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CHAPTER 1

General spectral theory

The spectrum is the infinite-dimensional analogue of the set of matrix
eigenvalues. Several core results of matrix theory can be extended (usually
in modified form) to linear operators T on a Banach or Hilbert space, where
the proofs are typically quite different and one often needs additional as-
sumptions on T . Besides bounded T , we also treat a class of discontinuous
operators, the ‘closed’ ones, which is relevant for differential operators. We
first discuss this class, and then establish the basic results of spectral theory.

General notation. X ‰ t0u, Y ‰ t0u, and Z ‰ t0u are Banach spaces
over F P tR,Cu with norms ∥¨∥ (or ∥¨∥X etc.). A linear map T : X Ñ Y is
continuous if and only if the operator norm ∥T∥ “ sup∥x∥ď1∥Tx∥ is finite.
Endowed with this norm, the set

BpX,Y q “
␣

T : X Ñ Y
ˇ

ˇT is linear and continuous
(

is a Banach space, where we put BpXq :“ BpX,Xq. We also set X‹ “

BpX,Fq and write x‹pxq “ xx, x‹yXˆX‹ “ xx, x‹y for x P X and x‹ P X‹.
Let DpAq be a linear subspace of X and A : DpAq Ñ Y be linear. Then

A, or pA,DpAqq, is called linear operator from X to Y (and on X if X “ Y )
with domain DpAq. Its kernel ar range are denoted by

NpAq “
␣

x P DpAq
ˇ

ˇAx “ 0
(

resp. RpAq “
␣

y P Y
ˇ

ˇ DxPDpAq : y “ Ax
(

.

1.1. Closed operators

We recall one of the basic examples of an unbounded operator: Let X “

Cpr0, 1sq be endowed with } ¨ }8 and consider Af “ f 1 with domain DpAq “

C1pr0, 1sq. Then A is linear, but not bounded. Indeed, the functions un P

DpAq given by unptq “ p1{
?
nq sinpntq for n P N satisfy ∥un∥8 Ñ 0 and

∥Aun∥8 ě |u1
np0q| “

?
n Ñ 8 as n Ñ 8.

However, if fn P DpAq “ C1pr0, 1sq fulfill fn Ñ f and Afn “ f 1
n Ñ g in

Cpr0, 1sq as n Ñ 8, then f P DpAq and Af “ g (see Analysis 1). This
observation leads us to the following basic definition.

Definition 1.1. Let A be a linear operator from X to Y . The operator A
is called closed if for all xn P DpAq, n P N, possessing limits x “ limnÑ8 xn
in X and y “ limnÑ8 Axn in Y , we have x P DpAq and Ax “ y.

For closed A, we thus have limnÑ8 Axn “ AplimnÑ8 xnq if pxnq and
pAxnq converge. We discuss some basic examples, where we are a bit sloppy
when working in Lp-spaces. In Examples 2.6 b) and 2.12 a) of [FA] one can
find a more precise treatment of related issues. Differential operators on
Lp-spaces are studied in Section 3.4.

1



1.1. Closed operators 2

Example 1.2. a) Clearly, every operator A P BpX,Y q is closed (with
DpAq “ X). On X “ Cpr0, 1sq the operator Af “ f 1 with DpAq “ C1pr0, 1sq

is closed, as seen above. Below we equip d{dx with boundary conditions.

b) Let X “ Cpr0, 1sq. The operator Af “ f 1 with

DpAq “
␣

f P C1pr0, 1sq
ˇ

ˇ fp0q “ 0
(

.

is closed in X. Indeed, let fn P DpAq and f, g P X be such that fn Ñ f
and Afn “ f 1

n Ñ g in X as n Ñ 8. Again by Analysis 1, the function f
belongs to C1pr0, 1sq and f 1 “ g. Since 0 “ fnp0q Ñ fp0q as n Ñ 8, we
obtain f P DpAq and thus Af “ f 1 “ g. This means that A is closed on X.
In the same way we see that A1f “ f 1 with

DpA1q “
␣

f P C1pr0, 1sq
ˇ

ˇ f 1p0q “ 0, fp1q “ 0
(

is closed in X. There are many more variants.

c) Let X “ Cpr0, 1sq and Af “ f 1 with

DpAq “ C1
c pp0, 1sq “

␣

f P C1pr0, 1sq
ˇ

ˇ supp f Ď p0, 1s
(

,

where the support supp f of f is the closure of tt P r0, 1s | fptq ‰ 0u in r0, 1s.
This operator is not closed. In fact, consider the functions fn P DpAq and
f P C1pr0, 1sq given by

fptq “ t2, fnptq “

#

0, 0 ď t ă 1{n,

pt´ 1{nq
2 , 1{n ď t ď 1,

for every n P N. We then have the limits fn Ñ f and f 1
n Ñ f 1 in X as

n Ñ 8. However, since supp f “ r0, 1s the map f does not belong to DpAq.

d) Let X “ LppRdq, 1 ď p ď 8, and m : Rd Ñ C be measurable. Define
Af “ mf with

DpAq “
␣

f P X
ˇ

ˇmf P X
(

.

This is the maximal domain. Then A is closed. Indeed, let fn Ñ f and
Afn “ mfn Ñ g in X as n Ñ 8. Then there is a subsequence such that
fnj pxq Ñ fpxq and mpxqfnj pxq Ñ gpxq for a.e. x P Rd, as j Ñ 8. Hence,

mf “ g in LppRdq and we thus obtain f P DpAq and Af “ g.

e) Let X “ L1pr0, 1sq, Y “ C, and Af “ fp0q with DpAq “ Cpr0, 1sq.
Then A is not closed from X to Y . In fact, look at fn P DpAq given by

fnptq “

#

1 ´ nt, 0 ď t ď 1{n,

0, 1{n ă t ď 1,

for n P N. Here ∥fn∥1 “ 1
2n tends to 0 as n Ñ 8, but Afn “ fnp0q “ 1. ♢

To study closed operators, one uses the following concepts.

Definition 1.3. Let A be a linear operator from X to Y . The graph of
A is given by

GpAq “
␣

px,Axq P X ˆ Y
ˇ

ˇx P DpAq
(

.

The graph norm of A is defined by ∥x∥A “ ∥x∥X `∥Ax∥Y . We write rDpAqs

if we equip DpAq with ∥¨∥A.
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Note that ∥¨∥A is equivalent to ∥¨∥X if A P BpX,Y q. We endow X ˆ Y
with the norm ∥px, yq∥XˆY “ ∥x∥X `∥y∥Y . Recall that a sequence in XˆY
converges if and only if its components in X and in Y converge. We collect
basic properties of the above notions, where part c) connects them closely.

Lemma 1.4. Every linear operator A from X to Y satisfies the following
assertions.

a) GpAq Ď X ˆ Y is a linear subspace.

b) rDpAqs is a normed vector space and A P BprDpAqs, Y q.

c) A is closed if and only if GpAq is closed in X ˆY if and only if rDpAqs

is a Banach space.

d) Let A be injective and put DpA´1q :“ RpAq. Then, A is closed from X
to Y if and only if A´1 is closed from Y to X.

Proof. Statements a) and b) follow from the definitions, and asser-
tion c) implies d) since

GpA´1q “
␣

py,A´1yq
ˇ

ˇ y P RpAq
(

“
␣

pAx, xq
ˇ

ˇx P DpAq
(

is closed in Y ˆX if and only if GpAq is closed in X ˆ Y . We next show c).
The operator A is closed if and only if for all xn P DpAq, n P N, and

px, yq P X ˆ Y with pxn, Axnq Ñ px, yq in X ˆ Y as n Ñ 8, we have
x P DpAq and Ax “ y; i.e., px, yq P GpAq. This property is equivalent to
the closedness of GpAq. Since ∥px,Axq∥XˆY “ ∥x∥X ` ∥Ax∥Y , a Cauchy
sequence or a converging sequence in GpAq corresponds to a Cauchy or a
converging sequence in rDpAqs, respectively. So rDpAqs is complete if and
only if pGpAq, ∥¨∥XˆY q is complete. By Corollary 1.13 of [FA], the latter is
equivalent of the closedness of GpAq in X ˆ Y . □

By part c), a closed operator A on X can also be viewed as a bounded
one acting from rDpAqs to X. However, in spectral theory one has to treat
A as a map on X. The following closed graph theorem is a variant of the
Open Mapping Theorem 4.28 in [FA].

Theorem 1.5. Let X and Y be Banach spaces and A be a closed operator
from X to Y . Then A is bounded (i.e., ∥Ax∥Y ď c∥x∥X for some c ě 0
and all x P DpAq) if and only if DpAq is closed in X. In particular, a closed
operator with DpAq “ X belongs to BpX,Y q.

Proof. Let DpAq be closed in X. Then DpAq is a Banach space for
∥¨∥X (by Analysis 2) and ∥¨∥A (by Lemma 1.4). Since ∥x∥X ď ∥x∥A for all
x P DpAq, a corollary to the open mapping theorem (see Corollary 4.29 in
[FA]) shows that there is a constant c ą 0 such that ∥Ax∥Y ď ∥x∥A ď c∥x∥X
for all x P DpAq.

Conversely, let A be bounded and let xn P DpAq converge to x P X with
respect to ∥¨∥X . Then ∥Axn ´Axm∥Y ď c∥xn ´ xm∥X , and so the sequence
pAxnqn is Cauchy in Y . There thus exists y :“ limnÑ8 Axn in Y . The
closedness of A shows that x belongs to DpAq; i.e., DpAq is closed in X. □

We next show that Theorem 1.5 is wrong without completeness and give
an example of a non-closed, everywhere defined operator on each infinite-
dimensional Banach space.
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Remark 1.6. a) LetM be given by pMfqptq “ tfptq, t P R, on CcpRq with
} ¨ }8. This linear operator is everywhere defined, unbounded and closed. In
fact, take fn, f, g P CcpRq such that fnptq Ñ fptq and pMfnqptq “ tfnptq Ñ

gptq uniformly for t P R as n Ñ 8. Then gptq “ tfptq for all t P R; i.e.,
g “ Mf and M is closed. Further, pick φn P CcpRq with }φn}8 “ 1 and
φnpnq “ 1. Since }Mφn}8 ě |Mφnpnq| “ n, the operator M is unbounded.

b) LetX be an infinite-dimensional Banach space and let B be an algebraic
basis of X, see Theorem III.5.1 in [La]. (Hence, for each x P X there are
unique αbpxq “ αb for b P B with x “

ř

bPB αbb, where only finitely many of
the coefficients αbpxq are non-zero.)1 We may assume that ∥b∥ “ 1 for all
b P B. Choose a countable subset B0 “ tbk | k P Nu of B and set

MBbk “ kbk for each bk P B0, and MBb “ 0 for each b P BzB0.

Then MB can be extended to a linear operator on X which is unbounded,
since ∥MBbk∥ “ k and ∥bk∥ “ 1. Thus MB is not closed by Theorem 1.5. ♢

We discuss permanence properties of closed operators, which are more
delicate than for bounded ones. In the proof, one just checks the definition.

Proposition 1.7. Let A be closed from X to Y , T P BpX,Y q, and S P

BpZ,Xq. Then the following operators are closed.

a) B “ A` T with DpBq “ DpAq.

b) C “ AS with DpCq “
␣

z P Z
ˇ

ˇSz P DpAq
(

.

Proof. a) Let xn P DpBq, n P N, x P X, and y P Y such that xn Ñ x
in X and Bxn “ Axn `Txn Ñ y in Y as n Ñ 8. Since T is bounded, there
exists Tx “ limnÑ8 Txn and so Axn Ñ y´Tx as n Ñ 8. The closedness of
A then yields x P DpAq “ DpBq and Ax “ y ´ Tx; i.e., Bx “ Ax` Tx “ y.
b) Let zn P DpCq, n P N, z P Z, and y P Y such that zn Ñ z in Z and

ASzn Ñ y in Y as n Ñ 8. By the boundedness of S, the vectors xn :“ Szn
converge to Sz. Since Axn Ñ y and A is closed, we obtain Sz P DpAq and
ASz “ y; i.e., z P DpCq and Cz “ y. □

We state simple consequences which are needed in the next section.

Corollary 1.8. Let A be linear on X and λ P F. Then the following
assertions hold.

a) The operator A is closed on X if and only if λI ´A is closed on X.

b) Let λI ´A be bijective with pλI ´Aq´1 P BpXq. Then A is closed.

Proof. Assertion a) follows from Proposition 1.7 since A “ ´ppλI ´

Aq ´λIq. For the second part, Lemma 1.4 proves that λI ´A is closed, and
then assertion a) yields b). □

The following examples show that closedness can be lost when taking sums
or products of closed operators. See the exercises for further related results.

Example 1.9. a) Let E “ CbpR2q and Ak “ Bk with

DpAkq “
␣

f P E
ˇ

ˇ the partial derivative Bkf exists and belongs to E
(

,

1This statement was given in the lectures in a somewhat sloppy form.
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for k P t1, 2u. Set B “ B1 ` B2 on

DpBq “ DpA1q X DpA2q “ C1
b pR2q :“

␣

f P C1pR2q
ˇ

ˇ f, B1f, B2f P E
(

.

By an exercise, A1 and A2 are closed. However, B is not closed.
Indeed, take ϕn P C1

b pRq converging uniformly to some ϕ P CbpRqzC1pRq.
Set fnpx, yq “ ϕnpx ´ yq and fpx, yq “ ϕpx ´ yq for px, yq P R2 and n P N.
We then obtain f P E, fn P DpBq, ∥fn ´ f∥8 “ ∥ϕn ´ ϕ∥8 Ñ 0 and
Bfn “ ϕ1

n ´ ϕ1
n “ 0 Ñ 0 as n Ñ 8, but f R DpBq.

b) Let X “ Cpr0, 1sq, Af “ f 1 with DpAq “ C1pr0, 1sq and m P Cpr0, 1sq

with m “ 0 on r0, 1{2s. Define T P BpXq by Tf “ mf for all f P X. Then
the operator TA with DpTAq “ DpAq is not closed.

To see this, take maps fn P DpAq with fn “ 1 on r1{2, 1s and fn Ñ f in X
with f R C1pr0, 1sq. Then, TAfn “ mf 1

n “ 0 tends to 0, but f R DpAq. ♢

1.2. The spectrum

We start with the basic definitions of spectral theory. For deeper in-
vestigations of spectra one has to take complex numbers F “ C. However,
several results are also true for the real case F “ R. Since this case is needed
sometimes, we develop the theory for F P tR,Cu as long as it makes sense.

Definition 1.10. Let A be a closed operator on X. The resolvent set of
A is given by

ρpAq “
␣

λ P F
ˇ

ˇλI ´A : DpAq Ñ X is bijective
(

, (1.1)

and its spectrum by
σpAq “ FzρpAq.

We further define the point spectrum of A by

σppAq “, tλ P F
ˇ

ˇ D v P DpAqzt0u with λv “ Av
(

Ď σpAq,

where we call λ P σppAq an eigenvalue of A and the corresponding v an
eigenvector or eigenfunction of A. For λ P ρpAq the operator

Rpλ,Aq :“ pλI ´Aq´1 : X Ñ X

and the set tRpλ,Aq |λ P ρpAqu are called the resolvent.

Eigenvalues are usually much easier to compute than general λ P σpAq. So
they may help a lot to determine the spectrum. However, Examples 1.21 and
1.25 yield unbounded and bounded operators with empty point spectrum
and non-void (even ‘large’) spectrum, where dimX “ 8. Observe that
computing the resolvent amounts to solve the equation λu ´ Au “ f for
each given f P X and a unique u P DpAq. In the simple examples below this
can be done explicitely, which is one way to calculate the spectrum. Before
we note that resolvent operators are automatically bounded.

Remark 1.11. a) Let A be closed on X and λ P ρpAq. Note that the resol-
vent Rpλ,Aq has the range DpAq. Corollary 1.8 and Lemma 1.4 further show
that Rpλ,Aq is closed on X, and thus it belongs to BpXq by Theorem 1.5.
In fact, even Rpλ,Aq : X Ñ rDpAqs is bounded, see Theorem 1.13.

b) Let A be a linear operator such that λI´A : DpAq Ñ X has a bounded
inverse for some λ P F. Then A is closed by Corollary 1.8. In this case, the
closedness assumption in Definition 1.10 is redundant. ♢
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In the literature, the spectrum is sometimes defined for general linear
operators, assuming in addition the boundedness of pλI ´Aq´1 in (1.1).
For unbounded A, the spectrum can be empty or equal to F, as we see

in the next examples which also demonstrate the influence of boundary
conditions. We set eλptq “ eλt for λ P C, t P J , and any interval J Ď R.

Example 1.12. a) Let X “ Cm and T P BpXq. Then σpT q only consists
of the eigenvalues λ1, . . . , λk of T , where 1 ď k ď m. (See linear algebra.)

b) Let X “ Cpr0, 1sq and Au “ u1 with DpAq “ C1pr0, 1sq. Then σpAq “

σppAq “ F. Indeed, eλ belongs to DpAq and Aeλ “ λeλ for each λ P F.
c) Let X “ Cpr0, 1sq and Au “ u1 with DpAq “ tu P C1pr0, 1sq

ˇ

ˇup0q “ 0u.
Then A is closed by Example 1.2. Moreover, σpAq is empty. In fact, let
λ P C and f P X. We then have u P DpAq and pλI ´ Aqu “ f if and only
if u P C1pr0, 1sq, u1ptq “ λuptq ´ fptq for t P r0, 1s, and up0q “ 0, which is
equivalent to

uptq “ ´

ż t

0
eλpt´sqfpsqds “: pRλfqptq,

for all 0 ď t ď 1. Hence, σpAq “ ∅ and Rpλ,Aq “ Rλ. ♢

Let U Ď F be open. The derivative of f : U Ñ Y at λ P U is given by

f 1pλq “ lim
µÑλ

1

µ´ λ
pfpµq ´ fpλqq P Y,

if the limit exists in Y . In the next theorem we collect fundamental proper-
ties of the spectrum and the resolvent of closed operators.

Theorem 1.13. Let A be a closed operator on X and let λ P ρpAq. Then
the following assertions hold.

a) ARpλ,Aq “ λRpλ,Aq ´ I, ARpλ,Aqx “ Rpλ,AqAx for x P DpAq, and

1

µ´ λ
pRpλ,Aq ´Rpµ,Aqq “ Rpλ,AqRpµ,Aq “ Rpµ,AqRpλ,Aq (1.2)

if µ P ρpAqztλu. The formula in display is called the resolvent equation.

b) The spectrum σpAq is closed, where Bpλ, 1{∥Rpλ,Aq∥q Ď ρpAq and

Rpµ,Aq “

8
ÿ

n“0

pλ´ µqnRpλ,Aqn`1 “: Rµ

if |λ´µ| ă 1{∥Rpλ,Aq∥ “: rλ. This series converges in BpX, rDpAqsq, absolutely
and uniformly on Bpλ, δrλq for each δ P p0, 1q. Moreover, we have

∥Rpµ,Aq∥BpX,rDpAqsq ď
cpλq

1 ´ δ

for all µ P Bpλ, δrλq and a constant cpλq given by (1.3).

c) The function ρpAq Ñ BpX, rDpAqsq; λ ÞÑ Rpλ,Aq, is infinitely often
differentiable with

`

d
dλ

˘n
Rpλ,Aq “ p´1qn n!Rpλ,Aqn`1 for every n P N.

d) ∥Rpλ,Aq∥ ě 1
dpλ,σpAqq

.
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Proof. a) The first claims follow from the identities

x “ pλI ´AqRpλ,Aqx “ Rpλ,AqpλI ´Aqx,

where x P X in the first and x P DpAq in the second one. For µ P ρpAq, we
further have

pλRpλ,Aq ´ARpλ,AqqRpµ,Aq “ Rpµ,Aq,

Rpλ,AqpµRpµ,Aq ´ARpµ,Aqq “ Rpλ,Aq.

Formula (1.2) follows by subtracting the above equations and also inter-
changing λ and µ.
b) Let |µ ´ λ| ď δ{∥Rpλ,Aq∥ for some δ P p0, 1q and x P X with ∥x∥ ď 1.

Also using statement a), we compute

∥pλ´ µqnRpλ,Aqn`1x∥A

ď
δn

∥Rpλ,Aq∥n
`

∥ARpλ,AqRpλ,Aqnx∥ ` ∥Rpλ,Aqn`1x∥
˘

ď δn p∥λRpλ,Aq∥ ` 1 ` ∥Rpλ,Aq∥q “: δncpλq. (1.3)

Due to this inequality and Lemma 4.23 in [FA], the series Rµ converges and
can be estimated as asserted. Part a) yields

pµI ´AqRpλ,Aq “ pµ´ λqRpλ,Aq ` I.

Employing this fact and that A belongs to BprDpAqs, Xq, we infer

pµI ´AqRµ “ ´

8
ÿ

n“0

pλ´ µqn`1Rpλ,Aqn`1 `

8
ÿ

n“0

pλ´ µqnRpλ,Aqn “ I,

and similarly RµpµI ´ Aqx “ x for all x P DpAq. Hence, µ is contained in
ρpAq and Rµ “ Rpµ,Aq. This means that ρpAq is open and σpAq is closed.

Assertion c) is a consequence of the power series expansion, as in the
scalar case. Statement b) also implies d). □

By the next result, the spectrum of a multiplication operator is directly
given via the multiplier. As a by-product we see that each closed set S Ď F
occurs as the spectrum of a closed operator, complementing Theorem 1.13 b).

Proposition 1.14. Let Ω Ď Rd be non-empty, m P CpΩq, E “ CbpΩq,
and Af “ mf with DpAq “ tf P E |mf P Eu. Then A is closed,

σpAq “ mpΩq,

and Rpλ,Aqg “ 1
λ´mg for all λ P ρpAq and g P E.

For every closed (resp., non-empty and compact) subset S Ď F there is a
closed (resp., bounded) operator B on a Banach space with σpBq “ S.

Proof. The closedness of A can be shown as in Remark 1.6. Let g P E.
If u P DpAq satisfies λu ´ Au “ pλ ´ mqu “ g, we obtain upxq “ pλ ´

mpxqq´1gpxq for all x P Ω with λ ‰ mpxq. So we first take λ R mpΩq. Then
the function f :“ 1

λ´mg belongs to E and satisfies λf ´ mf “ g so that

mf “ λf ´ g P E. As a result, f is an element of DpAq and it is the unique
solution in DpAq of the equation λu ´ Au “ g. This means that λ P ρpAq,

Rpλ,Aqg “ 1
λ´mg, and σpAq Ď mpΩq.



1.2. The spectrum 8

In the case that λ “ mpxq for some x P Ω, we compute

ppλI ´Aqfqpxq “ λfpxq ´mpxqfpxq “ 0

for every f P DpAq. Consequently, λI ´A is not surjective and so λ P σpAq;

i.e., mpΩq Ď σpAq. The closedness of the spectrum now yields σpAq “ mpΩq.
The final assertion follows from Example 1.12 c) if S “ ∅. Otherwise,

consider Ω “ S and mpxq “ x where one identifies R2 with C if F “ C.
Define A and E as above. Then σpAq is equal to S, and A is bounded if S
is compact (where CbpSq “ CpSq). □

A similar result is valid in Lp-spaces, cf. Example IX.2.6 in [Co2]. We
next study a variant of the first derivative with a non-trivial spectrum. Here
we use the closedness of the spectrum since we can compute eigenvalues only
for a (dense) subset of σpAq.

Example 1.15. Let X “ C0pRě0q “ tf P CpRě0q | limtÑ8 fptq “ 0u with
F “ C be endowed with } ¨ }8. On X we consider Af “ f 1 with

DpAq “ C1
0 pRě0q “

␣

f P C1pRě0q
ˇ

ˇ f, f 1 P X
(

.

As in Example 1.2 one sees that A is closed. Moreover, we have σpAq “

tλ P C | Reλ ď 0u and σppAq “ tλ P C | Reλ ă 0u “: C´.
Proof. First note that for λ P C´ the function eλ belongs to DpAq

and Aeλ “ e1
λ “ λeλ. This means that C´ Ď σppAq Ď σpAq, and hence

C´ Ď σpAq by the closedness of the spectrum.
Next, let Reλ ą 0 and f P X. We then have u P DpAq and λu ´ Au “ f

if and only if u P X X C1pRě0q and u1ptq “ λuptq ´ fptq for all t ě 0. This
equation is solved by

uptq “

ż 8

t
eλpt´sqfpsq ds “: pRλfqptq, t ě 0.

We still have to check Rλf P X. Let ε ą 0. There is a number tε ě 0 such
that |fpsq| ď ε for all s ě tε. We can now estimate

|Rλfptq| ď

ż 8

t
epReλqpt´sq|fpsq|ds ď ε

ż 8

0
e´Reλr dr “

ε

Reλ
,

for all t ě tε, where we substituted r “ s´ t. As a result, u is contained in
DpAq and solves λu´Au “ f .

Let v P DpAq be another solution. Then w :“ u ´ v P DpAq satisfies
w1 “ λw and hence w “ ceλ for some c P C. Because of Reλ ą 0 the
function eλ does not belong to X, implying w “ 0 and the uniqueness of
solutions in DpAq. We have shown that λ P ρpAq with Rλ “ Rpλ,Aq, and
hence σpAq “ C´.
Finally, assume there is a number λ P iR and a function v P C1

0 pRě0q

with v1 “ λv. It follows vptq “ eλptqvp0q and so |vptq| “ |vp0q| for all t ě 0.
Letting t Ñ 8, we infer that |vp0q| “ 0 and thus v “ 0. Therefore A has no
eigenvalues on iR. l

Complementing Theorem 1.13, we state additional properties of the spec-
trum if the operator is bounded, e.g., it is compact. Using this fact, for
T P BpXq we define the spectral radius

rpT q “ max
␣

|λ|
ˇ

ˇλ P σpT q
(

.
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Theorem 1.16. Let T P BpXq. Then σpT q is a compact set and for λ P F
with |λ| ą infnPN∥Tn∥1{n we have

Rpλ, T q “

8
ÿ

n“0

λ´n´1Tn “: Rλ.

Let also F “ C. Then σpT q is non-empty and the spectral radius is given by

rpT q “ lim
nÑ8

∥Tn∥1{n “ inf
nPN

∥Tn∥1{n ď ∥T∥.

Proof. 1) Since }Tn`m} ď }Tn} }Tm} for all n,m P N, by an elemen-
tary lemma (see Lemma VI.1.4 in [We]) there exists the limit

r :“ lim
nÑ8

∥Tn∥1{n “ inf
nPN

∥Tn∥1{n ď ∥T∥.

Let |λ| ą r. We estimate

lim sup
nÑ8

∥λ´nTn∥1{n “
1

|λ|
lim
nÑ8

∥Tn∥1{n “
r

|λ|
ă 1.

Lemma 4.23 in [FA] now yields the convergence in BpXq of the series Rλ.
Moreover, we have

pλI ´ T qRλ “

8
ÿ

n“0

λ´nTn ´

8
ÿ

n“0

λ´n´1Tn`1 “ I,

and similarly RλpλI ´ T q “ I. Hence, λ belongs to ρpT q and Rλ “ Rpλ, T q.
Due to its closedness, the spectrum σpT q Ď Bp0, rq is compact. Therefore
rpT q exists as the maximum of a compact subset of R, and rpT q ď r.

2) Let F “ C. Take Φ P BpXq‹ and define fΦpλq :“ ΦpRpλ, T qq for
λ P D “ CzBp0, rpT qq. Note that fΦ : D Ñ C is complex differentiable and

fΦpλq “

8
ÿ

n“0

λ´n´1ΦpTnq “: Sλ if |λ| ą r.

By Theorem V.1.11 in [Co1], there are unique coeffcients am P C with

fΦpλq “

8
ÿ

m“´8

amλ
m for λ P D.

The series Sλ thus converges for all λ P D, and so

@ λ P D, Φ P BpXq‹ : sup
nPN

|Φpλ´n´1Tnq| ă 8.

A corollary to the uniform boundedness principle (see Corollary 5.12 in [FA])
thus yields that

cpλq :“ sup
nPN

}λ´n´1Tn} ă 8

for each λ P D. This fact leads to

lim
nÑ8

∥Tn∥1{n “ lim
nÑ8

|λ| p|λ| ∥λ´n´1Tn∥q
1{n ď |λ| lim

nÑ8
p|λ| cpλqq

1{n “ |λ|

for all |λ| ą rpT q. Together with step 1), we arrive at r “ rpT q.



1.2. The spectrum 10

3) Suppose that σpT q “ ∅. The functions fΦ from part 2) are now holo-
morphic on C for every Φ P BpXq‹. Step 1) implies that

|fΦpλq| ď ∥Φ∥ |λ|´1
8
ÿ

n“0

∥T∥n

|λ|n
ď

2∥Φ∥
|λ|

,

for all λ P C with |λ| ě 2∥T∥. Therefore, fΦ is bounded and hence constant
by Liouville’s theorem from complex analysis. The above estimate then
shows that ΦpRpλ, T qq “ 0 for all λ P C and Φ P BpXq‹. Employing the
Hahn–Banach theorem (see Corollary 5.10 in [FA]), we obtain Rpλ, T q “ 0,
which is impossible since Rpλ, T q is injective and X ‰ t0u. □

We note that already on X “ R2 the matrix
`

0 1
1 0

˘

has empty real spec-
trum, but the complex eigenvalues ˘i. The next example first shows that the
spectral radius can be much smaller than the norm, and then uses rpT q ď }T }

for a basic operator. (We let F “ C in the example.)

Example 1.17. a) We define the Volterra operator V on X“Cpr0, 1sq by

V fptq “

ż t

0
fpsq ds

for t P r0, 1s and f P X. Then V belongs to BpXq with ∥V n∥ ď 1{pn!q since

|V nfptq| ď

ż t

0

ż s1

0
. . .

ż sn´1

0
∥f∥8 dsn . . . ds1 ď

1

n!
∥f∥8

for all n P N, t P r0, 1s, and f P X. Moreover, taking f “ 1 we obtain
∥V n∥ ě ∥V n

1∥8 “ 1{pn!q and so ∥V n∥ “ 1{pn!q. Theorem 1.16 thus yields

rpV q “ lim
nÑ8

pn!q´1{n “ 0 ă 1 “ }V } and σpV q “ t0u.

Observe that σppV q “ ∅ since V f “ 0 implies that f “ pV fq1 “ 0.

b) Let left shift L given by Lx “ pxn`1q on X P tc0, ℓ
p
ˇ

ˇ 1 ď p ď 8u has

the spectrum σpLq “ Bp0, 1q. We further obtain σppLq “ Bp0, 1q if X ‰ ℓ8

and σppLq “ Bp0, 1q if X “ ℓ8.
Proof. The operator L P BpXq has norm 1 (see Example 2.9 in [FA]),

and so σpLq Ď Bp0, 1q. Clearly, Lp1, 0, . . . q “ 0. Let 0 ă |λ| ď 1. Observe
that Lv “ λv is equivalent to vn`1 “ λvn for all n P N and hence to vn “

λn´1v1. Choosing v1 “ 1, we obtain the eigensequences v “ pλnqnPN in ℓ8

for λ, and thus σpLq “ σppLq “ Bp0, 1q for X “ ℓ8. Now, letX ‰ ℓ8. Here
we have v P X if and only if 0 ă |λ| ă 1. It follows Bp0, 1q Ď σppLq Ď σpLq

and σpLq “ Bp0, 1q by the closedness of the spectrum. l

We decompose the spectrum into parts related to eigenvalues, cf. Theo-
rem 1.24. In this context also other definitions are used in the literature.

Definition 1.18. Let A be a linear operator on X. Then

σappAq “
␣

λ P F
ˇ

ˇ D xn P DpAq with ∥xn∥ “ 1 for all n P N and

λxn ´Axn Ñ 0 as n Ñ 8
(

is the approximate point spectrum of A and

σrpAq “
␣

λ P F
ˇ

ˇ pλI ´AqDpAq is not dense in X
(

the residual spectrum of A.
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One calls λ P σappAq an approximate eigenvalue and the corresponding xn
approximate eigenvectors. If one has λ P C and xn P DpAq with ∥xn∥ ě δ ą 0
for all n P N and λxn ´Axn Ñ 0 as n Ñ 8, then λ belongs to σappAq with
approximate eigenvectors }xn}´1xn, since }xn}´1 ď 1{δ.
In the next result we characterize σappAq and decompose the spectrum

into σappAq and σrpAq. The last statement implies that σappAq is non-empty
if σpAq R t∅,Fu.

Proposition 1.19. Let A be closed on X. The following assertions are
true (with possibly non-disjoint unions).

a) σappAq “ σppAq Y tλ P F | pλI ´AqDpAq is not closed in Xu.

b) σpAq “ σappAq Y σrpAq.

c) BσpAq Ď σappAq.

Proof. 1) Let λ R σappAq. Note that this fact holds if and only if there
is a constant c ą 0 with ∥λx ´ Ax∥ ě c∥x∥ for all x P DpAq. This lower
estimate implies that λ R σppAq. Moreover, let yn :“ λxn ´ Axn Ñ y in X
as n Ñ 8 for some xn P DpAq. Then the lower estimate shows that pxnq

is Cauchy in X, and so xn tends to some x in X. Hence, Axn “ λxn ´ yn
converges to λx ´ y, so that x belongs to DpAq and λx ´ Ax “ y by the
closedness of A. Consequently, pλI ´AqDpAq is closed.

Conversely, let pλI ´AqDpAq be closed and λ R σppAq. Then the inverse
pλI ´ Aq´1 exists and is closed on its closed domain pλI ´ AqDpAq due to
Lemma 1.4. The closed graph theorem 1.5 then yields the boundedness of
pλI ´Aq´1. It follows

∥x∥ “ ∥pλI ´Aq´1pλI ´Aqx∥ ď C∥pλI ´Aqx∥

for all x P DpAq and a constant C ą 0. This means that λ R σappAq. We
thus have shown assertion a), which implies b).

2) Let λ P BσpAq. Then there are points λn in ρpAq with λn Ñ λ as
n Ñ 8. By Theorem 1.13 d), the norms ∥Rpλn, Aq∥ tend to 8 as n Ñ 8,
and there thus exist yn P X with ∥yn∥ “ 1 for all n P N and 0 ‰ an :“
∥Rpλn, Aqyn∥ Ñ 8 as n Ñ 8. Set xn “ 1

an
Rpλn, Aqyn P DpAq. We then

have ∥xn∥ “ 1 for all n P N and λxn ´Axn “ pλ´ λnqxn ` 1
an
yn converges

to 0 as n Ñ 8. As a result, λ is an element of σappAq. □

In the next result we determine the spectra of certain operators which
(formally) arise as functions fpAq of A, namely the resolvent of A, where
fpµq “ pλ ´ µq´1 for λ P ρpAq and µ P σpAq, as well as an affine transfor-
mation of A, where fpµq “ αµ ` β for α, β P F. This often useful, as seen
below, and will be generalized in Section 4.2 and Chapter 5.

Proposition 1.20. Let A be closed on X, λ P ρpAq, α P Fzt0u and β P F.
Then the following assertions hold.

a) σpRpλ,Aqqzt0u “ pλ´ σpAqq´1 “
␣

1
λ´ν

ˇ

ˇ ν P σpAq
(

.

b) σjpRpλ,Aqqzt0u “ pλ´ σjpAqq´1 for j P tp, ap, ru.

c) If x is an eigenvector for the eigenvalue µ ‰ 0 of Rpλ,Aq, then y “

µRpλ,Aqx is an eigenvector for the eigenvalue ν “ λ´ 1{µ of A. If y P DpAq
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is an eigenvector for the eigenvalue ν “ λ ´ 1{µ of A with µ P Fzt0u, then
x “ µ´1pλy ´Ayq is an eigenvector for the eigenvalue µ of Rpλ,Aq.

d) rpRpλ,Aqq “ 1{dpλ,σpAqq.

e) If A is unbounded, then 0 P σpRpλ,Aqq.

f) σpαA`βIq “ ασpAq `β and σjpαA`βIq “ ασjpAq `β, j P tp, ap, ru.

Proof. Let µ P Fzt0u. Taking out the bijective map µRpλ,Aq : X Ñ

DpAq, we obtain

µI ´Rpλ,Aq “

´

`

λ´ 1
µ

˘

I ´A
¯

µRpλ,Aq. (1.4)

Hence, the bijectivity of µI ´ Rpλ,Aq : X Ñ X is equivalent to that of
pλ´ 1

µqI ´A : DpAq Ñ X. As a result, µ belongs to ρpRpλ,Aqq if and only

if λ´ 1
µ belongs to ρpAq if and only if µ “ pλ´ νq´1 for some ν P ρpAq. We

have shown part a).
In the same way, one derives assertion b) for j “ p, assertion c) and that

µI ´ Rpλ,Aq and pλ ´ 1
µqI ´ A have the same range. Using also Proposi-

tion 1.19, we then deduce statement b) also for j “ ap and j “ r.
Assertion d) is a consequence of a). In part e), the inverse Rpλ,Aq´1 “

λI ´ A is unbounded so that 0 P σpRpλ,Aqq. Similar as a) and b), the last
statement follows from the equality

λI ´ pαA` βIq “ α
`

λ´β
α I ´A

˘

. □

Approximate eigenvectors are often ‘close’ to an eigenvector of the oper-
ator acting on a ‘larger’ space. Such a fact can be used to construct them,
as in the following basic examples.

Example 1.21. a) Let X “ LppRq, 1 ď p ď 8, with F “ C and the (left)
translation T ptq be given by pT ptqfqpsq “ fps ` tq for s P R, f P X, and
t P R. Then σpT ptqq “ BBp0, 1q for t ‰ 0.
Proof. Recall from Example 4.12 in [FA] that T ptq is an isometry on

X with inverse pT ptqq´1 “ T p´tq for every t P R. Using Theorem 1.16,
we deduce σpT ptqq Ď Bp0, 1q. Proposition 1.20 further yields σpT ptqq´1 “

σpT ptq´1q “ σpT p´tqq Ď Bp0, 1q so that σpT ptqq Ď BBp0, 1q for all t P R.
Fix t ‰ 0 and take λ P iR. Then eλ belongs to CbpRq Ď L8pRq and

pT ptqeλqpsq “ eλps`tq “ eλteλpsq

for all s P R. We infer σpT ptqq “ σppT ptqq “ BBp0, 1q for p “ 8.
If p P r1,8q, we use eλ to construct approximate eigenfunctions if p ă 8.

For n P N set fn “ n´1{p
1r0,nseλ. We compute ∥fn∥p “ n´1{p∥1r0,ns∥p “ 1

and, employing the above formula in display,

∥T ptqfn ´ eλtfn∥p “ n´1{p∥eλtp1r´t,n´ts ´ 1r0,nsqeλ∥p “ n´1{p|2t|´1{p ÝÑ 0,

as n Ñ 8. It follows σpT ptqq “ BBp0, 1q if t ‰ 0. l

b) Let X “ C0pRq with F “ C and Au “ u1 with DpAq “ C1
0 pRq :“ tu P

C1pRq |u, u1 P C0pRqu. Then σpAq “ iR and σppAq “ ∅.
Proof. As in Example 1.15 one sees that λ P ρpAq if Reλ ‰ 0 with

Rpλ,Aqfptq “

ż 8

t
eλpt´sqfpsqds if Reλ ą 0 and
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Rpλ,Aqfptq “ ´

ż t

´8

eλpt´sqfpsqds if Reλ ă 0

for all t P R and f P X. Let Reλ “ 0. Then λ is not an eigenvalue, cf.
Example 1.15. Choose φn P C1

c pRq with ∥φ1
n∥8 ď 1{n and ∥φn∥8 “ 1, and

set un “ φneλ for all n P N. Note that ∥un∥8 “ 1, un P DpAq, and

Aun “ φ1
neλ ` φne

1
λ “ φ1

neλ ` λun.

Since ∥φ1
neλ∥8 ď 1{n, we obtain λ P σappRq. l

We now introduce the adjoint of a densely defined linear operator in order
to obtain a convenient description of the residual spectrum, for instance.

Definition 1.22. Let A be a linear operator from X to Y with dense
domain. We define its adjoint A‹ from Y ‹ to X‹ by setting

DpA‹q “
␣

y‹ P Y ‹
ˇ

ˇ D z‹ P X‹ @x P DpAq : xAx, y‹y “ xx, z‹y
(

,

A‹y‹ “ z‹.
(1.5)

Observe that for all x P DpAq and y‹ P DpA‹q we obtain

xAx, y‹y “ xx,A‹y‹y.

We note that the operator Af “ f 1 with DpAq “ tf P C1pr0, 1sq | fp0q “ 0u

is not densely defined on X “ Cpr0, 1sq since DpAq “ tf P X | fp0q “ 0u.
We first collect basic properties of the adjoint that follow rather directly
from the definition.

Remark 1.23. Let A be linear from X to Y with DpAq “ X.
a) Since DpAq is dense, there is at most one vector z‹ “ A‹y‹ as in (1.5),

so that A‹ : DpA‹q Ñ X‹ is a map. It is clear that A‹ is linear. For
A P BpX,Y q, Definition 1.22 coincides with the definition of A‹ in §5.4 of
[FA], where DpA‹q “ Y ‹.

b) The operator A‹ is closed from Y ‹ to X‹.
Proof. Let y‹

n P DpA‹q, y‹ P Y ‹, and z‹ P X‹ such that y‹
n Ñ y‹ in Y ‹

and z‹
n :“ A‹y‹

n Ñ z‹ in X‹ as n Ñ 8. To check that y‹ P DpA‹q, take
x P DpAq. We derive

xx, z‹y “ lim
nÑ8

xx, z‹
ny “ lim

nÑ8
xAx, y‹

ny “ xAx, y‹y,

and thus y‹ belongs to DpA‹q and A‹y‹ “ z‹. l

c) Let T P BpX,Y q and α P Fzt0u. Then αA`T with DpαA`T q “ DpAq

has the adjoint pαA` T q‹ “ αA‹ ` T ‹ with DppαA` T q‹q “ DpA‹q.
Proof. Let x P DpAq and y‹ P Y ‹. We obtain

xpαA` T qx, y‹y “ αxAx, y‹y ` xx, T ‹y‹y.

Hence, y‹ is contained in DppαA ` T q‹q if and only if y‹ belongs to DpA‹q,
and then pαA` T q‹y‹ “ αA‹y‹ ` T ‹y‹. l

It is often difficult to treat adjoints of unbounded operators in examples.
This topic will be discussed later on. Here we focus on the connection to
spectral theory, where we can characterize σrpAq by the point spectrum of
A‹ and show that taking adjoints does not change the spectrum.
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Theorem 1.24. Let A be a closed operator on X with dense domain.
Then the following assertions hold.

a) σrpAq “ σppA‹q.

b) σpAq “ σpA‹q and Rpλ,Aq‹ “ Rpλ,A‹q for every λ P ρpAq.

Proof. a) Due to a corollary of the Hahn–Banach theorem (see Corol-
lary 5.13 in [FA]), the set pλI ´ AqDpAq is not dense in X if and only if
there is a vector y‹ P X‹zt0u such that xλx´Ax, y‹y “ 0 for every x P DpAq.
This equation is equivalent to xAx, y‹y “ xx, λy‹y, which in turn means that
y‹ P DpA‹qzt0u and A‹y‹ “ λy‹; i.e., λ P σppA‹q.

b) Let λ P ρpAq. To show that Rpλ,Aq‹ is the resolvent of A‹, take
y‹ P DpA‹q and x P X. We compute

xx,Rpλ,Aq‹pλI ´A‹qy‹y “ xRpλ,Aqx, pλI ´A‹qy‹y

“ xpλI ´AqRpλ,Aqx, y‹y “ xx, y‹y,

using Definition 1.22 and that Rpλ,Aqx belongs to DpAq. It follows
Rpλ,Aq‹pλI ´ A‹qy‹ “ y‹ so that λI ´ A‹ is injective. Next, pick x‹ P X‹.
Set y‹ “ Rpλ,Aq‹x‹. For x P DpAq, we obtain

xpλI ´Aqx, y‹y “ xRpλ,AqpλI ´Aqx, x‹y “ xx, x‹y.

Therefore y‹ is an element of DpA‹q and x‹ “ pλI ´ Aq‹y‹ “ pλI ´ A‹qy‹,
where we use Remark 1.23 c). Consequently, the operator λI ´A‹ is surjec-
tive, and thus bijective with inverse Rpλ,A‹q “ Rpλ,Aq‹.

Conversely, let λ P ρpA‹q. Then λ does not belong to σppA‹q “ σrpAq by
part a). Take x P DpAq. Due to a corollary of the Hahn–Banach theorem
(see Corollary 5.10 in [FA]), there is a functional y‹ P X‹ such that ∥y‹∥ “ 1
and xx, y‹y “ ∥x∥. As above, we calculate

}x} “ xx, y‹y “ xx, pλI ´A‹qRpλ,A‹qy‹y “ xpλI ´Aqx,Rpλ,A‹qy‹y

ď ∥Rpλ,A‹q∥ ∥λx´Ax∥;

i.e., λ does not belong to σappAq. Proposition 1.19 now yields λ R σpAq. □

We give a typical application of the above results in a case where we know
the adjoint explicitely, so that its eigenvalues can be computed.

Example 1.25. Let X P tc0, ℓ
p | 1 ď p ď 8u with F “ C. Let Rx “

p0, x1, x2, . . . q be the right shift on X. We have σpRq “ Bp0, 1q and σppRq “

∅ for all X, σrpRq “ Bp0, 1q for X “ ℓ1, and σrpRq “ Bp0, 1q for X P

tc0, ℓ
p | 1ăpă8u.

Proof. First, let X ‰ ℓ8. From Example 5.44 of [FA] we know that

R‹ “ L, where the left shift L acts on ℓ1 if X “ c0 and on ℓp
1

otherwise.
Since σpLq “ Bp0, 1q by Example 1.17, Theorem 1.24 yields σpRq “ σpR‹q “

σpLq “ Bp0, 1q. Similarly, σrpRq “ σppLq “ Bp0, 1q if X “ c0 or X “ ℓp

with 1 ă p ă 8, and σrpRq “ σppLq “ Bp0, 1q if X “ ℓ1.

LetX “ ℓ8. Here we use R “ L‹ for L on ℓ1 so that again σpRq “ Bp0, 1q.
Clearly, Rx “ 0 yields x “ 0. If λx “ Rx “ p0, x1, x2, . . . q and λ ‰ 0,

then 0 “ λx1 and so x1 “ 0. Iteratively one sees that x “ 0. Hence, R has
no eigenvalues. l
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We show below that the spectrum is stable under ‘small’ perturbations.
(A classic treatment of such questions is given in [Ka].) To this end, we
first introduce an important notion that allows us to compare the ‘size’ of
closed operators, and we discuss it a bit.
Let A be a linear operator from X to Y . Then a linear operator B from

X to Y is called A–bounded (or if relatively bounded with respect to A) if
DpAq Ď DpBq and B P BprDpAqs, Y q.

