in Remark 3.33.



3.5. Appendix: Density, embedding and trace theorems 77

Let k <m/2 and 2 < ¢ < 2* = 2m(m — 2k) L. The latter is equivalent to

1 1 k
qg 2 m
To apply Holder’s inequality, we define the number s € (2, 0] by
1 1 1 1 1 k
T
s ¢ 2 2 g m

As in Remark 3.33, by means of (3.42) and Theorem 3.25 we estimate
[£llg < el +1€5) 7"+ [65) Fllgr < ell (@ + 1l5) 7 s (1 + 1€15) f12

e] T,mfl 1
D a— dr) ‘<e
k;2(f0 FTOE (Fares
where we have used that sk > m by the above relations between the expo-

nents. One can again conclude that W*2(R™) < L9(R™), which is Theo-
rem 3.52a) for p = 2 and ¢ < 2*. O

<clf

Most of the following results in this section are based on Stein’s extension
Theorem 3.28. We prove here a somewhat weaker result.

REMARK 3.58. We show Theorem 3.28 for WP (U) with p € [1, 0] if U
is bounded and oU € C*.

1) We write elements in R} as (y,t), where R™ = —R’". For f €
WLHP(R™) A CL(R™), we define
f y7t7 yyt E@’
E_f(y,r) = (w1 . (w1 m
4f(y7 _5) - Sf(y7 _t)v (y7t) € R+ .

Note that E_ f belongs to C'(R™) and fulfills | E_ f|lyy1.0@m) <c|l fllwrewm)
for a constant ¢ > 0.

2) We show that WHP(R™) n CY(R™) is dense in W1P(R™), so that E_
can be extended to an extension operator on W1P(R™). In fact, let f €
WIP(R™) and ¢ > 0. Theorem 3.51 yields a function g in C®(R™) n
WIP(R™) with ||f — glli, < e. Setting g,(y,t) = g(y,t — 1) for t < 0,

n

y € R™! and n € N, we define maps g, in C1(R™) n W1P(R™). Note that
aagn = RRTSnanag

for 0 < |a| < 1, where S, € B(LP(R™)) is given by Sph(y,t) = h(y,t — 2)
for h € LP(R™). One can see that S,h — h in LP(R™) as in Example 4.12
of [FA]. Hence, g, converges to g in W1P(R™) implying the claim.

3) Since U € C' and U is bounded, there are bounded open subsets
Up,Ui,...,Un of R™ such that U < Uy u --- u Uy, U[} c U, and oU <
Up v ---u Uy, as well as diffeomorphisms ¥; : U; — V; such that \I/; and
(W, 1) are bounded, W;(U; nU) = R™, and ¥;(U; n oU) < R™! x {0},
for each j € {1,..., N}. By Analysis 3 we have functions 0 < ¢; € CZ(R™)
with supp ¢; < Uj for all j € {0,1,..., N} and Z?:o pj(x)=1forallzeU.

Let je {1,...,N}. Set S;jg(y) = g(\Ilj_l(y)) fory e R™nV; and S;g(y) = 0
for y € R™\V;, where g € WHP(U; A U). For h € WHP(R™), set Sjh(z) =
h(¥(x)) for 2 € U; and Sjh(x) = 0 for € R™\U;. Take any ¢; € C*(R™)
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with supp@; < U; and ¢; = 1 on suppy; (see Lemma 3.50). Let f €
WLP(U). We now define

E\f = Eopof + ) 258 E-S;(Ru,eu) (if))-
j=1

Using part 2) and Propositions 3.19 and 3.20, we see that E; belongs to
BWP(U), WEP(R™)). Let x € U. If x € Uy, for some k € {1,...,N}, we
have Wy (z) € R™. If « ¢ Uj, then ¢;(x) = 0. It follows

Eif(z) = po@)f(z) + >, &) (i) (¥ (¥)(x))

1Sj<N, erj
N
= D ¢i(@)f(z) = f(x).
7=0

If x € Up\(Ur v --- v Up), we also have E1 f(z) = pof(z) = f(x). O

Using Theorem 3.28, we can easily extend the above embedding and den-
sity results to U # R™.

THEOREM 3.59. Let 0U € C'~. Theorem 3.52 and Corollary 3.53 then
remain true if we replace R™ by U.

PRrOOF. Consider e.g. Theorem 3.52a). We have the embedding
J: WEP(R™) — LP"(R™)
given by the inclusion. Thanks to Theorem 3.28, the map
RyJEy : WEP(U) — LP"(U)
is continuous and injective. The other assertions are proved similarly. [

THEOREM 3.60. Let 0U € C'~, k € N, and p € [1,00). Then CX(U) is
dense in W*P(U).

ProoOF. Let f € WFP(U). Then Eyf belongs to WHP(R™) by Theo-
rem 3.28. Theorem 3.51 yields functions g, in CP(R™) that converge to
Eyf in WkP(R™). Hence, Rygy, is contained in C*(U) < WHP(U) and
tends to f = RyEyf in WEP(U) as n — oo. O

We continue with one of the main compactness results in analysis, due to
Rellich and Kondrachov.

THEOREM 3.61. Let U < R™ be bounded and U € C'~, k € N, and

1 < p < oo. Then the following assertions hold.
mp
m—kp

J:WkP(U) — LY(U)
is compact. (For instance, let ¢ = p.)
b) Let k — % > j € Ng. Then the embedding

a) Let kp <m and 1 < g < p* =

€ (p,0]. Then the inclusion map

J:WhP(U) — CI(D)

is compact, where Jf is the continuous representative.
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PROOF. We prove the result only for £ = 1 (and thus j = 0), see The-
orem 6.3 of [AF] for the other cases. Part b) follows from the Arzela—
Ascoli theorem since Theorem 3.59 gives constants §,¢ > 0 such that
If(z) — f(y)| < clz —y|® and |f(z)| < c for all 2,y € U and f € W'P(U)
with ||f|l1,p < 1, where p > m.

In the case p < m, take f, € WHP(U) with || f,][1, < 1 for all n € N. Fix
an open bounded set V < R™ containing U. Lemma 3.50 yields a function
¢ € CX(V) which is equal to 1 on U. Let Ey be given by Theorem 3.28. Set
gn = pEy fn € WHP(R™). These functions have support V and ||gn|1, <
clleli,wlErll =0 M for all n € N. Fix ¢ € [1,p*) and take 6 € (0,1] with

¢ + =L, Inequality (3.36) and Theorem 3.52 yield that

q
1 = Fllza@) < 90 = gmllLaqvy < llgn = gmllTa ) llgn = gl 17 s
< cllgn = gl oy (lgll25? + lgmll150)
< 2eM" g0 = gl T 1)
for all n,m € N. So it suffices to construct a subsequence of g, which

converges in L'(V). For x € V, n e N and £ > 0, we compute

|gn(7) — Gegn(z)| =

Ko D)~ 0n(0))
e f )k@(x— D) l9n(@) = 90 )| dy

/\

f lon(e) - gular - £2) =
o’

J f |Vgn(x —tz) - z|dtdz
B(0,1)

“d
gn( — t2) dt‘ dz

€
J 2)|Vgn(z —tz)|2dzdt
0 BOl
£
_ f j k(M@ — ) [Vgn(y) 2 dy dt,
0 JB(z,t)

lgn — Gegnll vy < Hkt # |Vgnlall L1 @my dt < & sup ||kl [[[Vgnlall L1 @m)

<t<e

< ce||\vgn|p||p cMe =: Ce, (3.43)

where we have used the transformations z = %(ZL' —y)and y =z — tz, as
well as Fubini’s theorem, Young’s inequality (3.5), and LP(V) — L}(V).
On the other hand, the definition of G.g, yields

|Gegn ()| < [|kelloo ||9n||L1(V) and  |VGegn(7)] < ||Vl ”gnHLl(V)

for all z € V, n € N and each fixed ¢ > 0. The Arzela-Ascoli theorem now
implies that the set F. := {G.g, |n € N} is relatively compact in C'(V') for
each ¢ > 0, and thus in L'(V) since C(V) — LY(V). Let § > 0 be given



3.5. Appendix: Density, embedding and trace theorems 80

and fix € = %. Then there are indeces nq,...,n; € N such that

l 5y .| I
F. c Uj:1 BLl(V)(ngnj’ 5) = Uj:l B;.

Hence, given n € N, there is an index n; such that G.g, € Bj. The estimates
(3.43) and (3.16) then yield

||gn_Gagnj”L1(V) < ||9n_G£9n||L1(V) + ||Gf(gn_gnj)”L1(V) < Ce+dp=4.

We have shown that, for each ¢ > 0, the set G = {gy, ’ n € N} is covered by
finitely many open balls B; of radius d; i.e., G is totally bounded in L*(V').
Thus G contains a subsequence converging in L'(V) (see Corollary 1.39 in
[FA]). In the case p = m one replaces p* by any r € (g, ). O

We can now give a proof of the second Poincaré inequality, which we
repeat for convenience.

THEOREM 3.62. Let U be bounded and pathwise connected with 0U € C''~
andp € [1,00). We then have ||f—ay(f)1], < ||V flplp for all feWLP(U)

and some ¢ > 0.

ProOOF. We show the estimate via contradiction. So assume that for
each n € N the are functions u,, € WHP(U) with a,, == |u, — ay(un)1], >
n|||[Vunlp|p-  We normalize u, to v, = a, (u, — ay(up)l) € WHP(U).
Observe that

ay(vn) =0, oalp =1, [[Voalplp < 7.

In particular, the sequence (v,) is bounded in WP (U) and so a subsequence
(Un,, )k converges to some v in LP(U) by Theorem 3.34. This function then
satisfies ayy(v) = 0 and |v[, = 1. Since d;v,, — 0 in LP(U) as k — oo for
each j € {1,...,m}, we also obtain ;v = 0 by Lemma 3.16. Because of the
pathwise connectedness, an exercise shows that v = k1 for some x € F and

hence 0 = ay(v) = k. But the conclusion v = 0 contradicts |v[, = 1. O

We next present an interpolation estimate for first derivatives. Again
there are plenty of variants. It is not so easy to generalize the last part
to U with 0U € C'~ since our extension and density results involve first
derivatives, but see Corollary 1.1.11 in [Mal].

PROPOSITION 3.63. Let1 < p < 0. Let either f € Wg’p(U) oroU e C1—1
and f € W2P(U). Then there are constants C,eo > 0 such that

m p m p C
(Sioisip) " <e( Sioaniz) +Summ e
j=1

ij=1
foralle >0 if f € Wg’p(U) and for all0 < € < gq if f € W?P(U). Moreover,
a function f in LP(R™) ()40 Wa(R™) with 0% f € LP(R™) for all |o| = 2
already belongs to W2P(R™).

PROOF. 1) Let f € C2(U) and extend it to R™ by 0. Take j = 1. Write
r = (t,y) e R x R™! for . € R™. Fix y € R™ ! and set g(t) = f(t,y) for
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teR. Let ¢ > 0 and a,b € R with b — a = . Take any 7 € (a,a + §) and

te (b— 5,b). There there is a number 5 = 5(r,t) € (a,b) such that

9@ =221 < 2001+ g,

t—r

For every s € (a,b) we thus obtain

y@+ [ o 0rar] < g0 + 190 + [ Wl

Integrating first over r and then over ¢, we conclude

€ 3 (5 e [*
@< 2 [l +la)+ 5 [ 1o lan

a

9

2|g’<s>|<fa+§| <>|dr+f_\ wlac+ 5 [l oar

9
<> f\g rdr+f|g" )ldr
1
z’:‘Pf’g |pd7 —i—sp J\g” \pd7>p

<5p;12p <<€2> f\g \pdT—i-J\g” ]dT) ,

where we used Hélder’s inequality first for the integrals and then in R?. We
take now the p-th power and then integrate over s arriving at

b gp (b b
f lg'(s)|Pds < geP~1op—1 <€2pj lg(T)|PdT + J lg" ()P dT) .

Now choose a = a = ke and b = by = (k + 1)e for k € Z. Summing the
integrals on [ke, (k + 1)e) for k € Z and then integrating over y € R™~1 it
follows that

|irar <errt (9 | tapar+ f |g"<¢>|pdr) ,
| jrras < oy | o

2) By approximation, (3.45) can be established for all f € W02 P(U). The
same result holds for d;f and 0;; f with j € {2,...,m}. We now replace 2¢
by €, sum over j and take the p-th root to arrive at

1 1
(o) < (= Stossip + Zusie)
j=1

j=1

(3.45)

S > 36
(Rewng) + Lt o
j=1

for all f e WP(U), as asserted.
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3) Let u € W?P(U) and oU € C'~. The extension operator Ey in
B(W?2r(U), W27P(Rm)) from Theorem 3.28 and (3.46) with U = R™ imply

<2||a e ) (Zna B )

1
» 36
(ZH%EUfuLp(Rm )+ L B0 sy

<el|Eu fllwep@mm) + ; HEUfHLP(U)

C
< ce|| fllwewwy + *HfHLp(U)

m 1
Pooc
<ae( 3 rawfnp) vae( Rlos1p)” + iy
2,7=1 7j=1
where we assume that € € (0,1] and the constants ¢, cg, ¢; only depend on
|Ey|l and m. Choosing 1 = min{i, 1} we arrive at

1 1
1/ v < v
S(S1otg)” < cos X essly) "+ sl
j=1 ij=1
if 0 < & < &1. This inequality implies (3.44) if 0U € C'~, after replacing e
by ¢/(2¢o) and €1 by g9 = min{co/e;, 2¢o}.

