Lista 10 - MAT-211 - MAT-216 - 2022

- (I) Calcule as seguintes integrais de superfície de campo escalar:
 - (1) $\iint_S x^2 z dS$, sendo S o cilindro $x^2 + y^2 = 1$, $0 \le z \le 1$.
 - (2) $\int \int_S x^2 dS$, sendo S a parte do cilindro $x^2 + y^2 = 4$, entre os planos z = 0 e z = x + 3.
 - (3) $\int \int_{S} (x^2 + y^2 2z^2) dS$, S a parte da esfera $x^2 + y^2 + z^2 = 4$, com $z \ge \frac{x^2 + y^2}{3}$.
 - (4) $\int \int_S z dS$, sendo S a parte da superfície $x^2 + y^2 + z^2 = 4z$, com $z \ge 3$.
 - (5) $\int \int_{S} \sqrt{\frac{2x^2 + 2y^2 2}{2x^2 + 2y^2 1}} dS$, S a parte de $x^2 + y^2 z^2 = 1$, com $1 \le z \le 3$.
 - (6) $\int \int_S z(x^2+y^2)dS$, S o hemisfério $x^2+y^2+z^2=4$, $z\geq 0$.
- (II) Calcule a área de cada uma das superfícies S definidas a seguir (área de $S=\int\int_S 1dS$):
 - (1) S é a parte da esfera $x^2 + y^2 + z^2 = 4$ interior ao cone $z \ge \sqrt{x^2 + y^2}$.
 - (2) S é a parte do plano z = 2x + 3y interior ao cilindro $x^2 + y^2 = 16$.
 - (3) S é o toro obtido por rotação da circunferência, no plano xz, de centro no ponto (b,0,0) e raio a < b, em torno do eixo z.
- (III) Determine a massa da superfície S, com densidade δ , em cada um dos casos:
 - (1) S é a esfera de centro na origem e raio a>0, e $\delta(x,y,z)=x^2+y^2.$
 - (2) S é a parte do plano z=x dentro do cilindro $x^2+y^2=1$, e $\delta(x,y,z)=x^2$.
 - (3) S é a parte do gráfico da função $z=ln(x^2+y^2)$, limitada pelos cilindros $x^2+y^2=1$ e $x^2+y^2=e^2$, com $\delta(x,y,z)=\sqrt{x^2+y^2}$.