Remark 1.26. Let A and B be linear from X to Y with DpAq Ď DpBq.
a) The operator B is A–bounded if and only if there are constants a, b ě 0

such that
}Bx} ď a}Ax} ` b}x} (1.6)

for all x P DpAq. Let X “ Y and A be closed with λ P ρpAq. Then the
A–boundedness of B is also equivalent to the boundedness of BRpλ,Aq. For
instance, we then have (1.6) with a :“ }BRpλ,Aq} and b :“ |λ| a.

b) Let A be closed and let (1.6) be satisfied with a ă 1. Then A ` B
with DpA`Bq “ DpAq is also closed, by an exercise. In view of a), the next
result also requires that b in (1.6) is sufficiently small. ♢

Theorem 1.27. Let A be a closed operator on X and λ P ρpAq. Further,
let B be linear on X with DpAq Ď DpBq. Assume that ∥BRpλ,Aq∥ ă 1.
Then A`B with DpA`Bq “ DpAq is closed, λ belongs to ρpA`Bq, and

Rpλ,A`Bq “ Rpλ,Aq

8
ÿ

n“0

pBRpλ,Aqqn “ Rpλ,AqpI ´BRpλ,Aqq´1,

∥Rpλ,A`Bq∥ ď
∥Rpλ,Aq∥

1 ´ ∥BRpλ,Aq∥
.

Proof. By Proposition 4.24 of [FA], the operator I´BRpλ,Aq has the
inverse

Sλ “

8
ÿ

n“0

pBRpλ,Aqqn

in BpXq. Hence, λI ´ A ´ B “ pI ´ BRpλ,AqqpλI ´ Aq : DpAq Ñ X is
bijective with the bounded inverse Rpλ,AqSλ. Remark 1.11 thus yields the
closedness of A ` B on DpAq, and so λ P ρpA ` Bq. The asserted estimate
also follows from Proposition 4.24 of [FA]. □

The smallness condition in the above theorem is sharp in general: Let
X “ C, a P C – BpCq, a ‰ 0, and b “ a. Then a is invertible, but a´ a “ 0
is not. Here we have λ “ 0 and |bRp0, aq| “ |aa | “ 1.



CHAPTER 2

Spectral theory of compact operators

Compact operators often occur in applications since integral operators
are compact in many situations. So it is a crucial fact that their spectral
theory is still close to the matrix case in several respects. We first discuss
the relevant properties of compact operators and then establish the core
spectral results. Subsequently, we extend the theory to closed operators
having a compact resolvent. We also treat a more flexible class of operators
and a related subset of the spectrum that it is invariant under compact
perturbations. Finally, we sketch a typical application to the dynamics of
reaction-diffusion equations.

2.1. Compact operators

We first recall a few facts from, e.g., Section 1.3 of [FA]. A non-empty
subset S Ď X is compact if each sequence in S has a subsequence with
limit in S. Equivalently, S is compact if every open covering of S has a
finite subcovering. We call S Ď X relatively compact if S is compact, which
means that each sequence in S has a converging subsequence (with limit in
S). Finally, S Ď X is relatively compact if and only if it is totally bounded ;
i.e., for each ε ą 0 there are finitely many balls in X with radius ε covering
it, where one may chose the centers in S. Compact sets are bounded and
closed. The converse is true if and only if X has finite dimension. A closed
subset of compact set is also compact.
We start with the basic definition for this chapter and state simple facts.

Definition 2.1. A linear map T : X Ñ Y is called compact if TBp0, 1q

is relatively compact in Y . The set of all compact linear operators is denoted
by B0pX,Y q.

Remark 2.2. Let T : X Ñ Y be linear.
a) If T is compact, then TBp0, 1q is bounded and thus T is bounded; i.e.,

B0pX,Y q Ď BpX,Y q.

b) The following assertions are equivalent.

i) T is compact.
ii) T maps bounded sets of X into relatively compact sets of Y .
iii) For every bounded sequence pxnqn in X there exists a convergent

subsequence pTxnj qj in Y .

Proof. Let T be compact. Take a bounded set B Ď X. Then B is con-

tained in Bp0, rq for some r ą 0 and thus TB in TBp0, rq “ rTBp0, 1q, which
is compact. Hence, TB is compact. The other implications ii) ñ iii) ñ i)
are clear. l

16
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c) The space of operators of finite rank is defined by

B00pX,Y q “
␣

T P BpX,Y q
ˇ

ˇ dimTX ă 8
(

,

cf. Example 5.16 of [FA]. For T P B00pX,Y q, the set TBp0, 1q is relatively
compact by the Bolzano–Weierstraß theorem; i.e., B00pX,Y q Ď B0pX,Y q.

d) The identity I : X Ñ X is compact if and only if Bp0, 1q is compact if
and only if dimX ă 8. See Theorem 1.42 of [FA]. ♢

The next result says that B0pX,Y q is a closed two-sided ideal in BpX,Y q.
The proofs are typical for the area.

Proposition 2.3. The set B0pX,Y q is a closed linear subspace of
BpX,Y q. Let T P BpX,Y q and S P BpY, Zq. If one of the operators T
or S is compact, then ST is compact.

Proof. Let xk P X with k P N satisfy c :“ supkPN∥xk∥ ă 8.
1) Let T,R P B0pX,Y q be compact. If α P F, then αT is also compact.

There further exists a converging subsequence pTxkj qj . Since pxkj qj is still
bounded, there is another converging subsequence pRxkjl ql. So ppT`Rqxkjl ql
has a limit and T `R belongs to B0pX,Y q; which thus is a linear subspace.

2) Let Tn P B0pX,Y q tend in BpX,Y q to some T P BpX,Y q as n Ñ 8. The
compactness of T1 yields a subsequence pT1xν1pjqqj with limit y1. Because of
∥xν1pjq∥ ď c for all j, there is a subsubsequence ν2 of ν1 such that pT2xν2pjqqj

converges. Note that pT1xν2pjqqj still tends to y1. Iteratively, we obtain
subsequences νl of νl´1 such that pTnxνlpjqqj converges for all n ď l.
We use the diagonal sequence given by um “ xνmpmq for m P N. Then

pTnumqm converges as m Ñ 8 for each n P N. Let ε ą 0. Fix an index N “

Nε P N such that ∥TN ´ T∥ ď ε. Then fix M P N with }TN pum ´ ukq} ď ε
for all m ě k ě M . For these indices we obtain

∥Tum ´ Tuk∥ ď ∥pT ´ TN qum∥ ` ∥TN pum ´ ukq∥ ` ∥pTN ´ T quk∥
ď cε` ε` cε.

Therefore pTumqm is a Cauchy sequence, and we have shown that T is
compact. Hence, B0pX,Y q is closed in BpX,Y q.

3) Let S P B0pX,Y q. Since pTxkqk is bounded, there is a converging
subsequence pSTxkj qj , so that ST is compact. Instead, let T P B0pX,Y q.
We then find a subsequence pTxklql with a limit y, and thus STxkl tends to
Sy. Again, ST is compact. □

Remark 2.4. Strong limits of compact operators may fail to be compact.
Consider, e.g., X “ ℓ2 and Tnx “ px1, . . . , xn, 0, 0, . . . q for all x P X and
n P N. Then Tn belongs to B00pXq Ď B0pXq, but Tnx tends to x “ Ix as
n Ñ 8 for every x P X and I R B0pXq. ♢

We next discuss compactness of several integral operators.

Example 2.5. a) Let X P tCpr0, 1sq, Lppr0, 1sq | 1 ď p ď 8u, Y “

Cpr0, 1sq, and k P Cpr0, 1s2q. Setting

Tfptq “

ż 1

0
kpt, τqfpτqdτ
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for f P X and t P r0, 1s, we define the integral operator T : X Ñ Y for the
kernel k. Then T belongs to B0pX,Y q.

Proof. By Analysis 2 or 3, the function Tf is continuous for all f P X
and T : X Ñ Y is linear. Since ∥Tf∥8 ď ∥k∥8∥f∥1 ď ∥k∥8∥f∥p (using
that λpr0, 1sq “ 1), the map T is contained in BpX,Y q. In particular, TB
is bounded in Y where B :“ BXp0, 1q. To show compactness, we use the
Arzela–Ascoli Theorem 1.47 from [FA]. For t, s P r0, 1s and f P B we have

|Tfptq ´ Tfpsq| ď

ż 1

0
|kpt, τq ´ kps, τq| |fpτq|dτ

ď sup
τPr0,1s

|kpt, τq ´ kps, τq| ∥f∥1 ď sup
τPr0,1s

|kpt, τq ´ kps, τq|.

The right-hand side tends to 0 as |t´ s| Ñ 0 uniformly in f P B, because k
is uniformly continuous. Therefore TB is equicontinuous. Theorem 1.47 in
[FA] then implies that TB is relatively compact; i.e., T P B0pX,Y q. l

b) Let X “ Cpr0, 1sq and V fptq “
şt
0 fpsq ds for t P p0, 1q and f P X. This

defines a bounded operator V on X with norm 1, see Example 1.17. Let
f P Bp0, 1q. Then }V f}8 ď 1 and }pV fq1}8 “ }f}8 ď 1. The Arzela–Ascoli
theorem (see Corollary 1.48 in [FA]) now yields the compactness of V .

c)1 Let X “ L2pRq. For f P X, we define

Tfptq “

ż

R
e´|t´s|fpsq ds, t P R.

By Theorem 2.14 of [FA], the operator T : X Ñ X is linear and bounded.
We claim that T is not compact.

Proof. Take fn “ 1rn,n`1s. For n ą m in N, we compute }fn}2 “ 1 and

}Tfn ´ Tfm}22 ě

ż n`2

n`1

ˇ

ˇ

ˇ

ˇ

ż n`1

n
es´t ds´

ż m`1

m
es´t ds

ˇ

ˇ

ˇ

ˇ

2

dt

“

ż n`2

n`1
e´2t

`

en`1 ´ en ´ em`1 ` em
˘2

dt

ě 1
2pe´2n´2 ´ e´2n´4qpen`1 ´ 2enq2

“ 1
2pe´2 ´ e´4qpe ´ 2q2 ą 0.

Hence, pTfnq has no converging subsequence. l

d) Let E “ L2pRmq and k P L2pR2mq. For f P E, we set

Tfpxq “

ż

Rm

kpx, yqfpyq dy, x P Rm.

As seen in Example 5.44 of [FA], this defines an operator T P BpEq. We
claim that T is compact.
Proof. There are maps kn P CcpR2mq that converge to k in E. (See

Analysis 3.) Let Tn be the corresponding integral operators in BpEq. There
is a closed ball Bn Ď Rm such that supp kn Ď Bn ˆBn. We then have

Tnfpxq “

#

0, x P RmzBn,
ş

Bn
knpx, yqfpyqdy, x P Bn.

1Parts c) and d) were partly sketched in the lectures.
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for f P E and n P N. Let Rnf “ fæBn . Fix n P N and take a bounded
sequence pfkq in E. Arguing as in part a), one finds a subsequence such
that pRnTnfkj qj has a limit g0 in CpBnq. Since Bn has finite measure, this

sequence converges also in L2pBnq. The maps Tnfkj then tend in E to the

0–extension g of g0 as j Ñ 8, and so Tn is compact. Let f P BEp0, 1q.
Hölder’s inequality in the inner integral yields

}Tf ´ Tnf}22 “

ż

Rm

ˇ

ˇ

ˇ

ˇ

ż

Rm

pkpx, yq ´ knpx, yqqfpyq dy

ˇ

ˇ

ˇ

ˇ

2

dx

ď

ż

Rm

´

ż

Rm

|kpx, yq ´ knpx, yq|2 dy

ż

Rm

|fpyq|2 dy
¯

dx

ď }k ´ kn}22

for all n P N. The operators Tn thus converge to T in BpEq so that T is
compact by Proposition 2.3. l

Summarizing, integral operators are usually compact if the base space
is compact or has finite measure, or if the kernel decays fast enough at
infinity. (In part c) we have kpt, sq “ e´|t´s| without decay on strips tpt, sq P

R2 | |t´s| ď cu. The next result due to Schauder will allow us to use duality
in the context of compact operators.

Theorem 2.6. An operator T P BpX,Y q is compact if and only if its
adjoint T ‹ P BpY ‹, X‹q is compact.

Proof. 1) Let T be compact. Take y‹
n P Y ‹ with supnPN∥y‹

n∥ “: c ă 8.

The set K :“ TBXp0, 1q is a compact metric space for the restriction of
the norm of Y . Set fn :“ y‹

næK P CpKq for each n P N. Putting κ :“
maxyPK∥y∥ ă 8, we obtain

∥fn∥8 “ max
yPK

|xy, y‹
ny| ď cκ

for every n P N. Moreover, pfnqnPN is equicontinuous since

|fnpyq ´ fnpzq| “ |xy ´ z, y‹
ny| ď ∥y‹

n∥ ∥y ´ z∥ ď c∥y ´ z∥

for all n P N and y, z P K. The Arzela–Ascoli theorem then yields a subse-
quence pfnj qj converging in CpKq. We further compute

∥T ‹y‹
nj

´ T ‹y‹
nl
∥X‹ “ sup

∥x∥ď1
|xx, T ‹py‹

nj
´ y‹

nl
y| “ sup

∥x∥ď1
|xTx, y‹

nj
´ y‹

nl
y|

ď ∥fnj ´ fnl
∥CpKq ÝÑ 0

as j, l Ñ 8. This means that pT ‹y‹
nj

qj converges and so T ‹ is compact.

2) Let T ‹ be compact. By step 1), the bi-adjoint T ˚˚ is compact. Let JX :
X Ñ X˚˚ be the canonical isometric embedding. Proposition 5.45 in [FA]
says that T ˚˚JX “ JY T , and hence JY T is compact by Proposition 2.3. Let
pxnq be bounded in X. We then obtain a converging subsequence pJY Txnj qj

which is Cauchy. Since JY is isometric, also pTxnj qj is Cauchy and thus has
a limit; i.e., T is compact. □
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2.2. The Fredholm alternative

In this section we establish the main spectral properties of compact oper-
ators K. These follow from the deep Theorem 2.7 due to Riesz (1918) and
Schauder (1930) which describes the mapping properties of I ´K in detail.
We need some facts from functional analysis to study kernels and ranges

by means of duality. To this end, for non-empty sets M Ď X and N˚ Ď X‹

we define the annihilators

MK “
␣

x‹ P X‹
ˇ

ˇ@y P M : xy, x‹y “
(

,

KN˚ “
␣

x P X
ˇ

ˇ@y‹ P N˚ : xx, y‹y “ 0
(

.

These sets are equal to X‹ or X if and only if M “ t0u or N˚ “ t0u,
respectively, see Remark 5.21 in [FA]. Let T P BpXq. Proposition 5.46 in
[FA] says that

RpT qK “ NpT ‹q, RpT q “ KNpT ‹q,

NpT q “ KRpT ‹q, RpT ‹q Ď NpT qK.
(2.1)

In particular, RpT q is dense if and only if T ‹ is injective; and if RpT ‹q is
dense, then T is injective.
The following Riesz–Schauder theorem extends fundamental results for

matrices known from linear algebra. The core equivalence of injectivity and
surjectivity of I´K fails for non-compact K. (Take for instance K “ I´R
for the right shift R on ℓp, which is injective but not surjective, andK “ I´L
for the left shift L on ℓp, which is surjective but not injective.)

Theorem 2.7. Let K P B0pXq and set T “ I ´ K. Then the following
assertions hold.

a) RpT q is closed.

b) dimNpT q ă 8 and codimRpT q :“ dimX{RpT q ă 8.

c) T is bijective ðñ T is surjective ðñ T is injective ðñ T ‹ is
bijective ðñ T ‹ is surjective ðñ T ‹ is injective. More precisely, we have

dimNpT q “ codimRpT q “ dimNpT ‹q “ codimRpT ‹q. (2.2)

Before proving the theorem, we first reformulate it as the Fredholm alter-
native for the solvability of the equation λx ´ Lx “ y for compact L. For
integral operators this result goes back to Fredholm (1900).

Corollary 2.8. Let L P B0pXq, λ P Fzt0u, and x, y P X. Then one of
the following alternatives holds.

A) The homogeneous problem λx “ Lx has only the trivial solution x “ 0.
Then for every y P X there is a unique solution x P X of λx´Lx “ y given
by x “ Rpλ, Lqy.

B) The equation λx “ Lx has the n-dimensional solution space NpλI´Lq

for some n P N. Then there are n linearly independent solutions x‹
1, . . . , x

‹
n P

X‹ of λx‹ “ L‹x‹. The equation λx ´ Lx “ y has a solution x P X if and
only if xy, x‹

ky “ 0 for all k P t1, . . . , nu. Every z P X satisfying λz´Lz “ y
is of the form z “ x` x0, where λx´ Lx “ y and x0 P NpλI ´ Lq.
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Proof of Corollary 2.8. We set K “ 1
λL P B0pXq and note that

λx ´ Lx “ y is equivalent to pI ´ Kqx “ 1
λy. By Theorem 2.7 b), we have

either dimNpI ´Kq “ 0 (case A) or dimNpI ´Kq “ n P N (case B).
In the first case, I ´K is bijective due to Theorem 2.7 c) which yields A).
In the second case, Theorem 2.7 a) shows that RpI ´Kq is closed so that

RpI ´Kq “ K NpI ´K‹q by (2.1). We thus deduce the solvability condition
from case B) noting that dimNpI ´ K‹q “ n due to (2.2). If x ´ Kx “ y
and z´Kz “ y, then z´x belongs to NpI ´Kq, as required in case B). □

We also note that the Fredholm alternative fails for λ “ 0, and give simple,
but typical application to differential equations.

Example 2.9. a) Let X “ Cpr0, 1sq and V fptq “
şt
0 fpsqds for t P r0, 1s

and f P X. We then have

RpV q “
␣

g P C1pr0, 1sq
ˇ

ˇ gp0q “ 0
(

,

which neither closed nor dense in X. In particular, V f “ g can not be solved
for all g P X. Nevertheless, V is injective and compact by Examples 1.17
and 2.5, respectively.

b) Let X “ Cpr0, 1sq with F “ R and q, f P X with q ě 0. Then there is
a unique function u P C2pr0, 1sq solving the boundary value problem

u2ptq ´ qptquptq “ fptq, t P r0, 1s, up0q “ 0 “ up1q. (2.3)

It is given by the integral equation

uptq ´

ż 1

0
kpt, sqqpsqupsq ds “

ż 1

0
kpt, sqfpsq ds, t P r0, 1s, (2.4)

with the kernel

kpt, sq “

#

pt´ 1qs, 0 ď s ď t ď 1,

tps´ 1q, 0 ď t ă s ď 1.

Proof. 1) Since we want to deduce solvability from uniqueness by means
of the Fredholm alternative, we first take two solutions u, v P C2pr0, 1sq of
(2.3). Then w “ u´ v P C2pr0, 1sq solves (2.3) with f “ 0. We multiply the
latter problem by w, take the integral over r0, 1s, and integrate by parts.
The boundary conditions then imply

0 ď

ż 1

0
qw2 dt “

ż 1

0
w2w dt “ ´

ż 1

0
pw1q2 dt,

so that w1 “ 0 and wptq “ wp0q “ 0 for all t. Problem (2.3) has thus at
most one solution.
2) The operator K given by Kgptq “

ş1
0 kpt, sqqpsqgpsqds for t P r0, 1s and

g P X is compact on X by Example 2.5. It is straightforward to check that
a solution u P C2pr0, 1sq to (2.4) belongs to C2pr0, 1sq and solves (2.3). So
step 1) yields uniqueness of (2.4) with f “ 0. Case A) in Corollary 2.8 now
leads to the assertion. l

Proof of Theorem 2.7. In the first two steps we show dimNpT q ă 8

and use this fact to establish part a). In a third step, a duality argument
completes the proof of assertion b). The lenghty two final steps then prove
statement c), using properties of kernels and ranges of the powers T k.
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1) The space N :“ NpT q “ T´1pt0uq is closed in X. For x P N we have
Kx “ x P N , so that K leaves N invariant and its restriction KN to N
coincides with the identity on N . On the other hand, KN is still compact
so that dimN ă 8 by Remark 2.2 d).

2) Since dimN ă 8, there is a closed subspace C Ď X such that NXC “

t0u and N ` C “ X; i.e., X “ N ‘ C. See Proposition 5.17 in [FA].

Let T̃ : C Ñ RpT q be the restriction of T to C. We endow C and RpT q

with the norm of X, so that C is a Banach space by its closedness. To show
that RpT q is closed, we want to invert T̃ .

Let T̃ x “ 0 for some x P C. Then x also belongs to N and so x “ 0. Let
y P RpT q. There is a vector x P X with Tx “ y. We can write x “ x0 ` x1
with x0 P N and x1 P C. Hence, T̃ x1 “ Tx1`Tx0 “ y, and so T̃ is bijective.
A corollary to the open mapping theorem (see Corollary 4.31 in [FA])

now yields that RpT q “ RpT̃ q is closed if and only if T̃´1 : RpT q Ñ C

is bounded. Suppose that T̃´1 was unbounded. Then there would exist
elements ȳn “ T̃ x̄n of RpT q with x̄n P C such that ȳn Ñ 0 as n Ñ 8 and

∥x̄n∥ “ ∥T̃´1ȳn∥ ě δ for some δ ą 0 and all n P N. We set xn “ }x̄n}´1x̄n
and note that }xn} “ 1 for all n P N and that

yn :“ xn ´Kxn “ T̃ xn “
1

∥x̄n∥
ȳn ÝÑ 0

as n Ñ 8. The compactness of K yields a subsequence pxnj qj and a vector
z P X such that Kxnj Ñ z as j Ñ 8. We obtain the limit xnj “ ynj `

Kxnj Ñ z and so ∥z∥ “ 1. Observe that z belongs to the closed set C. On
the other hand, z is contained in N because of

Tz “ z ´Kz “ lim
jÑ8

Kxnj ´K lim
jÑ8

xnj “ 0

implying that z P C X N “ t0u. This fact contradicts ∥z∥ “ 1, and hence
assertion a) is true.

3) Theorem 2.6 provides the compactness ofK‹ so that dimNpI´K‹q ă 8

by step 1). Using (2.1) and Proposition 5.23 in [FA], we further obtain

NpT ‹q “ RpT qK – pX{RpT qq‹.

Since NpT ‹q is finite-dimensional, linear algebra yields that

8 ą dimNpT ‹q “ dimpX{RpT qq‹ “ dimX{RpT q “ codimRpT q, (2.5)

showing statement b). We next prove in two steps the remaining equalities
in (2.2) which then imply the first part of assertion c).2

4) Claim A: There is a closed linear subspace N̂ with dim N̂ ă 8 and a

closed linear subspace R̂ of X such that

X “ N̂‘R̂, T N̂ Ď N̂ , T R̂ Ď R̂ and T2 :“ TæR̂ : R̂ Ñ R̂ is bijective.

Assume that Claim A has been shown. Setting T1 :“ TæN̂ P BpN̂q, we
obtain the following properties.
(i) dim N̂{RpT1q “ dimNpT1q (by the dimension formula in Cn).

2In the lectures (2.2) was not shown. Instead of steps 4) and 5) below, only the (much
easier) proof of the first part of c) was given.
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(ii) NpT q “ NpT1q. In fact, writing x “ x1 ` x2 for x P X, x1 P N̂ and

x2 P R̂, we deduce that Tx “ 0 if and only if T2x2 “ ´T1x1 P N̂ X R̂ “ t0u.
As T2 is injective, the latter statement is equivalent to x2 “ 0 “ T1x1. Hence,
x belongs to NpT q if and only if x P N̂ and T1x “ 0; i.e., NpT q “ NpT1q.

(iii) We define the map

Φ : N̂{RpT1q Ñ X{RpT q; x` RpT1q ÞÑ x` RpT q,

for x P N̂ Ď X. Because of RpT1q Ď RpT q, the map Φ is well defined. Of
course, it is linear. We want to show that Φ is bijective, which leads to

dim N̂{RpT1q “ dimX{RpT q.

Proof of (iii). Let Φpx ` RpT1qq “ 0 for some x P N̂ which yields x “ Ty
for a vector y P X. By Claim A, we have the decomposition y “ y1 ` y2 for
y1 P N̂ and y2 P R̂. Hence, T2y2 “ x´ T1y1 is contained in R̂ X N̂ “ t0u so
that y2 “ 0 by the injectivity of T2. So x belongs to RpT1q and Φ is injective.

Take x P X. Again there are elements x1 P N̂ and x2 P R̂ “ TR̂ with
x “ x1 ` x2. We now conclude that x´ x1 “ x2 P RpT q and thus

Φpx1 ` RpT1qq “ x1 ` RpT q “ x` RpT q.

Hence, Φ is bijective. ♢

Properties (i)–(iii) lead to

dimNpT q “ dimNpT1q “ dim N̂{RpT1q “ dimX{RpT q “ codimRpT q. (2.6)

Since also K‹ is compact by Theorem 2.6, we further obtain

dimNpT ‹q “ codimRpT ‹q. (2.7)

In view of (2.5)–(2.7), part c) follows from Claim A.

5) Proof of Claim A. We set Nk “ NpT kq and Rk “ RpT kq for k P N0.
Observe that

t0u “ N0 Ď N1 Ď N2 Ď . . . , X “ R0 Ě R1 Ě R2 Ě . . . ,

TNk Ď Nk´1 Ď Nk, and TRk “ Rk`1 Ď Rk (2.8)

for all k P N0. We also have

T k “ pI ´Kqk “ I ´

k
ÿ

j“1

ˆ

k

j

˙

p´1qj`1Kj “: I ´ Ck,

where Ck is compact for each k P N due to Proposition 2.3. Assertions a)
and b) now imply that

Nk, Rk are closed and dimNk ă 8 (2.9)

for every k P N. We need four more claims to establish Claim A.

Claim 1: There is a minimal n P N0 such that Nn “ Nn`j for all j P N0.
Indeed, suppose that Nj Ř Nj`1 for all j P N0. Then Riesz’ Lemma 1.44

in [FA] would give xj P Nj with ∥xj∥ “ 1 and dpxj , Nj´1q ě 1{2 for every j P

N0. (Here we use that Nj´1 is closed.) Take l ą k ě 0. Since Txl `xk ´Txk
is contained in Nl´1 by (2.8), we deduce that

∥Kxl ´Kxk∥ “ ∥xl ´ pTxl ` xk ´ Txkq∥ ě 1{2.
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As a result, pKxkqk has no converging subsequence, which contradicts the
compactness of K. So there is a minimal n P N0 with Nn “ Nn`1. Let
x P Nn`2. Then, Tx belongs to Nn`1 “ Nn so that x is an element of Nn`1.
This means that Nn`1 “ Nn`2, and Claim 1 follows by induction.

Claim 2: There is a minimal m P N0 such that Rm “ Rm`j for all j P N0.
In fact, suppose that Rj`1 Ř Rj for all j P N0. Again from Riesz’ lemma

we obtain vectors xj P Rj with ∥xj∥ “ 1 and dpxj , Rj`1q ě 1{2 for every
j P N0. (Here we use that Rj`1 is closed.) Take l ą k ě 0. Since Txk `xl ´

Txl P Rk`1 by (2.8), we deduce that

∥Kxk ´Kxl∥ “ ∥xk ´ pTxk ` xl ´ Txlq∥ ě 1{2.

This lower bound contradicts the compactness of K. So there exists a mini-
mal m P N0 with Rm “ Rm`1. Let y P Rm`1. Then there is a vector x P X
with y “ Tm`1x “ TTmx. Hence, y is contained in TRm “ TRm`1 “ Rm`2

by (2.8), implying Rm`1 “ Rm`2. Inductively, we obtain Claim 2.

Claim 3: Nn XRn “ t0u and Nm `Rm “ X.
Indeed, let x P Nn X Rn for the first part. Then Tnx “ 0 and we have

a pre-image y P X with Tny “ x. Hence, T 2ny “ 0 and so y belongs to
N2n “ Nn by Claim 1, which yields x “ Tny “ 0.
For the second part, let x P X. By Claim 2, the vector Tmx is contained

in Rm “ R2m; i.e., Tmx “ T 2my for some y P X. Therefore, x “ px ´

Tmyq ` Tmy is an element of Nm `Rm.

Claim 4: n “ m.
In fact, suppose that n ą m. Due to Claim 1 and Claim 2, there is a vector

x P NnzNm and we have Rn “ Rm. Claim 3 further gives y P Nm Ď Nn and
z P Rm “ Rn with x “ y ` z. Therefore, z “ x ´ y also belongs to Nn so
that z “ 0 by Claim 3. We obtain the contradiction x “ y P Nm.

Second, suppose that n ă m. Claim 1 and Claim 2 yield Nn “ Nm and
an element x P RnzRm. Owing to Claim 3, we have x “ y ` z for vectors
y P Nm “ Nn and z P Rm Ď Rn. Therefore, y “ x´ z is contained in Rn so
that y “ 0 by Claim 3. It follows x “ z P Rm, which is impossible.

We can now finish the proof of Claim A, setting N̂ :“ Nn and R̂ :“ Rn.
By (2.9), the spaces N̂ and R̂ are closed and dim N̂ ă 8. From Claims 3

and 4 we then infer that X “ N̂ ‘ R̂. Moreover, (2.8) and Claim 2 yield

TN̂ Ď N̂ and TR̂ “ R̂. If Tx “ 0 for some x “ Tny P R̂ and y P X, then
y P Nn`1 “ Nn by Claim 1. Therefore, x “ 0 and TæR̂ is bijective. □

Reformulating the Riesz–Schauder theorem, we next describe the spec-
trum of a compact operator if dimX “ 8. It contains 0 and at most count-
ably many eigenvalues that tend to 0 if they are infinitely many. Moreover,
the eigenspaces NpλI ´Kq are finite-dimensional. Recall from Example 2.9
that the Voltera operator V is compact with σpV q “ t0u and σppV q “ ∅.

Theorem 2.10. Let dimX “ 8 and K P BpXq be compact. Then the
following assertions hold.

a) σpKq “ t0u 9Y tλj | j P Ju, where J P t∅,N, t1, . . . , nu |n P Nu.
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b) σpKqzt0u “ σppKqzt0u. For all λ P σpKqzt0u the range of λI ´ K is
closed and

dimNpλI ´Kq “ codimRpλI ´Kq ă 8.

c) For each ε ą 0 the set σpKqzBp0, εq is finite, so that λj Ñ 0 as j Ñ 8

if J “ N.

Proof. Suppose 0 R σpKq; i.e., K is invertible. By Proposition 2.3
the identity I “ K´1K would be compact, which contradicts dimX “ 8.
Observe that assertion a) now follows from c) by taking ε “ 1{n for n P N.
For λ P Fzt0u we have λI ´ K “ λpI ´ 1

λKq. Since 1
λK P B0pXq, Theo-

rem 2.7 implies that either λ P ρpKq or λ P σppKq with

dimNpλI´Kq“ dimNpI´ 1
λKq “ codimRpI´ 1

λKq “ codimRpλI´Kqă8.

So we have established part b).
To prove statement c), we suppose that for some ε0 ą 0 we have points

λn in σpKqzBp0, ε0q with λn ‰ λm for all n ‰ m in N and vectors xn in
Xzt0u with Kxn “ λnxn. In linear algebra it is shown that eigenvectors to
different eigenvalues are linearly independent. Hence, the subspaces

Xn :“ lintx1, . . . , xnu

satisfy Xn Ř Xn`1 for every n P N. Moreover, KXn Ď Xn and Xn is closed
for each n P N (since dimXn ă 8). Riesz’ Lemma 1.44 in [FA] gives vectors
yn in Xn such that ∥yn∥ “ 1 and dpyn, Xn´1q ě 1{2 for each n P N. There
are coefficients αn,j P F with yn “ αn,1x1 ` ¨ ¨ ¨ ` αn,nxn, and hence

λnyn ´Kyn “

n
ÿ

j“1

pλn ´ λjqαn,jxj “

n´1
ÿ

j“1

pλn ´ λjqαn,jxj

belongs to Xn´1. For n ą m, the vector λnyn´Kyn`Kym is thus contained
in Xn´1 so that

∥Kyn ´Kym∥ “ |λn|
›

›

›
yn ´

1

λn
pλnyn ´Kyn `Kymq

›

›

›
ě

|λn|
2

ě
ε0
2
.

This fact contradicts the compactness of K. □

Using this result, we next shown non-compactness of our basic operators.
A true application of the Riesz–Schauder theory is sketched in Example 2.25.

Example 2.11. The following bounded operators are not compact since
their spectra are not finite or a null sequence, where we let F “ C:
a) the left and right shifts L and R on c0 or ℓp, 1 ď p ď 8, see Exam-

ples 1.17 and 1.25;

b) the translation T ptqf “ fp¨ ` tq for t P Rzt0u, on LppRq, 1 ď p ď 8,
see Example 1.21;

c) multiplication operators Tf “ mf on CbpSq for a pathwise connected
S Ď Rd and a given map m P CbpSqzt0u, see Proposition 1.14. (Observe
that mpSq is pathwise connected in C.) ♢
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2.3. Closed operators with compact resolvent

We now transfer the results of the previous section to a class of closed
operators introduced in the next definition.

Definition 2.12. A closed operator A on X has a compact resolvent if
there exists a number λ P ρpAq such that Rpλ,Aq P BpXq is compact.

Besides other properties, we first note that an operator with ρpAq ‰ ∅ has
compact resolvent if and only if its domain is compactly embedded into X.

Remark 2.13. Let A be closed on X and λ P ρpAq. Then the following
assertions are true.

a) Let Rpλ,Aq be compact. The resolvent equation (1.2) yields

Rpµ,Aq “ Rpλ,Aq ` pλ´ µqRpλ,AqRpµ,Aq,

for µ P ρpAq, so that also Rpµ,Aq is compact due to Proposition 2.3.

b) Recall rDpAqs “ pDpAq, ∥¨∥Aq. The following assertions are equivalent.

i) A has a compact resolvent.
ii) Each bounded sequence in rDpAqs has a subsequence with limit in X.
iii) The inclusion map J : rDpAqs Ñ X is compact.

Proof. Let statement i) hold. Take xn P DpAq with ∥xn∥A ď c for n P N.
Set yn “ λxn ´ Axn. Then ∥yn∥ ď p|λ| ` 1qc for every n P N so that
xn “ Rpλ,Aqyn has a subsequence which converges in X by i), and so
claim ii) is true. The implication ‘ii) ñ iii)’ follows from Remark 2.2. Let
part iii) be valid. Define Rλ P BpX, rDpAqsq by Rλx “ Rpλ,Aqx for x P X.
Then Rpλ,Aq “ JRλ : X Ñ X is compact due to Proposition 2.3. l

c) Let T P BpXq have a compact resolvent and λ P ρpT q. We then have
dimX ă 8 since I “ pλI ´ T qRpλ, T q is compact by Proposition 2.3.

d) Let DpAq be dense in X. Then, A has a compact resolvent if and
only if A‹ has a compact resolvent. Indeed, first recall from Theorem 1.24
that λ P ρpA‹q and Rpλ,A‹q “ Rpλ,Aq‹. Theorem 2.6 then yields that the
compactness of Rpλ,Aq and of Rpλ,Aq‹ are equivalent. ♢

Results like the Arzela–Ascoli theorem provide compactly embedded func-
tion spaces on bounded spatial domains. Still one has to show that the re-
solvent is non-empty to apply the above characterization. This is indicated
in the following example, where we use the Hölder space

CαpSq “

!

f P CbpSq

ˇ

ˇ

ˇ
rf sα “ sup

x‰y

|fpyq ´ fpxq|

|x´ y|α
ă 8

)

for α P p0, 1q and S Ď Rm. It is a Banach space with norm }f}Cα “

}f}8 ` rf sα. For α “ 1 the corresponding (Lipschitz) space is denoted by
C1´pSq. We have C1´pSq ãÑ CβpSq ãÑ CαpSq ãÑ CbpSq if 0 ă α ď β ă 1,
where the embeddings are given by the inclusion map.

Example 2.14. a) Let K Ď Rm be compact, E be a closed subspace
of CpKq, and A be closed on E with λ P ρpAq. Assume that rDpAqs ãÑ

CαpKq for some α P p0, 1q. A bounded sequence pfnq in rDpAqs is thus
bounded in CαpKq. The theorem of Arzela–Ascoli (see Corollary 1.48 in
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[FA]) yields a subsequence with limit in CpKq, and hence in E. According
to Remark 2.13 b), the operator A has a compact resolvent in E.

b) Let X “ Cpr0, 1sq, Au “ u1, and DpAq “ tu P C1pr0, 1sq |up0q “ 0u.
The spectrum of A is empty by Example 1.12. So part a) implies that A
has compact resolvent (since C1pr0, 1sq ãÑ C1´pr0, 1sq).

c) Let X “ Cpr0, 1sq, Au “ u1, and DpAq “ C1pr0, 1sq. The resolvent set
of A is empty by Example 1.12. Therefore A has no (compact) resolvent
although rDpAqs is compactly embedded in X by a). ♢

The next result easily follows from Theorem 2.10. It says that the spec-
trum of an operator with compact resolvent only contains a discrete set of
eigenvalues, having finite-dimensional eigenspaces. Here the spectrum may
be empty in view of the above example.

Theorem 2.15. Let dimX “ 8 and A be a closed operator with compact
resolvent. Then the following assertions are true.

a) The spectrum σpAq is either empty or σpAq “ σppAq contains at most
countably many eigenvalues λj.

b) If σpAq is infinite, then |λj | Ñ 8 as j Ñ 8.

c) For all λj P σpAq, the range of λjI´A is closed and dimNpλjI´Aq “

codimRpλjI ´Aq ă 8.

Proof. Fix µ P ρpAq. By Theorem 2.10, the spectrum σpRpµ,Aqq

only contains 0 and either no or finitely many eigenvalues µj ‰ 0 or a
nullsequence of eigenvalues µj ‰ 0. Moreover, the range of µjI ´Rpµ,Aq is
closed and dimNpµjI ´ Rpµ,Aqq “ codimRpµjI ´ Rpµ,Aqq ă 8 for all j.
Proposition 1.20 yields pµ´σpAqq´1 “ σpRpµ,Aqqzt0u and pµ´σppAqq´1 “

σppRpµ,Aqqzt0u. These facts imply assertions a) and b), where λj “ µ´µ´1
j .

Observe that
λjI ´A “ µ´1

j pµjI ´Rpµ,AqqpµI ´Aq

on DpAq. Since µI ´ A : DpAq Ñ X is bijective, also part c) follows from
the results of Theorem 2.10 stated above. □

We use the above theorem to compute the spectra of two basic operators
with compact resolvent.

Example 2.16. a) Let X “ Cpr0, 1sq with F “ C and Au “ u1 with
DpAq “ tu P C1pr0, 1sq |up0q “ up1qu. Then A is closed, has a compact
resolvent, and σpAq “ σppAq “ 2πiZ.

Proof. The closedness is shown as in Example 1.2. Let f P X. A
function u belongs to DpAq and satisfies u ´ Au “ f if and only if u P

C1pr0, 1sq, up0q “ up1q, and u1 “ u´ f . These properties are equivalent to

uptq “ cet ´

ż t

0
et´sfpsq ds “: Rcfptq, t P r0, 1s, and up0q “ up1q,

for some c “ cpfq. Here c has to satisfy

c “ Rcfp0q “ Rcfp1q “ ce ´ e

ż 1

0
e´sfpsqds,

c “
e

e ´ 1

ż 1

0
e´sfpsqds.
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We derive 1 P ρpAq and

Rp1, Aqfptq “
et`1

e ´ 1

ż 1

0
e´sfpsq ds´

ż t

0
et´sfpsqds, t P r0, 1s.

Due to Example 2.14 a), the operator A thus has a compact resolvent, and
so σpAq “ σppAq by Theorem 2.15. Finally, λ P C belongs to σppAq if and
only if there is u P C1pr0, 1sqzt0u with up0q “ up1q and u1 “ λu, which is
equivalent to u “ eλup0q ‰ 0 and 1 “ eλp0q “ eλp1q “ eλ; i.e., λ P 2πiZ. l

b) Let X “ Cpr0, 1sq with F “ C and Au “ u2 with DpAq “ tu P

C2pr0, 1sq |up0q “ up1q “ 0u. Then A is closed, has a compact resolvent,
and σpAq “ σppAq “ t´π2k2 | k P Nu.

Proof. 1) Example 2.9 b) with q “ 0 provides an inverse for A; i.e., 0
belongs to ρpAq. So A is closed, and it has a compact resolvent by Exam-
ple 2.14 a). To compute the eigenvalues, note that vkptq “ sinpπktq is an
eigenfunction for A and the eigenvalue λ “ ´π2k2, where k P N. Conversely,
let λ P σppAq. Then we have a map u P C2pr0, 1sq with up0q “ up1q “ 0 and
u2 “ λu. There thus exist a, b, µ P C with µ2 “ λ and u “ aeµ ` be´µ ‰ 0.
The conditions up0q “ 0 and up1q “ 0 then yield a`b “ 0 and aeµ`be´µ “ 0,
respectively. Hence, e2µ “ 1 and µ ‰ 0; i.e., µ “ iπk and λ “ ´π2k2 for
some k P Zzt0u. Theorem 2.15 now yields the assertion.
2) We also compute the resolvent operators for later use (and to present an

important technique). We take λ P ρpAqzt0u “ Czt´π2k2 | k P N0u, as the
case λ “ 0 was treated in Example 2.9. Then there is a number µ P Czt0u

with λ “ µ2. Let f P X. Set

u0ptq “
1

2µ

ż 1

0
e´µ|t´s|fpsqds “

1

2µ

ż t

0
eµps´tqfpsqds`

1

2µ

ż 1

t
eµpt´sqfpsq ds

for t P r0, 1s. Then u0 P C2pr0, 1sq satisfies µ2u0 ´ u2
0 “ f . (We see in

Example 3.47 how to guess this formula.) We now want to add a function
u1 P C2pr0, 1sq with u2

1 “ µ2u1 so that u “ u0 ` u1 fulfills the boundary
conditions up0q “ 0 “ up1q. Then u will belong to DpAq and solve λu´Au “

f . Uniqueness of solutions was already shown in the first step.
From step 1) we know that u1 “ aeµ ` be´µ for some numbers a “ apf, µq

and b “ bpf, µq in C. We have to fulfill the boundary conditions

up0q “ a` b`
1

2µ

ż 1

0
e´µsfpsqds “ 0,

up1q “ aeµ ` be´µ `
e´µ

2µ

ż 1

0
eµsfpsq ds “ 0,

These two equations are equivalent to

ˆ

apf, µq

bpf, µq

˙

“
1

eµ ´ e´µ

ˆ

e´µ ´1
´eµ 1

˙

˜

1
2µ

ş1
0 e

´µsfpsqds
e´µ

2µ

ş1
0 e

µsfpsq ds

¸

“
1

2µpeµ ´ e´µq

˜

e´µ
ş1
0pe´µs ´ eµsqfpsq ds

ş1
0pe´µeµs ´ eµe´µsqfpsqds

¸

.
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Note that eµ ‰ e´µ. We obtain

Rpλ,Aqfptq “ apf, µqeµt ` bpf, µqe´µt `
1

2µ

ż 1

0
e´µ|t´s|fpsqds

for λ P ρpAqzt0u, f P X and t P r0, 1s. l

We note that one can also compute the resolvents in part a). So the power
of Theorem 2.15 is not really needed here, but it can simplify the reasoning
and gives extra information.

2.4. Fredholm operators and the essential spectrum

In this section we briefly study a class of operators which satisfy most
of the assertions of the Riesz–Schauder Theorems 2.7 or 2.15, except for
the restrictive equality dimNpT q “ codimRpT q. This class turns out to be
stable under compact perturbations, and it arises in many applications as
we indicate in Example 2.25. We further introduce part of the spectrum
which also does not change under compact perturbations.

Definition 2.17. A map T P BpX,Y q is called a Fredholm operator if

a) its range RpT q is closed in Y ,

b) dimNpT q ă 8,

c) codimRpT q “ dimY {RpT q ă 8.

In this case the index of T is the integer indpT q “ dimNpT q ´ codimRpT q.

For a closed operator A in Y we use the above definition with X “ rDpAqs.
One sometimes calls dimNpT q the nullity and codimRpT q the defect of T .
We first discuss the above concept.

Remark 2.18. a) An invertible operator T P BpX,Y q is Fredholm with
index 0, of course. Loosely speaking, Fredholmity means ‘invertibility except
for finite-dimensional spaces’, cf. Proposition 2.19.

b) Theorem 2.7 says that λI ´ K : X Ñ X is Fredholm with index 0 if
K P BpXq is compact and λ P Fzt0u. The same is true for λI´A : rDpAqs Ñ

X if λ P F and A is closed in X with compact resolvent, by Theorem 2.15.

c) Each integer can occur as an index of a Fredholm operator. For in-
stance, let T “ Ln for the left shift L on ℓp, 1 ď p ď 8, and some n P N;
i.e., Tx “ pxn`kqk. Because of RpT q “ ℓp and NpT q “ linte1, . . . , enu, the
map T is Fredholm with index n. Moreover, S “ Rn has index ´n for the
right shift R on ℓp and n P N since Sx “ p0, . . . , 0, x1, x2, . . . q with n zeros,
so that NpSq “ t0u and ℓp{RpSq – linte1, . . . , enu, cf. Example 2.20 of [FA].

d) The Fredholm operators do not form a linear subspace of BpXq if
dimX “ 8. For instance, the identity I is Fredholm, but I ´ I “ 0 not.

e) One can omit condition a) in Definition 2.17, as shown by Kato (1958).
Proof.3 Let T P BpX,Y q satisfy codimRpT q “ n P N0. If n “ 0,

then RpT q “ Y and we are done. Hence, take n P N. The operator Q :
X Ñ X{NpT q; Qx “ x ` NpT q “ x̂, is a surjective contraction with kernel

NpT q, see Proposition 2.19 in [FA]. By T̂ px ` NpT qq “ T̂ x̂ :“ Tx, we

define a bijective operator T̂ P BpX{NpT q,RpT qq such that T “ T̂Q, cf.

3This proof and that of the following comment were omitted in the lectures.
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Proposition A.1.3 of [Co2]. Further, there are y1, . . . , yn P Y such that
Y “ RpT q` linty1, . . . , ynu and RpT qX linty1, . . . , ynu “ t0u. On the Banach
space E “ pX{NpT qq ˆ Fn we define the operator

S : E Ñ Y ; Spx̂, pλ1, . . . , λnqq “ T̂ x̂`
ÿn

j“1
λjyj “ Tx`

ÿn

j“1
λjyj .

It straightforward to check that S is linear, bounded and bijective. The
Open Mapping Theorem 4.28 in [FA]) then says that S is an isomorphism.
Consequently, RpT q “ SppX{NpT qq ˆ t0uq is closed. l

In context of part e) of the above remark, we stress that for each infinite-
dimensional Banach space X there are non-closed subspaces Z of X with
codimension 1. To see this, take a countable subset B0 “ tbk | k P Nu of an
algebraic basis B of X as in Remark 1.6. Set φpbkq “ k and φpbq “ 0 for
b P BzB0. Then φ extends to an unbounded linear map φ : X Ñ F. Define
φ̂ as in the proof of Remark 2.18 e). It is a linear bijection from X{Npφq

to Rpφq “ F; i.e., codimNpφq “ 1. However, Z “ Npφq is not closed by
Proposition III.5.3 of [Co2].
The analysis in this section is based on a characterization of Fredholm

operators with index 0 established in the next result. (See Theorem 3.15.8
in [Si] for a related characterization of Fredholm operators with any index.)