4) Let f,0%f € LP(R™) for |a| = 2. Set f, = Gy, f € C*(R™) for n € N.
Then f, and 0“f, tend to f and 0“f in LP(R™). Repeating steps 1) and 2),
for fy, we first see as in (3.45) that 0;f,, belongs to LP(R™) for all j (since
the right-hand side is finite) and then derive (3.46) for f, and U = R™.
Hence, the sequence (0;fy)n is Cauchy in LP(R™) so that 0;f exists as its
limit in LP(R™) by Lemma 3.16. Estimate (3.45) also follows for f. O

We next show the trace theorem which extends the trace map f — flou
from WLP(U)nC(U) to WHP(U) and shows the important fact that Wol’p(U)
is the space of functions in W1P(U) with trace 0.

THEOREM 3.64. Let p € [1,00) and U < R™ be bounded with oU € C'.
Then the trace map f — flou from WYP(U) n C(U) to LP(oU, o) has a
bounded linear extension tr : WHP(U) — LP(0U, o) whose kernel is Wol’p(U),
where o is the surface measure on oU.

PROOF. 1) Let u € CY(U). By the definition of the surface integral,
see Section 2.5 with a slightly different notation, there are finitely many
diffeomorphisms ¥; : U; — V; and ¢; € CL(U;) with 0 < ¢; < 1 such that
HuHiP(aU,o) is dominated by

m
CZ J ;o \I/;1 |u o \Il;1|pdy,
j=1Vio

where U; and Vj are open subsets of R™, the sets U; cover dU, the maps ¢;
form a partition of unity subordinated to Uj, Vo := {(v/,ym) € V} ’ym = 0},
Vi = A{(¥ ym) € Vi |ym > 0}, U;(U; 0 0U) = Vjo, and ¥;(U; n U) = Vj¢
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We set v = uo\I/j_1 and 1) = @, o\I/j € C1(V;) and drop the indices j below.
By means of Fubini’s theorem and the fundamental theorem of calculus, we
compute

- 5m(¢|v\p)d

Vi

- fv (@) [0 + plo]P~? Re(Bdm0)] dy

¥ lo(y) P dy’
Vo

< Cfv [ol? + [0~ [Omvldy < vl + ¢ [vlp™" [omv]
:

e(ollg + 16mI2) < clvlyragy, ) < by,

Here we also used Holder’s and Young’s inequality and Proposition 3.20. As
a result, the map tr : (C1(U),||-|1,) — LP(dU,0); tru = u|ay, is continuous.
Theorem 3.60 allows us to extend tr to an operator in L(W1P(U), LP(oU, o)).
If we start with a function u € WHP(U) n C(U), then we can construct
approximations u, € C'(U) which converge to u in W?(U) and in C(U),
see the proof of Theorem 5.3.3 in [Ev]. Hence, tru, = u,lsy tends to ulay
uniformly on 0U and to tru in LP(0U, o), so that tru = ulay.

2a) We next observe that the inclusion VVO1 P(U) < N(tr) is a consequence
of the continuity of tr since tr vanishes on C°(U) and this space is dense in
WO1 P(U) by definition. To prove the converse, we start with the model case
that v € W1P(V,) has a compact support in V, and trv = 0. Theorem 3.60
yields functions v, € C*(V,) converging to v in WP (V,), and hence trv, =
vnly, — 0in LP(Vp), as n — o0. Observe that

Ym
on (¥ )| < [on (3 0)] + f Pmva(y, 5)] ds,
0

Ym, P
|vn(y,’ ym)|p < 2|Un(y,7 O)|p +2 <J ‘amun(y” 5)| d8>
0

for 4/ € Vo and y,,, > 0. Integrating over y’ und employing Holder’s inequal-
ity, we obtain

frvny y) P dy/ <2j fon(y/, 0) P dy/ + 2 f f Oty )P ds dy/

By Fubini’s theorem, v, (-, Z,,) tends to v(-,x,,) in LP(V}) for a.e. y, > 0
and thus for pointwise a.e., after possibly passing to subsequence. Using
Fatou’s lemma, we can now let n — o0 and arrive at

Ym
J (Y, ym) [P dy’ < 2yfn_l f J |Omv(y’, s)|P ds dy’ (3.47)
Vo Vo Jo

for a.e. y,, > 0.

We next use a cut-off argument to obtain a support in the interior of V. .
Choose a function y € C*(Rxp) such that x = 0 on [0,1] and x = 1 on
[2,00). Set xn(s) = x(ns) for s = 0 and n € N, and define w,, = x,,v on V..
Note that w, — v in LP(V,) as n — 00, djwy, = xn0jv for j e {1,...,m—1}
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and Opwy, = XnOmv + nx (n-)v. Estimate (3.47) then implies

f Vv — Vw,[D dy
Vi
2/n B , b » 2/n , b1
<c 11— xul? [Vl dy' ds + cn lv(y',s)[Pdy’ ds
o Jw o Jw

2/n 2/n s
< cf f [Volp dy' ds + cnpf st f |Omv(y', 7)|P dy’ dr ds
0 Vo 0 0JVy

2/n 2/n
< cf J [Volp dy' ds + CJ J |Omv(y', 7)|P dy’ dr
0 Vo 0 Vo

for some constants ¢ > 0. Because of v € W1P(V, ), the above integrals tend
to 0 as n — o0, and so wy, — v in WP(V,) as n — oo. Since w, = 0 for
Ym € (0,1/n], we can mollify w,, to obtain a function @, € CL(V,) such
that | @y, — wyll1,, < 1/n. This means that @, — v in WHP(Vy) as n — oo.

2b) We come back to u € WHP(U) and consider the sets U; and V; and
the functions ¥; and ¢; from step 1). Let v; = (¢ju) o ‘I/j_l. First, observe
that the trace of v; to the set Vg is given by (trg;) o \IJ;1 (tru) o \I'j*l if

u € C(U), in addition. By continuity one can extend this identity to all
uwe WHP(U). Let tru = 0. Then we can apply part 2a) to v; and obtain

= CY(Vj4+) converging to v; in W1P(V;,). The function
m .
= Y @) 0 (Y3lunu;)
7j=1

thus belongs to C}(U) and converges to u in WHP(U) as n — oo. Since
Uy, has compact support, we can mollify u,, to a function u, € CL(U) with
|ty — unl1p < 1/n. This means that u, — u in WHP(U) as n — o0, and
hence u € W, ?(U). O

3.6. Appendix: Tempered distributions

The? theory of distributions allows to define derivatives of any order for
rather general objects such as locally integrable functions or measures on
open subsets of R™, see e.g. [Ru2]. Here we only discuss the subclass of
tempered distributions on R™ to which one can extend the Fourier transform
in a very convenient way. We let F = C.

DEFINITION 3.65. Tempered distributions are continuous linear function-
als on Sy, We write Sy, := {u : S;, — C|u linear, continuous} for the space
of tempered distributions and {p,u)s,, = u(p) for ue S, and p € Sy,.

Recall that ¢, — ¢ in S, means that pro(pn — @) = ||z[*0%(pn —
©)|c — 0 for all k € Ny and o € NJ', as n — oo. It is possible to define
weak* convergence in S, but we will not deal with such questions, see
[Ru2]. We collect first instructive examples for tempered distributions,
namely functions and measures with some growth restrictions as well as
Dirac distributions.

9This section was not part of the lectures.
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EXAMPLE 3.66. a) Let f € L] _(R™) satisfy

a(f) = f @) de < el
l<|$‘2<l+1

for all I € N and some k,c¢ > 0. This condition is satisfied by polynomially
bounded f and by f € LP(R™) with p € [1,00] (because then a;(f) <
c| £, 1m=D/P" by Holder’s inequality). For ¢ € S,,, we define

urle) = | ot

To show uy € S, let ¢, tend to ¢ in §p,. Take k € N with k > x + 2.
Inserting |z|~*|z|* in the integrands for [ > 1, we estimate

(o —gn) < f 0 — onl |£(2)] dz
1=0Y!

<lzl2<i+1
e ¢]
< £ le2(Bo,1))Po.0(® — en) + Pro(e — @n) >, e F
=1
< (ool — @n) + Proly — ¢n))
for a constant ¢’ > 0. Hence, uf : S, — C is continuous. The linearity of
uy is clear, and so it belongs to S;,. One often writes f instead of uy.
b) Let pu be a measure on B, with u(B(0,1)) < oo and u(B(0,l +
1\B(0,1)) < ¢l for all [ € N and some k,c = 0. Then one sees as in
part a) that

uy(p) = me @ du, ¢ € S,

defines a tempered distribution wu,, which is often simply denoted by .

c) Let y € R™ and o € Ni'. We set 0y () = 0%p(y) for ¢ € Spp. Let ¢y
converge to ¢ in Sy,. Then |65 () — 85 (¢n)] < Po,a(® — ¥n) tends to 0, so
that o, is contained in Sy,. O

We now extend the operators from Section 3.1 defined on S,, to S}, by
duality.

DEFINITION 3.67. Letu€e S}, g € &y, and a € N['. For p € S, we define
a) (qu)(p) = {p, gws,, = {gp, ws,, = u(gp),

b) (%u)(p) = {p,ws,, = (~1)*"p,u)s,, = (~1)1*lu(0%p),

c) u(p) = (Fu)(p) = <o, Fws,, = {Fp,ws,, = u(Fp),

d) (Ru)(p) = {p, Ruys,, = (Rp,ws,, = u(Ryp),

e) (pxu)(x) :={T_,Rp,uys, =u(T_ Rp) for everyzeR™.

By Lemma 3.7, the maps gu, 0“u, Fu, and Ru are continuous and linear

from Sy, to C, and hence they belong to S;;,. Similarly one sees T_y Ry € Spy,.

Observe that we multiply and convolve tempered distributions only with
the (very regular) functions in &,, and S,,, respectively. The following ex-
amples and the theorem below indicate that the above definitions extend the
known concepts in a natural way and that they allow to generalize several
main properties of the Fourier transform to the space S},.
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EXAMPLE 3.68. Let o € Sp, g € g, a € NI, and x,y € R™.
a) Let f € LL_(R™) be as in Example 3.66a). Then gus = u,s since

(gur)(e) = | vafdz = us(e).

b) Let f € WkP(R™) for some p € [1,00] and |a| < k € N. Then 0%uy =
uge ¢ since the definitions and Gaufl” Theorem 3.41 yield

{p,0%uy)s,, = (—1)@%p, up)s,, = (—1)l e fda= f @ f dx

¢) Let f € L>(R™). Then Fus = urs since Theorem 3.11 implies
(p, Fup)s, = (Feup)s, = f of dz = f pf de = (o, urp)s, -
d) We have 0“9, = (—1)'0“55‘ because of
(p, 076,05, = (1)@, 8,05, = (=1)0%p(y) = (—=1)1*I55 ().
e) We have F6, = (2r)""e_;, because of

(. F8,)s, = (Fp.0,)s,, = (2m) % f e p(a) de = (p, (2m) Feoiy D -

m

m

f) We have Fe;, = (2m)™/8, since Proposition 3.10 implies
(o, Feiy)s,= (F e, €iy>sm=f PE)eve dg=(2m) 2 (F @) (y) = (2)

RmMm
Assertion f) can also be deduced from e) since F? is equal to R in S}, too,
as shown in the next theorem (with a similar proof as above).

g) Let f € L'(R™). Then ¢ * uy = ¢ = f, since

prur@) = TaRpups, = | o= o)f(2)dz = ps f@). 0

m m
2 2

o(y)-

We now collect the main properties of the above objects on S,,. Observe
that the second part of assertion b) does not work on W#?2(R™).

THEOREM 3.69. Let u € S}, ¢,v € Sy, and o € Ni'. The following
assertions hold.

a) F: S, — Sy, is bijective with F*=1 and F~!=F3=RF.
b) F(0%u) = il®le*Fu and 0%(Fu) = (i)l F(z®u).
c) pxu€ &y, and hence ¢ * u induces a tempered distribution.
d) 0%(p*u) = (0%) *u = @ * 0%u.
e) Flo+u) = (2m)"?¢u and F(pu) = (21)""*@ * 0.
PRrROOF. Let ueS;,, peS,,, and aeNj'. For a), Proposition 3.10 yields

<(P7'F4u>$m = <f(paf3u>5m == <~F4907u>$m = <(P7 u>3m s
so that F* = [ on S, and F : 8}, — S, is bijective with inverse F~1 = F3.
Similarly, we show the remaining equality F? = R by computing
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The first equality in statement b) follows from Lemma 3.7 and
(o, FOws,, = (Fp,0%s,, = (~1)N"Fo,ws,, =1UF () ws,,
= <Q07 ilalfa]:u>3m'

The second part of b) is established in the same way.

For the proof of assertions c¢) and d) we refer to Theorem 7.19 in [Ru2].
To show e), first take ¢» € CZ(R™). There is a closed interval I < R™ such
that suppty < I. Using the definitions, part a) and Proposition 3.3 in the
last step, we compute

@+ s, = R ds, = | w(=o)pu)(w)da
= f Y(—z)u(T_yRyp) dz = f u(¥(2)T,Ryp) dz
-1 I

ol | T Roaz) = RO ). w35,

F@*9), Fws, = 2m) 2 WG, Fuys,,.  (348)
Here the second integral in (3.48) is understood as an S,,-valued Riemann
integral on [; i.e., as the limit in S, of Riemann sums such as

Nn

j=1
where zj,, € Q;n, the rectangles @), with j € {1,..., N,,} subdivide I, and
max; vol(Q;) tends to 0 as n — co. Clearly, S,, belongs to Sp,. We omit
the somewhat tedious, but elementary proof that S, indeed converges in
Sm. Hence, u can be taken out of the approximating Riemann sums by its
linearity and out of the limit by its continuity. This fact justifies that we
have interchanged w and the integral in (3.48). So far we have shown

W, Flp xu)s, = (2m) 2, §i)s, (3.49)
for all v € CP(R™). Arguing as in the first part of the proof of Theorem 4.21
in [FA], one can show that C(R™) is dense in S,,, see Theorem 7.10 in
[Ru2]. Since the Fourier transform is continuous on S,, by Lemma 3.7, the
identity (3.49) is thus valid for all @Z with ¢ € S, due to an approximation

argument. We can now replace here 1Z by ¥ € S, using that F is bijective
on S, thanks to Proposition 3.10. So the first part of assertion e) is shown.
For the second part, observe that

@, R(p)R(u))s,, = (YRp, Ruys,, = (R(Y)R*p,w)s,, = (RY, pu)s,,
= (¢, R(pu))s,,,
forall ¢ € Sp,; ie., R(p)R(u) = R(pu). Employing also a), we then calculate
F(@ =) = (2m) 2 F*(9) F*(u) = (2m) % R(pu) = (27) 2 F2(pu).
Applying F~1, the second part of assertion e) follows. O



CHAPTER 4

Self-adjoint operators

As on C™, self-adjoint operators on a Hilbert space possess a very powerful
spectral theory. It has important applications all over mathematics and its
applications; the mathematical foundation of quantum mechanics is a prime
example (see [RS]). For these applications we also have to study unbounded
self-adjoint operators. In the first section we focus on the often difficult and
most basic problem how to determine whether a given (partial) differential
operator is self-adjoint. In the second section we then establish a core result
of spectral theory: the spectral theorem for self-adjoint operators, also in
the unbounded case.

