MAT0105 IF - Prova 2 - 26/06/2018

Turma A

Nome :	Q	N
	1	
N^{O} USP :	 2	
	3	
	4	
	Total	

Respostas sem justificativa não serão consideradas!

- Desligue celulares, smartfones, smartwatches;
- A prova pode ser feita à lápis;
- \bullet É proibido o uso dos livros, cadernos, apostilas, anotações;
- Na carteira só lápis, borracha e documento;
- Qualquer tipo de cola = nota "zero"na prova!!!

 $\mathbf{1}^{\underline{a}}$ Questão: (2.5 pontos) Encontre a equação geral do plano que passa pelo ponto P=(1,2,1) e que contem a reta de interseção entre os planos $\pi_1:2x-3y+4z-1=0$ e $\pi_2:x-3y-2z+2=0$.

 $\mathbf{2}^{\underline{a}}$ Questão: (2.5 pontos) Determine a posição relativa das retas dadas como

$$r_1: \frac{x-1}{-1} = \frac{y-2}{3} = \frac{z-1}{7} \text{ e } r_2: \begin{cases} x = 2t+1 \\ y = 2t+2 \\ z = -t+5 \end{cases}. \text{ Ache a distância entre } r_1 \text{ e } r_2.$$

 $\mathbf{3}^{\underline{a}}$ Questão: (2.5 pontos) Dados duas sistemas de coordenadas $\Sigma_1=(O_1,\vec{e}_1,\vec{e}_2,\vec{e}_3)$ e $\Sigma_2=(O_2,\vec{f}_1,\vec{f}_2,\vec{f}_3)$ tais que

$$O_2 = (1, 0, 0)_{\Sigma_1}, \quad \vec{f_1} = 2\vec{e_1}, \quad \vec{f_2} = \vec{e_2} - \vec{e_3}, \quad \vec{f_3} = \vec{e_2} + \vec{e_3}.$$

Obtenha, em relação Σ_2 ,

- a) (1.5 pt) uma equação vetorial de r: $\begin{bmatrix} x-2y-3z=0\\ x+y+4z-3=0 \end{bmatrix}_{\Sigma_1};$
- b) (1 pt) uma equação geral de $\pi: [2x y + z = 0]_{\Sigma_1}$.

 $4^{\underline{a}}$ Questão: (2.5 pontos) Dada uma cônica l no plano:

$$4x^2 - 8x - 9y^2 + 6y - 1 = 0.$$

- a) (1.5 pt) Qual é o tipo da cônica? Escreve a equação reduzida de l no sistema Ox'y'.
- b) (1 pt) Encontre o centro e os semi-eixos de l. Esboça rusticamente a cônica.