Proposition 2.19. Let T P BpX,Y q. Then T is Fredholm with index
indpT q “ 0 if and only if there exists an invertible operator J P BpY,Xq and
a finite rank operator K P B00pXq such that JT “ IX ´K.

Proof. 1) Let T be Fredholm with index 0. We first modify T and X
to obtain an invertible map ’close’ to T . To this end, by means of Fred-
holmity we can choose closed subspaces X1 of X and Y0 of Y such that
X “ NpT q ‘ X1, Y “ Y0 ‘ RpT q and dimY0 “ codimRpT q “ dimNpT q.
(Use Proposition 5.17 of [FA].) We set

T1 : X1 ˆ Y0 Ñ Y ; T1px1, y0q “ Tx1 ` y0,

replacing NpT q by the complement of RpT q. Clearly, T1 is linear and contin-
uous. If T1px1, y0q “ 0 for some px1, y0q in X1 ˆY0, then y0 “ ´Tx1 P RpT q

so that y0 “ 0. Hence, x1 belongs to NpT q X X1 “ t0u; i.e., T1 is injective.
Let y P Y . Then y “ y0 ` y1 for some y0 P Y0 and y1 “ Tx1 with x1 P X.
As a result, y “ y0 ` Tx1 “ T1px1, y0q and T1 is bijective. The inverse
T´1
1 : Y Ñ X1 ˆY0 is then bounded by the Open Mapping Theorem 4.28 in

[FA]. Observe that T´1
1 y1 “ px1, 0q if Tx1 “ y1 for some x1 P X1.

There exists an isomorphism S : Y0 Ñ NpT q since these spaces have the
same finite dimension. To relate X1 ˆ Y0 with X, we define

S1 : X1 ˆ Y0 Ñ X; S1px1, y0q “ x1 ` Sy0.

As above, one checks that S1 is invertible. We now introduce the invertible
operator J “ S1T

´1
1 : Y Ñ X and the map K :“ IX ´ JT P BpXq. For

x1 P X1 we compute

Kx1 “ x1 ´ S1T
´1
1 Tx1 “ x1 ´ S1px1, 0q “ x1 ´ x1 “ 0.

Since X “ NpT q ‘ X1, we derive KX Ď K NpT q, and hence dimRpKq ď

dimNpT q ă 8 as asserted.
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2) Conversely, let JT “ IX ´ K for some K P B00pXq and invertible
J P BpY,Xq. Then JT is Fredholm with index 0 by Theorem 2.7. Since
J is invertible, also TX is closed and we have dimNpT q “ dimNpJT q “:
n ă 8. Moreover, as above we obtain a closed subspace X0 of X such that
X “ JTX ‘ X0 and dimX0 “ n. It follows Y “ TX ‘ J´1X0 and thus
codimTX “ dim J´1X0 “ n, using Example 2.20 of [FA]. Hence, T is
Fredholm with index 0. □

We can now show an important perturbation result for Fredholmity and
the index. The quantitative smallness condition from Theorem 1.27 (on
invertibility) is replaced by compactness; i.e., by ‘topological’ smallness.

Theorem 2.20. Let T P BpX,Y q be Fredholm and K P BpX,Y q be com-
pact. Then the sum T`K P BpX,Y q is Fredholm with indpT`Kq “ indpT q.

Proof. Set n “ indpT q P Z.
1) Let n “ 0. Proposition 2.19 yields an invertible operator J P BpY,Xq

and a map K1 P B00pXq with JT “ IX ´ K1. The product JK is compact
by Proposition 2.3. We thus deduce from Theorem 2.7 that JpT ` Kq “

IX ´ pK1 ´ JKq is Fredholm with index 0. As in step 2) of the proof of
Proposition 2.19, it follows that also T `K is Fredholm with index 0.

2) Let n ą 0. Set Ỹ “ Y ˆ Fn, and define

T̃ : X Ñ Ỹ ; T̃ x “ pTx, 0q, K̃ : X Ñ Ỹ ; K̃x “ pKx, 0q.

It is straightforward to check that RpT̃ q is closed, NpT q “ NpT̃ q, Ỹ {RpT̃ q –

pY {RpT qq ˆ Fn. In particular, codimRpT̃ q “ codimRpT q ` n and so T̃ is

Fredholm with index 0. Since K̃ is still compact, by step 1) the sum T̃ ` K̃

is also Fredholm with index 0. Noting that pT̃ ` K̃qx “ pTx ` Kx, 0q, we
infer that T `K is Fredholm with index n.
3) Let n ă 0. Set X̂ “ X ˆ F|n|, and define the maps

T̂ : X̂ Ñ Y ; T̂ px, ξq “ Tx, K̂ : X̂ Ñ Y ; K̂px, ξq “ Kx.

Starting from dimNpT̂ q “ dimNpT q ` |n| and RpT̂ q “ RpT q, one derives the
assertion as in part 2). □

To exploit the above result in spectral theory, we need another definition.

Definition 2.21. For T P BpXq we define the essential spectrum by

σesspT q “
␣

λ P F
ˇ

ˇλI ´ T is not Fredholm
(

.

We also set

σ0esspT q “
␣

λ P F
ˇ

ˇλI ´ T is not Fredholm of index 0
(

.

For a closed operator A on X we analogously introduce

σesspAq “
␣

λ P F
ˇ

ˇλI ´A : rDpAqs Ñ X is not Fredholm
(

,

σ0esspAq “
␣

λ P F
ˇ

ˇλI ´A : rDpAqs Ñ X is not Fredholm of index 0
(

.

Observe that σesspBq Ď σ0esspBq Ď σpBq and that λ P σpBqzσ
p0q
esspBq is an

eigenvalue with finite-dimensional eigenspace since λI´B is then Fredholm.
(Here B P BpXq or B is closed on X.)
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There are various differing concepts of the essential spectrum in the liter-
ature. Typically, they lead to the same essential spectral radius

resspT q “ sup
␣

|λ|
ˇ

ˇλ P σesspT q
(

,

if T P BpXq. The next concept and the following lemma are used below in
our perturbation result Theorem 2.24 for σesspAq.

Definition 2.22. Let A and B be linear from X to Y with DpAq Ď DpBq.
Then B is called A–compact (or, relatively compact with respect to A) if
B : rDpAqs Ñ Y is compact.

Note that an A–compact operator is automatically A–bounded (but it
does not need to be closed from X to Y ). Moreover, A–compactness is just
compactness if A P BpX,Y q. Relative compactness is further discussed in
the excercises.

Lemma 2.23. Let A be closed from X to Y and B be A–compact. Then
A ` B with DpA ` Bq “ DpAq is closed and B is relatively compact with
respect to A`B.

Proof. 1) We first check that B is pA`Bq–compact. Let pxnq Ď DpAq

be bounded for } ¨ }A`B. In particular, pxnq is bounded in X.
We want to use the A-boundedness of B. To this end, suppose that

αn :“ }Axn} tends to infinity as n Ñ 8. Set x̃n “ α´1
n xn for n P N. (We

may assume that Axn ‰ 0 for all n.) We then have the limits x̃n Ñ 0 in X
and pA ` Bqx̃n “ α´1

n pA ` Bqxn Ñ 0 in Y as n Ñ 8, whereas }Ax̃n} “ 1
for all n. Since B is A–compact, there is a subsequence (Bx̃nj qj converging
to some z in Y . Hence, Ax̃nj tends to ´z. The closedness of A then yields
z “ 0, which is impossible since 1 “ }Ax̃nj} Ñ }z} as j Ñ 8.

We conclude that there exists a subsequence such that pAxnk
qk is bounded

in Y . Employing again the A–compactness of B, we obtain another subse-
quence pBxnkl

ql with a limit in Y ; i.e., B is pA`Bq–compact.

2) Let xn P DpAq tend to some x in X and pA ` Bqxn to some y in Y
as n Ñ 8. By part 1), there is subsequence and a vector z P Y such that
Bxnj Ñ z in Y as j Ñ 8. As a result, Axnj tends to y ´ z. Since A is
closed, we infer that x P DpAq “ DpA ` Bq and Ax “ y ´ z. This means
that xnj Ñ x in rDpAqs, and hence Bxnj Ñ Bx “ z by continuity. It follows
pA`Bqx “ y and so A`B is closed. □

By means of Theorem 2.20 we show that essential spectra are not changed
by compact perturbations. They can thus affect only eigenvalues with finite-
dimensional eigenspaces.

Theorem 2.24. Let A be closed on X, B be A–compact, and DpA`Bq “

DpAq. Then

σesspA`Bq “ σesspAq and σ0esspA`Bq “ σ0esspAq.

Proof. Let λI ´A : rDpAqs Ñ be Fredholm (with index 0). Since ´B
is A–compact, Theorem 2.20 shows that also λI ´A´B is Fredholm (with
index 0). Conversely, let λI ´ A ´ B : rDpA ` Bqs Ñ be Fredholm (with
index 0). By Lemma 2.23, the operator B is pA`Bq–compact, so that again
Theorem 2.20 yields the Fredholmity (with index 0) of λI ´A. □
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We apply the above result to a typical situation arising in partial differ-
ential equations. However, we can only give a rough sketch.

Example 2.25. We study the asymptotic stability of stationary solutions
to the reaction-convection-diffusion equation

Btupt, sq “ aBssupt, sq ` bBsupt, sq ` fpupt, sqq, t ě 0, s P R,
up0, sq “ u0psq, s P R,

(2.10)

for diffusion and convection constants a ą 0 and b P R, a given initial state
u0 P X “ CubpRq “ tv P CbpRq | v is uniformly continuousu, and a function
f P C1pCq with fpRq Ď R describing (auto-)reaction (where we mean real
differentiability). We interpret upt, sq ě 0 as the density of a species.
It is known that there is a maximal existence time t “ tpu0q P p0,8s

and a unique solution u of (2.10) in the space Cpr0, tq, Xq XC1pp0, tq, Xq X

Cpp0, tq, C2
ubpRqq. Moreover, if u0 ě 0 and fp0q ě 0, we have u ě 0. (See

Proposition 7.3.1 in [Lu] and Theorem 3.8 in [nEE].)
Let u˚ P C2

ubpR,Rq “ tv P C2pR,Rq | v, v1, v2 P Xu be a stationary solution
of (2.10); i.e., upt, sq “ u˚psq solves (2.10), which is equivalent to

0 “ au2
˚ ` bu1

˚ ` fpu˚q on R.
One now asks whether such special solutions describe well the behavior of
(2.10), at least locally near u˚. One possible answer is the principle of
linearized stability. Here one proceeds similar as for ordinary differential
equations in Analysis 4. In X “ CbpRq define the maps A and F by

Av “ av2 ` bv1 with DpAq “ C2
ubpRq, F pvq “ f ˝ v.

One can then check that F P C1pX,Xq with derivative F 1pvq P BpXq at
v P X given by F 1pvqw “ f 1pvqw for w P X. (One defines differentiability in
Banach spaces as in Rn, and the formula for F 1pvq has to be modified a bit
for C-valued v or w.) We introduce the linearized operator at u˚ by setting

A˚v “ Av ` F 1pu˚qv “ av2 ` bv1 ` f 1pu˚qv with DpA˚q “ C2
ubpRq.

The principle of linearized stability now says the following. If spA˚q :“
suptReλ |λ P σpAqu ă ´δ ă 0, then there are constants c, r ą 0 such that

@ u0 P BXpu˚, rq : tpu0q “ 8 and }uptq ´ u˚}8 ď ce´δt}u0 ´ u˚}8

for all t ě 0, where u solves (2.10). (See Theorem 3.13 in [nEE].) We note
that such results fail for certain partial differential equations. Here it works
since (2.10) is of ‘parabolic type’.
Of course, one now has to compute the sign of the spectral bound spA˚q (or

different properties of σpA˚q for more refined versions of the above result).
We sketch a partial answer for the important special case that u˚psq has
limits ξ˘ in R as s Ñ ˘8. Then the limit operators

A˘ “ A` F 1pξ˘1q with DpA˘q “ C2
ubpRq

have constant coefficients which simplifies the computation of their spectral
properties. We now follow the survey article [Sa].
Let λ P C. We rewrite A˘u´ λu “ g as the first order system by

Lpλq

ˆ

v1
v2

˙

:“

ˆ

v1
1

v1
2

˙

´

ˆ

0 1
1
apλ´ f 1pξ˘qq ´ b

a

˙ˆ

v1
v2

˙

“

ˆ

0
1
ag

˙

,
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where pv1, v2q fl pu, u1q. We set

M˘pλq “

ˆ

0 1
1
apλ´ f 1pξ˘qq ´ b

a

˙

.

We denote by Xu
˘pλq the linear span of all (generalized) eigenvectors of

M˘pλq for eigenvalues µ with Reµ ą 0. Theorems 3.2 and 3.3 and Re-
mark 3.3 in [Sa] then yield

λI ´A˚ is Fredholm ðñ λ R σesspA˚q ðñ σpM˘pλqq X iR “ ∅,
indpλI ´A˚q “ dimXu

´pλq ´ dimXu
`pλq,

λ R σ0esspA˚q ðñ σpM˘pλqq X iR “ ∅ and dimXu
´pλq “ dimXu

`pλq.

Note that here non-zero indices naturally occur. The proofs of these re-
sults use Theorems 2.20 and 2.24 and properties of the ordinary differential
equation governed by the matrices

Mλpsq “

ˆ

0 1
1
apλ´ f 1pu˚psqqq ´ b

a

˙

, s P R.

One thus has to study the eigenvalues of M˘pλq (which is easy) to deter-
mine the location of the essential spectrum. It then remains the (difficult)
task to locate the eigenvalues of A˚ to verify spA˚q ă 0. In particular for
one spatial dimension, corresponding tools are discussed in [Sa]. ♢

2.5. Appendix: The Dirichlet problem and boundary integrals

In4 this section, we discuss a principal application of Theorem 2.7 to
partial differential equations. Here we work with real-valued functions for
simplicity. Let D Ď R3 be open, bounded and connected with BD P C2 and
outer unit normal ν at BD (see part 3) below). Let φ P CpBDq be given.
Claim. There is a unique solution u in C2pDqXCpDq :“ tu P CpDq |uæD P

C2pDqu of the Dirichlet problem

∆upxq “ 0, x P D,

upxq “ φpxq, x P BD.
(2.11)

1) Tools from partial differential equations and uniqueness.
We first state the strong maximum principle for the Laplacian, see The-
orem 2.2.4 in [Ev].

(MP) Let u P C2pDq X CpDq satisfy ∆u “ 0 on D. Then maxD u “

maxBD u. If there is a point x0 P D such that upx0q “ maxD u,
then u is constant.

Hence, if u, v P C2pDqXCpDq solve (2.11), then w “ u´v P C2pDqXCpDq

satisfies ∆w “ 0 on D and w “ 0 on BD. The maximum principle (MP)
thus yields that maxD w “ 0. Similarly, the maximum of ´w is 0, so that
w “ 0. This means that the problem (2.11) has at most one solution.
Theorem 2.7 of [PW] implies the following version of Hopf’s lemma.

(HL) Let u P C2pDq X CpDq satisfy ∆u ě 0 on D. Assume that there
is a point x0 P BD such that upx0q “ maxD u, Bνupx0q exists, and
Bνu is continuous at x0. Then either u is constant or Bνupx0q ą 0.

4This section was not part of the lectures.
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2) The double layer potential. We want to reformulate (2.11) using
an integral operator. To this aim, we first consider the Newton potential on
R3 given by γpxq “ 1

4π|x|2 for x P R3zt0u. It satisfies ∆γ “ 0 on R3zt0u. We

define

kpx, yq “
B

Bνpyq
γpx´ yq “ ´p∇γqpx´ yq ¨ νpyq “

px´ yq ¨ νpyq

4π|x´ y|32
(2.12)

for all x P R3 and y P BD with x ‰ y, where the dot denotes the Euclidean
scalar product in R3. One introduces the double layer potential by setting

Sgpxq “

ż

BD
kpx, yqgpyqdσpyq (2.13)

for all x P R3zBD and g P CpBDq, where the surface integral is recalled
below in part 3). Standard results from Analysis 3 then imply that Sg P

C8pR3zBDq and ∆Sg “ 0 on R3zBD. For each φ P CpBDq, one thus obtains
the solution u “ pSgqæD of (2.11) if one can find a map g P CpBDq satisfying

lim
xÑz
xPD

Sgpxq “ φpzq for all z P BD. (2.14)

3) The surface integral. A compact boundary BΩ of an open subset

Ω Ď Rm belongs to Ck, k P N, if there are open subsets Ũj and Ṽj of Rm and

Ck–diffeomorphisms Ψj : Ṽj Ñ Ũj , j P t1, . . . , lu, such that the functions Ψj

and Ψ´1
j and their derivatives up to order k have continuous extensions to

BṼj and BŨj , respectively, BΩ Ď Ṽ1 Y ¨ ¨ ¨ Y Ṽl, and Ψj maps Vj :“ Ṽj X BΩ

onto Uj :“ Ũj X pRm´1 ˆ t0uq. We set Fj “ Ψ´1
j æUj . Below we use these

notions for k “ 2 and D “ Ω. We also identify Uj with a subset of R2

writing t P R2 instead of pt, 0q P R3.
We recall that the surface integral for a (Borel) measurable function h :

BD Ñ R is given by
ż

BD
hpyq dσpyq “

m
ÿ

j“1

ż

Uj

φjpFjptqqhpFjptqq

b

detF 1ptqTF 1ptq dt,

if the right hand side exists. Here, 0 ď φj P C8
c pR3q satisfy suppφj Ď Ṽj and

řm
j“1 φj “ 1. This definition does not depend on the choice of Ψj : Ṽj Ñ Ũj

and φj . Moreover, σpBq “
ş

BD 1B dσ defines a (finite) measure on the Borel
sets of BD. In particular, the above integral has the usual properties of
integrals. We mostly omit the index j P t1, . . . , lu.
Recall that for y “ F ptq P V and t P U Ď R2, the tangent plane of BD

at y is spanned by B1F ptq and B2F ptq, where t P U Ď R2. Taylor’s formula

applied to Ψ´1 P C2
b pŨq at pt, 0q yields that

x :“ Ψ´1ps, 0q “ y ` pΨ´1q1pt, 0q

ˆ

s´ t

0

˙

` Op|s´ t|22q

“ y ` F 1ptqps´ tq ` Op|s´ t|22q.

for s P U . Using that νpyq is orthogonal to BjF ptq, we deduce that

px´ yq ¨ νpyq “ νpyqTF 1ptqps´ tq ` Op|s´ t|22q “ Op|s´ t|22q. (2.15)
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On the other hand, Ψ´1 and Ψ are globally Lipschitz so that

c |s´ t|2 ď |x´ y|2 ď C |s´ t|2 (2.16)

for all x “ F psq P V , y “ F ptq P V with s, t P U and some constants C, c ą 0.
In the following we denote by c various, possibly differing constants.

4) Compactness of a version of S on BD. Using (2.12), (2.15) and
(2.16), we obtain

|kpx, yq| “
|px´ yq ¨ νpyq|

4π |x´ y|32
ď

c

|x´ y|2
ď

c

|s´ t|2
(2.17)

for all x “ F psq and y “ F ptq in V with x ‰ y. As a result, the integrands

φpF ptqqkpF psq, F ptqqgpF ptqq

b

detF 1ptqTF 1ptq

of Sg are bounded by a constant times |s ´ t|´1
2 }g}8 for all x “ F psq and

y “ F ptq in BD with x ‰ y. We next set kpx, xq “ 0 for x P BD and

knpx, yq “

#

kpx, yq, |x´ y|2 ą 1{n,

n3p4πq´1px´ yq ¨ νpyq, |x´ y|2 ď 1{n,

for n P N. By means of (2.15) and (2.16), we estimate

|knpx, yq| ď cn3|s´ t|22 ď c|s´ t|´1
2 (2.18)

if |x´ y|2 ď 1{n because then |s´ t|2 ď c{n.
Since kn is continuous on BD ˆ BD, we can define an operator Tn P

BpCpBDqq by

Tngpxq “

ż

BD
knpx, yqgpyqdσ

for x P BD and g P CpBDq. As in Example 2.5 a), one shows that Tn is
compact thanks to the Arzela-Ascoli theorem. For g P CpBDq and x P BD,
we set Dpx, nq “ D XBpx, 1nq and calculate
ż

BD
|pkpx, yq ´ knpx, yqqgpyq|dσpyq “

ż

Dpx,nq

|kpx, yq ´ knpx, yq| |gpyq|dσpyq

ď }g}8

ż

Dpx,nq

p|kpx, yq| ` |knpx, yq|q dσpyq

ď c ∥g∥8

l
ÿ

j“1

ż

UjXBps, c
n

q

dt

|s´ t|2

ď c ∥g∥8

ż

Bp0, c
n

q

dv

|v|2

ď c ∥g∥8

ż c
n

0

rdr

r
ď
c ∥g∥8

n
, (2.19)

employing (2.16), (2.17), (2.18), and polar coordinates in R2.
Hence, for each x P BD the function y ÞÑ kpx, yqgpyq is integrable for the

surface measure σ on BD. So we can define

Tgpxq :“

ż

BD
kpx, yqgpyq dσpyq,
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for x P BD and g P CpBDq. By (2.19), the functions Tng converge uniformly
on BD to Tg as n Ñ 8 so that Tg P CpBDq. Estimate (2.19) actually
implies that the differences Tn ´ T belong to BpCpBDqq and converge to
0 in this space. Hence, T is contained in BpCpBDqq and it is compact by
Proposition 2.3 since all Tn are compact.

5) Facts from potential theory. In Theorems VIII and IX in Chap-
ter VI of [Ke] it is shown that

lim
xÑz
xPD

Sgpxq “ Tgpzq ´ 1
2gpzq and lim

xÑz
xPR3zD

Sgpxq “ Tgpzq ` 1
2gpzq, (2.20)

for all z P BD and g P CpBDq. We set

vpxq “

#

Sgpxq, x P R3zD,

gpxq, x P BD.
(2.21)

If v “ 0 on D, then there exists Bνvpyq “ 0 for y P BD due to Theorem X in
Chapter VI of [Ke].

6) Conclusion. Let φ P pBDq. In view of (2.14) and (2.20), the function
Sg P C2pDq has an extension u P C2pDqXCpDq solving (2.11) provided that
g P CpBDq satisfies 1

2g ´ Tg “ ´φ.
Since T is compact, thanks to the Fredholm alternative Corollary 2.8 it

remains to establish the injectivity of 1
2I ´ T . So let g0 P CpBDq satisfy

1
2g0 “ Tg0. By the previous paragraph, the extension of Sg0 to D then
solves (2.11) with φ “ 0. This problem has also the trivial solution u “ 0.
The uniqueness of (2.11) thus yields Sg0 “ 0 on D.
Define v0 by (2.21) with g0 instead of g. Then Bνv0 “ 0 on BD due to

the result mentioned after (2.21). We are now looking for a contradiction
with Hopf’s lemma (HL), employing Sg0 on R3zD. Fix r0 ą 0 such that
D Ď Bp0, r0q. For r ě r0 ` 1, x P BBp0, rq and y P BD, from (2.13) and
(2.12) we deduce that

|kpx, yq| ď
c

|x´ y|22
ď

c

pr ´ r0q2
ď

c

r2
,

|Sg0pxq| ď

ż

BD

c

r2
∥g0∥8dσ ď

c

r2
.

Suppose that g0 ‰ 0. We can thus fix a radius r ě r0 ` 1 such that

∥g0∥8 ą max
xPBBprq

|Sg0pxq|.

In particular, v0 is not constant on BprqzD. Since ∆v0 “ 0 on BprqzD, the
strong maximum principle (MP) says that v0 does not attain its maximum

on BprqzD. Since the maximum exists on BprqzD, it must be attained at
a point y0 P BD, and hence v0py0q ą v0pxq for all x P BprqzD. Noting that
´νpy0q is the outer unit normal of BprqzD at y0, we infer from (HL) that
Bνv0py0q ă 0 contradicting Bνv0 “ 0 on BD. As a result, 1

2I ´ T is injective
and we have established the claim on (2.11).



CHAPTER 3

Fourier transform, Sobolev spaces, and weak
derivatives

The Fourier transform is a fundamental tool in many branches of math-
ematics and its applications. In the first section of this chapter we study
its basic properties in an L2-context. If one wants to treat partial differ-
ential equations in L2- (or Lp-) spaces, one needs weak derivatives and the
Sobolev spaces W k,p. The second section gives a brief introduction to these
topics and it establishes important links between the Fourier transform and
the spaces W k,2pRmq. We then discuss deeper properties of Sobolev spaces,
mostly without proof. The last section is devoted to differential operators
using Sobolev spaces and the Fourier transform.

3.1. The Fourier transform

In this section we let F “ C. We start with the definition of the Fourier
transform for integrable f : Rm Ñ C, where we write

ξ ¨ x “

m
ÿ

k“1

ξkxk

for the (real) scalar product of ξ “ pξkqk P Cm and x “ pxkqk P Cm. Note
that |x|22 “ x ¨ x for x P Rm.

Definition 3.1. Let f P L1pRmq. The Fourier transform of f is

f̂ : Rm Ñ C; f̂pξq “ pFfqpξq :“ p2πq´m
2

ż

Rm

e´iξ¨xfpxqdx. (3.1)

In the literature several variants of the constants in (3.1) are used. These
choices affect the constants of many results of the theory, so that one has
to be careful when using different sources. In Theorem 3.11 b) we see that
f can be expressed as the superposition

fpxq “ p2πq´m
2

ż

Rm

eix¨ξ f̂pξqdξ, x P Rm,

of ‘plane waves’ x ÞÑ eiξpxq “ eix¨ξ with coefficients f̂pξq, provided that

f P L2pRmq and f̂ P L1pRmq, see also (3.7). So f̂pξq can be view as the
component of f at ‘frequency’ ξ, noting that eiξpxq “ cospx ¨ ξq ` i sinpx ¨ ξq.

Set φpx, ξq “ e´iξ¨xfpxq for f P L1pRmq. Observe that |φpx, ξq| “ |fpxq|

is integrable in x P Rm for every ξ P Rm and that Rm Q ξ ÞÑ φpξ, xq is
continuous for a.e. x P Rm. By means of a corollary to the theorem of
dominated convergence, we thus conclude

f̂ is continuous on Rm and }f̂}8 ď p2πq´m
2 }f}1 for f P L1pRmq. (3.2)

38
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We discuss some basic and instructive examples.

Example 3.2. a) Let m “ 1 and f “ 1ra,bs. We then have f̂p0q “

pb´ aq{
?
2π and

f̂pξq “
1

?
2π

ż b

a
e´iξx dx “

ipe´ibξ ´ e´iaξq
?
2π ξ

, ξ ‰ 0.

b) Let m “ 1 and fpxq “ p1 ` x2q´1. Using complex curve integrals, one

can show f̂pξq “
a

π{2 e´|ξ| for ξ P R, see Analysis 4 and the next example.

In these two examples (non-)rapid decay and (non-)smoothness on f cor-

respond to (non-)smoothness and (non-)rapid decay of f̂ , respectively, cf.

Lemma 3.7. In the next part, both f and f̂ are smooth and decay rapidly.

c) Let γpxq “ expp´1
2 |x|22q for x P Rm be the standard Gaussian. We show

that γ is a fixed vector of the Fourier transform; i.e., pγ “ γ. Let ξ P Rm.
Observe that 1

2px` iξq ¨ px` iξq “ 1
2 |x|22 ` iξ ¨ x´ 1

2 |ξ|22. We then obtain

γ̂pξq “ p2πq´m
2

ż

Rm

e´piξ¨x` 1
2

|x|22q dx “ p2πq´m
2

ż

Rm

e´ 1
2

|ξ|22 e´ 1
2

px`iξq¨px`iξq dx

“ e´ 1
2

|ξ|22

m
ź

k“1

1
?
2π

ż

R
e´ 1

2
pxk`iξkq2 dxk “ e´ 1

2
|ξ|22

m
ź

k“1

1
?
2π

ż

iξk`R
e´ 1

2
z2 dz

“ e´ 1
2

|ξ|22

m
ź

k“1

1
?
2π

ż

R
e´ 1

2
t2 dt “ γpξq,

employing the formula
ş

R e´ 1
2
t2 dt “

?
2π from Analysis 3. In the penulti-

mate equality we shifted the path of integration within C. To justify this
shift, we fix η P Rzt0u and use the rectangular path Γn with vertices ´n, n,

n` iη, and ´n` iη. Cauchy’s integral theorem yields
ş

Γn
e´ 1

2
z2 dz “ 0. The

two vertical lines S˘
n in Γn have length |η|, and on S˘

n it holds
ˇ

ˇe´ 1
2
z2
ˇ

ˇ “ e´ 1
2
Rep˘n`iτq2 ď e´ 1

2
n2

e
1
2

|η|2

for 0 ď |τ | ď |η|. Hence,
ş

S˘
n
e´ 1

2
z2 dz tends to 0 as n Ñ 8, and the above

shift is justified. ♢

Let f P LppRmq, 1 ď p ď 8, and t, x P Rm. To describe important
mapping properties of F , we set

eitpxq “ eit¨x,

and introduce the translation operator Tt by

pTtfqpxq “ fpx` tq.

As in Example 4.12 of [FA] one sees that Tt : LppRmq Ñ LppRmq is an
isometric isomorphism with inverse T´t. For a ą 0 we further define the
dilation operator Da by

pDafqpxq “ fpaxq.

Observe that D1{aDa “ DaD1{a “ I, and that the substitution y “ ax yields

}Daf}pp “

ż

Rm

|fpaxq|p dx “

ż

Rm

a´m |fpyq|p dy “ a´m }f}pp (3.3)
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for p ă 8 (and analogously for p “ 8). As a result, am{pDa : LppRmq Ñ

LppRmq is an isometric isomorphism. Finally, also the reflection operator

R : LppRmq Ñ LppRmq; Rfpxq “ fp´xq,

is an isometric isomorphism with inverse R´1 “ R, since we have R2 “ I.
Recall that Hölder’s inequality implies the continuity of the bilinear map

LppBq ˆ Lp1

pBq Ñ F; pf, gq ÞÑ

ż

B
fg dx, (3.4)

for all 1 ď p ď 8 and Borel sets B Ď Rm, where 1
p ` 1

p1 “ 1. Moreover,

let 1 ď p, q, r ď 8 with 1 ` 1
r “ 1

p ` 1
q , f P LppRmq, and g P LqpRmq.

Theorem 2.14 of [FA] shows that the convolution

f ˚ gpxq “ pf ˚ gqpxq “

ż

Rm

fpx´ yqgpyq dy, a.e. x P Rm,

belongs to LrpRmq and satisfies Young’s inequality

}f ˚ g}r ď }f}p }g}q. (3.5)

The bilinear map pf, gq ÞÑ f ˚ g is thus continuous from LppRmq ˆ LqpRmq

to LrpRmq. We only need the case q “ 1, where one has r “ p P r1,8s. We
now prove basic operational properties of the Fourier transform on L1pRmq.

Proposition 3.3. Let f, g P L1pRmq, t PRm, and a ą 0. The following
formulas hold.

a) FpTtfq “ eitf̂ .

b) Fpeitfq “ T´tf̂ .

c) FpDafq “ a´mD1{af̂ .

d) Fpf ˚ gq “ p2πq
m
2 f̂ ĝ.

Proof. Let f, g P L1pRmq, t, ξ P Rm, and a ą 0. Using the substitutions
y “ x` t and z “ ax, we check assertions a), b) and c) by calculating

FpTtfqpξq “ p2πq´m
2

ż

Rm

e´iξ¨xfpx` tqdx “ p2πq´m
2

ż

Rm

e´iξ¨py´tqfpyq dy

“ eiξ¨tf̂pξq,

Fpeitfqpξq “ p2πq´m
2

ż

Rm

e´iξ¨xeit¨xfpxq dx “ f̂pξ ´ tq,

FpDafqpξq “ p2πq´m
2

ż

Rm

e´iξ¨xfpaxq dx “ p2πq´m
2

ż

Rm

a´m e´i 1
a
ξ¨zfpzqdz

“ a´mf̂p 1aξq.

To prove part d), we first recall from the proof of Theorem 2.14 in [FA]
that the map R2m Q px, yq ÞÑ fpy ´ xqgpxq is integrable. Hence, also the
function px, yq ÞÑ e´iξ¨yfpy ´ xqgpxq belongs to L1pR2mq. Fubini’s theorem
then yields

Fpf ˚ gqpξq “ p2πq´m
2

ż

Rm

ż

Rm

e´iξ¨yfpy ´ xqgpxq dx dy

“ p2πq´m
2

ż

Rm

ż

Rm

e´iξ¨py´xqfpy ´ xqe´iξ¨xgpxqdy dx



3.1. The Fourier transform 41

“ p2πq´m
2

ż

Rm

ż

Rm

e´iξ¨zfpzq dz e´iξ¨xgpxq dx “ p2πq
m
2 f̂pξqĝpξq,

where we also employed the subtitution z “ y ´ x in one of y–integrals. □

We illustrate the above properties by computing the Fourier transform of
a general Gaussian.

Example 3.4. We set fpxq “ expp´a
2 |x ´ v|22q for all x P Rm and some

a ą 0 and v P Rm. The Fourier transform of this Gaussian function is
given by f̂pξq “ a´m{2 expp´iv ¨ ξq expp´ 1

2a |ξ|22q for ξ P Rm. In fact, we have
f “ T´vD?

aγ. Proposition 3.3 and Example 3.2 thus yield

f̂ “ e´ivFpD?
aγq “ e´iva

´m
2 D1{

?
aγ̂ “ a´m

2 e´ivD1{
?
aγ,

as asserted. ♢

As one of its main properties, the Fourier transform maps derivatives into
multiplication by polynomials, and vice versa. To state this fact concisely,
we use the multi-index notation: For α “ pα1, . . . , αmq P Nm

0 and x “

px1, . . . , xmq P Rm, we set

|α| “ α1`¨ ¨ ¨`αm, xα “ xα1
1 ¨. . .¨xαm

m , Bα “ B
α1
1 . . . Bαm

m “
B|α|

Bxα1
1 ¨ ¨ ¨ Bxαm

m
.

We further write xαf for the function Rm Q x ÞÑ xαfpxq, etc. Observe that

|xα| “ |x1|α1 ¨ . . . ¨ |xm|αm ď |x|
|α|

2 ď 1 ` |x|k2 (3.6)

for x P Rm and |α| ď k.
To relate the Fourier transform with derivatives, we need a space of

smooth functions. Unfortunately, C8
c pRmq is not invariant under the Fourier

transform. Instead one uses the (somewhat less convenient) ‘Schwartz space’
on which F becomes a bijection, as seen below.

Definition 3.5. For f P C8pRmq, k P N0 and α P Nm
0 , we set

pk,αpfq “ sup
xPRm

|x|k2 |Bαfpxq|.

We define the Schwartz space Sm by

Sm “
␣

f P C8pRmq
ˇ

ˇ pk,αpfq ă 8 for all k P N0, α P Nm
0

(

.

Notice that Sm is a vector space and that all derivatives of f in Sm decay
faster than |x|

´k
2 for every k P N, as |x|2 Ñ 8. One thus calls f P Sm rapidly

decreasing. Clearly, the map γpxq “ e´|x|22{2 belongs to Sm. Moreover, one
can replace pk,αpfq by p2k,αpfq in the definition of Sm without changing Sm.
We discuss further basic properties of this space.

Remark 3.6. a) Let f P Sm, k P N0, and α P Nm
0 . We estimate

|x|k2 |Bαfpxq| “ p1 ` |x|
m`1
2 q´1 p|x|k2 ` |x|

k`m`1q

2 q |Bαfpxq|

ď p1 ` |x|
m`1
2 q´1 ppk,αpfq ` pk`m`1,αpfqq

for all x P Rm. Since the function x ÞÑ p1 ` |x|
m`1
2 q´1 is integrable on Rm

(see Analysis 3), we deduce that g :“ |x|k2Bαf is in L1pRmq X C0pRmq, and

hence |x|k2Bαf belongs to LppRmq for all p P r1,8s in view of |g|p ď |g| }g}
p´1
8 .
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b) Because of C8
c pRmq Ď Sm Ď LppRmq, Proposition 4.13 in [FA] yields

that Sm is dense in LppRmq for every p P r1,8q.

c) Observe that pk,α is a seminorm on Sm for all k P N0 and α P Nm
0 ,

where p00 is the supnorm. We order these seminorms as a sequence ppjqjPN.
Due to Proposition 1.8 in [FA], the Schwartz space Sm has the metric

dpf, gq “

8
ÿ

j“1

2´j pjpf ´ gq

1 ` pjpf ´ gq
,

and dpfn, fq Ñ 0 as n Ñ 8 if and only if pk,αpf ´ fnq Ñ 0 as n Ñ 8 for all
k P N0 and α P Nm

0 .
Moreover, Sm is complete for this metric.1 Indeed, let pfnq be Cauchy in

pSm, dq. Then p|x|k2Bαfnqn is Cauchy in CbpRmq and thus has a limit fk,α in
CbpRmq for each pk, αq P N0 ˆ Nn

0 . Letting k “ 0, we deduce that f :“ f0,0
belongs to C8pRmq and Bαf “ f0,α. So the products |x|k2Bαfn also tend to

|x|k2Bαf pointwise, and hence this function coincides with fk,α. This means
that f is contained in Sm and dpfn, fq Ñ 0 as n Ñ 8. ♢

The next lemma deals with the announced relation between Fourier trans-
form and derivatives. We use the Laplace operator given by ∆ “ B2

1`¨ ¨ ¨`B2
m

and the space of smooth, polynomially bounded functions

Em “
␣

f P C8pRmq
ˇ

ˇ@α P Nm
0 Dnα P N0 : sup

|x|2ě1
|x|

´nα
2 |Bαfpxq| ă 8

(

.

Note that Schwartz functions and polynomials belong to Em.

Lemma 3.7. Let f P Sm, g P Em, and α P Nm
0 . Then the following

assertions hold.

a) pf P C8pRmq, Bα
pf “ p´iq|α| Fpxαfq, FpBαfq “ i|α| ξα pf .

b) F∆f “ FB2
1f ` ¨ ¨ ¨ ` FB2

mf “ i2pξ21 ` ¨ ¨ ¨ ` ξ2mqFf “ ´|ξ|22Ff.
c) The maps f ÞÑ gf , f ÞÑ Bαf , and R are continuous from Sm to Sm.

d) The Fourier transform is continuous from Sm to Sm.

Proof. Let ξ, x P Rm, f, fn P Sm for n P N, g P Em, α P Nm
0 , and kPN0.

We show a) for α “ ej , the assertion then follows by induction. There exists

B

Bξj
e´iξ¨xfpxq “ ´ixje

´iξ¨xfpxq “: φjpξ, xq,

and Rm Q x ÞÑ |φjpξ, xq| “ |xjfpxq| is integrable by Remark 3.6. A corollary
to the theorem of dominated convergence thus shows that

D
B

Bξj
f̂pξq “ p2πq´m

2

ż

Rm

´ixje
´iξ¨xfpxq dx “ ´iFpxjfqpξq.

For the second part of a) we write r´n, nsl “ C l
n for l, n P N and x “ px1, xjq

with x1 “ px1, . . . , xj´1, xj`1, . . . , xmq P Rm´1. Using that Bjf and f are
integrable and integrating by parts in xj , we compute

FpBjfqpξq “ p2πq´m
2 lim

nÑ8

ż

Cm´1
n

ż n

´n
e´iξ¨px1,xjqBjfpx1, xjqdxj dx

1

1The proof was omitted in the lectures.
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“ p2πq´m
2 lim

nÑ8

„
ż

Cm
n

iξje
´iξ¨xfpxqdx`

ż

Cm´1
n

e´iξ¨xfpx1, xjq
ˇ

ˇ

ˇ

n

xj“´n
dx1

ȷ

“ iξj pfpξq.

Here the second integral Jn in the second line tends to 0 as n Ñ 8 since

|Jn| ď
ÿ

N“˘n

ż

Cm´1
n

|px1, Nq|
´m
2 |px1, Nq|m2 |fpx1, Nq|dx1 ď 2p2nqm´1n´mpm0pfq.

Assertion b) is a consequence of a). For part c), note that the function

|x|k2Bαpfgq is a linear combination of terms |x|
k`nγ

2 Bβf |x|
´nγ

2 Bγg for β, γ P

Nm
0 with β ` γ “ α. Since g P Em, also employing (3.6) we obtain

pk,αpfgq ď c
ÿ

βďα

ppk`l,βpfq ` pk,βpfqq,

where l “ max|γ|ď|α| nγ and c only depends on k, α, m and g. Hence, fg
belongs to Sm. The asserted continuity of f ÞÑ fg follows by replacing f
with f ´ fn. Similarly, one checks the second and third part of c).

By means of claims a) and b), we further compute

|ξ|2k2 Bα
pf “ p´iq|α||ξ|2k2 Fpxαfq “ p´iq|α|p´1qkFp∆kpxαfqq.

Due to part c) and Remark 3.6, the function ∆kpxαfq belongs to Sm Ď

L1pRmq so that its Fourier transform can be estimated by means of (3.2).

This means that pf is contained in Sm, and we also obtain

p2k,αpFpf ´ fnqq ď c}∆kpxαpf ´ fnqq}1.

Using again Leibniz’ rule and Remark 3.6, the term on the right-hand side
can be bounded by a linear combination of certain seminorms pi,βpf ´ fnq;
i.e., Fm : Sm Ñ Sm is continuous. □

We infer the Riemann–Lebesgue Lemma, which improves on (3.2).

Corollary 3.8. If f P L1pRmq, then f̂ P C0pRmq. Hence, F belongs to
BpL1pRmq, C0pRmqq.

Proof. Let f P L1pRmq. Remark 3.6 provides functions fn P Sm con-

verging to f in L1pRmq. Lemma 3.7 shows that f̂n belongs to Sm Ď C0pRmq.

By (3.2), the functions f̂n tend to f̂ in supnorm so that f̂ is contained in
C0pRmq. The second assertion then follows from (3.2). □

The next lemma is the crucial step towards the main results of this sec-
tion. Observe that in its second part a double integral disappears due to
cancellations of the highly oscillating integrands.

Lemma 3.9. The following assertions hold.

a)
ş

Rm f̂g dx “
ş

Rm fĝ dx for all f, g P Sm.

b) F2 “ R; i.e., pFFfqpxq “ fp´xq for all f P Sm and x P Rm.

Proof. Let f, g P Sm. Since px, yq ÞÑ e´iy¨xfpxqgpyq is integrable on
R2m, Fubini’s theorem yields
ż

Rm

f̂pyqgpyq dy “

ż

Rm

p2πq´m
2

ż

Rm

e´iy¨xfpxqgpyq dx dy
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“

ż

Rm

fpxq p2πq´m
2

ż

Rm

e´iy¨xgpyqdy dx “

ż

Rm

fpxqĝpxq dx.

In the second assertion one is led to the integrand e´iy¨ξe´iξ¨xfpxq which is
not integrable for pξ, xq P R2m. So Fubini’s theorem does not apply directly,
and one has to use a regularization. To that purpose, fix ξ P Rm and a ą 0.

Set ha “ e´iξDaγ P Sm; i.e., hapyq “ e´iξ¨y expp´a2

2 |y|22q for y P Rm. Due to

the theorem of dominated convergence with the majorant |f̂ |, the integral

Ja :“

ż

Rm

f̂pyqhapyqdy “

ż

Rm

f̂pyqe´iξ¨yγpayqdy

converges to p2πq
m
2 pF f̂qpξq as a Ñ 0. On the other hand, part a), Proposi-

tion 3.3 and Example 3.2 imply that

Ja “

ż

Rm

fpxqFpe´iξDaγqpxq dx “

ż

Rm

fpxq a´mpTξD1{aγqpxqdx

“

ż

Rm

fpxq a´mγp 1apx` ξqqdx “

ż

Rm

fpaz ´ ξqγpzq dz,

where we also substitute z “ 1
apx ` ξq. By means of the theorem of dom-

inated convergence with the majorant }f}8γ we conclude that Ja tends to

fp´ξq}γ}1 “ p2πq
m{2fp´ξq as a Ñ 0, which shows assertion b). □

We now establish the asserted bijectity of F on Sm and compute its in-
verse. We further complement Proposition 3.3 d) on convolutions. Equation
(3.8) will be crucial to extend our results to L2pRmq.

Proposition 3.10. The Fourier transform F : Sm Ñ Sm is a homeomor-
phism with F4 “ I and F´1 “ F3 “ RF . Moreover, for all f, g P Sm and
x P Rm we have

F´1gpxq “ p2πq´m
2

ż

Rm

eix¨ξgpξqdξ, (3.7)

pFf |FgqL2 “ pf |gqL2 :“

ż

Rm

fpxqgpxq dx, (3.8)

f ˚ g P Sm, (3.9)

Fpfgq “ p2πq´m
2 f̂ ˚ ĝ. (3.10)

Proof. Lemma 3.9 shows that I “ R2 “ F4 “ FF3 “ F3F on Sm so
that F : Sm Ñ Sm has the continuous inverse F3 “ RF . This fact already
gives (3.7). Let f, g P Sm and x, ξ P Rm. Equation (3.7) then yields

FpFgqpξq “ p2πq´m
2

ż

Rm

e´ix¨ξ ĝpξq dξ “ p2πq´m
2

ż

Rm

eix¨ξ ĝpξqdξ

“ pF´1Fgqpxq “ gpxq.

So we can deduce from Lemma 3.9 a) that

pf̂ |ĝqL2 “

ż

Rm

f̂ ĝ dξ “

ż

Rm

f FpFgqdx “

ż

Rm

fg dx “ pf |gqL2 .

For the final two assertions, Proposition 3.3 and Lemma 3.7 imply that
Fpf ˚ gq “ p2πq

m{2f̂ ĝ “: φ belongs to Sm. Hence, the convolution f ˚ g “
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F´1φ is an element Sm. Replacing f and g by f̂ and ĝ, we further infer

Fpf̂ ˚ ĝq “ p2πq
m
2 F2pfqF2pgq “ p2πq

m
2 Rpfgq “ p2πq

m
2 F2pfgq

since R “ F2. We apply F´1 and arrive at (3.10). □

The equality (3.8) yields }Ff}2 “ }f}2 for all f P Sm. Since Sm is dense in
L2pRmq by Remark 3.6, we can extend F to a linear isometry F2 : L

2pRmq Ñ

L2pRmq which is also called Fourier transform (use Lemma 2.13 of [FA]).
Let f P L2pRmq X L1pRmq. By Theorem 4.21 in [FA], we have functions
fn P C8

c pRmq Ď Sm which tend to f in L2pRmq and in L1pRmq. Since
Ffn Ñ F2f in L2pRmq, there is a subsequence Ffnj converging to F2f a.e. as
j Ñ 8 due to Riesz–Fischer. On the other hand, Ffnj converges uniformly

to Ff by (3.2). Thus, F2f “ Ff a.e.. We now write F : L2pRmq Ñ L2pRmq

instead of F2, and also F2f “ f̂ .
Warning: Ff is not given by the formula (3.1) if f P L2pRmqzL1pRmq.
In the next theorem we collect the main properties of F on L2pRmq, except

for its behavior under derivatives which will be dealt with in Theorem 3.25.
Unitary operators are introduced in Definition 5.43 in [FA] or in Section 4.1.