In this chapter X and Y are Hilbert spaces with scalar product (-]-) and
we let F = C, unless something else is said.

4.1. Basic properties

We start with the under-lying concepts of this chapter. Let A be a densely
defined linear operator from X to Y. We define its Hilbert space adjoint A’

as in the Banach space case by
D(A") :={yeY|3ze X Ve D(A): (Azly) = (z|z) }, (4.1)
Ay = 2. '

As in Remark 1.23 one sees that A" : D(A’) — X is a linear map, which is
closed from Y to X. Let T e B(X,Y). Then D(7”) =Y and T” is given by

VeeX, yeY: (x’T’y) = (Tz|y)
as in (5.9) in [FA]. We recall from Proposition 5.42 of [FA] that
IT|=|T", T'=T, (aT+BS) =al'+3S, (UT)=TU (4.2)
for T,S € B(X,Y), U € B(Y, Z), a Hilbert space Z, and «, 8 € C.

DEFINITION 4.1. A densely defined linear operator A on X is called self-
adjoint if A = A" (in particular, D(A) = D(A’) and A must be closed), skew-
adjoint if A = —A’, and normal if AA" = A’A. We say that T € B(X,Y) is
unitary if T' is invertible with T~ = T".

Let & : X — X* be the (antilinear) Riesz isomorphism given by
(®(2))(y) = (y|z) for all z,y € X. For A e C and X =Y, we obtain

My —T =3 Y Nxe —T)®, Ny —A =0 Y Nx — AN)D
with D(A") = @1 D(A*) as in p.109 of [FA]. Theorem 1.24 thus implies
o(A) =o(A%) =5(4),  0n(A) = 0p(A") = F(4), (4.3)
RO\ A) =@ 'R\ AN® = d 'R\, A)*® = R(\, A) for e p(A),

88
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where the bars mean complex conjugation of each element. For F = R,
the above definitions also make sense and the stated results remain valid
(without the extra conjugation). The following relations between the above
concepts are straightforward to check.

REMARK 4.2. a) Self-adjoint, skew-adjoint or unitary operators are nor-
mal (where X =Y). If A= A" and A € C, then \] — A is normal.

b) A densely defined linear operator A on X is skew-adjoint if and only
if iA is self-adjoint. (As in (4.2) one sees that (iA) = —iA.) O

Theorem 1.16 says that the spectral radius r(7') is less or equal than |7
for each bounded operator T' on a Banach space. Already for the matrix
T = (J{) one has the strict inequality r(T') = 0 < 1 = |T||. We next show
|T|| = r(T) for normal operators, which is a key to their deeper properties.

PROPOSITION 4.3. Fach operator T € B(X,Y) satisfies | T'T|| = | TT'|| =
|T||?. (This is also true if F =R.) Let T € B(X) be normal. We then have
IT|| = r(T), and thus T = 0 if o(T) = {0}.

PROOF. For z € X, using (4.2) we compute
1Tz = (T|Tx) = (T'Txlx) < |T'T]|||=[?,
IT|? = sup [|Tz|* < |T'T| < |T'|IT]| = T
llzll<1

i.e., |T||?> = [|T'T||. We infer that |T|? = |T"|> = |T"T’| = | TT’|.
Next, let T" be normal. From the first part we then deduce

172 = | T*(T2) || = | TTT'T | = |TT'TT | = |TT'(TT") || = | TT"|* = | T,

so that | T2|| = ||T||. Tteratively it follows that ||72"| = ||T||*>" for all n € N.
By means of Theorem 1.16 we conclude

r(7) = lim |79 = lim 72" = ||T. O
j—o n—o

The following concepts turn out to be very useful to compute adjoints,
for instance. In the next definition and remark we also allow for F = R.

DEFINITION 4.4. Let A and B be linear operators from a Banach space
X to a Banach space Y. We say that B extends A (and write A < B) if
D(A) € D(B) and Ax = Bx for all z € D(A).

Next, let X be a Hilbert space. A linear operator A on X is called sym-
metric if we have (Ax|y) = (x|Ay) for all x,y € D(A).

By (4.1), a self-adjoint operator is symmetric. In the unbounded case
the converse is not true, in general, see Example 4.8. We collect direct
consequences of these definitions.

REMARK 4.5. Let A and B be linear operators from a Banach space X
to a Banach space Y.

a) The operator B extends A if and only if its graph G(B) contains G(A).
Let A< B. Then A = B is equivalent to D(B) < D(A).

b) Let A € B, A be surjective, and B be injective. Then A and B are
equal. Hence, if X = Y and there is A € F such that Al — A is surjective
and A\l — B is injective, then we have A = B.
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PRrROOF. Let x € D(B) and set y = Bx. The surjectivity of A yields a
vector z in D(A) € D(B) with y = Az = Bz. Since B is injective, we obtain
x =z€ D(A) so that A = B. 0

c) Let X and Y be Hilbert spaces, A and B be densely defined, and
A € B. We then have B’ < A'.

PROOF. Let y € D(B’) and x € D(A). The assumption implies

(Azly) = (Bzly) = (z|B'y),
so that y belongs to D(A’) and B'y = A’y by (4.1). O
d) Let A be densely defined and symmetric on a Hilbert space X. Defini-
tion (4.1) implies that A € A’. In particular, A is self-adjoint if and only if
D(A") = D(A). O
In the next theorem we give very useful spectral conditions for the self-

adjointness of a symmetric operator. We start with a crucial lemma.

LEMMA 4.6. Let A be symmetric, x € D(A), and a, B € R. Set A = a+1ip.
We have (Az|x) € R and
Az — Ax|? = [laz — Az|® + B ] = |81 =]

If A is also closed, then oap(A) SR and ||R(A, A)|| < m for all Xe p(A)\R.

PROOF. For z € D(A) we have (Az|x) = (z|Az) = (Az|z) so that
(Az|x) = (z|Az) is real. From this fact we deduce that
Az — Az||* = (ax — Az + ifz|ax — Az +iBz)
= |laz — Az||® + 2Re (iBz|az — Az) + |[iBz]?
= |lax — Az|[* + 2 Re(iBal|z||* — if (z[Az)) + |82
= |laz — Az||* + |8 [l«|* = 18|
In particular, A does not belong to o,,(A) if ImA = 3 # 0.
Let A€ p(A)\R and y € X. Set z = R(\, A)y € D(A). We then calculate
Ilyl1? = Az — Az|® = [Im AP[|z||* = [Im A?[R(X, A)y|>. O
THEOREM 4.7. Let X be a Hilbert space and A be densely defined, closed
and symmetric on X. Then the following assertions are true.
a) The spectrum o(A) is either a subset of R or o(A) =C oro(A) = {\e
C|ImA =0} oro(A) = {Ae C|ImA <0}.
b) The following assertions are equivalent.
i) A=A
ii) o(A) < R.
iii) il — A" and il + A" are injective.
i) (il — A)D(A) and (il + A)D(A) are dense in X.
c) Let p(A) "R # (). Then A is self-adjoint.
d) Let A be self-adjoint. Then we have
o
|Tm A
for X ¢ R. Further, 0(A) = oap(A) is non-empty and A has no symmetric
extension B # A.

IR, Al < (4.4)
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PROOF. a) Let A € p(A) and p € 0(A). Suppose that ImA > 0 and
Im g > 0. The line segment from A to  then must contain a point v € do(A).
This point belongs to o.p(A) by Proposition 1.19 and satisfies Imv > 0,
which contradicts Lemma 4.6 since A is symmetric. Similarly we exclude
that ImA < 0 and Im p < 0. Since the spectrum is closed, only the four
cases in assertion a) remain.

b) Let A be self-adjoint. Lemma 4.6 yields the inclusion o,,(A) < R.
Due to (4.3), we also have the equalities 0,(A) = 7,(A’) = 7,(A) so that
o:(A) = op(A) < R. From Proposition 1.19 we thus deduce o(A4) < R;
i.e., 1) implies ii). The implication ‘ii)=iii)’ is obvious. Equation (4.3) also
shows that +i belongs to op,(A’) if and only if Fi to o,(A); i.e., claims iii)
and iv) are equivalent. Finally, let statement iv) (and thus iii)) be true. The
range of the operator il — A is closed by Lemma 4.6 and Proposition 1.19.
In view of iv), the map il — A is then surjective. On the other hand, il — A’
is injective because of iii), and hence A is equal to A’ thanks to Remark 4.5.

c) Assume there is a point A in p(A) n R. Then p(A) contains a ball
around A by its openness. By part a), the spectrum of A is thus contained
in R, and so A is self-adjoint by b).

d) Let A = A’. If its spectrum was empty, then A would be invertible with
a self-adjoint inverse (see (4.3)). Proposition 1.20 thus yields that o(A~!)
is equal to {0} so that A=! = 0 by Proposition 4.3, which is impossible.
Hence, o(A) is non-empty. Let A € B for a symmetric operator B on X.
Remark 4.5 then yields A € B <€ B’ <€ A’ = A and so A = B. Since
o(A) < R by b), we have 0(A) = 0o(A) < 0,p(A) due to Proposition 1.19,
and (4.4) follows from Lemma 4.6. O

We discuss several examples with (unbounded) differential operators, com-
plementing the results from Section 3.4. (See Example 5.44 in [FA] for the
bounded case.) Typically it is straightforward to check symmetry integrating
by parts. We then use spectral properties and Theorem 4.7 to establish self-
adjointness. The examples also indicate that boundary conditions (possible
‘at +o0’) are often necessary for symmetry. However ‘too many’ boundary
conditions can be an obstacle to self-adjointness.

EXAMPLE 4.8. a) Let X = L?(R) and A = id with D(A) = W12(R).
Then A is self-adjoint with o(A) = R.
PROOF. For u,v € D(A), integrating by parts we deduce

(Aujv) = if ouvds = —iJ udvds = f uidvds = (u|Av) ,
R R R

see Theorem 3.41; i.e., A is symmetric. Proposition 1.20 and Example 3.43
further imply that o(A4) = ioc(—iA) = i2R = R. Hence, A is self-adjoint. []
b) Let X = L?(R,) and A = id on D(A) = WH2(R,). Then A is not
symmetric.
PROOF. For u,v € D(A) with «(0) = v(0) = 1, as above an integration
by parts implies

udvds —iu(0)v(0) = (uldv) —i. O

0
0

Q0
(Aulv) = iJ ouvds = —if
0
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¢) Let X = L*(R;) and A = i0 on D(A) = W&’2(R+). Then A is sym-
metric, but not self-adjoint, and o(A) = {A € C| Im A > 0}.

PROOF. Symmetry is shown as in a) using Theorem 3.41 and that now
u,v € D(A) have trace 0 at s = 0. From Proposition 1.20 and Example 3.44
we deduce that 0(A) = —io(iAd) = —i{fA € C| ReA <0} = {Ae C| Im\ >
0}. Consequently, A is not self-adjoint. OJ

d) Let X = L*(R™) and A = A with D(4) = W2?2(R™). Then A is
self-adjoint with o(A) = Ro.

PRrROOF. For u,v € D(A), Theorem 3.41 yields

(Aulv) = Auvdy = J uATdy = (u|Av) ,
Rm m

so that A is symmetric. In Example 3.47 we have seen that o(A4) = R,

and hence A is self-adjoint. ]

e) Let U < R™ be open and bounded with C?-boundary and 4 = A
with D(A4) = W22(U) n Wol’Q(U). Then A is self-adjoint (and has compact
resolvent by Example 3.49). In fact, the symmetry of A can be shown as in
part d) because the traces of u,v € D(A) vanish by Theorem 3.38. Then A
is self-adjoint since it is invertible by Example 3.49.

f) Let X = L2(0,1), Ag = % with D(4g) = W7*(0,1), and A be as in
assertion e) with U = (0,1). As in e) we see that Ag is symmetric. But
Ay is not self-adjoint, since A9 & A and A = A’ (see Theorem 4.7d)). We
further claim that A} = 0% with D(Af) = W22(0,1).

PROOF. For v e W22(0,1) and u € D(A), we deduce from Theorem 3.41

1 1

(Aoulv) = J Puvds = J ud*vds + [vou — u@ﬁ]é = (ul0*v);
0 0

ie., (02, W%2(0,1)) < Aj,. Conversely, take v e D(A}). For ue C*(0,1) we

have w e C(0,1) < D(A) and hence obtain

1 T
J Pavds — (Aotlv) — (| Alw) f 7 ATy ds.
0 0

After complex conjugation, we see that v € W5(0,1) "X and 0%*v = Afjv € X.
The function v thus belongs to W22(0,1) by Example 3.42. OJ

We note that o,(Aj) = C in Example 4.8f) since e, is an eigenfunction
for the eigenvalue p? for each € C. As in part b) one can also show that
Aj) is not symmetric.

