Lista 3 com respostas

NATALIIA GOLOSHCHAPOVA

MAT0105 - 1° semestre de 2023

Exercício 1.

Sendo que $\vec{w} = (\vec{u} - \vec{v}) \times (\vec{u} + \vec{v})$, determine o ângulo entre os vetores \vec{u} e \vec{v} , sabendo que $\|\vec{u}\| = \|\vec{v}\| = \|\vec{w}\| = 1$ e $\vec{u} \cdot \vec{v} < 0$.

Solução 1.

 $\theta = 150^{\circ}$

Exercício 2.

Sendo $\vec{u} = (-1, -1, m)$, $\vec{v} = (7, 5, 1)$ e $\vec{w} = (a, b, c)$. Ache o valor de m para que a equação $\vec{v} = \vec{u} \times \vec{w}$ possa ter solução.

Solução 2.

m = 12

Exercício 3.

Verdadeiro ou falso? Se for verdadeiro, demonstre, se for falso, dê contra-exemplo:

- (a) $\vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow \vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- $(b) \ \vec{a} \times \vec{b} = \vec{b} \times \vec{a} \Rightarrow \vec{a} \in \vec{b}$ são paralelos.
- (c) $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \Rightarrow \vec{b} = \vec{c}$.

Solução 3.

- (a) Verdadeiro
- (b) Verdadeiro
- (c) Falso

Exercício 4.

Seja $(\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal. Calcule o produto vetorial entre

(a)
$$7\vec{i} - 3\vec{j} + 6\vec{k} \ e \ 5\vec{i} - 15\vec{j} - 13\vec{k}$$

(b)
$$6\vec{i} - 16\vec{j} - 15\vec{k} \ e \ 3\vec{i} + 3\vec{j} - 2\vec{k}$$

(c)
$$3\vec{i} + 3\vec{j} \ e \ 5\vec{i} + 4\vec{j}$$

Solução 4.

- (a) (129, 121, -90)
- (b) (77, -33, 66)
- (c) (0,0,-3)

Exercício 5.

Considere $A=(-1,1-2),\ B=(0,1,3)$ e C=(-1,2,8) num sistema Cartesiano. Encontre a área do paralelogramo de lados \overrightarrow{AB} e \overrightarrow{AC}

Solução 5.

 $3\sqrt{14}$

Exercício 6.

Considere $\overrightarrow{AB}'=(1,0,1), \overrightarrow{AC}'=(1,2,3)$ e $\overrightarrow{AD}'=(0,1,5)$ numa base ortonormal.

- (a) Calcule a área do triângulo ABC.
- (b) Calcule a distância de B a reta que contém o vetor \overrightarrow{AC} , isto é encontre a altura do triângulo ABC relativa ao vértice B.
- (c) Calcule o volume do paralelepípedo com arestas \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} .
- (d) Calcule a distância do ponto D ao plano que contém os pontos $A, B \in C$.

Solução 6.

- (a) $\sqrt{3}$
- (b) $\sqrt{6/7}$
- (c) 8
- (d) $4\sqrt{3}/3$

Exercício 7.

Sejam $\overrightarrow{AB} = (1,0,1)$, $\overrightarrow{AC} = (1,2,3)$ e $\overrightarrow{AD} = (0,a,1-a)$ numa base ortonormal. Encontre a de modo que o volume do paralelepípedo com arestas \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} seja 10.

Solução 7.

$$-2 e 3$$

Exercício 8.

Dados os vetores $\vec{u}=(1,2,-1)$ e $\vec{v}=(2,1,0)$ numa base ortonormal. Expresse o vetor $\vec{a}=(2,2,3)$ como combinação de $\vec{u},\vec{v},\vec{u}\times\vec{v}$.

Solução 8.

$$a = -9/14\vec{u} + 12/7\vec{v} - 11/4(\vec{u} \times \vec{v})$$

Exercício 9.

Dado $\vec{b} = (1, 2, 1)$ numa base ortonormal, determine \vec{a} tal que \vec{a} seja ortogonal ao eixo z e $\vec{a} \times \vec{b} = (1, -1, 1)$.

Solução 9.

$$\vec{a} = (1, 1, 0)$$

Exercício 10.