Theorem 3.11. The Fourier transform on Sm extends to a unitary oper-
ator F : L2pRmq Ñ L2pRmq which is given by (3.1) on L2pRmq X L1pRmq.
Let f, g P L2pRmq, h P L1pRmq X L2pRmq, t P Rm, and a ą 0. Then the
following assertions hold.

a) F2 “ R, F4 “ I, F´1 “ F3 “ RF .

b) F´1hpxq “ p2πq´m{2
ş

Rm eix¨ξhpξqdξ for x P Rm (inversion formula).

c) pFf |FgqL2 “ pf |gqL2 (Plancherel identity).

d)
ş

Rm f̂g dx “
ş

Rm fĝ dx.

e) FpTtfq “ eitf̂ , Fpeitfq “ T´tf̂ , FpDafq “ a´mD1{af̂ .

f) Let χ, ψ P L1pRmq with φ :“ RFψ P C0pRmq and write φ̂ “ ψ. Then

Fpχ ˚ fq “ p2πq
m
2 χ̂f̂ , Fpφfq “ p2πq´m

2 φ̂ ˚ f̂ (convolution theorem).

Proof. As seen above, F is an isometry on L2pRmq. The equations
F2 “ R, F4 “ I, and those in assertions c)–e) hold on the dense subspace
Sm as shown in Proposition 3.3, Lemma 3.9 and Proposition 3.10. Since
the maps F , R, Tt, Da, f ÞÑ eitf and the scalar product (cf. (3.4)) are
continuous from L2pRmq, resp. from L2pRmq ˆ L2pRmq, to L2pRmq, these
identities can be extended to L2pRmq by approximation.
From F4 “ I we infer I “ FF3 “ F3F so that F : L2pRmq Ñ L2pRmq has

the inverse F´1 “F3 “RF , and parts a) and b) are shown. As a bijective
isometry on a Hilbert space, F is unitary by Proposition 5.52 in [FA].
The first part of claim f) follows from Proposition 3.3 by approximation,

using (3.5). For the second part, take fn, ψn P Sm with fn Ñ f in L2pRmq

and ψn Ñ ψ in L1pRmq as n Ñ 8. Then φn :“ F´1ψn “ RFψ tends to φ “

RFψ in L8pRmq by (3.2). Hence, φnfn converges to φf and xφn˚xfn “ ψn˚xfn
to ψ ˚ f̂ “ φ̂ ˚ f̂ in L2pRmq due to (3.4) and (3.5), respectively. Equation
(3.10) and the continuity of F now imply the second part of f). □

In Theorem 3.25 we complement the above result. In the appendix Sec-
tion 3.6 we treat the Fourier transform in a more general framework.
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3.2. Basic properties of Sobolev spaces

In the remainder of the chapter U Ď Rm is open and non-empty. We are
looking for properties of C1-functions which can be generalized to a theory
of derivatives suited to Lp-spaces. Looking at the theorem of dominated
convergence, for instance, one sees that here the basic concepts should not
be based on pointwise limits. It turns out that integration by parts is an
excellent starting point for such a theory.
Let f P C1pUq and φ P C8

c pUq. Extend φf P C1
c pUq by 0 to a function

g P C1
c pRmq. Then B1g “ B1φf ` φB1f on U . Take a number a ą 0 such

that supp g Ď p´a, aqm “: Cm and write x “ px1, x
1q. We then derive

ż

U
B1f φ dx “ ´

ż

U
fB1φdx`

ż

U
B1g dx

“ ´

ż

U
fB1φdx`

ż

Cm´1

ż a

´a
B1gpx1, x

1q dx1 dx
1

“ ´

ż

U
fB1φdx`

ż

Cm´1

pgpa, x1q ´ gp´a, x1qqdx1

“ ´

ż

U
fB1φdx.

Inductively one shows that

ż

U
Bαf φ dx “ p´1q|α|

ż

U
fBαφdx, (3.11)

for all f P CkpUq, φ P C8
c pUq, and α P Nm

0 with |α| ď k. Throughout
derivatives like Bα only act on the following map (if there are no parentheses).
To imitate (3.11) in a definition, we set

Lp
locpUq “

␣

f : U Ñ F
ˇ

ˇ f measurable, fæK PLppKq for all compact K Ď U
(

for p P r1,8s. Note LppUq Ď Lp
locpUq Ď L1

locpUq. We extend f P Lp
locpUq by 0

to a measurable function f : Rm Ñ F without further notice. Convergence in
Lp
locpUq means that the restrictions to K converge in LppKq for all compact

K Ď U . This limit concept can be described by a complete metric as in
Example 1.9 of [FA]. We introduce a new notion of derivative.

Definition 3.12. Let f P L1
locpUq and α P Nm

0 . Let g P L1
locpUq satisfy

ż

U
gφdx “ p´1q|α|

ż

U
fBαφdx (3.12)

for all φ P C8
c pUq. Then g “: Bαf is called weak derivative of f . We set

WαpUq “
␣

f P L1
locpUq

ˇ

ˇ D Bαf P L1
locpUq

(

.

For k P N and p P r1,8s, one defines the Sobolev spaces by

W k,ppUq “
␣

f P LppUq
ˇ

ˇ f P WαpUq, Bαf P LppUq for all |α| ď k
(
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and endows them with

∥f∥k,p “

$

’

’

’

’

’

&

’

’

’

’

’

%

ˆ

ÿ

0ď|α|ďk

∥Bαf∥pp
˙1{p

, 1 ď p ă 8,

max
0ď|α|ďk

∥Bαf∥8, p “ 8,

where B0f :“ f . We set W 0,p
plocq

pUq “ Lp
plocq

pUq, Bej “Bj, B “B1 if m“1, and

W k,p
loc “

␣

f P Lp
locpUq

ˇ

ˇ f P WαpUq, Bαf P Lp
locpUq for all |α| ď k

(

.

As usual, Lp
locpUq, WαpUq, W k,p

loc pUq, and W k,ppUq are spaces of equiva-
lence classes modulo N “ tf : U Ñ F | f measurable, f “ 0 a.e.u. After
recalling an important fact from Lemma 4.15 in [FA] (se also Lemma 3.50
in the appendix), we list basic properties of weak derivatives.

Lemma 3.13. Let g P L1
locpUq satisfy

ş

U gφdx “ 0 for all φ P C8
c pUq.

Then g “ 0 a.e..

Remark 3.14. Let α, β P Nm
0 , p P r1,8s, and k P N.

a) Lemma 3.13 implies that Bαf is uniquely determined for a.e. x P U .
From (3.11) we then infer that CkpUq`N is contained inWαpUq for |α| ď k
and that weak and classical derivatives coincide for f P CkpUq.

b) WαpUq is a vector space and the map Bα :WαpUq Ñ L1
locpUq is linear.

c) Let f P WαpUq XWα`βpUq. Then Bαf belongs to WβpUq and BβBαf “

Bα`βf . If also f P WβpUq, then Bβf P WαpUq and BαBβf “ Bα`βf “ BβBαf .

For f P W
|α|,1
loc pUq we obtain Bαf “ B

α1
1 . . . Bαm

m f and may change the order.
Proof. Let φ P C8

c pUq and f P WαpUq X Wα`βpUq. We just check the

definition of BβpBαfq, where put Bα on φ by means of (3.12) and then use
Schwarz’ theorem from Analysis 2. So we compute

p´1q|β|
ż

U
Bαf Bβφdx “ p´1q|α|`|β|

ż

U
f BαBβφdx “ p´1q|α`β|

ż

U
f Bα`βφdx

“

ż

U
Bα`βf φ dx;

i.e., Bαf P WβpUq and BβBαf “ Bα`βf . The second claim follows by inter-
changing α and β; the last one is clear. l

d) pW k,ppUq, ∥¨∥k,pq is a normed vector space. A sequence pfnqn converges

inW k,ppUq if and only if pBαfnqn converges in LppUq for each α with |α| ď k.
Note that }f}

p
1,p “ }f}

p
p ` } |∇f |p }

p
p for f P W 1,ppUq and p ă 8.

e) The map J :W k,ppUq Ñ LppUqN ; f ÞÑ pBαfq|α|ďk , is a linear isometry,

where N is the number of α in Nm
0 with |α| ď k and LppUqN has the norm

}pfjqj} “ |p}fj}pqj |p. Since the p-norm and the 1-norm on RN are equivalent,
there is a constant cN ą 0 such that

cN
ÿ

0ď|α|ďk

∥Bαf∥p ď ∥f∥k,p ď
ÿ

0ď|α|ďk

∥Bαf∥p

for all f P W k,ppUq. ♢
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We continue with simple, but instructive one-dimensional examples.

Example 3.15. a) Let f P CpRq be such that f˘ :“ fæR¡0 belong to

C1pR¡0q. We then have f P W 1,1
loc pRq with

Bf “

"

f 1
` on Rě0,
f 1

´ on R´ “ p´8, 0q

*

“: g.

For fpxq “ |x|, we thus obtain Bf “ 1Rě0 ´ 1R´
.

Proof. For every φ P C8
c pRq, we compute

ż

R
fφ1 dt “

ż 0

´8

f´φ
1 dt`

ż 8

0
f`φ

1 dt

“ ´

ż 0

´8

f 1
´φdt` f´φ

ˇ

ˇ

0

´8
´

ż 8

0
f 1

`φdt` f`φ
ˇ

ˇ

8

0

“ ´

ż

R
gφdt,

since f`p0q “ f´p0q by the continuity of f . l

b) The function f “ 1Rě0 does not belong to W 1,1pRq.
Proof. Assume there would exist g “ Bf P L1

locpRq. Then we obtain
ż

R
gφdt “ ´

ż

R
1Rě0φ

1 dt “ ´

ż 8

0
φ1ptq dt “ φp0q

for all φ P C8
c pRq. Taking φ with suppφ Ď R` “ p0,8q, from Lemma 3.13

we deduce g “ 0 on R`. Similarly, it follows that g “ 0 on R´. The equation
in display then yields φp0q “ 0 for all φ P C8

c pRq, which is wrong. l

c) Set fpx, yq “ 1Rě0pxq for px, yq P R2. Observe that
ş

R Bαφpx, yq dy “ 0

for all φ P C8
c pR2q and α P N2

0 with α2 ‰ 0. As a result, the weak derivatives

Bαf “ 0 exist for such α, e.g., B2f “ 0 “ Bp1,1qf “ 0. However, as in part b)
one sees that the weak derivative B1f does not exist. ♢

So far we have just used the definition of weak derivatives by duality. For
further examples and deeper results one needs mollifiers, which we recall
and discuss next.
Fix a function 0 ď χ P C8pRmq with support Bp0, 1q and χ ą 0 on

Bp0, 1q. For x P Rm and ε ą 0, we set

kpxq “
1

∥χ∥1
χpxq and kεpxq “ ε´mkp1εxq.

Note that 0 ď kε P C8pRmq, kεpxq ą 0 if and only if |x|2 ă ε, and ∥kε∥1 “ 1.
Let f P L1

locpUq and ε ą 0. We now introduce the mollifier Gε by

Gεfpxq “

ż

Bpx,εq

kεpx´ yqfpyqdy “

ż

Bp0,εq

kεpzqfpx´ zqdz, (3.13)

for x P U ε :“ tx P U | 0 ă ε ă dpx, BUqu. If the 0-extension of f belongs to
L1
locpRmq, the above definition works for x P Rm or x P U and all ε ą 0, and

we have Gεf “ kε ˚ f for this extension. For a subset S of a Banach space
and ε ą 0, we define

Sε “ S `Bp0, εq.
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From Proposition 4.13 in [FA] and its proof we recall that

Gεf P C8pU εq and Gεf P C8pRmq if f P L1
locpRmq, (3.14)

suppGεf Ď Sε for S :“ supp f, Sε is compact if S is compact, (3.15)

∥Gεf∥LppUq ď ∥Gεf∥LppRmq ď ∥f∥p if f P LppUq and 1 ď p ď 8, (3.16)

Gεf Ñ f in LppUq as ε Ñ 0 if f P LppUq and 1 ď p ă 8, (3.17)

or if p “ 8 and f P CubpUq.

The next lemma is the key to many properties of weak derivatives. Abus-
ing notation, we write Gεf Ñ f in Lp

locpUq as ε Ñ 0 if we have pGεfqæK Ñ

fæK in LppKq as ε Ñ 0 for all compact K Ď U and 0 ă ε ă dpK, BUq.

Lemma 3.16. Let α P Nm
0 , p P r1,8s, and ε ą 0.

a) Let f P WαpUq. If U “ Rm, we have BαGεf “ GεBαf , and otherwise

pBαGεfqpxq “ pGεBαfqpxq for x P U with ε ă dpx, BUq.

b) Let f P WαpUq. Then the functions Gεf converge to f and BαGεf tend
to Bαf in L1

locpUq as ε Ñ 0. If, in addition, f and Bαf belong to Lp
locpUq

for some p P p1,8q, then we have convergence in Lp
locpUq.

c) Let f P WβpUq for some multi-indices β P Nm
0 . For each null sequence

pεjq in R`, we obtain a subsequence εn :“ εjn Ñ 0 such that Gεnf Ñ f

and BβGεnf Ñ Bβf a.e. on U for all these β as n Ñ 8, where n ě NK for
x P K, some NK P N and any compact K Ď U .

d) Let f, g P L1
locpUq and fn P WαpUq such that fn Ñ f and Bαfn Ñ g in

L1
locpUq as n Ñ 8. Then f is contained in WαpUq and Bαf “ g. If these

limits exist in LppUq (or Lp
locpUq) and for all α with |α| ď k, then f is an

element of W k,ppUq (or W k,p
loc pUq). Moreover, Bα with domain

DpBαq “
␣

f P WαpUq X LppUq
ˇ

ˇ Bαf P LppUq
(

is closed in LppUq.

Proof. a) Let f P WαpUq, ε ą 0, and x P U ε. Then the map y ÞÑ

φε,xpyq :“ kεpx ´ yq belongs to C8
c pUq since suppφε,x “ Bpx, εq. Using a

corollary to Lebesgue’s theorem and (3.12), we can thus deduce

BαGεfpxq “

ż

U
Bα
xkεpx´ yqfpyq dy “ p´1q|α|

ż

U
pBαφε,xqpyqfpyq dy

“

ż

U
φε,xpyqBαfpyqdy “ GεBαfpxq.

If U “ Rm this argument works for all x.

b) Let f P WαpUq with f, Bαf P Lp
locpUq for some p ă 8. Choose a

compact subset K Ď U and fix δ ą 0 with Kδ Ď U . Take ε P p0, δs. Note
that the integrand of Gεgpxq is then supported in Kδ for all x P K and
g P L1

locpUq, see (3.13). Hence, part a) and (3.17) imply the limit

1KBαGεf “ 1KGεBαf “ 1KGεp1Kδ
Bαfq ÝÑ 1K1Kδ

Bαf “ 1KBαf

in LppKq as ε Ñ 0. So the asserted convergence in Lp
locpUq is true.

c) Let f P WαpUq. For k P N, we define

Kk “ tx P U
ˇ

ˇ dpx, BUq ě 1
k and |x|2 ď ku
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These sets are compact and
Ť

kPNKk “ U . Let εj Ñ 0. For each k P N there
is a null set Nk Ď Kk and a subsequence νk in νk´1 (with ν0piq “ i) such
that Gενkpiq

fpxq tends to fpxq and BαGενkpiq
fpxq to Bαfpxq for all x P KkzNk

as i Ñ 8. We find a ‘diagonal’ subsequence εn “ εjn Ñ 0 such that
Gεnfpxq Ñ fpxq and BαGεnfpxq Ñ Bαfpxq for x P Uzp

Ť

kPNNkq as n Ñ 8

where εn ă 1
k for x P Kk and

Ť

kPNNk is a null set. By another diagonal

sequence, we can achieve this for countably many Bβf at the same time.

d) Let φ P C8
c pUq and S “ suppφ. Since S is compact, the assumptions

of assertion d) yield fn Ñ f and Bαfn Ñ g in L1pSq as n Ñ 8. From (3.4)
on S and (3.12) we then infer

ż

U
fBαφdx “ lim

nÑ8

ż

U
fnBαφdx “ p´1q|α| lim

nÑ8

ż

U
Bαfn φdx

“ p´1q|α|

ż

U
gφdx;

i.e., f belongs toWαpUq and Bαf“g. The remaining claims follow easily. □

In the next examples we also argue by approximation, but using a differ-
ent, more explicit regularisation method.

Example 3.17. Let U “ Bp0, 1q.
a) Let m ě 2, 1 ď p ă m, and fpxq “ ln|x|2 for x P Uzt0u. Then f

belongs to W 1,ppUq with

Bjfpxq “
xj
|x|22

“: gjpxq,

for x ‰ 0 and j P t1, . . . ,mu. Moreover, f P LqpUqzL8pUq for all q P r1,8q.
Proof. Using polar coordinates and |xj | ď r, we obtain

∥f∥qq “ c

ż 1

0
|ln r|q rm´1 dr ă 8,

∥gj∥pp ď c

ż 1

0

rp

r2p
rm´1 dr “ c

ż 1

0
rm´p´1 dr ă 8,

since p ă m. Hence, f is contained in LqpUq and gj in LppUq. Define

un P C8pUq Ď W 1,ppUq by unpxq “ lnpn´2 `|x|22q
1{2 for n P N. Observe that

Bjunpxq “ pn´2 ` |x|22q´1xj , unpxq Ñ fpxq, and Bjunpxq Ñ gjpxq as n Ñ 8

for all x P Uzt0u. We have the pointwise bounds

|unpxq| ď

#

|fpxq|, n´2 ` |x|22 ď 1,

ln
?
2, n´2 ` |x|22 ą 1,

|Bjunpxq| ď gjpxq, x P U.

Lebesgue’s theorem thus yields that un Ñ f and Bjun Ñ fj in LppUq as
n Ñ 8. The assertion then follows from Lemma 3.16 d). l

b) Let p P r1,8q and β P p1´m
p , 1s. Set upxq “ |x|

β
2 and fjpxq “ βxj |x|

β´2
2

for x P Uzt0u and j P t1, . . . ,mu. As in part a) one shows that u P W 1,ppUq

and Bju “ fj . (See Example 4.18 in [FA].) ♢

We now obtain the basic functional analytic properties of Sobolev spaces.
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Proposition 3.18. Let 1 ď p ď 8 and k P N. ThenW k,ppUq is a Banach
space which is isometrically isomorphic to a closed subspace of a LppUqN for
some N P N. It is separable if p ă 8 and reflexive if 1 ă p ă 8. Moreover,
W k,2pUq is a Hilbert space endowed with the scalar product

pf |gqk,2 “
ÿ

|α|ďk

ż

U
Bαf Bαg dx.

Proof. Let pfnqn be a Cauchy sequence in W k,ppUq. Then pBαfnqn
is a Cauchy sequence in LppUq for every α P Nm

0 with |α| ď k and thus
Bαfn Ñ gα in LppUq for some gα P LppUq as n Ñ 8, where we set f :“ g0.
Lemma 3.16 d) implies that f belongs toW k,ppUq with Bαf “ gα for |α| ď k.
Hence, fn tends to f for } ¨ }k,p and W k,ppUq is a Banach space. We then

deduce from Remark 3.14 e) that W k,ppUq is isometrically isomorphic to a
subspace of LppUqN which is closed by Remark 2.11 in [FA]. The remaining
assertion now follow by isomorphy from known results of functional analysis,
cf. Proposition 4.19 of [FA]. □

We next establish product and chain rules by approximation, using core
arguments of the area. One can derive many variants by modifications of
the proofs. Typically such identities can be shown by approximation if
the functions involved belong to the desired Lp-spaces because of Hölder’s
inequality, for instance, though the case p “ 8 may cause additional trouble.

Proposition 3.19. a) Let f, g P W 1,1
loc pUq X L8pUq. Then, fg belongs to

W 1,1
loc pUq X L8pUq and has the derivatives

Bjpfgq “ Bjf g ` fBjg, j P t1, . . . ,mu. (3.18)

b) Let 1 ď p ď 8, f P W 1,ppUq and g P W 1,p1

pUq. Then, fg is contained
in W 1,1pUq and satisfies (3.18).

Proof. We approximate first g and then f to make the arguments more
transparent.
1) Let f, g P W 1,1

loc pUq. Set fn “ Gεnf P C8pUq and gn “ Gεng P C8pUq

with εn Ñ 0 as in Lemma 3.16 c). Fix k P N and take φ P C8
c pUq and

j P t1, . . . ,mu. Choose an open and bounded set V such that suppφ Ď

V Ď V Ď U . Since fn Ñ f and Bjfn Ñ Bjf on L1pV q by Lemma 3.16 a),
formulas (3.4) and (3.11) yield
ż

U
fgkBjφdx “ lim

nÑ8

ż

V
fngkBjφdx “ ´ lim

nÑ8

ż

V

`

Bjfn gk ` fnBjgk
˘

φdx

“ ´

ż

U

`

Bjf gk ` fBjgk
˘

φdx,

so that fgk P W 1,1
loc pUq and Bjpfgkq “ Bjf gk ` fBjgk.

2) Let f, g P W 1,1
loc pUq X L8pUq and gk as in 1). Note that gk Ñ g and

Bjgk Ñ Bjg in L1
locpUq as k Ñ 8. Since f is bounded, we obtain

ż

U
fgBjφdx “ lim

kÑ8

ż

U
fgkBjφdx “ lim

kÑ8
´

„
ż

U
Bjf gkφdx`

ż

U
fBjgk φdx

ȷ
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using step 1). The last integral converges to
ş

U fBjg φdx, again because of
f P L8pUq. For the penultimate integral we use that gk Ñ g a.e. on suppφ
by Lemma 3.16 c) and that ∥gk∥8 ď ∥g∥8 by (3.16). Lebesgue’s theorem
(with the majorant |Bjf | ∥g∥8∥φ∥81suppφ) then implies

ż

U
fgBjφdx “ ´

ż

U

`

Bjf g ` fBjg
˘

φdx.

The map Bjf g ` fBjg is contained in L1
locpUq by our assumptions. Asser-

tion a) is shown.

3) Let f P W 1,ppUq and g P W 1,p1

pUq. If p P p1,8s we show (3.18) as in

step 2), using (3.4) and that gk, Bjgk converge in Lp1

locpUq by Lemma 3.16 b).
If p “ 1, we replace the roles of f and g. Hölder’s inequality and (3.18)
finally yield that fg and Bjpfgq are contained in L1pUq. □

Proposition 3.20. Let 1 ď p ď 8, j P t1, . . . ,mu, and f P W 1,p
loc pUq.

a) Let f be real-valued and h P C1pRq with h1 P CbpRq. Then h˝f belongs

to W 1,p
loc pUq with derivatives

Bjph ˝ fq “ ph1 ˝ fqBjf.

b) Let V Ď Rm be open and Φ “ pΦ1, . . . ,Φmq : V Ñ U be a diffeomor-

phism such that Φ1 and pΦ´1q1 are bounded. Then f ˝Φ belongs to W 1,p
loc pV q

with derivatives

Bjpf ˝ Φq “

m
ÿ

k“1

ppBkfq ˝ ΦqBjΦk.

In both results we can replace W 1,p
loc pUq by W 1,ppUq, where in part a) we

then also assume hp0q “ 0 if λpUq “ 8 and p ă 8.

Proof.2 By Lemma 3.16, there are mapsfn P C8pUq such that fn Ñ f
and Bjfn Ñ Bjf in L1

locpUq and a.e. as n Ñ 8.

a) The function h ˝ f belongs to Lp
locpUq since

|hpfpxqq| ď |hpfpxqq ´ hp0q| ` |hp0q| ď ∥h1∥8|fpxq| ` |hp0q|
for all x P U . It is contained in LppUq if f P LppUq and if hp0q “ 0 in the
case that λpUq “ 8 and p ‰ 8. Note that h ˝ fn belongs to C1pUq and
Bjph ˝ fnq “ ph1 ˝ fnqBjfn. Let K Ď U be compact. We compute
ż

K
|hpfnpxqq ´ hpfpxqq|dx ď ∥h1∥8

ż

K
|fnpxq ´ fpxq| dx ÝÑ 0,

ż

K
|h1pfnpxqqBjfnpxq ´ h1pfpxqqBjfpxq| dx

ď ∥h1∥8

ż

K
|Bjfnpxq ´ Bjfpxq| dx`

ż

K
|h1pfnpxqq ´ h1pfpxqq||Bjfpxq| dx Ñ 0

as n Ñ 8 where we also used Lebesgue’s theorem and the majorant
2∥h1∥81K |Bjf | in the last integral. Since ph1 ˝ fqBjf belongs to Lp

locpUq,
Lemma 3.16 d) yields assertion a). If f P W 1,ppUq, then ph1 ˝ fqBjf P LppUq

and so h ˝ f is an element W 1,ppUq.

2Not shown in the lectures.



3.2. Basic properties of Sobolev spaces 53

b) Let B “ Φ´1pAq for an open set A Ď U and g P LppAq. For p ă 8,
from the transformation rule we deduce

ż

B
|gpΦpxqq|p dx “

ż

A
|gpyq|p |detrpΦ´1q1pyqs|dy ď c}g}

p
LppAq

.

An analogous estimate is also true for p “ 8. Hence, f ˝ Φ is contained in
Lp
locpV q and fn ˝ Φ converges to f ˝ Φ in L1

locpV q. We further have

Bjpfn ˝ Φq “

m
ÿ

k“1

ppBkfnq ˝ Φq BjΦk.

The above estimate also implies that pBkfnq˝Φ tends to pBkfq˝Φ in L1
locpV q

as n Ñ 8, where this map is an element of Lp
locpV q. Since BjΦk is bounded,

Lemma 3.16 d) now yields that f ˝Φ belongs toW 1,p
loc pUq and has the asserted

derivative. If f P LppUq, we can replace throughout Lp
locpV q by LppV q. □

We extend the chain rule for h ˝ f to certain Lipschitz functions, using an
adapted regularization of h.

Corollary 3.21. Let f P W 1,1
loc pUq be real-valued. Then the maps f`,

f´, and |f | belong to W 1,1
loc pUq with

Bjf˘ “ ˘1tfż0uBjf and Bj |f | “
`

1tfą0u ´ 1tfă0u

˘

Bjf

for all j P t1, . . . ,mu. Here one can replace W 1,1
loc by W 1,p for all 1 ď p ď 8.

Proof.3 We employ the map hε P C1pRq given by hεptq :“
?
t2 ` ε2 ´

ε ď t for t ě 0 and hεptq :“ 0 for t ă 0, where ε ą 0. Observe that ∥h1
ε∥8 “ 1

for ε ą 0 and that hεptq Ñ 1R`
ptqt for t P R as ε Ñ 0. Proposition 3.20

shows that hε ˝ f P W 1,1
loc pUq and

ż

U
hεpfqBjφdx “ ´

ż

U
h1
εpfqBjf φ dx “ ´

ż

tfą0u

f
a

f2 ` ε2
Bjf φ dx

for each φ P C8
c pUq. Using the majorants ∥Bjφ∥81S |f | and ∥φ∥81S |Bjf |

with S “ suppφ, we deduce from Lebesgue’s convergence theorem that
ż

U
f`Bjφdx “ ´

ż

tfą0u

f

|f |
Bjf φ dx “ ´

ż

U
1tfą0uBjf φ dx.

There thus exists Bjf` “ 1tfą0uBjf P L1
locpUq. Clearly, Bjf` belongs to

LppUq if f P W 1,ppUq. The other claims follow from f´ “ p´fq` and
|f | “ f` ` f´. □

We discuss three special cases, namely m“1, p“8, and p“2 for U“Rm.

Theorem 3.22. Let J Ď R be an open interval, 1 ď p ă 8, and f P

Lp
locpJq. Then f belongs to W 1,p

loc pJq if and only if there is a map g P Lp
locpJq

and a continuous representative of f which satisfy

fptq “ fpsq `

ż t

s
gpτq dτ (3.19)

for all s, t P J . In this case, we have g “ Bf a.e.. Let also Bf P L1pJq. Then
f extends to J continuously and (3.19) is true for t, s P J.

3Not shown in the lectures.
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Proof. 1) Let f P W 1,p
loc pJq. Take the functions fn “ Gεnf P C8pJq

from Lemma 3.16 c). Then for a.e. t P J and for a.e. t0 P J we have

fptq ´ fpt0q “ lim
nÑ8

pfnptq ´ fnpt0qq “ lim
nÑ8

ż t

t0

f 1
npτqdτ “

ż t

t0

Bfpτq dτ.

Fix one t0. Since t ÞÑ
şt
t0

Bfpτqdτ is continuous, we obtain a continuous rep-

resentative of f which fulfills (3.19) for tPJ , s“ t0 and g“Bf . Subtracting
the above equation with t0 and s P J instead of t, we deduce (3.19) with
g “ Bf for all t, s P J . The addendum with Bf P L1pJq follows easily.

2) Let (3.19) be satisfied by some f, g P Lp
locpJq. As in the proof of

Lemma 3.16 b) we find maps gn P C8pJq with gn Ñ g in Lp
locpJq as n Ñ 8.

For every s P J and n P N, the function J Q t ÞÑ fnptq :“ fpsq `
şt
s gnpτq dτ

belongs to C8pJq with f 1
n “ gn. For ra, bs Ď J with s P ra, bs, we estimate

∥fn ´ f∥pLppra,bsq
“

ż b

a

ˇ

ˇ

ˇ

ˇ

ż t

s
pgnpτq ´ gpτqqdτ

ˇ

ˇ

ˇ

ˇ

p

dt

ď

ż b

a
|t´ s|

p{p1

ˆ
ż b

a
|gnpτq ´ gpτq|p dτ

˙p{p

dt

ď pb´ aq1`p{p1 ∥gn ´ g∥pLppra,bsq
,

using (3.19) and Hölder’s inequality. Hence, fn tends to f in Lp
locpJq as

n Ñ 8. Lemma 3.16 d) then yields f P W 1,p
loc pJq and Bf “ g. □

We discuss the relationship of the weak and pointwise derivatives ifm “ 1.

Remark 3.23. a) Let J “ pa, bq for some a ă b in R and f : J Ñ F. We
then have f P W 1,1pJq if and only if f is absolutely continuous; i.e., for all
ε ą 0 there is a number δ ą 0 such that for all points a ă α1 ă β1 ă α2 ă

¨ ¨ ¨ ă αn ă βn ă b with n P N and
řn

j“1pβj ´ αjq ď δ we obtain
ÿn

j“1
|fpβjq ´ fpαjq| ď ε.

(Note that a Lipschitz continuous function is absolutely continuous and that
an absolutely continuous function is uniformly continuous.) In this case, f
is differentiable for a.e. t P J and the pointwise derivative f 1 is equal a.e. to
the weak derivative Bf P L1pJq.
Proof.4 Let f P W 1,1pJq. Then formula (3.19) yields

n
ÿ

j“1

|fpβjq ´ fpαjq| “

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż βj

αj

Bfpτq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

Ťn
j“1pαj ,βjq

|Bfpτq|dτ “: S,

where S Ñ 0 as λp
Ťn

j“1pαj , βjqq Ñ 0.
The converse implication and the last assertion is shown in Theorem 7.20

of [Ru1] (combined with our Theorem 3.22). l

b) There is a continuous increasing map f : r0, 1s Ñ R with fp0q “ 0 and
fp1q “ 1 such that f 1ptq “ 0 exists for a.e. t P r0, 1s. This function satisfies

1 “ fp1q ‰ fp0q `

ż 1

0
f 1pτqdτ “ 0,

4The proof was omitted in the lectures.
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and so f violates (3.19), does not belong toW 1,1pp0, 1qq, and is not absolutely
continuous. (See §7.16 in [Ru1].)

c) Let f P W 1,1
loc pJq and Bf be continuous. Then f is continuously differ-

entiable, since then

fptq ´ fpsq

t´ s
“

1

t´ s

ż t

s
Bfpτqdτ ÝÑ Bfpsq

as t Ñ s in J , thanks to Theorem 3.22. ♢

We now characterize W 1,8pUq at least for convex U , other domains are
treated in the Corollary 3.29.

Proposition 3.24. a) The space C1´pUq “ tf P CbpUq
ˇ

ˇ f Lipschitzu is

embedded into W 1,8pUq, and one has

}f}1,8 ď ∥f∥8 ` rf sLip “ }f}C1´

for f P C1´pUq, where rf sLip is the Lipschitz constant of f .
b) Let U be convex. Then W 1,8pUq is embedded into C1´pUq and one has

}f}C1´ ď
?
m }f}1,8, f P W 1,8pUq.

Proof.5 a) Let f P C1´pUq. Take φ P C8
c pUq with support S, j P

t1, . . . ,mu, and δ ą 0 with Sδ Ď U . For ε P p0, δs the difference quotient
1
ε pφpx` εejq ´ φpxqq converges uniformly on suppφ as ε Ñ 0, and hence

ˇ

ˇ

ˇ

ˇ

ż

U
fBjφdx

ˇ

ˇ

ˇ

ˇ

“ lim
εÑ0

ˇ

ˇ

ˇ

ˇ

ż

S
fpxq

1

ε
pφpx` εejq ´ φpxqqdx

ˇ

ˇ

ˇ

ˇ

ď lim
εÑ0

ż

S

1

ε
|fpy ´ εejq ´ fpyq| |φpyq|dy

ď rf sLip∥φ∥1.

Since C8
c pUq is dense in L1pUq, the map φ ÞÑ ´

ş

U fBjφdx has a continuous

linear extension Fj : L
1pUq Ñ F. By Theorem 5.4 of [FA] there thus exists

a function gj in L
8pUq “ L1pUq‹ with ∥gj∥8 “ ∥Fj∥pL1q‹ ď rf sLip such that

´

ż

U
fBjφdx “ Fjpφq “

ż

U
gjφdx

for all φ P C8
c pUq. This means that f has the weak derivative Bjf “ gj P

L8pUq. As a result, f belongs to W 1,8pUq and ∥f∥1,8 ď ∥f∥8 ` rf sLip.

b) Let f P W 1,8pUq and U be convex. Take εn Ñ 0 from Lemma 3.16 c)
and fix a compact K Ď U . For sufficiently large n P N, Lemma 3.16 and
(3.16) yield

|BjGεnfpzq| “ |GεnBjfpzq| ď ∥Bjf∥8 ď ∥f∥1,8,
for all j P t1, . . . ,mu and z P K. Using that Gεnfpxq Ñ fpxq as n Ñ 8 for
all x P UzN and a null set N , for all x, y P UzN we thus estimate

|fpxq ´ fpyq| “ lim
nÑ8

|Gεnfpxq ´Gεnfpyq|

“ lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ż 1

0
∇Gεnfpy ` τpx´ yqq ¨ px´ yqdτ

ˇ

ˇ

ˇ

ˇ

5Not shown in the lectures.
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ď
?
m maxj }Bjf}8 |x´ y|2 .

Hence, f has a representative with Lipschitz constant
?
m maxj }Bjf}8. □

In the spirit of Remark 3.23, we mention Rademacher’s theorem which
says that a Lipschitz function f is differentiable for a.e. x P U and that the
weak derivative Bjf coincides with the pointwise one. Actually, it is enough

to assume f P W 1,p
loc pUq for some p P pm,8s, see Theorem 5.8.5 in [Ev].

The next important result describes the space W k,2pRmq via the Fourier
transform F in a very convenient way and complements Theorem 3.11. Re-
call that F is a bijective isometry on L2pRmq by this theorem.

Theorem 3.25. Let F “ C, k P N, and αPNm
0 with |α|ďk. We then have

W k,2pRmq “
␣

u P L2pRmq
ˇ

ˇ |ξ|k2pu P L2pRmq
(

“: Hk,

and the norm of W k,2pRmq is equivalent to p}u}22 ` }|ξ|k2pu}22q
1
2 . For u P

W k,2pRmq it further holds

FpBαuq “ i|α| ξαpu. (3.20)

Proof. 1) We first show the asserted norm equivalence for Schwartz
functions u P Sm. They satisfy (3.20) by Lemma 3.7. We thus obtain

}u}2k,2 “
ÿ

|α|ďk

}FBαu}22 “
ÿ

|α|ďk

}ξαpu}22 “

ż

Rm

ÿ

|α|ďk

|ξα|2|pu|22 dξ

#

ď ckp}u}22 ` }|ξ|k2pu}22q,

ě c1
kp}u}22 ` }|ξ|k2pu}22q

(3.21)

for some ck, c
1
k ą 0 and all u P Sm, using (3.6) for ‘ď’ and α “ kej for ‘ě’.

2) Let u P W k,2pRmq. By an extension of Proposition 4.13 of [FA] (see
Theorem 3.27 below), there are un P Sm which converge to u in W k,2pRmq

as n Ñ 8. Since F is continuous on L2pRmq, the functions xun tend to pu
in L2pRmq and (possibly after passing to a subsequence) pointwise a.e., as
n Ñ 8. Hence, the products |ξ|k2xun converge pointwise a.e. to |ξ|k2pu. On
the other hand, equation (3.21) yields that the sequence p|ξ|k2xunqn is Cauchy
in L2pRmq, and thus it has the limit |ξ|k2pu in L2pRmq. We conclude that
W k,2pRmq is contained in Hk and that (3.21) is true for u P W k,2pRmq.

3) Conversely, take u P Hk. Let φ P C8
c pRmq and |α| ď k. Then ξαpu is

an element of L2pRmq. From Theorem 3.11 and Lemma 3.7 we deduce
ż

Rm

u Bαφdx “ pu|Bαφq “ pFu|FBαφq “ ppu|i|α|ξαpφq “ pp´iq|α|ξαpu|Fφq

“ pF´1pp´iq|α|ξαpuq|φq “ p´1q|α|

ż

Rm

φF´1pi|α|ξαpuq dx.

Therefore u belongs to WαpRmq and Bαu “ F´1pi|α|ξαpuq P L2pRmq; i.e.,
u is contained in W k,2pRmq. Hence, W k,2pRmq “ Hk and their norms are
equivalent by (3.21). Applying F to the above equation for Bαu, we also
derive (3.20) for all u P W k,2pRmq. □

We use the above characterization and F to solve a basic partial differen-
tial equation on Rm.
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Example 3.26. We consider the diffusion equation

Btupt, xq “ ∆upt, xq, t ą 0, x P Rm,

up0, xq “ u0pxq, x P Rm,
(3.22)

for a given initial value u0 P L2pRmq. We find a unique solution of (3.22);
i.e., a map u in CpRě0, L

2pRmqqXC1pR`, L
2pRmqqXCpR`,W

2,2pRmqq which
satisfies (3.22) as equations in L2pRmq.

To that purpose, we first assume that we have such a solution u. We set
ûptq “ Fuptq for all t ě 0 which defines a function û P CpRě0, L

2pRmqq since
F is continuous on L2pRmq. We further compute

Fu1ptq “ F lim
hÑ0

1
hpupt` hq ´ uptqq “ lim

hÑ0

1
hppupt` hq ´ puptqq

for all t ą 0, so that pu P C1pR`, L
2pRmqq and Btpu “ FBtu. Applying F to

(3.22), we then deduce from (3.20) the equations

Btûptq “ FBtuptq “ F∆uptq “ ´|ξ|22ûptq, ûp0q “ xu0. (3.23)

If we insert into ûptq the arguments ξ P Rm, for each ξ we obtain the
ordinary differential equation φ1

ξptq “ ´|ξ|22φξptq, t ě 0, with initial value

xu0pξq, which is solved by φξptq “ e´t |ξ|22
xu0pξq. We thus define

uptq “ F´1pmtxu0q with mtpξq “ e´t|ξ|22 (3.24)

for t ą 0 and ξ P Rm. Theorem 3.11 and Example 3.4 yield }uptq}2 ď }u0}2
for all t ě 0 and

uptq “ F´1pD?
2tγxu0q “ p2πq´m

2 pF´1pD?
2tγqq ˚ u0

“ p2πq´m
2 p2tq´m

2 pD1{
?
2tγq ˚ u0, (3.25)

upt, xq “ puptqqpxq “ p4πtq´m
2

ż

Rm

e´
|x´y|22

4t u0pyq dy, t ą 0, x P Rm.

Since |ξ|k2puptq “ |ξ|k2mtxu0 P L2pRmq, Theorem 3.25 implies that uptq be-
longs to W k,2pRmq for all k P N and t ą 0. From (3.20) we then infer

F∆uptq “ ´|ξ|22puptq “ ´|ξ|22mtxu0, ∆uptq “ ´F´1p|ξ|22mtxu0q.

Let vptq “ Fuptq “ mtxu0 for t ą 0. Clearly, 1
hpvpt ` hq ´ vptqq tends

pointwise to ´|ξ|22mtxu0 as h Ñ 0. Moreover, | 1hpvpt`hq´vptqq| is bounded by

|ξ|22mt{2xu0 P L2pRmq if |h| ď t{2. Dominated convergence then implies that v

has the derivative v1ptq “ ´|ξ|22mtxu0 in L2pRmq for t ą 0. Similarly one sees
the continuity of t ÞÑ |ξ|22mtxu0 from R` to L2pRmq. Theorem 3.25 and the
continuity of F´1 on L2pRmq thus yield that u belongs to C1pR`, L

2pRmqqX

CpR`,W
2,2pRmqq and satisfies

u1ptq “ ´F´1p|ξ|22mtxu0q “ ∆uptq

for t ą 0. Finally, mtxu0 tends to xu0 in L2pRmq as t Ñ 0 by Lebesgue’s
theorem with majorant |xu0|. Hence, u is also contained in CpRě0, L

2pRmqq

with up0q “ u0. In view of (3.23) one sees that every solution of (3.22) is
given by (3.24) so that solutions are unique. ♢
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3.3. Main results on Sobolev spaces

In this section we discuss main theorems on Sobolev spaces, which are
used throughout analysis and other parts of mathematics. Many of the
proofs are rather long and technical. They are mostly omitted since they do
not fit to this lecture. (The proofs are presented in the appendix Section 3.5,
though often in special cases only.)
These arguments often involve density and extensions arguments, which

mostly require assumptions on the boundary BU . To this end, we define
locally Lipschitz, resp. Ck, boundaries (or domains), where k P N: For each
y P BU , we assume that there are open sets U 1

y Ď Rm´1, an open interval

J , and a bounded Lipschitz function h : U 1
y Ñ J (resp. h P Ck

b pU 1
y, Jq) such

that y P Uy :“ U 1
y ˆ J and we have, possibly after rotation,

U X Uy “
␣

x “ px1, xmq P Uy

ˇ

ˇxm ą hpx1q
(

,

BU X Uy “
␣

x “ px1, xmq P Uy

ˇ

ˇxm “ hpx1q
(

,

If one can cover BU by finitely many such Uy, we call BU a Lipschitz- (or

C1´-), resp. Ck-, boundary, and we write BU P C1´, resp. BU P Ck.6

A compact locally Lipschitz boundary is Lipschitz. Unbounded examples
are the ‘upper’ halfspace Rm

` “ tx P Rm |xm ą 0u or, more generally,
the bent upper halfspace U “ tpx1, xmq P Rm |xm ą hpx1qu for a map
h P C1´pRm´1,Rq. Bounded examples are polyhedra, cylinders, cones, or
balls. We note that a local Lipschitz domain is locally given by the chart
ψpxq “ px1, xm´hpx1qq with ψpUXUyq Ď Rm

` and ψpBUXUyq Ď Rm´1ˆt0u.
For C1-boundaries this description is equivalent to our definition, but not
for Lipschitz domains, in general. (Compare Analysis 3.)
We can now state a crucial density theorem, which can be modified to

cover p “ 8, too, cf. the exercises. We write C8
c pUq for the set of restrictions

fæU of f P C8
c pRmq. These functions have bounded support and they and

their derivatives extend continuously to BU .

Theorem 3.27. Let k P N and p P r1,8q. Then the set C8pUqXW k,ppUq

is dense in W k,ppUq. Moreover, C8
c pRmq is dense in W k,ppRmq. Let also

BU P C1´. Then C8
c pUq is dense in W k,ppUq.

The second result is shown in Theorem 4.21 of [FA] for k “ 1. General
k can be handled similarly, cf. Corollary 3.23 in [AF]. A refinement of this
argument yields the first result, see Theorem 5.3.2 in [Ev]. The last part is
more difficult and proven in Theorem 3.22 of [AF] under weaker assumptions
on BU (and in Theorem 5.3.3 in [Ev] for BU P C1 and bounded U).

Many theorems are much easier to tackle on U “ Rm. One thus wants to
reduce results for (more or less) general U to the full space case. This can
be done via so-called extension operators. Let k P N0 and p P r1,8q. The
easiest case are maps f P Ck

c pUq. These can simply be extended by 0 to the

function E0f “ f̃ P Ck
c pRmq, where we often omit the tilde. Clearly, one

has E0pBαfq “ BαE0f for the classical derivative and |α| ď k, so that E0 is

6This is a bit stronger than the standard definition if BU is unbounded; see [AF] for
a thorough discussion of boundary regularity in the context of Sobolev spaces.
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an isometry for } ¨ }k,p. To extend E0, we set

W k,p
0 pUq “ C8

c pUq
k,p

(3.26)

with closure in W k,ppUq. Theorem 3.27 says that W k,p
0 pRmq “ W k,ppRmq.

By Remark 3.40 below, the space W k,p
0 pUq is strictly smaller than W k,ppUq

if BU P C1 (and U ‰ Rm). Further note that LppUq “ W 0,p
0 pUq since C8

c pUq

is dense in LppUq for p ă 8 and every open U .

We can thus extend E0 to an isometry E0 :W
k,p
0 pUq Ñ W k,ppRmq. Since

also Bα : W k,p
0 pUq Ñ LppUq and Bα : W k,p

0 pRmq Ñ LppRmq are continuous,

we have E0Bα “ BαE0 on W k,p
0 pUq by approximation, where |α| ď k.

In this context also restriction operators occur. Let V Ď U be open and
define RV f “ fæV for maps f : U Ñ F. Let f P WαpUq and φ P C8

c pV q

with 0-extension φ̃ P C8
c pUq. We then compute

p´1q|α|

ż

V
RVf Bαφdx “ p´1q|α|

ż

U
fBαφ̃dx “

ż

U
Bαf φ̃dx “

ż

V
RV pBαfqφdx,

so that RV f P WαpV q and BαRV f “ RV Bαf . Hence, RV induces a contrac-

tion RV :W k,ppUq Ñ W k,ppV q, and we have RUE0 “ I on W k,p
0 pUq.

The extension result forW k,ppUq requires assumptions on BU . We state a
core extension theorem for Lipschitz domains due to Stein. A more general
version is proven in Theorem VI.5 of [St], and a sketch is given in §5.25 of
[AF]. The proof uses also harmonic analysis.

Theorem 3.28. Let BU P C1´, k P N, and p P r1,8s. Then there exists
an operator Ek,p in BpW k,ppUq,W k,ppRmqq with Ek,pu “ u on U . These
operators coincide on intersections of the respective spaces. We thus write
EU for all of them.