We next prove that small symmetric perturbations preserve self-adjoint-
ness. Compare Theorem 1.27 and the exercises for similar results on injec-
tivity and Fredholm properties, respectively.

THEOREM 4.9. Let A be densely defined and self-adjoint on X and let B
be symmetric with D(A) < D(B). Assume there are constants ¢ > 0 and
d € [0,12) such that ||Bzx| < c||z|| + §||Az| for all x € D(A). Then the
operator A + B with D(A + B) = D(A) is self-adjoint.

PROOF. By Theorem 4.7, the number it belongs to p(A) for all ¢ € R\{0}.
Take € € (0,1 —20) < (0,1) and x € X. Using (4.4), we estimate

| BR(Gt, A)z|| < 6| AR(t, A)z]| + c|| R(it, A)~a]
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= 0||itR(it, A)x — x| + c||R(it, A)x||
5<H + 1>norm:v + WHZ‘H < (1-¢)|,
whenever [t| > {—55—. Theorem 1.27 now implies that +it € p(A + B) for
such t. Moreover, A + B is symmetric since
((A+ B)zly) = (Azly) + (Bzly) = (x|Ay) + (z|By) = (z[(A+ B)y)
for all x,y € D(A). So, A+ B is self-adjoint due to Theorem 4.7. O

Actually, in the above theorem it suffices to assume that § < 1, see The-
orem X.13 in [RS]. We present a typical application of the theorem which
is very important for applications.

EXAMPLE 4.10. On L?(R3) consider A = A with D(A) = W22(R?). S
Vu = ﬁu for ue D(A) and some b € R. Then A+ V with domain D(A) is
self-adjoint.

PrOOF. Recall from Examples 4.8 and 3. 47 that A is self-adjoint and its
graph norm is equivalent to | - [2,2. Since k — ™ =2 — 3 > 0, Theorem 3.31

yields D(A) < Cp(R?). Let 0 < ¢ < 1. Using polar coordinates, we compute

2
Vul? dz = bZJ u@) dx+b2J w@)” 4,
R3 B(o,a) \$|2 R3\B(0,¢) \37|2

o (777 b* 2
<cllull | mdr+ = |ul” dz
o’ €7 JR3\B(0,¢)
2 b2
< cellull3 2 + 2 lull3 < cel| Aull3 + cel|ul3 + 2 lull3,

for constants ¢ > 0 independent of u € D(A) and e. Moreover, V is sym-
metric on D(A) since

b -
(Vulv) = J}RS @u(x)v(x) dz = (u|Vv)

for all u,v € D(A), using that b|z|;' is real. For small £ > 0, Theorem 4.9
implies that A + V is self-adjoint. Ol

The spectra (A + V) and o,(A + V) and the eigenfunctions of A+ V are
computed in §7.3.4 of [Tr|, where b > 0. The above operator A = A+ V is
used in physics to describe the hydrogen atom. We come back to this point.

4.2. The spectral theorems

Hermitian matrices are unitarily equivalent to diagonal matrices and thus
very easy to treat. In this section, for self-adjoint operators we establish
infinite-dimensional analogues of this basic result from linear algebra. These
‘spectral theorems’ can be extended to normal operators, and the separa-
bility assumption partly made below can be removed. See Corollaries X.2.8
and X.5.4 in [DS] or Theorems 13.24, 13.30 and 13.33 in [Ru2].

There are three versions of the spectral theorem. We start with the ‘func-
tional calculus’ variant for bounded self-adjoint 1. To this end, we first
introduce the most simple functional calculus for general T' € B(Z) on a
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Banach space Z. Let p(z) = ap + a1z + ...+ a,z" be a complex polynomial.
We then define the operator polynomial

p(T) = aol + a1 T + ...+ anT™ € B(Z). (4.5)

This gives a map p — p(T') from the space of polynomials to B(Z).

For self-adjoint T' on a Hilbert space one can extend this map to all f €
C(o(T)), obtaining the continuous functional calculus in the next theorem.
We set p1(z) = z. Recall the o(T') is a compact non-empty subset of R by
Theorems 1.16 and 4.7.

THEOREM 4.11. Let T' € B(X) be self-adjoint on a Hilbert space X. There
exists exactly one map &1 : C(o(T)) — B(X); f— f(T), satisfying

(C1) (af +Bg)(T) = af(T) + By(T),

(C2) If(D)|l = 1fllo (hence, ®p is injective),

(C3) L(T)=1 and py(T) =T,

(C4) (f9)(T) = f(T)g(T) = g(T) f(T),

(C5) f(T) = [(T)
for all f,g € C(o(T)) and o, B € C. In particular, we have ®p(p) = p(T)
for each polynomial p, where p(T') is given by (4.5).

PrOOF. 1) We first show the properties (C1)-(C5) for polynomials
p(t) = ag + ait + ... + ant™ and q(t) = by + bit + ... + byt with
t € R and the map p — p(T) defined by (4.5), where any a;,b; € C
may be equal to 0. Clearly, (C1) and (C3) are true in this case, and
p(T) = 30 a;(T9) = p(T) due to (4.2) and T' = T’. By means of (4.5),
we further obtain

2N N N
pa)(T) =Y ( Y ab)T = Y 0,17 Y BT = p(T)a(T),
1=0 0§j,£<;v §=0 k=0
k=

and so (pg)(T') = (gp)(T') = q(T)p(T); i.e., (C4) is shown for polynomials.
Properties (C4) and (C5) yield the normality of p(7'). Hence, Proposition
4.3 and Lemma 4.12 below imply the core identity

lp(T)|| = x(p(T)) = max {[A| [ Aea(p(T))} = max {|A|[ Aep(a(T))} = [[plleo.

2) Let f e C(o(T)). Since o(T) < R is compact, Weierstra3’ approxima-
tion theorem yields real polynomials such that p, — Re f and ¢, — Im f
in C(o(T)) as n — oo, and thus p, + ig, — f. (Note that step 1) applies
to pn + ig,.) We can thus extend the map p — p(T) to a linear isometry
Or: f— f(T) from C(o(T)) to B(X). By continuity, @7 also satisfies (C4)
and (C5) on C(a(T)).

3) Let there be another map ¥ : C(o(T")) — B(X) satisfying (C1)—(C5).
From (C1), (C3) and (C4) we then infer ¥(p) = p(T) = ®p(p) for all
polynomials, so that ¥ = & by continuity and density. O

We observe that we have actually shown uniqueness in the class of linear
and continuous maps ¥ : C(o(T)) — B(X) fulfilling (C3) and (C4). The
next result was used in the above proof. It is a special case of Theorem 5.3
(which is independent of Theorem 4.11, of course). One can show the lemma
also in an elementary (but tedious) way, extending Proposition 1.20f).
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LEMMA 4.12. Let T € B(Z) for a Banach space Z and let p be a polyno-
mial. Then o(p(T)) = p(o(T)).

We derive some rather direct, but important consquences of the theorem.

COROLLARY 4.13. Let T' € B(X) be self-adjoint and f € C(o(T)). Then
the following asssertions hold.

(C6) Let Tz = Az for some x € X and A€ R. Then f(T)x = f(\)z.
(C7) f(T) is normal.

(C8) o(f(T)) = f(o(T)). (spectral mapping theorem)
(C9) f(T) is self-adjoint if and only if f is real-valued.

Proor. Take a sequence of polynomials p,, converging to f uniformly.
Let Tx = Az. Property (C6) holds for a polynomial p since

N N
p(T)x = Z a;Tx = Z ajNz = p\)z.
j=0 j=0

Using (C2), we then obtain
f(T)x = lingopn(T)x = hn(}opn()‘)x = f()\):]}

From properties (C5) and (C4) we infer f(T)f(T) = f(T)f(T) =
f(T)f(T) = f(T) f(T) so that f(T) is normal.

We next show (C8). Let p ¢ f(o(T)). The function g := u%f then is an
element of C'(o(7T)). Thus (C3) and (C4) yield

(nI = f(T))g(T) = g(T)(ul = f(T)) = (9(u1 = ))(T) = U(T) = I
i.e., p is an element of p(f(7)). Conversely, let ;1 = f(X) for some A € o(T).
Then py, = pn(A) belongs to o(p,(T)) for all n € N by Lemma 4.12. As
above, the operators p,I — p,(T) tend to pul — f(T') in B(X). Suppose that
plI — f(T') was invertible. Then also p,I —py, (1) would be invertible for large
n by Theorem 1.27. This is impossible, and so p is contained in o(f(7)).

For the last assertion, observe that f(T) = f(T) if and only if (f—f)(T) =
0 if and only if f — f = 0, because ®7 is injective. O

We use the functional calculus to solve the equation W™ = T within the
class self-adjoint ‘non-negative’ operators, where T is given. Below and in
the exercises one finds more applications of this kind.

COROLLARY 4.14. Let ne€ N and T = T' € B(X) with o(T) < Rx¢. (In
this case one writes T =T" > 0 and calls T non-negative.) Then there is a
unique self-adjoint operator W € B(X) with o(W) € Rsg and W™ =T.

PROOF. Consider w(t) = t/* for t € o(T) < Rsg and define W = w(T).
Then W" = w™(T) = p1(T) = T by (C4) and (C3). Properties (C8) and
(C9) imply that W = W’ > 0. For the proof of the uniqueness of W, we
refer to Korollar VII.1.16 in [We]| or the exercises. O

We next study the special case of a compact self-adjoint operator T (or a
self-adjoint A with compact resolvent). This compact spectral theorem pro-
vides a very convenient decomposition and representation of the operator
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and very strong spectral-theoretic results close to the finite-dimensional set-
ting. The compact case is of great importance for many areas of mathematics
and its applications. We use basic properties of orthogonal projections and
orthonormal bases which are discussed in Chapter 3 of [FA].

THEOREM 4.15. Let X be a Hilbert space with dim X = oo, T € B(X) be
compact and self-adjoint, and A be densely defined, closed and self-adjoint
on X having a compact resolvent. Then the following assertions hold.

a) i) There is an index set J € {O,N,{1,...,N}| N € N} and eigenvalues
Nj #0, jeJ, such that o(T) = {0} U{\;|j € J} < R, where \; — 0 as
j— o ifJ=N.

ii) There is an orthonormal basis of N(T)* = R(T) consisting of eigen-
vectors of T' for the eigenvalues \;.

iii) The eigenspace E;(T) = N(\jI —T) is finite-dimensional and the
orthogonal projection P; onto E;(T) commutes with T, for each j € J,
where T Pjx = \jP;x.

w) The sum T = 3, ; A\jP; converges in B(X).

b) i) We have o(A)=0p(A)={pn|n € N} € R with |p,| — © as n — .

it) There is an orthonormal basis of X consisting of eigenvectors of A.

iti) The eigenspaces Ep(A) = N(unI — A) are finite-dimensional and the
orthogonal projections @, onto E,(A) satisfy Q,X < D(A) and Q,Ax =
AQy = pnQnx for all x € D(A) and n € N.

w) The sum Ax = >.° | pnQnx converges in X for all x € D(A).

Proor.! 1) Theorem 2.10, 2.15 and 4.7 show the parts i) in asser-
tions a) and b), except for the infiniteness of o(A), as well as the finiteness
of dim E;(T") and dim E,,(A) for all j and n. Let =,y € D(A) be eigenvectors
of A for eigenvalues p, # pr. Then

pn (2ly) = (Azly) = (2|Ay) = p(2ly),
so that (z|y) = 0. Similarly, one sees that E;(T) L Ey(T) if j # k. By
the Gram-Schmidt procedure, each eigenspace F;(T) and E,(A) has an
orthonormal basis of eigenvectors for A\; # 0 and p,, respectively. The
union of these bases gives orthonormal sets By and B4.

2) Let J = N in statement a), the other cases are treated similarly. Ob-
serve that Br € R(T'). Set 1; = 11y, € C(o(T)) and ¢, = 11 +... + 1, for
every j,n € N. We then have 1;(T)? = Iljz(T) = 1,(T) by (C4). Moreover,
(C4), (C9) and (C3) imply that T1;(T) = 1;(T)T, 1,(T) = 1;(T), and

(M1 = T)15(T) = (A1 = p1)1;)(T) = ((A; — Aj)1)(T) = 0.
If \ju = Tv for some v € X, we further deduce 1;(T)v = 1;(\j)v = v from
(C6). As aresult, 1;(7") is a self-adjoint projection onto E;(T"). For x € X
and y € N(1;(T)), we then obtain (1,;(T)zly) = (x|1;(T)y) = 0 so that
1,(T) is orthogonal; ie., 1;(T) = P; and ¢,(T) = Py + ... + P, for all
j,n € N. We have shown claim iii) in a).

Ipart a) was not shown in the lectures. A more direct proof of it can be found in
Theorem 6.7 of [FA].
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Since T'P; = \; P}, the operator ¢, (T)T is a partial sum of the series in
part iv). Employing also (C2), we thus derive iv) from

1T = en(T)T|| = l[(p1r — Lnp1)(D)| = llpr — npillc = sup [Xj] — 0,

j=zn+1
as n — o0. It also follows that ¢, (T)y € lin By converges to y as n —
for all y € R(T). Therefore, By is an orthonormal basis of R(T") due to
Theorem 3.15 in [FA]. Finally, (2.1) shows that R(T) = 1 N(T") = N(T)*
because T'=T" and X is reflexive.

3) Fix t € p(A) nR. Then R(t,A) = R(t, A’) = R(t, A) by (4.3), and this
operator is compact and has a trivial kernel. By step 2), X = N(R(t, A))*
possesses an orthonormal basis of eigenvectors w of R(t, A) for the eigen-
values A\ # 0. Proposition 1.20 yields the eigenvector v = AR(¢, A)w of A
for the eigenvalue p = t — A~!. Because dim X = oo and the eigenspaces
of R(t, A) are finite-dimensional, A has infinitely many distinct eigenvalues;
i.e., part i) in assertion b) is shown.