Determine $\vec{v}=(x,y,z)$ tal que $(x,y,z)\times(1,2,-1)=(1,1,3)$ e $(x,y,z)\cdot(3,1,1)=3$ numa base ortonormal.

Solução 10.

$$\vec{v} = (\frac{5}{4}, \frac{-1}{2}, \frac{-1}{4})$$

Exercício 11.

Prove que $\vec{u} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{u} \times \vec{v}) = 0$ de dois modos: primeiro calculando diretamente e segundo utilizando as propriedades de $\vec{u} \times \vec{v}$.

Solução 11.

Note que as matrizes construidas para formar o produto misto possuem linhas iguais.

Exercício 12.

Mostre que (-5,0), (0,2) e (0,-2) num sistema Cartesiano são os vértices de um triângulo isósceles e ache sua área.

Solução 12.

$$AB = CA = \sqrt{29} \text{ e } BC = 4, \text{ área} = 10$$

Exercício 13.

Sejam A=(a,0) e B=(0,a), com $a\neq 0$ num sistema Cartesiano. Ache número x de modo que o ponto C=(x,x) seja o terceiro vértice do triângulo equilátero ABC.

Solução 13.

$$x = \frac{-a \pm \sqrt{2}}{2}$$

Exercício 14.

Dados os vértices A = (1,0,1), B = (-2,-1,0) e C = (2,1,1) de um triângulo ABC, escreva equações paramétricas da mediana relativa ao vértice de A.

Solução 14.

$$\begin{cases} x = 1 - t \\ y = 0 \\ z = 1 - 1/2t \end{cases}$$

Exercício 15.

Dados
$$A = (4, 0, -3), B = (2, -3, -2) \in C = (m, n, 3),$$

(a) escreva as equações da reta AB;

(b) determine m e n para que C fique na reta AB.

Solução 15.

(a)
$$X = A + t \cdot \overrightarrow{AB}$$

(b)
$$m = -8, n = -18$$

Exercício 16.

Escreva as equações das retas que contém as diagonais do paralelogramo ABCD de vértices $A=(1,-2,2),\ B=(2,1,-1),\ C=(1,-6,8)$ e D=(2,-3,5).

Solução 16.

$$r: X = A + t_1 \overrightarrow{AC} e s: X = D + t_2 \overleftarrow{DB}$$

Exercício 17.

Dado um sistema Cartesiano. Determine as equações paramétricas da reta que passa por P=(-2,0,1), cujo vetor diretor é ortogonal a $\vec{u}=(1,-2,1)$ e que seja concorrente com a reta

$$\frac{x-2}{3} = \frac{y+1}{-4} = \frac{z-3}{3}.$$

Solução 17.

$$r: X = (-2, 0, 1) + t\left(\frac{16}{7}, \frac{9}{7}, \frac{2}{7}\right)$$

Exercício 18.

Dado um sistema Cartesiano. Ache a equação da reta que passa pela origem e que seja perpendicular ao plano que passa pelos pontos (3,4,2), (-1,5,3), (2,1,4).

Solução 18.

$$X = (0,0,0) + t(5,7,13)$$

Exercício 19.

Ache as equações das três medianas de um triângulo com vértices (a, 0), (b, 0), (0, c).

Solução 19.

$$X = (a,0) + t_1((b-2a)/2, c/2), X = (b,0) + t_2((a-2b)/2, c/2), X = (0,c) + t_3((a+b)/2, -c)$$

Exercício 20.

Ache a equação da linha que passa por (-5,7), perpendicularmente a 4x - 5y = 10.

Solução 20.

$$X = (-5,7) + t(4,-5)$$

Exercício 21.

Dado um sistema Cartesiano. Ache as equações de duas retas que passam por (-2,3), uma paralela e outra perpendicular a 3x + 2y + 5 = 0.

Solução 21.

$$X = (-2,3) + t(-2,3)$$

Exercício 22.

Dado um sistema Cartesiano. Determine a e b de modo que as equações x=at+1 e y=bt+5 sejam uma representação paramétrica da reta y=2x+3.

Solução 22.

$$a = -1/2 e b = -1$$

Exercício 23.

Escreva uma equação do plano que passa pelos pontos A = (2, 2, -1), B = (0, 4, -2) e C = (-1, 3, 3).