Note that RUEU is the identity on W k,ppUq. If BU P C1, U is bounded,
k “ 1 and p ă 8, we indicate how construct an extension operator for
W 1,ppUq in a simpler way (see Theorem 5.4.1 in [Ev]). By the density
result from Theorem 3.27, we may restrict ourselves to f P C8

c pUq. One
then reduces the problem to the halfspace Rm

` . Using the definition of a

C1 domain, we cover U by open sets Uj “ Uyj with j P t0, 1, . . . , Nu such

that U0 Ď U , U1, . . . , UN cover BU , and there are charts ψj : Uj Ñ Vj
for j P t1, . . . , Nu. Let tφj | j P t0, 1, . . . , Nuu be a smooth partition of
unity subject to tUju. The part RU0pφ0fq can be treated by means of E0.

The other parts are studied via the functions gj :“ pRUjXU pφjfqq ˝ ψ´1
j on

Vj X Rm
` . We extend these functions to maps Egj on Rm by first setting

them 0 on Rm
` zVj and then extending them to xm “ 0 by continuity and to

x P Rm
´ “ tx P Rm |xm ă 0u by defining

Egjpxq “ ´3gjpx
1,´xmq ` 4gjpx

1,´xm{2q. (3.27)

Observe that Egj belongs to C
1pRmq. Using Propositions 3.19 and 3.20 one

can check

}Egj}W 1,ppRmq ď c}gj}W 1,ppRm
` q ď c}f}W 1,ppUq.

Using further cut-off functions and composing with ψj , one can then glue
together the pieces Egj to the desired operator EUg.
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One can generalize this procedure to the spaces W k,ppUq assuming that
BU P Ck and modifying the formula in (3.27). The resulting operator only
works forW j,ppUq for 0 ď j ď k, in contrast to the Stein extension operator.

As an illustration, we use EU to extend the characterization of W 1,8pUq

from Proposition 3.24 to Lipschitz domains.

Corollary 3.29. Let BU PC1´. ThenW 1,8pUq is isomorphic to C1´pUq.

Proof. Proposition 3.24 yields the embedding C1´pUq ãÑ W 1,8pUq,
and the converse one for convex U , e.g., for U “ Rm. To show W 1,8pUq ãÑ

C1´pUq, take f P W 1,8pUq. By Theorem 3.27 and Proposition 3.24, the
extension EUf belongs to C1´pRmq with norm bounded by c}f}W 1,8pUq.

Hence, f “ RUEUf is contained in C1´pUq with the same norm bound. □

Another important topic are embeddings of Sobolev spaces. We first note
the easy ones

W k,ppUq ãÑ W j,ppUq and W k,ppUq ãÑ W j,qpUq if λpUq ă 8, (3.28)

for k ě j ě 0 and 1 ď q ď p ď 8. By a ‘scaling argument’, we next see
which integrability exponents may occur in such embeddings for U “ Rm,
where we restrict ourselves to k “ 1.

Remark 3.30. Assume that }f}q ď c}f}1,p for some p, q P r1,8s, a con-
stant c, and all f P C1

c pRmq. We take f P C1
c pRmqzt0u and a ą 0. Standard

substitutions yield }Daf}q “ a´m{q}f}q and }BjDaf}p “ a1´m{p}Bjf}p, see
(3.3). So the assumed estimate implies

a´m{q}f}q “ }Daf}q ď c}Daf}1,p “ c
`

a´m{p}f}p ` a1´m{p}|∇f |p}p
˘

We then obtain p ď q in the limit a Ñ 0, and 1´ m
p ě ´m

q as a Ñ 8. If we

only assume that }f}q ď c }|∇f |p}p, it even follows 1 ´ m
p “ ´m

q . ♢

For j P N0 and β P p0, 1q, we use the spaces

Cj
0pUq “

␣

fæU
ˇ

ˇ f P CjpRmq, @ 0 ď |α| ď j : Bαfpxq Ñ 0 as |x|2 Ñ 8
(

,

Cj`β
0 pUq “

␣

f P Cj
0pUq

ˇ

ˇ@ 0 ď |α| ď j : Bαu P CβpUq
(

.

Note that functions in Cj
0pUq or Cj`β

0 pUq and their derivatives up to order
j have bounded and continuous extensions to BU .
We now state the Sobolev embedding theorem, where the Cβ-part is called

Morrey embedding. In cases a) and b) the injection is given by inclusion, in
c) by picking the continuous representative. So case a), for instance, just
means that there is constant cS with }f}j,q ď cS}f}k,p for all f P W k,ppUq.

Theorem 3.31. Let k P N, j P N0, p P r1,8q, und either U “ Rm or
BU P C1´. We have the following embeddings.

a) If q P rp,8q and k ´ m
p ě j ´ m

q , then

W k,ppUq ãÑ W j,qpUq.

b) If q P rp,8q and k ´ m
p “ j, then

W k,ppUq ãÑ W j,qpUq.
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c) If β P p0, 1q and k ´ m
p “ j ` β, then

W k,ppUq ãÑ Cj`β
0 pUq.

These embeddings are true for every open U if one replaces W by W0.

A more general version of this result is shown in Theorem 4.12 of [AF],
see also Section 5.6 of [Ev]. We note that it is enough to treat U “ Rm by
extension (Theorem 3.28) and to consider f P C8

c pRmq due to density (The-
orem 3.27). Iteratively one can reduce to the case k “ 1. On this level the
desired estimates can be shown by elementary, but tricky arguments involv-
ing the fundamental theorem of calculus, Hölder’s inequality, and lengthy

calculations. The addendum follows by the definition (3.26) of W k,p
0 pUq.

For p “ 2 we can show the core estimates also using the Fourier transform.
We present the easiest case. Let k ą m{2 and f P C8

c pRmq so that Ff P

Sm. Using the Fourier inversion formula from Theorem 3.11, estimate (3.2),
Hölder’s inequality, Theorem 3.25 and polar coordinates, we compute

}f}8 “ }F´1Ff}8 ď p2πq´m{2 }p1 ` |ξ|k2q´1p1 ` |ξ|k2q pf}1

ď p2πq´m{2 }p1 ` |ξ|k2q´1}2 }p1 ` |ξ|k2q pf}2

ď c}f}k,2

´

ż 8

0

rm´1

p1 ` rkq2
dr
¯

1
2

ď c}f}k,2

for constants c ą 0, since 2k ą m.

We reformulate Theorem 3.31 modifying the statement for the borderline
cases k ´ m{p P N a bit.

Corollary 3.32. Let p P r1,8q, k P N, and either U “ Rm or BU P C1´.

a) Let kpăm. Then p‹ :“ pm
m´kp ąp and W k,ppUq ãÑ LqpUq for qPrp, p‹s.

b) Let kp “ m. Then W k,ppUq ãÑ LqpUq for all q P rp,8q.

c) Let kp ą m. Then either k ´ m
p P N or k ´ m

p “ j ` β for some j P N0

and β P p0, 1q. In the first case, set j :“ k ´ m
p ´ 1 P N0 and take any

β P p0, 1q. We obtain W k,ppUq ãÑ Cj`β
0 pUq.

For k ´ m
p P N0 in b) and c) the supnorm embeddings fail in general, but

not always; as we discuss next.

Remark 3.33. a) Let m ě 2, α P p0, 1 ´ 1
mq, and U “ Bp0, 12q. Set

fpxq “ p´ ln|x|2qα for x P Uzt0u and fp0q “ 0. Then f P W 1,mpUqzL8pUq.
Proof. Arguing as in Example 3.17, one sees that f P LppUq for all

p ă 8, f R L8pUq, and

Bjfpxq “ ´αp´ ln|x|2qα´1 xj
|x|22

for x ‰ 0 and j P t1, . . . ,mu. Using polar coordinates, we further estimate

}Bjf}m ď c
´

ż 1
2

0

| ln r|pα´1qm

rm
rm´1 dr

¯
1
m

ď c
´

ż 1
2

0

dr

rpln rqp1´αqm

¯
1
m

ă 8

for some constants c ą 0, since p1 ´ αqm ą 1. l
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b) However, we have the embedding Wm,1pUq ãÑ C0pUq if BU P C1´. It
is enough to prove it for U “ Rm (with a constant cS) since then

}f}C0pUq
ď }EUf}C0pRmq ď cS}EUf}Wm,1pRmq ď cS}EU}}f}Wm,1pUq

for all f P Wm,1pUq. By density, we only have to treat f P C8
c pRmq. We

restrict to m “ 2, as the other cases are similar. Then the fundamental
theorem of calculus yield

fpx, yq “

ż x

´8

ż y

´8

BxByfps, tq dt ds.

for px, yq P R2, so that }f}8 ď }f}2,1. ♢

For a bounded Lipschitz domain U , the Morrey embedding and the
Arzela–Ascoli theorem imply that the embedding W k,ppUq ãÑ CpUq is com-
pact if kp ą m. (One says that W k,ppUq compactly embedded into CpUq.)
The Rellich–Kondrachov theorem extends this fact to the case kp ă m.
Recall that a compact embedding J : Y ãÑ X means that any bounded
sequence pynq in Y has a subsequence pJynj qj with limit in X.

Theorem 3.34. Let U be bounded with BU P C1´, k P N and 1 ď p ă 8.
Then the following assertions hold.

a) Let kp ď m and 1 ď q ă p‹ “
mp

m´kp P pp,8s. Then W k,ppUq is

compactly embedded in LqpUq. (For instance, let q “ p.)

b) Let k ´ m
p ą j P N0. Then W k,ppUq is compactly embedded in CjpUq.

The second part can be shown as indicated above, for the first one we
refer to Theorem 5.7.1 of [Ev]. We discuss the sharpness of claim a) above.

Remark 3.35. a) Theorem 3.34 is wrong for unbounded domains, in gen-
eral. In fact, let k P N, p P r1,8q, and define fn “ fp¨ ´ nq in W k,ppRq for
any function 0 ‰ f P C8pRq with supp f Ď p´1{2, 1{2q. Then ∥fn∥k,p and
∥fn ´ fm∥q ą 0 do not depend on n ‰ m in N so that pfnq is bounded in

W k,ppRq and has no subsequence with limit in Lq for 1 ď q ă p‹.

b) The embeddingW 1,ppUq ãÑ Lp‹

pUq is never compact, see Example 6.12
in [AF]. ♢

As we see in Example 5.11, it is often important to control a function
by its derivative. Such results are provided by the Poincaré inequalities
in the next theorem. By its part a), we can omit the term }f}p in the

norm of W 1,p
0 pUq if, e.g., U is bounded. Here we say that U has finite

width if is located between two parallel hyperplanes. Moreover, we write
aU pfq “ λpUq´1

ş

U f dx for the average of f P L1pUq.

Theorem 3.36. a) Let U have finite width and p P r1,8q. We then have

}f}p ď c}|∇f |p}p for all f P W 1,p
0 pUq and some c ą 0.

b) Let U be bounded and pathwise connected with BU P C1´ and p P r1,8q.
We then have }f´aU pfq1}p ď c}|∇f |p}p for all f PW 1,ppUq and some cą0.

The first part is shown in the exercises by a direct calculation and the
second in Theorem 5.8.1 in [Ev] using Rellich’s theorem in a contradiction
argument.
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By the next result, first-order derivatives are small perturbations of
second-order ones (cf. Remark 1.26). We can even omit }Bjf}p in the def-
inition of W 2,ppUq. The following estimate can be extended to derivatives
of higher order and is the starting point for a large family of ‘interpolative
inequalities’, see e.g. Sections 5.1–5.3 of [AF].

Proposition 3.37. Let 1 ď p ă 8 and BU P C1´. Let f P LppUq X
Ş

|α|“2Wα with Bαf P LppUq for |α| “ 2. We then have f P W 2,ppUq and

there are constants C, ε0 ą 0 (depending only on }EU} and m) such that
ˆ m
ÿ

j“1

∥Bjf∥pp
˙1{p

ď ε

ˆ m
ÿ

i,j“1

∥Bijf∥pp
˙1{p

`
C

ε
∥f∥p, (3.29)

for ε P p0, ε0s. This estimate is true for all open U and ε ą 0 if f P W 2,p
0 pUq.

For f P W 2,ppUq or f P W 2,p
0 pUq one can reduce the result to f P C8

c pRmq

by extension and density. In this case (3.29) is shown using the fundamen-
tal theorem of calculus, Hölder’s inequality and further computations, see
Theorem 5.2 of [AF]. The first part of the theorem can then be proven by
approximation at least for certain domains, see Corollary 1.1.11 in [Ma] for
the general case.

For p ą m and Lipschitz domains, we have W 1,ppUq ãÑ CpUq by the
Sobolev Theorem 3.31 so that the ‘trace map’ f ÞÑ fæBU is well defined from
W 1,ppUq to CpBUq. Also, Remark 3.33 says that W 1,1pa, bq ãÑ Cpra, bsq for
m “ 1. In other cases it is not clear at all how to give a meaning to the
mapping f ÞÑ fæBU on W 1,ppUq as for reasonable open sets BU is a null set.
The following trace theorem solves this problem, and it very conveniently
describes W 1,p

0 pUq as the space of maps in W 1,ppUq with trace 0.

Theorem 3.38. Let p P r1,8q and BU P C1 (or U be bounded and BU P

C1´). Then the trace map f ÞÑ fæBU from W 1,ppUq X CpUq to LppBU, σq

has a bounded linear extension tr : W 1,ppUq Ñ LppBU, σq whose kernel is

W 1,p
0 pUq, where σ is the surface measure on BU .

For C1-boundaries these results are proved in Theorems 5.36 and 5.37 of
[AF]; the case of bounded Lipschitz domains is treated in Sections 2.4.2 and
2.4.3 of [Ne]. We add a proof for a stronger statement if p “ 2 and U “ Rm

`

using the Fourier transform.

Remark 3.39. We write Rm
` “ tpx, yq |x P Rm´1, y ą 0u with m ě 2.

1) Let u P C1
c pRm

` q and Fx be the Fourier transform with respect to

x P Rm´1. The map y ÞÑ pFxuqpξ, yq then belongs to C1
c pRě0q for each

ξ P Rm´1. Since we deal with C1
c -functions, we can calculate

ż

Rm´1

|ξ|2 |pFxuqpξ, 0q|2 dξ “ ´

ż

Rm´1

|ξ|2

ż 8

0
By |pFxuqpξ, yq|2 dy dξ

“ ´2Re

ż 8

0

ż

Rm´1

|ξ|2Fxu BypFxuq dξ dy

ď 2

„
ż 8

0

ż

Rm´1

|ξFxu|22 dξ dy

ȷ
1
2
„
ż 8

0

ż

Rm´1

|BypFxuq|2 dξ dy

ȷ
1
2
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“ 2

„
ż 8

0

ż

Rm´1

|Fxp∇xuq|22 dξ dy

ȷ
1
2
„
ż 8

0

ż

Rm´1

|FxpByuq|2 dξ dy

ȷ
1
2

“ 2

„
ż 8

0

ż

Rm´1

|∇xu|22 dx dy

ȷ
1
2
„
ż 8

0

ż

Rm´1

|Byu|2 dx dy

ȷ
1
2

ď

ż

Rm
`

|∇xu|22 dz `

ż

Rm
`

|Byu|22 dz ď }u}2W 1,2pRm
` q ,

also using Hölder’s inequality and Theorems 3.25 and 3.11.
2) For s ą 0 we define the Bessel potential space

HspRnq “
␣

v P L2pRnq
ˇ

ˇ |ξ|s2 pv P L2pRnq
(

endowed with the (Hilbertian) norm given by

}v}2Hs “

ż

Rn

p1 ` |ξ|22qs |pvpξq|2 dξ.

(Theorem 3.25 yields HkpRnq “ W k,2pRnq for k P N.) We have thus shown

that the trace map is continuous from pC1
c pRm

` q, } ¨ }1,2q to H
1
2 pRm´1q. Since

C1
c pRm

` q is dense in W 1,2pRm
` q Theorem 3.27, the trace map is continuous

from W 1,2pRm
` q to H1{2pRm´1q.

3) It is possible to show that tr : W 1,2pRm
` q Ñ H

1
2 pRm´1q is surjective.

One can show analogous boundedness and surjectivity results on bounded
U with BU P C1´ and for p P p1,8q – employing somewhat different spaces
of functions on BU . See e.g. Theorem 5.7 in [Ne]. ♢

We also not an intersting consequence of the characterization of W 1,p
0 pUq.

Remark 3.40. The above theorem implies that W 1,p
0 pUq differs from

W 1,ppUq if U ‰ Rm has a C1-boundary (where p ă 8). Indeed, the re-
striction to U of a map φ P C8

c pRmq with φpxq ‰ 0 for some x P BU belongs
to W 1,ppUq, but has non-zero trace. For less regular BU it my happen that

W 1,p
0 pUq “ W 1,ppUq, see Theorem 3.33 in [AF]. ♢

Having the continuous trace map, we can now prove Gauß’ divergence
theorem and Green’s formulas in Sobolev spaces. They are crucial tools in
many applications to partial differential operators.

Theorem 3.41. Let U “ Rm or let BU P C1´ be bounded with the outer
unit normal ν, p P r1,8s, F P W 1,ppUqm, and φ P W 1,p1

pUq. We obtain
ż

U
divpF qφdx “ ´

ż

U
F ¨ ∇φdx`

ż

BU
φν ¨ F dσ. (3.30)

If u P W 2,ppUq and v P W 2,p1

pUq, we obtain
ż

U
p∆uqv dx “ ´

ż

U
∇u ¨ ∇v dx`

ż

BU
pBνuqv dσ

“

ż

U
u∆v dx`

ż

BU
ppBνuqv ´ uBνvq dσ.

(3.31)

If U “ Rm, these formulas hold without the boundary integrals. (We omit
tr in the boundary integrals and set Bνu “

řm
j“1 νj tr Bju.)
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Proof.7 We first observe that Green’s formulas (3.31) are a straight-
forward consequence of (3.30) with F “ ∇u.

1) Let U be bounded. Gauß’ formula (3.30) is shown in analysis courses
for F P C1pUqm and φ P C1pUq.

a) Let p P p1,8q. For F P W 1,ppUqm and φ P W 1,p1

pUq, Theorem 3.27
provides functions Fn P C1pUqm and φn P C1pUq that converge to F and

φ in W 1,ppUqm and W 1,p1

pUq as n Ñ 8, respectively, since p, p1 ă 8.
Theorem 3.38 then yields that FnæBU Ñ trF in LppU, σqm and φnæBU Ñ trφ

in Lp1

pU, σq as n Ñ 8. Since Bj : W 1,qpUq Ñ LqpUq is continuous for
q P tp, p1u, we further obtain that the terms with derivatives converge in Lp,

resp. in Lp1

. Formula (3.30) now follows by approximation, using (3.4).

b) Next, let p “ 1 and thus p1 “ 8. As above, divFn and Fn converge
to divF and F in L1pUq and L1pUqm, respectively, as well as FnæBU Ñ trF
in L1pBU, σqm. By Corollary 3.29, the function φ belongs to CpUq and
one can thus be extended to a map φ P CcpRmq, e.g., by G1E0φ. Set
φn “ G 1

n
φ P C8

c pRmq. Properties (3.17) and (3.16) as well as Lemma 3.16

imply that φn Ñ φ in CpUq, }∇φn}8 ď }∇φ}8 and ∇φn Ñ ∇φ pointwise
a.e., as n Ñ 8, where we possibly pass to a subsequence also denoted by
pφnqn. We can now take the limit n Ñ 8 in the first and the third integral of
equation (3.30) for Fn and φn. For the second integral we use the estimate
ˇ

ˇ

ˇ

ż

U
Fn ¨∇φn dx´

ż

U
F ¨∇φdx

ˇ

ˇ

ˇ
ď }Fn ´F }1 }∇φn}8 `

ż

U
|F | |∇φn ´∇φ| dx

and Lebesgue’s theorem for the last integral above. So (3.30) holds for F
and φ. The case p “ 8 is treated analogously.

2) Let U be unbounded. There is a radius r ą 0 with BU Ď Bp0, rq. Let
k P N with k ą r. We define cut-off functions χk P C8

c pRmq by χkpxq “

ϕp|x|2{kq for some ϕ P C8pRq with 0 ď ϕ ď 1, ϕ “ 1 on r0, 1s and ϕ “ 0 on
r2,8q. Note that 0 ď χk ď 1, suppχk Ď Bp0, 2kq, χk “ 1 on Bp0, kq Ě BU ,
}χ1

k}8 ď c{k, and χk Ñ 1 pointwise as k Ñ 8.
For Fk :“ χkF and φk :“ χkφ, formula (3.30) follows from step 1) re-

placing U by Vk :“ U X Bp0, 2kq. Note that BVk “ BU Y BBp0, 2kq. The
properties of χk then yield that Fk “ F and φk “ φ on BU and that they
vanish on RmzBp0, 2kq, and so we have

ż

U
divpFkqφk dx “ ´

ż

U
Fk ¨ ∇φk dx`

ż

BU
φν ¨ F dσ.

Next, observe that

divpFkqφk “ χ2
k divpF qφ`χkφF ¨∇χk, Fk ¨∇φk “ χ2

kF ¨∇φ`χkφF ¨∇χk.

The terms with ∇χk are bounded by 1
k |φF |, so that the corresponding

integrals vanish as k Ñ 8 since φF is integrable on U by Hölder’s inequality.
The terms with χ2

k tend pointwise to divpF qφ and F ¨∇φ, respectively, and
are majorized by these L1-functions. The theorem of dominated convergence
thus implies (3.30) for F and φ. This proof also works for U “ Rm. □

7The proof was omitted in the lectures.
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3.4. Differential operators in Lp spaces

We now use some of above results to study differential operators in Lp

spaces and discuss their closedness, spectra and the compactness of their
resolvents. The study of these (and related) examples will be continued in
Example 4.8 and in Chapter 5.
We first recall that A “ Bα with DpAq “ tu P WαpUq |u, Bαu P LppUqu is

closed in LppUq by Lemma 3.16, where 1 ď p ď 8 and α P Nm
0 . Observe

that DpAq “ W 1,ppUq if m “ 1 “ |α|. We next extend this result to B2.

Example 3.42. Let J Ď R be an open interval, 1 ď p ă 8, and X “

LppJq. Then A “ B2 with DpAq “ W 2,ppJq is closed.
Proof. As noted above, A is closed onD :“ tu P W2pJq |u, B2u P LppJqu.

Proposition 3.37 then implies the remaining inclusion DpAq Ď D. l

We note that in the one-dimensional case Bk is closed on W k,ppJq for all
k P N by similar proofs based on higher-order versions of Proposition 3.37.
This property relies on the fact that the domain W k,ppJq does not contain
derivatives in other directions. In contrast, B1 on W 1,ppp0, 1q2q is not closed
in Lppp0, 1q2q. This can be shown by functions unpx, yq “ φnpyq, where
φn P C1pr0, 1sq converges in Lpp0, 1q to a map φ R W 1,pp0, 1q.

We next study the first derivative in more detail, first on R. SinceW 1,ppRq

is embedded in C0pRq by Theorem 3.31, the following domain DpAq exhibits
‘boundary conditions’ at ˘8.

Example 3.43. Let 1 ď p ă 8, X “ LppRq, and A “ B with DpAq “

W 1,ppRq. Then σpAq “ iR, σppAq “ ∅ and

pRpλ,Aqfqptq “

#

ş8

t eλpt´sqfpsqds, Reλ ą 0,

´
şt

´8
eλpt´sqfpsqds, Reλ ă 0,

for t P R and f P X, cf. Example 1.21 for X “ C0pRq.
Proof. 1) Let Reλ ą 0 and φλ “ eReλ1Rď0 . We denote the integral

in the assertion by Rλfptq. Since |Rλpfptqq| ď pφλ ˚ |f |qptq for all t P R,
Young’s inequality (3.5) yields that

∥Rλf∥p ď ∥φλ∥1 ∥f∥p “
1

Reλ
∥f∥p ,

and hence Rλ belongs to BpXq. Let fn P C8
c pRq converge to f in X. We

then compute d
dtRλfn “ λRλfn ´ fn P X, which tends to λRλf ´ f in X

by the above estimate. Moreover, Rλfn is an element of DpAq. Since A is
closed, also Rλf is contained in DpAq and ARλf “ λRλf ´ f ; i.e., λI ´ A
is surjective.

2) Let Au “ µu for some u P DpAq and µ P C. Theorem 3.22 says that u
is continuous so that Remark 3.23 c) implies the continuous differentiability
of u and thus u1 “ µu. Consequently, u is equal to a multiple of eµ. As
eµ R X, we obtain u “ 0 and the injectivity of µI ´A. We have shown that
σppAq “ ∅ and that λ P ρpAq with Rpλ,Aq “ Rλ if Reλ ą 0. In the same
way, one sees that λ belongs to ρpAq if Reλ ă 0, with the asserted resolvent.

3) Let λ P iR. Take φn P C1
c pRq with φn “ n´1{p on r´n, ns, φnptq “ 0 for

|t| ě n ` 1 and ∥φ1
n∥8 ď 2n´1{p for every n P N. Then the map un :“ φneλ
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is contained in W 1,ppRq and satisfies Aun “ λun ` φneλ,

∥un∥p ě

ˆ
ż n

´n
|φnptqeλptq|p dt

˙1{p

“ n´1{pp2nq
1{p “ 2

1{p,

∥λun ´Aun∥p “ ∥φ1
neλ∥p “

´

ż

tnď|t|ďn`1u

|φ1
nptqeλptq|p dt

¯1{p

ď 2n´1{p2
1{p.

Consequently, λ is an element of σappAq and so σpAq “ iR. l

We next study the first derivative on subintervals of R. These examples
indicate that boundary conditions in DpAq can remove point spectrum (i.e.,
enhance injectivity), but may be an obstacle for surjectivity. Also their
specific form heavily influences the solvability of the equation λu´Au “ f
(for given f P X) and thus the spectrum.

Example 3.44. Let 1 ď p ă 8.

a) Let X “ Lpp0, 1q and A “ B with DpAq “ W 1,pp0, 1q. Then σpAq “

σppAq “ C since eλ belongs to DpAq with Aeλ “ λeλ for all λ P C.
b) Let X “ Lpp0, 1q and A “ B with DpAq “ tu P W 1,pp0, 1q |up0q “ 0u.

Here we use the continuous representative of u P W 1,pp0, 1q from Theo-

rem 3.22. Then A is closed, σpAq “ ∅, Rpλ,Aqfptq “ ´
şt
0 e

λpt´sqfpsq ds for
t P p0, 1q, f P X and λ P C, and A has a compact resolvent.
Proof. As in Example 3.43 one sees that the above integral defines a

bounded inverse of λI ´ A for all λ P C. In particular, A is closed by
Remark 1.11. (Alternatively, take un in DpAq such that un Ñ u and Aun Ñ

g in X as n Ñ 8. Lemma 3.16 yields that u P W 1,pp0, 1q and Bu “ g. Using
Theorem 3.22, we further infer that 0 “ unp0q Ñ up0q. Hence, u P DpAq

and Au “ Bu “ g.) Finally, Remark 2.13 and Theorem 3.34 imply that A
has a compact resolvent. l

c) Let X “ LppR`q and A “ B with DpAq “ W 1,ppR`q. Then σpAq “ C´,

σppAq“C´, andRpλ,Aqfptq “
ş8

t eλpt´sqfpsq ds for tą0, f PX and Reλą0.
Proof. The operator is closed due to Lemma 3.16. As in Example 3.43,

one computes the resolvent for Reλ ą 0 and checks that iR does not contain
eigenvalues. If Reλ ă 0, then eλ is an eigenfunction. Because σpAq is closed,
it is equal to C´. l

d) Let X “ LppR`q and A “ ´B with DpAq “ W 1,p
0 pR`q. Then A is

closed, σpAq “ C´, σppAq “ ∅, and Rpλ,Aqfptq “
şt
0 e

´λpt´sqfpsq ds for

t ą 0, f P X and Reλ ą 0. (Observe that Ã “ ´B with DpÃq “ W 1,ppR`q

has σpÃq “ C` and σppÃq “ C` :“ ´C´ by part c) and Proposition 1.20.)
Proof. If Reλ ą 0, the formula for the resolvent is verified as in Exam-

ple 3.43, so that A is closed. The point spectrum is empty since the only
possible eigenfunctions eλ do not fulfill the boundary condition in DpAq.

Take Reλ ă 0 and f “ 1r0,1q. Let u P DpAq satisfy λu ´ Au “ f . Then
up0q “ 0 and Bu “ ´λu ` f is continuous except at t “ 1. Since u is

piecewise C1 by Remark 3.23 c), we obtain up1q “
ş1
0 e

´λp1´sq ds and

uptq “ e´λpt´1qup1q “ e´λt
ş1
0e

λs ds, t ě 1.

So u does not belong to X, and thus f not to the range of λI ´ A; i.e.,
λ P σpAq. The result then follows from the closedness of the spectrum. l
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e) LetX “ Lpp0, 1q and A “ B with DpAq “ tu P W 1,pp0, 1q |up0q “ up1qu.
Then A is closed, σpAq “ σppAq “ 2πiZ, and A has a compact resolvent.
These facts can be proved as in Example 2.16 for X “ Cpr0, 1sq, using now
Theorem 3.34 for the compactness. ♢

We now turn our attention to the second derivative.

Example 3.45. Let X “ LppRq, 1 ď p ă 8, and A “ B2 with DpAq “

W 2,ppRq. Then σpAq “ Rď0.
Proof. 1) Set A1 “ B and DpA1q “ W 1,ppRq. Let µ P CzRď0. There

exists a number λ P C` such that µ “ λ2. Observe that

pµI ´Aqu “ pλI ´A1qpλI `A1qu “ ´pλI ´A1qp´λI ´A1qu (3.32)

for all u P DpAq. Example 3.43 implies that λI ˘ A1 are invertible. Hence,
µI ´A is injective. Next, for v P W 1,ppRq the function

BpλI `A1q´1v “ A1pλI `A1q´1v “ ´λpλI `A1q´1v ` v

belongs to W 1,ppRq. This means that pλI`A1q´1 maps W 1,ppRq into DpAq.
Given f P X, the map u :“ pλI `A1q´1pλI ´A1q´1f thus is an element of
DpAq and µu ´ Au “ f in view of the factorization (3.32). We have shown
that µ P ρpAq and Rpµ,Aq “ pλI `A1q´1pλI ´A1q´1.

2) For µ ď 0, we have µ “ λ2 for some λ P iR and (3.32) is still true. The
operator λI´A1 is not surjective since its range is not closed by Example 3.43
and Proposition 1.19. Equation (3.32) thus implies that µI ´ A is not
surjective, and hence σpAq “ Rě0. l

Example 3.46. Let X “ Lpp0, 1q, 1 ď p ă 8, and A “ B2 with DpAq “

W 2,pp0, 1q X W 1,p
0 p0, 1q. Then A is closed, σpAq “ σppAq “ t´π2k2

ˇ

ˇ k P Nu,
and A has a compact resolvent. These facts can be proved as in Example 2.16
for X “ Cpr0, 1sq, using now Theorem 3.34 for the compactness. ♢

The situation is much more complicated form ě 2. Here the core example
is the Laplacian ∆ “ B11 ` . . .` Bmm. It is not clear at all that ∆ is closed
on W 2,ppUq since the derivatives in ∆u may exhibit cancellations and Bjku
for j ‰ k do not appear. For p “ 2 and U “ Rm we can prove closedness
using the Fourier transform.

Example 3.47. Let X “ L2pRmq and A “ ∆ with DpAq “ W 2,2pRmq.
Then A is closed and σpAq “ Rď0.
Proof. We employ the Fourier transform F which is unitary on X by

Theorem 3.11. Theorem 3.25 yields

∆u “ F´1p´|ξ|22puq for u P DpAq “
␣

u P X
ˇ

ˇ |ξ|22pu P X
(

.

1) Let λ P CzRď0. Set mλpξq “ pλ ` |ξ|22q´1 for ξ P Rm. Observe that
}mλ}8 ď cλ where cλ “ 1{| Imλ| if Reλ ď 0 and cλ “ 1{|λ| if Reλ ą 0. Let

f P X. Then mλ
pf belongs to X so that Rλf :“ F´1pmλ

pfq P X and

}Rλf}2 “ }mλ
pf}2 ď cλ} pf}2 “ cλ}f}2 .

Since |ξ|22mλ is bounded on Rm, also the function |ξ|22FRλf “ |ξ|22mλ
pf is

an element of X, and so Rλ maps into DpAq. Similarly we see that

pλI ´ ∆qRλf “ F´1pλ` |ξ|22qFF´1mλ
pf “ f,
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RλpλI ´ ∆qu “ F´1mλFF´1pλ` |ξ|22qpu “ u, u P DpAq.

Thus, λPρpAq and Rpλ,Aq “ Rλ. In particular, A is closed and σpAq Ď Rď0.
It can be seen that mλ is the Fourier transform of an integrable func-

tion kλ, see Proposition 6.1.5 in [Gr], so that Rλf “ p2πq´m{2kλ ˚ f by
Theorem 3.11. For m “ 1, the kernel kλ is given as in Example 3.2.

2) Let λ ď 0. Definemλpξq “ pλ`|ξ|22q´1 for ξ P Rm with |ξ|2 ‰
?

´λ “: ℓ
and mλpξq “ 0 if |ξ|2 “ ℓ. Set g “ 1Bp0,ℓ`1q P X. Then h “ F´1g belongs

to X and mλ
ph not. If there was an element u of DpAq with λu´∆u “ h, we

would obtain as above λpu ` |ξ|22pu “ ph and the contradiction mλ
ph “ pu P X.

As a result, λ belongs to σpAq and σpAq “ Rď0. l

The above result can be extended to exponents p P p1,8q and, imposing
boundary conditions, to domains U ‰ Rm, but core parts of the corre-
sponding proofs are beyond the scope of this lecture. We briefly discuss two
examples and come back to this issue in Example 5.11.

Example 3.48. Let 1 ă p ă 8, X “ LppRmq, and A “ ∆ with DpAq “

W 2,ppRmq. Then A is closed.
Proof. The Calderón–Zygmund estimate says that the graph norm of

A is equivalent to ∥¨∥2,p on C8
c pRmq, see Corollary 9.10 in [GT]. Let u P

W 2,ppRmq. By Theorem 3.27, there are un P C8
c pRmq converging to u in

W 2,ppRmq as n Ñ 8, and hence un Ñ u and ∆un Ñ ∆u in X. We derive

}u}2,p “ lim
nÑ8

}un}2,p ď lim
nÑ8

cp}un}p ` }∆un}pq “ cp}u}p ` }∆u}pq ď c1}u}2,p,

so that } ¨ }A is equivalent to a complete one and thus A is closed. l

Example 3.49. Let 1 ă p ă 8, U Ď Rm be bounded and open with
BU P C2, X “ LppUq, and A “ ∆ with DpAq “ W 2,ppUq X W 1,p

0 pUq. Then
the Dirichlet–Laplacian A is closed, invertible and has a compact resolvent.
We thus have σpAq “ σppAq.

Proof. The closedness of A follows from Theorem 9.14 in [GT]. Its
bijectivity is shown in Theorem 9.15 of [GT]. Remark 2.13, Theorem 3.34
and Theorem 2.15 then imply the other assertions. l

There are variants of Examples 3.48 and 3.49 for X “ L1pUq, X “ L8pUq

and in other sup-norm spaces (with m ě 2), see Theorem 5.8 in [Ta] as well
as Sections 3.1.2 and 3.1.5 in [Lu]. Here the descriptions of the domains
are much more complicated, and they are not just (subspaces of) Sobolev
(or C2-) spaces. To indicate the difficulties, we note that there is a function
u R W 2,8pBp0, 1qq with Bp0, 1q in R2 such that ∆u P L8pBp0, 1qq, namely

upx, yq “ px2 ´ y2q lnpx2 ` y2q, px, yq ‰ p0, 0q,

and up0, 0q “ 0. Then the second derivative

Bxxupx, yq “ 2 lnpx2 ` y2q `
4x2

x2 ` y2
`

p6x2 ´ 2y2qpx2 ` y2q ´ 4x2px2 ´ y2q

px2 ` y2q2

is unbounded around p0, 0q, but ∆upx, yq “ 8x2´y2

x2`y2
is bounded.
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3.5. Appendix: Density, embedding and trace theorems

We8 provide proofs for the results from Section 3.3, though often in a sim-
plified setting and partly sketched. The material is presented in a somewhat
different way as in Section 3.3. We start with a technical result that we use
a few times.

Lemma 3.50. Let K Ď U be compact. Then there is a function ψ P C8
c pUq

such that 0 ď ψ ď 1 on U and ψ “ 1 on K. Let g P L1
locpUq satisfy

ż

U
gφdx “ 0

for all φ P C8
c pUq. Then g “ 0 a.e..

Proof. 1) Let 0 ă δ ă 1
2dpBK, BUq. Then K2δ “ K ` Bp0, 2δq is

compact and K2δ Ď U . The function ψ :“ Gδ1Kδ
thus belongs to C8

c pUq

by (3.14) and (3.15). Moreover, (3.13) and (3.16) imply that 0 ď ψpxq ď

∥ψ∥8 ď ∥1Kδ
∥8 “ 1 for all x P U and

ψpxq “

ż

Bpx,δq

kδpx´ yq1Kδ
pyqdy “ ∥kδ∥1 “ 1

for all x P K. The first claim is shown.

2) Assume that g ‰ 0 on a Borel set B Ď U with λpBq ą 0. Theorem 2.20
of [Ru1] yields a compact setK Ď B Ď U with λpKq ą 0. Since ψg P L1pUq,
the functions Gεpψgq converge to ψg in L1pUq as ε Ñ 0 due to (3.17).
Hence, there is a nullset N and a sequence εj Ñ 0 with εj ď δ such that
pGεj pψgqqpxq Ñ gpxq ‰ 0 as j Ñ 8 for each x P KzN . For every x P KzN
and j P N, we also deduce

pGεj pψgqqpxq “

ż

U
kεj px´ yqψpyq gpyqdy “ 0

from the assumption, since the function y ÞÑ kεj px ´ yqψpyq belongs to
C8
c pUq. This is a contradiction. □

In the first density result, we do not have smoothness up to BU . The first
part of the result is essentially taken from Theorem 4.21 from [FA].

Theorem 3.51. Let k P N and p P r1,8q. We then have W k,p
0 pRmq “

W k,ppRmq. Moreover, the set C8pUq XW k,ppUq is dense in W k,ppUq.

Proof. We prove the theorem only for k “ 1, the general case can be
treated similarly.
1) Let f P W 1,ppRmq. Take any ϕ P C8pRq with 0 ď ϕ ď 1, ϕ “ 1 on

r0, 1s, and ϕ “ 0 on r2,8q. Set φnpxq “ ϕp 1
n |x|2q for n P N and x P Rm.

We then have φn P C8
c pRmq, 0 ď φn ď 1 and ∥Bjφn∥8 ď ∥ϕ1∥8

1
n for all

n P N, as well as φnpxq Ñ 1 for all x P Rm as n Ñ 8. Thus ∥φnf ´ f∥p Ñ 0
as n Ñ 8 by Lebesgue’s convergence theorem. Further, Proposition 3.19
implies that

∥Bjpφnf ´ fq∥p “ ∥pφnBjf ´ Bjfq ` pBjφnqf∥p
ď ∥φnBjf ´ Bjf∥p ` 1

n∥ϕ
1∥8∥f∥p ,

8This section was not part of the lectures.
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and the right hand side tends to 0 as n Ñ 8 for each j P t1, . . . ,mu. Given
ε ą 0, we can thus fix an index N P N such that ∥φNf ´ f∥1,p ď ε. Due to
(3.14) and (3.15), the functions G 1

n
pφNfq belong to C8

c pRmq for all n P N.
Equation (3.17) and Lemma 3.16 further yield that

G 1
n

pφNfq Ñ φNf and BjG 1
n

pφNfq “ G 1
n

BjpφNfq Ñ BjpφNfq

in LppRmq as n Ñ 8, for j P t1, . . . ,mu. So there is an index n P N with

∥G 1
n

pφNfq ´ φNf∥1,p ď ε,

and thus

∥G 1
n

pφNfq ´ f∥1,p ď 2ε.

2) For the second assertion, we only have to consider the case BU ‰ ∅.
Let f P W 1,ppUq. Set

Un “
␣

x P U
ˇ

ˇ |x|2 ă n and dpx, BUq ą 1
n

(

for all n P N. We obtain Un Ď Un Ď Un`1 Ď U , Un is compact, and
Ť8

n“1 Un “ U . Observe that U “
Ť8

n“1 Un`1zUn´1, where U0, U´1 :“ ∅.
There are functions φn in C8

c pUq such that suppφn Ď Un`1zUn´1, φn ě 0,
and

ř8
n“1 φnpxq “ 1 for all x P U . (Compare Theorem 3.15 in [AF].)

Fix ε ą 0. As in step 1), for each n P N there is a number δn ą 0 such
that gn :“ Gδnpφnfq P C8

c pUq, supp gn Ď psuppφnfqδn Ď Un`1zUn´1 and
∥gn ´ φnf∥1,p ď 2´nε. Define gpxq “

ř8
n“1 gnpxq for all x P U . Observe

that on each ball Bpx, rq Ď U this sum is finite, so that g belongs to C8pUq.
Since f “

ř8
n“1 φnf , we further have

gpxq ´ fpxq “

8
ÿ

n“1

pgnpxq ´ φnpxqfpxqq,

for all x P U and n P N. Due to ∥gn ´ φnf∥1,p ď 2´nε, this series converges
absolutely in W 1,ppUq, and

∥f ´ g∥1,p ď

8
ÿ

n“1

∥gn ´ φnf∥1,p ď ε. □

For ‘not too bad’ BU one can replace in C8pUq by C8pUq in Theorem 3.51,
see Theorem 3.60 below.
We now want to study embeddings of Sobolev spaces. We clearly have

W k,ppUq ãÑ W j,ppUq, (3.33)

W k,ppUq ãÑ W j,qpUq if λpUq ă 8, (3.34)

for k ě j ě 0 and 1 ď q ď p ď 8. (Recall that we set W 0,ppUq “ LppUq for
1 ď p ď 8.) The embedding X ãÑ Y means that there is an injective map
J P BpX,Y q. Writing c “ ∥J∥, one obtains ∥f∥Y ď c∥f∥X if one identifies
Jf with f . We next prove the Sobolev–Morrey embeddings on Rm.

Theorem 3.52. Let kPN and pPr1,8q. The following embeddings hold.

a) If kp ă m, then

p‹ :“
pm

m´ kp
P pp,8q and W k,ppRmq ãÑ LqpRmq for all q P rp, p‹s.
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b) If kp “ m, then

W k,ppRmq ãÑ LqpRmq for all q P rp,8q.

c) If kp ą m, then there are either j P N0 and β P p0, 1q such that
k ´ m

p “ j ` β or k ´ m
p P N. In the latter case we set j :“ k ´ m

p ´ 1 P N0

and take any β P p0, 1q. Then

W k,ppRmq ãÑ Cj`β
0 pRmq.

In parts a) and b), the embedding J is just the inclusion map, and in part
c) the function Jf is the continuous representative of f .

Beore proving them, we rephrase the above results in a slightly modified
way using the ‘effective regularity index’ k ´ m

p of W k,p.

Corollary 3.53. Let k P N, j P N0, and p P r1,8q. We have the
following embeddings.

a) If q P rp,8q and k ´ m
p ě j ´ m

q , then

W k,ppRmq ãÑ W j,qpRmq.

b) If q P rp,8q and k ´ m
p “ j, then

W k,ppRmq ãÑ W j,qpRmq.

c) If β P p0, 1q and k ´ m
p “ j ` β, then

W k,ppRmq ãÑ Cj`β
0 pRmq.

Proof of Corollary 3.53. a) Let pk ´ jqp “ m. The embedding

W k´j,ppRmq ãÑ LqpRmq (3.35)

then follows from Theorem 3.52 b) for all q P rp,8q. Let pk ´ jqp ą m. We
then have W k´j,ppRmq ãÑ LppRmq by (3.33) and W k´j,ppRmq ãÑ L8pRmq

by Theorem 3.52 c). Hence the interpolation inequality (3.36) below implies
(3.35) for all q P rp,8s in this case. Let pk ´ jqp ă m. By assumption, we
have p ď q ď pmpm´ pk´ jqpq´1 and thus for these q the embedding (3.35)
is a consequence of Theorem 3.52 a). Applying (3.35) to Bαf P W k´j,ppRmq

for |α| ď j and f P W k,ppRmq, we deduce

∥Bαf∥q ď c∥Bαf∥k´j,p ď c∥f∥k,p.
So claim a) is true. Part b) follows from a), and c) from Theorem 3.52 c). □

For the proof of Theorem 3.52 we set x̂j “ px1, . . . , xj´1, xj`1, . . . , xmq P

Rm´1 for all x P Rm, j P t1, . . . ,mu, and m ě 2. We start with a lemma.

Lemma 3.54. Let m ě 2 and f1, . . . , fm P Lm´1pRm´1q X CpRm´1q. Set
fpxq “ f1px̂1q ¨ . . . ¨ fmpx̂mq for x P Rm. We then have f P L1pRmq and

∥f∥L1pRmq ď ∥f1∥Lm´1pRm´1q ¨ . . . ¨ ∥fm∥Lm´1pRm´1q.

Proof. If m “ 2, then Fubini’s theorem shows that
ż

R2

|fpxq|dx “

ż

R

ż

R
|f1px2q||f2px1q|dx1 dx2 “ ∥f1∥1 ∥f2∥1,

as asserted. Assume that the assertion holds for some m P N with m ě 2.



3.5. Appendix: Density, embedding and trace theorems 73

Take f1, . . . , fm`1 P LmpRmq X CpRmq. Write y “ px1, . . . , xmq P Rm and
x “ py, xm`1q P Rm`1. For a.e. xm`1 P R, the maps ŷj ÞÑ |fjpŷj , xm`1q|m
are integrable on Rm´1 for each j P t1, . . . ,mu due to Fubini’s theorem. Fix
such a xm`1 P R and write

f̃py, xm`1q :“
m
ź

j“1

fjpx̂
jq.

Using Hölder’s inequality, we obtain
ż

Rm

|fpy, xm`1q|dy “

ż

Rm

|f̃py, xm`1q| |fm`1pyq|dy

ď ∥fm`1∥LmpRmq

ˆ
ż

Rm

|f̃py, xm`1q|m1

dy

˙
1
m1

.

We set gjpŷ
jq “ |fjpŷj , xm`1q|m1

for j P t1, . . . ,mu and x P Rm`1. Since
m1pm ´ 1q “ m, the maps gj belong to Lm´1pRm´1q and the induction
hypothesis yields
ż

Rm

|f̃py, xm`1q|m1

dy “

ż

Rm

g1pŷ1q ¨ . . . ¨ gmpŷmq dy ď ∥g1∥m´1 ¨ . . . ¨ ∥gm∥m´1

“

m
ź

j“1

ˆ
ż

Rm´1

|fjpŷj , xm`1q|m dy

˙
1

m´1

.

Integrating over xm`1 P R, we thus arrive at
ż

Rm`1

|f |dx ď ∥fm`1∥m
ż

R

m
ź

j“1

ˆ
ż

Rm´1

|fjpx̂jq|m dy

˙
1

m´1
m´1
m

dxm`1.