Let z € X be orthogonal to all eigenvectors of A. For the above v, we
obtain 0 = (z|v) = (z|]\R(t, A)w) = A (R(t, A)z|w). Since the eigenvectors
w span X, we infer that R(¢, A)x = 0 and hence x = 0. Consequently, B4
is a basis of X by Theorem 3.15 in [FA], and claim ii) of b) is true.

4) Let {vp1,...,0pn,,} be eigenvectors of A forming an orthonormal basis
of E,(A) for n € N. From step 3) we then deduce

ln

Qnx = Z (x|vn,j) vn,j € D(A) and T = 2 Qnx
n=1

j=1
for all x € X. For x € D(A) it follows

QnAz = > (Ax|vn ;) vny = Y (@|Avnj) Vg = . (@]pinvn,;) vn,
j=1 j=1 Jj=1
In ln
= Z (x|vn;) pnvn,; = Z (x|vn ;) Avyj = AQnX = pnQne.
j=1 J=1

We thus conclude

AN Qe = ), QrAr — ) QrAr = ) AQrr = ) 1k Qur,
k=1 k=1 k=1

k=1 k=1
as n — 00, so that the closedness of A yields the last assertion. O

REMARK 4.16. a) In the above proof we also obtain that
© Ln
Az =" pin Y (xlvng) vny
n=1  j=1
for all x € D(A). An analogous result holds for T', see Theorem 6.7 in [FA].
b) Let T be self-adjoint and compact such that N(T") is separable. Theo-
rem 3.15 yields an orthonormal basis {zy | k € Jo} of N(T'), where Jy S Z<o
could be empty. (Jy must be infinite if J from Theorem 4.15 is finite, as
dim X = o0.) Denote by \; the non-zero eigenvalues of T' (repeated according
to their multiplicity) with corresponding orthonormal basis of eigenvectors
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{wy|l € Ji}. The union {b;|j € J'} of {2 |k € Jo} and {w; |l € J1} is an
orthonormal basis of X. By Theorem 3.18 in [FA], the map

D:X - (), Ox= ((x|bj))jej/ ,

is unitary with ®=1((&;)jes) = 2jesr &ibj. Moreover, the transformed oper-
ator T®~1 acts on EQ(J’) as the multiplication operator

TP~ =oT Z by =@ Z Ai&ibs = (Ni&5)jerr
jeJ’ JeJ’

where \; := 0 if j € Jp. Hence, ®TP! is represented as an infinite diag-
onal matrix with diagonal elements A;. Analogous results hold for A from
Theorem 4.15, see e.g. Theorems 4.5.1-3 in [Tr]. O

In part a) of the above remark, A is written as a sum over projections. In
the non-compact case one can show an analogous result using an integral over
projections, see Remark 4.19. In view of part b), T is unitarily equivalent
to the multiplication operator M : (&;); — (\;&;); on ¢2(J’) which can be
viewed as an L?-space on o(T). This is a strong statement since M is a
rather simple object. We next extend this multiplicator representation to
the general bounded self-adjoint case. Besides its inherent interest, this fact
will allow us to pass to unbounded A = A’. In the second part of the
proof one sees that ) is a ‘disjoint sum’ of o(7") and that h = p1, roughly
speaking. Thus the information on T is mainly encoded in the measure p
which is essentially given by (4.6) using the functional calculus.

THEOREM 4.17. Let T € B(X) be self-adjoint on a separable Hilbert space
X. Then there is a o—finite measure space (2, A, 1), a measurable function
h:Q — o(T) and a unitary operator U : X — L?(p) such that

Te=U1hUzx for all z e X.
PRrROOF. 1) Let v; € X\{0}. We define the linear subspaces
T)vi|feC(o(T))} and X; =Y,
of X. Since Tf(T)vy = (p1f)(T)v1 € Yy for every f € C(o(T)), we obtain
TY; € Y] and so TX; <€ X;. We introduce the map
p1:C(0(T) =G oi(f) = (f(T)vr|vr)
which is linear and bounded because |1 (f)| < [|£F(D)|lv1l* = || f]loolv1]?
due to (C2). If f > 0, then o(f(T")) < Rsg by (C8). So we can deduce from
Corollary 4.14 that
(f(D)vilor) = (F(T) P01 £(T) P01) = | £(T)P01]* = 0.

The Riesz representation theorem of C(o(T))* now gives a bounded regular?
measure gy on B(o(T)) such that

(f(T)vilv1) = ea(f f fdut, (4.6)

2A positive measure p on a Borel o-algebra B is called regular, if it satisfies

w(B) = inf {u(O)|B < O, O is open} = sup {u(K)| K < B, K is compact}, B e B.
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for all f e C(o(T)) < L?*(u1), see Theorem 2.14 of [Rul]. For x = f(T)v; €
Y7, we define Viz := f € L?(uu1). We compute

Va2 = j M = 1) = (G Tl

= (/D) f(T)vilv1) = (f(T)uil f(T)or) = ||zl
In particular, if z = f(T)v; = g(T)v; for some g € C(o(T)), then

1F = gli3 = I(F(T) = g(D)ui ]k =0,
and so f = g in L?(u1). As a result, V4 : Y7 — L?(u1) is a linear isometric
map and can be extended to a linear isometry Uy : X1 — L?(u1).
Observe that C(o(T)) < R(Up). Since C(o(T)) is dense in L?(u1) by
Theorem 3.14 in [Rul], the isometry U; has dense range. Hence, U; is
bijective and thus unitary by Proposition 5.52 in [FA]. Finally, we compute

UTf(T)v1 = Vi(pr f)(T)vr = p1f = p1Urf(T)vr,
for f € C(o(T)). By density, it follows Tz = Uy 'p1Usz for all x € X;.

2)3 We are done if there is a vector v; € X with X; = X. In general this
is not true. Using Zorn’s Lemma (see Corollary 2.5 in Appendix 2 of [Lal),
we instead find orthogonal spaces X,, as in step 1) which span X.

a) To that aim, we introduce the collection £ of all sets E having as
elements at most countably many closed subspaces X; < X of the type
constructed in step 1) such that X; L X; for all X; # X; in E. The system
£ is ordered via inclusion of sets. Let C be a chain in &; i.e., a subset of
€ such that £ < F or FF < E for all E,F € C. We put C = [Jp F.
Clearly, E is contained in C' for all £ € C. Let Y,Z € C. Then Y and
Z are closed subspaces of X as constructed in part 1) and there are sets
E Fe(C withY € F and Z € F. We may assume that £ < F and so
X,Y € F. The subspaces Y and Z are thus orthogonal (if Y # Z). As a
result, C contains pairwise orthogonal subspaces of X. If z | y have norm
1, then |z —y|? = |z|? + |y|? = 2. The separability of X then implies that
at most countably many subspaces belong to C, so that C is an element
of £ and hence an upper bound of C. Zorn’s Lemma now gives a maximal
element M = {X;|j € J}in &, where J € N and X are pairwise orthogonal
subspaces as constructed in 1).

b) Assume that there was a vector z € X being orthogonal to all X;. Let
Z be the closed span of all vectors f(7")z with f € C(o(T)). Let g€ C(o(T))
and z = g(T)v; € X; for some i € J, where v; generates X; as in step 1). We
then obtain

(2] f(T)2) = (F(T)g(T)vilz) = ((fg)(T)vilz) = 0
since (fg)(T)v; € X;. By density, it follows that Z is orthogonal to all X;
and thus M u {Z} € £. The maximality on M now implies that Z belongs
to M, implying z = 0. Consequently, X is the closed linear span of the
elements in the orthogonal subspaces X;. Each x € X can thus be uniquely
written as x = ; x; for some z; € Xj;, and we have |z|? = 2 |z;[? by
Pythagoras.

3Not shown in the lectures.
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c) We now define
O=J_,0) x G} SR, A=B@), u4)=Y _ u4)
with 4; x {j} = An (o(T) x {j}), and
hhg) =X Us=), U,

where (), j) € Q, U; and i are given as in step 1), and we set (Ujz;)(\, 5) =
(Ujz5)(A)-

It is straightforward to check that (€2, .4, 1) is a o—finite measure space,

and the map h is even continuous for the Euclidean metric. The definition
of p and step 1) show the isometry

2 _ 12 _ 12— (2
U] 72, = Zj “ij]||L2(/J,j) = Zj 5] = [l=|*.

To show the surjectivity of U, take g € L?(u). For the restictions g;(\) =
g(X,j) part 1) gives vectors z; € X; with g; = Ujx; for j € J, and hence
g = Uzj xj. As a result, U is unitary by Proposition 5.52 in [FA]. Let
Tj : X; — X be the restriction of T'. Since Tx = >, Tjx;, we derive

(hUz)(A, j) Z MUjzj) (A ) = Z (P1Uj5)(A) = Z (U;Tj;)(A)
= U(Zj Tjac]> (A7) =UTx(\ ). O

We add an observation to the above proof. Let A € o(T)\op(T"). Then
A ={\} xJ < Qisa pmnull set. In fact, otherwise the characteristic
function f of any subset of A with measure in R, would be a non-zero
element of L?(p1). Hence, z = U~ f # 0 would be an eigenvector of 1" for

the eigenvalue \, since Tx = U7IAf = Az. We further note that in the proof
of Theorem 4.17 one could also take Q = | ;¢ ; o( ) {7}, where T; = T x,
It can be shown that o(T) is the closure of | ;. ; o(T).

The above representation of bounded self—adJomt operators as multipli-
cation operators now leads to a multiplication representation and to a Mpy—
functional calculus for (possibly) unbounded self-adjoint operators A. Here
My(o(A)) is the Banach space of bounded Borel-measurable functions on
o(A) endowed with the supremum norm. We use this space instead of
L®(a(A)) to avoid certain technical problems. We set ry(z) = (A —z)~! for
z € C\{\} and write (C3’) replacing in (C3) the map p; by 7y for A € p(A).

THEOREM 4.18. Let A be a self-adjoint operator on a separable Hilbert
space X. Then the following assertions hold.

a) There is a o—finite measure space (2, A, 1), a measurable function h :
Q — o(A) and a unitary operator U : X — L*(u1) such that

D(A) ={ze X |hUz € LQ(M)} and Az =U'hUz.

b) There is a contractive map ¥4 : My(o(A)) — B(X); Va(f) = f(A),
satisfying (C1) and (C3’)-(C5). Moreover, if f, € My(c(A)) are uniformly
bounded and converge to f € My(o(T)) pointwise, then f,(A)x — f(A)z as
n — o for all x € X. Finally, for x € D(A) and f € My(c(A)) the vector
f(A)x belongs to D(A) and Af(A)x = f(A)Ax.
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PROOF. a) We additionally assume that o(A) # R and fix t € p(4) nR.*
Then R(t,A) € B(X) is self-adjoint and can be represented as R(t, A) =
U='mU on a space L?(2,u) as in Theorem 4.17. Recall that Proposi-
tion 1.20 yields o(A) =t — [o(R(t, A))\{0}] . Set

_ 1 1
h(/\,])—t—m _t_XEU(A)’

for j € J and X € o(R(t,A))\{0}. The sets {0} x J have p-measure 0 in
view of the obervation before the theorem, due to the injectivity of R(t, A).
We can thus extend h to a measurable function h : Q — o(A), by setting
h(0,j) = u for some € o(A).

Let z € D(A). We put y =tz — Az € X. Using z = R(t,A)y = U 'mUy,
we compute

hUx = hmUy = (tm — 1)Uy € L?(p),
U thUz =tU 'mUy —y = te —y = Az.
If x € X satisfies hUz € L?(u), then we put y = U~ 1(¢t1 — h)Uz € X and
obtain mUy = (tm — mh)Ux = Uz. Therefore, x = U 'mUy = R(t, Ay
belongs to D(A), and part a) is proved.
b) We define U4 : f — f(A) by

f(Az=UYfoh)Uz (4.7)

for f € My(o(A)) and z € X. We further set My = (f o h)p for p € L?(u).
It is straightforward to check that f(A) € B(X), W4 is linear, 1(A) = I and
(C5) is true. Let A € p(A). We have

hUr\(A)x = h(ry o h)Uz = h(A\l — h)"'Uz € L?(p)
for all z € X. So step a) yields that 7\(A)X < D(A) and (M —A)ry(4) = 1.
Similarly, one sees that r\(A)(Ax — Ax) = x for all x € D(A), and thus (C3’)

is shown. The contractivity follows from |[f(A)| = [[Ms]| < ||f]l. For
property (C4) we observe that

(fo)(A)x = U (foh)(goh)Ux = U (foh)UU Y(goh)Uz = f(A)g(A)z,

where f,g € My(c(A)) and = € X.

Let f, f, € Mp(c(A)) be uniformly bounded by ¢ such that f, — f point-
wise as n — o0. For every z € X, we have f,(A)z — f(A)z = U ((fn— f)o
h)Uzx. Since (f, — f) o h — 0 pointwise and |((f, — f) o h)Uz| < 2¢|Ux|,
Lebesgue’s convergence theorem shows that ((f, — f) o h)Ux tends to 0 in
L?(p) and so fn(A)r — f(A)z in X as n — oo.

Let € D(A). The above results yield that

g=h(foh) Uz = (foh)UU *hUx = (f o h)UAz € L*(p).

On the other hand, g = hRUU(foh)Uz = hU f(A)z. Part (a) thus implies
that f(A)x € D(A) and

Af( Az =UThUf(A)x =U g =U"Y(foh)UAz = f(A)Az. O
4r o(A) = R, we instead take ¢ = i and use below the version of Theorem 4.17 for

the normal operator R(i, A) given in Satz VII.1.25 in [We]. Part b) was not shown in the
lectures.
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The mapping W4 is uniquely determined, see Theorem VIIL5 in [RS].
There are versions of Theorem 4.18b) for unbounded f given in Theo-
rems 13.24 and 13.30 of [Ru2]. If we have A = T € B(X) in the above
theorem, then the definition of W4 in (4.7) yields pi(T') = T.