Solução 23.

$$X = (2, 2, -1) + s(-2, 2, -1) + t(-3, 1, 4)$$

Exercício 24.

Determine a de modo que o ponto (3,1,a) pertença ao plano determinado por A=(1,1,2), B=(3,0,2) e C=(4,1,3).

Solução 24.

$$a = 8/3$$

Exercício 25.

Dado um sistema Cartesiano. Determine uma equação geral do plano que passa pelas retas

$$\frac{x-1}{3} = \frac{y+2}{5} = \frac{z+6}{13}$$

е

$$\frac{x-4}{9} = \frac{y-3}{5} = \frac{z-7}{4}.$$

Solução 25.

$$-3x + 7y - 2z = 5$$

Exercício 26.

Dado um sistema Cartesiano. Escreva uma equação geral do plano determinado pelo ponto (1, 2, 1) e pela reta

$$\frac{x-1}{2} = \frac{y-1}{-1} = z.$$

Solução 26.

$$-x - y + z = -2$$

Exercício 27.

Dado um sistema Cartesiano. Escreva uma equação do plano perpendicular ao plano x+y+z-1=0 e paralelo a reta

$$x = \frac{y - 1}{2} = \frac{z - 2}{3}$$

e passando por P = (1, 5, 3).

Solução 27.

$$(x, y, z) = (1, 5, 3) + t_1(1, 1, 1) + t_2(1, 2, 3)$$

Exercício 28.

Determine as equações na forma paramétrica e na forma simétrica das seguintes retas:

- (a) a reta que passa pelos pontos A = (1, 4, -2) e B = (0, 1, 1);
- (b) a reta que passa pelos pontos A = (1, 0, -2) e B = (3, 1, 1);
- (c) as retas que determinam os eixos Ox, Oy, Oz;
- (d) a reta paralela ao eixo Oz que passa pelo ponto (1,2,1);
- (e) a reta paralela ao eixo Ox que passa pelo ponto (1, 2, 1);
- (f) a reta paralela a reta $\frac{1-2x}{3} = \frac{y}{4} = \frac{2z+1}{4}$ que passa pelo ponto (2,1,0);
- (g) a reta paralela a reta $\begin{cases} x=1-3t \\ y=5t \\ z=-1-t \end{cases}$ que passa pelo ponto (2,1,0).

Solução 28.

(a)
$$X = (1, 4, -2) + t(-1, -3, 3)$$

(b)
$$X = (1,0,-2) + t(2,1,3)$$

(c)
$$X = (0,0,0) + t(1,0,0), X = (0,0,0) + t(0,1,0), X = (0,0,0) + t(0,0,1)$$

(d)
$$X = (1, 2, 1) + t(0, 0, 1)$$

(e)
$$X = (1, 2, 1) + t(1, 0, 0)$$

(f)
$$X = (2, 1, 0) + t(-3/2, 4, 2)$$

(g)
$$X = (2,1,0) + t(-3,5,-1)$$

Os outros formatos para equações da reta são fáceis de obter a partir desse.

Exercício 29.

Dados A = (1, 2, 3) e B = (4, 5, 6) determine a equação paramétrica da reta que passa por A e B. Determine também os pontos onde essa reta corta os planos coordenados Oxy, Oxz e Oyz.

Solução 29.

$$X = (1, 2, 3) + t(3, 3, 3)$$
, pontos $(-2, -1, 0)$, $(-1, 0, 1)$ e $(0, 1, 2)$

Exercício 30.

Os lados de um triângulo estão sobre as retas y = 2x + 1, y = 3x - 2 e y = 1 - x. Ache os vértices desse triângulo.

Solução 30.

$$(0,1), (3,7) \in (3/4,1/4).$$

Exercício 31.

Ache o vetor diretor e três pontos que pertencem a reta

$$2x - 1 = 4y + 8 = 3z - 5$$
.

Solução 31.

$$X = (1/2, -2, 5/4) + t(1/2, 1/4, 1/3), \vec{v} = (1/2, 1/4, 1/3)$$
e os pontos $(1/2, -2, 5/3), (1, -7/4, 2)$ e $(0, -9/4, 4/9)$.