Applying the m-fold Hölder inequality to the xm`1-integral, we conclude

ż

Rm`1

|f | dx ď ∥fm`1∥m
m
ź

j“1

˜

ż

R

ˆ
ż

Rm´1

|fjpx̂jq|m dy

˙
1
m

¨m

dxm`1

¸

1
m

“ ∥f1∥m ¨ . . . ¨ ∥fm`1∥m. □

Recall from Analysis 3 that for f P LppUq X LqpUq and r P rp, qs with
1 ď p ă q ď 8, we have

∥f∥r ď ∥f∥θp ∥f∥1´θ
q ď θ∥f∥p ` p1 ´ θq∥f∥q, (3.36)

where θ P r0, 1s is given by 1
r “ θ

p ` 1´θ
q and we also used Young’s inequality

from Analysis 1.

Proof of Theorem 3.52. We only prove the case k “ 1, the rest can
be done by induction, see e.g. §5.6.3 in [Ev]. Since W 1,ppRmq ãÑ LppRmq,
in view of (3.36) for assertion a) it suffices to show

W 1,ppRmq ãÑ Lp‹

pRmq.

1) Let f P C1
c pRmq. Let first p “ 1 ă m, whence p‹ “ m

m´1 . For x P Rm

and j P t1, . . . ,mu, we then obtain

|fpxq| “

ˇ

ˇ

ˇ

ˇ

ż xj

´8

Bjfpx1, . . . , xj´1, t, xj`1, . . . , xmq dt

ˇ

ˇ

ˇ

ˇ

ď

ż

R
|Bjfpxq|dxj ,
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|fpxq|m ď

m
ź

j“1

ż

R
|Bjfpxq|dxj .

Setting gjpx̂
jq “ p

ş

R|Bjfpxq|dxjq
1

m´1 , we deduce

|fpxq|
m

m´1 ď

m
ź

j“1

gjpx̂
jq.

After integration over x P Rm, Lemma 3.54 yields

∥f∥
m

m´1

L
m

m´1 pRmq
ď

ż

Rm

g1px̂1q ¨ . . . ¨ gdpx̂mq dx ď

m
ź

j“1

∥gj∥Lm´1pRm´1q

“

m
ź

j“1

ˆ
ż

Rm´1

ż

R
|Bjfpxq|dxj dx̂j

˙
1

m´1

,

∥f∥
L

m
m´1 pRmq

ď

m
ź

j“1

∥Bjf∥
1
m

L1pRmq
ď ∥|∇f |1∥1 ď ∥f∥1,1. (3.37)

2) Next, let p P p1,mq and p‹ “
pm
m´p . Set t‹ “ m´1

m p‹ “ m´1
m´pp ą 1. An

elementary calculation shows that pt‹ ´ 1qp1 “ t‹
m

m´1 “ p‹. Set

g “ f |f |t´1 “ fpffq
t´1
2

for t ą 1. We compute

Bjg “ Bjf |f |t´1 ` f
t´ 1

2
pffq

t´1
2

´1
`

pBjfqf ` fpBjfq
˘

“ Bjf |f |t´1 ` pt´ 1qf |f |t´3RepfBjfq,

|g| “ |f |t, |Bjg| ď t|Bjf ||f |t´1.

Applying (3.37) to g, we estimate

∥f∥t tm
m´1

“

ˆ
ż

Rm

|f |t
m

m´1 dx

˙
m´1
m

“

ˆ
ż

Rm

|g|
m

m´1 dx

˙
m´1
m

ď

m
ź

j“1

∥Bjg∥
1
m
1 ď

m
ź

j“1

t
1
m

ˆ
ż

Rm

|Bjf | |f |t´1 dx

˙
1
m

ď t
m
ź

j“1

´

ż

Rm

|Bjf |p dx
¯

1
pm

ˆ
ż

Rm

|f |pt´1qp1

dx

˙
1

p1m

ď t
m
ź

j“1

∥|∇f |p∥
1
m
p ∥f∥

t´1
m

pt´1qp1 “ t ∥|∇f |p∥p ∥f∥t´1
pt´1qp1 ,

where we used Hölder’s inequality. For t “ t‹, we use the properties of t
stated above and obtain

∥f∥p‹ ď p
m´ 1

m´ p
∥|∇f |p∥p ď p

m´ 1

m´ p
∥f∥1,p. (3.38)

This estimate can be extended to all f P W 1,ppRmq by density (see Theo-
rem 3.51). Hence, the inclusion map is the required embedding in part a).
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3) Let p “ m, f P C1
c pRmq, and t ą 1. Then p1 “ m

m´1 , and step 2) yields

∥f∥t m
m´1

ď t
1
t ∥f∥1´ 1

t

pt´1q m
m´1

∥|∇f |p∥
1
t
m ď c

´

∥f∥pt´1q m
m´1

` ∥|∇f |p∥m
¯

(3.39)

using Young’s inequality. For t “ m, this estimate gives f P L
m2

m´1 pRmq and

∥f∥ m2

m´1

ď c ∥f∥1,m.

Here and below the constants c ą 0 do not depend on f . For q P pm,m m
m´1q,

inequality (3.36) further yields

∥f∥q ď c p∥f∥m ` ∥f∥ m2

m´1

q ď c ∥f∥1,m.

Now, we can apply (3.39) with t “ m` 1 and obtain

∥f∥m2`m
m´1

ď c p∥f∥ m2

m´1

` ∥|∇f |p∥mq ď c ∥f∥1,m.

As above, we see that f P LqpRmq for m ď q ď mm`1
m´1 . We can then iterate

this procedure with tn “ m` n and obtain

∥f∥q ď cpqq∥f∥1,p
for all q ă 8. As above, assertion b) follows by approximation.

4) Let p ą m, f P C1
c pRmq, Qprq “ r´ r

2 ,
r
2 sm for some r ą 0, and

x0 P Qprq. We set Mprq “ r´m
ş

Qprq
f dx and β “ 1 ´ m

p P p0, 1q. Using

|x ´ x0|8 ď r for x P Qprq, the transformation y “ tpx ´ x0q and Hölder’s
inequality, we compute

|fpx0q ´Mprq| “

ˇ

ˇ

ˇ

ˇ

ˇ

r´m

ż

Qprq

pfpx0q ´ fpxqqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“ r´m

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Qprq

ż 0

1

d

dt
fpx0 ` tpx´ x0qqdtdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď r´m

ż

Qprq

ż 1

0
|∇fpx0 ` tpx´ x0qq ¨ px´ x0q| dtdx

ď r1´m

ż 1

0

ż

Qprq

|∇fpx0 ` tpx´ x0qq|1 dx dt

“ r1´m

ż 1

0

ż

tpQprq´x0q

|∇fpx0 ` yq|1 dy t´m dt

ď r1´m

ż 1

0

„
ż

Rm

|∇fpx0 ` yq|p1 dy
ȷ

1
p

λptpQprq ´ x0qq
1
p1 t´m dt

ď cr1´m∥|∇f |p∥p
ż 1

0
r

m
p1 t

m
p1 ´m

dt

“ Cr
1´m

p ∥|∇f |p∥p
for constants C, c ą 0 only depending on m and p, using also that m

p1 ´m ą

´1 due to p ą m. A translation then gives
ˇ

ˇ

ˇ
fpx0 ` zq ´ r´m

ż

z`Qprq

fpyq dy
ˇ

ˇ

ˇ
ď Crβ∥|∇f |p∥p
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for all z P Rm. Taking x “ z, x0 “ 0 and r “ 1, by means of Hölder’s
inequality we thus obtain

|fpxq| ď

ˇ

ˇ

ˇ
fpxq ´

ż

x`Qp1q

f dy
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ż

x`Qp1q

f dy
ˇ

ˇ

ˇ

ď C∥|∇f |p∥p ` ∥f∥p ď c∥f∥1,p (3.40)

for all x P Rm, where c only depends on m and p. Given x, y P Rm, we find
a cube Q of side length |x´ y|8 “: r such that x, y P Q and Q is parallel to
the axes. Hence,

|fpxq ´ fpyq| ď

ˇ

ˇ

ˇ
fpxq ´ r´m

ż

Q
f dy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
r´m

ż

Q
f dy ´ fpyq

ˇ

ˇ

ˇ

ď 2C∥|∇f |p∥p |x´ y|β8 ď 2C∥|∇f |p∥p |x´ y|β2 .

Let f P W 1,ppRmq. Then there are fn P C1
c pRmq converging to f in

W 1,ppRmq. By (3.40), fn is a Cauchy sequence in C0pRmq. Hence, f has a

representative f̃ P C0pRmq such that fn Ñ f̃ uniformly as n Ñ 8. So the
above estimates imply that

∥f̃∥8 ` sup
x‰y

|f̃pxq ´ f̃pyq|
|x´ y|β2

ď c∥f∥1,p.

The map f ÞÑ f̃ is the required embedding. □

Remark 3.55. Theorem 3.52 remains valied on any open set U instead

of Rm if we replace W k,p by W k,p
0 . In fact, we obtain the desired estimate

for f P C8
c pUq if we apply Theorem 3.52 to the 0–extension of f . The result

for f P W k,p
0 pUq then follows by density. ♢

Corollary 3.56. Let U Ď Rm be open and bounded. We then have
Poincare’s inequality

ż

U
|∇u|pp dx ě δ

ż

U
|u|p dx (3.41)

for some δ ą 0 and all u P W 1,p
0 pUq and p P r1,8q.

Proof. For p P r1,mq, the estimate (3.41) follows from (3.38) since

Lp˚

pUq ãÑ LppUq. Let p P rm,8q. The case p “ m “ 1 easily follows from

(3.19). For the other cases, fix r P pp,8q and u P W 1,p
0 pUq. Then (3.36),

(3.37) and W 1,p
0 pUq ãÑ LrpUq imply

}u}p ď cε}u}1 ` ε}u}r ď cε}|∇u|1}1 ` cε}u}1,p

ď cε}|∇u|p}p ` cε}u}p ` cε}|∇u|p}p

for all ε ą 0 and some constants cε, c ą 0 independent of u, where c does
not depend on ε ą 0. Choosing a small ε, we derive (3.41). □

Remark 3.57. We show a part of Theorem 3.52 a) for the case p “ 2 by
means of the Fourier transform. We use the Hausdorff–Young inequality

}Ff}q ď c }f}q1 for q P r2,8s, f P Lq1

pRmq, (3.42)

see e.g. Satz V.2.10 in [We]. Let f P C8
c pRmq and k P N. Then pf belongs

to Sm Ď L1pRmq. The case k ą m{2 was already treated in Remark 3.33.



3.5. Appendix: Density, embedding and trace theorems 77

Let k ă m{2 and 2 ď q ă 2‹ “ 2mpm´ 2kq´1. The latter is equivalent to

1

q
ą

1

2
´
k

m
.

To apply Hölder’s inequality, we define the number s P p2,8s by

1

s
“

1

q1
´

1

2
“

1

2
´

1

q
ă

k

m
.

As in Remark 3.33, by means of (3.42) and Theorem 3.25 we estimate

}f}q ď c}p1 ` |ξ|k2q´1p1 ` |ξ|k2q pf}q1 ď c}p1 ` |ξ|k2q´1}s }p1 ` |ξ|k2q pf}2

ď c}f}k,2

´

ż 8

0

rm´1

p1 ` rkqs
dr
¯

1
s

ď c}f}k,2,

where we have used that sk ą m by the above relations between the expo-
nents. One can again conclude that W k,2pRmq ãÑ LqpRmq, which is Theo-
rem 3.52 a) for p “ 2 and q ă 2‹. ♢

Most of the following results in this section are based on Stein’s extension
Theorem 3.28. We prove here a somewhat weaker result.

Remark 3.58. We show Theorem 3.28 for W 1,ppUq with p P r1,8s if U
is bounded and BU P C1.
1) We write elements in Rm

˘ as py, tq, where Rm
´ “ ´Rm

` . For f P

W 1,ppRm
´ q X C1pRm

´ q, we define

E´fpy, rq “

#

fpy, tq, py, tq P Rm
´ ,

4fpy,´ t
2q ´ 3fpy,´tq, py, tq P Rm

` .

Note that E´f belongs to C1pRmq and fulfills ∥E´f∥W 1,ppRmq ďc∥f∥W 1,ppRm
´ q

for a constant c ą 0.

2) We show that W 1,ppRm
´ q X C1pRm

´ q is dense in W 1,ppRm
´ q, so that E´

can be extended to an extension operator on W 1,ppRm
´ q. In fact, let f P

W 1,ppRm
´ q and ε ą 0. Theorem 3.51 yields a function g in C8pRm

´ q X

W 1,ppRm
´ q with ∥f ´ g∥1,p ď ε. Setting gnpy, tq “ gpy, t ´ 1

nq for t ď 0,

y P Rm´1 and n P N, we define maps gn in C1pRm
´ q XW 1,ppRm

´ q. Note that

Bαgn “ RRm
´
SnE0Bαg

for 0 ď |α| ď 1, where Sn P BpLppRmqq is given by Snhpy, tq “ hpy, t ´ 1
nq

for h P LppRmq. One can see that Snh Ñ h in LppRmq as in Example 4.12
of [FA]. Hence, gn converges to g in W 1,ppRm

´ q implying the claim.

3) Since BU P C1 and U is bounded, there are bounded open subsets
U0, U1, . . . , UN of Rm such that U Ď U0 Y ¨ ¨ ¨ Y UN , U0 Ď U , and BU Ď

U1 Y ¨ ¨ ¨ Y UN , as well as diffeomorphisms Ψj : Uj Ñ Vj such that Ψ1
j and

pΨ´1
j q1 are bounded, ΨjpUj X Uq Ď Rm

´ , and ΨjpUj X BUq Ď Rm´1 ˆ t0u,

for each j P t1, . . . , Nu. By Analysis 3 we have functions 0 ď φj P C8
c pRmq

with suppφj Ď Uj for all j P t0, 1, . . . , Nu and
řm

j“0 φjpxq “ 1 for all x P U .

Let j P t1, . . . , Nu. Set Sjgpyq “ gpΨ´1
j pyqq for y P Rm

´ XVj and Sjgpyq “ 0

for y P Rm
´ zVj , where g P W 1,ppUj X Uq. For h P W 1,ppRmq, set Ŝjhpxq “

hpΨjpxqq for x P Uj and Ŝjhpxq “ 0 for x P RmzUj . Take any φ̃j P C8
c pRmq
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with supp φ̃j Ď Uj and φ̃j “ 1 on suppφj (see Lemma 3.50). Let f P

W 1,ppUq. We now define

E1f “ E0φ0f `

m
ÿ

j“1

φ̃jŜjE´Sj
`

RpUjXUqpφjfq
˘

.

Using part 2) and Propositions 3.19 and 3.20, we see that E1 belongs to
BpW 1,ppUq,W 1,ppRmqq. Let x P U . If x P Uk for some k P t1, . . . , Nu, we
have Ψkpxq P Rm

´ . If x R Uj , then φ̃jpxq “ 0. It follows

E1fpxq “ φ0pxqfpxq `
ÿ

1ďjďN, xPUj

φ̃jpxqpφjfqpΨ´1
j pΨjpxqqq

“

N
ÿ

j“0

φjpxqfpxq “ fpxq.

If x P U0zpU1 Y ¨ ¨ ¨ Y UN q, we also have E1fpxq “ φ0fpxq “ fpxq. ♢

Using Theorem 3.28, we can easily extend the above embedding and den-
sity results to U ‰ Rm.

Theorem 3.59. Let BU P C1´. Theorem 3.52 and Corollary 3.53 then
remain true if we replace Rm by U .

Proof. Consider e.g. Theorem 3.52 a). We have the embedding

J :W k,ppRmq ãÑ Lp‹

pRmq

given by the inclusion. Thanks to Theorem 3.28, the map

RUJEU :W k,ppUq Ñ Lp‹

pUq

is continuous and injective. The other assertions are proved similarly. □

Theorem 3.60. Let BU P C1´, k P N, and p P r1,8q. Then C8
c pUq is

dense in W k,ppUq.

Proof. Let f P W k,ppUq. Then EUf belongs to W k,ppRmq by Theo-
rem 3.28. Theorem 3.51 yields functions gn in C8

c pRmq that converge to
EUf in W k,ppRmq. Hence, RUgn is contained in C8

c pUq Ď W k,ppUq and
tends to f “ RUEUf in W k,ppUq as n Ñ 8. □

We continue with one of the main compactness results in analysis, due to
Rellich and Kondrachov.

Theorem 3.61. Let U Ď Rm be bounded and BU P C1´, k P N, and
1 ď p ă 8. Then the following assertions hold.

a) Let kp ď m and 1 ď q ă p‹ “
mp

m´kp P pp,8s. Then the inclusion map

J :W k,ppUq ãÑ LqpUq

is compact. (For instance, let q “ p.)

b) Let k ´ m
p ą j P N0. Then the embedding

J :W k,ppUq ãÑ CjpUq

is compact, where Jf is the continuous representative.
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Proof. We prove the result only for k “ 1 (and thus j “ 0), see The-
orem 6.3 of [AF] for the other cases. Part b) follows from the Arzela–
Ascoli theorem since Theorem 3.59 gives constants β, c ą 0 such that
|fpxq ´ fpyq| ď c|x ´ y|β and |fpxq| ď c for all x, y P U and f P W 1,ppUq

with ∥f∥1,p ď 1, where p ą m.
In the case p ă m, take fn P W 1,ppUq with ∥fn∥1,p ď 1 for all n P N. Fix

an open bounded set V Ď Rm containing U . Lemma 3.50 yields a function
φ P C8

c pV q which is equal to 1 on U . Let EU be given by Theorem 3.28. Set
gn “ φEUfn P W 1,ppRmq. These functions have support V and ∥gn∥1,p ď

c }φ}1,8∥EU∥ “: M for all n P N. Fix q P r1, p‹q and take θ P p0, 1s with
1
q “ θ

1 ` 1´θ
p‹ . Inequality (3.36) and Theorem 3.52 yield that

∥fn ´ fm∥LqpUq ď ∥gn ´ gm∥LqpV q ď ∥gn ´ gm∥θL1pV q∥gn ´ gm∥1´θ
Lp‹

pV q

ď c∥gn ´ gm∥θL1pV qp∥gn∥
1´θ
1,p ` ∥gm∥1´θ

1,p q

ď 2cM1´θ∥gn ´ gm∥θL1pV q

for all n,m P N. So it suffices to construct a subsequence of gn which
converges in L1pV q. For x P V , n P N and ε ą 0, we compute

|gnpxq ´Gεgnpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Rm

kεpx´ yqpgnpxq ´ gnpyqqdy

ˇ

ˇ

ˇ

ˇ

ď ε´m

ż

Bpx,εq

kp1ε px´ yqq |gnpxq ´ gnpyq| dy

“

ż

Bp0,1q

kpzq|gnpxq ´ gnpx´ εzq|dz

“

ż

Bp0,1q

kpzq

ˇ

ˇ

ˇ

ˇ

ż ε

0

d

dt
gnpx´ tzq dt

ˇ

ˇ

ˇ

ˇ

dz

ď

ż

Bp0,1q

kpzq

ż ε

0
|∇gnpx´ tzq ¨ z| dt dz

ď

ż ε

0

ż

Bp0,1q

kpzq |∇gnpx´ tzq|2 dz dt

“

ż ε

0

ż

Bpx,tq
t´mkp1t px´ yqq |∇gnpyq|2 dy dt,

}gn ´Gεgn}L1pV q ď

ż ε

0
∥kt ˚ |∇gn|2∥L1pRmq dt ď ε sup

0ďtďε
∥kt∥1 ∥|∇gn|2∥L1pRmq

ď cε∥|∇gn|p∥p ď cMε “: Cε, (3.43)

where we have used the transformations z “ 1
ε px ´ yq and y “ x ´ tz, as

well as Fubini’s theorem, Young’s inequality (3.5), and LppV q ãÑ L1pV q.
On the other hand, the definition of Gεgn yields

|Gεgnpxq| ď ∥kε∥8 ∥gn∥L1pV q and |∇Gεgnpxq| ď ∥∇kε∥8 ∥gn∥L1pV q

for all x P V , n P N and each fixed ε ą 0. The Arzela-Ascoli theorem now
implies that the set Fε :“ tGεgn |n P Nu is relatively compact in CpV q for
each ε ą 0, and thus in L1pV q since CpV q ãÑ L1pV q. Let δ ą 0 be given
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and fix ε “ δ
2C . Then there are indeces n1, . . . , nl P N such that

Fε Ď
ďl

j“1
BL1pV qpGεgnj ,

δ
2q “:

ďl

j“1
Bj .

Hence, given n P N, there is an index nj such that Gεgn P Bj . The estimates
(3.43) and (3.16) then yield

∥gn ´Gεgnj∥L1pV q ď ∥gn ´Gεgn∥L1pV q `∥Gεpgn ´ gnj q∥L1pV q ď Cε` δ{2 “ δ.

We have shown that, for each δ ą 0, the set G :“ tgn
ˇ

ˇn P Nu is covered by

finitely many open balls Bj of radius δ; i.e., G is totally bounded in L1pV q.
Thus G contains a subsequence converging in L1pV q (see Corollary 1.39 in
[FA]). In the case p “ m one replaces p‹ by any r P pq,8q. □

We can now give a proof of the second Poincaré inequality, which we
repeat for convenience.

Theorem 3.62. Let U be bounded and pathwise connected with BU P C1´

and p P r1,8q. We then have }f´aU pfq1}p ď c}|∇f |p}p for all f PW 1,ppUq

and some c ą 0.

Proof. We show the estimate via contradiction. So assume that for
each n P N the are functions un P W 1,ppUq with an :“ }un ´ aU punq1}p ą

n}|∇un|p}p. We normalize un to vn :“ a´1
n pun ´ aU punq1q P W 1,ppUq.

Observe that

aU pvnq “ 0, }vn}p “ 1, }|∇vn|p}p ă 1
n .

In particular, the sequence pvnq is bounded inW 1,ppUq and so a subsequence
pvnk

qk converges to some v in LppUq by Theorem 3.34. This function then
satisfies aU pvq “ 0 and }v}p “ 1. Since Bjvnk

Ñ 0 in LppUq as k Ñ 8 for
each j P t1, . . . ,mu, we also obtain Bjv “ 0 by Lemma 3.16. Because of the
pathwise connectedness, an exercise shows that v “ κ1 for some κ P F and
hence 0 “ aU pvq “ κ. But the conclusion v “ 0 contradicts }v}p “ 1. □

We next present an interpolation estimate for first derivatives. Again
there are plenty of variants. It is not so easy to generalize the last part
to U with BU P C1´ since our extension and density results involve first
derivatives, but see Corollary 1.1.11 in [Ma].

Proposition 3.63. Let 1 ď p ă 8. Let either f P W 2,p
0 pUq or BU P C1´1

and f P W 2,ppUq. Then there are constants C, ε0 ą 0 such that

ˆ m
ÿ

j“1

∥Bjf∥pp
˙1{p

ď ε

ˆ m
ÿ

i,j“1

∥Bijf∥pp
˙1{p

`
C

ε
∥f∥p, (3.44)

for all ε ą 0 if f P W 2,p
0 pUq and for all 0 ă ε ď ε0 if f P W 2,ppUq. Moreover,

a function f in LppRmq X
Ş

|α|“2WαpRmq with Bαf P LppRmq for all |α| “ 2

already belongs to W 2,ppRmq.

Proof. 1) Let f P C2
c pUq and extend it to Rm by 0. Take j “ 1. Write

x “ pt, yq P R ˆ Rm´1 for x P Rm. Fix y P Rm´1 and set gptq “ fpt, yq for
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t P R. Let ε ą 0 and a, b P R with b ´ a “ ε. Take any r P pa, a ` ε
3q and

t P pb´ ε
3 , bq. There there is a number s “ spr, tq P pa, bq such that

|g1psq| “

ˇ

ˇ

ˇ

gptq ´ gprq

t´ r

ˇ

ˇ

ˇ
ď

3

ε
p|gptq| ` |gprq|q.

For every s P pa, bq we thus obtain

|g1psq| “

ˇ

ˇ

ˇ
g1psq `

ż s

s
g2pτq dτ

ˇ

ˇ

ˇ
ď

3

ε
p|gprq| ` |gptq|q `

ż b

a
|g2pτq|dτ.

Integrating first over r and then over t, we conclude

ε

3
|g1psq| ď

3

ε

ż a` ε
3

a
|gprq| dr ` |gptq| `

ε

3

ż b

a
|g2pτq| dτ,

ε2

9
|g1psq| ď

ż a` ε
3

a
|gprq| dr `

ż b

b´ ε
3

|gptq| dt`
ε2

9

ż b

a
|g2pτq| dτ,

|g1psq| ď
9

ε2

ż b

a
|gpτq|dτ `

ż b

a
|g2pτq|dτ

ď ε
1
p1

9

ε2

´

ż b

a
|gpτq|p dτ

¯
1
p

` ε
1
p1

´

ż b

a
|g2pτq|p dτ

¯
1
p

ď ε
p´1
p 2

p´1
p

ˆˆ

9

ε2

˙p ż b

a
|gpτq|p dτ `

ż b

a
|g2pτq|dτ

˙

1
p

,

where we used Hölder’s inequality first for the integrals and then in R2. We
take now the p-th power and then integrate over s arriving at

ż b

a
|g1psq|p ds ď εεp´12p´1

ˆ

9p

ε2p

ż b

a
|gpτq|p dτ `

ż b

a
|g2pτq|p dτ

˙

.

Now choose a “ ak “ kε and b “ bk “ pk ` 1qε for k P Z. Summing the
integrals on rkε, pk ` 1qεq for k P Z and then integrating over y P Rm´1, it
follows that

ż

R
|g1pτq|p dτ ď εp2p´1

ˆ

9p

ε2p

ż

R
|gpτq|p dτ `

ż

R
|g2pτq|p dτ

˙

,

ż

U
|B1f |p dx ď p2εqp

ż

U
|B11f |p dx`

36p

p2εqp

ż

U
|f |p dx. (3.45)

2) By approximation, (3.45) can be established for all f P W 2,p
0 pUq. The

same result holds for Bjf and Bjjf with j P t2, . . . ,mu. We now replace 2ε
by ε, sum over j and take the p-th root to arrive at

ˆ m
ÿ

j“1

∥Bjf∥pp
˙

1
p

ď

ˆ

εp
m
ÿ

j“1

∥Bjjf∥pp `
36p

εp
∥f∥pp

˙
1
p

ď ε

ˆ m
ÿ

j“1

∥Bjjf∥pp
˙

1
p

`
36

ε
∥f∥p, (3.46)

for all f P W 2,p
0 pUq, as asserted.
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3) Let u P W 2,ppUq and BU P C1´. The extension operator EU in
BpW 2,ppUq,W 2,ppRmqq from Theorem 3.28 and (3.46) with U “ Rm imply
ˆ m
ÿ

j“1

∥Bjf∥pLppUq

˙
1
p

ď

ˆ m
ÿ

j“1

∥BjEUf∥pLppRmq

˙
1
p

ď ε

ˆ m
ÿ

j“1

∥BjjEUf∥pLppRmq

˙
1
p

`
36

ε
∥EUf∥LppRmq

ď ε∥EUf∥W 2,ppRmq `
36

ε
∥EUf∥LppUq

ď cε∥f∥W 2,ppUq `
c

ε
∥f∥LppUq

ď c0ε

ˆ m
ÿ

i,j“1

∥Bijf∥pp
˙

1
p

` c1ε

ˆ m
ÿ

j“1

∥Bjf∥pp
˙

1
p

`
c

ε
∥f∥p

where we assume that ε P p0, 1s and the constants c, c0, c1 only depend on
}EU} and m. Choosing ε1 “ mint 1

2c1
, 1u we arrive at

1

2

ˆ m
ÿ

j“1

∥Bjf∥pp
˙

1
p

ď c0ε

ˆ m
ÿ

i,j“1

∥Bijf∥pp
˙

1
p

`
c

ε
∥f∥p

if 0 ă ε ď ε1. This inequality implies (3.44) if BU P C1´, after replacing ε
by ε{p2c0q and ε1 by ε0 “ mintc0{c1, 2c0u.

4) Let f, Bαf P LppRmq for |α| “ 2. Set fn “ G1{nf P C8pRmq for n P N.
Then fn and Bαfn tend to f and Bαf in LppRmq. Repeating steps 1) and 2),
for fn we first see as in (3.45) that Bjfn belongs to LppRmq for all j (since
the right-hand side is finite) and then derive (3.46) for fn and U “ Rm.
Hence, the sequence pBjfnqn is Cauchy in LppRmq so that Bjf exists as its
limit in LppRmq by Lemma 3.16. Estimate (3.45) also follows for f . □

We next show the trace theorem which extends the trace map f ÞÑ fæBU

fromW 1,ppUqXCpUq toW 1,ppUq and shows the important fact thatW 1,p
0 pUq

is the space of functions in W 1,ppUq with trace 0.

Theorem 3.64. Let p P r1,8q and U Ď Rm be bounded with BU P C1.
Then the trace map f ÞÑ fæBU from W 1,ppUq X CpUq to LppBU, σq has a

bounded linear extension tr :W 1,ppUq Ñ LppBU, σq whose kernel is W 1,p
0 pUq,

where σ is the surface measure on BU .

Proof. 1) Let u P C1pUq. By the definition of the surface integral,
see Section 2.5 with a slightly different notation, there are finitely many
diffeomorphisms Ψj : Uj Ñ Vj and φj P C1

c pUjq with 0 ď φj ď 1 such that
}u}

p
LppBU,σq

is dominated by

c
m
ÿ

j“1

ż

Vj0

φj ˝ Ψ´1
j |u ˝ Ψ´1

j |p dy1

where Uj and Vj are open subsets of Rm, the sets Uj cover BU , the maps φj

form a partition of unity subordinated to Uj , Vj0 :“ tpy1, ymq P Vj
ˇ

ˇ ym “ 0u,

Vj` :“ tpy1, ymq P Vj
ˇ

ˇ ym ą 0u, ΨjpUj X BUq “ Vj0, and ΨjpUj X Uq “ Vj`.
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We set v “ u˝Ψ´1
j and ψ “ φj ˝Ψ´1

j P C1
c pVjq and drop the indices j below.

By means of Fubini’s theorem and the fundamental theorem of calculus, we
compute
ż

V0

ψ |vpy1q|p dy1 “ ´

ż

V`

Bmpψ |v|pq dy

“ ´

ż

V`

rpBmψq |v|p ` pψ|v|p´2RepvBmvqsdy

ď c

ż

V`

r|v|p ` |v|p´1 |Bmv|sdy ď c}v}pp ` c }v}p´1
p }Bmv}p

ď cp}v}pp ` }Bmv}ppq ď c}v}
p
W 1,ppV`q

ď c}u}
p
W 1,ppUq

.

Here we also used Hölder’s and Young’s inequality and Proposition 3.20. As
a result, the map tr : pC1pUq, }¨}1,pq Ñ LppBU, σq; tru “ u|BU , is continuous.
Theorem 3.60 allows us to extend tr to an operator in LpW 1,ppUq, LppBU, σqq.
If we start with a function u P W 1,ppUq X CpUq, then we can construct
approximations un P C1pUq which converge to u in W 1,ppUq and in CpUq,
see the proof of Theorem 5.3.3 in [Ev]. Hence, trun “ unæBU tends to uæBU

uniformly on BU and to tru in LppBU, σq, so that tru “ uæBU .

2a) We next observe that the inclusion W 1,p
0 pUq Ď Nptrq is a consequence

of the continuity of tr since tr vanishes on C8
c pUq and this space is dense in

W 1,p
0 pUq by definition. To prove the converse, we start with the model case

that v P W 1,ppV`q has a compact support in V` and tr v “ 0. Theorem 3.60
yields functions vn P C1pV`q converging to v inW 1,ppV`q, and hence tr vn “

vnæV0 Ñ 0 in LppV0q, as n Ñ 8. Observe that

|vnpy1, ymq| ď |vnpy1, 0q| `

ż ym

0
|Bmvnpy1, sq|ds,

|vnpy1, ymq|p ď 2|vnpy1, 0q|p ` 2

ˆ
ż ym

0
|Bmvnpy1, sq|ds

˙p

for y1 P V0 and ym ě 0. Integrating over y1 und employing Hölder’s inequal-
ity, we obtain
ż

V0

|vnpy1, ymq|p dy1 ď 2

ż

V0

|vnpy1, 0q|p dy1`2yp´1
m

ż

V0

ż ym

0
|Bmvnpy1, sq|p dsdy1.

By Fubini’s theorem, vnp¨, xmq tends to vp¨, xmq in LppV0q for a.e. ym ą 0
and thus for pointwise a.e., after possibly passing to subsequence. Using
Fatou’s lemma, we can now let n Ñ 8 and arrive at

ż

V0

|vpy1, ymq|p dy1 ď 2yp´1
m

ż

V0

ż ym

0
|Bmvpy1, sq|p dsdy1 (3.47)

for a.e. ym ą 0.
We next use a cut-off argument to obtain a support in the interior of V`.

Choose a function χ P C8pRě0q such that χ “ 0 on r0, 1s and χ “ 1 on
r2,8q. Set χnpsq “ χpnsq for s ě 0 and n P N, and define wn “ χnv on V`.
Note that wn Ñ v in LppV`q as n Ñ 8, Bjwn “ χnBjv for j P t1, . . . ,m´1u
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and Bmwn “ χnBmv ` nχ1pn¨qv. Estimate (3.47) then implies
ż

V`

|∇v ´ ∇wn|pp dy

ď c

ż 2{n

0

ż

V0

|1 ´ χn|p |∇v|pp dy
1 ds` cnp

ż 2{n

0

ż

V0

|vpy1, sq|p dy1 ds

ď c

ż 2{n

0

ż

V0

|∇v|pp dy
1 ds` cnp

ż 2{n

0
sp´1

ż s

0

ż

V0

|Bmvpy1, τq|p dy1 dτ ds

ď c

ż 2{n

0

ż

V0

|∇v|pp dy
1 ds` c

ż 2{n

0

ż

V0

|Bmvpy1, τq|p dy1 dτ

for some constants c ą 0. Because of v P W 1,ppV`q, the above integrals tend
to 0 as n Ñ 8, and so wn Ñ v in W 1,ppV`q as n Ñ 8. Since wn “ 0 for
ym P p0, 1{ns, we can mollify wn to obtain a function pwn P C8

c pV`q such
that } pwn ´ wn}1,p ď 1{n. This means that pwn Ñ v in W 1,ppV`q as n Ñ 8.

2b) We come back to u P W 1,ppUq and consider the sets Uj and Vj and

the functions Ψj and φj from step 1). Let vj “ pφjuq ˝ Ψ´1
j . First, observe

that the trace of vj to the set Vj0 is given by ptrφjq ˝ Ψ´1
j ptruq ˝ Ψ´1

j if

u P CpUq, in addition. By continuity one can extend this identity to all
u P W 1,ppUq. Let tru “ 0. Then we can apply part 2a) to vj and obtain

pwj
n P C1

c pVj`q converging to vj in W 1,ppVj`q. The function

pun “

m
ÿ

j“1

pwj
n ˝ pΨjæUXUj q

thus belongs to C1
c pUq and converges to u in W 1,ppUq as n Ñ 8. Since

pun has compact support, we can mollify pun to a function un P C8
c pUq with

}pun ´ un}1,p ď 1{n. This means that un Ñ u in W 1,ppUq as n Ñ 8, and

hence u P W 1,p
0 pUq. □

3.6. Appendix: Tempered distributions

The9 theory of distributions allows to define derivatives of any order for
rather general objects such as locally integrable functions or measures on
open subsets of Rm, see e.g. [Ru2]. Here we only discuss the subclass of
tempered distributions on Rm to which one can extend the Fourier transform
in a very convenient way. We let F “ C.

Definition 3.65. Tempered distributions are continuous linear function-
als on Sm. We write S‹

m :“ tu : Sm Ñ C |u linear, continuousu for the space
of tempered distributions and xφ, uySm “ upφq for u P S‹

m and φ P Sm.

Recall that φn Ñ φ in Sm means that pk,αpφn ´ φq “ }|x|kBαpφn ´

φq}8 Ñ 0 for all k P N0 and α P Nm
0 , as n Ñ 8. It is possible to define

weak* convergence in S‹
m, but we will not deal with such questions, see

[Ru2]. We collect first instructive examples for tempered distributions,
namely functions and measures with some growth restrictions as well as
Dirac distributions.

9This section was not part of the lectures.
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Example 3.66. a) Let f P L1
locpRmq satisfy

alpfq :“

ż

lď|x|2ăl`1
|fpxq|dx ď clκ

for all l P N and some κ, c ě 0. This condition is satisfied by polynomially
bounded f and by f P LppRmq with p P r1,8s (because then alpfq ď

c}f}p l
pm´1q{p1

by Hölder’s inequality). For φ P Sm, we define

uf pφq “

ż

Rm

φf dx.

To show uf P S‹
m, let φn tend to φ in Sm. Take k P N with k ě κ ` 2.

Inserting |x|´k|x|k in the integrands for l ě 1, we estimate

|uf pφ´ φnq| ď

8
ÿ

l“0

ż

lď|x|2ăl`1
|φ´ φn| |fpxq|dx

ď }f}L1pBp0,1qqp0,0pφ´ φnq ` pk,0pφ´ φnq

8
ÿ

l“1

clκ´k

ď c1pp0,0pφ´ φnq ` pk,0pφ´ φnqq

for a constant c1 ą 0. Hence, uf : Sm Ñ C is continuous. The linearity of
uf is clear, and so it belongs to S‹

m. One often writes f instead of uf .

b) Let µ be a measure on Bm with µpBp0, 1qq ă 8 and µpBp0, l `

1qzBp0, lqq ď clκ for all l P N and some κ, c ě 0. Then one sees as in
part a) that

uµpφq “

ż

Rm

φdµ, φ P Sm,

defines a tempered distribution uµ, which is often simply denoted by µ.

c) Let y P Rm and α P Nm
0 . We set δαy pφq “ Bαφpyq for φ P Sm. Let φn

converge to φ in Sm. Then |δαy pφq ´ δαy pφnq| ď p0,αpφ ´ φnq tends to 0, so
that δαy is contained in S‹

m. ♢

We now extend the operators from Section 3.1 defined on Sm to S‹
m by

duality.

Definition 3.67. Let u P S‹
m, g P Em, and α P Nm

0 . For φ P Sm we define

a) pguqpφq “ xφ, guySm
:“ xgφ, uySm “ upgφq,

b) pBαuqpφq “ xφ, BαuySm
:“ p´1q|α|xBαφ, uySm “ p´1q|α|upBαφq,

c) pupφq :“ pFuqpφq “ xφ,FuySm
:“ xFφ, uySm “ upFφq,

d) pRuqpφq “ xφ,RuySm
:“ xRφ, uySm “ upRφq,

e) pφ ˚ uqpxq :“ xT´xRφ, uySm “ upT´xRφq for every x P Rm.

By Lemma 3.7, the maps gu, Bαu, Fu, and Ru are continuous and linear
from Sm to C, and hence they belong to S‹

m. Similarly one sees T´xRφ P Sm.

Observe that we multiply and convolve tempered distributions only with
the (very regular) functions in Em and Sm, respectively. The following ex-
amples and the theorem below indicate that the above definitions extend the
known concepts in a natural way and that they allow to generalize several
main properties of the Fourier transform to the space S‹

m.
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Example 3.68. Let φ P Sm, g P Ed, α P Nm
0 , and x, y P Rm.

a) Let f P L1
locpRmq be as in Example 3.66 a). Then guf “ ugf since

pguf qpφq “

ż

Rm

φgf dx “ ugf pφq.

b) Let f P W k,ppRmq for some p P r1,8s and |α| ď k P N. Then Bαuf “

uBαf since the definitions and Gauß’ Theorem 3.41 yield

xφ, Bαuf ySm “ p´1q|α|xBαφ, uf ySm “ p´1q|α|

ż

Rm

Bαφf dx “

ż

Rm

φ Bαf dx

“ xφ, uBαf ySm .

c) Let f P L2pRmq. Then Fuf “ uFf since Theorem 3.11 implies

xφ,Fuf ySm “ xFφ, uf ySm “

ż

Rm

pφf dx “

ż

Rm

φ pf dx “ xφ, uFf ySm .

d) We have Bαδy “ p´1q|α|δαy because of

xφ, BαδyySm “ p´1q|α|xBαφ, δyySm “ p´1q|α|Bαφpyq “ p´1q|α|δαy pφq.

e) We have Fδy “ p2πq´m{2e´iy because of

xφ,FδyySm “ xFφ, δyySm “ p2πq´m
2

ż

Rm

e´iy¨xφpxq dx “
@

φ, p2πq´m
2 e´iy

D

Sm
.

f) We have Feiy “ p2πq
m{2δy since Proposition 3.10 implies

xφ,FeiyySm“ xFφ, eiyySm“

ż

Rm

pφpξqeiy¨ξ dξ“p2πq
m
2 pF´1

pφqpyq“p2πq
m
2 φpyq.

Assertion f) can also be deduced from e) since F2 is equal to R in S‹
m, too,

as shown in the next theorem (with a similar proof as above).

g) Let f P L1pRmq. Then φ ˚ uf “ φ ˚ f , since

φ ˚ uf pxq “ xT´xRφ, uf ySm “

ż

Rm

φp´pz ´ xqqfpzq dz “ φ ˚ fpxq. ♢

We now collect the main properties of the above objects on S‹
m. Observe

that the second part of assertion b) does not work on W k,2pRmq.

Theorem 3.69. Let u P S‹
m, φ,ψ P Sm, and α P Nm

0 . The following
assertions hold.

a) F : S‹
m Ñ S‹

m is bijective with F4 “ I and F´1 “ F3 “ RF .

b) FpBαuq “ i|α|ξαFu and BαpFuq “ p´iq|α|Fpxαuq.

c) φ ˚ u P Em, and hence φ ˚ u induces a tempered distribution.

d) Bαpφ ˚ uq “ pBαφq ˚ u “ φ ˚ Bαu.

e) Fpφ ˚ uq “ p2πq
m{2

pφpu and Fpφuq “ p2πq´m{2
pφ ˚ pu.

Proof. Let uPS‹
m, φPSm, and αPNm

0 . For a), Proposition 3.10 yields

xφ,F4uySm “ xFφ,F3uySm “ ¨ ¨ ¨ “ xF4φ, uySm “ xφ, uySm ,

so that F4 “ I on S‹
m and F : S‹

m Ñ S‹
m is bijective with inverse F´1 “ F3.

Similarly, we show the remaining equality F2 “ R by computing

xφ,F2uySm “ xF2φ, uySm “ xRφ, uySm .
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The first equality in statement b) follows from Lemma 3.7 and

xφ,FBαuySm “ xFφ, BαuySm “ p´1q|α|xBαFφ, uySm “ i|α|xFpxαφq, uySm

“ xφ, i|α|ξαFuySm .

The second part of b) is established in the same way.

For the proof of assertions c) and d) we refer to Theorem 7.19 in [Ru2].
To show e), first take ψ P C8

c pRmq. There is a closed interval I Ă Rm such
that suppψ Ă I. Using the definitions, part a) and Proposition 3.3 in the
last step, we compute

x pψ,Fpφ ˚ uqySm “ xRψ,φ ˚ uySm “

ż

Rm

ψp´xqpφ ˚ uqpxqdx

“

ż

´I
ψp´xqupT´xRφq dx “

ż

I
upψpzqTzRφq dz

“ u
´

ż

I
ψpzqTzRφdz

¯

“ xRpψ ˚ φq, uySm

“ xFpψ ˚ φq,FuySm “ p2πq
m
2 x pψ pφ,FuySm . (3.48)

Here the second integral in (3.48) is understood as an Sm-valued Riemann
integral on I; i.e., as the limit in Sm of Riemann sums such as

Snpyq “

Nn
ÿ

j“1

ψpzj,nqpRφqpy ` zj,nq volpQj,nq, y P Rm,

where zj,n P Qj,n, the rectangles Qj,n with j P t1, . . . , Nnu subdivide I, and
maxj volpQj,nq tends to 0 as n Ñ 8. Clearly, Sn belongs to Sm. We omit
the somewhat tedious, but elementary proof that Sn indeed converges in
Sm. Hence, u can be taken out of the approximating Riemann sums by its
linearity and out of the limit by its continuity. This fact justifies that we
have interchanged u and the integral in (3.48). So far we have shown

x pψ,Fpφ ˚ uqySm “ p2πq
m
2 x pψ, pφpuySm (3.49)

for all ψ P C8
c pRmq. Arguing as in the first part of the proof of Theorem 4.21

in [FA], one can show that C8
c pRmq is dense in Sm, see Theorem 7.10 in

[Ru2]. Since the Fourier transform is continuous on Sm by Lemma 3.7, the

identity (3.49) is thus valid for all pψ with ψ P Sm due to an approximation

argument. We can now replace here pψ by ψ P Sm using that F is bijective
on Sm thanks to Proposition 3.10. So the first part of assertion e) is shown.
For the second part, observe that

xψ,RpφqRpuqySm “ xψRφ,RuySm “ xRpψqR2φ, uySm “ xRψ,φuySm

“ xψ,RpφuqySm ,

for all ψ P Sm; i.e., RpφqRpuq “ Rpφuq. Employing also a), we then calculate

Fppφ ˚ puq “ p2πq
m
2 F2pφqF2puq “ p2πq

m
2 Rpφuq “ p2πq

m
2 F2pφuq.

Applying F´1, the second part of assertion e) follows. □



CHAPTER 4

Self-adjoint operators

As on Cm, self-adjoint operators on a Hilbert space possess a very powerful
spectral theory. It has important applications all over mathematics and its
applications; the mathematical foundation of quantum mechanics is a prime
example (see [RS]). For these applications we also have to study unbounded
self-adjoint operators. In the first section we focus on the often difficult and
most basic problem how to determine whether a given (partial) differential
operator is self-adjoint. In the second section we then establish a core result
of spectral theory: the spectral theorem for self-adjoint operators, also in
the unbounded case.
In this chapter X and Y are Hilbert spaces with scalar product p¨|¨q and

we let F “ C, unless something else is said.

4.1. Basic properties

We start with the under-lying concepts of this chapter. Let A be a densely
defined linear operator from X to Y . We define its Hilbert space adjoint A1

as in the Banach space case by

DpA1q :“
␣

y P Y
ˇ

ˇ D z P X @x P DpAq : pAx|yq “ px|zq
(

,

A1y :“ z.
(4.1)

As in Remark 1.23 one sees that A1 : DpA1q Ñ X is a linear map, which is
closed from Y to X. Let T P BpX,Y q. Then DpT 1q “ Y and T 1 is given by

@ x P X, y P Y :
`

x
ˇ

ˇT 1y
˘

“ pTx|yq

as in (5.9) in [FA]. We recall from Proposition 5.42 of [FA] that

}T } “ }T 1}, T 2 “ T, pαT ` βSq1 “ αT 1 ` βS1, pUT q1 “ T 1U 1 (4.2)

for T, S P BpX,Y q, U P BpY, Zq, a Hilbert space Z, and α, β P C.

Definition 4.1. A densely defined linear operator A on X is called self-
adjoint if A “ A1 (in particular, DpAq “ DpA1q and A must be closed), skew-
adjoint if A “ ´A1, and normal if AA1 “ A1A. We say that T P BpX,Y q is
unitary if T is invertible with T´1 “ T 1.