We briefly sketch a third version of the spectral theorem using the spectral
measure of A = A’.

REMARK 4.19. Let A be a self-adjoint operator on a separable Hilbert
space X. Set Pg = 1g(A) for a Borel set S € o(A4). Since 1% = 1g = Tg,
the contractive operator Pg is a self-adjoint projection by the Mj-calculus.
Take x € N(Ps) and y = Psz € R(Pg). We then obtain (z|y) = (z|Psz) =
(Psz|z) = 0 so that the spectral projection Pg is orthogonal. Let x,y € X.
Using Theorem 4.18 b), one sees that S — (Pgsz|y) is a ‘C-valued’ measure
Hay (see Appendix C in [Co2]). Moreover, for f € My(o(A)) one can show

ummm:j £ dgy (V)

a(A)
and moreover

(Aaly) = | Ay

for z € D(A) = {z € X| SJ(A) A2 dpz < o0} and y € X. One can further
define an operator-valued integral § f dP € B(X) such that

OV, = ([ raP)aly
J;r(A) Y << o(A) ) ' )
for x,y € X. See Theorem VIIIL.6 in [RS] and Sections VII.143 of [We|. ¢

We conclude with one of the most important applications of the above
theorem.

ExXAMPLE 4.20. Let H be a self-adjoint operator on a (separable) Hilbert
space X. For a given ug € D(H) we claim that there is exactly one function
ue CYR,X) n C(R,[D(H)]) solving the Schrédinger equation

Su(t) = —iHu(t), teR,  u(0) = uo. (4.8)
(H is called Hamiltonian.) The solution is given by w(t) = T'(t)ug for unitary
operators T'(t) on X satisfying T(0) = I, T(t +s) = T(t)T(s) = T'(s)T'(t)
and T(t)™' = T(—t) for t,s € R. Moreover, t — T(t)x € X continuous
for t € R and all x € X. An example for this setting is X = L?*(R3) and
H=—-(A+ ‘x%) with D(H) = W?22(R3), see Example 4.10.

PROOF. For t € R, we consider the bounded function f; : R — C; f(&) =
e, Theorem 4.18 allows us to define T'(t) = f;(H) € B(X). Since fy = 1
and fifs = fi+s, we obtain T'(0) = I and T'(¢)T'(s) = T(s)T(t) for t,s € R.
With s = —¢ it follows that T'(¢) has the inverse T'(—t). Moreover, T'(t) is
unitary since T'(t)" = fi(H) = f_¢+(H) = T(—t). Because of || fi|l,c = 1 and
the continuity of t — f(£) for fixed £ € R, the map R3¢t +— T(t)z € X is
continuous for each x € X by Theorem 4.18.

Let ugp € D(H). We set y = 7Tug — Hug for some 7 € p(H), so that
ug = R(7, H)y = r-(H)y. We then obtain

=5 (T(t)uo — T(s)uo) = 25 (fe(H) — fo(H))r-(H)y
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= (5 (e = fo)re) (H)y = ges(H)y
|

tm

= ()ast—>sf0r
£
—£

for all ¢ # s. Observe that g;s(§) — T__lgfs(ﬁ) (&
all § € o(H) and [|gisllo < [[mllo = SuPeeo (| 72¢| <

Theorem 4.18 shows that there exists ST (t)ug = m(H)T
We further compute

m(H)y = U(moh)U ty = U((~ip1r,) o B)U 1y
= —UihU U (rr o W)U Yy = —iHR(1, H)y = —iHuy
by means of Theorem 4.18. Hence, we arrive at
LTty = —1T(t)Hug = —iHT (t)uo,
using Theorem 4.18 once more. Due to these equations, v = T'(-)up belongs
to CY(R, X) n C(R,[D(H)]) and solves (4.8).
Let v € CY(R,X) n C(Rxq,[D(H)]) be another solution of (4.8). For
t,s € R and h # 0 we compute
FHT(t—s—h)v(s+h)—T(t—s)v(s)) — T(t — s)(V'(s) +1Hv(s))
=T(t—s— h)(%(v(s +h)—v(s)) — v'(s)) + (Tt —s—h)—T(t—s))V'(s)

— L(T(t—s—h)=T(t—s)v(s) —T(t — s)iHv(s) — 0

)f.
oo for all t # s. So
(t)y = T(t)m(H)y.

as h — 0. For any y € X we thus obtain —S (T'(t — s)v(s)|ly) = 0, since
= —iHwv. Consequently,

(T(t)zxly) = (T(#)v(0)ly) = (T(O)v(B)y) = (v()]y),
which gives u(t) = v(t) for all ¢ = 0. Thus the ‘strongly continuous unitary
group’ (T'(t))ter solves (4.8) uniquely. O



CHAPTER 5

Holomorphic functional calculi

We come back to the case of Banach spaces X and Y, but keep F = C.
We want to introduce functional calculi for non self-adjoint operators on X,
now using complex curve integrals.

5.1. The bounded case

Let U < C be open, g : U — Y be holomorphic (i.e., complex differ-
entiable), and v € C([a,b],U) be a piecewise C'-curve (in U) with range
I' = v([a,b]) < U. This means that there are a = ag <a; <--- <anx =b
such that the restrictions of v to [ax_1,ax] are C'. We define the curve
integral

b N ag

| 9= [ sb®pmae= Y [ saopoa
Y a k=1Y0k-1

as a Banach space-valued Riemann integral (having the same definition,

results and proofs as for Y = R in Analysis 2). Using Riemann sums,

one checks the usual properties of curve integrals and also that TS7 gdz =

S,Y Tgdz for all T € B(Y, Z) and Banach spaces Z.

Let v; : [aj,b;] — U be piecewise C''-curves for j € {1,2} such that either
by < ag or by = ag and y1(b1) = vy2(az). On [a1,b1] U [ag, b2] we define the
‘sum curve’ 1 U y2(t) = v;(t) for t € [aj,b;]. If by < ag, the ranges 'y and
I’y can be disjoint, and we call also such curves piecewise C*.

The index of a closed curve (i.e., v(a) = v(b)) at z € C\I" is given by

1 dw
 2mi yw—z
The index is the number of times that v winds around z, counted with
orientation +. (See Analysis 4 for basic properties of the index.)

Let v be closed and piecewise C' in U such that n(vy,2) = 0 for all z ¢ U.
Then Cauchy’s integral theorem and formula

Lgdz —0, (5.1)

1
S 9(w) 4
27 w—z

n(7, z)

n(y,2)9(z) = w, (5.2)
vy
are valid for all z € U\I'. This fact is shown for Y = C in Theorems IV.5.4
and IV.5.7 of [Col]. For a general Banach space Y, the formulas (5.1) and
(5.2) are thus satisfied by functions z — {g(z), y*) for every y* € Y*. Hence,
<S,y gdz,y*) = 0 for all y* € Y* so that a corollary of the Hahn—Banach

theorem yields (5.1) in Y. Similarly one deduces (5.2).

104
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For compact non-empty subsets K < C, we introduce the space
K)={f:D(f) > C|K = D(f) = C, D(f) is open, f is holomorphic}.

Let K € U < C, K be compact, and U be open. By Proposition VIII.1.1
in [Col] and its proof there exists an admissible curve vy for K and U (or,
in U\K) which means that v : [a,b] — U\K is piecewise C', n(v, z) = 1 for
all z € K, and n(y,z) =0 for all ze C\U.

Let T € B(X), fe H(o(T)), and v be admissible for ¢(7") and D(f). We
then define

%Jf ROLT)dA € B(X). (5.3)

This integral exists in B(X) since the integrand A — f(A)R(A,T) is holo-
morphic on p(T) N D(f) 2T and T is compact. Writing R(\,T) as ‘31=",
one sees the similarity of (5.3) and (5.2), but R(\,T) does not exist on the
possibly ‘large’ set o(T'), whereas the map w ~

Let 7' be another admissible curve for o(7) and D(f). We set 7" =
yu (—=7'), where “—” denotes the inversion of the orientation. We then have

1-1=0, zeo(T),

HWAa:an%*W””:{o—o=a 2 C\D(f).

So we can apply (5.1) on U = D(f)\o(T) obtaining
FOVRO,T) d — J FOOR(M,T) dA —f FOVROL, T) dA.
gl ¥

,Y//
Consequently, (5.3) does not depend on the choice of the admissible curve.
We recall that pi(z) = z for z € C. For f € H(o(T)) and T € B(X) we
next establish the holomorphic functional calculus which has very similar
properties as the continuous calculus from Theorem 4.11 for T' = T’. How-
ever, now the functions have to be defined on a neighborhood of o(7"), and
they have to be holomorphic and not just continuous.

THEOREM 5.1. Let T € B(X) and f, g, fn € H(o(T)) with D(f,) = D(f)
for n e N. Then the map

Or: H(o(T)) = B(X); [~ f(T),
defined by (5.3) is linear and satisfies

(H1) |f(T)] < csupperlfN)| for a constant ¢ = e(+,T) > 0,

(H2) W(T) =T, p(T) =T,

(H3) $(T)g(T) = g(T)F(T) = (f9)(T),

(1)) F(T) = $(T*),

(H5) if fr, = f uniformly on compact subsets of D(f), then f,(T) — f(T)
in B(X) as n — o0,

(H6) if f(A) # 0 for all X € o(T), then % € H(o(T)) and f(T) has the
inverse %(T)

Moreover, ®7 is the only linear map from H(o(T)) to B(X) satisfying
(H1)-(H3). For a polynomial p, the operators p(T) in (5.3) and in (4.5)
coincide. If X is a Hilbert space and T = T, the above ®r is the restriction
of the map @1 from Theorem 4.11.
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PROOF. It is clear that f — f(T) is linear. Property (H1) follows from
1
[T < o) supll RO D) supl F)] = (. ) suapl (V)]
Q0 el el el

Replacing here f(T') by f(T) — fu(T) = (f — fu)(T) we also deduce (H5).

To check (H4), we recall that o(T) = o(T*) and R(A\,T)* = R(\,T*) from
Theorem 1.24. Hence,
. 1

) ==

9

J FORNT) dX = f(T).
gl

We next show (H3). We choose a bounded open set U < C with o(T') <
U < U < D(f) nD(g) and admissible curves v in U\o(T) and 7, in
(D(f) n D(g))\U. We then have n(ys,p) = 0 for all y € Ty € C\U and
n(vg,A) = 1 for all X € I'y < U. Using the resolvent equation, Fubini’s
theorem in B(X) (see Theorem X.6.16 in [AE]) and (5.2) in C, we compute

F@9@) = 5 [ FOROT) | g RGsT) dpdy

2mi v

v
i | otmoen o [ S ana
= L[ ro0g0R0L T X = (£9)(D).

27 Vs

This identity also yields (f¢)(T) = (¢f)(T) = g(T)f(T).
To check (H2), we take f = 1 with D(f) = C. We choose the circle
Yo(t) = 2||T||e® for t € [0,27]. Theorem 1.16 then leads to

1

~ 2mi

1 0
(T TYydA=— | Y. 1A}
(T) R(A,T)dA QWiLon_o AT AN

Yo
& 1

= Z T”,J A lda =1,
= 27 "o

since the series converges in B(X) uniformly on I'g and SVO A7k d) is equal
to 271 if £ = 1 and equal to 0 for k € Z\{1}. The property pi(T) = T is
shown similarly.

If f(A\) # 0 for A € o(T), by continuity f is non-zero on some open set

D(%) containing o (7). Therefore, % belongs to H(o(T')) and (H6) follows

from (H2) and (H3) since 1 = f .

Let ¥ : H(o(T)) — B(X) be linear and satisfy (H1)-(H3). The linearity,
(H2) and (H3) imply that U(p) = p(T) = &r(p) for every polynomial p.
Moreover, ¥ also fulfills (H6) and hence ¥(r) = p(T)q(T)™! = ®¢(r) for
rational r = g in H(o(T). Let fe H(o(T)). Runge’s Theorem VIII.1.8 in

[Col] yields a bounded open set U with o(T) € U < U < D(f) and rational
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rn € H(U) tending uniformly to f on U as n — oo. Taking an admissible v
in U\o(T'), we see that r,(T) tends to ¥(f) and ®7(f) in B(X) by (H1), and
thus ¥ = ®&p. The last claim is shown similarly, using just polynomials. [

We first compute f(7T') for power series f and then for the simplest class
of T', namely multiplication operators T' = M.

EXAMPLE 5.2. a) Let f(z) = > ja,2" with convergence radius p >
0 and T € B(X) with r(T) < p. Since py(z) = ZfLO anz"™ tends to f
locally uniformly, Theorem 5.1 shows f(T) = >, >, a,T™ with convergence
in B(X). This representation as a power series does not work in the situation
of Theorem 5.5 (where f only has local power series); but even if it works,
it may be better to use the calculus (see Example 5.4).

b) Let E = C(K) for a compact set K < R? and let m € C(K). We
define My = myp for ¢ € E. Proposition 1.14 shows that M € B(FE),
o(M) =m(K), and R(A, M)p = 2—¢ for all A € p(M).

Let f € H(m(K)), v be an admissible curve in D(f)\m(K), ¢ € E, and
x € K. Using that the map 1) — 1 (z) is continuous and linear from E to C
and Cauchy’s formula (5.2) for z = m(x), we Compute

FODRI@) =[5 | TR0 MDA @) = 55 [ SO AR

= st | 5 Loy W) = Smi)o(e).

As aresult, f(M)p = (fo m)tp is also a multiplication operator. O
Also for the holomorphic calculus we show the spectral mapping theorem.