Let Φ : X Ñ X‹ be the (antilinear) Riesz isomorphism given by
pΦpxqqpyq “ py|xq for all x, y P X. For λ P C and X “ Y , we obtain

λIX ´ T 1 “ Φ´1pλIX‹ ´ T ‹qΦ, λIX ´A1 “ Φ´1pλIX‹ ´A‹qΦ

with DpA1q “ Φ´1DpA‹q as in p.109 of [FA]. Theorem 1.24 thus implies

σpAq “ σpA‹q “ σpA1q, σrpAq “ σppA‹q “ σppA1q, (4.3)

Rpλ,A1q “ Φ´1Rpλ,A‹qΦ “ Φ´1Rpλ,Aq‹Φ “ Rpλ,Aq1 for λ P ρpAq,

88
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where the bars mean complex conjugation of each element. For F “ R,
the above definitions also make sense and the stated results remain valid
(without the extra conjugation). The following relations between the above
concepts are straightforward to check.

Remark 4.2. a) Self-adjoint, skew-adjoint or unitary operators are nor-
mal (where X “ Y ). If A “ A1 and λ P C, then λI ´A is normal.

b) A densely defined linear operator A on X is skew-adjoint if and only
if iA is self-adjoint. (As in (4.2) one sees that piAq1 “ ´iA.) ♢

Theorem 1.16 says that the spectral radius rpT q is less or equal than }T }

for each bounded operator T on a Banach space. Already for the matrix
T “ p 0 1

0 0 q one has the strict inequality rpT q “ 0 ă 1 “ }T }. We next show
∥T∥ “ rpT q for normal operators, which is a key to their deeper properties.

Proposition 4.3. Each operator T P BpX,Y q satisfies ∥T 1T∥ “ ∥TT 1∥ “

∥T∥2. (This is also true if F “ R.) Let T P BpXq be normal. We then have
∥T∥ “ rpT q, and thus T “ 0 if σpT q “ t0u.

Proof. For x P X, using (4.2) we compute

∥Tx∥2 “ pTx|Txq “
`

T 1Tx|xq ď ∥T 1T∥∥x∥2,
∥T∥2 “ sup

∥x∥ď1
∥Tx∥2 ď ∥T 1T∥ ď ∥T 1∥∥T∥ “ ∥T∥2;

i.e., ∥T∥2 “ ∥T 1T∥. We infer that }T }2 “ }T 1}2 “ }T 2T 1} “ }TT 1}.
Next, let T be normal. From the first part we then deduce

∥T 2∥2 “∥T 2pT 2q1∥“∥TTT 1T 1∥“}TT 1TT 1}“∥TT 1pTT 1q1∥“∥TT 1∥2 “∥T∥4,

so that ∥T 2∥ “ ∥T∥2. Iteratively it follows that ∥T 2n∥ “ ∥T∥2n for all n P N.
By means of Theorem 1.16 we conclude

rpT q “ lim
jÑ8

∥T j∥1{j “ lim
nÑ8

∥T 2n∥2´n
“ ∥T∥. □

The following concepts turn out to be very useful to compute adjoints,
for instance. In the next definition and remark we also allow for F “ R.

Definition 4.4. Let A and B be linear operators from a Banach space
X to a Banach space Y . We say that B extends A (and write A Ď B) if
DpAq Ď DpBq and Ax “ Bx for all x P DpAq.

Next, let X be a Hilbert space. A linear operator A on X is called sym-
metric if we have pAx|yq “ px|Ayq for all x, y P DpAq.

By (4.1), a self-adjoint operator is symmetric. In the unbounded case
the converse is not true, in general, see Example 4.8. We collect direct
consequences of these definitions.

Remark 4.5. Let A and B be linear operators from a Banach space X
to a Banach space Y .
a) The operator B extends A if and only if its graph GpBq contains GpAq.

Let A Ď B. Then A “ B is equivalent to DpBq Ď DpAq.

b) Let A Ď B, A be surjective, and B be injective. Then A and B are
equal. Hence, if X “ Y and there is λ P F such that λI ´ A is surjective
and λI ´B is injective, then we have A “ B.
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Proof. Let x P DpBq and set y “ Bx. The surjectivity of A yields a
vector z in DpAq Ď DpBq with y “ Az “ Bz. Since B is injective, we obtain
x “ z P DpAq so that A “ B. l

c) Let X and Y be Hilbert spaces, A and B be densely defined, and
A Ď B. We then have B1 Ď A1.

Proof. Let y P DpB1q and x P DpAq. The assumption implies

pAx|yq “ pBx|yq “ px|B1yq,

so that y belongs to DpA1q and B1y “ A1y by (4.1). l

d) Let A be densely defined and symmetric on a Hilbert space X. Defini-
tion (4.1) implies that A Ď A1. In particular, A is self-adjoint if and only if
DpA1q Ď DpAq. ♢

In the next theorem we give very useful spectral conditions for the self-
adjointness of a symmetric operator. We start with a crucial lemma.

Lemma 4.6. Let A be symmetric, x P DpAq, and α, β P R. Set λ “ α` iβ.
We have pAx|xq P R and

∥λx´Ax∥2 “ ∥αx´Ax∥2 ` |β|2 ∥x∥2 ě |β|2 ∥x∥2.
If A is also closed, then σappAqĎR and ∥Rpλ,Aq∥ ď 1

|Imλ| for all λPρpAqzR.

Proof. For x P DpAq we have pAx|xq “ px|Axq “ pAx|xq so that
pAx|xq “ px|Axq is real. From this fact we deduce that

∥λx´Ax∥2 “ pαx´Ax` iβx|αx´Ax` iβxq

“ ∥αx´Ax∥2 ` 2Re piβx|αx´Axq ` ∥iβx∥2

“ ∥αx´Ax∥2 ` 2Repiβα∥x∥2 ´ iβ px|Axqq ` |β|2∥x∥2

“ ∥αx´Ax∥2 ` |β|2∥x∥2 ě |β|2∥x∥2.
In particular, λ does not belong to σappAq if Imλ “ β ‰ 0.

Let λ P ρpAqzR and y P X. Set x “ Rpλ,Aqy P DpAq. We then calculate

∥y∥2 “ ∥λx´Ax∥2 ě |Imλ|2∥x∥2 “ |Imλ|2∥Rpλ,Aqy∥2. □

Theorem 4.7. Let X be a Hilbert space and A be densely defined, closed
and symmetric on X. Then the following assertions are true.

a) The spectrum σpAq is either a subset of R or σpAq “ C or σpAq “ tλ P

C
ˇ

ˇ Imλ ě 0u or σpAq “ tλ P C
ˇ

ˇ Imλ ď 0u.

b) The following assertions are equivalent.

i) A “ A1.
ii) σpAq Ď R.
iii) iI ´A1 and iI `A1 are injective.
iv) piI ´AqDpAq and piI `AqDpAq are dense in X.

c) Let ρpAq X R ‰ ∅. Then A is self-adjoint.

d) Let A be self-adjoint. Then we have

∥Rpλ,Aq∥ ď
1

|Imλ|
(4.4)

for λ R R. Further, σpAq “ σappAq is non-empty and A has no symmetric
extension B ‰ A.
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Proof. a) Let λ P ρpAq and µ P σpAq. Suppose that Imλ ą 0 and
Imµ ą 0. The line segment from λ to µ then must contain a point ν P BσpAq.
This point belongs to σappAq by Proposition 1.19 and satisfies Im ν ą 0,
which contradicts Lemma 4.6 since A is symmetric. Similarly we exclude
that Imλ ă 0 and Imµ ă 0. Since the spectrum is closed, only the four
cases in assertion a) remain.

b) Let A be self-adjoint. Lemma 4.6 yields the inclusion σappAq Ď R.
Due to (4.3), we also have the equalities σrpAq “ σppA1q “ σppAq so that
σrpAq “ σppAq Ď R. From Proposition 1.19 we thus deduce σpAq Ď R;
i.e., i) implies ii). The implication ‘ii)ñiii)’ is obvious. Equation (4.3) also
shows that ˘i belongs to σppA1q if and only if ¯i to σrpAq; i.e., claims iii)
and iv) are equivalent. Finally, let statement iv) (and thus iii)) be true. The
range of the operator iI ´ A is closed by Lemma 4.6 and Proposition 1.19.
In view of iv), the map iI ´A is then surjective. On the other hand, iI ´A1

is injective because of iii), and hence A is equal to A1 thanks to Remark 4.5.

c) Assume there is a point λ in ρpAq X R. Then ρpAq contains a ball
around λ by its openness. By part a), the spectrum of A is thus contained
in R, and so A is self-adjoint by b).

d) Let A “ A1. If its spectrum was empty, then A would be invertible with
a self-adjoint inverse (see (4.3)). Proposition 1.20 thus yields that σpA´1q

is equal to t0u so that A´1 “ 0 by Proposition 4.3, which is impossible.
Hence, σpAq is non-empty. Let A Ď B for a symmetric operator B on X.
Remark 4.5 then yields A Ď B Ď B1 Ď A1 “ A and so A “ B. Since
σpAq Ď R by b), we have σpAq “ BσpAq Ď σappAq due to Proposition 1.19,
and (4.4) follows from Lemma 4.6. □

We discuss several examples with (unbounded) differential operators, com-
plementing the results from Section 3.4. (See Example 5.44 in [FA] for the
bounded case.) Typically it is straightforward to check symmetry integrating
by parts. We then use spectral properties and Theorem 4.7 to establish self-
adjointness. The examples also indicate that boundary conditions (possible
‘at ˘8’) are often necessary for symmetry. However ‘too many’ boundary
conditions can be an obstacle to self-adjointness.

Example 4.8. a) Let X “ L2pRq and A “ iB with DpAq “ W 1,2pRq.
Then A is self-adjoint with σpAq “ R.

Proof. For u, v P DpAq, integrating by parts we deduce

pAu|vq “ i

ż

R
Bu v ds “ ´i

ż

R
u Bv ds “

ż

R
u iBv ds “ pu|Avq ,

see Theorem 3.41; i.e., A is symmetric. Proposition 1.20 and Example 3.43
further imply that σpAq “ iσp´iAq “ i2R “ R. Hence, A is self-adjoint. l

b) Let X “ L2pR`q and A “ iB on DpAq “ W 1,2pR`q. Then A is not
symmetric.
Proof. For u, v P DpAq with up0q “ vp0q “ 1, as above an integration

by parts implies

pAu|vq “ i

ż 8

0
Bu v ds “ ´i

ż 8

0
u Bv ds´ iup0qvp0q “ pu|Avq ´ i. l
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c) Let X “ L2pR`q and A “ iB on DpAq “ W 1,2
0 pR`q. Then A is sym-

metric, but not self-adjoint, and σpAq “ tλ P C
ˇ

ˇ Imλ ě 0u.
Proof. Symmetry is shown as in a) using Theorem 3.41 and that now

u, v P DpAq have trace 0 at s “ 0. From Proposition 1.20 and Example 3.44
we deduce that σpAq “ ´iσpiAq “ ´itλ P C

ˇ

ˇ Reλ ď 0u “ tλ P C
ˇ

ˇ Imλ ě

0u. Consequently, A is not self-adjoint. l

d) Let X “ L2pRmq and A “ ∆ with DpAq “ W 2,2pRmq. Then A is
self-adjoint with σpAq “ Rď0.
Proof. For u, v P DpAq, Theorem 3.41 yields

pAu|vq “

ż

Rm

∆u v dy “

ż

Rm

u∆v dy “ pu|Avq ,

so that A is symmetric. In Example 3.47 we have seen that σpAq “ Rď0,
and hence A is self-adjoint. l

e) Let U Ď Rm be open and bounded with C2-boundary and A “ ∆

with DpAq “ W 2,2pUq XW 1,2
0 pUq. Then A is self-adjoint (and has compact

resolvent by Example 3.49). In fact, the symmetry of A can be shown as in
part d) because the traces of u, v P DpAq vanish by Theorem 3.38. Then A
is self-adjoint since it is invertible by Example 3.49.

f) Let X “ L2p0, 1q, A0 “ B2 with DpA0q “ W 2,2
0 p0, 1q, and A be as in

assertion e) with U “ p0, 1q. As in e) we see that A0 is symmetric. But
A0 is not self-adjoint, since A0 Ř A and A “ A1 (see Theorem 4.7 d)). We
further claim that A1

0 “ B2 with DpA1
0q “ W 2,2p0, 1q.

Proof. For v P W 2,2p0, 1q and u P DpAq, we deduce from Theorem 3.41

pA0u|vq “

ż 1

0
B2u v ds “

ż 1

0
u B2v ds`

“

vBu´ uBv
‰1

0
“ pu|B2vq;

i.e., pB2,W 2,2p0, 1qq Ď A1
0. Conversely, take v P DpA1

0q. For u P C8
c p0, 1q we

have u P C8
c p0, 1q Ď DpAq and hence obtain

ż 1

0
B2u v ds “ pA0u|vq “ pu|A1

0vq “

ż 1

0
uA1

0v ds.

After complex conjugation, we see that v P W2p0, 1qXX and B2v “ A1
0v P X.

The function v thus belongs to W 2,2p0, 1q by Example 3.42. l

We note that σppA1
0q “ C in Example 4.8 f) since eµ is an eigenfunction

for the eigenvalue µ2 for each µ P C. As in part b) one can also show that
A1

0 is not symmetric.
We next prove that small symmetric perturbations preserve self-adjoint-

ness. Compare Theorem 1.27 and the exercises for similar results on injec-
tivity and Fredholm properties, respectively.

Theorem 4.9. Let A be densely defined and self-adjoint on X and let B
be symmetric with DpAq Ď DpBq. Assume there are constants c ą 0 and
δ P r0, 1{2q such that ∥Bx∥ ď c∥x∥ ` δ∥Ax∥ for all x P DpAq. Then the
operator A`B with DpA`Bq “ DpAq is self-adjoint.

Proof. By Theorem 4.7, the number it belongs to ρpAq for all t P Rzt0u.
Take ε P p0, 1 ´ 2δq Ď p0, 1q and x P X. Using (4.4), we estimate

∥BRpit, Aqx∥ ď δ∥ARpit, Aqx∥ ` c∥Rpit, Aq´1x∥
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“ δ∥itRpit, Aqx´ x∥ ` c∥Rpit, Aqx∥

ď δ
´ |t|
|t|

` 1
¯

normx`
c

|t|
∥x∥ ď p1 ´ εq∥x∥,

whenever |t| ě c
1´2δ´ε . Theorem 1.27 now implies that ˘it P ρpA ` Bq for

such t. Moreover, A`B is symmetric since

ppA`Bqx|yq “ pAx|yq ` pBx|yq “ px|Ayq ` px|Byq “ px|pA`Bqyq

for all x, y P DpAq. So, A`B is self-adjoint due to Theorem 4.7. □

Actually, in the above theorem it suffices to assume that δ ă 1, see The-
orem X.13 in [RS]. We present a typical application of the theorem which
is very important for applications.

Example 4.10. On L2pR3q consider A “ ∆ with DpAq “ W 2,2pR3q. Set
V u “ b

|x|2u for u P DpAq and some b P R. Then A` V with domain DpAq is

self-adjoint.
Proof. Recall from Examples 4.8 and 3.47 that A is self-adjoint and its

graph norm is equivalent to } ¨ }2,2. Since k ´ m
p “ 2 ´ 3

2 ą 0, Theorem 3.31

yields DpAq ãÑ C0pR3q. Let 0 ă ε ď 1. Using polar coordinates, we compute
ż

R3

|V u|2 dx “ b2
ż

Bp0,εq

|upxq|2

|x|22
dx` b2

ż

R3zBp0,εq

|upxq|2

|x|22
dx

ď c∥u∥28
ż ε

0

r2

r2
dr `

b2

ε2

ż

R3zBp0,εq

|u|2 dx

ď cε∥u∥22,2 `
b2

ε2
∥u∥22 ď cε∥Au∥22 ` cε∥u∥22 `

b2

ε2
∥u∥22,

for constants c ą 0 independent of u P DpAq and ε. Moreover, V is sym-
metric on DpAq since

pV u|vq “

ż

R3

b

|x|2
upxqvpxq dx “ pu|V vq

for all u, v P DpAq, using that b|x|
´1
2 is real. For small ε ą 0, Theorem 4.9

implies that A` V is self-adjoint. l

The spectra σpA`V q and σppA`V q and the eigenfunctions of A`V are
computed in §7.3.4 of [Tr], where b ą 0. The above operator A “ ∆ ` V is
used in physics to describe the hydrogen atom. We come back to this point.

4.2. The spectral theorems

Hermitian matrices are unitarily equivalent to diagonal matrices and thus
very easy to treat. In this section, for self-adjoint operators we establish
infinite-dimensional analogues of this basic result from linear algebra. These
‘spectral theorems’ can be extended to normal operators, and the separa-
bility assumption partly made below can be removed. See Corollaries X.2.8
and X.5.4 in [DS] or Theorems 13.24, 13.30 and 13.33 in [Ru2].
There are three versions of the spectral theorem. We start with the ‘func-

tional calculus’ variant for bounded self-adjoint T . To this end, we first
introduce the most simple functional calculus for general T P BpZq on a



4.2. The spectral theorems 94

Banach space Z. Let ppzq “ a0 `a1z` . . .`anz
n be a complex polynomial.

We then define the operator polynomial

ppT q “ a0I ` a1T ` . . .` aNT
N P BpZq. (4.5)

This gives a map p ÞÑ ppT q from the space of polynomials to BpZq.
For self-adjoint T on a Hilbert space one can extend this map to all f P

CpσpT qq, obtaining the continuous functional calculus in the next theorem.
We set p1pzq “ z. Recall the σpT q is a compact non-empty subset of R by
Theorems 1.16 and 4.7.

Theorem 4.11. Let T P BpXq be self-adjoint on a Hilbert space X. There
exists exactly one map ΦT : CpσpT qq Ñ BpXq; f ÞÑ fpT q, satisfying

(C1) pαf ` βgqpT q “ αfpT q ` βgpT q,

(C2) ∥fpT q∥ “ ∥f∥8 (hence, ΦT is injective),

(C3) 1pT q “ I and p1pT q “ T ,

(C4) pfgqpT q “ fpT qgpT q “ gpT qfpT q,

(C5) fpT q1 “ fpT q

for all f, g P CpσpT qq and α, β P C. In particular, we have ΦT ppq “ ppT q

for each polynomial p, where ppT q is given by (4.5).

Proof. 1) We first show the properties (C1)–(C5) for polynomials
pptq “ a0 ` a1t ` . . . ` aN t

N and qptq “ b0 ` b1t ` . . . ` bN t
N with

t P R and the map p ÞÑ ppT q defined by (4.5), where any aj , bj P C
may be equal to 0. Clearly, (C1) and (C3) are true in this case, and

ppT q1 “
řN

j“0 ajpT
jq1 “ ppT q due to (4.2) and T “ T 1. By means of (4.5),

we further obtain

ppqqpT q “

2N
ÿ

l“0

´

ÿ

0ďj,kďN
j`k“l

ajbk

¯

T l “

N
ÿ

j“0

ajT
j

N
ÿ

k“0

bkT
k “ ppT qqpT q,

and so ppqqpT q “ pqpqpT q “ qpT qppT q; i.e., (C4) is shown for polynomials.
Properties (C4) and (C5) yield the normality of ppT q. Hence, Proposition
4.3 and Lemma 4.12 below imply the core identity

∥ppT q∥ “ rpppT qq “ max
␣

|λ|
ˇ

ˇλPσpppT qq
(

“ max
␣

|λ|
ˇ

ˇλPppσpT qq
(

“ ∥p∥8.

2) Let f P CpσpT qq. Since σpT q Ď R is compact, Weierstraß’ approxima-
tion theorem yields real polynomials such that pn Ñ Re f and qn Ñ Im f
in CpσpT qq as n Ñ 8, and thus pn ` iqn Ñ f . (Note that step 1) applies
to pn ` iqn.) We can thus extend the map p ÞÑ ppT q to a linear isometry
ΦT : f ÞÑ fpT q from CpσpT qq to BpXq. By continuity, ΦT also satisfies (C4)
and (C5) on CpσpT qq.

3) Let there be another map Ψ : CpσpT qq Ñ BpXq satisfying (C1)–(C5).
From (C1), (C3) and (C4) we then infer Ψppq “ ppT q “ ΦT ppq for all
polynomials, so that Ψ “ ΦT by continuity and density. □

We observe that we have actually shown uniqueness in the class of linear
and continuous maps Ψ : CpσpT qq Ñ BpXq fulfilling (C3) and (C4). The
next result was used in the above proof. It is a special case of Theorem 5.3
(which is independent of Theorem 4.11, of course). One can show the lemma
also in an elementary (but tedious) way, extending Proposition 1.20 f).
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Lemma 4.12. Let T P BpZq for a Banach space Z and let p be a polyno-
mial. Then σpppT qq “ ppσpT qq.

We derive some rather direct, but important consquences of the theorem.

Corollary 4.13. Let T P BpXq be self-adjoint and f P CpσpT qq. Then
the following asssertions hold.

(C6) Let Tx “ λx for some x P X and λ P R. Then fpT qx “ fpλqx.

(C7) fpT q is normal.

(C8) σpfpT qq “ fpσpT qq. (spectral mapping theorem)

(C9) fpT q is self-adjoint if and only if f is real-valued.

Proof. Take a sequence of polynomials pn converging to f uniformly.
Let Tx “ λx. Property (C6) holds for a polynomial p since

ppT qx “

N
ÿ

j“0

ajT
jx “

N
ÿ

j“0

ajλ
jx “ ppλqx.

Using (C2), we then obtain

fpT qx “ lim
nÑ8

pnpT qx “ lim
nÑ8

pnpλqx “ fpλqx.

From properties (C5) and (C4) we infer fpT qfpT q1 “ fpT qfpT q “

fpT qfpT q “ fpT q1fpT q so that fpT q is normal.
We next show (C8). Let µ R fpσpT qq. The function g :“ 1

µ´f then is an

element of CpσpT qq. Thus (C3) and (C4) yield

pµI ´ fpT qqgpT q “ gpT qpµI ´ fpT qq “ pgpµ1 ´ fqqpT q “ 1pT q “ I;

i.e., µ is an element of ρpfpT qq. Conversely, let µ “ fpλq for some λ P σpT q.
Then µn :“ pnpλq belongs to σppnpT qq for all n P N by Lemma 4.12. As
above, the operators µnI ´ pnpT q tend to µI ´ fpT q in BpXq. Suppose that
µI´fpT q was invertible. Then also µnI´pnpT q would be invertible for large
n by Theorem 1.27. This is impossible, and so µ is contained in σpfpT qq.

For the last assertion, observe that fpT q “ fpT q1 if and only if pf´fqpT q “

0 if and only if f ´ f “ 0, because ΦT is injective. □

We use the functional calculus to solve the equation Wn “ T within the
class self-adjoint ‘non-negative’ operators, where T is given. Below and in
the exercises one finds more applications of this kind.

Corollary 4.14. Let n P N and T “ T 1 P BpXq with σpT q Ď Rě0. (In
this case one writes T “ T 1 ě 0 and calls T non-negative.) Then there is a
unique self-adjoint operator W P BpXq with σpW q Ď Rě0 and Wn “ T .

Proof. Consider wptq “ t1{n for t P σpT q Ď Rě0 and define W “ wpT q.
Then Wn “ wnpT q “ p1pT q “ T by (C4) and (C3). Properties (C8) and
(C9) imply that W “ W 1 ě 0. For the proof of the uniqueness of W , we
refer to Korollar VII.1.16 in [We] or the exercises. □

We next study the special case of a compact self-adjoint operator T (or a
self-adjoint A with compact resolvent). This compact spectral theorem pro-
vides a very convenient decomposition and representation of the operator
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and very strong spectral-theoretic results close to the finite-dimensional set-
ting. The compact case is of great importance for many areas of mathematics
and its applications. We use basic properties of orthogonal projections and
orthonormal bases which are discussed in Chapter 3 of [FA].

Theorem 4.15. Let X be a Hilbert space with dimX “ 8, T P BpXq be
compact and self-adjoint, and A be densely defined, closed and self-adjoint
on X having a compact resolvent. Then the following assertions hold.

a) i) There is an index set J P t∅,N, t1, . . . , Nu |N P Nu and eigenvalues
λj ‰ 0, j P J , such that σpT q “ t0u 9Ytλj | j P Ju Ď R, where λj Ñ 0 as
j Ñ 8 if J “ N.
ii) There is an orthonormal basis of NpT qK “ RpT q consisting of eigen-

vectors of T for the eigenvalues λj.

iii) The eigenspace EjpT q :“ NpλjI ´ T q is finite-dimensional and the
orthogonal projection Pj onto EjpT q commutes with T , for each j P J ,
where TPjx “ λjPjx.

iv) The sum T “
ř

jPJ λjPj converges in BpXq.

b) i) We have σpAq“σppAq“tµn|n P Nu Ď R with |µn| Ñ 8 as n Ñ 8.

ii) There is an orthonormal basis of X consisting of eigenvectors of A.

iii) The eigenspaces EnpAq “ NpµnI ´ Aq are finite-dimensional and the
orthogonal projections Qn onto EnpAq satisfy QnX Ď DpAq and QnAx “

AQn “ µnQnx for all x P DpAq and n P N.
iv) The sum Ax “

ř8
n“1 µnQnx converges in X for all x P DpAq.

Proof.1 1) Theorem 2.10, 2.15 and 4.7 show the parts i) in asser-
tions a) and b), except for the infiniteness of σpAq, as well as the finiteness
of dimEjpT q and dimEnpAq for all j and n. Let x, y P DpAq be eigenvectors
of A for eigenvalues µn ‰ µk. Then

µn px|yq “ pAx|yq “ px|Ayq “ µkpx|yq,

so that px|yq “ 0. Similarly, one sees that EjpT q K EkpT q if j ‰ k. By
the Gram–Schmidt procedure, each eigenspace EjpT q and EnpAq has an
orthonormal basis of eigenvectors for λj ‰ 0 and µn, respectively. The
union of these bases gives orthonormal sets BT and BA.

2) Let J “ N in statement a), the other cases are treated similarly. Ob-
serve that BT Ď RpT q. Set 1j “ 1tλju P CpσpT qq and φn “ 11 ` . . .`1n for

every j, n P N. We then have 1jpT q2 “ 1
2
j pT q “ 1jpT q by (C4). Moreover,

(C4), (C9) and (C3) imply that T1jpT q “ 1jpT qT , 1jpT q1 “ 1jpT q, and

pλjI ´ T q1jpT q “ ppλj1 ´ p1q1jqpT q “ ppλj ´ λjq1jqpT q “ 0.

If λjv “ Tv for some v P X, we further deduce 1jpT qv “ 1jpλjqv “ v from
(C6). As a result, 1jpT q is a self-adjoint projection onto EjpT q. For x P X
and y P Np1jpT qq, we then obtain p1jpT qx|yq “ px|1jpT qyq “ 0 so that
1jpT q is orthogonal; i.e., 1jpT q “ Pj and φnpT q “ P1 ` . . . ` Pn for all
j, n P N. We have shown claim iii) in a).

1Part a) was not shown in the lectures. A more direct proof of it can be found in
Theorem 6.7 of [FA].
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Since TPj “ λjPj , the operator φnpT qT is a partial sum of the series in
part iv). Employing also (C2), we thus derive iv) from

∥T ´ φnpT qT∥ “ ∥pp1 ´ φnp1qpT q∥ “ ∥p1 ´ φnp1∥8 “ sup
jěn`1

|λj | ÝÑ 0,

as n Ñ 8. It also follows that φnpT qy P linBT converges to y as n Ñ 8

for all y P RpT q. Therefore, BT is an orthonormal basis of RpT q due to

Theorem 3.15 in [FA]. Finally, (2.1) shows that RpT q “ K NpT 1q “ NpT qK

because T “ T 1 and X is reflexive.

3) Fix t P ρpAq XR. Then Rpt, Aq1 “ Rpt, A1q “ Rpt, Aq by (4.3), and this
operator is compact and has a trivial kernel. By step 2), X “ NpRpt, AqqK

possesses an orthonormal basis of eigenvectors w of Rpt, Aq for the eigen-
values λ ‰ 0. Proposition 1.20 yields the eigenvector v “ λRpt, Aqw of A
for the eigenvalue µ “ t ´ λ´1. Because dimX “ 8 and the eigenspaces
of Rpt, Aq are finite-dimensional, A has infinitely many distinct eigenvalues;
i.e., part i) in assertion b) is shown.
Let x P X be orthogonal to all eigenvectors of A. For the above v, we

obtain 0 “ px|vq “ px|λRpt, Aqwq “ λ pRpt, Aqx|wq . Since the eigenvectors
w span X, we infer that Rpt, Aqx “ 0 and hence x “ 0. Consequently, BA

is a basis of X by Theorem 3.15 in [FA], and claim ii) of b) is true.

4) Let tvn,1, . . . , vn,lnu be eigenvectors of A forming an orthonormal basis
of EnpAq for n P N. From step 3) we then deduce

Qnx “

ln
ÿ

j“1

px|vn,jq vn,j P DpAq and x “

8
ÿ

n“1

Qnx

for all x P X. For x P DpAq it follows

QnAx “

ln
ÿ

j“1

pAx|vn,jq vn,j “

ln
ÿ

j“1

px|Avn,jq vn,j “

ln
ÿ

j“1

px|µnvn,jq vn,j

“

ln
ÿ

j“1

px|vn,jq µnvn,j “

ln
ÿ

j“1

px|vn,jq Avn,j “ AQnX “ µnQnx.

We thus conclude

A
n
ÿ

k“1

Qkx “

n
ÿ

k“1

QkAx ÝÑ

8
ÿ

k“1

QkAx “

8
ÿ

k“1

AQkx “

8
ÿ

k“1

µkQkx,

as n Ñ 8, so that the closedness of A yields the last assertion. □

Remark 4.16. a) In the above proof we also obtain that

Ax “

8
ÿ

n“1

µn

ln
ÿ

j“1

px|vn,jq vn,j

for all x P DpAq. An analogous result holds for T , see Theorem 6.7 in [FA].

b) Let T be self-adjoint and compact such that NpT q is separable. Theo-
rem 3.15 yields an orthonormal basis tzk | k P J0u of NpT q, where J0 Ď Zď0

could be empty. (J0 must be infinite if J from Theorem 4.15 is finite, as
dimX “ 8.) Denote by λl the non-zero eigenvalues of T (repeated according
to their multiplicity) with corresponding orthonormal basis of eigenvectors
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twl

ˇ

ˇ l P J1u. The union tbj | j P J 1u of tzk | k P J0u and twl

ˇ

ˇ l P J1u is an
orthonormal basis of X. By Theorem 3.18 in [FA], the map

Φ : X Ñ ℓ2pJ 1q; Φx “
`

px|bjq
˘

jPJ 1 ,

is unitary with Φ´1ppξjqjPJ 1q “
ř

jPJ 1 ξjbj . Moreover, the transformed oper-

ator ΦTΦ´1 acts on ℓ2pJ 1q as the multiplication operator

ΦTΦ´1pξjq “ ΦT
ÿ

jPJ 1

ξjbj “ Φ
ÿ

jPJ 1

λjξjbj “ pλjξjqjPJ 1 ,

where λj :“ 0 if j P J0. Hence, ΦTΦ´1 is represented as an infinite diag-
onal matrix with diagonal elements λj . Analogous results hold for A from
Theorem 4.15, see e.g. Theorems 4.5.1-3 in [Tr]. ♢

In part a) of the above remark, A is written as a sum over projections. In
the non-compact case one can show an analogous result using an integral over
projections, see Remark 4.19. In view of part b), T is unitarily equivalent
to the multiplication operator M : pξjqj ÞÑ pλjξjqj on ℓ2pJ 1q which can be
viewed as an L2-space on σpT q. This is a strong statement since M is a
rather simple object. We next extend this multiplicator representation to
the general bounded self-adjoint case. Besides its inherent interest, this fact
will allow us to pass to unbounded A “ A1. In the second part of the
proof one sees that Ω is a ‘disjoint sum’ of σpT q and that h “ p1, roughly
speaking. Thus the information on T is mainly encoded in the measure µ
which is essentially given by (4.6) using the functional calculus.

Theorem 4.17. Let T P BpXq be self-adjoint on a separable Hilbert space
X. Then there is a σ–finite measure space pΩ,A, µq, a measurable function
h : Ω Ñ σpT q and a unitary operator U : X Ñ L2pµq such that

Tx “ U´1hUx for all x P X.

Proof. 1) Let v1 P Xzt0u. We define the linear subspaces

Y1 “ tfpT qv1
ˇ

ˇ f P CpσpT qqu and X1 “ Y 1

of X. Since TfpT qv1 “ pp1fqpT qv1 P Y1 for every f P CpσpT qq, we obtain
TY1 Ď Y1 and so TX1 Ď X1. We introduce the map

φ1 : CpσpT qq Ñ C; φ1pfq “ pfpT qv1|v1q ,

which is linear and bounded because |φ1pfq| ď ∥fpT q∥∥v1∥2 “ ∥f∥8∥v1∥2
due to (C2). If f ě 0, then σpfpT qq Ď Rě0 by (C8). So we can deduce from
Corollary 4.14 that

pfpT qv1|v1q “
`

fpT q
1{2v1

ˇ

ˇfpT q
1{2v1

˘

“ ∥fpT q
1{2v1∥2 ě 0.

The Riesz representation theorem of CpσpT qq‹ now gives a bounded regular2

measure µ1 on BpσpT qq such that

pfpT qv1|v1q “ φ1pfq “

ż

σpT q

f dµ1, (4.6)

2A positive measure µ on a Borel σ-algebra B is called regular, if it satisfies

µpBq “ inf
␣

µpOq
ˇ

ˇB Ď O, O is open
(

“ sup
␣

µpKq
ˇ

ˇK Ď B,K is compact
(

, B P B.
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for all f P CpσpT qq Ď L2pµ1q, see Theorem 2.14 of [Ru1]. For x “ fpT qv1 P

Y1, we define V1x :“ f P L2pµ1q. We compute

∥V1x∥2L2pµ1q “

ż

σpT q

|f |2 dµ1 “ φ1pffq “
`

pffqpT qv1|v1q

“
`

fpT q1fpT qv1|v1q “ pfpT qv1|fpT qv1q “ ∥x∥2X .
In particular, if x “ fpT qv1 “ gpT qv1 for some g P CpσpT qq, then

∥f ´ g∥22 “ ∥pfpT q ´ gpT qqv1∥2X “ 0,

and so f “ g in L2pµ1q. As a result, V1 : Y1 Ñ L2pµ1q is a linear isometric
map and can be extended to a linear isometry U1 : X1 Ñ L2pµ1q.

Observe that CpσpT qq Ď RpU1q. Since CpσpT qq is dense in L2pµ1q by
Theorem 3.14 in [Ru1], the isometry U1 has dense range. Hence, U1 is
bijective and thus unitary by Proposition 5.52 in [FA]. Finally, we compute

U1TfpT qv1 “ V1pp1fqpT qv1 “ p1f “ p1U1fpT qv1,

for f P CpσpT qq. By density, it follows Tx “ U´1
1 p1U1x for all x P X1.

2)3 We are done if there is a vector v1 P X with X1 “ X. In general this
is not true. Using Zorn’s Lemma (see Corollary 2.5 in Appendix 2 of [La]),
we instead find orthogonal spaces Xn as in step 1) which span X.
a) To that aim, we introduce the collection E of all sets E having as

elements at most countably many closed subspaces Xj Ă X of the type
constructed in step 1) such that Xi K Xj for all Xi ‰ Xj in E. The system
E is ordered via inclusion of sets. Let C be a chain in E ; i.e., a subset of
E such that E Ď F or F Ď E for all E,F P C. We put C “

Ť

EPC E.
Clearly, E is contained in C for all E P C. Let Y,Z P C. Then Y and
Z are closed subspaces of X as constructed in part 1) and there are sets
E,F P C with Y P E and Z P F . We may assume that E Ď F and so
X,Y P F . The subspaces Y and Z are thus orthogonal (if Y ‰ Z). As a
result, C contains pairwise orthogonal subspaces of X. If x K y have norm
1, then }x´ y}2 “ }x}2 ` }y}2 “ 2. The separability of X then implies that
at most countably many subspaces belong to C, so that C is an element
of E and hence an upper bound of C. Zorn’s Lemma now gives a maximal
elementM “ tXj | j P Ju in E , where J Ď N and Xj are pairwise orthogonal
subspaces as constructed in 1).

b) Assume that there was a vector z P X being orthogonal to all Xj . Let
Z be the closed span of all vectors fpT qz with f P CpσpT qq. Let g P CpσpT qq

and x “ gpT qvi P Xi for some i P J , where vi generates Xi as in step 1). We
then obtain

px|fpT qzq “ pfpT q1gpT qvi|zq “ ppfgqpT qvi|zq “ 0

since pfgqpT qvi P Xi. By density, it follows that Z is orthogonal to all Xj

and thus M Y tZu P E . The maximality on M now implies that Z belongs
to M , implying z “ 0. Consequently, X is the closed linear span of the
elements in the orthogonal subspaces Xj . Each x P X can thus be uniquely
written as x “

ř

j xj for some xj P Xj , and we have }x}2 “
ř

j }xj}
2 by

Pythagoras.

3Not shown in the lectures.
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c) We now define

Ω “
ď

jPJ
σpT q ˆ tju Ď R2, A “ BpΩq, µpAq “

ÿ

jPJ
µjpAjq

with Aj ˆ tju “ AX pσpT q ˆ tjuq, and

hpλ, jq “ λ, Ux “
ÿ

jPJ
Ũjxj ,

where pλ, jq P Ω, Uj and µj are given as in step 1), and we set pŨjxjqpλ, jq “

pUjxjqpλq.
It is straightforward to check that pΩ,A, µq is a σ–finite measure space,

and the map h is even continuous for the Euclidean metric. The definition
of µ and step 1) show the isometry

}Ux}2L2pµq “
ÿ

j
}Ujxj}

2
L2pµjq “

ÿ

j
}xj}

2 “ }x}2.

To show the surjectivity of U , take g P L2pµq. For the restictions gjpλq “

gpλ, jq part 1) gives vectors xj P Xj with gj “ Ujxj for j P J , and hence
g “ U

ř

j xj . As a result, U is unitary by Proposition 5.52 in [FA]. Let

Tj : Xj Ñ Xj be the restriction of T . Since Tx “
ř

j Tjxj , we derive

phUxqpλ, jq “
ÿ

j
λpŨjxjqpλ, jq “

ÿ

j
pp1Ujxjqpλq “

ÿ

j
pUjTjxjqpλq

“ U
´

ÿ

j
Tjxj

¯

pλ, jq “ UTxpλ, jq. □

We add an observation to the above proof. Let λ P σpT qzσppT q. Then
Λ “ tλu ˆ J Ď Ω is a µ–null set. In fact, otherwise the characteristic
function f of any subset of Λ with measure in R` would be a non-zero
element of L2pµq. Hence, x “ U´1f ‰ 0 would be an eigenvector of T for
the eigenvalue λ, since Tx “ U´1λf “ λx. We further note that in the proof
of Theorem 4.17 one could also take Ω “

Ť

jPJ σpTjqˆtju, where Tj “ TæXj .

It can be shown that σpT q is the closure of
Ť

jPJ σpTjq.
The above representation of bounded self-adjoint operators as multipli-

cation operators now leads to a multiplication representation and to a Mb–
functional calculus for (possibly) unbounded self-adjoint operators A. Here
MbpσpAqq is the Banach space of bounded Borel-measurable functions on
σpAq endowed with the supremum norm. We use this space instead of
L8pσpAqq to avoid certain technical problems. We set rλpzq “ pλ´ zq´1 for
z P Cztλu and write (C3’) replacing in (C3) the map p1 by rλ for λ P ρpAq.

Theorem 4.18. Let A be a self-adjoint operator on a separable Hilbert
space X. Then the following assertions hold.

a) There is a σ–finite measure space pΩ,A, µq, a measurable function h :
Ω Ñ σpAq and a unitary operator U : X Ñ L2pµq such that

DpAq “
␣

x P X
ˇ

ˇhUx P L2pµq
(

and Ax “ U´1hUx.

b) There is a contractive map ΨA : MbpσpAqq Ñ BpXq; ΨApfq “ fpAq,
satisfying (C1) and (C3’)–(C5). Moreover, if fn P MbpσpAqq are uniformly
bounded and converge to f P MbpσpT qq pointwise, then fnpAqx Ñ fpAqx as
n Ñ 8 for all x P X. Finally, for x P DpAq and f P MbpσpAqq the vector
fpAqx belongs to DpAq and AfpAqx “ fpAqAx.



4.2. The spectral theorems 101

Proof. a) We additionally assume that σpAq ‰ R and fix t P ρpAqXR.4
Then Rpt, Aq P BpXq is self-adjoint and can be represented as Rpt, Aq “

U´1mU on a space L2pΩ, µq as in Theorem 4.17. Recall that Proposi-
tion 1.20 yields σpAq “ t´ rσpRpt, Aqqzt0us´1. Set

hpλ, jq “ t´
1

mpλ, jq
“ t´

1

λ
P σpAq,

for j P J and λ P σpRpt, Aqqzt0u. The sets t0u ˆ J have µ–measure 0 in
view of the obervation before the theorem, due to the injectivity of Rpt, Aq.
We can thus extend h to a measurable function h : Ω Ñ σpAq, by setting
hp0, jq “ µ for some µ P σpAq.

Let x P DpAq. We put y “ tx´Ax P X. Using x “ Rpt, Aqy “ U´1mUy,
we compute

hUx “ hmUy “ ptm´ 1qUy P L2pµq,

U´1hUx “ tU´1mUy ´ y “ tx´ y “ Ax.

If x P X satisfies hUx P L2pµq, then we put y “ U´1pt1 ´ hqUx P X and
obtain mUy “ ptm ´ mhqUx “ Ux. Therefore, x “ U´1mUy “ Rpt, Aqy
belongs to DpAq, and part a) is proved.

b) We define ΨA : f ÞÑ fpAq by

fpAqx “ U´1pf ˝ hqUx (4.7)

for f P MbpσpAqq and x P X. We further set Mfφ “ pf ˝ hqφ for φ P L2pµq.
It is straightforward to check that fpAq P BpXq, ΨA is linear, 1pAq “ I and
(C5) is true. Let λ P ρpAq. We have

hUrλpAqx “ hprλ ˝ hqUx “ hpλ1 ´ hq´1Ux P L2pµq

for all x P X. So step a) yields that rλpAqX Ď DpAq and pλI´AqrλpAq “ I.
Similarly, one sees that rλpAqpλx´Axq “ x for all x P DpAq, and thus (C3’)
is shown. The contractivity follows from ∥fpAq∥ “ ∥Mf∥ ď ∥f∥8. For
property (C4) we observe that

pfgqpAqx “ U´1pf ˝hqpg ˝hqUx “ U´1pf ˝hqUU´1pg ˝hqUx “ fpAqgpAqx,

where f, g P MbpσpAqq and x P X.
Let f, fn P MbpσpAqq be uniformly bounded by c such that fn Ñ f point-

wise as n Ñ 8. For every x P X, we have fnpAqx´ fpAqx “ U´1ppfn ´ fq ˝

hqUx. Since pfn ´ fq ˝ h Ñ 0 pointwise and |ppfn ´ fq ˝ hqUx| ď 2c|Ux|,
Lebesgue’s convergence theorem shows that ppfn ´ fq ˝ hqUx tends to 0 in
L2pµq and so fnpAqx Ñ fpAqx in X as n Ñ 8.

Let x P DpAq. The above results yield that

g :“ hpf ˝ hqUx “ pf ˝ hqUU´1hUx “ pf ˝ hqUAx P L2pµq.

On the other hand, g “ hUU´1pf ˝hqUx “ hUfpAqx. Part (a) thus implies
that fpAqx P DpAq and

AfpAqx “ U´1hUfpAqx “ U´1g “ U´1pf ˝ hqUAx “ fpAqAx. □

4If σpAq “ R, we instead take t “ i and use below the version of Theorem 4.17 for
the normal operator Rpi, Aq given in Satz VII.1.25 in [We]. Part b) was not shown in the
lectures.
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The mapping ΨA is uniquely determined, see Theorem VIII.5 in [RS].
There are versions of Theorem 4.18 b) for unbounded f given in Theo-
rems 13.24 and 13.30 of [Ru2]. If we have A “ T P BpXq in the above
theorem, then the definition of ΨA in (4.7) yields p1pT q “ T .

We briefly sketch a third version of the spectral theorem using the spectral
measure of A “ A1.

Remark 4.19. Let A be a self-adjoint operator on a separable Hilbert
space X. Set PS “ 1SpAq for a Borel set S Ď σpAq. Since 12S “ 1S “ 1S ,
the contractive operator PS is a self-adjoint projection by the Mb-calculus.
Take x P NpPsq and y “ PSz P RpPSq. We then obtain px|yq “ px|PSzq “

pPSx|zq “ 0 so that the spectral projection PS is orthogonal. Let x, y P X.
Using Theorem 4.18 b), one sees that S ÞÑ pPSx|yq is a ‘C-valued’ measure
µx,y (see Appendix C in [Co2]). Moreover, for f P MbpσpAqq one can show

pfpAqx|yq “

ż

σpAq

fpλqdµx,ypλq

and moreover

pAx|yq “

ż

σpAq

λ dµx,ypλq

for x P DpAq “ tx P X |
ş

σpAq
|λ|2 dµx,x ă 8u and y P X. One can further

define an operator-valued integral
ş

f dP P BpXq such that
ż

σpAq

fpλqdµx,ypλq “

´´

ż

σpAq

f dP
¯

x
ˇ

ˇ

ˇ
y
¯

for x, y P X. See Theorem VIII.6 in [RS] and Sections VII.1+3 of [We]. ♢

We conclude with one of the most important applications of the above
theorem.

Example 4.20. Let H be a self-adjoint operator on a (separable) Hilbert
space X. For a given u0 P DpHq we claim that there is exactly one function
u P C1pR, Xq X CpR, rDpHqsq solving the Schrödinger equation

d
dtuptq “ ´iHuptq, t P R, up0q “ u0. (4.8)

(H is called Hamiltonian.) The solution is given by uptq “ T ptqu0 for unitary
operators T ptq on X satisfying T p0q “ I, T pt ` sq “ T ptqT psq “ T psqT ptq
and T ptq´1 “ T p´tq for t, s P R. Moreover, t ÞÑ T ptqx P X continuous
for t P R and all x P X. An example for this setting is X “ L2pR3q and
H “ ´p∆ ` b

|x|2 q with DpHq “ W 2,2pR3q, see Example 4.10.

Proof. For t P R, we consider the bounded function ft : R Ñ C; ftpξq “

e´itξ. Theorem 4.18 allows us to define T ptq “ ftpHq P BpXq. Since f0 “ 1

and ftfs “ ft`s, we obtain T p0q “ I and T ptqT psq “ T psqT ptq for t, s P R.
With s “ ´t it follows that T ptq has the inverse T p´tq. Moreover, T ptq is
unitary since T ptq1 “ ftpHq “ f´tpHq “ T p´tq. Because of ∥ft∥8 “ 1 and
the continuity of t ÞÑ ftpξq for fixed ξ P R, the map R Q t ÞÑ T ptqz P X is
continuous for each x P X by Theorem 4.18.
Let u0 P DpHq. We set y “ τu0 ´ Hu0 for some τ P ρpHq, so that

u0 “ Rpτ,Hqy “ rτ pHqy. We then obtain
1

t´spT ptqu0 ´ T psqu0q “ 1
t´spftpHq ´ fspHqqrτ pHqy
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“
`

1
t´spft ´ fsqrτ

˘

pHqy “: gt,spHqy

for all t ‰ s. Observe that gt,spξq Ñ
´iξ
τ´ξfspξq “: mpξqfspξq as t Ñ s for

all ξ P σpHq and ∥gt,s∥8 ď ∥m∥8 “ supξPσpHq|
ξ

τ´ξ | ă 8 for all t ‰ s. So

Theorem 4.18 shows that there exists d
dtT ptqu0 “ mpHqT ptqy “ T ptqmpHqy.