THEOREM 5.3. Let T € B(X) and f € H(o(T)). We then have
o(f(T)) = f(o(T)).
ProOF. Let ¢ f(o(T)). Then g = pul — f is nowhere on o(7") and so
g(T) is the inverse of pul — f(T') by (H6). Hence, u belongs to p(f(T)).
Conversely, let u = f(\) for some X € o(T). We set h(z) = % for
z € D(f)\{\} and h(X) = f'(A). Since h is bounded, it is holomorphic on

D(f) by Riemann’s theorem on removable singularities. We have h(z)(z —
A) = f(z) — p for all z € D(f), and so the calculus yields

(M=T)MT) = h(T)(M =T) = (h(AL=p))(T) = (pl—f)T) = pI—f(T).

As the operator (Al —T') is not surjective or not injective, uI — f(T) is not
bijective; i.e, u is contained in o(f(T")). O

We now use the spectral mapping theorem to study the long-term behavior
of differential equations. For X = C™ and matrices A, we reprove results
from Analysis 4 on linear ordinary differential equations.

EXAMPLE 5.4. Let A € B(X). For t € R we set f; : C — C; fi(z) = e'?,
and define ' = f;(A) € B(X). As in Example 4.20, one sees that

o)A _ gtAsA _ osAGA A _ [ J[ptA]1 = otA
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for all t, s € R. Moreover, t — e*4 belongs to C*(R, B(X)) with
%em — Aett = A,

44 is the unique solution in C*(R, X) of

Hence, the map u(t) = e
%u(t) = Au(t), teR, u(0) = u,

where uy € X is given. (Uniqueness is shown as in Example 4.20.) Theo-

rem 5.3 further yields

r(ett) = max{|p| | 1 € o(et) = et”(A)} = max{etRe)‘ |Aea(A)} = efs(4)

for the spectral bound s(A) := max{ReA |\ € 0(A)}. Therefore, if s(A) <0
(i.e., 0(A) € C_), then we deduce from Theorem 1.16 that

Ay _ 1 Ao Yn _ 1 nA||Yn
1> x(e?) = Tim ()% = tim o
So we can fix an index N € N with ||eN4| =: ¢ < 1. Writing any given t > 0
ast =kN + 7 for some k€ Ny and 0 < 7 < N, we estimate

tA] NA\k TA k.TA TA Ing —wt
- < < 1) <
e = M) < g e < ma o™ exp (NK138) < Me
where w = _anq > 0 and M := maxo<,<nl|e So spectral in-
formation on the given operator A implies the exponential decay ||u(t)|| <
Me *||lugl|, t = 0, of the solutions u.

TAH e|lnq|'

In the next theorem we discuss spectral projections in the present setting.
We first need some preparations. Let S € B(X) and P = P? € B(X) be a
projection with SP = PS. Set X; = R(P) and X2 = N(P). Lemma 2.16 of
[FA] then yields the direct sum X = X; @ X2. Moreover, if y = Pz € R(P),
then Sy = SPx = PSxz also belongs to R(P). If z € N(P), then PSz =
SPzx = 0 so that also Sz is an element of N(P). As a result, S leaves
invariant X7 and X3, and the restrictions Sfx; € B(X;) are well defined.

THEOREM 5.5. Let T € B(X) and o(T) = 0100y for two disjoint closed
sets 0j # ) in C. Then there is a projection P € B(X) such that f(T)P =
Pf(T) for f € H(o(T)) and o(Tj) = o; for j € {1,2}, where T; = Tlx, €
B(X;), X1 = R(P) and Xy = N(P). We further have X = X1 ® X2 and
R\, Tj)=R(\, T x, for e p(T')=p(T1)np(12). The projection is given by

P- 1| RO, T, (5.4)

2mi "

where y1 is an admissible curve for o1 and any open Uy 2 o1 with Uinos =0.

ProOF. There are open sets U; with Ui nUy = 0 and o; < Uj for
je{1,2}. Define he H(o(T)) by h =1on U; and h = 0 on Us. We set P =
h(T) € B(X). Ptroperties (H3) and (H2) then yield P? = h*(T) = h(T) = P
and f(T)P = Pf(T) for all f € H(o(T)). As seen above, X = X; @ X5 and
the operators T; = T x, € B(Xj;) are well defined.

Formula (5.4) follows by choosing v = 1 U 72, where «; are admissible
curves for o; and U; for j € {1,2}. Let A ¢ o1. We may shrink U; so that
A ¢ Uy since P does not depend on the choice of v. We define g(z) = )\iz
for z € Uy and g(z) = 0 for z € Us. Then g belongs to H(o(T)) and satisfies

9(T)A = T) = (AT - T)g(T) = (AL - p1)g)(T) = (T) = P.
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Setting R = g(T') x, € B(X1), we thus obtain
ROy, —T1) = (AMx, — T1)R = Ix,.

This means that A € p(T1), and so o(T1) < o1. Similarly, one sees that
o(1T2) < oy. In particular, o(7}) and o(7%) are disjoint.

Let X € p(T1) np(T3). For z € X, we have unique z; € X; with x = x1+xo.
If \x =Tz =0, then 0 = Az1 — Th21 + Azg — Thwe € X1 @ X so that x; is
contained in N(AI —T}) = {0} for j € {1,2}; i.e., x = 0. Given y € X, we
define z; = R(X, Tj)y; € X for j € {1,2}. Setting x = z1 + x2, we derive

Ax —Tx =X xy —Tixr + Axg —Toxs =y1 + 42 = 4.
We have proved that A € p(T'), R(A, Tl x, = R(\, Tj), and
o1U0y = o(T) € o(Ty) Vo (T) € 01U03.
Together with o(7}) < oy, it follows o(T};) = o; for j € {1,2}. O

We use the above concept to refine the results in Example 5.4 about the
long-term behavior of €4, by studying its ezponential dichotomy.

EXAMPLE 5.6. In the setting of Example 5.4, assume that o(A) niR = ().
We thus obtain closed sets 07 € C_ and o2 € C; with o(A4) = o1U09.
Let P be the spectral projection of A for oq1. We define A; and Ao as the
restrictions of A to X; = R(P) and X3 = N(P), respectively, as in Theorem
5.5. Then etA[Xj — et4i . X; — Xj and there are constants J, N > 0 with

e 1] < Ne™®  and |2 < Ne ™%, t

\Y

0.

In other words, X can be decomposed into e*4-invariant subspaces on which

et decays exponentially in forward and in backward time, respectively.
PRrOOF. Let v, 71, and h be given as in Theorem 5.5 and its proof. For
x € X1 we compute

oy — APy = (fh)(A)z = 1,f PR, A)z dA
2mi -

1
= f RN, Az d) = ey,
m

2mi

where f;(\) = e for t € R. In the same way one derives etdz = e*422 for

all z € Xy and ¢t € R. Since 0(A4;) = o1, we obtain s(A4;) < 0 and hence
Example 5.4 shows that ||e!421|| < Me™!||z|| for all t > 0 and z; € X
and some constants M,w > 0.

We have 0(A3) = 09 and so s(—Az) < 0. Note that the curve ¥ = — is
admissible for 0(—A) = —o(A). Substituting u = —\, we conclude that

1
et = e A — A)7hd

= —— ti _(_ -1 _ ot(=4)
ot ). eH(pl —(=A) " dup=e

= o )
for all t € R. For x5 € X5 we thus obtain

e Mg, = ety = Ty = A2y,

so that [Je "2z, < M’e“t||a|| for all £ > 0 and some M’,w’ > 0. O
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5.2. Sectorial operators

We extend the above results to certain unbounded operators A, restricting
ourselves to the exponential e!4.! For ¢ e (0,7) we define the open sector

S = {A e C\{0} ||arg A| < ¢}.
Note that Y7 = C\R¢o and X, = Cy.

DEFINITION 5.7. A closed operator A is called sectorial of angle ¢ € (0, 7)
if there is a constant K > 0 such that ¥4 < p(A) and

K
RN, A)| < Bk A€ Xy
In the literature several small variations of the above definition are used.
Note that a sectorial operator of angle ¢ is also sectorial of angle ¢ € (0, ¢).
In applications often arise operators A such that A —w/ is sectorial for some
w € R, cf. Remark 5.14. We discuss several core examples.

ExAMPLE 5.8. Let A be self-adjoint on the Hilbert space X. We further
suppose that o(A) € R¢p. Then A is sectorial of every angle ¢ < .

PROOF. Let ¢ € (5,7) and A € By. Since R(A, A) = R(\, A) by (4.3),
the operator R(\, A) is normal. Propositions 4.3 and 1.20 then yield

- ReA >0
RN A)| =r(RANA) =dAo(A _1<d)\,R -1 A2 )
A= ! ot <o) {|Im1>\|7 Re X < 0.

If ReA < 0, we can write A = |[A|e* for some ¢ € (%,¢). We then have
% = |sinf| > sin¢ > 0, and thus
1/sin¢ . K¢
R Al
Note that K, — 00 as ¢ — 7 in the above example.
ExAMPLE 5.9. Let X = C([0,1]) and Au = u” with D(A) = {u €
C?([0,1]) |u(0) = u(1) = 0}. Then A is sectorial of every angle ¢ < 7.

PROOF. We recall from Example 2.16 that ¥, < p(A) and that for A = p?
with p € C the resolvent is given by

IR(X, A <

)\€2¢. O

1
RG22, A)f(t) = a(f )™ + b(f, p)e ™ + ;M f eI £ () ds
0

for t € [0,1], f € X, and the numbers

<a(f,u)) B 1 ( ok Sé(eus — e 1) f(s)ds ) ‘

b(fiw)) Sé(e“e*“s — e Fel) f(s)ds

2p(e —et)
Fix ¢ € (5, 7). Take A € Xy. We obtain p1 € ¥y, and thus p = |ul ¥ with
0 < 0| < ¢/2 and Rep = |p| cos @ = || cos $/2. So we can estimate

t
RO AL < e+ s + L2 sy [ emmeniar
2|p te[0,1] Jt—1

ISee [KW] for a detailed study of a corresponding functional calculus.
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HfHOO ! Re us —Repus
< 2] (oRe s _e—Reu)< . (e +e ) ds

1
+J (eReue—Reus +e—ReueReus) dS) + Hf”OO
0 || Re pu
HfHOO ((eRep_1+1_e—Reu)

~ 2Reppl(eRer — o er)
Rep —Rep —Rep/ Rep HfHOO
+eH(1l—e )+e (e™H —1)) + ———
) [u|Re p

os(73) Hf” ( Re,u_efRe,u)_i_(eRe,u_efReu) +1>
w ” 2eTer — )

//\

cos 45/ 2

Note that D(A) = {u € X |u(0) = u(1) = 0} is not equal to X for the
above 'Dirichlet-Laplacian’, cf. Example 1.19 in [FA].

Similarly one can show that the ‘Neumann-Laplacian’ Aju = u” with

D(4Ay) = {ue C*([0,1]) | «/(0) = v/(1) = 0}

is sectorial for every angle ¢ < m with on X = C([0,1]). Moreover, its
spectrum is given by 0(A1) = 0p,(A1) = {—7%k? | k € Ny} with eigenfunctions
ug(t) = cos(kmt). (See exercises.) Here D(A;) is dense in X.

EXAMPLE 5.10. Let X = LP(R), 1 < p < w0, and Au = du for D(4) =
W1P(R). Then A is sectorial of every angle ¢ < 5.

PRrOOF. Example 3.43 says that o(A) = iR and ||R(\, A)|| < gL for
ReA > 0. If g€ (0,5) and A € Xy, we have |[Re A\| = |A| cos ¢ and hence

1/cos ¢
Al

Because of its spectrum, A is not sectorial of angle ¢ > 7. OJ

[R(X, A <

For a typical elliptic partial differential operator we now sketch how one
can construct sectorial operators on L?(U) via ‘form methods’, cf. Chapter 6
of [Ka] or Chapter 1 of [Ou].

EXAMPLE 5.11. Let U < R™ be open and bounded, and the coefficients
ajr € L*(U,C) for j,k € {1,...,m} be strictly accretive; i.e.,

Re " a(@)zZ > nl=l3 (5.5)
for some n > 0, all z € C™, and a.e. x € U. We write a = (aji);, Let
E = [*U) and V = W, *(U), where (-]-) = (:|-)2 and || = |-]2. Using
Poincaré’s equality in Theorem 3.36, we equip V with the equivalent norm
[|[Vvlall2 =t |v]ly. We now define the sesquilinear form

a:VxV —-C; Q(U,w)z Java]kakwda:

7,k=1

Note that a is bounded; i.e. |a(v w)| < |lal|leo|lv]v]|w]y. Each f € E yields
an element v of V* given by w = —§yvfdz = —(v|f). The Laz-Milgram
lemma Theorem 1.51 in [EE] thus provides a unique function uy € V' such
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that a(v,uy) = ¢ (v) for all v € V. Moreover, the map ¢ — uy is antilinear,
and hence f + uy is linear. We now define

D(A) ={ueV|Fwe EVveV: —a(v,u) = (v|w)}, Au=w.

Therefore u = uy belongs to D(A) and satisfies Au = f and —a(v,u) =
(v|Au) = (v|f) for all v € V. Moreover, A : D(A) — E is bijective. Using
Theorem 3.36 with constant ¢ =: cp and (5.5), we estimate u = A~1f by

[ul* < bl [Vul2|* < cpn~! Rea(u, w) < cpnt |(ul ) < b [ul| £]

for fe E;ie., A': E — E is bounded. In particular, A is closed.

We show that D(A) is dense in F. Indeed, take ¢ € E with (v|p) = 0
for all v € D(A). We have to check that ¢ = 0 in view of the projection
Theorem 3.8 in [FA]. Inserting ¢ := A~'p € D(A), we derive

0 = (¢|Ap) = —a(¥,¥) = —Rea(y,v) < —n|y|}

from (5.5), so that ¢ and thus ¢ are zero.

Note that the adjoint matrix a’ := @’ also satisfies (5.5) and that its
associated form a’ on V is given by a'(v,w) = a(w,v). It thus induces an
invertible operator A, too. For w € D(A) and u € D(A), we infer

(Aujw) = (w|Au) = —a(w,u) = —d'(u, w) = (u\fiw),

i.e., A< A’. Their invertibility implies A = A’ by Remark 4.5. In particular,
A is self-adjoint if and only if a’ = a, e.g., if a is real and symmetric.