We further compute

mpHqy “ Upm ˝ hqU´1y “ Upp´ip1rτ q ˝ hqU´1y

“ ´U ihU´1Uprτ ˝ hqU´1y “ ´iHRpτ,Hqy “ ´iHu0

by means of Theorem 4.18. Hence, we arrive at
d
dtT ptqu0 “ ´iT ptqHu0 “ ´iHT ptqu0,

using Theorem 4.18 once more. Due to these equations, u “ T p¨qu0 belongs
to C1pR, Xq X CpR, rDpHqsq and solves (4.8).

Let v P C1pR, Xq X CpRě0, rDpHqsq be another solution of (4.8). For
t, s P R and h ‰ 0 we compute
1
hpT pt´ s´ hqvps` hq ´ T pt´ sqvpsqq ´ T pt´ sqpv1psq ` iHvpsqq

“ T pt´ s´ hq
`

1
hpvps` hq ´ vpsqq ´ v1psq

˘

` pT pt´ s´ hq ´ T pt´sqqv1psq

´ 1
´hpT pt´ s´ hq ´ T pt´ sqqvpsq ´ T pt´ sqiHvpsq ÝÑ 0

as h Ñ 0. For any y P X we thus obtain d
ds pT pt´ sqvpsq|yq “ 0, since

v1 “ ´iHv. Consequently,

pT ptqx|yq “ pT ptqvp0q|yq “ pT p0qvptq|yq “ pvptq|yq ,

which gives uptq “ vptq for all t ě 0. Thus the ‘strongly continuous unitary
group’ pT ptqqtPR solves (4.8) uniquely. l



CHAPTER 5

Holomorphic functional calculi

We come back to the case of Banach spaces X and Y , but keep F “ C.
We want to introduce functional calculi for non self-adjoint operators on X,
now using complex curve integrals.

5.1. The bounded case

Let U Ď C be open, g : U Ñ Y be holomorphic (i.e., complex differ-
entiable), and γ P Cpra, bs, Uq be a piecewise C1-curve (in U) with range
Γ “ γpra, bsq Ď U . This means that there are a “ a0 ă a1 ă ¨ ¨ ¨ ă aN “ b
such that the restrictions of γ to rak´1, aks are C1. We define the curve
integral

ż

γ
g dz “

ż b

a
gpγptqqγ1ptq dt :“

N
ÿ

k“1

ż ak

ak´1

gpγptqqγ1ptq dt

as a Banach space-valued Riemann integral (having the same definition,
results and proofs as for Y “ R in Analysis 2). Using Riemann sums,
one checks the usual properties of curve integrals and also that T

ş

γ g dz “
ş

γ Tg dz for all T P BpY,Zq and Banach spaces Z.

Let γj : raj , bjs Ñ U be piecewise C1-curves for j P t1, 2u such that either
b1 ă a2 or b1 “ a2 and γ1pb1q “ γ2pa2q. On ra1, b1s Y ra2, b2s we define the
‘sum curve’ γ1 Y γ2ptq “ γjptq for t P raj , bjs. If b1 ă a2, the ranges Γ1 and
Γ2 can be disjoint, and we call also such curves piecewise C1.

The index of a closed curve (i.e., γpaq “ γpbq) at z P CzΓ is given by

npγ, zq “
1

2πi

ż

γ

dw

w ´ z
.

The index is the number of times that γ winds around z, counted with
orientation ˘. (See Analysis 4 for basic properties of the index.)
Let γ be closed and piecewise C1 in U such that npγ, zq “ 0 for all z R U .

Then Cauchy’s integral theorem and formula
ż

γ
g dz “ 0, (5.1)

npγ, zqgpzq “
1

2πi

ż

γ

gpwq

w ´ z
dw, (5.2)

are valid for all z P UzΓ. This fact is shown for Y “ C in Theorems IV.5.4
and IV.5.7 of [Co1]. For a general Banach space Y , the formulas (5.1) and
(5.2) are thus satisfied by functions z ÞÑ xgpzq, y‹y for every y‹ P Y ‹. Hence,
x
ş

γ g dz, y
‹y “ 0 for all y‹ P Y ‹ so that a corollary of the Hahn–Banach

theorem yields (5.1) in Y . Similarly one deduces (5.2).

104
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For compact non-empty subsets K Ď C, we introduce the space

HpKq “
␣

f : Dpfq Ñ C
ˇ

ˇK Ď Dpfq Ď C, Dpfq is open, f is holomorphic
(

.

Let K Ď U Ď C, K be compact, and U be open. By Proposition VIII.1.1
in [Co1] and its proof there exists an admissible curve γ for K and U (or,
in UzK) which means that γ : ra, bs Ñ UzK is piecewise C1, npγ, zq “ 1 for
all z P K, and npγ, zq “ 0 for all z P CzU .

Let T P BpXq, f P HpσpT qq, and γ be admissible for σpT q and Dpfq. We
then define

fpT q “
1

2πi

ż

γ
fpλqRpλ, T q dλ P BpXq. (5.3)

This integral exists in BpXq since the integrand λ ÞÑ fpλqRpλ, T q is holo-
morphic on ρpT q X Dpfq Ě Γ and Γ is compact. Writing Rpλ, T q as ‘ 1

λ´T ’,

one sees the similarity of (5.3) and (5.2), but Rpλ, T q does not exist on the
possibly ‘large’ set σpT q, whereas the map w ÞÑ 1

w´z is defined on Cztzu.

Let γ1 be another admissible curve for σpT q and Dpfq. We set γ2 “

γYp´γ1q, where “´” denotes the inversion of the orientation. We then have

npγ2, zq “ npγ, zq ´ npγ1, zq “

#

1 ´ 1 “ 0, z P σpT q,

0 ´ 0 “ 0, z P CzDpfq.

So we can apply (5.1) on U “ DpfqzσpT q obtaining

0 “

ż

γ2

fpλqRpλ, T q dλ “

ż

γ
fpλqRpλ, T q dλ´

ż

γ1

fpλqRpλ, T q dλ.

Consequently, (5.3) does not depend on the choice of the admissible curve.
We recall that p1pzq “ z for z P C. For f P HpσpT qq and T P BpXq we

next establish the holomorphic functional calculus which has very similar
properties as the continuous calculus from Theorem 4.11 for T “ T 1. How-
ever, now the functions have to be defined on a neighborhood of σpT q, and
they have to be holomorphic and not just continuous.

Theorem 5.1. Let T P BpXq and f, g, fn P HpσpT qq with Dpfnq “ Dpfq

for n P N. Then the map

ΦT : HpσpT qq Ñ BpXq; f ÞÑ fpT q,

defined by (5.3) is linear and satisfies

(H1) ∥fpT q∥ ď c supλPΓ|fpλq| for a constant c “ cpγ, T q ą 0,

(H2) 1pT q “ I, p1pT q “ T ,

(H3) fpT qgpT q “ gpT qfpT q “ pfgqpT q,

(H4) fpT q‹ “ fpT ‹q,

(H5) if fn Ñ f uniformly on compact subsets of Dpfq, then fnpT q Ñ fpT q

in BpXq as n Ñ 8,

(H6) if fpλq ‰ 0 for all λ P σpT q, then 1
f P HpσpT qq and fpT q has the

inverse 1
f pT q.

Moreover, ΦT is the only linear map from HpσpT qq to BpXq satisfying
(H1)–(H3). For a polynomial p, the operators ppT q in (5.3) and in (4.5)
coincide. If X is a Hilbert space and T “ T 1, the above ΦT is the restriction
of the map ΦT from Theorem 4.11.
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Proof. It is clear that f ÞÑ fpT q is linear. Property (H1) follows from

∥fpT q∥ ď
1

2π
ℓpγq sup

λPΓ
∥Rpλ, T q∥ sup

λPΓ
|fpλq| “: cpγ, T q sup

λPΓ
|fpλq|.

Replacing here fpT q by fpT q ´ fnpT q “ pf ´ fnqpT q we also deduce (H5).
To check (H4), we recall that σpT q “ σpT ‹q and Rpλ, T q‹ “ Rpλ, T ‹q from
Theorem 1.24. Hence,

fpT q‹ “
1

2πi

ż

γ
fpλqRpλ, T q‹ dλ “ fpT ‹q.

We next show (H3). We choose a bounded open set U Ď C with σpT q Ď

U Ď U Ď Dpfq X Dpgq and admissible curves γf in UzσpT q and γg in

pDpfq X DpgqqzU . We then have npγf , µq “ 0 for all µ P Γg Ď CzU and
npγg, λq “ 1 for all λ P Γf Ď U . Using the resolvent equation, Fubini’s
theorem in BpXq (see Theorem X.6.16 in [AE]) and (5.2) in C, we compute

fpT qgpT q “
1

2πi

ż

γf

fpλqRpλ, T q
1

2πi

ż

γg

gpµqRpµ, T qdµdλ

“

ˆ

1

2πi

˙2 ż

γf

ż

γg

fpλqgpµq
1

µ´ λ
pRpλ, T q ´Rpµ, T qqdµdλ

“
1

2πi

ż

γf

fpλqRpλ, T q
1

2πi

ż

γg

gpµq

µ´ λ
dµ dλ

`
1

2πi

ż

γg

gpµqRpµ, T q
1

2πi

ż

γf

fpλq

λ´ µ
dλ dµ

“
1

2πi

ż

γf

fpλqgpλqRpλ, T q dλ “ pfgqpT q.

This identity also yields pfgqpT q “ pgfqpT q “ gpT qfpT q.
To check (H2), we take f “ 1 with Dpfq “ C. We choose the circle

γ0ptq “ 2∥T∥eit for t P r0, 2πs. Theorem 1.16 then leads to

1pT q “
1

2πi

ż

γ0

Rpλ, T qdλ “
1

2πi

ż

γ0

8
ÿ

n“0

Tnλ´n´1 dλ

“

8
ÿ

n“0

Tn 1

2πi

ż

γ0

λ´n´1 dλ “ I,

since the series converges in BpXq uniformly on Γ0 and
ş

γ0
λ´k dλ is equal

to 2πi if k “ 1 and equal to 0 for k P Zzt1u. The property p1pT q “ T is
shown similarly.
If fpλq ‰ 0 for λ P σpT q, by continuity f is non-zero on some open set

Dp 1
f q containing σpT q. Therefore, 1

f belongs to HpσpT qq and (H6) follows

from (H2) and (H3) since 1 “ f 1
f .

Let Ψ : HpσpT qq Ñ BpXq be linear and satisfy (H1)–(H3). The linearity,
(H2) and (H3) imply that Ψppq “ ppT q “ ΦT ppq for every polynomial p.
Moreover, Ψ also fulfills (H6) and hence Ψprq “ ppT qqpT q´1 “ ΦT prq for
rational r “

p
q in HpσpT q. Let f P HpσpT qq. Runge’s Theorem VIII.1.8 in

[Co1] yields a bounded open set U with σpT q Ď U Ď U Ď Dpfq and rational
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rn P HpUq tending uniformly to f on U as n Ñ 8. Taking an admissible γ
in UzσpT q, we see that rnpT q tends to Ψpfq and ΦT pfq in BpXq by (H1), and
thus Ψ “ ΦT . The last claim is shown similarly, using just polynomials. □

We first compute fpT q for power series f and then for the simplest class
of T , namely multiplication operators T “ M .

Example 5.2. a) Let fpzq “
ř8

n“0 anz
n with convergence radius ρ ą

0 and T P BpXq with rpT q ă ρ. Since pN pzq :“
řN

n“0 anz
n tends to f

locally uniformly, Theorem 5.1 shows fpT q “
ř8

n“0 anT
n with convergence

in BpXq. This representation as a power series does not work in the situation
of Theorem 5.5 (where f only has local power series); but even if it works,
it may be better to use the calculus (see Example 5.4).

b) Let E “ CpKq for a compact set K Ď Rd and let m P CpKq. We
define Mφ “ mφ for φ P E. Proposition 1.14 shows that M P BpEq,
σpMq “ mpKq, and Rpλ,Mqφ “ 1

λ´mφ for all λ P ρpMq.

Let f P HpmpKqq, γ be an admissible curve in DpfqzmpKq, φ P E, and
x P K. Using that the map ψ ÞÑ ψpxq is continuous and linear from E to C
and Cauchy’s formula (5.2) for z “ mpxq, we compute

rfpMqφspxq “

” 1

2πi

ż

γ
fpλqRpλ,Mqφdλ

ı

pxq “
1

2πi

ż

γ
fpλqpRpλ,Mqφqpxqdλ

“
1

2πi

ż

γ

fpλq

λ´mpxq
dλφpxq “ fpmpxqqφpxq.

As a result, fpMqφ “ pf ˝mqφ is also a multiplication operator. ♢

Also for the holomorphic calculus we show the spectral mapping theorem.

Theorem 5.3. Let T P BpXq and f P HpσpT qq. We then have

σpfpT qq “ fpσpT qq.

Proof. Let µ R fpσpT qq. Then g “ µ1 ´ f is nowhere on σpT q and so
gpT q is the inverse of µI ´ fpT q by (H6). Hence, µ belongs to ρpfpT qq.

Conversely, let µ “ fpλq for some λ P σpT q. We set hpzq “
fpzq´µ
z´λ for

z P Dpfqztλu and hpλq “ f 1pλq. Since h is bounded, it is holomorphic on
Dpfq by Riemann’s theorem on removable singularities. We have hpzqpz ´

λq “ fpzq ´ µ for all z P Dpfq, and so the calculus yields

pλI´T qhpT q “ hpT qpλI´T q “ phpλ1´p1qqpT q “ pµ1´fqpT q “ µI´fpT q.

As the operator pλI ´ T q is not surjective or not injective, µI ´ fpT q is not
bijective; i.e, µ is contained in σpfpT qq. □

We now use the spectral mapping theorem to study the long-term behavior
of differential equations. For X “ Cm and matrices A, we reprove results
from Analysis 4 on linear ordinary differential equations.

Example 5.4. Let A P BpXq. For t P R we set ft : C Ñ C; ftpzq “ etz,
and define etA “ ftpAq P BpXq. As in Example 4.20, one sees that

ept`sqA “ etAesA “ esAetA, e0A “ I, D retAs´1 “ e´tA
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for all t, s P R. Moreover, t ÞÑ etA belongs to C1pR,BpXqq with

d
dte

tA “ AetA “ etAA.

Hence, the map uptq “ etAu0 is the unique solution in C1pR, Xq of

d
dtuptq “ Auptq, t P R, up0q “ u0,

where u0 P X is given. (Uniqueness is shown as in Example 4.20.) Theo-
rem 5.3 further yields

rpetAq “ max
␣

|µ|
ˇ

ˇµ P σpetAq “ etσpAq
(

“ max
␣

etReλ
ˇ

ˇλ P σpAq
(

“ etspAq

for the spectral bound spAq :“ maxtReλ |λ P σpAqu. Therefore, if spAq ă 0
(i.e., σpAq Ď C´), then we deduce from Theorem 1.16 that

1 ą rpeAq “ lim
nÑ8

∥peAqn∥1{n “ lim
nÑ8

∥enA∥1{n.

So we can fix an index N P N with ∥eNA∥ “: q ă 1. Writing any given t ě 0
as t “ kN ` τ for some k P N0 and 0 ď τ ă N , we estimate

∥etA∥ “ ∥peNAqkeτA∥ ď qk ∥eτA∥ ď max
0ďτďN

∥eτA∥ exp
`

Nk ln q
N

˘

ď Me´wt

where ω :“ ´
ln q
N ą 0 and M :“ max0ďτďN∥eτA∥ e|ln q|. So spectral in-

formation on the given operator A implies the exponential decay ∥uptq∥ ď

Me´ωt∥u0∥, t ě 0, of the solutions u. ♢

In the next theorem we discuss spectral projections in the present setting.
We first need some preparations. Let S P BpXq and P “ P 2 P BpXq be a
projection with SP “ PS. Set X1 “ RpP q and X2 “ NpP q. Lemma 2.16 of
[FA] then yields the direct sum X “ X1 ‘X2. Moreover, if y “ Px P RpP q,
then Sy “ SPx “ PSx also belongs to RpP q. If x P NpP q, then PSx “

SPx “ 0 so that also Sx is an element of NpP q. As a result, S leaves
invariant X1 and X2, and the restrictions SæXj P BpXjq are well defined.

Theorem 5.5. Let T P BpXq and σpT q “ σ1 9Yσ2 for two disjoint closed
sets σj ‰ ∅ in C. Then there is a projection P P BpXq such that fpT qP “

PfpT q for f P HpσpT qq and σpTjq “ σj for j P t1, 2u, where Tj “ TæXj P

BpXjq, X1 “ RpP q and X2 “ NpP q. We further have X “ X1 ‘ X2 and
Rpλ, Tjq“Rpλ, T qæXj for λPρpT q“ρpT1qXρpT2q. The projection is given by

P “
1

2πi

ż

γ1

Rpλ, T q dλ, (5.4)

where γ1 is an admissible curve for σ1 and any open U1 Ě σ1 with U1Xσ2 “∅.

Proof. There are open sets Uj with U1 X U2 “ ∅ and σj Ď Uj for
j P t1, 2u. Define h P HpσpT qq by h “ 1 on U1 and h “ 0 on U2. We set P “

hpT q P BpXq. Ptroperties (H3) and (H2) then yield P 2 “ h2pT q “ hpT q “ P
and fpT qP “ PfpT q for all f P HpσpT qq. As seen above, X “ X1 ‘X2 and
the operators Tj “ TæXj P BpXjq are well defined.
Formula (5.4) follows by choosing γ “ γ1 Y γ2, where γj are admissible

curves for σj and Uj for j P t1, 2u. Let λ R σ1. We may shrink U1 so that
λ R U1 since P does not depend on the choice of γ. We define gpzq “ 1

λ´z

for z P U1 and gpzq “ 0 for z P U2. Then g belongs to HpσpT qq and satisfies

gpT qpλI ´ T q “ pλI ´ T qgpT q “ ppλ1 ´ p1qgqpT q “ hpT q “ P.
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Setting R “ gpT qæX1 P BpX1q, we thus obtain

RpλIX1 ´ T1q “ pλIX1 ´ T1qR “ IX1 .

This means that λ P ρpT1q, and so σpT1q Ď σ1. Similarly, one sees that
σpT2q Ď σ2. In particular, σpT1q and σpT2q are disjoint.
Let λ P ρpT1qXρpT2q. For x P X, we have unique xj P Xj with x “ x1`x2.

If λx ´ Tx “ 0, then 0 “ λx1 ´ T1x1 ` λx2 ´ T2x2 P X1 ‘ X2 so that xj is
contained in NpλI ´ Tjq “ t0u for j P t1, 2u; i.e., x “ 0. Given y P X, we
define xj “ Rpλ, Tjqyj P Xj for j P t1, 2u. Setting x “ x1 ` x2, we derive

λx´ Tx “ λx1 ´ T1x1 ` λx2 ´ T2x2 “ y1 ` y2 “ y.

We have proved that λ P ρpT q, Rpλ, T qæXj “ Rpλ, Tjq, and

σ1 9Yσ2 “ σpT q Ď σpT1q 9YσpT2q Ď σ1 9Yσ2.

Together with σpTjq Ď σj , it follows σpTjq “ σj for j P t1, 2u. □

We use the above concept to refine the results in Example 5.4 about the
long-term behavior of etA, by studying its exponential dichotomy.

Example 5.6. In the setting of Example 5.4, assume that σpAq X iR “ ∅.
We thus obtain closed sets σ1 Ď C´ and σ2 Ď C` with σpAq “ σ1 9Yσ2.
Let P be the spectral projection of A for σ1. We define A1 and A2 as the
restrictions of A to X1 “ RpP q and X2 “ NpP q, respectively, as in Theorem
5.5. Then etAæXj “ etAj : Xj Ñ Xj and there are constants δ,N ą 0 with

}etA1} ď Ne´δt and }e´tA2} ď Ne´δt, t ě 0.

In other words, X can be decomposed into etA-invariant subspaces on which
etA decays exponentially in forward and in backward time, respectively.
Proof. Let γ, γ1, and h be given as in Theorem 5.5 and its proof. For

x P X1 we compute

etAx “ etAPx “ pfthqpAqx “
1

2πi

ż

γ1

etλRpλ,Aqx dλ

“
1

2πi

ż

γ1

etλRpλ,A1qx dλ “ etA1x,

where ftpλq “ etλ for t P R. In the same way one derives etAx “ etA2x for
all x P X2 and t P R. Since σpA1q “ σ1, we obtain spA1q ă 0 and hence
Example 5.4 shows that ∥etAx1∥ ď Me´ωt∥x1∥ for all t ě 0 and x1 P X1

and some constants M,ω ą 0.
We have σpA2q “ σ2 and so sp´A2q ă 0. Note that the curve γ̃ “ ´γ is

admissible for σp´Aq “ ´σpAq. Substituting µ “ ´λ, we conclude that

e´tA “
1

2πi

ż

γ
e´tλpλI ´Aq´1 dλ “

1

2πi

ż

γ̃
etµpµI ´ p´Aqq´1 dµ “ etp´Aq

for all t P R. For x2 P X2 we thus obtain

e´tA2x2 “ e´tAx2 “ etp´Aqx2 “ etp´A2qx2

so that ∥e´tA2x2∥ ď M 1e´ω1t∥x2∥ for all t ě 0 and some M 1, ω1 ą 0. l
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5.2. Sectorial operators

We extend the above results to certain unbounded operators A, restricting
ourselves to the exponential etA.1 For ϕ P p0, πq we define the open sector

Σϕ “
␣

λ P Czt0u
ˇ

ˇ |arg λ| ă ϕ
(

.

Note that Σπ “ CzRď0 and Σπ{2 “ C`.

Definition 5.7. A closed operator A is called sectorial of angle ϕ P p0, πq

if there is a constant K ą 0 such that Σϕ Ď ρpAq and

∥Rpλ,Aq∥ ď
K

|λ|
, λ P Σϕ.

In the literature several small variations of the above definition are used.
Note that a sectorial operator of angle ϕ is also sectorial of angle ϕ1 P p0, ϕq.
In applications often arise operators A such that A´ωI is sectorial for some
ω P R, cf. Remark 5.14. We discuss several core examples.

Example 5.8. Let A be self-adjoint on the Hilbert space X. We further
suppose that σpAq Ď Rď0. Then A is sectorial of every angle ϕ ă π.
Proof. Let ϕ P pπ2 , πq and λ P Σϕ. Since Rpλ,Aq1 “ Rpλ,Aq by (4.3),

the operator Rpλ,Aq is normal. Propositions 4.3 and 1.20 then yield

∥Rpλ,Aq∥ “ rpRpλ,Aqq “ dpλ, σpAqq´1 ď dpλ,Rď0q´1 “

#

1
|λ| , Reλ ě 0,

1
|Imλ| , Reλ ă 0.

If Reλ ă 0, we can write λ “ |λ|e˘iθ for some θ P pπ2 , ϕq. We then have
|Imλ|
|λ| “ | sin θ| ě sinϕ ą 0, and thus

∥Rpλ,Aq∥ ď
1{sinϕ

|λ|
“:

Kϕ

|λ|
, λ P Σϕ. l

Note that Kϕ Ñ 8 as ϕ Ñ π in the above example.

Example 5.9. Let X “ Cpr0, 1sq and Au “ u2 with DpAq “ tu P

C2pr0, 1sq |up0q “ up1q “ 0u. Then A is sectorial of every angle ϕ ă π.
Proof. We recall from Example 2.16 that Σπ Ď ρpAq and that for λ “ µ2

with µ P C` the resolvent is given by

Rpµ2, Aqfptq “ apf, µqeµt ` bpf, µqe´µt `
1

2µ

ż 1

0
e´µ|t´s|fpsqds

for t P r0, 1s, f P X, and the numbers
ˆ

apf, µq

bpf, µq

˙

“
1

2µpe´µ ´ eµq

˜

e´µ
ş1
0peµs ´ e´µsqfpsq ds

ş1
0peµe´µs ´ e´µeµsqfpsqds

¸

.

Fix ϕ P pπ2 , πq. Take λ P Σϕ. We obtain µ P Σϕ{2 and thus µ “ |µ| eiθ with
0 ď |θ| ă ϕ{2 and Reµ “ |µ| cos θ ě |µ| cos ϕ{2. So we can estimate

}Rpλ,Aqf}8 ď |apf, µq| eReµ ` |bpf, µq| `
∥f∥8

2|µ|
sup
tPr0,1s

ż t

t´1
e´Reµ|r| dr

1See [KW] for a detailed study of a corresponding functional calculus.
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ď
∥f∥8

2|µ|peReµ ´ e´Reµq

´

ż 1

0

`

eReµs ` e´Reµs
˘

ds

`

ż 1

0
peReµe´Reµs ` e´ReµeReµsqds

¯

`
∥f∥8

|µ|Reµ

“
∥f∥8

2Reµ|µ|peReµ ´ e´Reµq

`

peReµ ´ 1 ` 1 ´ e´Reµq

` eReµp1 ´ e´Reµq ` e´ReµpeReµ ´ 1q
˘

`
∥f∥8

|µ|Reµ

ď

1
cospϕ{2q

|µ|2
∥f∥8

´

peReµ ´ e´Reµq ` peReµ ´ e´Reµq

2peReµ ´ e´Reµq
` 1

¯

“

2
cospϕ{2q

|λ|
∥f∥8. l

Note that DpAq “ tu P X |up0q “ up1q “ 0u is not equal to X for the
above ’Dirichlet–Laplacian’, cf. Example 1.19 in [FA].
Similarly one can show that the ‘Neumann–Laplacian’ A1u “ u2 with

DpA1q “
␣

u P C2pr0, 1sq
ˇ

ˇu1p0q “ u1p1q “ 0
(

is sectorial for every angle ϕ ă π with on X “ Cpr0, 1sq. Moreover, its
spectrum is given by σpA1q “ σppA1q “ t´π2k2 | k P N0u with eigenfunctions
ukptq “ cospkπtq. (See exercises.) Here DpA1q is dense in X.

Example 5.10. Let X “ LppRq, 1 ď p ă 8, and Au “ Bu for DpAq “

W 1,ppRq. Then A is sectorial of every angle ϕ ă π
2 .

Proof. Example 3.43 says that σpAq “ iR and ∥Rpλ,Aq∥ ď 1
Reλ for

Reλ ą 0. If ϕ P p0, π2 q and λ P Σϕ, we have |Reλ| ě |λ| cosϕ and hence

∥Rpλ,Aq∥ ď
1{ cosϕ

|λ|
.

Because of its spectrum, A is not sectorial of angle ϕ ě π
2 . l

For a typical elliptic partial differential operator we now sketch how one
can construct sectorial operators on L2pUq via ‘form methods’, cf. Chapter 6
of [Ka] or Chapter 1 of [Ou].

Example 5.11. Let U Ď Rm be open and bounded, and the coefficients
ajk P L8pU,Cq for j, k P t1, . . . ,mu be strictly accretive; i.e.,

Re
ÿm

j,k“1
ajkpxqzjzk ě η|z|22 (5.5)

for some η ą 0, all z P Cm, and a.e. x P U . We write a “ pajkqj,k. Let

E “ L2pUq and V “ W 1,2
0 pUq, where p¨|¨q “ p¨|¨qL2 and }¨} “ }¨}2. Using

Poincaré’s equality in Theorem 3.36, we equip V with the equivalent norm
}|∇v|2}2 “: }v}V . We now define the sesquilinear form

a : V ˆ V Ñ C; apv, wq “
ÿm

j,k“1

ż

u
Bjv ajkBkw dx.

Note that a is bounded; i.e., |apv, wq| ď }a}8}v}V }w}V . Each f P E yields
an element ψ of V ‹ given by ψpvq “ ´

ş

U vf dx “ ´pv|fq. The Lax–Milgram
lemma Theorem 1.51 in [EE] thus provides a unique function uf P V such
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that apv, uf q “ ψpvq for all v P V . Moreover, the map ψ ÞÑ uf is antilinear,
and hence f ÞÑ uf is linear. We now define

DpAq “
␣

u P V
ˇ

ˇ Dw P E @v P V : ´apv, uq “ pv|wq
(

, Au “ w.

Therefore u “ uf belongs to DpAq and satisfies Au “ f and ´apv, uq “

pv|Auq “ pv|fq for all v P V . Moreover, A : DpAq Ñ E is bijective. Using
Theorem 3.36 with constant c “: cP and (5.5), we estimate u “ A´1f by

}u}2 ď c2P }|∇u|2}2 ď c2P η
´1Re apu, uq ď c2P η

´1 |pu|fq| ď c2P η
´1}u}}f}

for f P E; i.e., A´1 : E Ñ E is bounded. In particular, A is closed.
We show that DpAq is dense in E. Indeed, take φ P E with pv|φq “ 0

for all v P DpAq. We have to check that φ “ 0 in view of the projection
Theorem 3.8 in [FA]. Inserting ψ :“ A´1φ P DpAq, we derive

0 “ pψ|Aψq “ ´apψ,ψq “ ´Re apψ,ψq ď ´η}ψ}2V

from (5.5), so that ψ and thus φ are zero.
Note that the adjoint matrix a1 :“ aT also satisfies (5.5) and that its

associated form a1 on V is given by a1pv, wq “ apw, vq. It thus induces an

invertible operator Ã, too. For w P DpÃq and u P DpAq, we infer

pAu|wq “ pw|Auq “ ´apw, uq “ ´a1pu,wq “ pu|Ãwq;

i.e., Ã Ď A1. Their invertibility implies Ã “ A1 by Remark 4.5. In particular,
A is self-adjoint if and only if a1 “ a, e.g., if a is real and symmetric.
To obtain sectoriality, we take v P V and u P DpAq with }u} “ 1. The

properties of a imply

|Im apv, vq| ď |apv, vq| ď }a}8}v}2V ď η´1}a}8 Re apv, vq,

and so apv, vq belongs to Σθ with θ :“ arctanpη´1}a}8q P p0, π{2q. Fix
φ P pθ, π{2q and set ϕ “ π ´ φ ą π{2. Take λ P Σϕ. Then ´λ belongs to

CzΣφ. Observe that dp´λ,Σθq is larger than |λ| sinpφ´θq. These facts lead
to the crucial lower bound

}λu´Au} ě |pu|λu´Auq| “ |´λ´ apu, uq| ě |λ| sinpφ´ θq. (5.6)

Hence, λ is not an element of σappAq. Similarly we obtain λ R σappA1q, so
that λ is contained in ρpAq by Theorem 1.24. Inequality (5.6) finally implies
that A is sectorial of angle ϕ ą π{2. ♢

The above example can be extended to operators with lower-order terms
and with other boundary conditions. With considerably more effort one
can also establish similar sectoriality results on Lp-spaces. See [Ou] for a
comprehensive account of this (mainly functional analytic) theory.

In Example 5.11 we obtain the inlusion DpAq Ď W 1,2
0 pUq. For ‘very bad’

coefficients or domains one cannot expect more. If a P W 1,8 and BU P C1´,
integration by parts (use Theorem 3.41) yields that A extends the operator

A0u “ divpa∇uq with DpA0q “ W 2,2pUq X W 1,2
0 pUq. If BU P C2, one can

show equality here, but the proof needs methods from partial differential
equations and is quite technical. Details can be found in the references in
Example 3.49 and in the text following it, which also deal with p P r1,8s.
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Let A be sectorial of angle ϕ P pπ2 , πq with constant K. Take any r ą 0
and θ P pπ2 , ϕq. We define

Γ1 “
␣

λ “ γ1psq “ p´sqe´iθ
ˇ

ˇ ´ 8 ă s ď ´r
(

,

Γ2 “
␣

λ “ γ2pαq “ reiα
ˇ

ˇ ´ θ ď α ď θ
(

,

Γ3 “
␣

λ “ γ3psq “ seiθ
ˇ

ˇ r ď s ă 8
(

,

Γ “ Γpr, θq “ Γ1 Y Γ2 Y Γ3.

For t ą 0, we introduce the operator

etA “
1

2πi

ż

Γ
etλRpλ,Aqdλ “ lim

RÑ8

1

2πi

ż

ΓR

etλRpλ,Aq dλ, (5.7)

where ΓR “ Γ X Bp0, Rq for R ą r. We first have to show that the limit in
(5.7) exists in BpXq.

Lemma 5.12. Under the above assumptions, the integral in (5.7) converges
absolutely in BpXq and gives an operator etA P BpXq which does not depend
on the choice of r ą 0 and θ P pπ2 , ϕq. We also have ∥etA∥ ď M for all t ą 0
and a constant M “ MpK, θq ą 0.

Proof. Since }Rpλ,Aq} ď K
|λ| on Γ and cos θ ă 0, we can estimate

ˇ

ˇ

ˇ

ˇ

ż

ΓR

∥etλRpλ,Aq∥ dλ
ˇ

ˇ

ˇ

ˇ

ď K

ż R

r

expptsRe e´iθq

|se´iθ|
|e´iθ| ds

`K

ż θ

´θ

expptrRe eiαq

|reiα|
|ireiα|dα

`K

ż R

r

expptsRe eiθq

|seiθ|
|eiθ|ds

ď K

ˆ

2

ż 8

r

ets cos θ

s
ds`

ż θ

´θ
etr cosα dα

˙

ď K

˜

2

ż 8

rt|cos θ|

e´σ

σ
p´t cos θq

dσ

´t cos θ
` 2θetr

¸

“: Kcpr, t, θq ă 8

for R ą r and t ą 0, substituting σ “ ´st cos θ ą 0. Thus the limit in (5.7)
exists absolutely in BpXq by the majorant criterium, and ∥etA∥ ď Kcpr, t, θq.
If we take r “ 1{t, then cp1{t, t, θq “: cpθq does not depend on t ą 0.

So it remains to check that the integral in (5.7) is independent of r ą 0
and θ P pπ2 , ϕq. To this aim, we define Γ1 “ Γpr1, θ1q for some r1 ą 0 and θ1 P

pπ2 , ϕq, where we may assume that θ1 ě θ. We further set Γ1
R “ Γ1 XBp0, Rq

and choose R ą r, r1. Let C`
R and C´

R be the circle arcs from the endpoint
of ΓR to that of Γ1

R in tImλ ą 0u and tImλ ă 0u, respectively. (If θ “ θ1,
then C˘

R contain just one point.) Then SR “ ΓR YC`
R Y p´Γ1

Rq Y p´C´
R q is

a closed curve in the starshaped domain Σϕ. So (5.1) shows that
ż

SR

etλRpλ,Aq dλ “ 0.
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We further estimate
›

›

›

ż

C`
R

etλRpλ,Aq dλ
›

›

›
ď

ż θ1

θ
etRRe eiα K

|Reiα|
|iReiα|dα ď Kpθ1 ´ θqetR cos θ Ñ 0,

as R Ñ 8 since cos θ ă 0, and analogously for C´
R . So we conclude that

ż

Γ
etλRpλ,Aqdλ “ lim

RÑ8

ż

ΓR

etλRpλ,Aqdλ “ lim
RÑ8

ż

Γ1
R

etλRpλ,Aq dλ

“

ż

Γ1

etλRpλ,Aq dλ. □

We next establish some of the fundamental properties of the operators
etA. In view of these results one calls petAqtě0 the ‘holomorphic semigroup
generated by A’. Actually, the theorem admits a converse. We refer to
Section 2.1 of [Lu] for this and related facts. (See also Section 2.3 of [EE]).

Theorem 5.13. Let A be sectorial of angle ϕ ą π
2 . Define etA as in (5.7)

for t ą 0, and set e0A “ I. Then the following assertions hold.

a) etAesA “ esAetA “ ept`sqA for all t, s ě 0.

b) The map t ÞÑ etA belongs to C1pR`,BpXqq. Moreover, etAX Ď DpAq,
d
dte

tA “ AetA and ∥AetA∥ ď C
t for a constant C ą 0 and all t ą 0. We also

have AetAx “ etAAx for all x P DpAq and t ě 0.

c) Let x P X. Then etAx converges as t Ñ 0 in X if and only if x P DpAq.
In this case, etAx tends to x as t Ñ 0.

Proof.2 a) Let t, s ą 0. Take 0 ă r ă r1 and π
2 ă θ1 ă θ ă ϕ. Set

Γ “ Γpr, θq and Γ1 “ Γpr1, θ1q. Using the resolvent equation and Fubini’s
theorem, we compute

etAesA “
1

p2πiq2

ż

Γ
etλ

ż

Γ1

esµRpλ,AqRpµ,Aqdµdλ

“
1

2πi

ż

Γ
etλRpλ,Aq

1

2πi

ż

Γ1

esµ

µ´ λ
dµdλ

`
1

2πi

ż

Γ1

esµRpµ,Aq
1

2πi

ż

Γ

etλ

λ´ µ
dλdµ.

Fix λPΓ and take Rąmaxtr, r1, |λ|u. We set C 1
R “ tz“Reiα | θ1 ďαď2π θ́1u

and S1
R “ Γ1

R Y C 1
R. Since npS1

R, λq “ 1, Cauchy’s formula (5.2) yields

1

2πi

ż

S1
R

esµ

µ´ λ
dµ “ esλ.

As in Lemma 5.12, we further compute
ż

Γ1
R

esµ

µ´ λ
dµ ÝÑ

ż

Γ1

esµ

µ´ λ
dµ and

ˇ

ˇ

ˇ

ˇ

ˇ

ż

C1
R

esµ

µ´ λ
dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2πR sup
µPC1

R

esReµ

|µ´ λ|
ď esR cos θ1 2πR

R ´ |λ|
ÝÑ 0

2Not shown in the lectures.
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as R Ñ 8. Consequently,

esλ “
1

2πi

ż

Γ1

esµ

µ´ λ
dµ.

Closing ΓR with the circle arc CR “ tz “ Reiα | θ ď α ď 2π ´ θu for
sufficiently large R ą r, one verifies in the same way that

0 “

ż

Γ

eλt

λ´ µ
dλ

since npΓR Y CR, µq “ 0. We thus conclude that

etAesA “
1

2πi

ż

Γ
eλtesλRpλ,Aq dλ “ ept`sqA “ esAetA.

b) Let x P X, t ą 0, ε ą 0, and R ą r. Observe that the Riemann sums
for

ş

ΓR
etλRpλ,Aqdλ converge in rDpAqs since λ ÞÑ Rpλ,Aq is continuous in

BpX, rDpAqsq. We thus obtain

A

ż

ΓR

eλtRpλ,Aq dλ “

ż

ΓR

etλARpλ,Aqdλ

“

ż

ΓR

eλtλRpλ,Aqdλ´

ż

ΓR

etλ dλ I. (5.8)

Take again CR “ tµ “ Reiα | θ ď α ď 2π ´ θu. Using (5.1), one shows as in
part a) the limit
ˇ

ˇ

ˇ

ˇ

ż

ΓR

etλ dλ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´

ż

CR

etλ dλ

ˇ

ˇ

ˇ

ˇ

ď 2πR sup
θďαď2π´θ

etR cosα ď 2πR eεR cos θ ÝÑ 0

as R Ñ 8, uniformly for t ě ε. Moreover, as in the proof of Lemma 5.12
(with r “ 1{t) we estimate

ˇ

ˇ

ˇ

ˇ

ż

ΓR

∥λetλRpλ,Aq∥ dλ
ˇ

ˇ

ˇ

ˇ

ď K
´

2

ż 8

1
t

s

s
ets cos θ ds`

ż θ

´θ
recosαdα

¯

ď
2K

t|cos θ|
`

2eKθ

t
“:

C 1

t
.

Therefore, the right-hand side of (5.8) tends to
ż

Γ
λeλtRpλ,Aq dλ

as R Ñ 8. Since A is closed, it follows that etAX Ď DpAq and

AetA “
1

2πi

ż

Γ
λeλtRpλ,Aq dλ, ∥AetA∥ ď

C 1

2πt

for all t ą 0. In a similar way one sees that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

ΓzΓR

λetλRpλ,Aqdλ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2K

ż 8

R
ets cos θ ds ď

2K

ε|cos θ|
eRε cos θ ÝÑ 0

as R Ñ 8, uniformly for t ě ε. As a result,
ż

ΓR

λeλtRpλ,Aqdλ “
d

dt

ż

ΓR

eλtRpλ,Aq dλ
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converges in BpXq uniformly for t ě ε, and so t ÞÑ etA P BpXq is continuously
differentiable for t ą 0 with d

dte
tA “ AetA. For x P DpAq, we further obtain

AetAx “ lim
RÑ8

1

2πi

ż

ΓR

eλtRpλ,AqAx dλ “ etAAx.

c) Let x P DpAq, R ą r, and t ą 0. As in step a), from Cauchy’s formula
(5.2) we derive

1

2πi

ż

Γ

eλt

λ
dλ “ lim

RÑ8

1

2πi

ż

ΓR

eλt

λ´ 0
dλ “ 1

Observing that λRpλ,Aqx´ x “ Rpλ,AqAx, we conclude that

etAx´ x “
1

2πi

ż

Γ
eλt

´

Rpλ,Aq ´
1

λ

¯

x dλ “
1

2πi

ż

Γ

eλt

λ
Rpλ,AqAx dλ.

Because the integrand is bounded by c
|λ|2 on Γ for all t P p0, 1s, Lebesgue’s

convergence theorem implies the existence of the limit

lim
tÑ0

etAx´ x “
1

2πi

ż

Γ

1

λ
Rpλ,AqAx dλ “: z.

Let KR “ tReiα
ˇ

ˇ ´ θ ď α ď θu. Cauchy’s theorem (5.1) shows that
ż

ΓRYp´KRq

1

λ
Rpλ,AqAx dλ “ 0.

Since also
›

›

›

›

ż

´KR

1

λ
Rpλ,AqAx dλ

›

›

›

›

ď
2πRK

R2
∥Ax∥ ÝÑ 0

as R Ñ 8, we arrive at z “ 0. Because of the uniform boundedness of etA,
it follows that etAx Ñ x as t Ñ 0 for all x P DpAq.

Conversely, if etAx Ñ y as t Ñ 0, then y belongs to DpAq by assertion b).
Moreover, Rp1, AqetAx “ etARp1, Aqx tends to Rp1, Aqx as t Ñ 0 because of

Rp1, Aqx P DpAq. It follows Rp1, Aqy “ Rp1, Aqx, and so x “ y P DpAq. □

Remark 5.14. Let A´ ωI “ Aω be sectorial of angle greater than π
2 for

some ω P R. We then compute

eωtetAω “
1

2πi

ż

Γ
etpλ`ωqRpλ` ω,Aq dλ “

1

2πi

ż

ω`Γ
eµtRpµ,Aqdµ “: etA

for t ą 0. For etA “ eωtetAω one obtains similar properties as for ω “ 0. ♢

We now solve the evolution equation (5.9) governed by a sectorial operator
A with angle ϕ ą π{2. Such problems are called of ‘parabolic type’ since
diffusion problems are typical applications, see Example 5.16. In contrast
to the Schrödinger equation (4.8) we can allow for initial values in DpAq.

Corollary 5.15. Let A be sectorial of angle ϕ ą π{2 and let u0 P

DpAq. Then uptq “ etAu0, t ě 0, is the unique solution in C1pR`, Xq X

CpR`, rDpAqsq X CpRě0, Xq of the initial value problem

u1ptq “ Auptq, t ą 0, up0q “ u0. (5.9)
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Proof. Existence follows from Theorem 5.13. Let v be another solution
of (5.9). Let 0 ă ε ď s ď t´ ε ă t. Theorem 5.13 then implies that

d
dse

pt´sqAvpsq “ ´ept´sqAAvpsq ` ept´sqAv1psq “ 0.

As in Example 4.20, this fact yields ept´εqAvpεq“eεAvpt´εq. Letting ε Ñ 0,

one infers etAu0 “ vptq as τ ÞÑeτAx is continuous for τ ě 0 and x P DpAq. □

We only give one of the possible examples.

Example 5.16. Let X “ Cpr0, 1sq and Aφ “ φ2 with DpAq “ tφ P

C2pr0, 1sq
ˇ

ˇφp0q “ φp1q “ 0u. Let u0 P C0p0, 1q “ DpAq. Then the function

uptq “ etAu0, t ě 0, belongs to

CpRě0, Cpr0, 1sqq X CpR`, C
2pr0, 1sqq X C1pR`, Cpr0, 1sqq

and uniquely solves the partial differential equation

Btupt, xq “ Bxxupt, xq, t ą 0, x P r0, 1s,

upt, 0q “ upt, 1q “ 0, t ě 0, (5.10)

up0, xq “ u0pxq, x P r0, 1s. ♢

Formula (5.7) and Theorem 5.13 lead to a theory for parabolic problems
which is similar to ordinary differential equations, see [Lu] or [EE] and
[nEE]. We only add a basic theorem on the long-term behavior extending
Example 5.4. It can be applied to (5.10) by Examples 5.9 and 3.46.

Theorem 5.17. Let A be sectorial of angle ϕ ą π{2 and satisfy spAq :“
suptReλ |λ P σpAqu ă ´δ ă 0. Then there is a constant N ě 1 such that
}etA} ď Ne´δt for all t ě 0.

Proof.3 The assumptions imply that A´δ “ A ` δI is sectorial of
some angle ψ P pπ{2, ϕq. Take Γ “ Γpr, θq with r ą 0 and θ P pπ{2, ψq.
Remark 5.14 then yields that etA “ e´δtetA´δ , where however etA is defined
by the curve integral (5.7) on the shifted path Γ1 :“ ´δ ` Γ. Lemma 5.12
shows that etA´δ is uniformly bounded for t ě 0. It thus remains to verify

ż

´δ`Γ
etµRpµ,Aq dµ “

ż

Γ
etλRpλ,Aq dλ, t ą 0. (5.11)

To this end, let R ą r and S˘
R be the horizontal line segments connecting

the end points on ΓR and Γ1
R in tImλ ą 0u and tImλ ă 0u, respectively.

Let CR “ ΓR Y S`
R Y p´Γ1q Y p´S´

R q. This path is contained in ρpAq and
npCR, zq “ 0 for all z P σpAq. Cauchy’s theorem (5.1) now implies

ż

CR

etλRpλ,Aqdλ “ 0.

Observe that the segments S˘
R have fixed length δ and that Reλ ď R cos θ ă

0 and |λ| ě R for all λ P S˘
R . Because of θ ă ϕ, the sets S˘

R belong to Σϕ

for all sufficiently large R. We can thus estimate
›

›

›

ż

S˘
R

etλRpλ,Aq dλ
›

›

›
ď
δK

R
eRt cos θ.

Since the right-hand side vanishes as R Ñ 8, we have shown (5.11). □

3Not shown in the lectures.
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