To obtain sectoriality, we take v € V and u € D(A) with |u| = 1. The
properties of a imply

Ima(v, v)| < la(v, )| < Jale ol < 17" alw Rea(v, v),

and so a(v,v) belongs to ¥y with 6 := arctan(n~!(afs) € (0,742). Fix
¢ € (0,7/2) and set ¢ = m — ¢ > 7. Take A € ¥4. Then —\ belongs to
C\X,. Observe that d(—\, Xy) is larger than |A| sin(¢ —6). These facts lead
to the crucial lower bound

[Au — Aul| = |(u]du — Au)| = |-\ — a(u, u)| = |A| sin(p — 6). (5.6)

Hence, A is not an element of g,p(A). Similarly we obtain A ¢ oap(A’), so
that A is contained in p(A) by Theorem 1.24. Inequality (5.6) finally implies
that A is sectorial of angle ¢ > 7/2. O

The above example can be extended to operators with lower-order terms
and with other boundary conditions. With considerably more effort one
can also establish similar sectoriality results on LP-spaces. See [Ou] for a
comprehensive account of this (mainly functional analytic) theory.

In Example 5.11 we obtain the inlusion D(A) < W01’2(U). For ‘very bad’
coefficients or domains one cannot expect more. If a € W® and oU € C'—,
integration by parts (use Theorem 3.41) yields that A extends the operator
Agu = div(aVu) with D(4g) = W2(U) n W01’2(U). If oU € C?, one can
show equality here, but the proof needs methods from partial differential
equations and is quite technical. Details can be found in the references in
Example 3.49 and in the text following it, which also deal with p € [1, 0].



5.2. Sectorial operators 113

Let A be sectorial of angle ¢ € (5, 7) with constant K. Take any r > 0
and 0 € (3, ¢). We define

={A=m(s) = (-s)e | —0w<s< -1},
Iy = {\ =7(a) zreia’ -0 <a<b},

Ty = {\ =73(s) = s | r < s < 0},
P=P(T’,9)=F1UP2UF3.

For t > 0, we introduce the operator

27l R—o0 271

1 1
ot o L f PROAD = i [ PROHD, 6)
I'r

where T'r = I' n B(0, R) for R > r. We first have to show that the limit in
(5.7) exists in B(X).

LEMMA 5.12. Under the above assumptions, the integral in (5.7) converges
absolutely in B(X) and gives an operator et4 € B(X) which does not depend
on the choice of r > 0 and € (z,gb). We also have ||etd| < M for allt > 0
and a constant M = M(K,0) >

PROOF. Since |R(A\, A)| < ﬁ on I' and cos @ < 0, we can estimate

J e RO, A)\d/\‘ KJ exp(tsRee™) g 4
T'r

[se= ]
"’Kf exp trReew‘)‘ rel®| da
|rele|
N f exp(ts P;ee )|ei9|ds
|sel?]

OO ts cos 0
<K ( ds + f glreosa da>
—0

(—tcos®) do + 20e'"
rt|coso9| g —tcost

Kc(rt,0) <

for R > r and t > 0, substituting 0 = —st cos§ > 0. Thus the limit in (5.7)
exists absolutely in B(X) by the majorant criterium, and ||e*4|| < Kc(r,t,6).
If we take r = 1/t, then ¢(1/t,t,0) =: ¢(f) does not depend on ¢ > 0.

So it remains to check that the integral in (5.7) is independent of » > 0
and 0 € (5, ¢). To this aim, we define I'" = I'(r’, #") for some 7' > 0 and 0’ €
(%, ), where we may assume that 6 > 6. We further set Iy, = I'" n B(0, R)
and choose R > r,r’. Let C’E and Cp be the circle arcs from the endpoint
of I'r to that of I'; in {Im A > 0} and {Im A < 0}, respectively. (If 6 = ¢’,
then C'% contain just one point.) Then Sg =Tr U Ch U (=T'%) U (=Cp) is
a closed curve in the starshaped domain 4. So (5.1) shows that

f ePR(X, A)dX = 0.
Sgr
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We further estimate

o’

ia K : .

’J etAR()\,A) d)\H <J etRRee : |iRela|da < K(‘gl _e)etRCObG N O,
ot 0 | Re'|

as R — oo since cosf < 0, and analogously for C;. So we conclude that

f AR\, A)dX = lim | PR\ A)dA= lim | e?R(\ A)dA
r

R—0 I'r R—0 F/R
=f e R(X, A) d). O

We next establish some of the fundamental properties of the operators
et4. In view of these results one calls (e/4);~q the ‘holomorphic semigroup
generated by A’. Actually, the theorem admits a converse. We refer to
Section 2.1 of [Lu] for this and related facts. (See also Section 2.3 of [EE]).

THEOREM 5.13. Let A be sectorial of angle ¢ > 5. Define et as in (5.7)
fort >0, and set "4 = I. Then the following assertions hold.

a) ethesA = esAetd = e(t+9)A for all t, s > 0.

b) The map t — et belongs to C*' (R, B(X)). Moreover, et*X < D(A),
%em = Aet and || Aett|| < % for a constant C > 0 and allt > 0. We also
have Aetdz = et Ax for all x € D(A) and t = 0.

¢) Let x € X. Then etAx converges ast — 0 in X if and only if x € D(A).
In this case, !4z tends to x as t — 0.

PROOF.? a) Let t,s > 0. Take 0 <7 <7’ and T < ¢ < 6 < ¢. Set
I' = T(r,0) and I" = T'(+',¢). Using the resolvent equation and Fubini’s
theorem, we compute

1
etesd = CIE f et’\f e’ R(\, A)R(p, A) dpedX
r v

1 X 1 eSH
N A)—
2mLe RO )27riL,u—)\d'ud)\

+i SR A)lf et drd
omi Jp & T o LN

Fix Ael" and take R>max{r,r’,|\|}. We set Cf, = {z=Re'* |/ <a<2r—0'}

and Sp, = I'y U C}. Since n(Sy, A) = 1, Cauchy’s formula (5.2) yields

1 st
¢ dp = e*.

As in Lemma 5.12, we further compute

esH et
J — dpy — f — dp and
Iy, M I

eSH sRep
[ <o
o = A

2Not shown in the lectures.

sRcosf’ 2rR

Sy~ o 0
|l —= Al R =}l

< 27R sup
pneCh
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as R — oo. Consequently,
1 SH
A = — ¢ d,u
2mi ™M — A
Closing I'g with the circle arc Cgr = {z = Rel®|0 < a < 27 — 0} for
sufficiently large R > r, one verifies in the same way that

oM
0= j dA
rA—p

since n(I'g U Cr, ) = 0. We thus conclude that

(&

olAgsA _ 21f MeAR(N, A) d) = oHH9IA — o344
™ Jr

b) Let x € X, t>0,e >0, and R > r. Observe that the Riemann sums
for §. e R(\, A) dX converge in [D(A)] since A — R(), A) is continuous in
B(X,[D(A)]). We thus obtain

A eMR(A,A)dAzf AR, A) dX
I'r g

=J eMAR(N, A)dX\ — f AT, (5.8)
I'r T'r

Take again Cr = {u = Re'® |0 < o < 27 — 0}. Using (5.1), one shows as in
part a) the limit

f et d)\’ =
g

as R — oo, uniformly for ¢ > €. Moreover, as in the proof of Lemma 5.12
(with r = 1/t) we estimate

_J et)‘dA‘ < IR sup etRcosa < 27TReeRcos9 -0
Cr 0<a<2n—0

o0 S ]
‘f ||)\et>\R()\,A)||d)\‘ < K(QJ S etscost qg _|_J Temsada>
I'r 1 8 _o

2K 2eK0 c’
< + ==,
t|cos 0] t t
Therefore, the right-hand side of (5.8) tends to

f AeMR(A, A) dA
T

as R — 0. Since A is closed, it follows that !4 X < D(A) and
1 !

Aett = — f AeMR(A, A) d), |Ae | < &

27 Jr 27t

for all ¢ > 0. In a similar way one sees that

7 tscost 2K Recost
g 2K e S COS ds < e € COs N O
R e|cos 8]

f A R(N, A) dX
N\I'g

as R — oo, uniformly for ¢t > . As a result,

d
f MeMRN,A) AN = — | eMR(N, A)dA
T dt Jrg,
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converges in B(X) uniformly for t > ¢, and so t — e € B(X) is continuously

differentiable for t > 0 with $ef4 = Ae!. For 2 € D(A), we further obtain

R—w 271

Aettz = lim 1f MR\, A) Az d) = et Az
I'r

c) Let z € D(A), R > r, and t > 0. As in step a), from Cauchy’s formula
(5.2) we derive

At At
1 edAzliml,f C =1
27 Jp A R—o0 2mi Jp, A—0

Observing that AR(\, A)x — = R(\, A) Az, we conclude that

tA L At 1 1 e

efr—r=—1c¢ <R()\, A) — 7>xd)\ = — | —R\ A)AzdA.
27 Jr A 21 Jr A

Because the integrand is bounded by ﬁ on T for all ¢ € (0, 1], Lebesgue’s

convergence theorem implies the existence of the limit

1 1
lim ez — 2 = J XR()\’ A)AzdX = 2.
r

t—0 27

Let Kr = {Re'™| — 0 < a < 6}. Cauchy’s theorem (5.1) shows that

1
—R(\, A)Azd) = 0.
PrU(—Kg) A

Since also

1 2rRK

—R(\ A Aa:d)\‘ < ——||Az|| — 0

[, srona T ax)
as R — o0, we arrive at z = 0. Because of the uniform boundedness of e*4,
it follows that e’z — x as t — 0 for all x € D(A).
Conversely, if ez — y as t — 0, then y belongs to D(A) by assertion b).

Moreover, R(1, A)e*dz = e"R(1, A)x tends to R(1, A)x as t — 0 because of
R(1,A)z € D(A). It follows R(1,A)y = R(1,A)x, and so x =y € D(A). O

REMARK 5.14. Let A —wl = A, be sectorial of angle greater than 7 for
some w € R. We then compute

1 1
eWletde — J ORI+ w, A)dr = — M R(p, A) dp =: et
27 r 2mi w4T

for t > 0. For ' = e**et4« one obtains similar properties as for w = 0. ¢

We now solve the evolution equation (5.9) governed by a sectorial operator
A with angle ¢ > 7/2. Such problems are called of ‘parabolic type’ since
diffusion problems are typical applications, see Example 5.16. In contrast
to the Schrédinger equation (4.8) we can allow for initial values in D(A).

COROLLARY 5.15. Let A be sectorial of angle ¢ > 7/2 and let ug €
D(A). Then u(t) = etug, t = 0, is the unique solution in C*(Ry, X) N
C(R4,[D(A)]) n C(Rx0, X) of the initial value problem

u'(t) = Au(t), t>0, u(0) = up. (5.9)
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ProoF. Existence follows from Theorem 5.13. Let v be another solution
of (5.9). Let 0 <e < s <t—e¢e <t Theorem 5.13 then implies that
%e(t*S)Av(s) = —el=94 4y (s) + )4/ (s) = 0.

As in Example 4.20, this fact yields e(*~9)4v(e) =e*4v(t — ). Letting e — 0,
tA TA

one infers e ug = v(t) as 7+— €™z is continuous for 7 = 0 and x € D(A). O

We only give one of the possible examples.

EXAMPLE 5.16. Let X = C([0,1]) and Ap = ¢” with D(A) = {¢ €
C%([0,1]) | ¢(0) = ¢(1) = 0}. Let ug € Cy(0,1) = D(A). Then the function

u(t) = ettug, t > 0, belongs to

C(R=0, C([0,1])) n C(R+, C*([0,1])) n C' (R4, C([0,1]))
and uniquely solves the partial differential equation
ou(t, z) = Opzu(t, x), t>0, zel0,1],
u(t,0) = u(t,1) =0, t>0, (5.10)
u(0,z) = ug(x), x € [0,1]. O
Formula (5.7) and Theorem 5.13 lead to a theory for parabolic problems
which is similar to ordinary differential equations, see [Lu] or [EE]| and

[NEE]. We only add a basic theorem on the long-term behavior extending
Example 5.4. It can be applied to (5.10) by Examples 5.9 and 3.46.

THEOREM 5.17. Let A be sectorial of angle ¢ > w/2 and satisfy s(A) =
sup{Re A | A € 0(A)} < —0 < 0. Then there is a constant N = 1 such that
let4|| < Ne™% for all t = 0.

PROOF.? The assumptions imply that A_5; = A + §I is sectorial of
some angle ¥ € (w/2,¢). Take I' = I'(r,0) with » > 0 and 6 € (7/2,%).
Remark 5.14 then yields that et4 = e7%et4-s where however et is defined
by the curve integral (5.7) on the shifted path " := —§ + . Lemma 5.12
shows that e*4-¢ is uniformly bounded for ¢ > 0. It thus remains to verify

f e™R(p, A)dp = J eAR(N A)dN,  t>0. (5.11)
—o+I" r

To this end, let R > r and S;t{ be the horizontal line segments connecting
the end points on I'g and I'; in {Im A > 0} and {Im X < 0}, respectively.
Let Cr = Tr U Sf U (=I") U (=Sg). This path is contained in p(A4) and
n(Cgr,z) =0 for all z € o(A). Cauchy’s theorem (5.1) now implies

J e R(N, A)d) = 0.
Cr

Observe that the segments S;.tﬁr have fixed length § and that Re A < Rcosf <
0 and |A\| = R for all A € SE. Because of § < ¢, the sets S5 belong to %4
for all sufficiently large R. We can thus estimate

AR\, A)d)| < 5—KeRt0059.
st R

Since the right-hand side vanishes as R — o0, we have shown (5.11). O

3Not shown in the lectures.
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